This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 165Machine Learning
- 22Artificial Intelligence
- 21Reinforcement Learning
- 20Deep Learning
- 11Natural Language Processing
- 10Computer Vision
- 2Jacobsen, Andrew
- 2Wen, Junfeng
- 1Aghaei, Nikoo
- 1Al Dallal, Ahmed
- 1Al-Masri, Mohammad
- 1Alam Anik, Md Tanvir
-
Fall 2016
The field of biomedicine is reeling from “information overload”. Indeed, biomedical researchers find it almost impossible to stay current with published literature due to the vast amounts of data being generated and published. As a result, they are turning to text mining. Over the past two...
-
Fall 2022
The objective of signal decomposition is to extract and separate distinct signal components from a composite signal. Signal decomposition has been studied in many applications, such as image, video, audio, and speech signals. This thesis focuses on the category of signal decomposition on...
-
Fall 2011
This thesis studies the reinforcement learning and planning problems that are modeled by a discounted Markov Decision Process (MDP) with a large state space and finite action space. We follow the value-based approach in which a function approximator is used to estimate the optimal value function....
-
Spring 2020
Reinforcement learning (RL) has received wide attention in various fields lately. Model-free RL brings data-driven solutions that learn the control strategy directly from interaction with process data without the need for a process model. This is especially beneficial in the case of nonlinear...
-
Robust and Accurate Generic Visual Object Tracking Using Deep Neural Networks in Unconstrained Environments
DownloadSpring 2022
The availability of affordable cameras and video-sharing platforms have provided a massive amount of low-cost videos. Automatic tracking of objects of interest in these videos is the essential step for complex visual analyses. As a fundamental computer vision task, Visual Object Tracking aims at...
-
Fall 2013
Many learning situations involve learning the conditional distribution $p(y|x)$ when the training data is drawn from the training distribution $p{tr}(x)$, even though it will later be used to predict for instances drawn from a different test distribution $p{te}(x)$. Most current approaches focus...
-
Scalable Solutions to Image Abnormality Detection and Restoration using Limited Contextual Information
DownloadFall 2020
Detecting and interpreting image abnormalities and restoring images are essential to many processing pipelines in diverse fields. Challenges involved include randomness and unstructured nature of image artefacts (from signal processing perspective) and performance constraints imposed by...
-
Fall 2017
Real-time strategy (RTS) games are war simulation video games in which the players perform several simultaneous tasks like gathering and spending resources, building a base, and controlling units in combat against an enemy force. RTS games have recently drawn the interest of the game AI research...
-
Fall 2018
Neural approaches to sequence labeling often use a Conditional Random Field (CRF) to model their output dependencies, while Recurrent Neural Networks (RNN) are used for the same purpose in other tasks. We set out to establish RNNs as an attractive alternative to CRFs for sequence labeling. To do...
-
Solving Witness-type Triangle Puzzles Faster with an Automatically Learned Human-Explainable Predicate
DownloadFall 2023
The Witness is a game with difficult combinatorial puzzles that are challenging for both human players and artificial intelligence based solvers. Indeed, the number of candidate solution paths to the largest puzzle considered in this thesis is on the order of 10^(15) and search-based solvers can...