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Abstract

This thesis studies the reinforcement learning and planning problems that are modeled by a

discounted Markov Decision Process (MDP) with a large state space and finite action space.

We follow the value-based approach in which a function approximator is used to estimate

the optimal value function. The choice of function approximator, however, is nontrivial, as

it depends on both the number of data samples and the MDP itself. The goal of this work is

to introduce flexible and statistically-efficient algorithms that find close to optimal policies

for these problems without much prior information about them.

The recurring theme of this thesis is the application of the regularization technique

to design value function estimators that choose their estimates from rich function spaces.

We introduce regularization-based Approximate Value/Policy Iteration algorithms, analyze

their statistical properties, and provide upper bounds on the performance loss of the re-

sulted policy compared to the optimal one. The error bounds show the dependence of the

performance loss on the number of samples, the capacity of the function space to which the

estimated value function belongs, and some intrinsic properties of the MDP itself. Remark-

ably, the dependence on the number of samples in the task of policy evaluation is minimax

optimal.

We also address the problem of automatic parameter-tuning of reinforcement learn-

ing/planning algorithms and introduce a complexity regularization-based model selection

algorithm. We prove that the algorithm enjoys an oracle-like property and it may be used

to achieve adaptivity: the performance is almost as good as the performance of the unknown

best parameters.

Our two other contributions are used to analyze the aforementioned algorithms. First, we

analyze the rate of convergence of the estimation error in regularized least-squares regression

when the data is exponentially β-mixing. We prove that up to a logarithmic factor, the

convergence rate is the same as the optimal minimax rate available for the i.i.d. case.

Second, we attend to the question of how the errors at each iteration of the approximate

policy/value iteration influence the quality of the resulting policy. We provide results that

highlight some new aspects of these algorithms.
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Chapter 1

Introduction

Many real-world decision-making problems can be described as either a Reinforcement
Learning (RL) or a Planning problem. More often than not, these sequential decision-
making problems have large state spaces, and to efficiently solve them one usually has to
rely on the use of some function approximation method.1 The appropriate choice of
function approximation for a given problem, however, is far from trivial. The suitable
choice depends on many factors including the problem itself and the way one interacts with
it. Different problems call for different function approximators in a way that is not easy –
if not impossible at all – to know prior to solving the problem itself. The high-level goal of
this thesis is to introduce and analyze flexible and statistically-efficient methods that can
solve RL/Planning problems with large state spaces.

We use the following household humanoid robot example as an instance of a sequential
decision-making problem with large state space. Nevertheless, we do not focus on any
specific application domain later, and our emphasis will be on theoretical studies.

The Household Humanoid Example

Imagine a humanoid robot [Kemp et al., 2008] that is responsible for running a household
and interacting with humans. The robot can sense the external world through its stereo-
vision cameras, microphones, and tactile sensors all around its body. Moreover, in order to
handle delicate tasks such as grasping dishes and using stairs, it has a motor-rich body with
tens of degrees of freedom. The goal of the designer is to develop an “artificial mind” (i.e.,
a decision-maker) that receives sensory inputs, and provides appropriate motor commands
so that the robot can successfully complete the required tasks.

This problem is an instance of sequential decision-making problems. It is sequential
because many tasks, such as preparing a meal or doing the laundry, have a temporal aspect
and achieving them requires a well-planned sequence of actions. The robot also requires to
deal with large state spaces. Consider the robot’s sensory inputs such as its cameras that
provide high-dimensional real-valued inputs. The decision-maker may summarize all these
sensory inputs in an internal representation, which we informally call state, and then base
its decision on the robot’s current state. The size of the state space, however, might be
huge if the state is supposed to represent the external world accurately – especially if the
external world is unstructured and its description cannot be considerably compressed.

This example is merely an instance of sequential decision-making problems with large
state spaces. Other fields of robotics, for example visual-servoing of manipulator arms
[Chaumette and Hutchinson, 2008; Farahmand et al., 2007a, 2009c; Shademan et al., 2010]
and mobile robots [Siciliano and Khatib, 2008, Part E] also require to solve similar problems.
More generally, almost all control engineering problems are instances of sequential decision-
making problems.

1We define state space and other related concepts in Chapter 2.
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A flexible computational framework for solving sequential decision-making problems with
large state spaces accompanied by a good theoretical understanding has far reaching applica-
tions. In addition to robotics and control engineering, researchers have found RL/Planning
useful in finance and have applied it to problems such as optimized trade execution [Nevmy-
vaka et al., 2006] and to learning exercise policy for American options [Li et al., 2009].
Healthcare applications of reinforcement learning methods, and especially the dynamic treat-
ment regime problem, are emerging [Pineau et al., 2007]. And finally, reinforcement learning
algorithms have also been used to design automated players for games such as backgam-
mon [Tesauro, 1994], Go [Silver et al., 2007], and Atari 2600 console games [Naddaf, 2010].
See Szita [2011] for a recent survey on the applications of RL in computer games.

1.1 Regularities and Adaptive Algorithms

How well can we solve any RL/Planning problem?
Negative results from the supervised learning theory suggest that “efficient” learning is

hopeless for general classes of problems, see e.g., Theorem A.1 in Section A.1. The situation
cannot be better for RL/Planning problems as they are supersets of regression problems. It
is indeed impossible to design a universal RL/Planning method that works “efficiently” for
all problems.

Fortunately, not all decision-making problems are equally difficult. If one finds some
kind of structure or regularity in a given problem, he can solve the problem with much
less effort. Examples of such regularities for sequential decision-making problems are the
smoothness of the value function2, the sparsity of the value function in a certain basis, or
the input data lying close to a low-dimensional manifold (see Section A.2).3

Results from the supervised learning theory ensure that an algorithm benefitting from
the regularities of the problem may perform reasonably well. Two key points deserve more
emphasis. The first is that the problem itself must have some kind of regularity. For example,
the value function should be smooth, or could be described by a few dimensions of the state
space. Regularity is an intrinsic property of the problem. The second key point is that
the algorithm should be capable to exploit the present regularities of the problem. For
instance, a conventional K-Nearest Neighborhood-based algorithm cannot benefit from the
smoothness of value function, and as a result its performance would be almost identical to
when the algorithm is faced with a problem without such smoothness regularity.

A highly desirable requirement for any learning agent is to adapt to the intrinsic dif-
ficulty of the learning problem. Whenever the problem has certain regularities, we would
like the agent to deliver a better solution with the same amount of data/interactions with
the environment. If an agent can automatically exploit these regularities and provide a
solution as if it knew the right regularity of the problem a priori, we call it an adaptive
agent/algorithm.

To clarify the notions of regularity and adaptivity, consider a simple numerical analysis
example: the problem of inverting a matrix. If the matrix has some special structure, like
being diagonal or lower/upper triangular, the matrix inversion is computationally cheaper
than the general case. If an algorithm detects such a structure and adjusts the inversion
method accordingly, we call the algorithm adaptive to this regularity.

An adaptive procedure usually consists of two main elements:

1. A flexible algorithm: an algorithm that has some tunable parameters and can de-
liver the “optimal” performance for a vast range of regularities – provided that its
parameters are chosen properly.

2We have not defined the value function yet, which is formally done in Section 2.1. Readers not familiar
with the concept of value functions can read the sentence by replacing “value function” with “target function”
in the sense that is commonly used in the regression literature.

3More information about the possible difficulties of solving a learning problem and common types of
regularities in the supervised learning context is in Appendix A and Section A.2 in particular.
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2. A model selection algorithm: an algorithm that tunes the parameters of a flexible
algorithm.

The usual practice in the RL community is quite different from using adaptive proce-
dures. Typically, an RL user picks a finite pre-defined set of basis functions to represent the
value function as a linear combination of the basis. These basis functions are usually chosen
a priori by the user and is fixed through learning. This approach, which we call parametric,
has been thoroughly studied in the RL literature, see e.g., Tsitsiklis and Van Roy [1997];
Sutton et al. [2009]. One important advantage of parametric approaches is that whenever
the model is selected properly, such that the true value function can be closely approxi-
mated in that model, they show a fast error convergence rate and are often computationally
efficient.

Nevertheless, parametric approaches have one serious limitation: if the unknown value
function cannot be closely approximated by the parametric model, they show a function
approximation error, which may result in poor performance. The usual approach to address
this issue is to have a human designer find the right parametric model by fine-tuning the
function approximation architecture. For instance, the designer should select the form and
the number of basis functions by trial and error. This job is usually difficult, tedious, and
against the idea of having a flexible method that can easily work with a large class of
functions.

On the other hand, we have flexible nonparametric approaches that have much weaker
assumptions on the value function. They implicitly or explicitly work with infinite dimen-
sional function spaces and as a result allow us to represent a wide range of value functions.
In these approaches, the choice of basis functions themselves may be adaptive and depend
on data. Examples of nonparametric methods are K-NN, smoothing kernel estimators,
locally linear models, decision trees, growing neural networks, orthogonal series estimates,
and regularization-based kernel methods [Györfi et al., 2002; Hastie et al., 2001; Wasserman,
2007; Bishop, 2006].

Nonparametric methods usually have a few tuning parameters.4 The right choice of
these parameters depends on the problem in hand. By changing these parameters data-
dependently, one can make them work well for a large range of problems, e.g., for the
whole scale of smoothness orders. The downside of nonparametric methods, comparing to
parametric ones, is their computational complexity. With the advent of powerful computers
and elegant numerical computation algorithms, however, this downside may become less
and less of a concern.

One important and powerful class of nonparametric approaches, which has been proven
to be an effective tool in statistics and supervised machine learning, is the class of methods
that use regularization to control the complexity of a large function space. The main idea
is to formulate the learning task as an optimization problem in a large function space where
one minimizes the sum of an empirical error and a complexity penalty (the regularizer).
It is known in the supervised learning/statistics literature that whenever the regularization
is selected properly, e.g., by cross-validation or complexity-regularized model selection (also
known as structural risk minimization), the resulting procedure automatically adapts to the
complexity of the target function, converging almost as fast as if the right model was known
beforehand (see e.g., Kohler et al. [2002]; Györfi et al. [2002]). This is the approach we take
in this thesis.

1.2 Contributions

The goal of this thesis is to develop flexible regularized value-based algorithms to deal with
RL/Planning problems with large state spaces that can be described by a discounted Markov
Decision Process. The high-level contributions of this research are:

4Note that nonparametric methods are not parameter-free methods.
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• Providing regularized algorithms to solve RL/Planning problems based on Approxi-
mate Value Iteration (AVI) and Approximate Policy Iteration (API). We formulate
these algorithms as regularized optimization problems in large function spaces, and
demonstrate how to solve them for the family of reproducing kernel Hilbert spaces
(RKHS).

• Introducing a complexity regularization-based algorithm for model selection in RL/
Planning problems.

• Statistical analyzing of the suggested algorithms and providing upper bounds on the
performance loss.

Apart from this chapter that motivates the problem, this thesis has five chapters with
new contributions (Chapters 3, 4, 5, 6, 7), and three others that supply the reader with
the necessary background in sequential decision-making problems (Chapter 2), supervised
learning problems (Appendix A), and mathematics (Appendix B).5 Chapter 8 summarizes
the thesis, highlights its limitations such as the accessibility of the state assumption and
computational considerations, and suggests several possibilities for future investigations that
have been laid by this work. In the rest of this section, we summarize the contributions of
each chapter.

Error Propagation for Approximate Policy and Value Iteration (Chapter 3)

This chapter addresses the basic question of how the approximation error/Bellman residual
at each iteration of the API/AVI algorithms influences the quality of the resulting policy.
The results of this chapter are crucial in the analysis of regularized RL algorithms introduced
in Chapters 5 and 6. We quantify the performance loss as the Lp-norm of the approximation
error/Bellman residual at each iteration. We also show that the performance loss depends
on the expectation of the squared Radon-Nikodym derivative of a certain distribution rather
than its supremum – as opposed to what has been suggested by the previous results. Ad-
ditionally, our results indicate that the contribution of the approximation/Bellman error to
the performance loss is more prominent in the later iterations of API/AVI, and the effect
of an error term in the earlier iterations decays exponentially fast.6

Regularized Least-Squares Regression: Learning from a β-mixing Sequence
(Chapter 4)

A main component of our regularized AVI algorithm (Chapter 5) is a regularized least-
squares regression estimator. The purpose of this chapter is to prepare for the analysis of
RFQI algorithm by providing the rate of convergence of the estimation error in regularized
least-squares regression when the data is exponentially β-mixing. The results are proven
under the assumption that the metric entropy of the balls in the chosen function space
grows at most polynomially. In order to prove our main result, we also derive a relative
deviation concentration inequality for β-mixing processes, which might be of independent
interest. The other major techniques that we use are the independent-blocks technique and
the peeling device. An interesting aspect of our analysis is that in order to obtain fast rates
we have to make the block sizes dependent on the layer of peeling. With this approach, up
to a logarithmic factor, we recover the optimal minimax rates available for the i.i.d. case,
at least in an asymptotic sense. In particular, our rate asymptotically matches the optimal
rate of convergence when the regression function belongs to a Sobolev space.7

5Even though we have tried to provide a self-contained thesis, there might be places where some back-
ground knowledge of statistical machine learning and reinforcement learning/planning is required. The
knowledge of reinforcement learning/approximate dynamic programming at the level of Szepesvári [2010],
statistical learning theory at the level of Györfi et al. [2002], and machine learning algorithms at the level
of Hastie et al. [2001] should suffice.

6A version of this chapter has partly been published [Farahmand et al., 2010].
7A version of this chapter has been published [Farahmand and Szepesvári, 2011a].
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Regularized Fitted Q-Iteration Algorithm (Chapter 5)

Regularized Fitted Q-Iteration (RFQI) is a novel nonparametric AVI algorithm to solve
RL/Planning problems with large state spaces. RFQI uses regularized least-squares regres-
sion to approximately perform a single step of the value iteration.

To analyze the statistical properties of RFQI and provide an error upper bound on the
performance loss of the resulting policy, we provide an upper bound on the L2-norm of the
fitting error at each iteration. To provide such a bound, we need to not only analyze the
convergence behavior of the regularized regression algorithm (Chapter 4), but also consider
the effect of previous iterations on the current one. This effect is in the form of changing both
the smoothness of the target function and the function approximation error. Afterwards, the
result of Chapter 3 can be applied to provide an upper bound on the performance loss of the
resulting policy. The main result, Theorem 5.8, provides a performance loss upper bound of
the resulting policy and shows its dependence on the number of samples, the choice of the
function space, and some intrinsic properties of the underlying MDP. The result indicates
that by the appropriate choice of the function spaces and the regularization coefficients,
achieving rates as fast as the optimal minimax convergence rate for certain classes of RKHS
is possible.8

Regularized Policy Iteration Algorithm (Chapter 6)

We introduce two nonparametric Approximate Policy Iteration algorithms, namely REG-
LSPI and REG-BRM, to solve reinforcement learning and planning problems with large
state spaces. Our algorithms are built on the regularized extensions of the Least-Squares
Temporal Difference (LSTD) learning and the Bellman Residual Minimization (BRM) pro-
cedures for policy evaluation. We derive efficient implementations of our methods when
the function space is a reproducing kernel Hilbert space. We also analyze the statistical
properties of REG-LSPI and provide an upper bound on the policy evaluation error and the
performance loss of the resulting policy. We show how this error depends on the number of
samples, the capacity of the function space, and some intrinsic properties of the underlying
MDP. The dependence of the policy evaluation bound on the number of samples is minimax
optimal.9

Model Selection in Reinforcement Learning (Chapter 7)

We consider the problem of model selection in the batch (offline, non-interactive) reinforce-
ment learning setting when the goal is to find an action-value function with the smallest
Bellman error among a countable set of candidates functions. We propose a complex-
ity regularization-based model selection algorithm, BErMin, and prove that it enjoys an
oracle-like property: the estimator’s error differs from that of an oracle, who selects the can-
didate with the minimum Bellman error, by only a constant factor and a small remainder
term that vanishes at a parametric rate as the number of samples increases. As an appli-
cation, we consider a problem when the true action-value function belongs to an unknown
member of a nested sequence of function spaces. We show that under some additional tech-
nical conditions BErMin leads to a procedure whose rate of convergence, up to a constant
factor, matches that of an oracle who knows to which of the nested function spaces the true
action-value function belongs, i.e., the procedure achieves adaptivity.10

1.3 Credits

I acknowledge the great help and contributions of Csaba Szepesvári, Mohammad Ghavamzadeh,
Shie Mannor, and Rémi Munos. Although I have been directly involved in most parts of

8Some versions of this chapter have partly been published [Farahmand et al., 2008, 2009a,c].
9A version of this chapter has partly been published [Farahmand et al., 2009b].

10A version of this chapter has been published [Farahmand and Szepesvári, 2011b].
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this research program, some parts have not been studied, proven, or written by me, or to
them I had only minor contributions. For the sake of completeness, however, I include them
in this thesis. These results are as follows.

• The matrix form of Theorem 6.3 is derived by Mohammad Ghavamzadeh and Csaba
Szepesvári. I was contributing to discussions about the new representer theorem, but
I have not derived the formula myself.

• Theorem 7.3 is stated and proven mostly by Csaba Szepesvári.

• Figure 4.1 is drawn by Csaba Szepesvári.
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Chapter 2

Sequential Decision-Making
Problems

This chapter begins by providing the necessary background on sequential decision-making
problems. We define the mathematical framework of Markov Decision Processes (MDP)
in Section 2.1, and afterwards we introduce Reinforcement Learning (RL) and Dynamic
Programming (DP)-based planning problems in Section 2.2. These two problems are very
similar with the exception that they describe situations with different prior knowledge about
the problem in hand. We describe the value-based approach to solve RL/Planning prob-
lems in Section 2.3 and briefly review methods such as Value Iteration and Policy Iter-
ation algorithms. In Section 2.4, we explain two common ways to measure the perfor-
mance of RL/Planning algorithms. Finally in Section 2.5, we discuss difficulties of solving
RL/Planning problems in large state spaces where one has to use function approximation.
There we categorize different algorithms according to their modeling assumption (parametric
vs. nonparametric) and their statistical convergence behavior.

Several textbooks and monographs on RL and Planning provide comprehensive reviews
of these problems and associated algorithms. Sutton and Barto [1998] is an introductory-
level textbook that covers both RL and Planning, with more emphasis on the learning
aspects. Sutton and Barto consider both discrete and continuous state spaces. Bertsekas
and Tsitsiklis [1996] is a more advanced textbook on RL and Planning. Bertsekas and
Shreve [1978] is an advanced monograph on Planning that provides a treatment on general
state spaces, both finite and infinite, but does not cover learning/estimation aspect of the
problem. Bertsekas [2010] is a work in progress chapter that covers recent advances of
“Approximate Dynamic Programming” and has similar style as Bertsekas and Tsitsiklis
[1996]. And finally, Buşoniu et al. [2010a] and Szepesvári [2010] are two new monographs
that cover recent developments in the RL/Planning literature.

2.1 Definitions

Probability Space

For a space Ω, with σ-algebra σΩ, we defineM(Ω) as the set of all probability measures over
σΩ. Further, we let B(Ω) denote the space of bounded measurable functions w.r.t. (with
respect to) σΩ and we denote B(Ω, L) as the space of bounded measurable functions with
bound 0 < L <∞.

We write ν1 � ν2 if ν2(A) = 0 implies that ν1(A) = 0 as well. For two σ-finite measures
ν1 and ν2 on some measurable space (Ω, σΩ), ν1 is absolutely continuous w.r.t. ν2 if there is
a non-negative measurable function f : Ω→ R such that µ1(A) =

∫
fdν2 for all A ∈ σΩ. It

is known that ν1 is absolutely continuous w.r.t. ν2 if and only if ν1 � ν2. We write dν1
dν2

= f
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and call it the Radon-Nikodym derivative of ν1 w.r.t. ν2 [Rosenthal, 2006, Chapter 12].

Markov Decision Process

Definition 2.1. A finite-action discounted MDP is a 4-tuple (X ,A, P, γ), where X is a
measurable state space, A = {a1, a2, . . . , a|A|} is the finite set of |A| actions, P : X ×A →
M(R×X ) is the reward-transition probability kernel with domain X ×A and 0 ≤ γ < 1 is
the discount factor. Mapping P evaluated at (x, a) ∈ X ×A gives a distribution over R×X ,
which we shall denote by P (·, ·|x, a). We denote the marginals of P by P (·|x, a) = Px,a(·) =∫
R P (dr, ·|x, a) (transition probability kernel) and R(·|x, a) =

∫
X P (·, dy|x, a) (reward distri-

bution).

MDPs encode the temporal evolution of a discrete-time stochastic process controlled by
an agent. The dynamical system starts at time t = 1 with random initial state X1 ∼ P1

where “ ∼ ” denotes that X1 is drawn from distribution P1. At time t, action At ∈ A
is selected by the agent controlling the process. As a result the pair (Rt, Xt+1) is drawn
from P (·, ·|Xt, At), i.e., (Rt, Xt+1) ∼ P (·, ·|Xt, At). Here, Rt is the reward that the agent
receives at time t and Xt+1 is the state at time t + 1. This procedure continues and leads
to a random trajectory ξ = (X1, A1, R1, X2, A2, R2, · · · ). We denote the space of all possible
trajectories as Ξ.

This definition of MDP is quite general. If X is a finite state space, the result is called
a finite MDP. The state space X can be more general. If we consider a measurable subset
of Rd (X ⊆ Rd), such as (0, 1)d, we get the so-called continuous state-space MDPs. In this
thesis, we often talk about measurable subsets of Rd, but one can think of other state spaces
too, e.g., the binary lattices {0, 1}d, the space of graphs, the space of strings, the space of
distributions, etc.

Policy

Definition 2.2 (Definition 8.2 and 9.2 of Bertsekas and Shreve [1978]). A policy is a
sequence π̄ = {π1, π2, . . .} such that for each t,

πt(at|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt)

is a universally measurable stochastic kernel on A given X ×A× · · · × X ×A× X︸ ︷︷ ︸
2t−1 elements

satisfying

πt(A|X1, A1, X2, A2, . . . , Xt−1, At−1, Xt) = 1

for every (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt). If πt is parametrized only by Xt, π̄ is a
Markov policy. If for each t and (X1, A1, X2, A2, . . . , Xt−1, At−1, Xt), the policy πt assigns
mass one to a single point in A, π̄ is called a deterministic (nonrandomized) policy; if it
assigns a distribution over A, it is called stochastic or randomized policy. If π̄ is a Markov
policy in the form of π̄ = (π, π, . . .), it is called a stationary policy.

We define the following terminology and notations in order to simplify our exposition.

Definition 2.3. We say that an agent is “following” a Markov stationary policy π whenever
At is selected according to the policy π(·|Xt), i.e., At ∼ π(·|Xt). The policy π induces two
transition probability kernels Pπ : X → M(X ) and Pπ : X × A → M(X × A). For a
measurable subset A of X and a measurable subset B of X ×A, denote

(Pπ)(A|x) ,
∫
X
P (dy|x, π(x))I{y∈A},

(Pπ)(B|x, a) ,
∫
X
P (dy|x, a)I{(y,π(y))∈B}.
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The m-step transition probability kernels (Pπ)m : X → M(X ) and (Pπ)m : X × A →
M(X ×A) for m = 2, 3, · · · are inductively defined as

(Pπ)m(A|x) ,
∫
X
P (dy|x, π(x))(Pπ)m−1(A|y),

(Pπ)m(B|x, a) ,
∫
X
P (dy|x, a)(Pπ)m−1(B|y, π(y)).

The difference between the transition probability kernels Pπ : X → M(X ) and Pπ :
X ×A →M(X ×A) is in the way the policy affects the action selection: in the former, the
action of the first step is chosen according to the policy, while in the latter the first action
is pre-chosen and the policy chooses the action in the second step.

Definition 2.4. Given probability transition kernels P : X → M(X ) and P : X × A →
M(X × A), define the right-linear operators P · : B(X ) → B(X ) and P · : B(X × A) →
B(X ×A) by

(PV )(x) ,
∫
X
P (dy|x)V (y),

(PQ)(x, a) ,
∫
X×A

P (dy, da′|x, a)Q(y, a′).

For a probability measure ρ ∈M(X ) and a measurable subset A of X , define the left-linear
operator ·P :M(X )→M(X ) by

(ρP )(A) =

∫
ρ(dx)P (dy|x)I{y∈A}.

In words, ρP represents the distribution over states when the initial state distribution is ρ
and we follow P for a single step.
Similarly, for a probability measure ρ ∈ M(X × A) and a measurable subset B of X × A,
define the left-linear operator ·P :M(X ×A)→M(X ×A) by

(ρP )(B) =

∫
ρ(dx, da)P (dy, da′|x, a)I{(y,a′)∈B}.

A typical choice of P is (Pπ)m for m ≥ 1.
Under certain conditions, it can be shown that a deterministic Markov stationary policy

is all we should care for, e.g., see Proposition 4.3 of Bertsekas and Shreve [1978]. From now
on, whenever we use term “policy”, we are referring to a deterministic Markov stationary
policy and we denote it by π (instead of π̄) – unless it is stated otherwise.

Planning and Reinforcement Learning as a Variational Problem

In a non-orthodox viewpoint, reinforcement learning and planning problems can be seen as
maximizing a functional of the reward distribution R(·|x, a). Let G : Ξ → R be the return
function that is defined by the designer of the sequential decision-making problem. Let ξ(x)
be a trajectory starting from x, and denote Pπξ(x) as the probability measure induced by the
policy π on the space of all trajectories starting from x. Define the following functional:

J (x;π, P,G) ,
∫

Ξ

G(ξ)dPπξ(x)(ξ).

The goal of planning and reinforcement learning is to find a policy π∗ that maximizes
this functional (if there exists any), i.e.,

J (·;π∗, P,G) = sup
π
J (·;π, P,G).

We call π∗ an optimal policy.
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Discounted MDPs

One specific type of functionals that deserves special attention is the discounted reward
functional. Under this functional the importance of the future reward is less than the
imminent one. In addition to its suitability to model some classes of sequential decision-
making problems, the resulting mathematics is often easier to analyze.

For a given policy π, let ξ(x) = (X1 = x, π(X1), R1, X2, π(X2), R2, · · · ) be the sequence
induced by following policy π from the initial state x. Define the γ-discounted return
function as Gγ(ξ) =

∑∞
t=1 γ

t−1Rt. The discounted reward functional is defined as1

Jγ(x;π, P,G) ,
∫

Ξ

Gγ(ξ)dPπξ(x)(ξ) = E

[ ∞∑
t=1

γt−1Rt

]

Bertsekas and Shreve [1978, Proposition 7.45]) guarantees the well-definedness of this ex-
pectation. Discounted MDPs will be the focus of our further developments.

Value Functions

To study MDPs, two auxiliary functions are of central importance: the value and the action-
value functions of a policy π.

Definition 2.5 (Value Functions). The value function V π and the action-value function
Qπ for a policy π are defined as follows: Let (Rt; t ≥ 1) be the sequence of rewards when the
process is started from a state X1 (or (X1, A1) for the action-value function) drawn from a
positive probability distribution over X (or X × A) and follows the policy π for t ≥ 1 (or
t ≥ 2 for the action-value function). Then,

V π(x) , E

[ ∞∑
t=1

γt−1Rt|X1 = x

]
,

Qπ(x, a) , E

[ ∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.

In words, the value function V π evaluated at state x is the expected discounted return
of following the policy π from state x. The action-value function evaluated at (x, a) is the
expected discounted return when the agent starts at state x, takes action a, and then follows
policy π.

For a discounted MDP, we define the optimal value function by

V ∗(x) , sup
π
V π(x), (for all x ∈ X )

and similarly the optimal action-value function is defined as

Q∗(x, a) , sup
π
Qπ(x, a). (for all (x, a) ∈ X ×A)

We say that a deterministic policy π is greedy w.r.t. an action-value function Q (or a
value function V ) and write π = π̂(·;Q) (or π = π̂(·;V )), if for all x ∈ X ,

π(x) = arg max
a∈A

Q(x, a), (action-value function)

π(x) = argmax
a∈A

∫
P (dy|x, a)[r(x, a) + γV (y)]. (value function)

1The reward functional is sometimes defined as E
[∑∞

t=0 γ
tRt
]

too. For notational convenience in our
later developments, we have chosen the current indexing.
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If there exist multiple maximizers, a maximizer is chosen in an arbitrary deterministic man-
ner. Greedy policies are important because a greedy policy w.r.t. Q∗ (or V ∗) is an optimal
policy. Hence, knowing Q∗ is sufficient for behaving optimally [Bertsekas and Shreve, 1978,
Proposition 4.3].

Define the immediate expected reward function

r(x, a) =

∫
rR(dr|x, a).

It is easy to see that for any policy π, if the absolute value of the immediate expected reward
rπ(x) = r(x, π(x)) (or rπ(x) =

∑
a∈A r(x, a)π(a|x) for stochastic policies) is uniformly

bounded by Rmax, the functions V π and Qπ are bounded by Vmax = Qmax = Rmax/(1− γ),
independent of the choice of π. Moreover, if for all policies π the value of Rmax is a uniform
upper bound for rπ, V ∗ and Q∗ are also upper bounded by Vmax.

Bellman Operators

Bellman [optimality] operators provide a useful way to describe and analyze the properties
of MDPs. They are particularly important because their fixed points are [optimal] value
functions. Proposition 4.2 of Bertsekas and Shreve [1978] shows the optimality of the fixed
point of the Bellman optimality operators. Moreover, it shows the uniqueness of the fixed
point for both the Bellman and the Bellman optimality operators.

Definition 2.6 (Bellman Operators). The Bellman operators Tπ : B(X )→ B(X ) (for the
value function V ) and Tπ : B(X × A) → B(X × A) (for the action-value function Q) for
the policy π are defined as

(TπV )(x) , rπ(x) + γ

∫
X
V (y)P (dy|x, π(x)),

(TπQ)(x, a) , r(x, a) + γ

∫
X
Q(y, π(y))P (dy|x, a). (2.1)

The fixed point of this operator is the [action-]value function of the policy π, i.e., TπQπ =
Qπ and TπV π = V π (Proposition 4.2(b) of Bertsekas and Shreve [1978]).

Definition 2.7 (Bellman Optimality Operators). The Bellman optimality operators T ∗ :
B(X )→ B(X ) and T ∗ : B(X ×A)→ B(X ×A) are defined as

(T ∗V )(x) , max
a

{
r(x, a) + γ

∫
X
V (y)P (dy|x, a)

}
,

(T ∗Q)(x, a) , r(x, a) + γ

∫
X

max
a′

Q(y, a′)P (dy|x, a). (2.2)

These operators enjoy a fixed-point property similar to that of the Bellman operators:
T ∗Q∗ = Q∗ and T ∗V ∗ = V ∗ [Bertsekas and Shreve, 1978, Proposition 4.2(a)].

Proposition 4.3 of Bertsekas and Shreve [1978] implies that the optimal value function can
be attained by a deterministic Markov stationary policy if the action set is finite. This result
also holds for infinite action sets when certain compactness conditions are satisfied [Bertsekas
and Shreve, 1978, Proposition 4.4]. As we only focus on the MDPs with finite action sets,
we do not report the detail of these conditions.

Norms and Function Spaces

We use F : X → R to denote a subset of measurable functions. The exact specification
of this space will be clear from the context. We usually denote F as the space of value
functions.
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For a probability measure νX ∈M(X ), and a measurable function V ∈ F , we define the
Lp(νX )-norm of V as

‖V ‖pp,νX ,
∫
X
|V (x)|pdνX (x). (2.3)

The L∞(X )-norm is defined as ‖V ‖∞ , supx∈X |V (x)|.
We define F |A| : X × A → R|A| as a subset of vector-valued measurable functions with

the following identification:

F |A| =
{

(Q1, . . . , Q|A|) : Qi ∈ F , i = 1, . . . , |A|
}
.

We use Qj(x) = Q(x, j) (j = 1, . . . , |A|) to refer to the jth component of Q ∈ F |A|. We
often denote F |A| as the space of action-value functions. For ν ∈M(X ×A) and Q ∈ F |A|,
we define ‖·‖p,ν by generalizing (2.3) to F |A| as follows

‖Q‖pp,ν ,
∫
X×A

|Q(x, a)|pdν(x, a). (2.4)

Let z1:n denote the Z-valued sequence (z1, . . . , zn). For Dn = z1:n, define the empirical
norm of function f : Z → R as

‖f‖pp,z1:n = ‖f‖pp,Dn ,
1

n

n∑
i=1

|f(zi)|p. (2.5)

When there is no chance of confusion about Dn, we may simply use ‖f‖pp,n. Based on this
definition, one may define ‖V ‖n (with Z = X ) and ‖Q‖n (with Z = X × A). Note that if
Dn = Z1:n is random with Zi ∼ ν, the empirical norm is random as well and for any fixed

function f , we have E
[
‖f‖p,n

]
= ‖f‖p,ν .

Note that we sometimes use the shorthand notation of ν|Q|p = ‖Q‖pp,ν (similar for νX
and other probability distributions). In this thesis most, but not all, results are stated for
p = 1 or p = 2. The symbols ‖·‖ν and ‖·‖n refer to an L2-norm.

Finally, define the projection operator Πν,F |A| : B(X × A) → B(X × A) as Πν,FQ ,

argminQ′∈F |A| ‖Q′ −Q‖
2
ν for Q ∈ B(X × A). The definition of ΠνX ,F : B(X ) → B(X ) is

similar. If the measures νX or ν are clear from the context, we may simply write ΠF and
ΠF |A| instead.

2.2 Reinforcement Learning and Planning

Reinforcement Learning and Planning are two similar types of sequential decision-making
problems with the common goal of finding a policy π that has the performance equal or
close to that of the optimal policy π∗. The difference between reinforcement learning and
planning problems, as we will discuss shortly, is in our prior knowledge about the problem
and the way we interact with it. In this thesis, we only focus on problems that can be
modeled by an MDP.

In Planning the transition probability kernel P (·|x, a) and the reward distributionR(·|x, a)
of the MDP is known. On the other hand, in Reinforcement Learning either P or R
or even both are not directly accessible, but one interacts with the MDP by selecting
action At at state Xt, and getting a reward Rt ∼ R(·|Xt, At) and going to the next
state Xt+1 according to the transition probability kernel. The result is a trajectory ξ =
(X1, A1, R1, X2, A2, R2, · · · ). This mode of interaction is usually described by an agent-
environment metaphor in the RL community [Sutton and Barto, 1998].

There are some middle ground scenarios as well. Sometimes we do have the luxury of
knowing P (·, ·|x, a) but cannot compute functionals involving it, such as TπQ, because of
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the large cardinality of X . Another situation is when we do not have access to P (·, ·|x, a),
but have access to a flexible data generator that gets any (x, a) ∈ X × A as input and
returns (R,X ′) ∼ P (·, ·|x, a). Finding a good policy in these scenarios is called the problem
of Approximate Planning.

Several approaches to solve RL/Planning problems exist. Based on the type of explicit
representation that these approaches maintain, one may categorize them into two major
classes:

• Value Space Search

• Policy Space Search

Value-based approaches maintain an estimate Q̂ (or V̂ ) of the optimal value function
Q∗ (or V ∗). The premise of value-based approaches is that by finding an accurate enough
estimate Q̂ of the optimal action-value function Q̂, the greedy policy π̂(·; Q̂) will be close
to the optimal policy in some well-defined sense. On the other hand, the direct policy
search approaches explicitly represent the policy function and directly perform the search
in the policy space. The search may be guided by the gradient information [Baxter and
Bartlett, 2001; Kakade, 2001; Ghavamzadeh and Engel, 2007b] or be in the same spirit as
evolutionary algorithms [Moriarty et al., 1999; Heidrich-Meisner and Igel, 2009]. Moreover,
there are hybrid methods that explicitly represent both value and policy functions [Konda
and Tsitsiklis, 2001; Peters et al., 2003; Ghavamzadeh and Engel, 2007a]. In this work, we
only focus on the value-based approaches.

2.2.1 Online vs. Offline Samples; Batch vs. Incremental Processing

An important aspect of any method that solves RL/Planning problems is the way that
data are collected and processed by the algorithm. The data collection setting can be
categorized as online or offline and the data processing method can be categorized as batch
or incremental.

The online sampling setting is when the agent chooses the action sequence At ∼ πt Online vs.
Offline Sam-
pling

and directly influences how the data stream ξ = (X1, A1, R1, . . . ) is generated. The offline
setting, on the other hand, is when the agent does not have control over how the data are
generated; the agent is, rather, provided with a data set2

Dn = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)} , (2.6)

where (Ri, X
′
i) ∼ P (·, ·|Xi, Ai), Ai ∼ πb(·|Xi), and Xi ∼ νX (i = 1, . . . , n), with νX as

the fixed distribution over the states. The policy πb is the data-generating policy and is
commonly known as the “behavior” policy. The behavior policy is usually a stochastic
one, and might be unknown to the agent. We shall denote by ν the common distribution
underlying (Xi, Ai). Samples Xi and Xi+1 may be sampled independently (common in the
Planning scenario), or may be coupled through X ′i = Xi+1 (common in the RL scenario).
In the latter case the data belong to a single trajectory. Under either of these assumptions
we say that the data Dn meet the standard offline sampling assumption.

An algorithm can be batch or incremental. A batch algorithm processes the whole data Batch vs.
Incremental
Processing

set Dn and can freely access any element of the data set at any time. An incremental
algorithm, however, continues to learn whenever a new data sample is available. The com-
putation does not directly depend on the whole data set Dn, but only on the recent data
sample (Xn, An, Rn, X

′
n). Of course, the boundary between a batch algorithm and an in-

cremental one is not vividly clear. One may say an incremental algorithm is a special case
of the batch algorithms when the algorithm processes data in a specific temporal ordering.

The question of which of these settings is more natural depends on the problem in hand.
If all available is a collection of data Dn, and interacting with the MDP is impossible, we are

2In what follows, when {·} is used in connection to a dataset, we treat the set as an ordered multiset,
where the ordering is given by the time indices of the data points.
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inevitably in the offline setting. In this case as the batch algorithms are usually more data
efficient they are the preferred choice for data processing – unless the computation time is
limited. On the other hand, if we have direct access to the environment, either by knowing
the model of the MDP or accessing its generative model (as is common in planning) or
when the agent is actually situated in the environment, the data sampling scenario is indeed
online and both batch and incremental algorithms may be used. In this work, we focus on
the batch algorithms that assume Dn meets the standard offline sampling assumption. The
assumption that the states {Xi} are identically distributed and that a stationary policy πb
is used to generate the data can be relaxed but would complicate the analysis. Hence for
simplicity, we stick to the above assumptions in the rest of this work.

The data Dn allows us to define the empirical Bellman operators, which can be thought
of as empirical approximations to the true Bellman operators.

Definition 2.8 (Empirical Bellman Operators). Let Dn be a dataset as (2.6). Define the
ordered multiset Sn = {(X1, A1), . . . , (Xn, An)}. For a given fixed policy π, the empirical
Bellman operator T̂π : Sn → Rn is defined as

(T̂πQ)(Xi, Ai) , Ri + γQ(X ′i, π(X ′i)) , (i = 1, . . . , n)

while the empirical Bellman optimality operator T̂ ∗ : Sn → Rn is defined as

(T̂ ∗Q)(Xi, Ai) , Ri + γmax
a′

Q(X ′i, a
′) , (i = 1, . . . , n)

In words, the empirical Bellman operators get an n-element list Sn and return an n-
dimensional real-valued vector of the single-sample estimate of the Bellman operators applied
to the value function Q at the selected points.

The following proposition, which follows immediately from the definitions, shows that
the empirical Bellman operators provide an unbiased estimate of the Bellman operators
(Note that T̂π and T̂ ∗ depend on the data, and hence they are random. The dependence is
suppressed to simplify the notation).

Proposition 2.1. For any fixed, bounded measurable, deterministic function Q : X ×A →
R, policy π and index 1 ≤ i ≤ n, it holds that

E
[
T̂πQ(Xi, Ai)

∣∣Xi, Ai

]
= TπQ(Xi, Ai) ,

E
[
T̂ ∗Q(Xi, Ai)

∣∣Xi, Ai

]
= T ∗Q(Xi, Ai) ,

2.3 Value-based Approaches for Reinforcement Learn-
ing and Planning

In the value-based approaches for solving RL/Planning problems, we aim to find the [approx-
imate] fixed point of the Bellman operator Qπ = TπQπ (or V π = TπV π) for the so-called
policy evaluation problem or the Bellman optimality operator Q∗ = T ∗Q∗ (or V ∗ = T ∗V ∗).
To find a close to optimal value function, we are facing the following challenges:

1. How to represent an action-value function Q?

2. Given Q, how to evaluate TπQ or T ∗Q?

3. How to find the fixed point of Tπ or T ∗ operators?

The first problem is easy when X ×A is a small finite space, so Q can be represented by
a finite number of real values. When it is not, we must approximate Q with a simpler and
easier to compute function called approximant. The process of approximating a function
with an easier to compute function is called Function Approximation (FA), which different
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aspects of it are studied in the approximation theory [Devore, 1998] and the statistical
learning theory [Györfi et al., 2002].

The second challenge is to evaluate TπQ or T ∗Q given Q. Here one requires to calculate
integrals of (2.1) and (2.2). Except special cases, such as in the Linear Quadratic Regulation
(LQR) problem [Burl, 1998], this is intractable for large state spaces, even if P (·, ·|x, a) is
known. A reasonable way to evaluate TπQ or T ∗Q, for both RL/Planning scenarios, is to
approximately estimate them by random sampling from P (·, ·|x, a).

The third challenge is to find the fixed point of the Bellman operators. There are
several approaches to solve this problem. In the following subsection, we briefly mention
some important families of methods for finding the fixed point of the Bellman [optimality]
operator.

2.3.1 Generic Solution Methods

For an MDP with a finite number of states and actions, policy evaluation problem is equiv- Linear Sys-
tem of Equa-
tions and
Linear Pro-
gramming

alent to solving the finite linear system of equations described by Q = TπQ. To find the
fixed point of the Bellman optimality operator, however, one has to solve a non-differentiable
nonlinear optimization problem. The equation Q∗ = T ∗Q∗, however, can be cast as a Linear
Programming (LP) problem. Exact solution of either a linear systems of equations or LP is
feasible only for small MDPs. Approaches based on the approximate LP have been inves-
tigated in the literature (see e.g., Schuurmans and Patrascu [2001]; de Farias and Van Roy
[2003]; Petrik et al. [2010]), but we do not study them in this work.

One popular approach to find the fixed point of the Bellman operator is to benefit from
its contraction or monotonicity properties. Briefly speaking, these properties imply that one
may find the fixed point of the Bellman operator by an iterative procedure such as Value
Iteration (VI) or Policy Iteration (PI) (see Bertsekas and Shreve [1978] and Szepesvári
[1997b] for details of the conditions that guarantee these methods to work).

Value Iteration is an iterative method to find the fixed point of the Bellman [optimality] Value Itera-
tionoperator by benefiting from the contraction property of these operators. The algorithm

starts from an initial value function Q0 (or likewise V0), and iteratively applies T ∗ (or Tπ

for the policy evaluation problem) to the previous estimate:

Qk+1 = T ∗Qk.

It is known that limk→∞ (T ∗)
k
Q0 = Q∗ and limk→∞ (Tπ)

k
Q0 = Qπ for every Q0 (see

Proposition 2.6 of Bertsekas and Tsitsiklis [1996] for the result for finite MDPs; Proposition
4.2(c) of Bertsekas and Shreve [1978] for a more general result). For discrete state and action
spaces, value iteration may also be performed asynchronously. If we define TQ|X ′×A′ as the
operator TQ restricted to X ′ ×A′ ⊂ X ×A, we still have the same convergence guarantee
provided that all components are chosen infinitely often (Proposition 2.3 of Bertsekas and
Tsitsiklis [1996]).

Sometimes, especially when the state-action space is large, this procedure can only be
performed approximately, i.e.,

Qk+1 ≈ T ∗Qk.

In this case, we call the procedure the Approximate Value Iteration (AVI). Analyzing AVI
to determine how the approximation error influences the resulting policy is the topic of
Chapters 3 and 5. Some examples of AVI are tree-based Fitted Q-Iteration of Ernst et al.
[2005], multi-layer perceptron-based Fitted Q-Iteration of Riedmiller [2005], and Fitted Q-
Iteration for continuous action spaces of Antos et al. [2008a]. See the work of Munos and
Szepesvári [2008] for more information on AVI.

Policy Iteration is another iterative method to find the fixed point of the Bellman opti- Policy Itera-
tionmality operator. It starts from a policy π0, and then evaluates it to find Qπ0 , i.e., finding a

Q0 that satisfies Tπ0Qπ0 = Qπ0 . This is called the Policy Evaluation step. Following that,
the policy iteration algorithm obtains the greedy policy w.r.t. the most recent value function

15



π1 = π̂(·;Qπ0). This is called the Policy Improvement step. The policy iteration algorithm
continues by evaluating the newly obtained policy π1, and repeating the whole process again,
to generate a sequence of policies and their corresponding action-value functions

Qπ0 → π1 → Qπ1 → π2 → . . . .

Bertsekas and Shreve [1978, Proposition 4.8] shows that for finite state/action MDPs,
whenever the policy evaluation step of PI is done precisely, PI yields the optimal policy
after a finite number of iterations. Similarly, Bertsekas and Shreve [1978, Proposition 4.9]
indicates that a slightly modified policy iteration algorithm, where there is a possibility
of having certain amount of error in policy evaluation step, terminates in a finite number
of iterations and the value of the resulting policy is close to the optimal one. For more
information on the computational complexity of the Value/Policy Iteration algorithms, refer
to Ye [2010].

For the policy evaluation step of PI, one requires to solve TπkQπk = Qπk for a given
πk. For small problems, one may directly solve the system of linear equations as described
earlier. For large problems, which is our main interest, one can only approximately solve
the policy evaluation step, that is

Qk ≈ TπkQk
We call this scenario the Approximate Policy Iteration (API).

The policy evaluation step of API can be performed in various ways. One possibility is
to use AVI to find the fixed point of Tπk operator. Two other important methods, which are
the focus of our discussion, are the Least-Squares Temporal Difference (LSTD) [Bradtke and
Barto, 1996; Lagoudakis and Parr, 2003] and the Bellman Residual Minimization (BRM)
(Antos et al. [2008b]; Maillard et al. [2010]). When one uses LSTD in the policy iteration
algorithm, the resulting method is called the Least Squares Policy Improvement (LSPI)
[Lagoudakis and Parr, 2003]. In Chapter 3 we analyze the error propagation aspect of API
algorithm, and in Chapter 6 we provide and study a new regularization-based formulation
of LSTD and BRM that handles problems with large state spaces.

API is a popular approach in the RL literature. Other than the work of Lagoudakis
and Parr [2003]; Bradtke and Barto [1996]; Maillard et al. [2010], we would like to men-
tion the work of Kolter and Ng [2009] that formulates an l1-regularization extension of
LSTD, Xu et al. [2007] and Jung and Polani [2006] that provides kernel-based extensions of
LSTD/LSPI, and Taylor and Parr [2009] that unifies some regularization-based extension
of LSTD. Also see the proto-value function-based approach of Mahadevan and Maggioni
[2007] and iLSTD of Geramifard et al. [2007].

2.4 Performance Loss Measures

Theoretical guarantees on the RL/Planning algorithm’s performance are quantified by var-
ious performance loss measures. Two common families of performance loss measures are:

• Value function error ‖V ∗ − V π‖p,ρ
• Online regret

To understand the value function error as the performance loss, consider an RL/Planning Value Error
algorithm that outputs a policy π. This policy might be the greedy policy w.r.t. an estimated
action-value function Q̂, that is π = π̂(·; Q̂). Now suppose the agent starts at a specified
initial state X = x and follows the policy π. Its expected return would be V π(x). Comparing
it with the expected return of following an optimal policy, V ∗(x), there will be a difference
V ∗(x)− V π(x) ≥ 0. If instead of starting from a fixed state X = x, the agent’s initial state
is distributed according to the “performance measuring” distribution ρ ∈ M(X ), we may
use the L1(ρ)-norm of this error to determine the expected difference between the value
of following policy π instead of π∗. The user-chosen probability distribution ρ reflects the
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importance of various regions of the state space as the initial state distribution of the agent
according to the user.

One may also extend this idea to other Lp-norms (1 ≤ p ≤ ∞) too. The L1-norm has
the interpretation we just described and is a natural choice. Another common choice is to
use the L∞-norm. This norm, however, is too pessimistic as a large point-wise performance
loss error in a tiny subset of the state space leads to a large overall performance loss. This is
not usually the type of result one would expect. Moreover, one may define the performance
loss w.r.t. the action-value functions, i.e., ‖Q∗ −Qπ‖p,ρ. This measures the performance
loss whenever the initial action-state is selected according to ρ ∈M(X ×A).

Regret is another measure of performance loss for RL/Planning algorithms in online Regret
scenarios. It is usually defined as the expected difference between the return of the algorithm
to the average optimal reward of the MDP (refer to Auer et al. [2009]; Bartlett and Tewari
[2009]; Jaksch et al. [2010] and references therein). Currently, such regret guarantees are
only available for finite state-action MDPs.

In this work, we focus on the value function error with the Lp(ρ)-norm as the measure
of performance loss.

2.5 Reinforcement Learning and Planning in Large State
Spaces

The use of function approximation in the value-based approaches to solve RL/Planning with
large state space is inevitable in most cases. This topic has attracted the attention of many
researchers in the past two decades. Without attempting to provide an extensive literature
survey on different ways FA has been used in RL/Planning problems, we discuss two key
aspects of various methods and provide some exemplar references. For extensive surveys of
this topic, refer to Szepesvári [2010]; Bertsekas [2010]; Buşoniu et al. [2010a].

We categorize the use of FA in RL/Planning according to

• The modeling assumptions: Parametric vs. Nonparametric

• Statistical convergence guarantee

In the followings, we discuss these issues in detail.

The Modeling Assumption: Parametric vs. Nonparametric

In the parametric approach to the value function estimation, the “structural” properties of Parametric
Modelsthe FA is set a priori and do not change according to data. Examples of these structural

properties are the number of basis functions and their corresponding shape and place in
a general linear model. We refer to this widely-used class of parametric model as linear
FA, though one should be careful that the term linear denotes different concepts in other Linear FA
contexts. For instance, linear estimation is defined as when the estimate is described by a
linear operator on target values; or linear is used in the approximation theory to refer to
the concept of approximating a function within a linear span of a set of orthonormal basis
for a given function space [Devore, 1998].

The use of linear FA to represent the value function is a common practice in the RL
community. It has been applied both in the incremental [Sutton and Barto, 1998, Chapter
8] and the batch [Lagoudakis and Parr, 2003] algorithms, and their statistical properties
are well-studied [Tsitsiklis and Van Roy, 1997; Sutton et al., 2009; Maillard et al., 2010].
Nevertheless, as argued in Section 1.1, whenever the true value function cannot be well-
represented by the parametric model, no matter how elegant the value function estimation
algorithm is, we have the function approximation error. This error might result in poor
performance.

Finding the proper parametric model for a given problem is usually difficult and requires
extensive trial and error. The proper choice of the parametric model depends on some
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properties of the underlying problem and data, such as the number of available data samples,
the geometry of data in the input space, and the smoothness of the target, which in general
are unknown a priori.

An alternative is the family of nonparametric approaches, which has been successful Nonparametric
Modelsin the statistics and the supervised learning communities for a long time [Györfi et al.,

2002; Hastie et al., 2001; Bishop, 2006; Wasserman, 2007]. These methods have weaker
assumptions on the statistical model of the [value] function. They change the FA according
to data, and upon the proper choice of their parameters, are adaptive to the problem in
hand.

In the following, we first review some methods that are not truly nonparametric but
share some similarities with them and then discuss methods that can be considered as
nonparametric algorithms for RL/Planning problems.

The basis adaptation approaches, which are not usually formulated in a truly nonpara- Basis Adap-
tationmetric framework, work by parameterizing basis functions (e.g., the centers and the width

of Radial Basis Functions) and fine-tuning these parameters to optimize an objective func-
tion such as an estimate of the Bellman residual error. For example, Menache et al. [2005]
introduce a gradient-based method and the cross-entropy algorithm to find basis param-
eters that minimize an estimate of the Bellman residual error ‖V (·; θ)− TπV (·; θ)‖X ′ , in
which X ′ ⊂ X is a finite subset of X and θ in V (·; θ) describes the parameters of basis
functions. Yu and Bertsekas [2009] extend this idea to nonlinear T ∗. These approaches are
not nonparametric because they work with finite dimensional function spaces, but the use
of nonlinear FA and data-dependent adaptation make them similar to many nonparametric
methods.

A nonparametric approach to solve RL/Planning problems is to generate new basis Basis Gener-
ationfunctions data and problem-dependently – as opposed to using a fixed pre-defined set of

basis functions. The generated basis functions can then be used in any algorithm with linear
FA. Basis generation can be done in different ways. One general approach is to benefit from
some intrinsic properties of the MDP or the induced Markov chain, such as the transition
probability kernel P and the reward function r, to build basis functions. For instance, one
method is to use the set of eigenfunctions of Pπ, that is {ρi : ρiP

π = λiρi}, as basis functions.
An extension of this method is to use the union of that set with {(Pπ)kr : k = 1, . . .}, which
leads to the so-called augmented Krylov method. These two methods have been suggested
by Petrik [2007], who studies their approximation properties.

Another basis generation approach is to use the Bellman residual for defining new basis
functions [Parr et al., 2007]. This approach starts from a single arbitrary basis function, and
then estimates the value function V̂ . If the estimated value function is not the same as the
true value function (because of both the estimation and the function approximation error),
V̂ − TπV̂ will be a nonzero function called the Bellman residual. This residual defines
a new basis function. It can be shown that if we ignore the estimation error, repeating
this procedure decreases an upper bound on the function approximation error. Parr et al.
[2008] show that if we start from r as the basis function for the Bellman residual basis
function generation method [Parr et al., 2007], the result is the same as the Krylov basis
{(Pπ)kr : k = 1, . . .} of Petrik [2007].

One must be careful in interpreting the aforementioned results. The theoretical guar-
antees on decreasing the upper bound on the approximation error are valid whenever we
precisely find the eigenfunctions of Pπ, functions (Pπ)kr, or the effect of the Bellman oper-
ator Tπ on V̂ . Even if we know the model, these computations may be intractable for large
MDPs. Moreover, if we use sample-based approaches to estimate these quantities, as sug-
gested by Parr et al. [2007] for the estimation of the Bellman residual, it is not evident that
the new auxiliary estimation problem is any easier than the original problem of estimating
the value function itself.

Another similar basis generation method is a graph Laplacian-based approach [Mahade-
van and Maggioni, 2007]. This method generates basis functions in accordance with the
transition flow’s geometry of the MDP. This choice might be helpful when the geometry of
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most probable states has some special properties like lying close to a low-dimensional man-
ifold. In this method, basis functions are eigenfunctions of the graph Laplacian operator.
The graph Laplacian operator is built based on the state transition data and its spectrum
contains information about the geometry of the transition flow in the state space [Chung,
1997]. This method, as opposed to the augmented Krylov method of Petrik [2007], does not
take into account the reward function. Some may consider this as an advantage because
of the transferability of basis functions over problems with the same dynamics but with
different reward functions, whereas others may consider it as a disadvantage since not all
available information has been used [Mahadevan and Maggioni, 2007].

Gaussian Process Temporal Difference (GPTD) is an example of nonparametric method
to represent the value function [Engel et al., 2005]. In GPTD, one puts a GP prior over
value function V π. Define the residuals as ∆V π(x) , V π(x)−Gγ(ξ(x)) with the trajectory
ξ(x) being the result of following policy π. By assuming that 1) ∆V π(x) is a GP, and 2)
∆V π(x1) and ∆V π(x2) are independent for x1 6= x2, one obtains a closed-form solution
for the posterior of the value function given the observed data samples. GPTD, like many
other RKHS-based machine learning algorithms, uses data to generate a dictionary of basis
functions. GPTD is an example of nonparametric methods for the policy evaluation and
GPSARSA is its modification to handle policy improvement. Nevertheless, because of the
aforementioned assumptions on the probabilistic model underlying residuals, GPTD lacks
a firm theoretical justification.

As some instances of nonparametric and data-dependent approaches in the context of Nonparametric
AVIAVI, we mention Ormoneit and Sen [2002] who use smoothing kernel-based regression, Ernst

et al. [2005] who devise tree-based methods to represent the value function, and Buşoniu
et al. [2010b] who use Fuzzy rule set-based FA in the inner loop of AVI. We would like
to mention Riedmiller [2005] who applies neural networks and Lange and Riedmiller [2010]
who utilize deep neural networks in the context of AVI. These algorithms, however, are not
nonparametric as the size of the neural networks is fixed a priori. If these methods allowed
the topology of the neural network to change as new data arrives, they could be considered
as nonparametric methods too.

An important class of nonparametric approaches is those that use a regularization func- Regularization
tional (also called regularizer or penalizer) to control the complexity of a large function
space. Even though the regularization technique has been a successful approach in the
supervised learning literature for many decades [Hoerl and Kennard, 1970; Wahba, 1990;
Tibshirani, 1996; Vapnik, 1998], its application in RL/Planning has been quite recent. Some
exemplar papers are Engel et al. [2005]; Jung and Polani [2006]; Loth et al. [2007]; Farah-
mand et al. [2008, 2009a,b]; Taylor and Parr [2009]; Kolter and Ng [2009]. With the exception
of Farahmand et al. [2008, 2009a,b], the other aforementioned examples do not provide any
statistical guarantee on the performance of their algorithms.

RFQI (an AVI algorithm that is introduced in Chapter 5), and REG-LSPI and REG-
BRM (API algorithms that are introduced in Chapter 6), are instances of regularization-
based nonparametric methods for RL/Planning problems. If we formulate them as an
optimization problem in an RKHS, they automatically generate basis functions to represent
the action-value function. In contrast to the basis adaptation/generation algorithms where
the basis generation is separated from the value function estimation, the basis generation
procedure is an integral part of our value function estimation methods. If we formulate
them in a function space with an over-complete dictionary or a Besov space with wavelet
basis, the l1-regularization-based methods may select a sparse subset of basis functions that
is required for the value function estimation.

Statistical Convergence Guarantee

The convergence behavior of an algorithm shows how the agent performs after a certain
amount of interactions with the environment. The convergence property of an algorithm
can be stated by proving its consistency or convergence rate or other similar notions. Some
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algorithms may not eventually converge, but still get close to the neighborhood of the
“solution”. They may still perform well, but not optimally.

As some examples of the statistical convergence guarantee for the MDPs with finite
number of states and actions, Jaakkola et al. [1994] prove the asymptotic convergence of
the action-value function estimates of the Q-learning algorithm to the optimal action-value
function Q∗; Szepesvári [1997a] provides the asymptotic rate of convergence for the Q-
learning algorithm; and Even-Dar and Mansour [2003] prove a finite-sample convergence
rate.

The analysis is considerably more challenging for large state spaces and when FA is used
to represent the [action-]value function. In these scenarios, asymptotic results are more
common. Tsitsiklis and Van Roy [1997] proved that for the policy evaluation problem the
Temporal Difference (TD) algorithm with linear FA provides a sequence of estimated value
functions that converges to a close, though not diminishing, neighborhood of the projection
of the true value function onto the span of basis functions. This result has an important
restrictive assumption that the distribution of samples induced by the behavior policy is
the same as the distribution that would be induced by the policy being evaluated (target
policy). This scenario is known as the on-policy sampling. As a result, the result of Tsitsiklis
and Van Roy [1997] does not hold for an algorithm such as Q-learning in which the target
policy is different from the behavior policy (off-policy sampling scenario). Moreover, the
result of Tsitsiklis and Van Roy [1997] is asymptotic and does not show either the finite
sample behavior or convergence rate of the algorithm. In addition, due to the parametric
representation of FA, the solution of TD with linear FA does not necessary get close to the
true value function – it is not consistent in the usual statistical sense.

Extension of this result to control, in which a policy improvement is performed, has
been an open problem for years. This is especially more difficult in the off-policy sampling
scenario. Melo et al. [2008] prove that, under rather restrictive assumption, SARSA algo-
rithm, which is an incremental online on-policy value iteration algorithm, with linear FA
converges to the fixed point of a modified Bellman optimality operator defined by de Farias
and Van Roy [2000]. They show that the algorithm does not behave erratically, which is
not uncommon in RL/Planning with FA.

More recently, Sutton et al. [2009] address the problem of policy evaluation with off-policy
sampling and show the asymptotic convergence of a modified TD algorithm with linear FA.
Maei et al. [2009] extend this work to nonlinear, but still parametric, FA. The essence of these
work is to minimize an objective function, called the Projected Bellman Error, through a
stochastic gradient descent-like procedure. Roughly speaking, because these algorithms are
gradient-based, upon the appropriate choice of step sizes, their convergence is guaranteed.
The Projected Bellman Error objective function is the same as the way the LSTD loss
function is described by Antos et al. [2008b] and is similar to the one we suggest in REG-
LSTD (Farahmand et al. [2009b] and Chapter 6). The difference with the latter is in our
use of regularized objective function. If the regularization coefficient is set to zero, these
two objective functions are the same. Maei et al. [2010] introduce a stochastic subgradient
algorithm for the problem of control with off-policy data samples. They assumed that the
FA is linear and the behavior policy is fixed. Under some technical assumptions, they show
that the algorithm converges to a local minimum of the Projected Bellman operator.

Even though most results in the RL/Planning literature concern asymptotic convergence
of algorithms, some papers study the algorithms’ finite sample error upper bound and/or
convergence rate in offline setting. Antos et al. [2008b] study the finite-sample error upper
bounds of a modified Bellman Residual Minimization algorithm used in the API procedure.
Their result is stated for continuous state and discrete action spaces with a general form of
function approximation. Munos and Szepesvári [2008] study the finite-sample error upper
bound of Fitted Q-Iteration, an AVI algorithm, for continuous state and discrete action
spaces. Antos et al. [2008a] study the same problem with continuous action space. These
papers deal with the general choice of function spaces, so they can be considered as analysis
of a potentially nonparametric method. They, however, do not concern how the function

20



space should be chosen. Also their result shows a suboptimal error upper bound. Maillard
et al. [2010], on the other hand, study the Bellman Residual Minimization algorithm with
linear FA. They assume that they have access to the generative model of the environment.

In Chapters 5 and 6 of this work, we introduce nonparametric AVI/API algorithms and
provide finite-sample error upper bounds for them. The setup and the type of results of
these chapters might be considered most similar to Munos and Szepesvári [2008]; Antos
et al. [2008b]. The difference is that we focus on providing algorithms that use specific
regularities of the problem. Moreover, the bounds in this work are considerably tighter
than the previous similar results.
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Chapter 3

Error Propagation for
Approximate Policy and Value
Iteration

3.1 Introduction

The exact solution of reinforcement learning and planning problems with large state space
is difficult or impossible to obtain, so one usually has to aim for approximate solutions
(Section 2.5). Approximate Policy Iteration (API) and Approximate Value Iteration (AVI)
are two classes of iterative algorithms to solve RL/Planning problems with large state spaces.
They try to approximately find the fixed point of the Bellman optimality operator.1

AVI starts from an initial value function Q0 (or V0), and iteratively applies an approxi-
mation of the Bellman optimality operator T ∗ (or Tπ for the policy evaluation problem) to
the previous estimate, i.e., Qk+1 ≈ T ∗Qk at iteration k. In general, Qk+1 is not equal to
T ∗Qk because 1) we do not have direct access to the Bellman operator but only have some
samples from it, and 2) the function space to which Q belongs might not be representative
enough. Thus there would be an approximation error εk = T ∗Qk−Qk+1 between the result
of the exact VI and AVI.2

API is another iterative algorithm to find an approximate solution to the fixed point of
the Bellman optimality operator. It starts from a policy π0, and then approximately evalu-
ates that policy π0, i.e., it finds a Qk that satisfies TπkQk ≈ Qk at iteration k. Afterwards, it
performs a policy improvement step, which is to calculate the greedy policy w.r.t. the most
recent action-value function, to get a new policy π1, i.e., πk+1(·) = arg maxa∈AQk(·, a) at
iteration k. The policy iteration algorithm continues by approximately evaluating the newly
obtained policy π1 to get Q1 and repeating the whole process again, generating a sequence
of policies and their corresponding approximate action-value functions: Q0 → π1 → Q1 →
π2 → · · · . Similar to AVI, we may encounter a difference between the approximate solution
Qk (TπkQk ≈ Qk) and the true action-value of the policy Qπk , which is the solution of the
fixed-point equation TπkQπk = Qπk . Two convenient ways to describe this error are the
Bellman residual of Qk (εk = Qk − TπkQk) and the policy evaluation approximation error
(εk = Qk −Qπk).

A crucial question in the applicability of API/AVI, which is the main topic of this
chapter, is to understand how either the approximation error or the Bellman residual at each
iteration of API/AVI affects the quality of the resulting policy. Suppose we run API/AVI

1This chapter is the result of the collaboration of the author with Rémi Munos and Csaba Szepesvári.
2The notion of approximation error that we use in this chapter should not be confused with the term

function approximation error used in the statistical learning theory. Here we are merely referring to the
error caused by approximately performing VI/PI.
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for K iterations to obtain a policy πK . Does the knowledge that all (εk)K−1
k=0 are small

(maybe because we have had a lot of samples and used powerful function approximators)
imply that V πK is close to the optimal value function V ∗ too? If so, how does the error
occurred at a certain iteration k propagate through iterations of API/AVI and affect the
final performance loss?

There have already been some results that partially address this question. As an example,
Proposition 6.2 of Bertsekas and Tsitsiklis [1996] shows that for API applied to a finite MDP,
we have

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
lim sup
k→∞

‖V πk − Vk‖∞ .

Similarly for AVI, if the approximation errors are uniformly bounded, that is ‖T ∗Vk − Vk+1‖∞ ≤
ε, we have [Munos, 2007]

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
ε.

Nevertheless, most of these results are pessimistic in several ways. To begin with, they
are expressed as the supremum norm of the approximation errors ‖Qπk −Qk‖∞ or the
Bellman error ‖Qk − TπkQk‖∞. The supremum norm is conservative compared to the Lp-
norms. It is quite possible that the error εk of a learning algorithm has a small Lp-norm,
but a large L∞-norm. It is desirable to have a result expressed by the Lp-norm of the
approximation/Bellman residual εk.

In the recent past, there have been some attempts to extend the L∞-norm results to
the Lp ones [Munos, 2003, 2007; Antos et al., 2008b]. As a typical example, we quote the
following from Antos et al. [2008b]:

Proposition 3.1 (Error Propagation for API – Antos et al. [2008b]). Let p ≥ 1 be a
real and K be a positive integer and ν, ρ ∈ M(X ). Then, for any sequence of functions
(Q(k))K−1

k=0 ⊂ B(X ×A;Qmax), and their corresponding Bellman residuals εk = Qk −TπQk,
the following inequality holds:

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

(
C1/p
ρ,ν max

0≤k<K
‖εk‖p,ν + γ

K
p −1Rmax

)
,

where Rmax is an upper bound on the magnitude of the expected reward function and

Cρ,ν = (1− γ)2
∑
m≥1

mγm−1 sup
π1,...,πm

∥∥∥∥d (ρPπ1 · · ·Pπm)

dν

∥∥∥∥
∞
.

The choice of ρ and ν in this and all further results is arbitrary, however, a natural choice
for ν is the sampling distribution of the data, which is used by the policy evaluation module.
On the other hand, the probability distribution ρ reflects the importance of various regions
of the state space and is selected by the user.

This result indeed uses the Lp(ν)-norm of the Bellman residuals and is an improvement
over results like Bertsekas and Tsitsiklis [1996, Proposition 6.2], but still is pessimistic in
some other ways and does not answer several important questions. For instance, this result
implies that the uniform-over-all-iterations upper bound max0≤k<K ‖εk‖p,ν is the quantity
that determines the performance loss. One may wonder if this condition is really necessary,
and ask whether it is better to put more emphasis on earlier/later iterations? Or another

question is whether the appearance of terms in the form of ‖d(ρPπ1 ···Pπm )
dν ‖∞ is intrinsic to

the difficulty of the problem or can be relaxed.
The goal of this work is to answer these questions and to provide tighter upper bounds

on the performance loss of API/AVI algorithms. These bounds help one understand what
factors contribute to the difficulty of a learning problem. We base our analysis on the
work of Munos [2007]; Antos et al. [2008b]; Munos [2003] and provide upper bounds on
the performance loss in the form of ‖Q∗ −Qπk‖1,ρ (the expected loss weighted according
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to the evaluation probability distribution ρ) for API (Section 3.2) and AVI (Section 3.3).
This performance loss depends on a certain function of the ν-weighted L2-norms of (εk)K−1

k=0 ,
in which ν is the data sampling distribution, and Cρ,ν(K) is a function of the MDP, two
probability distributions ρ and ν, and the number of iterations K (the results are more
general and apply to the Lp-norms).

In addition to relating the performance loss to the Lp-norm of the Bellman resid-
ual/approximation error, this work has three main contributions that to our knowledge
have not been considered before: 1) We show that the performance loss depends on the
expectation of the squared Radon-Nikodym derivative of a certain distribution, to be spec-
ified in Section 3.2, rather than its supremum, as suggested by Munos [2003, 2007]; Antos
et al. [2008b]. The difference between this expectation and the supremum can be con-
siderable. For instance, for a finite state space with N states, the ratio can be of order
O(N1/2). 2) The contribution of the Bellman/approximation error to the performance loss
is more prominent in later iterations of API/AVI and the effect of an error term in early
iterations decays exponentially fast. 3) There are certain structures in the definition of
concentrability coefficients that have not been explored before. We thoroughly discuss these
qualitative/structural improvements in Section 3.4.

3.2 Approximate Policy Iteration

Consider the API procedure and the sequence Q0 → π1 → Q1 → π2 → · · · → QK−1 → πK ,
where πk is the greedy policy w.r.t. Qk−1 and Qk is the approximate action-value function
for policy πk. For the sequence (Qk)K−1

k=0 , denote the Bellman Residual (BR) and the policy
Approximation Error (AE) at each iteration by

εBR
k , Qk − TπkQk, (3.1)

εAE
k , Qk −Qπk . (3.2)

The goal of this section is to study the effect of ν-weighted L2p-norm of the Bellman
residual sequence (εBR

k )K−1
k=0 or the policy evaluation approximation error sequence (εAE

k )K−1
k=0

on the performance loss ‖Q∗ −QπK‖p,ρ of the resulting policy πK . We see that some intrinsic
properties of the MDP affect the resulting bound. The main result of this section is stated
as Theorem 3.2.

Due to the dynamical nature of MDP, the performance loss ‖Q∗ −QπK‖p,ρ depends on
the difference between the sampling distribution ν and the future state-action distribution of
the form ρPπ1Pπ2 · · · . The precise form of this dependence will be formalized in Theorem 3.2
(for API) and Theorem 3.4 (for AVI). Before stating the results, we shall define the following
concentrability coefficients, which are relaxed version of those defined by Munos [2003, 2007];
Antos et al. [2008b].

Definition 3.1 (Expected Concentrability of the Future State-Action Distribution). Given
ρ, ν ∈ M(X × A), m ≥ 0, and an arbitrary sequence of stationary policies (πm)m≥1, let
ρPπ1Pπ2 · · ·Pπm ∈M(X ×A) denote the future state-action distribution obtained when the
first state-action is distributed according to ρ and then we follow the sequence of policies
(πk)mk=1. For integers m1,m2 ≥ 1 and policies π, π1, π2, define the following concentrability
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coefficients, which are used in the analysis of API:

cPI1,ρ,ν(m1,m2;π) ,

E

∣∣∣∣∣d
(
ρ(Pπ

∗
)m1(Pπ)m2

)
dν

(X,A)

∣∣∣∣∣
2
 1

2

,

cPI2,ρ,ν(m1,m2;π1, π2) ,

E

∣∣∣∣∣d
(
ρ(Pπ

∗
)m1(Pπ1)m2Pπ2

)
dν

(X,A)

∣∣∣∣∣
2
 1

2

,

cPI3,ρ,ν ,

E

∣∣∣∣∣d
(
ρPπ

∗)
dν

(X,A)

∣∣∣∣∣
2
 1

2

,

with (X,A) ∼ ν. If the future state-action distribution ρ(Pπ
∗
)m1(Pπ)m2

(or ρ(Pπ
∗
)m1(Pπ1)m2Pπ2 or ρPπ

∗
) is not absolutely continuous w.r.t. ν, then we take

cPI1,ρ,ν(m1,m2;π) =∞ (and similarly for others). Also for integers m1,m2 ≥ 1 and policy
π, define the following concentrability coefficient that is used in the analysis of AVI:

cVI,ρ,ν(m1,m2;π) ,

E

∣∣∣∣∣d
(
ρ(Pπ)m1(Pπ

∗
)m2
)

dν
(X)

∣∣∣∣∣
2
 1

2

,

with (X,A) ∼ ν. If the future state-action distribution ρ(Pπ)m1(Pπ
∗
)m2 is not absolutely

continuous w.r.t. ν, then we take cVI,ρ,ν(m1,m2;π) =∞.

In order to compactly present our results, we define the following notation:

αk =

{
(1−γ)γK−k−1

1−γK+1 0 ≤ k < K,
(1−γ)γK

1−γK+1 k = K.
(3.3)

Theorem 3.2 (Error Propagation for API). Let p ≥ 1 be a real number, K be a positive
integer, and Qmax ≤ Rmax

1−γ . Then for any sequence (Qk)K−1
k=0 ⊂ B(X × A, Qmax) and the

corresponding sequence (εk)K−1
k=0 defined in (3.1) or (3.2), we have3

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

PI(BR/AE),ρ,ν(K; r)E
1
2p (ε0, . . . , εK−1; r) + γ

K
p −1Rmax

]
,

where E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν and CPI(BR/AE),ρ,ν is defined below.

(a) If εk = εBR for all 0 ≤ k < K, we have

CPI(BR),ρ,ν(K; r) =(
1− γ

2

)2

sup
π′0,...,π

′
K

K−1∑
k=0

α
2(1−r)
k

( ∑
m≥0

γm
(
cPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)

+cPI1,ρ,ν(K − k,m;π′k)
))2

.

3The proof actually shows a bound that is tighter than the statement of the theorem, but we simplified
it to be more accessible.
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(b) If εk = εAE for all 0 ≤ k < K, we have

CPI(AE),ρ,ν(K; r) =(
1− γ

2

)2

sup
π′0,...,π

′
K

K−1∑
k=0

α
2(1−r)
k

(∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;π′k+1, π
′
k) + cPI3,ρ,ν

)2

.

Proof. Part (a): Let Ek = Pπk+1(I− γPπk+1)−1 − Pπ∗(I− γPπk)−1. It can be shown that
(Munos [2003, Lemma 4])

Q∗ −Qπk+1 ≤ γPπ
∗
(Q∗ −Qπk) + γEkε

BR
k .

By induction, we get

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Ekε

BR
k + (γPπ

∗
)K(Q∗ −Qπ0). (3.4)

Define Fk = Pπk+1(I − γPπk+1)−1 + Pπ
∗
(I − γPπk)−1, and take point-wise absolute value

of (3.4) to get

|Q∗ −QπK | ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Fk|εBR

k |+ (γPπ
∗
)K |Q∗ −Qπ0 |.

Since
∑K
k=0 αk = 1, for a convex function φ(·) and a real-valued sequence (fk)Kk=0,

Jensen’s inequality φ(
∑K
k=0 akfk) ≤

∑K
k=0 akφ(fk) holds. Introduce the sequence (Ak)Kk=0

to simplify our further analysis:

Ak =

{
1−γ

2 (Pπ
∗
)K−k−1Fk 0 ≤ k < K,

(Pπ
∗
)K k = K.

It is shown in Lemma 12 of Antos et al. [2008b] that 1) Ak : B(X × A) → B(X × A) are
positive linear operators that satisfy Ak1 = 1, and 2) if φ(·) is convex, then φ(AkQ) ≤
Ak(φ(Q)) where φ is applied point-wise.

Using these notations and noting that Q∗ −Qπ0 ≤ 2
1−γRmax1 (where 1 is the constant

function defined on domain X ×A with the value of 1), we get

|Q∗ −QπK | ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εBR
k |+ γ−1αKAKRmax1

]
. (3.5)

Denote λK = [ 2γ(1−γK+1)
(1−γ)2 ]p. Take the pth power of both sides of (3.5) and apply Jensen’s

inequality twice (once considering (Ak) and once considering (αk)) to get

‖Q∗ −QπK‖pp,ρ =

∫
X×A

|Q∗(x, a)−QπK (x, a)|pρ(dx)

≤ λKρ

[
K−1∑
k=0

αkAk|εBR
k |p + γ−pαKAKR

p
max1

]
.

Consider a term such as

ρAk|εBR
k |p =

1− γ
2

ρ(Pπ
∗
)K−k−1

[
Pπk+1(I− γPπk+1)−1 + Pπ

∗
(I− γPπk)−1

]
|εBR
k |p
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for any 0 ≤ k < K. Expand (I− γPπk+1)−1 and (I− γPπk)−1 to have

ρAk|εBR
k |p =

1− γ
2

ρ

∑
m≥0

γm(Pπ
∗
)K−k−1(Pπk+1)m+1 +

∑
m≥0

γm(Pπ
∗
)K−k(Pπk)m

 |εBR
k |p.

For any Borel measurable function f : X ×A → R, and the probability measures µ1 and
µ2 that satisfy µ1 � µ2, we have the following Cauchy-Schwarz inequality:

∫
X×A

fdµ1 ≤

(∫
X×A

∣∣∣∣dµ1

dµ2

∣∣∣∣2 dµ2

) 1
2 (∫

X×A
f2dµ2

) 1
2

.

Let us focus on a single term such as ρ(Pπ
∗
)K−k−1(Pπk+1)m+1|εBR

k |p, and apply the
Cauchy-Schwarz inequality to it. We have

ρ(Pπ
∗
)K−k−1(Pπk+1)m+1|εBR

k |p ≤

∫
X×A

∣∣∣∣∣d
(
ρ(Pπ

∗
)K−k−1(Pπk+1)m+1

)
dν

∣∣∣∣∣
2

dν

 1
2

×
(∫
X×A

|εBR
k |2pdν

) 1
2

= cPI1,ρ,ν(K − k − 1,m+ 1;πk+1)
∥∥εBR
k

∥∥p
2p,ν

.

Doing the same for the other terms (Pπ
∗
)K−k(Pπk)m, and noting that ρAK1 = ρ1 = 1

implies that

‖Q∗ −QπK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk
∑
m≥0

γm (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk))
∥∥εBR
k

∥∥p
2p,ν

+ γ−pαKR
p
max

]
.

In order to separate concentrability coefficients and (εBR
k )K−1

k=0 , we use Hölder’s inequality

K−1∑
k=0

akbk ≤ (
K−1∑
k=0

|ak|s)
1
s (

K−1∑
k=0

|bk|s
′
)

1
s′

with s ∈ (1,∞) and 1
s + 1

s′ = 1. Let ak = αrk
∥∥εBR
k

∥∥p
2p,ν

and

bk = α1−r
k

∑
m≥0

γm (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk))

for some r ∈ [0, 1]. Therefore for all (s, r) ∈ (1,∞)× [0, 1], we have

‖Q∗ −QπK‖pp,ρ ≤

λK
1− γ

2

[
K−1∑
k=0

α
s(1−r)
k

∑
m≥0

γm (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk))

s ] 1
s

×

[
K−1∑
k=0

αs
′r
k

∥∥εBR
k

∥∥ps′
2p,ν

] 1
s′

+ λKγ
−pαKR

p
max. (3.6)
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Since (πk)Kk=0 are not known, we take the supremum over all policies. Moreover as (3.6)
holds for all (s, r) ∈ (1,∞) × [0, 1], we may take the infimum over (s, r) in the right hand
side. Also note that 1−γ

1−γK+1 < 1 and λK ≤ [ 2γ
(1−γ)2 ]p. After taking the pth root, we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

PI,ρ,ν(K; r, s)E
1
ps′ (εBR

0 , . . . , εBR
K−1; r, s) + γ

K
p −1Rmax

]
,

where

CPI(BR),ρ,ν(K; r, s) =(
1− γ

2

)s
sup

π′0,...,π
′
K

K−1∑
k=0

α
s(1−r)
k

(∑
m≥0

γm
(
cPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)

+ cPI1,ρ,ν(K − k,m;π′k)
))s

,

and E(εBR
0 , . . . , εBR

K−1; r, s) =
∑K−1
k=0 αs

′r
k

∥∥εBR
k

∥∥ps′
2p,ν

.

This result is general and holds for all s ∈ (1,∞). In order to make it more accessible,
but at the cost of loosening of the upper bound, we simplify it by setting s = s′ = 2. This
finishes the proof of Part (a).

Part (b): The proof of this part is similar to the proof of Part (a). We briefly sketch the
key steps: Define Ek = Pπk+1(I− γPπk+1)−1(I− γPπk)−Pπ∗ . From Munos [2003, Lemma
4] one can show that

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Ekε

AE
k + (γPπ

∗
)K(Q∗ −Qπ0). (3.7)

Define Fk = Pπk+1(I− γPπk+1)−1(I− γPπk) + Pπ
∗

and take the point-wise absolute value
of (3.7) and use the same definition of Ak as Part (a) (with the new Fk) to get

|Q∗ −QπK | ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εAE
k |+ γ−1αKAKRmax1

]
.

Consider a term like ρAk|εBR
k |p for any 0 ≤ k < K and expand (I− γPπk+1)−1. We have

ρAk|εAE
k |p =

1− γ
2

ρ

∑
m≥0

γm(Pπ
∗
)K−k−1(Pπk+1)m+1(I− γPπk) + Pπ

∗

 |εAE
k |p.

After performing the same change of measure argument and applying the Cauchy-Schwarz
inequality, we get

‖Q∗ −QπK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk

(∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;πk+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;πk+1, πk) + cPI3,ρ,ν

)∥∥εAE
k

∥∥p
2p,ν

+ γ−pαKR
p
max

]
.
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Application of Hölder’s inequality with a similarly defined decomposition and then taking
the supremum over policies leads to

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

PI,ρ,ν(K; r, s)E
1
ps′ (εAE

0 , . . . , εAE
K−1; r, s) + γ

K
p −1Rmax

]
,

where

CPI(AE),ρ,ν(K; r, s) =(
1− γ

2

)s
sup

π′0,...,π
′
K

K−1∑
k=0

α
s(1−r)
k

(∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;π′k+1, π
′
k) + cPI3,ρ,ν

)s

and E(εAE
0 , . . . , εAE

K−1; r, s) =
∑K−1
k=0 αs

′r
k

∥∥εAE
k

∥∥ps′
2p,ν

.

We discuss this result in detail in Section 3.4. To provide an upper bound for ‖V ∗ − V πK‖p,ν ,
we may use the following lemma.

Lemma 3.3. For the probability measure ρ ∈ M(X × A) that is absolutely continuous
w.r.t. the Lebesgue measure λ ∈M(X ×A), let ρX ∈M(X ) denote its marginal on X and
πρ : X →M(A) be its conditional probability conditioned on x ∈ X . Define

CQ→V2,ρ ,

[∫
X

max
a∈A

{∣∣∣∣ 1

πρ(a|x)

∣∣∣∣2
}
dρX (x)

]1/2

,

CQ→V∞,ρ , sup
x∈X

max
a∈A

{
1

πρ(a|x)

}
.

For an action-value function Q ∈ F |A|, let π be the greedy policy w.r.t. Q, i.e, π = π̂(·;Q).
Then, we have

‖V ∗ − V π‖1,ρX ≤

{
CQ→V2,ρ ‖Q∗ −Qπ‖2,ρ ,
CQ→V∞,ρ ‖Q∗ −Qπ‖1,ρ .

Proof. First note that |V ∗(x)−V π(x)| = |maxa∈AQ
∗(x, a)−maxa∈AQ

π(x, a)| ≤ maxa∈A |Q∗(x, a)−
Qπ(x, a)|. Therefore, we have∫

X
dρX (x) |V ∗(x)− V π(x)| ≤

∫
X
dρX (x) max

a∈A
|Q∗(x, a)−Qπ(x, a)|

≤
∫
X
dρX (x) max

a′∈A

{
1

πρ(a′|x)

}∑
a∈A

πρ(a|x) |Q∗(x, a)−Qπ(x, a)|

=

∫
X×A

dρ(x, a) max
a′∈A

{
1

πρ(a′|x)

}
|Q∗(x, a)−Qπ(x, a)|

≤


[∫
X×A dρ(x, a)

∣∣∣maxa′∈A

{
1

πρ(a′|x)

}∣∣∣2]1/2

‖Q∗ −Qπ‖2,ρ ,

supx∈X maxa′∈A

[
1

πρ(a′|x)

]
‖Q∗ −Qπ‖1,ρ .

where we used maxa∈A |f(a)| ≤ maxa′∈A{ 1
πρ(a|x)}

∑
a∈A πρ(a|x) |f(a)| in the second in-

equality and applied the Cauchy-Schwarz inequality in the first case of the last inequal-
ity. We used the absolute continuity of ρ w.r.t. the Lebesgue measure λ to ensure that
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the Radon-Nikodym derivate dρ
dλ existed, so we could decompose it as ( dρdλ )1/2( dρdλ )1/2 and

then apply the Cauchy-Schwarz inequality. To get CQ→V2,ρ , note that for a positive f ,

|maxa′∈A f(a)|2 = maxa′∈A |f(a)|2, and marginalize the integral over a ∈ A.

This lemma indicates that in order to upper bound the value-based performance loss by
an action-value-based performance loss, the probability distribution ρ should give enough
weight to all actions over all states. Depending on whether the upper bound is expressed in
the L1 or L2-norm of Q∗ −Qπ, the multiplicative coefficient requires the supremum or the
average value of maxa

1
πρ(a|x) over x not to be large. Lemma 3.3 is independent of how Q is

estimated and can be applied for both API and AVI.

Remark 3.1. One may be tempted to analyze the effect of the projected Bellman error
εPBR
k , Qk−Πν,F |A|T

πkQk, with Πν,F |A| being the ν-weighted projection operator onto the

function space F |A| (Section 2.1), on the performance loss ‖Q∗ −QπK‖p,ρ. Unfortunately,

the size of εPBR alone does not convey all necessary information about the closeness of Q
to Qπ for it is possible that εPBR = 0 but ‖Q−Qπ‖p,ρ > 0.

One way to have a bound based on the projected Bellman error is to derive its corre-
sponding Bellman error using the Pythagorean theorem alongside the function approxima-
tion error, i.e.,

‖Q− TπQ‖2 =
∥∥εPBR

∥∥2
+ inf
Q′∈F |A|

‖Q′ − TπQ‖2 ,

and then use results already proven for the Bellman error in this section.

3.3 Approximate Value Iteration

Consider the AVI procedure and the sequence of action-value function estimates
Q0, Q1, . . . , QK , in which Qk+1 is the result of approximately applying the Bellman opti-
mality operator to the previous estimate Qk, i.e., Qk+1 ≈ T ∗Qk. Denote the approximation
error caused at each iteration by

εk , T ∗Qk −Qk+1. (3.8)

The goal of this section is to analyze the AVI procedure and to relate the performance loss
‖Q∗ −QπK‖p,ρ of the obtained policy πK(·) = π̂(·;QK) (i.e., the greedy policy w.r.t. QK)

to the approximation error sequence (εk)K−1
k=0 and the properties of the MDP. The following

theorem is the main result of this section.

Theorem 3.4 (Error Propagation for AVI). Let p ≥ 1 be a real number, K be a positive
integer, and Qmax ≤ Rmax

1−γ . Then for any sequence (Qk)Kk=0 ⊂ B(X × A, Qmax), and the

corresponding sequence (εk)K−1
k=0 defined in (3.8), we have4

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

VI,ρ,ν(K; r)E
1
2p (ε0, . . . , εK−1; r) +

2

1− γ
γ
K
p Rmax

]
,

where

CVI,ρ,ν(K; r) =(
1− γ

2

)2

sup
π′

K−1∑
k=0

a
2(1−r)
k

∑
m≥0

γm (cVI,ρ,ν(m,K − k;π′) + cVI,ρ,ν(m+ 1,K − k − 1;π′))

2

,

and E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν .

4The proof actually shows a bound that is tighter than the statement of the theorem, but we simplified
it to be more accessible.
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Proof. First we derive a point-wise bound relating Q∗ −QπK to (εk)K−1
k=0 similar to Lemma

4.1 of Munos [2007]:

Q∗ −Qk+1 = Tπ
∗
Q∗ − Tπ

∗
Qk + Tπ

∗
Qk − T ∗Qk + εk ≤ γPπ

∗
(Q∗ −Qk) + εk

where we used the property of the Bellman optimality operator T ∗Qk ≥ Tπ
∗
Qk and the

definition of εk (3.8). By induction,

Q∗ −QK ≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ −Q0). (3.9)

Benefiting from T ∗QK ≥ Tπ
∗
QK and noting that T ∗QK = TπKQπK by the definition of

the greedy policy,

Q∗ −QπK = Tπ
∗
Q∗ − Tπ

∗
QK + Tπ

∗
QK − T ∗QK + T ∗QK − TπKQπK

≤ Tπ
∗
Q∗ − Tπ

∗
QK + T ∗QK − TπKQπK

= γPπ
∗
(Q∗ −QK) + γPπK (QK −QπK )

= γPπ
∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK ).

Re-arranging and using Lemma 4.2 of Munos [2007], we deduce that

Q∗ −QπK ≤ γ(I− γPπK )−1(Pπ
∗
− PπK )(Q∗ −QK). (3.10)

Plugging (3.9) into (3.10) and taking the absolute value of both sides, we get the following
point-wise inequality:

Q∗ −QπK ≤ γ(I− γPπK )−1

[
K−1∑
k=0

γK−k−1
(

(Pπ
∗
)K−k + PπK (Pπ

∗
)K−k−1

)
|εk|

+ γK
(

(Pπ
∗
)K+1 + PπK (Pπ

∗
)K
)
|Q∗ −Q0|

]
. (3.11)

As in the proof of Theorem 3.2, we use the sequence (αk)Kk=0 defined in (3.3) and introduce

Ak =

{
1−γ

2 (I− γPπK )−1
[
(Pπ

∗
)K−k + PπK (Pπ

∗
)K−k−1

]
0 ≤ k < K,

1−γ
2 (I− γPπK )−1

(
(Pπ

∗
)K+1 + PπK (Pπ

∗
)K
)

k = K.

Note that we use the same (αk) as in the proof of Theorem 3.2, but (Ak) are different.
Nevertheless, they satisfy the same properties that allow us to apply Jensen’s inequality.
By |Q∗ −Q0| ≤ 2

1−γRmax1, we get

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAK
2

1− γ
Rmax1

]
.

Now take the pth power of both sides of (3.11), and apply Jensen inequality twice (once
considering Ak and once considering αk), to derive

‖Q∗ −QπK‖pp,ρ ≤ λKρ

[
K−1∑
k=0

αkAk|εk|p + αK

(
2

1− γ

)p
AKR

p
max1

]
.

Consider a term like ρAk|εk|p for any 0 ≤ k < K:

ρAk|εk|p =
1− γ

2
(I− γPπK )−1

[
(Pπ

∗
)K−k + PπK (Pπ

∗
)K−k−1

]
|εk|p

=
1− γ

2
ρ

∑
m≥0

γm
(

(PπK )m(Pπ
∗
)K−k + (PπK )m+1(Pπ

∗
)K−k−1

) |εk|p.
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Apply the Cauchy-Schwarz inequality, as we did in Theorem 3.2, to deduce

‖Q∗ −QπK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk
∑
m≥0

γm (cVI,ρ,ν(m,K − k;πK) + cVI,ρ,ν(m+ 1,K − k − 1;πK)) ‖εk‖p2p,ν

+ αK

(
2

1− γ

)p
Rpmax

]
.

Use Hölder’s inequality with ak = αrk ‖εk‖
p
2p,ν and

bk = α1−r
k

∑
m≥0

γm (cVI,ρ,ν(m,K − k;πK) + cVI,ρ,ν(m+ 1,K − k − 1;πK)) ,

(all variables are defined the same as in the proof of Theorem 3.2). Therefore for all (s, r) ∈
(1,∞)× [0, 1], we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

VI,ρ,ν(K; r, s)E
1
ps′ (ε0, . . . , εK−1; r, s) +

2

1− γ
γ
K
p Rmax

]
,

where

CVI,ρ,ν(K; r, s) =

(
1− γ

2

)s
sup
π′

K−1∑
k=0

α
s(1−r)
k

(∑
m≥0

γm
(
cVI,ρ,ν(m,K − k;π′)

+ cVI,ρ,ν(m+ 1,K − k − 1;π′)
))s

,

and E(ε0, . . . , εK−1; r, s) =
∑K−1
k=0 αs

′r
k ‖εk‖

ps′

2p,ν . To simplify the bound, at the cost of loos-
ening the upper bound, we set s = s′ = 2.

Remark 3.2. One can obtain a similar upper bound on ‖V ∗ − V πK‖p,ρX when (ε′k)K−1
k=0 are

defined as ε′k , T ∗Vk − Vk+1 and ρX , νX ∈ M(X ). Denote ρXP
π1Pπ2 · · ·Pπm ∈ M(X )

as the future-state distribution obtained when the first state is distributed according to ρX
and then we follow the sequence of policies (πk)mk=1. Define the following concentrability
coefficients similar to Definition 3.1:

c′VI,ρ,ν(m1,m2;π) ,

E

∣∣∣∣∣d
(
ρX (Pπ)m1(Pπ

∗
)m2
)

dνX
(X)

∣∣∣∣∣
2
 1

2

,

with X ∼ νX . Then the exact same result as Theorem 3.4 holds by replacing cVI,ρ,ν with
c′VI,ρ,ν and using ‖ε′k‖2p,νX instead of ‖εk‖2p,ν in the definition of E(ε0, . . . , εK−1; r, s) [Farah-

mand et al., 2010].

3.4 Discussion

In this section, we discuss significant improvements of Theorems 3.2 and 3.4 over previous
results such as Bertsekas and Tsitsiklis [1996]; Munos [2003, 2007]; Antos et al. [2008b].
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Figure 3.1: Comparison of

(
E
[∣∣∣d(ρ(Pπ)m)

dν

∣∣∣2])1/2

(X ∼ ν) and
∥∥∥d(ρ(Pπ)m)

dν

∥∥∥
∞

. [The Y -scale

is logarithmic.]

3.4.1 Lp-norm instead of L∞-norm

As opposed to most error upper bounds, Theorems 3.2 and 3.4 relate ‖Q∗ −QπK‖p,ρ (or
‖V ∗ − V πK‖p,ρ) to the Lp-norm of the approximation or Bellman errors ‖εk‖2p,ν of iterations
in API/AVI. This should be contrasted with the traditional, and more conservative, results
such as

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
lim sup
k→∞

‖V πk − Vk‖∞

for API (Proposition 6.2 of Bertsekas and Tsitsiklis [1996]). Refer to Section 2.4 for the
discussion on why the Lp-norms are less conservative than the L∞-norm.

Another benefit of the Lp-norm results compared to the L∞ one is that the requirement
of having a small Lp-norm error is usually less strict than the L∞-norm’s. The guarantee
for the latter often requires strict conditions on the sampling distribution such as having a
density bounded away from zero. This should be contrasted with the Lp-norm results that
may even be distribution-free, i.e., they are not sensitive to the specific choice of the sampling
distribution. The introduction of the Lp-norms for RL/Planning problems, however, is not
new and has been done in the past couple of years in the work of Munos [2003, 2007]; Antos
et al. [2008b] – see Proposition 3.1 in Section 3.1.

3.4.2 Expected versus supremum concentrability of the future state-
action distribution

The concentrability coefficients (Definition 3.1) reflect the effect of future state-action dis-
tribution on the performance loss ‖Q∗ −QπK‖p,ρ. Previously it was thought that the key
contributing factor to the performance loss is the supremum of the Radon-Nikodym deriva-
tive of these two distributions [Munos, 2003, 2007; Antos et al., 2008b]. This is evident in

the definition of Cρ,ν in Proposition 3.1 where we have terms in the form of ‖d(ρ(Pπ)m)
dν ‖∞

instead of
(
E
[
|d(ρ(Pπ)m)

dν (X,A)|2
])1/2

(with (X,A) ∼ ν), which we have in Definition 3.1.

Nevertheless, it turns out that the key contributing factor that determines the per-
formance loss is the expectation of the squared Radon-Nikodym derivative rather than its
supremum. Intuitively this implies that even if for some subset of X ′ × A′ ⊂ X × A the

ratio d(ρ(Pπ)m)
dν is large but the probability ν(X ′ × A′) is very small, performance loss due

to it is still small. This phenomenon has not been suggested by previous results.
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As an illustration of this difference, consider a Chain Walk with 1000 states with a
single policy that drifts toward state 1 of the chain. We start with ρ(x) = ρX (x) = 1

201

for x ∈ [400, 600] and zero everywhere else. We then evaluate both ‖d(ρ(Pπ)m)
dν ‖∞ and

(E
[
|d(ρ(Pπ)m)

dν |2
]
)1/2 (X ∼ ν) for m = 1, 2, . . . when ν = νX is the uniform distribution

over states. The result is shown in Figure 3.1. One observes that the ratio is constant
in the beginning, but increases when the distribution ρ(Pπ)m concentrates around state
1, until it reaches steady-state. The growth and the final value of the expectation-based
concentrability coefficient is much smaller than that of the supremum-based coefficient.

It is easy to show that if the Chain Walk has N states and the policy has the same

concentrating behavior and ν is uniform, then ‖d(ρ(Pπ)m)
dν ‖∞ → N , while for X ∼ ν,

(E
[
|d(ρ(Pπ)m)

dν |2
]
)1/2 →

√
N when m→∞. The ratio, therefore, would be of order Θ(

√
N).

This clearly shows the improvement of this new analysis in a simple problem. One may
anticipate that this behavior occurs in many other problems too.

More generally, consider C∞ = ‖dµdν ‖∞ and CL2
= (E

[
|dµdν |

2
]
)1/2 (X ∼ ν). For a

finite state space with N states and ν is the uniform distribution, C∞ ≤ N but CL2
≤√

N . Neglecting all other differences between our results and the previous ones, we get a
performance upper bound in the form of ‖Q∗ −QπK‖1,ρ ≤ c1(γ)O(N1/4) supk ‖εk‖2,ν , while

Proposition 3.1 implies that ‖Q∗ −QπK‖1,ρ ≤ c2(γ)O(N1/2) supk ||εk||2,ν . The difference

between O(N1/4) and O(N1/2) shows the significant improvement of these new results.

3.4.3 Error decaying property

Theorems 3.2 and 3.4 indicate that the dependence of the performance loss ‖Q∗ −QπK‖p,ρ
(or ‖V ∗ − V πK‖p,ρX ) on (εk)K−1

k=0 is in the form of E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν .

Since αk ∝ γK−k (3.3), this result indicates that the approximation errors at later iterations
have more contribution to the final performance loss. This behavior is obscure in previous
results such as Munos [2007]; Antos et al. [2008b] that the dependence of the final perfor-
mance loss is expressed as E(ε0, . . . , εK−1; r) = maxk=0,...,K−1 ‖εk‖p,ν (see Proposition 3.1).

This property has practical and algorithmic implications too. It suggests that it is
better to put more effort on having a smaller Bellman or approximation error at later
iterations of API/AVI. This, for instance, can be done by gradually increasing the number
of samples throughout iterations, or to use more powerful, and possibly computationally
more expensive, function approximators for the later iterations of API/AVI.

To illustrate this property, we compare two different sampling schedules on a simple
MDP. The MDP is a 100-state, 2-action chain similar to Chain Walk problem in the work
of Lagoudakis and Parr [2003]. We use AVI with a lookup-table function representation. In
the first sampling schedule, every 20 iterations we generate a fixed number of fresh samples
by following a uniform random walk on the chain (we throw away old samples). We call
this the uniform strategy as the samples are distributed uniformly over all iterations. In
the exponential strategy, we again generate new samples every 20 iterations but the number
of samples at the kth iteration is ckγ . The constant c is tuned such that the total number
of both sampling strategies is almost the same (we give a slight margin of about 0.1% of
samples in favor of the fixed strategy). What we compare is ‖Q∗ −Qk‖1,ν in which ν is the
uniform distribution. The result is shown in Figure 3.2. The improvement of the exponential
sampling schedule over the uniform one is evident as we get smaller final error when the
samples are distributed according to the former strategy. Of course, one may think of more
sophisticated assignment of number of samples over iterations but this simple illustration
should suffice to attract the attention of the reader to this phenomenon.

34



10 20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4
0.5
0.6

0.8
1

1.5

2

3

4
5

Iteration

L 1 e
rro

r

 

 

Uniform
Exponential

Figure 3.2: Comparison of ‖Q∗ −Qk‖1 for uniform and exponential data sampling schedule.
The total number of samples is the same. [The Y -scale is logarithmic.]

3.4.4 Restricted search over policy space

One interesting feature of our results is that it reveals more structure and restriction on the
way policies can be chosen in the upper bound. To be more concrete, comparing CPI,ρ,ν(K; r)
(Theorem 3.2) and CVI,ρ,ν(K; r) (Theorem 3.4) with Cρ,ν (Proposition 3.1) indicates that:

1. Each concentrability coefficient in the definition of CPI,ρ,ν(K; r) depends only on a sin-
gle or two policies (e.g., π′k in cPI1,ρ,ν(K−k,m;π′k)). The same is true for CVI,ρ,ν(K; r),
and remarkably it can be seen that the policy is indeed πK – the result of the AVI pro-
cedure. In contrast, the mth term in Cρ,ν has m degrees of freedom (i.e., π1, . . . , πm),
and this number is growing as m→∞.

2. The operator sup in CPI,ρ,ν and CVI,ρ,ν appears outside the summation. Therefore,
we only have K + 1 degrees of freedom (i.e., π′0, . . . , π

′
K) to choose from in API and

remarkably only a single degree of freedom in AVI. On the other other hand, sup
appears inside the summation in the definition of Cρ,ν . One may construct an MDP
that this difference in the ordering of sup leads to an arbitrarily large ratio of two
different ways of defining the concentrability coefficients.

3. In API, the definitions of concentrability coefficients cPI1,ρ,ν , cPI2,ρ,ν , and cPI3,ρ,ν

(Definition 3.1) imply that if ρ = ρ∗, the stationary distribution induced by an optimal

policy π∗, then cPI1,ρ,ν(m1,m2;π) = cPI1,ρ,ν(·,m2;π) =

(
E
[∣∣∣d(ρ∗(Pπ)m2 )

dν

∣∣∣2])1/2

with

(X,A) ∼ ν (similar for the other two coefficients). This special structure is hidden in
the definition of Cρ,ν in Proposition 3.1, and instead we have an extra m1 degrees of
flexibility.

Remark 3.3. For general MDPs, the computation of concentrability coefficients in Defini-
tion 3.1 is difficult, as it is for similar coefficients defined in Munos [2003, 2007]; Antos et al.
[2008b]. The purpose of studying these coefficients is qualitative – at least for the time
being.

3.5 Conclusion

To analyze an API/AVI algorithm and to study its statistical properties such as consistency
or convergence rate, we require to 1) analyze the statistical properties of the algorithm
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running at each iteration, and 2) study the way the policy approximation/Bellman errors
propagate and influence the quality of the resulting policy.

The analysis in the first step heavily uses tools from the Statistical Learning Theory
(SLT) literature, e.g., Györfi et al. [2002]. In some cases, such as AVI, the problem can
be cast as a standard regression with the twist that extra care should be taken to the
temporal dependency of data in the RL scenario. The situation is more complicated for API
procedures that directly aim for the fixed-point solution (such as LSTD and its variants).
Nevertheless, still some similar tools from SLT can be used too – see Antos et al. [2008b];
Maillard et al. [2010]. We study this aspect of the analysis in Chapters 5 and 6.

The analysis for the second step is what this work has been about. In Theorems 3.2
and 3.4, we have provided upper bounds that relate the errors at each iteration of API/AVI
to the performance loss of the resulting policy. These bounds are qualitatively tighter than
the previous results such as those reported by Munos [2003, 2007]; Antos et al. [2008b], and
provide a better understanding of what factors contribute to the difficulty of the problem.
In Section 3.4, we discussed the significance of these new results and the way they improve
previous ones.

Finally, we should note that there are still some unaddressed issues. Perhaps the most
prominent one is to study the behavior of concentrability coefficients cPI1,ρ,ν(m1,m2;π),
cPI2,ρ,ν(m1,m2;π1, π2), and cVI,ρ,ν(m1,m2;π) as a function of m1, m2, and the transition
probability kernel P of the MDP. A better understanding of them alongside a good under-
standing of the way each term εk in E(ε0, . . . , εK−1; r) behaves, help us gain more insight
about the error convergence behavior of RL/Planning algorithms. The latter issue is ad-
dressed in Chapters 5 and 6.
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Chapter 4

Regularized Least-Squares
Regression: Learning from a
β-mixing Sequence

4.1 Introduction

Our main goal in this work is to study the convergence rate of regularized least-squares
regression when the covariates of the input form an exponentially β-mixing random process.
Our main motivation is that the usual assumption on the independence of the input data
fails to hold in a number of important practical applications. Possible relaxations of this
assumption have been considered in both the statistics and machine learning communities
for a long time, under assumptions of various generality. A particularly widely-used set of
assumptions concerns the mixing rate of the input process (cf. Doukhan [1994]; Yu [1994];
Vidyasagar [2002]). 1

The popularity of studying learning under mixing conditions is partly due to that many
stochastic processes with temporal dependence are mixing. For instance, Mokkadem [1988]
shows that certain ARMA processes can be modeled as an exponentially β-mixing stochastic
process, the notion that we shall also use in this work. More generally, globally exponentially
stable dynamical systems subjected to finite-variance continuous density input noise give rise
to exponentially β-mixing Markov processes [Vidyasagar and Karandikar, 2008]. This class
encompasses many dynamical systems common in the system identification and adaptive
control. As the final example, the geometric ergodicity of a strictly stationary Markov chain
implies exponentially (or faster) decaying β-mixing coefficients [Bradley, 2005, Theorem
3.7].

Even though some research papers consider learning in a mixing setting, only a few of
them consider regularized empirical risk minimization. In particular, Xu and Chen [2008]
study this problem in reproducing kernel Hilbert spaces (RKHS) when the input is an ex-
ponentially strongly (or, α-)mixing stationary sequence. Under an assumption similar to
our metric entropy condition, they prove bounds on the estimation error. However, their
bounds are suboptimal (even in the asymptotic sense), unless the input process is indepen-
dent. Steinwart et al. [2009] show consistency when the squared loss is replaced by more
general loss functions under relaxed conditions on the input sequence. In particular, they
relax the notion of mixing and they also drop the stationarity assumption. However, they
leave results concerning rates of convergence for future work. Sun and Wu [2010] replace
the metric entropy condition of Xu and Chen [2008] by an assumption that requires that
L−rk,µm is square integrable with respect to the (common) distribution of the covariates µ,

1This chapter is the result of the collaboration of the author with Csaba Szepesvári.
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where k is the chosen kernel, Lk,µ is the corresponding integral operator and m is the
unknown regression function. Their rates, however, are not better (and sometimes worse)
than those obtained by Xu and Chen [2008]. Mohri and Rostamizadeh [2010] consider a
stability-based analysis. They first derive general bounds for stable algorithms for φ and
β-mixing processes. As a corollary, they derive bounds on the estimation error for regu-
larization empirical risk-minimization over RKHSs when the input is a φ-mixing stationary
sequence, with the mixing coefficient decaying at a super-linear algebraic rate.

Let us now turn to the formulation of our main results. LetDn =
(
(X1, Y1), . . . , (Xn, Yn)

)
be the input, where Xi ∈ X and Yi ∈ [−L,L] (L > 0) are random variables, and X is a
measurable subset of a Polish space, which is a separable topological space whose topology
is metrizable by a complete metric. We shall assume that ((Xt, Yt))t=1,2,... is a stationary
exponentially β-mixing stochastic process (the precise definitions will given in Section 4.2.1).
Let m : X → R be the underlying regression function m(x) = E [Yi|Xi = x], and µ denote
the common distribution underlying (Xi). Let

L(m, m̂) =

∫
X
|m(x)− m̂(x)|2µ(dx) (4.1)

be the risk associated with the estimate m̂ : X → R. Consider the regularized (or penalized)
least-squares estimate m̂n

m̃n = argmin
f∈F

{
1

n

n∑
i=1

|f(Xi)− Yi|2 + λnJ
2(f)

}
,

m̂n(x) = TLm̃n(x) =


L if m̃n(x) > L,

m̃n if − L ≤ m̃n(x) ≤ L,
−L if m̃n(x) < −L,

(4.2)

where F is a suitable space of measurable real-valued functions with domain X , J is the
so-called regularization functional (or simply regularizer or penalizer), λn > 0 is the regu-
larization coefficient, and TL is the truncation operator.

There are various possibilities to choose the function space F and the regularizer J .
For example, if X = (0, 1) and J2(f) =

∫
|f (k)(x)|2dx for k > 1, the minimizer of (4.2)

belongs to F = Ck(R), the space of k-times differentiable functions, and is in particular,
will be an appropriately-defined spline function. More generally, when X is an open subset
of Rd, for some k > 2d one may choose the regularizer J2(f) to be the sum of the squared
L2-norms of the function’s kth weak derivatives. In this case F becomes the Sobolev-space
Wk(Rd) (= {f : X → R : J2(f) < ∞}) (cf. Definition B.3 in Appendix B.1). Even

more generally, one may pick F as an RKHS defined on domain X and J2(f) = ‖f‖2H,
where ‖·‖H is the underlying inner-product norm of F . Note that in all these cases (4.2)
leads to a computationally tractable convex optimization problem, thanks to the representer
theorem [Wahba, 1990; Schölkopf et al., 2001]. For more information about the RKHS-based
approach to machine learning the reader is referred to the books by Schölkopf and Smola
[2002]; Shawe-Taylor and Cristianini [2004]; Steinwart and Christmann [2008].

The main contributions of this work are as follows: First, we prove a relative deviation
concentration inequality for empirical processes, generalizing Theorem 2 of Kohler [2000]
from the i.i.d. processes to exponentially β-mixing, stationary stochastic processes. Next,
we apply this result to the analysis of regularized least-squares regression. Under the as-
sumptions that the true regression function belongs to the function space F and the input
is a stationary, exponentially β-mixing sequence, and some other standard technical as-
sumptions, we then derive a high-probability upper bound on the estimation error of this
procedure. The main result shows that, e.g., for the previously mentioned Sobolev space,
with an appropriate choice of the regularizer, the rate becomes the same as the optimal rate
known to hold in the case when the inputs are i.i.d. random variables. The main techniques
that we use are the independent-block technique [Yu, 1994; Bernstein, 1927] and the peeling
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H1 T1 H2 T2 Hµn Tµn R

an

Figure 4.1: The structure of the block construction.

device [van de Geer, 2000]. To get fast rates, we have to vary the size of independent blocks
according to the layer of peeling.

4.2 Definitions

The purpose of this section is to collect some definitions that we shall need later. Let N be
the set of positive natural numbers and N0 = N∪{0}. For a random variable U we shall use
L(U) to denote its probability law. For real numbers a and b, their maximum is denoted by
a ∨ b. The norm ‖·‖ shall stand for the 2-norm of vectors.

4.2.1 Mixing Processes

In what follows, unless otherwise stated, we let Z denote a Polish space. Let (Zt)t=1,2,...

be a Z-valued stochastic process. Let σl = σ(Z1, . . . , Zl) and σ′l+k = σ(Zl+k, Zl+k+1, . . .),
where σ(Zi1 , Zi2 , . . . , Zik) is the σ-algebra for the collection (Zi1 , Zi2 , . . . , Zik).

Definition 4.1 (β-mixing). The kth β-mixing coefficient for (Zt)t=1,2,... is defined as

βk = sup
l≥1

E

[
sup

B∈σ′l+k

∣∣P {B|σl} − P {B}
∣∣] .

The process (Zt)t=1,2,... is said to be β-mixing if βk
k→∞−−−−→ 0. Further, we say that (Zt)t=1,2,...,

is exponentially β-mixing process if for some constants β̄0 ≥ 0 and β̄1 > 0, we have
βk ≤ β̄0 exp(−β̄1k).

4.2.2 Independent Blocks

Fix a positive natural number n ∈ N. In what follows we will need a partitioning of the
set {1, 2, . . . , n} determined by the choice of an integral block length an. The partition will
have 2µn blocks with integral length an such that n − 2an < 2µnan ≤ n and a “residual
block”:

Hj = {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an}, (“head”)

Tj = {i : (2j − 1)an + 1 ≤ i ≤ 2jan}, (“tail”)

R = {2µnan + 1, . . . , n}, (“residual”)

for 1 ≤ j ≤ µn. Note that |R| < 2an. Also, let H = ∪1≤j≤µnHj . See Figure 4.1 for the
illustration of this construction.

Consider some sequence (zt)t=1,2,.... We shall adopt the following conventions: For a
subset S of the natural numbers N, z(S) shall denote the ordered list (zi)i∈S . When S is
the interval {i, i+ 1, . . . , j} for i < j, we shall also use zi:j = z(S). Also, for j ∈ N we shall
use zj = (z1, . . . , zj). These definitions are appropriately extended to the case when (zt) is
defined only for some subset of N.

Let us introduce the independent blocks (IB). Consider a Z-valued stationary, stochastic
process (Zt)t=1,2,.... Fix n and consider (Hj)1≤j≤µn as defined above for some (an, µn). Take
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a sequence of random variables Z ′(H) = (Z ′i : i ∈ H) such that 1) Z ′(H) is independent of
Zn and 2) the blocks (Z ′(Hj) : j = 1, . . . , µn) are independent, identically distributed and
each block has the same distribution as a block from the original sequence, i.e.,

L(Z ′(Hj)) = L(Z(Hj)) = L(Z(H1)), j = 1, . . . , µn.

in which the second equality is because of the stationarity of the stochastic process. We
refer to Z ′(H) as the (µn, an)-independent block sequence underlying Zn.

The following lemma, which we shall need later, upper bounds the difference between
the expectation of functions of Z(H) and Z ′(H).

Lemma 4.1 (Yu [1994], Lemma 4.1). For any measurable function h : Zanµn → R, we have

E
[
h(Z(H))− h(Z ′(H))

]
≤ ‖h‖∞ (µn − 1)βan .

Note that Yu only states this lemma for real-valued random variables. Since the extension
to Z-valued random variables is trivial, its proof is omitted.

4.2.3 Function Spaces

Let F be some space of measurable real-valued functions with a domain Z. In order to avoid
measurability problems in the case of uncountable collections of functions, throughout this
work we will assume that the class F of functions is permissible in the sense of Pollard [1984,
Appendix C]. This mild measurability condition is satisfied for most classes of functions
considered in practice.

Let us now define a derived function space F̄ and some empirical norms associated to
F and F̄ . Fix n and let (an, µn) and (Hj : 1 ≤ j ≤ µn) be as in the previous section. For
f ∈ F , define the function f̄ : Zan → R by

f̄(zan) =

an∑
i=1

f(zi),

and let F̄ = {f̄ : f ∈ F}. Now, fix a Z-valued sequence (zt)t=1,2,.... We equip the spaces F
and F̄ with the respective empirical norms ‖·‖z1:n and ‖·‖z(H1:µn ):

‖f‖2z1:n =
1

n

n∑
i=1

f2(zi) , (4.3)

‖f‖2z(H1:µn ) =
1

µn

µn∑
j=1

f̄2(z(Hj)) . (4.4)

In what follows, when Zn is clear from the context, by a slight abuse of notation we shall
use the abbreviations f̄(Hj) = f̄(Z(Hj)) and f̄(H ′j) = f̄(Z ′(Hj)).

LetM = (M, d) be a pseudo-metric space.2 The covering numbers of a totally bounded
subset B ofM are defined for any positive ε > 0 as follows: The covering number N (ε,B, d)
is the smallest number of closed d-balls of M that cover B. For a function space G with
[−M,M ]-valued functions and common domain S, the empirical (`2-)covering numbers
with respect to a finite sequence s1:n ∈ Sn are defined as the covering numbers associ-
ated with the pseudo-metric ‖·‖s1:n , where this pseudo-metric is defined as in (4.3). We
denote these covering numbers by N2(ε,G, s1:n). Note that this definition can be applied
to both the pairs (F , ‖·‖z1:n) and (F̄ , ‖·‖z(H1:µn )) and gives rise to the empirical covering

numbers N2(ε,F , ‖·‖z1:n) and N2(ε, F̄ , ‖f‖z(H1:µn )). The logarithm of the covering number
is called the metric entropy.

2A pseudo-metric d satisfies all properties of a metric except that d(x, y) = 0 does not imply that x = y.
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4.3 Relative Deviation Concentration Inequality

In this section, we prove a general concentration inequality valid for stationary β-mixing
random processes (Theorem 4.4). The result is an extension of Kohler [2000, Theorem 2]
and Györfi et al. [2002, Theorem 19.3]. The proof uses the independent block technique.
We start with two technical lemmas.

Lemma 4.2 (Relative Deviation Inequality). Consider a Z-valued, stationary, β-mixing
sequence Z = (Zt)t=1,2,... and a permissible class F of real-valued functions f with domain
Z. Assume that supf∈F ‖f‖∞ ≤M for some M > 0. Fix n ∈ N and ε, η > 0. Let Z ′(H) be

a (µn, an)-independent blocks sequence with a residual block R satisfying |R|n ≤
εη
6M . Then,

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi) − E [f(Z)]

η + |E [f(Z)] |

∣∣∣∣ > ε

}
≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j) − E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2

3
ε

}
+ 2βanµn.

Proof. Let P denote the probability that we wish to bound. Pick any f ∈ F . By the
stationarity of Z, the triangle inequality, and the definition of f̄ we get∣∣∣∣ 1

n (
∑n
i=1 f(Zi)− nE [f(Z)])

η + |E [f(Z)] |

∣∣∣∣ ≤
∣∣∣∣∣

1
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

η + 1
an
|E
[
f̄(H1)

]
|

∣∣∣∣∣
+

∣∣∣∣∣
1
n (
∑µn
j=1 f̄(Tj)− µnE

[
f̄(T1)

]
)

η + 1
an
|E
[
f̄(T1)

]
|

∣∣∣∣∣
+

∣∣∣∣∣
1
n (
∑
j∈R f(Zj)− |R|E [f(Z)])

η + |E [f(Z)] |

∣∣∣∣∣ .
Since ‖f‖∞ ≤ M , the third term is not larger than 2M |R|

ηn . Now, using |R|n ≤
εη
6M we get

that this term is not larger than ε/3. Noting that due to the stationarity of Z, the first two
terms are identically distributed, so we get

P ≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

η + 1
an
|E
[
f̄(H1)

]
|

∣∣∣∣∣ > ε

3

}

= 2P

{
sup
f̄∈F̄

∣∣∣∣∣
2an
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

ηan + |E
[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3

}
.

Since by construction 2an
n ≤

1
µn

, P can further be bounded by

2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(Hj) − E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3

}
.

Let us now apply Lemma 4.1 to bound this probability using the independent blocks se-
quence Z ′(H). For this, choose h to be the indicator function of the event

sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(Hj)− E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3
.

Then, ‖h‖∞ ≤ 1. Therefore, Lemma 4.1 and L(Z ′(H1)) = L(Z(H1)) gives the bound

P ≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j)− E

[
f̄(H1)

]
anη + E

[
f̄(H1)

] ∣∣∣∣∣ > 2ε

3

}
+ 2βanµn.
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The following lemma relates the covering numbers N2(ε,F , z1:n) and N2(ε, F̄ , z(H1:µn)).

Lemma 4.3 (Covering Number). For any (z1, . . . , zn) ∈ Zn, we have

N2(ε, F̄ , z(H1:µn)) ≤ N2

(
1

2an

√
2(1− |R|n ) ε,F , z1:n

)
.

Proof. Pick any function f : Z → R. Then
∥∥f̄∥∥2

z(H1:µn )
can be bounded in terms of ‖f‖2z1:n

as follows:

∥∥f̄∥∥2

z(H1:µn )
=

1

µn

µn∑
j=1

∣∣∣∣∣∣
∑
i∈Hj

f(zi)

∣∣∣∣∣∣
2

≤ a2
n

µnan

∑
i∈H
|f(zi)|2

≤ 2a2
n

n(1− |R|n )

n∑
i=1

|f(zi)|2 =
2a2
n

1− |R|n
‖f‖2z1:n .

Here we first applied Jensen’s inequality and then we used 2anµn = n − |R| and that
H ⊆ {1, . . . , n}.

Now consider f1, f2 ∈ F . Using the previous inequality and f1 − f2 = f̄1 − f̄2 we get∥∥f̄1 − f̄2

∥∥2

z(H1:µn )
≤ 2a2

n

1− |R|n
‖f1 − f2‖2z1:n .

Therefore any

√
2(1− |R|n )

2an
ε-cover of F is an ε-cover of F̄ .

We are ready to state the main result of this section, generalizing Theorem 2 of Kohler
[2000] and Theorem 19.3 of Györfi et al. [2002] (quoted as Lemma 4.7 in the appendix) to
the exponentially β-mixing stationary stochastic processes.

Theorem 4.4 (Relative Deviation Concentration Inequality). Consider a Z-valued, station-
ary, β-mixing sequence Z = (Zt)t=1,2,... and a permissible class F of real-valued functions
f with domain Z. Let n ∈ N, and K1,K2 ≥ 1, and choose η > 0 and 0 < ε < 1. Assume
that the following conditions hold: For any f ∈ F ,

(C1) ‖f‖∞ ≤ K1, (uniform boundedness)

(C2) E
[
f2(Z)

]
≤ K2E [f(Z)]. (variance)

Further, consider the (an, µn)-independent blocks with the residual block R and assume that
the following also hold:

(C3)
√
nε
√

1− ε√η ≥ 576
(
2K1an ∨

√
2anK2

)
(small block-size)

(C4) |R|n ≤
εη

6K1
and |R| ≤ n

2 , (small residual block)

(C5) For all z1, . . . , zn ∈ Z and all δ ≥ ηan
8 ,

√
µnε(1− ε)δ

96
√

2an (K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an(K1∨ 2K2)

[
logN2( u

2an
,F , z1:n)

] 1
2

du.

(small metric entropy)

Then, there exists universal constants c1, c2 > 0 such that

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ c1 exp

(
−c2

µnan η ε
2 (1− 2

3ε)

a2
nK

2
1 ∨ anK2

)
+ 2βanµn .

The constants can be set to c1 = 120 and c2 = 1
213 34 .
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Note that in the metric entropy condition (C5) we use the covering numbers of F –
unlike Kohler [2000] and Györfi et al. [2002] who consider the covering numbers of a smaller
subset of F . We chose to present a simpler (weaker) result to simplify the presentation.
The use of the peeling device in the proof of Theorem 4.5 obviates the need for a stronger
result (Refer to Appendix B.3 for an introduction to the peeling device).

Proof. Introduce the independent blocks sequence {Z ′(Hj) : j = 1, . . . , µn} as defined in
Section 4.2.2. By construction and the stationarity of the process, L(Z ′(Hj)) = L(Z(Hj)) =
L(Z(H1)). Lemma 4.2 relates the relative deviation of the original empirical process to the
relative deviation of the independent blocks process:

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j)− E

[
f̄(H1)

]
anη + E

[
f̄(H1)

] ∣∣∣∣∣ > 2

3
ε

}
+ 2βanµn ,

where we used (C1) and (C4) to verify the conditions of Lemma 4.2.
Since (f̄(H ′j))

µn
j=1 are i.i.d., we can use Theorem 19.3 of Györfi et al. [2002], which is stated

as Lemma 4.7 in the appendix, to analyze the concentration of the relative deviations defined
with the independent blocks by choosing n of that theorem to be the number of independent
blocks µn and η to be anη. Let us now verify the conditions of this theorem:

(1) Condition (C1) implies that for any zan ∈ Z
an we have |f̄(zan)| ≤ anK1. Let K ′1 =

anK1.

(2) Use Jensen’s inequality, the stationarity of the process, and (C2) to get E
[
f̄2(H ′j)

]
=

E
[
(
∑an
i=1 f(Z ′i))

2
]
≤ a2

nE
[
f2(Z ′1)

]
≤ a2

nK2E [f(Z ′1)] = anK2E
[
f̄(H ′j)

]
. Let K ′2 =

anK2.

(3) Condition (A3) of Lemma 4.7 translates into
√
µnε
√

1− ε√anη ≥ 288 (2K ′1 ∨
√

2K ′2)
for 0 < ε < 1 and η > 0. As |R| ≤ n

2 , therefore anµn > n
4 , and this condition is

satisfied whenever
√
nε
√

1− ε√η ≥ 576 (2K1an ∨
√

2anK2) ,

which is (C3).

(4) Condition (A4) of Lemma 4.7 requires that for all z(H1), . . . , z(Hµn) ∈ Zan and all
δ ≥ anη

8 ,

√
µnε(1− ε)δ

96
√

2 (K ′1 ∨ 2K ′2)
≥
∫ √δ

ε(1−ε)δ
16 (K′1 ∨ 2K′2)

[
logN2

(
u,B(F̄ , δ), z(H1:µn)

)] 1
2 du , (4.5)

where B(F̄ , δ) = {f̄ ∈ F̄ : 1
µn

∑µn
j=1 f̄

2(z(Hj)) ≤ 16δ}. Since B(F̄ , δ) ⊂ F̄ , we have

N2

(
u,B(F̄ , δ), z(H1:µn)

)
≤ N2

(
u, F̄ , z(H1:µn)

)
. According to Lemma 4.3, the latter

is bounded by

N2(ε, F̄ , z(H1:µn)) ≤ N2

(
1

2an

√
2(1− |R|n ) ε,F , z1:n

)
≤ N2

(
ε

2an
,F , z1:n

)
.

Here the second inequality holds because |R| ≤ n
2 , which is satisfied by the second

part of (C4). Plugging in K ′1 and K ′2, we get the following condition which is sufficient
for (4.5):

√
µnε(1− ε)δ

96
√

2an(K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an(K1∨ 2K2)

[
logN2

(
u

2an
,F , z1:n

)] 1
2

du

which is in fact (C5).
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Therefore the application of Lemma 4.2 and Lemma 4.7 leads to

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ 120 exp

(
−

µnanη
4
9ε

2(1− 2
3ε)

128× 2304× (a2
nK

2
1 ∨ anK2)

)
+ 2βanµn ,

which is the desired result.

4.4 Analysis of Regularized Least-Squares Estimates

In this section we prove a high probability upper bound on the risk of regularized least-
squares estimator (4.2) with dependent data. Theorem 4.5 shows the dependence of the
error on the number of samples n and the capacity of the function space F in the asymptotic
regime. The upper bound obtained is, up to a logarithmic factor, the same as the one in
the i.i.d. setting.

We make the following assumptions. As before X is a Polish space, F is a permissible
class of real-valued functions with domain X . The penalty J2 : F → R is non-negative
valued. For R > 0, we let BR = {f ∈ F : J2(f) ≤ R2}.

Assumption A1 (Exponential Mixing) The process ((Xt, Yt))t=1,2,... is an X × R-
valued, stationary, exponentially β-mixing stochastic process. In particular, the β-mixing
coefficients satisfy βk ≤ β̄0 exp(−β̄1k), where β̄0 ≥ 0 and β̄1 > 0.

Assumption A2 (Capacity) There exist C > 0 and 0 ≤ α < 1 such that for any u,R > 0
and all x1, . . . , xn ∈ X ,

logN2(u,BR, x1:n) ≤ C
(
R

u

)2α

.

Assumption A3 (Boundedness) There exists 0 < L < ∞ such that the common
distribution of Yt is such that |Yt| ≤ L almost surely.

Assumption A4 (Realizability) The regression function m(x) = E [Y1|X1 = x] belongs
to the function space F .

Before stating the main result, we would like to remark about our assumptions.

Remark 4.1. If the mixing rate of the process is slower (e.g., βk = O(k−β̄) for β̄ > 0), we may
still have consistent estimators that satisfy a behavior such as limn→∞ E [L(m, m̂n)] → 0
(or stronger), where L(m, m̂n) is defined in (4.1). The rate of convergence, however, might
be slower than what we obtain in Theorem 4.5.

Remark 4.2. The capacity Assumption A2 is mild, at least when X ⊂ Rd for some d ∈ N and
‖Xt‖ is bounded almost surely. For instance, Theorem 4 of Zhou [2003] shows its validity
for a large class of RKHS with sufficiently smooth kernel functions. The reader is referred
to Lemmas 20.4, 20.6 of Györfi et al. [2002], Zhou [2002, 2003], van de Geer [2000], and the
discussion on pp. 226–279 of Steinwart and Christmann [2008] for some more examples.

Remark 4.3. We define the approximation error arising from restricting the estimators to
F by

a(m;F) = inf
f∈F

L(m, f) .

When Xt ∈ Rd, ‖Xt‖ and |Yt| are bounded a.s., and F is a Sobolev-space then a(m,F) = 0
(cf. Theorem 20.4 of Györfi et al. [2002]). Therefore, a proper choice of regularization coef-
ficient leads to a universally consistent procedure. On the other hand when F is “smaller”,
a(m;F) might be positive. In this case let m′ be the minimizer of L(m; f) over F , which
we assume to exist for a moment. A simple calculation gives

L(m, m̂n) ≤ 2 [a(m;F) + L(m′, m̂n)] .
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When the approximation error exists, the result of Theorem 4.5 can be shown to hold for the
second term in the right-hand side (RHS), the so-called estimation error. Results regarding
the behavior of the approximation error a(m;F) for “small” RKHSs are discussed, e.g.,
by Smale and Zhou [2003]. Also it is notable that model selection procedures can be used
to balance the estimation and approximation errors and consequently to lead to adaptive
procedures with close to optimal learning rates, see e.g., Kohler et al. [2002]. The detail of
the way model selection should be implemented and analyzed, however, is outside the scope
of this work.

The main result of this work is as follows.

Theorem 4.5. Let Assumptions A1–A4 hold. Define the estimate m̂n by (4.2) with λn =[
1

nJ2(m)

] 1
1+α

. There exists constants c1, c2 > 0, where c1 depends only on L and c2 depends

only on L and β̄0, such that for any fixed 0 < δ < 1 and n sufficiently large,∫
X
|m(x)− m̂(x)|2µ(dx) ≤ c1

[
J2(m)

] α
1+α n−

1
1+α

[
log(n ∨ c2/δ)

β̄1

]3

holds with probability at least 1 − δ. In particular, when α = 0, the above bound holds for
n ≥ c3 exp(β̄1), while in the case of α > 0 it holds when n ≥ c3 exp(β̄1) ∨ 1/J2(m) and

1

n

(
c4 log(n ∨ c2/δ)

β̄1

) 4+5α
α

≤ J2(m) , (4.6)

where c3, c4 > 0 depends only on L.

This theorem indicates that (disregarding the logarithmic term) the asymptotic conver-

gence rate is O(n−
1

1+α ). This is notable because it is known to be the optimal minimax rate
for the i.i.d. samples under the assumption that m ∈ F and F has a packing entropy in the
same form as in the upper bound of Assumption A2 [Yang and Barron, 1999]. Note that
the choice of λn in the theorem depends on both α and J(m), which might be unknown in
practice. One can use a model selection procedure to adaptively select parameters so that
the estimator achieves a rate almost as fast as the rate based on the unknown parameters of
the problem. For an example of such a procedure for the i.i.d. input, refer to Kohler et al.
[2002]. Let us now turn to the proof.

Proof. The proof, which is similar in spirit to that of Theorem 21.1 of Györfi et al. [2002],
consists of the following main steps:

• Decompose the error into two terms T1,n and T2,n that will be defined shortly. [Step
1]

• Use the minimizer property of the empirical risk minimizer to control T1,n. [Step 2]

• Analyze T2,n: Apply the peeling device [Step 3], then introduce IBs that are dependent
on the layer of peeling [Step 4]. Afterwards use the relative deviation concentration
inequality of Theorem 4.4 to arrive at a high probability upper bound on T2,n. [Step
5]

• Optimize the upper bound. [Step 6]

Without loss of generality in what follows we shall assume that L ≥ 1. Let us now carry
out the steps of the proof.
Step 1. Define the following error decomposition:∫

X
|m̂n(x)−m(x)|2µ(dx) = E

[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
= T1,n + T2,n,
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where

1

2
T1,n =

1

n

n∑
i=1

[
|m̂n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m̂n),

T2,n = E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
− T1,n.

Step 2. The minimizer property of m̃n and the fact that for any u ∈ R, if |Y | ≤ L, then
|TLu− Y | ≤ |u− Y | imply that

1

2
T1,n ≤

1

n

n∑
i=1

[
|m̃n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m̃n)

≤ 1

n

n∑
i=1

[
|m(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m) = λnJ
2(m).

Therefore

T1,n ≤ 2λnJ
2(m). (4.7)

Step 3. Fix any number t satisfying

t ≥ 1

n
. (4.8)

Our goal now is to study P {T2,n > t}. We have

P {T2,n > t} = P

{
2
(
E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

] )
− 2

n

n∑
i=1

[
|m̂n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
> t+ 2λnJ

2(m̂n) + E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]}
.

Let z = (x, y) and define the following class of function spaces for l = 0, 1, · · · :

Gl ,

{
g : X × R→ R : g(z) = |TLf(x)− TLy|2 − |m(x)− TLy|2, f ∈ F , J2(f) ≤ 2lt

λn

}
.

Note that functions in Gl satisfy ‖g‖∞ ≤ K1 , 4L2. Applying the peeling device, we get

P {T2,n > t} ≤
∑
l≥0

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
. (4.9)

We now bound each term with the help of Theorem 4.4. For this, we shall choose an IB
sequence tuned separately to each value of l.
Step 4. Fix some value of l ∈ N0. Let the block size and the number of blocks be defined by

an,l =
⌊
a′n,l
⌋

and µn,l =

⌊
n

2an,l

⌋
, (4.10)

where

a′n,l = (nt)γ(2l)p and µ′n,l =
n

2a′n,l
=

n1−γ

2tγ(2l)p
.
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The values of γ, p > 0 will be specified later.
Note that by the assumptions t ≥ 1

n and p, γ > 0, we have an,l ≥ 1. Let Rl be
the residual block in the (an,l, µn,l)-partitioning of {1, 2, . . . , n}. The block size an,l, the
number of blocks µn,l, and the residual block size |Rl| have the following simple properties
that will be used later:

n− |Rl| = 2an,lµn,l ≤ n; |Rl| < 2an,l; µ′n,l ≤ µn,l.

Let us show that if n and l are sufficiently large (and if γ, p satisfy certain properties)
then the summands in (4.9) will be zero. We first claim that if

4nK1 ≤ (a′n,l)
1/p and (4.11)

γ ≤ p (4.12)

hold then
E[g(Z)]− 1

n

∑n
i=1 g(Zi)

2lt+E[g(Z)]
≤ 1

2 . Indeed,

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
≤ 2K1

2lt
.

Using (4.8) and (4.12), we get a′n,l = (nt)γ(2l)p ≤ (n t · 2l)p, which is equivalent to 2lt ≥
n−1(a′n,l)

1/p. Combining this with (4.11) gives the desired statement. Now, it is easy to see
that (4.11) follows from

p ≤ 1

2
≤ 1, (4.13)

a′n,l ≥
n

8
, and (4.14)

n ≥ c1 , 4 × 82 × K1 ≥ 4
p

1−p 8
1

1−p K
p

1−p
1 . (4.15)

From now on we will assume that in addition to (4.8), the constraints (4.12), (4.13), and
(4.15) hold too. Under these conditions it suffices to study the case when l is such that
an,l < n/8.
Step 5. The following proposition, proven in the appendix, holds:

Proposition 4.6. Consider l such that an,l <
n
8 . In addition, assume that

0 < γ < p ≤ 1

2 + α
. (4.16)

Then, there exists constants c3, c4 ≥ 1 and c5 > 0, which depend only on L, such that for
any

t > c
1

1−γ(2+α)

3

1

nλn
α

1−γ(2+α)
+
c4
n
, (4.17)

we have

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
≤ 120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l .

We apply this proposition to the terms of the RHS of (4.9) when l is such that an,l < n/8.
With the notation of the proposition, we get that under (4.8), (4.15), (4.16), and (4.17)

P {T2,n > t} ≤
∑

{l∈N0:an,l<
n
8 }

[
120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l

]

≤
∑
l∈N0

[
120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l

]
.
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Fix some l ≥ 0. Our purpose now is to bound βan,lµn,l. By Assumption A1,

βan,lµn,l ≤ β̄0 exp(−β̄1an,l + log µn,l) .

Thus, whenever

logµn,l
β̄1an,l

<
1

2
(4.18)

holds, we will have 2βan,lµn,l ≤ 2β̄0 exp(− β̄1

2 an,l) ≤ c6 exp(− β̄1

2 a
′
n,l), where c6 = 2β̄0 exp( β̄1

2 ).
Using a′n,l ≤ 2an,l, µn,l ≤ n, and the definition of a′n,l, we can see that (4.18) is satisfied
whenever

t >

(
4
β̄1

log n
) 1
γ

n
. (4.19)

Then,

P {T2,n > t} ≤
∑
l≥0

[
c7 exp

(
−c5

µ2
n,l t 2l

n

)
+ c6 exp

(
− β̄1

2
a′n,l

)]

≤
∑
l≥0

[
c7 exp

(
−c8(nt)1−2γ(2l)1−2p

)
+ c6 exp

(
− β̄1

2
(nt)γ(2l)p

)]
≤ c9 exp

(
−c8(nt)1−2γ

)
+ c10 exp

(
−c11β̄1(nt)γ

)
. (4.20)

Fix some 0 < δ < 1. Inverting (4.20) gives that if t satisfies (4.8), (4.17) and (4.19) and if
(4.15) and (4.16) hold as well then

T2,n ≤
1

n

( log
(

2c10
δ

)
c11β̄1

) 1
γ

+

(
log
(

2c9
δ

)
c8

) 1
1−2γ


holds with probability 1− δ.
Step 6. Combining the results of the previous steps, we find that under (4.15) and (4.16),∫

X
|m̂n(x)−m(x)|2µ(dx) = T1,n + T2,n

≤ 2λnJ
2(m) +

c
1

1−γ(2+α)

2

nλn
α

1−γ(2+α)
+

( c3
β̄1

ln c7
δ )

1
γ

n
+

( c4
β̄1

log n)
1
γ

n
+

(c5 ln c7
δ )

1
1−2γ

n
+
c6
n

(4.21)

holds with probability at least 1 − δ, where we redefined the values of c2, . . . , c6, c7 ≥ 1 in
a suitable manner (Note that the values of the constants c2, . . . , c6 depend still only on L,
while c7 depends only on L and β̄0).

Let us assume that 0 < γ ≤ 1
3 <

1
2+α . In this range of γ, as n gets large the third term

of the RHS of (4.21) dominates the last two terms. Thus, we only need to deal with the
first four terms. One can see that the choice of λn which minimizes the sum of these terms
(disregarding the constants) is

λn =

[
1

nJ2(m)

] 1−γ(2+α)
1−γ(2+α)+α

, (4.22)

which makes the sum of the first two terms proportional to

λnJ
2(m) =

[nJ2(m)]
α

1−γ(2+α)+α

n
=
e

α
1−γ(2+α)+α

B

n
,
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for B = log(nJ2(m)). On the other hand, the sum of the third and fourth terms of (4.21)

is upper bounded by a constant multiple of eA/γ

n , where A = log( c8
β̄1

log(c7/δ ∨ n)).

To choose the value of γ, we separate two cases depending on whether α is positive or
zero. First, let us consider the case when α = 0. Then, λnJ

2(m) = 1
n . As a result, the best

choice for γ in the range (0, 1
3 ] is γ = 1

3 , since A/γ is decreasing in γ. Whenever A > 0 (i.e.,

log(c7/δ∨n) ≥ β̄1/c8), this choice makes the dominating term of the bound to be eA/γ/n =(
c8 log(n∨c7/δ)

β̄1

)3

/n. A suitable choice for p is p = 1
2 . Note that c

1
1−γ(2+α)

2 = c

1

1− 2
3

2 = c32.

Whenever n ≥ 210L2, the constraint (4.15) is satisfied. Since the loss function is bounded,
this condition can be absorbed in the constants. This finishes the proof of this case.

Consider now the case of α > 0. The choice of γ, which unconditionally minimizes

1

n

(
eA/γ + e

α
1−γ(2+α)+α

B
)

is given by the solution to A/γ = α
1−γ(2+α)+αB. Solving this for γ, we get

γ =
(1 + α)A

(2 + α)A+ αB
. (4.23)

We will argue below that for n large enough, the chosen value satisfies γ ≤ 1
3 (and in fact

γ ≤ 1
6 ). Thus, with this choice, the order of the terms under investigation becomes

1

n
eA/γ =

1

n
(eB)

α
1+α (eA)

2+α
1+α = J2(m)

α
1+αn−

1
1+α

(
c8
β̄1

log(n ∨ c7/δ)
) 2+α

1+α

. (4.24)

Let us now show that for n large enough, we have γ ≤ 1
6 <

1
3 . Indeed, as n gets large,

A = Θ(log log n) and B = Θ(log n). Hence, γ → 0. In fact, a simple calculation gives that
1/6 ≥ γ will be satisfied as long as n is large enough so that (4.6) holds. Moreover, γ > 0
when A,B > 0, which are satisfied for n ≥ exp(β̄1/c8) ∨ 1/J2(m). Note that any choice
of p such that 0 < γ ≤ p ≤ 1

2+α satisfies all conditions and only affects the constants. To

satisfy (4.15), it is sufficient to have n ≥ 2
5(2+α)
1+α L2. Again this condition can be absorbed

in the constants. When γ ≤ 1
6 , we have 1

1−γ(2+α) ≤ 2. Thus, c
1

1−γ(2+α)

2 ≤ c22. This finishes

the proof.

4.5 Conclusion

Theorem 4.5 indicates that, disregarding a logarithmic factor, the rate of convergence of reg-
ularized least-squares estimates with the exponential β-mixing covariates is asymptotically
the same as the minimax rate available for the i.i.d. scenario. Thus the exponential β-mixing
dependence considered in this work has little effect on the efficiency of learning. It would
be interesting to study this effect more closely. In particular, how far is the dependence of
our bound on the rate of the β-mixing coefficients from being optimal? Another interesting
issue is to design a model selection procedure with dependent inputs that achieves minimax
optimal rates, e.g., along the lines of the work of Kohler et al. [2002]. For some steps towards
this direction see the papers by [Meir, 2000; Modha and Masry, 1998]. Finally, it remains
an interesting question of how much the dependence concepts can be relaxed while retaining
the optimal minimax rates available for the i.i.d. inputs.
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Appendix

4.A Proof of Proposition 4.6

In this section we prove Proposition 4.6, which was used in the proof of Theorem 4.5. For
the convenience of the reader, we also quote Theorem 19.3 of Györfi et al. [2002], which is
essentially the same as Theorem 2 of Kohler [2000] with some differences in constants.

Proof of Proposition 4.6. We verify the conditions of Theorem 4.4 for the choice of ε = 1
2

and η = 2lt.
(C1)–(C2): It is easy to see that these conditions are satisfied with K1 = 4L2 and K2 = 16L2

(See Györfi et al. [2002, p. 438]).
(C3): Since by assumption L2 ≥ 1, hence an,l ≥ 1 implies that 2K1an,l >

√
2an,lK2.

Therefore it is enough to verify that
√
nε
√

1− ε√η ≥ 1152K1an,l. As an,l ≤ a′n,l, it suffices
to verify this condition with an,l replaced by a′n,l. Plugging-in the definition of a′n,l, we get

that (C3) is satisfied when t ≥ c′1
n for some c′1 > 0 dependent only on L.

(C4): Let us first verify |Rl|
n ≤ εη

6K1
. By construction, |Rl| < 2an,l ≤ 2a′n,l. Therefore,

it suffices if
2a′n,l
n < 2lt

12K1
. Using the conditions on γ, p, we get that this is satisfied when

t ≥ c′2
n with some c′2 > 0, dependent only on L.

Let us now verify |Rl| < n
2 . By assumption, we have an,l <

n
8 and by construction we

have |Rl| < 2an,l, thus, |Rl| < n
4 .

(C5): We need to verify that for all z1, . . . , zn ∈ Z = X × R and all δ ≥ 2lt an,l
8 ,

√
µn,l ε(1− ε) δ

96
√

2 an,l (K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an,l (K1 ∨ 2K2)

[
logN2

(
u

2an,l
, Gl, z1:n

)] 1
2

du .

Let zt = (xt, yt), xt ∈ X , yt ∈ R. It can be shown that N2(u,Gl, z1:n) ≤ N2( u
4L ,Fl, x1:n),

where Fl =
{
TLf ∈ F : J2(f) ≤ 2lt

λn

}
(see Györfi et al. [2002, p. 438]). Noting that µn,l ≥

µ′n,l, clearly it suffices to show√
µ′n,l ε(1− ε) δ

96
√

2 an,l (K1 ∨ 2K2)
≥
∫ √δ

0

[
logN2

(
u

8Lan,l
,Fl, x1:n

)] 1
2

du . (4.25)

Since Fl ⊂
{
f ∈ F : J2(f) ≤ 2lt

λn

}
, Assumption A2 indicates that

N2

(
u

8Lan,l
,Fl, x1:n

)
≤ C

8Lan,l

√
2lt
λn

u

2α

,

therefore the RHS of (4.25) is upper bounded by c′3a
α
n,l

(
2lt
λn

)α
2

δ
1−α
2 for some constant

c′3 > 0, which depends only on L. Now to verify (C5), it is sufficient to prove that for

δ ≥ 2ltan,l
8 , √

µ′n,lδ

an,l
≥ c′4(an,l)

α

(
2lt

λn

)α
2

δ
1−α
2 .

After some manipulation we see that this condition is satisfied whenever t ≥ c′5
a1+αn,l

µ′n,l2
lλαn

for

a suitably chosen c′5 > 0. Using a′n,l ≥ an,l, µ
′
n,l = n

2a′n,l
, and a′n,l = (nt)γ(2l)p, we get that
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it suffices to have

t ≥ c′6
[(nt)γ(2l)p]2+α

n2lλαn
⇐⇒ t ≥ c′7

1

nλ
α

1−γ(2+α)
n (2l)

1−p(2+α)
1−γ(2+α)

,

where c′7 = (c′6)
1

1−γ(2+α) and we used the assumption that γ < 1
2+α . For γ < p ≤ 1

2+α , the

value of (2l)
1−p(2+α)
1−γ(2+α) is a non-decreasing function of l, so the metric entropy condition (C5)

is satisfied if

t ≥ c′7
1

nλ
α

1−γ(2+α)
n

.

By taking c3 = c′6 and c4 = c′1 ∨ c′2, all the conditions of the Theorem 4.4 are satisfied.
Therefore,

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
≤ 120 exp

(
−
µ2
n,l (2

lt)
(

1
2

)2 (
1− 2

3 ·
1
2

)
9× 32× 1152 (4L2)2 n

)
+ 2βanµn .

which we benefitted from the fact that for L ≥ 1, we have a2
n,lK

2
1 ≥ an,lK2 in addition to

an,lµn,l ≤ n
2 . This is the desired result after absorbing all constants into c5 > 0.

Lemma 4.7 (Theorem 19.3 of Györfi et al. [2002]). Let Z,Z1, · · · , Zn be independent and
identically distributed random variables with values in Z. Let K1,K2 ≥ 1, 0 < ε < 1, η > 0,
and let F be a permissible class of functions f : Z → R with the following properties:

(A1) ‖f‖∞ ≤ K1,

(A2) E
[
f(Z)2

]
≤ K2E [f(Z)],

(A3)
√
nε
√

1− ε√η ≥ 288 max{2K1,
√

2K2},

(A4) For all z1, · · · , zn ∈ Z and all δ ≥ η/8,

√
nε(1− ε)δ

96
√

2 max{K1, 2K2}
≥
∫ √δ

ε(1−ε)δ
16max{K1,2K2}

[
logN2

(
u, {f ∈ F :

1

n

n∑
i=1

f2(zi) ≤ 16δ}, z1:n

)]1/2

du.

Then,

P

{
sup
f∈F

∣∣E [f(Z)]− 1
n

∑n
i=1 f(Zi)

∣∣
η + E [f(Z)]

> ε

}
≤ 60 exp

(
− n η ε2(1− ε)

128× 2304 max{K2
1 ,K2}

)
.
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Chapter 5

Regularized Fitted Q-Iteration
Algorithm

5.1 Introduction

In this chapter, we introduce Regularized Fitted Q-Iteration (RFQI) – a regularization-
based AVI approach to solve RL/Planning problems with large state spaces. This chapter’s
contributions are two-fold: algorithmic and theoretical.1

The algorithmic contribution of this work is to formulate the RFQI method as an AVI
procedure that uses regularized least-squares regression at each iteration (Section 5.2).
There we develop a generic RFQI algorithm and provide a closed-form solution when
the estimated value function is chosen from the class of reproducing kernel Hilbert spaces
(RKHS) [Wahba, 1990]. This kernel-based formulation is intriguing because RKHSs are
general, flexible, and easy to incorporate prior knowledge [Shawe-Taylor and Cristianini,
2004].

The theoretical contribution of this chapter is to analyze the statistical properties of
RFQI (Section 5.3) and to provide an upper bound on the quality of the resulting policy
and its relation to the performance of the optimal policy (Theorem 5.8 in Section 5.3.5). We
show how the performance depends on the number of samples, the capacity of the function
space to which the estimated value function belongs, and some intrinsic properties of the
MDP.

The analysis of RFQI has four main steps. First we ask how large the performance loss of
the resulting policy will be if the sizes of errors of each iteration are known. We answer this
question in Section 5.3.1 by using the result of Chapter 3. We then focus on a single iteration
of RFQI and study the statistical behavior of the corresponding regularized least-squares
regression with dependent input covariates. Part of the analysis is done in Section 5.3.2
in which the material is mostly borrowed from Chapter 4 (also Farahmand and Szepesvári
[2011a]). We observe that the upper bound on the error of each iteration depends on the
number of samples, the capacity of the function space to which the estimator belongs,
the smoothness of the target regression function, and the function approximation error of
representing the target in the function space. As opposed to the conventional supervised
learning scenarios, the function approximation error and the smoothness depend on the
result of previous iterations as if they “propagate” throughout iterations. We study these
phenomena, which are specific to AVI/RFQI, in Section 5.3.3 (Behavior of the Function
Approximation Error) and Section 5.3.4 (Behavior of the Smoothness). All these lead to
Theorem 5.8 that reveals some aspects of learning a close-to-optimal policy that have not
been known beforehand in the work of Munos and Szepesvári [2008], which analyzes Fitted

1This chapter is the result of the collaboration of the author with Csaba Szepesvári, Mohammad
Ghavamzadeh, and Shie Mannor.
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Q-Iteration algorithm and is the closest theoretical result to this work. Theorem 5.8 indicates
that upon the proper choice of parameters, the dependence of the sample complexity for
the task of estimating the optimal value function on the capacity of the function space is
minimax optimal. Also it is seen that the size of the function approximation error and the
smoothness of the target function at each iteration depend on the results of the previous
iterations. We discuss various aspects of the main result in Section 5.4.

In Section 5.5 we briefly discuss the l1-regularization-based formulation of RFQI, and
finally in Section 5.6 we summarize the chapter and suggest some topics for future study.

5.2 Algorithm

RFQI is an approximate value iteration method that belongs to the class of Fitted Q-
Iteration algorithms [Ernst et al., 2005; Riedmiller, 2005; Munos and Szepesvári, 2008]. In
this section, we first describe the RFQI algorithm in terms of a sequence of optimization
problems and afterwards we show how these optimization problems may be solved when the
function space is an RKHS.

The RFQI algorithm (Algorithm 1) works as follows: It receives the number of iterations
K, the initial action-value function Q0, a collection of K datasets D(0),D(1), . . . ,D(K−1),

with the cardinalities ofm0,m1, . . . ,mK−1, respectively, a set of function spaces F |A|0 , · · · ,F |A|K−1

and their corresponding regularizers Jk : F |A| → R (k = 0, 1, . . . ,K − 1), and a set of reg-
ularization coefficients λ0, · · · , λK−1. In the setup that we shall later analyze, we assume
that for k = 0, · · · ,K − 1,

D(k) =
(
(X

(k)
1 , A

(k)
1 , R

(k)
1 , X ′1

(k)
), . . . , (X(k)

mk
, A(k)

mk
, R(k)

mk
, X ′(k)

mk
)
)
,

all satisfying the offline sampling assumption of Section 2.2.1. We also denote the collection
of all datasets as Dn =

(
D(0),D(1), · · · ,D(K−1)

)
with n = m0 + . . . + mK−1. To simplify

the analysis, we assume that D(k) and D(l) (k 6= l) are independent datasets. In practice,
however, one may use D(0) = . . . = D(K−1), which corresponds to reusing all the available
data at each iteration. An analysis that handles this scenario has been done in Munos and
Szepesvári [2008].

The RFQI algorithms starts from an initial action-value function Q0. At iteration k, it
approximately performs a single step of value iteration and finds a Qk+1 that is close to
T ∗Qk, i.e., Qk+1 ≈ T ∗Qk. This is done by solving the following regularized least-squares
regression problem:

Qk+1 = argmin
Q∈F |A|k

∥∥∥Q(Xi, Ai)− T̂ ∗Qk(Xi, Ai)
∥∥∥2

D(k)
+ λkJ

2
k (Q), (5.1)

where ‖·‖2D(k) is the empirical norm defined in Section 2.2.1, and T̂ ∗Qk is the single-sample

empirical estimate of T ∗Qk, which is also based on D(k). Here F |A|k is the action-value
function space, Jk(Q) is the corresponding nonnegative-valued regularizer (or penalizer)
that penalizes the “roughness” of Q and λk > 0 is the regularization coefficient. We call the
value of Jk(Q) the smoothness of Q.

To see the connection of this algorithm to value iteration, note that the first term in
the right-hand side (RHS) of (5.1) is the sample-based squared error of using Q(Xi, Ai) to

predict R(Xi, Ai) + γmaxa′∈AQk(X ′i, a
′) at (Xi, Ai) = (X

(k)
i , A

(k)
i ) for i = 1, . . . ,mk. This

term is the empirical estimate of the loss

Lk(Q) = E
[
|Q(X,A)− T ∗Qk(X,A)|2

∣∣∣Qk]
with (X,A) ∼ ν. Fitting an action-value function Q that minimizes this L2-loss corresponds
to the regression problem where the covariates are (Xi, Ai) ∈ X × A and the regression

53



Algorithm 1 RFQI(K;Q0;{D(k)}K−1
k=0 ; {F |A|k }

K−1
k=0 ; {Jk}K−1

k=0 ; {λk}K−1
k=0 )

// K: Number of iterations
// Q0: Initial action-value function
// D(0), . . . ,D(K−1): Batch of samples for each iteration

// F |A|0 , · · · ,F |A|K−1: The action-value function spaces
// J0, · · · , JK−1: The regularizers
// λ0, · · · , λK−1: The regularization coefficients
for k = 0 to K − 1 do

Qk+1 ← argmin
Q∈F |A|k

∥∥∥Q(Xi, Ai)− T̂ ∗Qk(Xi, Ai)
∥∥∥2

D(k)
+ λkJ

2
k (Q)

end for
return QK and π̂(·;QK)

Figure 5.1: Fitted Q-Iteration Procedure. Given Qk (blue curve), it generates T̂ ∗Qk (red
dots), and fits an action-value function Qk+1 (red dashed curve). The difference between
Qk+1 and T ∗Qk (green curve) is the function εk.

function is

E
[
r(x, a) + γ max

a′∈A
Qk(X ′, a′)

∣∣∣Qk, X = x,A = a

]
= (T ∗Qk)(x, a),

which is indeed the target of the exact value iteration algorithm Qk+1 = T ∗Qk. The
RFQI algorithm solves this regression problem with the use of the regularized least-squares
regression estimator.

As a consequence of the finite sample size and the function approximation error, Qk+1 is
not equal to T ∗Qk and there will be a residual error εk = T ∗Qk−Qk+1. As the performance
of any AVI algorithm, including RFQI, critically depends on ‖εk‖ (k = 0, . . . ,K − 1) (Sec-
tion 5.3.1), it is desirable for the estimation algorithm to make sure these error are as small
as possible given a limited number of samples. Regularized least-squares regression is an

example of a sample-efficient method that upon the proper choice of F |A|k , Jk, and λk can
do this task.

Among possible choice for F |A|, such as finite-dimensional linear spaces, infinite-dimensional
function spaces defined by growing neural networks or decision trees, and Sobolev spaces,
we focus on the case when F |A| is an RKHS [Wahba, 1990; Steinwart and Christmann,

2008]. Let F |A|k = Hk be the RKHS used in the kth iteration. The natural choice for the
regularizer is the inner-product norm of the RKHs itself, that is J(Q) = ‖Q‖H. The RKHS
formulation of (5.1) then becomes

Qk+1 = argmin
Q∈F |A|k [=Hk]

∥∥∥Q(Xi, Ai)− T̂ ∗Qk(Xi, Ai)
∥∥∥2

D(k)
+ λk ‖Q‖2Hk . (5.2)
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Even though solving (5.1) for general function spaces might be difficult, it becomes com-
putationally tractable when we pick an RKHS and formulate the problem as (5.2). If
kk : (X × A) × (X × A) → R denotes the unique reproducing kernel underlying Hk, by
the application of the Representer Theorem for RKHSs (e.g., Schölkopf et al. [2001, Theo-
rem 4.2] quoted as Theorem B.1 in Appendix B.1.1) we get that every solution to (5.2) is
the sum of kernels centered on the observed samples:

Qk+1(x, a) =

mk∑
i=1

α
(k+1)
i kk

(
(X

(k)
i , A

(k)
i ), (x, a)

)
,

where α(k+1) = (α1, . . . , αmk)> are the coefficient that should be determined. Let us assume
that Qk was also obtained in a similar form:

Qk(x, a) =

mk−1∑
i=1

α
(k)
i kk−1

(
(X

(k−1)
i , A

(k−1)
i ), (x, a)

)
.

Replacing Q in (5.2) by its expansion and using the fact that ‖Q‖2Hk = α>Kkα with Kk

being the Grammian matrix, to be specified shortly, we get

α(k+1) = argmin
α∈Rmk

∥∥∥r(k) + γK+
k α

(k) −Kkα
∥∥∥2

D(k)
+ λk α

>Kkα, (5.3)

with Kk ∈ Rmk×mk and K+
k ∈ Rmk×mk−1 defined as

[K]ij = kk

(
(X

(k)
i , A

(k)
i ), (X

(k)
j , A

(k)
j )
)
,

[K+]ij = kk−1

(
(X ′i

(k)
, A∗i

(k)), (X
(k−1)
j , A

(k−1)
j )

)
,

where A∗j
(k) = argmaxa∈AQk(X ′j

(k)
, a), and r(k) = (R

(k)
1 , . . . , R

(k)
k )>. Solving (5.3) for α,

we obtain the following closed-form solution:

α(k+1) =

{
(K0 +m0λ0I)

−1 (
r(0) + γQ0

)
k = 0,

(Kk +mkλkI)
−1 (

r(k) + γK+
k α

(k)
)

k = 1, . . . ,K − 1,

in which Q0 =
(
Q0(X

′(0)
1 , A∗1

(0)), . . . , Q0(X
′(0)
m0 , A

∗
m0

(0))
)>

.

The computational complexity of the kth iteration with a naive implementation is O(m3
k)

as it uses matrix inversion. Therefore if we divide the total number of samples n to K equal-

sized chunks, the computational cost of K iterations of RFQI is O( n
3

K2 ).

Remark 5.1. The above algorithm can also be used in a parametric setting, which might
be preferable to the nonparametric approach if one has significant prior knowledge about
the action-value function. Let Φ[p](·, ·) : X × A → Rp be the feature vector defined by p
basis functions. Define the function space F |A|(p) = {Φ[p](·, ·)>θ|θ ∈ Rp}. For any choice
of positive semi-definite matrix Λ, one can define the l2-norm of Q(·, ·; θ) ∈ F |A|(p) as
J2(Q) = θ>Λθ. Notice that the estimation problem at each iteration is the conventional
ridge regression estimator [Hoerl and Kennard, 1970]. The other possibility is to use the
l1-norm as the regularizer. This is discussed in Section 5.5.

Remark 5.2. In this work, we present and analyze the RFQI algorithm when the task is to
find an approximate optimal action-value function. Nevertheless, RFQI can also be modified
to evaluate a given policy π by changing T̂ ∗ to T̂π in Algorithm 1. We do not analyze this
modification in this work.

Remark 5.3. Regularization has a Bayesian interpretation too. The L2-regularized least-
squares regression estimator is equivalent to finding the maximum a posteriori estimate in
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the Gaussian Process regression framework with a Gaussian prior over the space of func-
tions; and the l1-regularization is equivalent to having a Laplacian prior over the space
of functions, see Rasmussen and Williams [2006, Section 6.2]. We do not however follow
Bayesian approach to derive our results, mainly because proving consistency/convergence
bounds for the posteriors can be problematic.

5.3 Theoretical Analysis

The goal of the analysis is to provide an upper bound on the performance loss of policy πK
returned by RFQI, as measured by ‖Q∗ −QπK‖1,ρ. The probability measure ρ is chosen
by the user to specify the relative importance of various regions of the state-action space,
which in general is different from the sample distribution ν.

The analysis has four steps. In the first step we use the result of Chapter 3 to study
how the fitting errors ‖Qk+1 − T ∗Qk‖ν (k = 0, . . . ,K − 1) propagate throughout iterations
and affect the performance loss of πK (Section 5.3.1). The remaining three steps are con-
cerned with bounding ‖Qk+1 − T ∗Qk‖ν . The starting point, presented in Section 5.3.2,
is an error bound available for regularized least-squares regression with β-mixing inputs –
borrowed from Chapter 4. The presented error bound consists of two terms, one bounding
the approximation error and the other bounding the estimation error. The approximation

error measures the loss of using the best approximation to T ∗Qk from F |A|k , while the es-
timation error bounds the random variation of Qk+1, which arises because the procedure
uses a finite random sample. The estimation error at iteration k mainly depends on the

number of samples, the capacity of the function space F |A|k , and J(T ∗Qk). Because of the
iterative nature of RFQI procedure, the analysis is more complicated than the conventional
supervised learning scenario. The difference is that as opposed to the supervised learning
scenario, which has a fixed target function, we deal with a random target function that
depends on the result of previous iterations. This affects both the function approximation
error and the smoothness of the target function as if they propagate throughout iterations.
We study the behavior of the approximation error and the smoothness in Sections 5.3.3 and
5.3.4, respectively. Combining these results, we obtain the main theorem of this chapter
(Theorem 5.8).

We note that throughout our analysis, the regularization coefficients λks are chosen in
such a manner so that the resulting bounds are minimized. As such, λk would depend on
unknown quantities. The reason this should not be of major concern is because one can use
data-dependent model-selection methods to tune λk and still achieve essentially the same
performance, see e.g., [Bartlett et al., 2002; Arlot and Celisse, 2009].

5.3.1 Error Propagation for Approximate Value Iteration

Let Q0, Q1, . . . , QK ∈ F |A| be a sequence of action-value functions, perhaps generated by
some approximate value iteration procedure that approximates T ∗Qk by Qk+1.2 Let the
error at iteration k be

εk = T ∗Qk −Qk+1. (5.4)

Further, let πK be the policy greedy w.r.t. QK and p ≥ 1. In this section, we use The-
orem 3.4 of Section 3.3 to relate the performance loss ‖Q∗ −QπK‖p,ρ to the ν-weighted

L2p-norms of the error sequence (εk)K−1
k=0 . This performance loss indicates the regret of fol-

lowing the policy πK instead of an optimal policy when the initial state-action is distributed
according to ρ. To relate these two measures that are entangled through the MDP, we define
the following concentrability coefficients.

2To enhance the flow of the reading, Section 3.3 is partly repeated here.
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Definition 5.1 (Expected Concentrability of the Future State-Action Distribution). Given
ρ, ν ∈ M(X × A), m ≥ 0, and an arbitrary sequence of stationary policies (πm)m≥1, let
ρPπ1Pπ2 . . . Pπm ∈ M(X × A) denote the future state-action distribution obtained after
m transitions, when the first state-action pair is distributed according to ρ and then we
follow the sequence of policies (πk)mk=1. For integers m1,m2 ≥ 1 and policy π, define the
concentrability coefficient

cVI,ρ,ν(m1,m2;π) ,

E

∣∣∣∣∣d
(
ρ(Pπ)m1(Pπ

∗
)m2
)

dν
(X,A)

∣∣∣∣∣
2
 1

2

,

where (X,A) ∼ ν. If the future state-action distribution ρ(Pπ)m1(Pπ
∗
)m2 is not absolutely

continuous w.r.t. ν, we let cVI,ρ,ν(m1,m2;π) =∞.

The concentrability coefficients are used in a change of measure argument. Due to the
dynamics of MDP and AVI, this change depends not only on ν and ρ, but also on the
transition kernels Pπ and Pπ

∗
, see e.g., Munos [2007] and Chapter 3 of this thesis. In order

to compactly present our results, we define

ak =
(1− γ) γK−k−1

1− γK+1
, 0 ≤ k < K, (5.5)

and for 0 ≤ r ≤ 1,

E(ε0, . . . , εK−1; r) =

K−1∑
k=0

a2r
k ‖εk‖

2p
2p,ν ,

CVI,ρ,ν(K; r) =(
1− γ

2

)2

sup
π′

K−1∑
k=0

a
2(1−r)
k

∑
m≥0

γm (cVI,ρ,ν(m,K − k;π′) + cVI,ρ,ν(m+ 1,K − k − 1;π′))

2

,

where in the last definition the supremum is taken over all policies.

Theorem 5.1 (Error Propagation for AVI – Theorem 3.4 in Section 3.3). Let p ≥ 1 be a
real number, K be a positive integer, and Qmax ≤ Rmax

1−γ . Then, for any sequence (Qk)Kk=0 ⊂
B(X ×A, Qmax), and the corresponding sequence (εk)K−1

k=0 defined in (5.4), we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

VI,ρ,ν(K; r)E
1
2p (ε0, . . . , εK−1; r) +

2

1− γ
γ
K
p Rmax

]
.

We discuss the significance of this result and compare it to the previous work such
as Munos [2007] in Section 5.4.2.

5.3.2 Error Bounds for Regularized Regression

The goal of this section is to analyze the statistical behavior of the fitting procedure that
leads to the error εk at iteration k. The main result of this section, Theorem 5.2, relates

‖εk‖ν to the sample size mk, the capacity of the function space F |A|k , and the intrinsic
difficulty of the problem, characterized by the smoothness of the (random) target function
T ∗Qk. We start by listing our assumptions required for the result of this section.

Assumption A5 (Function Space) The subset F |A| ⊂ B(X × A) is a separable and
complete Carathéodory set.
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In addition to the usual measurability requirement, in order to avoid the measurability
issues caused by taking supremum over an uncountable function space F |A|, we require the
space to be a separable and complete Carathéodory set in the sense defined in Section 7.3
of Steinwart and Christmann [2008] (quoted in Appendix B.4).

Assumption A6 (Regularizer) For all values of 0 ≤ k ≤ K − 1, define two regularizer

functionals Jk : B(X )→ R and Jk : B(X ×A)→ R that are pseudo-norms on Fk and F |A|k ,

respectively.3 For all Q ∈ F |A|k and a ∈ A, we have Jk(Q(·, a)) ≤ Jk(Q).

Note that commonly-used regularizers are pseudo-norms. In particular, RKHS norms are in
fact norms, and thus are also pseudo-norms. If the regularizer J ′ : B(X ×A)→ R is derived
from a regularizer J : B(X ) → R through J ′(Q) = ‖(J(Q(·, a))a∈A‖p for some p ∈ [1,∞],
then J ′ will satisfy the second part of the assumption. From a computational perspective,
a natural choice for RKHS is to choose p = 2 and to define J ′2(Q) =

∑
a∈A ‖Q(·, a)‖2H for

H being the RKHS defined on X .

Assumption A7 (Function Space Capacity) Let a ∈ A, R > 0, 0 ≤ k ≤ K − 1 and
define the “ball” Bk,a,R = {Q(·, a) ∈ Fk : J2

k (Q(·, a)) ≤ R2}. There exists constants C > 0
and 0 ≤ α < 1 such that for all k = 0, . . . ,K − 1, a ∈ A, u,R > 0, and x1, . . . , xn ∈ X , the
following “metric entropy condition” [Györfi et al., 2002; van de Geer, 2000] holds:

logN2(u,Bk,a,R, x1:n) ≤ C
(
R

u

)2α

.

This is a standard assumption, which is satisfied by a large number of function spaces of
interest, including Sobolev spaces and various RKHS. Refer to van de Geer [2000]; Zhou
[2002, 2003] and Steinwart and Christmann [2008] for several examples. An alternative as-

sumption would be to have a similar metric entropy for the balls in F |A|k (instead of Fk).
This would slightly change a few steps of the proofs, but leave the results essentially the
same. Moreover, it makes the second part of Assumption A6 (that is Jk(Q(·, a)) ≤ Jk(Q))
unnecessary. Nevertheless, as results on the capacity of F is more common in the statis-
tical learning literature, we stick to the combination of Assumptions A6 and A7. For the
convenience of the reader, the definition of the metric entropy is provided in Appendix B.2.

Assumption A8 (Sampling) For all values of 0 ≤ k ≤ K − 1, the stochastic process(
(X

(k)
1 , A

(k)
1 ), . . . , (X

(k)
mk , A

(k)
mk)

)
is an X × R-valued strictly stationary, exponentially β-

mixing process with marginal ν. The β-mixing coefficients satisfy βk ≤ β̄0 exp(−β̄1k),

where β̄0 ≥ 0 and β̄1 > 0. Furthermore, X ′t
(k) ∼ P (·|X(k)

t , A
(k)
t ) for t = 1, . . . ,mk.

Even though many stochastic processes of interest are exponentially β-mixing (see Chap-
ter 4), one can still consider a slower mixing (e.g., βk = k−β̄ for β̄ > 0) at the price of
obtaining slower convergence rates.

Assumption A9 (Boundedness) There exists 0 < Qmax < ∞ such that the common
distribution of T̂ ∗Q(Xt, At) satisfies |T̂ ∗Q(Xt, At)| ≤ Qmax almost surely.

If an a priori bound on the immediate expected rewards (or the random rewards) is known,
this assumption can always be enforced by possibly truncating the estimates.

Assumption A10 (Independence of Data Sets) D(k) and D(l) are independent for
k 6= l.

3Note that here we are slightly abusing notation as the same symbol is used for the regularizer over both
B(X ) and B(X ×A). However, this should not cause any confusion since in a specific expression the identity
of the reguralizer should always be clear from the context.

58



We rely on Assumption A10 to simplify the proof. One may follow the same line of argument
as Munos and Szepesvári [2008] to handle the scenario that D(0) = D(1) = · · · = D(K−1).

The next theorem is the main result of this section and provides an upper bound on
‖εk‖ν . It is a slightly modified form of the result proven in Chapter 4. The first difference
concerns that here we need to deal with the simultaneous estimation of |A| functions (i.e.,
action-value functions), while the result that we build on concerned only the estimation
of a single function. For further details on this difference, see Appendix 5.A. The second
difference is that the statement of this theorem allows the regularization coefficient to be
larger than the optimal choice. The validity of this new statement can easily be concluded
from the original proof.

In this section and later, we assume that the regularization coefficients are chosen ac-
cording to

λk = B

[
1

mkJ2(Π
ν,F |A|k

T ∗Qk)

] 1
1+αk

, (5.6)

where Π
ν,F |A|k

is the projection operator defined in Section 2.2.1, and B ≥ 1.

Theorem 5.2. [Regularized Regression for Mixing Processes – Theorem 4.5 in Chapter 4]
Let Assumptions A5–A10 hold. Define the estimate Qk+1 by (5.1) with the choice of λk as
in (5.6). There exists constants ck, c

′
k > 0, where ck depends only on Qmax and c′k depends

only on Qmax and β̄0, such that for any fixed 0 < δ < 1 and mk sufficiently large,

‖Qk+1 − T ∗Qk‖2ν ≤ inf
Q′∈F |A|k

‖Q′ − T ∗Qk‖
2
ν +

B ck

[
J2(Π

ν,F |A|k

T ∗Qk)
] αk

1+αk m
− 1

1+αk

k

[
log(mk ∨ c′k/δ)

β̄1

]3

,

holds with probability at least 1 − δ. In particular, when α = 0, the above bound holds for
mk ≥ c′′k exp(β̄1), while in the case of α > 0 it holds when mk ≥ c′′k exp(β̄1)∨1/J2(Π

ν,F |A|k

T ∗Qk)

and

1

mk

(
c′′′k log(mk ∨ c′k/δ)

β̄1

) 4+5α
α

≤ J2(Π
ν,F |A|k

T ∗Qk) , (5.7)

where c′′k , c
′′′
k > 0 depends only on Qmax.

The first term of the bound, infQ′∈F |A| ‖Q′ − T ∗Qk‖
2
ν , defines the function approxima-

tion error, while the second term is called the estimation error. Notice that both the function
approximation error and the smoothness term J2(Π

ν,F |A|k

T ∗Qk) are random. The analysis

of the behavior of these terms will be the subject of the next two sections.

Remark 5.4. If the function space F |A|k is rich enough (e.g., a universal kernel is used),
the function approximation for the class of continuous functions shall be zero. On the
contrary, if the space is not large enough, we might have function approximation error. The
behavior of the function approximation error for certain classes of “small” RKHS has been
discussed by Smale and Zhou [2003]; Steinwart and Christmann [2008]. The question of how
to optimally balance the estimation and the function approximation errors by the choice

of function space F |A|k is beyond the scope of this work, but can be formulated as a model
selection problem, see e.g., Smale and Zhou [2003]; Steinwart and Christmann [2008].

5.3.3 The Behavior of the Function Approximation Error

The goal of this section is to study the behavior of the function approximation error,
‖Qk+1 − T ∗Qk‖ν . Previously, Munos and Szepesvári [2008] bounded this error by the so-
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called inherent Bellman error,

a(T ∗F |A|k−1;F |A|k ) = sup
Q∈F |A|k−1

inf
Q′∈F |A|k

‖Q′ − T ∗Q‖ν , (5.8)

which gives a deterministic, a priori upper bound on the error, though this bound can be
very conservative. The reason is because Qk can be expected to reside in a small vicinity
of (T ∗)kQ0. In this case, the actual function approximation error is expected to be close to

inf
Q′∈F |A|k

‖Qk+1 − (T ∗)kQ0‖ν , which might be much smaller than a(T ∗F |A|k−1;F |A|k ). The

purpose of this section is to formalize this intuition.
We need the following, new concentrability coefficients, which are similar to those intro-

duced earlier in Section 5.3.1.

Definition 5.2 (Concentrability Coefficient of One-step Transitions). Let ν be a distribution
over the state-action pairs, (X,A) ∼ ν, νX the marginal distribution of X, and πb(·|·)
the conditional probability of A given X. Further, let P be a transition probability kernel
P : X ×A →M(X) and Px,a = P (·|x, a). Define the concentrability coefficient of one-step
transitions w.r.t. ν by

CAE(ν;P ) =

(
E

[
sup

(y,a′)∈X×A

∣∣∣∣ 1

πb(a′|y)

dPX,A
dνX

(y)

∣∣∣∣
]) 1

2

,

where CAE(ν;P ) =∞ if Px,a is not absolutely continuous w.r.t. νX for some (x, a) ∈ X×A,
or if πb(a

′|y) = 0 for some (y, a′) ∈ X ×A.

The constant CAE(ν;P ) is large if after one step of transition, the future state can be
highly concentrated at some state where the probability of taking some action a′ is small as
well as νX . Hence, the name “concentrability of one-step transitions”.

The main result of this section is the theorem stated below. The proof is provided in
Appendix 5.B.

Theorem 5.3. Let (Qk)K−1
k=0 be a sequence of state-action value functions, bk = ‖T ∗Qk −Qk+1‖ν ,

0 ≤ k ≤ K − 1. Then, it holds for any 0 ≤ k ≤ K − 1 that

inf
Q′∈F |A|k

‖Q′ − T ∗Qk‖ν ≤ inf
Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥
ν

+

k−1∑
i=0

(γ CAE(ν;P ))
i+1

bk−1−i.

Note that the above bound will be smaller than the a priori bound (5.8) when the
individual errors and the one-step concentrability coefficient are all small enough. In the
limit of a large number of examples, the error bounds bk will be shown to be arbitrarily close
to zero, hence, in the limit the bound in this theorem is better, assuming finite one-step
concentrability. Of course, under the assumptions of the theorem, both the bound of this
theorem and (5.8) hold at the same time, therefore one can always take the smallest of the
two bounds.

5.3.4 The Behavior of the Smoothness

In this section, we study the behavior of the smoothness term Jk(ΠF |A|k

T ∗Qk). Our analysis

has two steps. With the help of an assumption on the MDP, we relate Jk(ΠF |A|k

T ∗Qk) to

Jk−1(Qk). We also upper bound Jk−1(Qk) in terms of Jk−1(ΠF |A|k−1

T ∗Qk−1). This gives rise

to a recursive bound.
To upper bound Jk(Qk+1), we use Theorem 6.6 of Chapter 6, which itself is an extension

of Theorem 10.2 of van de Geer [2000].4 Note that this result is stated for independent and

4Actually, the result quoted here is less general than the aforementioned theorem. That theorem holds
uniformly on any target function, but here we fix the target. As a result, we only have Jk(Π

ν,F|A|
k

T ∗Qk)

instead of Jk(Π
ν,F|A|

k

T ∗Qk) + Jk(Qk) in the upper bound.
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identically distributed (i.i.d.) data, so it only covers the planning scenario. Nevertheless,
we expect the same result to hold true for exponentially β-mixing inputs too, but showing
this is left for future work.

Proposition 5.4. Fix 0 ≤ k ≤ K − 1. Consider the regularized regression problem defined
in (5.1) with the regularization coefficient λk chosen according to (5.6). Let Assumptions A5,
A6, A7, A9, and A10 hold, and in addition, assume that the sequence(

(X
(k)
1 , A

(k)
1 ), . . . , (X

(k)
mk , A

(k)
mk)

)
is i.i.d. Then, there exists a constant ck > 0 such that for

any mk ∈ N and 0 < δ < 1, we have

Jk(Qk+1) ≤ ck Jk(Π
ν,F |A|k

T ∗Qk)
√

ln(1/δk),

with probability at least 1− δk.

Proposition 5.4 relates the smoothness of Qk+1 (the result of the kth iteration of RFQI)
to the smoothness of Jk(ΠF |A|k

T ∗Qk). We may recursively relate this smoothness to Qk−1,

Qk−2, . . . , Q0 if 1) the operator ΠF |A|k

T ∗ is well-behaving in the sense that Jk(ΠF |A|k

T ∗Qk)

is not much different from Jk(Qk) and 2) the regularizer Jk−1 penalizes similar to Jk. This
is required because we want to avoid a situation that a smooth function in the function
space Fk−1 is rough in the function space Fk. To formalize these requirements, we make
the following assumption.

Assumption A11 For any k = 0, 1, . . . ,K − 1 and for any Q ∈ F |A|k , there exist some

constants 0 ≤ LR, LP < ∞, depending only on the MDP and the set of {F |A|i }
K−1
i=0 such

that

Jk(Π
ν,F |A|k

T ∗Q) ≤ LR + γLPJk−1(Q).

where for the notational convenience, we set J−1 , J0.

The validity of this assumption for a certain class of MDPs is shown in Proposition 6.16 in
Chapter 6.

The main result of this section is an immediate corollary of Proposition 5.4 and Assump-
tion A11. Since the previous proposition is not proved for β-mixing inputs, we state the
conclusion of the previous proposition as a condition of the next result.

Proposition 5.5. Let Assumption A11 hold. Pick 0 < δ ≤ 1 and assume that for some
c > 0, Jk(Qk+1) ≤ c Jk(Π

ν,F |A|k

T ∗Qk)
√

ln(1/δ) holds for k = 0, . . . ,K − 1. Then, for any

0 ≤ k ≤ K − 1, it holds that

Jk(ΠF |A|k

T ∗Qk) ≤ LR + γLP

[
J0(Q0) [L′P (δ)]

k
+

L′R(δ)

1− L′P (δ)

(
1− [L′P (δ)]

k
)
I{k ≥ 1}

]
,

where L′R(δ) = cLR
√

ln(1/δ) and L′P (δ) = c γLP
√

ln(1/δ).

Proof. The proof is a simple induction. For completeness, it is given in Appendix 5.C.

In order to simplify the final upper bound, we would like L′P to be smaller than 1. Of
course, this may not hold true in many cases including when δ � 1. The crucial point,
however, is that ck defined in Proposition 5.4, and as a result L′P (δ), may be changed by
the change of λk defined in (5.6). Essentially what we require is to oversmooth the estimate
at all iterations. The following assumption ensures that one can oversmooth without too
much increasing of the regularization coefficient.
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Assumption A12 Consider the regularized regression problem defined in (5.1) with the
choice of λk = λ and denote Jk(Qk+1(·;λ)) as a function of λ by Jk(λ). For a given value
of J ∈ R, let J−1

k (J) be the value of λ such that Jk(λ) = J . For any 0 < ρ ≤ 1 and
λ ≤ λ0 <∞, there exists a finite positive constant Λ, such that for all k = 0, 1, . . . ,K − 1,
we have

J−1
k (ρJk(λ))

λ
≤ Λ

ρ
.

5.3.5 Main Result

In this section, we derive a high probability error upper bound for the performance loss
of the RFQI algorithm based on the results of previous sections. Proposition 5.6 upper
bounds ‖Qk+1 − T ∗Qk‖ν . Proposition 5.7 simplifies the bound when Assumption A12 holds.
Finally Theorem 5.8, which is the main result of this work, upper bounds the performance
loss ‖Q∗ −QπK‖1,ρ.

Fix K ∈ N, let 0 < δ < 1 be a fixed constant, and pick δ′ = δ
2K . Let L′R(δ′) =

cLR
√

ln(1/δ′) and L′P (δ′) = c γLP
√

ln(1/δ′) with c defined as in Proposition 5.5. Let
1 ≤ B < ∞ and for k = 0, 1, · · · ,K − 1, choose the regularization coefficient according
to (5.6). With these choices of (λk)K−1

k=0 , let the sequence (Qk+1)K−1
k=0 be defined as the

solution of (5.1). For any real-valued sequence b0, · · · , bk−1, define cA(b0, b1, · · · , bk−1) and

c
(1)
E (k;LR, LP ) as

cA(b0, b1, · · · , bk−1) = 2γ

(
k∑
i=1

(
γC2

AE(ν;P )
)i)(k−1∑

i=0

γi b2k−1−i

)
, (5.9)

c
(1)
E (k;LR, LP ) = B c′k(Qmax)×[

LR + γLP

(
L′R(δ′)

1− L′P (δ′)
+

(
J0(Q0)− L′R(δ′)

1− L′P (δ′)

)
[L′P (δ′)]k

)] 2αk
1+αk

,

for a constant c′k(Qmax), which is a function of Qmax and β̄0 only. Now define (bi(δ))
k−1
i=0 as

b2k(δ) = c
(1)
E (k;LR, LP )m

− 1
1+αk

k

[
log(mk ∨ K

δ )

β̄1

]3

+

2 inf
Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥2

ν
+ cA(b0(δ), · · · , bk−1(δ)). (5.10)

Proposition 5.6. Let assumptions A5, A6, A7, A9, A10, and A11 hold. Also assume
that either 1) Assumption A8 holds and Proposition 5.4 holds for the β-mixing processes
(learning scenario), or 2) Assumption A8 is strengthened to hold only for the i.i.d. processes
(planning scenario). Fix 0 < δ < 1 and let bk be defined according to (5.10). Then for
m0, . . . ,mk sufficiently large and for any 0 ≤ k ≤ K − 1 we have

‖Qk+1 − T ∗Qk‖2ν ≤ b
2
k(δ)

with probability at least 1− k
K δ.

For small δ′ and fixedB, the value of L′P (δ′) might be large. This results in c
(1)
E (k;LR, LP )

being an exponentially growing function of k. Nevertheless, when Assumption A12 holds,
we show that if one picks B(δ′) = Θ(

√
ln(1/δ′))∨1, the value of L′P (δ′) of the new estimate

would be smaller than one. This is stated in the next proposition. Let

c
(2)
E (k;LR, LP ) = c′′k(Qmax)LP [LR + γLPJ0(Q0)]

2αk
1+αk ,
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for a constant c′′k(Qmax) > 0, which is a function of Qmax and β̄0 only. Define (bi(δ))
k−1
i=0 as

b2k(δ) = c
(2)
E (k;LR, LP )m

− 1
1+αk

k

[
log(mk ∨ K

δ )

β̄1

]7/2

+

2 inf
Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥2

ν
+ cA(b0(δ), · · · , bk−1(δ)). (5.11)

Proposition 5.7. Let all assumptions of Proposition 5.6 hold. In addition, let Assump-
tion A12 hold. Fix 0 < δ < 1 and let bk be defined according to (5.11). There exists a
constant c(LP , γ) such that if B(δ′) = c(γ)LP

√
ln(1/δ′)∨1, and m0, . . . ,mk are sufficiently

large, for any 0 ≤ k ≤ K − 1 we have

‖Qk+1 − T ∗Qk‖2ν ≤ b
2
k(δ),

with probability at least 1− k
K δ.

The next theorem, which is the main result of this work, upper bounds the performance
loss ‖Q∗ −QπK‖1,ρ.

Theorem 5.8. Let the assumptions of Proposition 5.6 or Proposition 5.7 hold. Choose a
fixed 0 < δ < 1 and let (bk(δ))K−1

k=0 be defined as (5.10) (when the assumptions of Propo-
sition 5.6 hold) or (5.11) (when the assumptions of Proposition 5.7 hold). Assume that
CVI,ρ,ν is finite. Define ak according to (5.5). Let

E(b0(δ), . . . , bK−1(δ); r) =

K−1∑
k=0

a2r
k b2k(δ). (5.12)

Then, the ρ-weighted performance loss of πK is upper bounded by

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2

VI,ρ,ν(K; r)E 1
2 (b0(δ), . . . , bK−1(δ); r) +

2

1− γ
γKRmax

]
,

(5.13)

with probability at least 1− δ.

Proof of Proposition 5.6, Proposition 5.7, and Theorem 5.8. Fix δ′ > 0. For i = 0, . . . ,K−
1, invoke Theorem 5.2 to provide an upper bound for the ν-weighted L2-norm of the εi
defined in (5.4). There exist constants ci and c1,i such that for sufficiently large mi (so that
the conditions on mi in Theorem 5.2 are satisfied), we have

‖Qi+1 − T ∗Qi‖2ν ≤ b
′2
i ,

b′i , inf
Q′∈F |A|i

‖Q′ − T ∗Qi‖
2
ν +B ci(Qmax)

[
J2(Π

ν,F |A|i
T ∗Qi)

] αi
1+αi

m
− 1

1+αi
i

[
log(mi ∨ c1,i/δ′)

β̄1

]3

,

(5.14)

with probability at least 1 − δ′. Consider the event E(1)
k such that ‖Qi+1 − T ∗Qi‖ν ≤ b′i

holds for all 0 ≤ i ≤ k − 1. The probability of this event is at least 1− kδ′.
Furthermore, according to Proposition 5.4, there exists a constant ci > 0, independent

of mi and δ′, such that

Ji(Qi+1) ≤ ci Ji(Πν,F |A|i
T ∗Qi)

√
ln(1/δ′), (5.15)

with probability at least 1− δ′. Consider the event E(2)
k such that (5.15) holds for 0 ≤ i ≤

k − 1. The probability of this event is at least 1− kδ′. Consider the event Ek = E(1)
k ∩ E

(2)
k .

63



The probability of the event Ek is at least 1 − 2kδ′. From now on, our analysis will be on
the event Ek.

We use techniques developed in Sections 5.3.3 and 5.3.4 to control the function approx-
imation error inf

Q′∈F |A|k

‖Q′ − T ∗Qk‖ν and the smoothness J(Π
ν,F |A|k

T ∗Qk), respectively.

Theorem 5.3 and the Cauchy-Schwarz inequality imply that

inf
Q′∈F |A|k

‖Q′ − T ∗Qk‖
2
ν ≤2 inf

Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥2

ν

+ 2

(
k∑
i=1

(
γ C2

AE(ν;P )
)i)(

γ

k−1∑
i=0

γi b′2k−1−i

)
. (5.16)

To bound the smoothness term J(Π
ν,F |A|k

T ∗Qk) in (5.14), we use Proposition 5.5. On

the event E(2)
k ⊂ Ek and with our fixed choice of δ′ for all i = 0, . . . , k − 1, the conditions of

the proposition are satisfied and therefore for k ≥ 0,

Jk(Π
ν,F |A|k

T ∗Qk) ≤ LR + γLP

[(
J0(Q0)− L′R(δ′)

1− L′P (δ′)

)
[L′P (δ′)]k +

L′R(δ′)

1− L′P (δ′)

]
. (5.17)

Note that in (5.16), we may replace (b′i)
k−1
i=0 , which are random, with any deterministic

upper bounds and the inequality still holds. With this in mind, (5.14) alongside (5.16) and
(5.17) lead to

‖Qk+1 − T ∗Qk‖2ν ≤ b
2
k

, 2 inf
Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥2

ν
+ 2γ

(
k∑
i=1

(
γ C2

AE(ν;P )
)i)(k−1∑

i=0

γi b2k−1−i

)

+B ck(Qmax)

[
LR + γLP

(
L′R(δ′)

1− L′P (δ′)
+

(
J0(Q0)− L′R(δ′)

1− L′P (δ′)

)
[L′P (δ′)]k

)] 2αk
1+αk

×

m
− 1

1+αk

k

[
log(mk ∨ c1,k/δ′)

β̄1

]3

,

on the event Ek. One may absorb log3(2c1,k) into ck to have a new constant c′k. Noting that
P {Ek} ≥ 1− 2kδ′ = 1− k

K δ finishes the proof of Proposition 5.6.
To simplify the bound, we use Assumption A12 with the choice of ρ = 1/(2L′P (δ′)) ∧

1/2 = Θ(1/
√

ln(1/δ′)) ∧ 1/2. This ensures that if B(δ′) = Γ/ρ = 2(L′P (δ′) ∧ 1)Γ ≤
2cγΓLP

√
ln(1/δ′) = Θ(LP

√
ln(1/δ′)), then (5.17) holds with L′′R(δ′) ≤ L′R(δ′)/(2L′P (δ′)) =

LR/(2γLP ) and L′′P (δ′) ≤ 1/2 replacing L′R(δ′) and L′P (δ′), respectively. This simpli-
fies (5.17) to

Jk(Π
ν,F |A|k

T ∗Qk) ≤ LR + γ
LPL

′′
R(δ′)

1− 1/2
+ γLPJ0(Q0)(1/2)k ≤ 2LR + γLPJ0(Q0).

This leads to a simplified upper bound

‖Qk+1 − T ∗Qk‖2ν ≤ b
2
k ,2 inf

Q′∈F |A|k

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥2

ν

+ 2γ

(
k∑
i=1

(
γ C2

AE(ν;P )
)i)(k−1∑

i=0

γi b2k−1−i

)

+ c′′k(Qmax)LP [LR + γLPJ0(Q0)]
2αk

1+αk m
− 1

1+αk

k

[
log(mk ∨ K

δ )

β̄1

]7/2

.
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As before, P {Ek} ≥ 1− k
K δ. This finishes the proof of Proposition 5.7.

The proof of Theorem 5.8 is the direct application of Theorem 5.1 with the choice of
p = 1, setting δ′ = δ/(2K), and considering the probability of the event EK .

5.4 Discussion of the Main Result

Due to the dynamical nature of the MDP and AVI (and RFQI), the upper bound of Theo-
rem 5.8 is more complicated than similar bounds in supervised learning. For instance, the
effect of sample distribution ν on the quality of the final policy measured w.r.t. ρ is entan-
gled with the dynamics of MDP itself (Section 5.3.1). Also the iterative nature of AVI relates
the regression problem of the fitting procedure at any iteration to the solutions of earlier
iterations. This effect shows itself in both the function approximation error (Section 5.3.3)
and the smoothness of the target function (Section 5.3.4). These effects were obscure in the
work of Munos and Szepesvári [2008] because of their more conservative analysis approach.

To better understand the behavior of RFQI, we explain the main terms of the upper
bound in Theorem 5.8.

5.4.1 Error of the Fitting Procedure

The bounds on ‖Qk+1 − T ∗Qk‖2ν in Propositions 5.6 and 5.7 have three terms. The term

with O(m
− 1

1+αk

k ) behavior quantifies the estimation error while the terms ‖Q′−T ∗(k+1)Q0‖2ν
and

∑k−1
i=0 γ

i b2k−1−i bound the function approximation error.

Estimation Error

The estimation error has the upper bound of (cf. (5.11) when Assumption A12 is used)

B c′k(Qmax)

[
LR + γLP

(
L′R(δ′)

1− L′P (δ′)
+

(
J0(Q0)− L′R(δ′)

1− L′P (δ′)

)
[L′P (δ′)]k

)] 2αk
1+αk

×

m
− 1

1+αk

k

[
log(mk ∨ K

δ )

β̄1

]3

.

This upper bound shows the effect of the capacity of the function space F |A|k and the
smoothness of the target function.
Capacity of the function space. The effect of the number of samples and the capacity

of the function space on the estimation error is O(m
− 1

1+αk

k log3(mk)). Disregarding the
logarithmic term this is known to be the minimax optimal rate for i.i.d. inputs under the
assumption that Fk has a packing entropy in the same form as in the upper bound of
Assumption A7 [Yang and Barron, 1999]. This indicates that the effect of dependency in
the input process is asymptotically negligible for exponential mixing processes. Since by
setting γ = 0, the value-estimation task of an RL/Planning problem reduces to a regression
problem, RL/Planning problems are superset of regression problems, and as a result this
error bound is also optimal for the value-estimation task of Planning/RL problems.
Smoothness of the target function. The estimation error also depends on the smooth-
ness of the target function. As discussed in Section 5.3.4, a deterministic upper bound on
the smoothness of the target function can be obtained based on some intrinsic properties of
the MDP, characterized by LP and LR (Assumption A11), and the parameter c defined in
Proposition 5.5.

If for a constant δ′ = δ/(2K) the value of L′P (δ′) = cγLP
√

ln(1/δ′) is larger than 1
and γ > 0, the smoothness term is dominated by O([L′P (δ′)]k) for large values of k, which
means that the target function of the later iterations can potentially become exponentially
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non-smooth. On the other hand if L′P is smaller than 1, the smoothness term is O(LP [LR+
γLPJ0(Q0)]) (see (5.11)). For a fixed confidence parameter δ, this smoothness is a finite
constant and shows that the smoothness of the target function is upper bounded during all
iterations.

It is noticeable that when γ = 0, the smoothness term behaves like O(LR), which is the
smoothness of the reward function (see Assumption A11). This is expected as for γ = 0, we
are essentially learning the reward function.

Function Approximation Error

The first term in the function approximation error is inf
Q′∈F |A|k

‖Q′− (T ∗)(k+1)Q0‖2ν , which

is similar to the function approximation error in regression problems with the difference

that the target is changing at each iteration. If the function space F |A|k is not rich enough

to approximate T ∗(k+1)Q0, this term suggests that the performance might be poor.
The second term of the function approximation error has O(

∑k−1
i=0 γ

i b2k−1−i) behavior
and shows the dependency of the function approximation error on the weighted sum of errors
at the previous iterations. It indicates that a large error at previous iterations would cause a
function approximation error in later iterations, though because of the discounting the effect
shall become negligible. These two effects are obscure when one uses the inherent Bellman
error (5.8) to bound the function approximation error [Munos and Szepesvári, 2008].

5.4.2 Influence of the Fitting Errors on the Resulting Policy

The main terms of the upper bound (5.13) are E(b0, . . . , bK−1; r) and CVI,ρ,ν(K; r). Recalling
that each bk is an upper bound on ‖εk‖ν , the term E(b0, . . . , bK−1; r) indicates how the

fitting errors (εk)K−1
k=0 influence the quality of the resulting policy. The term CVI,ρ,ν(K; r)

describes how the intrinsic properties of the MDP influence the error propagation. We have
already discussed these two terms in Section 3.4 and compared it with previous work such
as Munos [2007], so we avoid repeating the whole discussion here. Briefly speaking, this
bound indicates that the errors of later iterations are more influential to the performance loss
of the resulting policy and the effect of the intrinsic properties of the MDP and distributions
ρ and ν is through the expectation of the squared Radon-Nikodym of the future state-action
distributions w.r.t. the performance measuring distribution ρ.

5.5 Sparsity Regularities and l1-Regularization

The RFQI algorithm introduced in Section 5.2 is indeed more general than the particular
RKHS-based formulation of (5.2); it can be used with other choices of function space F |A|
and regularizers J . In this section, we briefly describe one such possibility.

A promising class of candidate function spaces is the class of functions defined by wavelets
[Antoniadis, 2007] or other over-complete dictionaries. Wavelets and over-complete dictio-
naries are intriguing because when chosen properly, they capture spatial irregularity and
heterogeneity, such as spikes, that may occur in the action-value function. Wavelets are
closely related to the Besov spaces, which are a large family of function spaces with a more
general notion of smoothness compared to the smoothness used in the definition of Hölder
or Sobolev spaces [Donoho and Johnstone, 1998].

To have smoothness-adaptive estimators for wavelets in the scale of Besov spaces, one
may use either shrinkage-based estimators such as SureShrink [Donoho and Johnstone, 1995]
or a regularization-based estimator such as the l1-regularization-based one. These two types
of estimators behave similarly for wavelets with orthogonal basis [Antoniadis, 2007]. In the
rest of this section, we only briefly discuss the l1-regularization-based formulation.

To design estimators based on wavelets or over-complete dictionaries, one possibility is
to use the l1-regularized least-squares regression, which is known as LASSO (Least Absolute
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Shrinkage and Selection Operator) in the statistics and machine learning literature [Tibshi-
rani, 1996]. Let us define the function space F |A|(p) as

F |A|(p) = {Φ[p](·, ·)>θ|θ ∈ Rp,Φ[p](·, ·) : X ×A → Rp}

where Φ[p](·, ·) is the feature vector defined by the first p wavelets or over-complete basis
functions in some predetermined ordering. A natural ordering of basis functions for wavelets
is to start from low-resolution “mother” and “scale” basis functions and move toward higher-
resolution terms. For Q(·, ·; θ) ∈ F |A|(p), the regularizer would be J(Q(·, ·; θ)) = |θ|>µ =∑p
i=1 µi|θi|, where µ ≥ 0 is the regularizer’s weight vector. The vector µ imposes the prior

belief about the contribution of each component of the basis functions Φ[p]. For wavelets
choosing regularizer weights µ to decay exponentially according to the resolution-level of
the wavelet coefficients is a natural choice in a Besov space, see e.g., Qu et al. [2009].

For this particular choice of function space F |A| and regularizer J , the optimization
problem (5.1) would be

θk+1 = argmin
θ∈Rpk

∥∥∥Q(Xi, Ai; θ)− T̂ ∗Qk(Xi, Ai; θk)
∥∥∥2

D(k)
+ λk |θ|>µ,

Qk+1(·, ·; θk+1) = Φ[pk](·, ·)>θk+1.

One should note that in addition to LASSO, there are other approaches to estimate a
sparse function for a regression problem. Examples are SureShrink [Donoho and Johnstone,
1995], adaptive LASSO [Zou, 2006], Adaptive Forward-Backward Greedy Algorithm [Zhang,
2009b], and Elastic net [Zou and Hastie, 2005].

To provide an error upper bound for the l1-regularized RFQI, similar to Theorem 5.8,
two parts of the current analysis in Section 5.3 should be revised. The first is to provide
a modified version of Theorem 5.2 (Section 5.3.2) for LASSO or any other l1-regularized
regression estimator. The second is to have a result similar to Proposition 5.4 that relates
the l1-norm of the estimate (i.e., |θk+1|>µ) to the l1-norm of weights describing the function

ΠFkT
∗Qk in the function space F |A|k . In other words, we require a result that relates the

smoothness of the estimate to the smoothness of the target function of the RFQI procedure.
One can indeed derive such results. A possible approach is to use the covering number

result of Zhang [2002, Theorem 3]. This result, with the difference of a logarithmic factor of
log(2p+1), satisfies Assumption A7 with the choice of α = 1. Therefore, both Theorems 5.2
and Proposition 5.4 should hold without much modification. Nevertheless, we conjecture
that this approach is not completely satisfactory as the squared error convergence rate would

be slow and in the order of O(m
−1/2
k ) in the setup of Theorem 5.2. The reason is that the

covering number result of Zhang [2002] is quite generic and does not exploit any geometrical
property of the function space. On the other hand, if we have some extra assumption about
the basis functions Φ[p], such as some form of the Restricted Isometric Property, we may

get faster than O(m
−1/2
k ) rates, see e.g., Zhang [2009a].

5.6 Conclusion and Future Work

In this work we proposed to use regularized regression, a powerful technique in the nonpara-
metric supervised learning literature, in the AVI procedure in order to solve RL/Planning
problems with large state spaces. Our formulation of RFQI was general and could incor-
porate various function spaces and regularization functionals (Section 5.2). This includes
a broad class of RKHS, over-complete dictionaries and wavelets, neural networks, and of
course parametric models. We specifically focused on the RKHS formulation as it has
advantages such as the generality to work with different input domains and the ease of
choosing/changing the kernel function and consequently the function space.

A considerable part of this work has been devoted to analyzing the statistical behavior
of RFQI (Section 5.3). We provided an error upper bound on the performance loss of the re-
sulting policy compared with the optimal policy’s (Theorem 5.8). The error bound indicates
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the role of the sample size, complexity of function space to which the estimate belongs (quan-
tified by its metric entropy), function approximation error, and the intrinsic properties of
the MDP such as the behavior of concentrability coefficients and the smoothness-expansion
property of the Bellman optimality operator. We discussed the interpretation of our result
in Section 5.4, so to avoid duplication we do not dwell on it here anymore.

This work opens up several possibilities for future research. We mention some of them
here.
Applications. RFQI is a flexible algorithm that may be applied to many real-world
RL/Planning problems. Nevertheless, there has not been many real-world applications
of it yet. The only exception is the work of Farahmand et al. [2009c] who apply RFQI to
the visual-servoing task for the robotic arm manipulation (see also Farahmand et al. [2008]
for some experiments on the effect of regularization coefficient and the choice of kernel on
the performance in a toy problem). More real-world applications of RFQI is the topic of
future work.
Computational Considerations. RFQI method is simple to implement as it is essen-
tially a repeated application of a regression algorithm. For large datasets, however, extra
care is required. A naive implementation of, say, an RKHS-based regularized regression
requires inversion of matrices with the size equal to the number of samples. This requires

the computation time of O( n
3

K2 ), which is prohibitive for large sample sizes. This kind of
computational problem, however, is common to many nonparametric methods. We mention
three approaches to design more efficient algorithms.

One possible approach to reduce computational cost is to use sparsification techniques
developed in the kernel-based learning literature and have been used in the RL/Planning
literature [Engel et al., 2005; Jung and Polani, 2006; Xu et al., 2007]. The idea of these
methods is to retain a small subset of “representative” data samples as the active kernel
bases. As a result, the size of matrices involved in the computation would be reduced. Refer
to Section 8.3 of Rasmussen and Williams [2006] for more information.

An efficient way to solve large-scale linear systems is to use iterative methods such as
conjugate gradient algorithm. The bottleneck of these types of algorithms is the matrix-
vector multiplication that costs O(n′2) with n′ being the size of the vector, e.g., number of
sample points in each iteration. One elegant approach to reduce the complexity of matrix-
vector multiplication is to use Fast Multipole Methods (FMM) [Beatson and Greengard,
1997] and its variants such as Fast Gauss Transform to reduce the computation cost to
O(n′ log n′) or better at the cost of some small, but controlled, error [Yang et al., 2004].
These methods are particularly efficient for low-dimensional problems.

The other possibility is to use stochastic gradient methods to solve the corresponding
optimization problem. This is especially appealing in the light of results such as Bottou
and Bousquet [2008], which show that given a fixed amount of computation time, the gen-
eralization error resulting from learning with stochastic gradient methods as the optimizer
might be less than that of gradient descent methods.
Continuous Action Space. Another important question, especially for practical real-
world applications, is how to extend RFQI to deal with continuous action MDPs. One
difficulty of extending our current result to the continuous-action one is finding the maxi-
mizing action at each state, which is needed to estimate the Bellman optimality operator.
Except in special cases, this cannot be done exactly. Instead one may use a local search,
similar to what is done by Xu et al. [2010]. To analyze this inexact policy improvement
some parts of the theory, especially the error propagation result (Section 5.3.1), should be
modified. Moreover, it also seems that one should specifically control the complexity of the
policy space as the complexity of {maxa∈AQ(·, a) : Q ∈ F |A|} might be infinity even though
F |A| has a finite complexity [Antos et al., 2008a].
Model Selection. The successful application of any RL/Planning algorithm, including
RFQI, depends on the proper choice of its parameters. For the case of RFQI, we are faced

with the choice of (F |A|k ) and the corresponding regularization parameters (λmk) (5.1). The
optimal choice of these parameters, however, are problem-dependent and unknown.

68



To see the issue more clearly, focus on the optimal choice of regularization coefficient,
which according to Theorem 5.8 should be λmk = B [ 1

mkJ(Π
ν,F|A|

k

T∗Qk) ]1/(1+αk). This choice

depends on unknown parameters such as J(Π
ν,F |A|k

T ∗Qk) and the smoothness order of F |A|k

described by αk. In general, these values are not known. The right approach to solve this
issue is to choose the parameters of the algorithm data-dependently by a model selection
procedure. We introduce such an algorithm in Chapter 7. Here, we only focus on an
alternative approach that benefits from the specifics of the RFQI procedure.

The problem of model selection seems to be easier for AVI procedures, such as RFQI,
compared to when we are only given a bunch of action-value functions and have to choose
their best. The reason is that AVI solves a sequence of regression problems, so one may
simply perform a model selection procedure at each iteration of AVI. To be more con-

crete, consider the kth iteration of RFQI. Construct p1 function spaces F |A|k

(i)
with different

smoothness orders α(i) (i = 1, . . . , p1). Also construct p2 values of λ
(j)
k (j = 1, . . . , p2). The

result is P = p1 × p2 potential models. Now estimate Q
(l)
k+1 for l = 1, . . . , P , and select the

best combination by the aid of any model selection approach for regression problems such
as the cross-validation procedure [Arlot and Celisse, 2009] or the complexity regularization-
based approach [Wegkamp, 2003]. This leads to an estimate whose convergence bound has
the optimal order and scales with the actual roughness J(ΠFkT

∗Qk).
Computational issues aside, one should perform the model selection process at each

iteration of RFQI. This is important because the appropriate regularization coefficients and
the function spaces may change during iterations.

There are, however, some subtleties. First issue is that because the data samples distri-
bution ν is different from the performance measuring distribution ρ, finding the best model
according to ν is not necessarily the best choice. Second issue is that of computational cost.
If we are computationally limited, we may not want to perform model selection at all K
iterations of RFQI. As discussed in Section 3.4, the errors at later iterations are more im-
portant than the errors at earlier ones. How to optimally distribute the points of performing
model selection during K iterations is a practically important question.
l1-Regularization. In Section 5.5, we briefly mentioned how one may analyze l1-based
RFQI. Fully developing this theory seems to require extending the current LASSO error
bounds to mixing processes. This is a topic for future research.
Influence of the MDP on the Smoothness and Function Approximation Error.
An open theoretical question is to characterize the properties of MDP that determine the
values of LP and LR in Assumption A11. In Proposition 6.16 (Appendix 6.E), we prove
the conditions that for the certain class of MDPs, which we call convolutional MDPs, As-
sumption A11 holds. Briefly speaking, the conditions are 1) the transition probability kernel
should have a finite gain (in control theoretic sense) in its frequency response, and 2) the
reward function should be smooth. Another question is to determine the influence of the
Bellman optimality operator and the function space on the function approximation error
inf

Q′∈F |A|k

‖Q′ − (T ∗)(k+1)Q0‖ν in Theorem 5.3 and consequently Theorem 5.8.

Other Technical Questions. Some technical questions have not yet been addressed.
One open question is how to extend Proposition 5.4 to mixing processes. We conjecture
that it should also hold for mixing processes too but a rigorous proof is needed. Another
technical issue is regarding the oversmoothing assumption stated as Assumption A12 and
the conditions under which it holds.
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Appendices

5.A Error Bounds for Regularized Regression: Proofs
for Section 5.3.2

To extend the result of Chapter 4 to the multivariate regression setting of RFQI, we need an

upper bound on the metric entropy of F |A|k . Propositions 5.9 and 5.10 allow us to relate the

metric entropy of F |A|k to that of Fk. These results indicate that the effect of having finitely
many actions A is only in the multiplicative constant of the metric entropy. Theorem 5.2 is
the direct consequence of Theorem 4.5 of Chapter 4 and these two propositions.

Proposition 5.9. Consider a function space F+ ⊂ F : X → R, a finite set A, and the

corresponding function space F |A|+ = F+ × · · · × F+︸ ︷︷ ︸
|A| times

. Then for any ((x1, a1), . . . , (xn, an)) ∈

(X ×A)n, we have

logN2(u,F |A|+ , (x, a)1:n) ≤ |A| logN2(
u√
|A|

,F+, x1:n).

Proof of Proposition 5.9. For any V ∈ F , denote the empirical norm by ‖V ‖2x1:n
= 1

n

∑n
i=1 |V (xi)|2,

and for any Q ∈ F |A|, denote ‖Q‖2(x,a)1:n
= 1

n

∑n
i=1 |Q(xi, ai)|2. Now suppose that for any

a ∈ A, the set {Q1(·, a), . . . , QNa(·, a)} is an δ-covering of F+ w.r.t. the empirical norm

‖Q(·, a)‖2x1:n
. Therefore for any Q(·, a) ∈ F+, there exists a member of the aforementioned

set that has a distance less than δ to any Q(·, a) ∈ F+. Now pick Q1, Q2 ∈ F |A|+ . We have

‖Q1 −Q2‖2(x,a)1:n
= 1

n

∑n
i=1 |Q1(xi, ai)−Q2(xi, ai)|2 ≤

∑
a∈A ‖Q1(·, a)−Q2(·, a)‖2x1:n

. There-

fore, if maxa∈A ‖Q1(·, a)−Q2(·, a)‖2x1:n
≤ δ2, then ‖Q1 −Q2‖2(x,a)1:n

≤ |A|δ2, and the set∏
a∈A

{
Q1(·, a), . . . , QNa(·, a)

}
makes an

√
|A|δ-covering of F |A|+ . The cardinality of this covering is N1 × . . . × N|A| =

[N2(δ,F+, x1:n)]|A|. Set δ = u√
|A|

to get the result.

The following proposition is the direct consequence of Proposition 5.9 applied to the ball

defined in Assumption A7. In this proposition, we let B|A|k,R , {Q ∈ F |A|k : J2
k (Q) ≤ R2}.

Proposition 5.10. Let Assumptions A6 and A7 hold. There exists a constant C ′ > 0 such
that for all (x, a)1:n ∈ X ×A, we have

logN2(u,B|A|k,R, (x, a)1:n) ≤ C ′
(
R

u

)2αk

.

In particular, one can choose C ′ = |A|1+αkC.

Proof. By Assumption A6, B|A|k,R ⊂
∏
a∈A Bk,a,R. The result is a direct consequence of

Assumption A7 and Proposition 5.9.

5.B The Behavior of the Function Approximation Er-
ror: Proofs for Section 5.3.3

In this section, we prove Theorem 5.3. We first present a lemma which shows that the
Bellman optimality operator is Lipschitz when viewed as an operator of the Banach space
of action-value functions equipped with ‖·‖ν .
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Lemma 5.11. For any given Q1, Q2 ∈ F |A|, we have ‖T ∗Q1 − T ∗Q2‖ν ≤ γ CAE(ν;P ) ‖Q1 −Q2‖ν .

Proof. Jensen’s inequality, followed by the application of the elementary inequality |maxθ f(θ)−
maxθ g(θ)|2 ≤ maxθ |f(θ)− g(θ)|2 gives

‖T ∗Q1 − T ∗Q2‖22,ν = γ2

∫
X×A

dν(x, a)

∣∣∣∣∫
X
dPx,a(y)

(
max
a′∈A

Q1(y, a′)−max
a′∈A

Q2(y, a′)

)∣∣∣∣2
≤ γ2

∫
X×A

dν(x, a)

∫
X
dPx,a(y)

∣∣∣∣max
a′∈A

Q1(y, a′)−max
a′∈A

Q2(y, a′)

∣∣∣∣2
≤ γ2

∫
X×A

dν(x, a)

∫
X
dPx,a(y) max

a′∈A
|Q1(y, a′)−Q2(y, a′)|2 .

Inequality maxa′∈A |Q(y, a′)|2 ≤ maxa′′∈A[ 1
πb(a′′|y) ]

∑
a′∈A πb(a

′|y) |Q(y, a′)|2 together with

a change of measure argument gives

‖T ∗Q1 − T ∗Q2‖22,ν

≤ γ2

∫
X×A

dν(x, a)

∫
X

∑
a′∈A

dPx,a(y) max
a′′∈A

{
1

πb(a′′|y)

}
πb(a

′|y) |Q1(y, a′)−Q2(y, a′)|2

≤ γ2

∫
X×A

dν(x, a)

∫
X

∑
a′∈A

sup
(z,a′′)∈X×A

[
1

πb(a′′|z)
dPx,a
dνX

(z)

]
dνX (y)πb(a

′|y) |Q1(y, a′)−Q2(y, a′)|2

= γ2

[∫
X×A

dν(x, a) sup
(z,a′′)∈X×A

[
1

πb(a′′|z)
dPx,a
dνX

(z)

]] [∫
X×A

dν(y, a′) |Q1(y, a′)−Q2(y, a′)|2
]

= γ2C2
AE(ν;P ) ‖Q1 −Q2‖2ν .

where in the second to last equation we exploited that πb ⊗ νX = ν.

Proof of Theorem 5.3. Let Q0, . . . , QK−1 be action-value functions, εk = T ∗Qk − Qk+1,

bk = ‖εk‖ν . Our goal is to bound inf
Q′∈F |A|k

‖Q′ − T ∗Qk‖ν . For this, pick any Q′ ∈ F |A|k .

Then, by the triangle inequality,

‖Q′ − T ∗Qk‖ν ≤ ‖Q′ − (T ∗)k+1Q0‖ν + ‖(T ∗)k+1Q0 − T ∗Qk‖ν ,

therefore, it remains to upper bound ‖(T ∗)k+1Q0 − T ∗Qk‖ν . Since by Lemma 5.11, T ∗ is
L , γCAE(ν;P )-Lipschitz w.r.t. ‖·‖ν , we have ‖(T ∗)k+1Q0−T ∗Qk‖ν ≤ L‖(T ∗)kQ0−Qk‖ν .
Using the definition of εk, ‖(T ∗)kQ0−Qk‖ν = ‖(T ∗)kQ0−(T ∗Qk−1−εk−1)‖ν ≤ ‖(T ∗)kQ0−
T ∗Qk−1‖+ ‖εk−1‖ν ≤ L‖(T ∗)k−1Q0 −Qk−1‖+ ‖εk−1‖ν . Finishing the recursion gives

‖(T ∗)kQ0 −Qk‖ν ≤ ‖εk−1‖ν + L‖εk−2‖ν + . . .+ Lk−1‖ε0‖ν .

Combining the inequalities obtained so far, we get

‖Q′ − T ∗Qk‖ν ≤ ‖Q′ − (T ∗)kQ0‖ν +

k−1∑
i=0

Lk−i‖εi‖ν ,

from which the desired statement follows immediately.

5.C The Behavior of the Smoothness: Proofs for Sec-
tion 5.3.4

Proof of Proposition 5.5. According to our assumptions, for k = 0, 1, . . . ,K − 1 we have

Jk(Qk+1) ≤ cJk(Π
ν,F |A|k

T ∗Qk)
√

ln(1/δ)

≤ (cLR
√

ln(1/δ)) + (cγLP
√

ln(1/δ))Jk−1(Qk)

= L′R(δ) + L′P (δ)Jk−1(Qk)
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where we used Assumption A11 in the second inequality, and the definitions of L′R and L′P
in the last step. Now, consider the recursion

J̄k+1 = L′R(δ) + L′P (δ)J̄k,

where J̄0 = J−1(Q0) = J0(Q0). By induction, we see that Jk−1(Qk) ≤ J̄k holds for 0 ≤ k ≤
K − 1. By solving the recursion, we get

J̄k = [L′P (δ)]kJ̄0 I(k ≥ 0) +
L′R(δ)

1− L′P (δ)

{
1− [L′P (δ)]k

}
I(k ≥ 1).

Another application of Assumption A11 leads to the desired result.
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Chapter 6

Regularized Policy Iteration
Algorithm

6.1 Introduction

In this chapter, we provide two regularization-based nonparametric API algorithms, namely
Regularized Least-Squares Policy Improvement (REG-LSPI) and Regularized Bellman Resid-
ual Minimization (REG-BRM) to solve RL/Planning problems with large state spaces.
These are flexible methods that upon the proper choice of their parameters can efficiently
deal with RL/Planning problems with large state spaces. Both REG-BRM and REG-LSPI
are formulated as coupled optimization problems (Section 6.3) for which we provide closed-
form solutions when the estimated action-value function is chosen from the family of RKHSs
(Section 6.3.1).1

The theoretical contribution of this work (Section 6.4) is to analyze the statistical prop-
erties of REG-LSPI and to provide upper bounds on the policy evaluation error and as a
consequence the quality of the resulting policy and its relation to the performance of the op-
timal policy (Theorem 6.13). The result demonstrates the dependence of the bounds on the
number of samples, the capacity of the function space to which the estimated action-value
function belongs, and some intrinsic properties of the MDP. We see that the dependence of
the policy evaluation error bound on the number of samples is minimax optimal.

We overview API in some detail in Section 6.2 and then focus on the regularized API
algorithms in Section 6.3. We analyze the statistical behavior of REG-LSPI in Section 6.4.

6.2 Approximate Policy Iteration

The policy iteration algorithm computes a sequence of policies such that the new policy in
the iteration is greedy w.r.t. the action-value function of the previous policy. This procedure
requires one to compute the action-value function of the most recent policy (policy evaluation
step) followed by the computation of the greedy policy (policy improvement step). In API,
the exact, but infeasible, policy evaluation step is replaced by an approximate one. Thus,
the skeleton of API methods is as follows: At the kth iteration and given a policy πk, the
API algorithm approximately evaluates πk to find a Qk. The action-value function Qk is
typically chosen to be such that Qk ≈ TπkQk, i.e., it is an approximate fixed point of Tπk .
The API algorithm then calculates the greedy policy w.r.t. the most recent action-value
function to obtain a new policy πk+1, i.e., πk+1 = π̂(·;Qk). The API algorithm continues by
repeating this process again and generating a sequence of policies and their corresponding

1This chapter is the result of the collaboration of the author with Csaba Szepesvári, Mohammad
Ghavamzadeh, and Shie Mannor.
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approximate action-value functions Q0 → π1 → Q1 → π2 → · · · .2
The success of an API algorithm hinges on the way the approximate policy evaluation

step is implemented. Approximate policy evaluation is non-trivial for at least two reasons.
First, policy evaluation is an inverse problem,3 so the underlying learning problem is unlike
a standard supervised learning problem in which the data take the form of input-output
pairs. The second problem is that the distribution of (Xi, Ai) in the data samples is typically
different from the “ideal” distribution, i.e., a distribution that would be used when the
learned policy is evaluated. This causes a problem since the methods must be able to handle
this mismatch of distributions (a number of works in the supervised learning literature
consider this scenario, see e.g., Ben-David et al. [2006]; Mansour et al. [2009]). In the rest of
this section, we review generic LSTD and BRM methods for approximate policy evaluation.
We introduce our regularized version of LSTD and BRM in Section 6.3.

6.2.1 Bellman Residual Minimization

The idea of BRM goes back at least to the work of Schweitzer and Seidmann [1985]. It was
later used in the RL community by Williams and Baird [1994] and Baird [1995]. The basic
idea of BRM comes from noticing that the action-value function, is the unique fixed point
of the Bellman operator: Qπ = TπQπ (or similarly V π = TπV π for the value function).
Whenever we replace Qπ by another action-value function Q different from Qπ, the fixed-
point equation would not hold anymore, and we have a non-zero residual function Q −
TπQ. This quantity is called the Bellman residual of Q. The same is true for the Bellman
optimality operator T ∗.

The BRM algorithm minimizes the norm of the Bellman residual of Q, which is called
the Bellman error. If this norm ‖Q− T ∗Q‖ is small, then Q is a good approximation of Q∗.
An intuitive consequence is that the value function of the greedy policy w.r.t. Q, that is
V π̂(·;Q), should also in some sense be close to the optimal value function V ∗. This intuition
is indeed correct and has been formalized when the Bellman error is defined by either the
L∞-norm [Williams and Baird, 1994] or an Lp-norm (Munos [2003]; Antos et al. [2008b];
Farahmand et al. [2010] and Theorem 6.12 of this work). For instance, an early result such
as Williams and Baird [1994] states that∥∥∥V ∗ − V π̂(·;Q)

∥∥∥
∞
≤ 2

1− γ
‖Q− T ∗Q‖∞ .

The supremum norm, however, is too conservative in many practical situations. This is
especially the case when we are dealing with large state spaces for which one must use func-
tion approximation. Point-wise convergence results in supervised learning theory usually
requires stronger conditions on the sampling distribution, and we doubt if it is a good idea
to use them in the RL/Planning context either.

To make this point clearer, consider a situation where the agent uses Q as an approx-
imation to the optimal action-value function Q∗, and uses π̂(·;Q) as its policy. Moreover,
we measure the performance of the agent w.r.t. the initial-state evaluation distribution ρ.
That is for a given π, we measure

V (π; ρ) =

∫
X×A

Qπ(x, a)dρ(x, a).

What we are interested in is the performance loss (regret) of the policy π compared to the
optimal one, i.e., V (π∗; ρ) − V (π̂(·;Q); ρ). For example, if ρ is the Lebesgue measure on
X ×A (uniform distribution for compact X ×A), it indicates that what is important to the

2In an actual API implementation, one does not need to compute πk+1 for all states, which in fact is
infeasible for large state spaces. Instead, one uses Qk to compute πk+1 at some select states, as required in
the approximate policy evaluation step.

3Given an operator L : F → F , the inverse problem is the problem of solving g = Lf for f when g is
known. In the policy evaluation problem, L = I− Pπ , g(·) = r(·, π(·)), and f = Qπ .
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designer is that the agent performs equally well for all initial state-action. Now consider
that Q = Qπ in all state space except a ρ-tiny region X1×A1 ⊂ X ×A, i.e., ρ(X1×A1)� 1.
In X1 ×A1, Q is largely different from Q∗. Here, ‖Q− T ∗Q‖∞ has a large value, however,
the performance of the agent following π̂(·;Q) is in expectation w.r.t. ρ very close to the
optimal performance.

A more natural choice is to use a weighted Lp-norms such as the L2-norm to measure the
magnitude of the Bellman residual. This leads to a tractable optimization problem and en-
ables a connection to regression function estimation [Györfi et al., 2002]. More importantly,
results such as Munos [2003]; Antos et al. [2008b]; Farahmand et al. [2010] and Theorem 6.12
of this work show that minimizing the Lp-norm of the Bellman residual ‖Q− T ∗Q‖p,ν (with
ν being the sampling distribution and p ≥ 1) leads to minimizing an upper bound on the
performance loss

∥∥Q∗ −Qπ̂(·;Q)
∥∥
p′,ρ

(for some distribution ρ and a well-specified p′ ≥ 1).

In the special case of p = 1,
∥∥Q∗ −Qπ̂(·;Q)

∥∥
1,ρ

has an appealing interpretation: it is the

expected regret of following policy π̂(·;Q) instead of the optimal policy when the initial
state-action distribution is ρ. More on this issue in Section 6.4.3.

The BRM algorithm is defined as the procedure minimizing the following loss function:

LBRM (Q;π) = ‖Q− TπQ‖2ν ,

where ν is the stationary distribution of state-actions in the input data. Using the empirical
L2-norm defined in (2.5) with samples Dn defined in (2.6), and by replacing (TπQ)(Xt, At)
with the empirical Bellman operator (Definition (2.8)), the empirical estimate of LBRM (Q;π)
can be written as

L̂BRM (Q;π, n) ,
∥∥∥Q− T̂πQ∥∥∥2

Dn
(6.1)

,
1

n

n∑
t=1

[
Q(Xt, At)−

(
Rt + γQ

(
X ′t, π(X ′t)

))]2
.

However, it is well-known that L̂BRM is not an unbiased estimate of LBRM when the
MDP is not deterministic [Sutton and Barto, 1998; Lagoudakis and Parr, 2003; Antos et al.,
2008b]: For any fixed Q,

E
[
L̂BRM (Q;π, n)

]
= E

[∥∥∥Q− T̂πQ∥∥∥2

Dn

]
= ‖Q− TπQ‖2ν + E

[∥∥∥TπQ− T̂πQ∥∥∥2

Dn

]
6= LBRM (Q;π). (6.2)

The reason, as is evident in (6.2), is that stochastic transitions/rewards lead to a non-
vanishing variance term because TπQ 6= T̂πQ. This extra term can be problematic. When-
ever the dynamical system has stochastic transitions, this variance term is not fixed and
is Q-dependent. Therefore, the minimizing of L̂BRM is not the same as the minimizer of
LBRM – even in the ideal situation of not having any estimation error.

One suggestion to deal with this problem is to use double-sampling to estimate L̂BRM .
According to this proposal, from each state-action pair in the sample, we require to have at
least two independent next-state samples, see e.g., Sutton and Barto [1998]. Nevertheless,
this suggestion may not be practical in many cases. The luxury of having two next-state
samples is not available in the RL scenario. Even if we have a generative model of the
environment, as we do in the planning scenario, the result would not be sample-efficient,
which is important when generating new samples is costly. When the generative model is
available and the double-sampling is not an issue, Maillard et al. [2010] analyze BRM for
the finite linear function spaces.
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To address this issue, Antos et al. [2008b] propose the modified BRM loss that is a new
empirical loss function with an extra de-biasing term. The idea of the modified BRM is to
cancel the unwanted variance by introducing an auxiliary function h and a new loss function

LBRM (Q, h;π) = LBRM (Q;π)− ‖h− TπQ‖2ν , (6.3)

and approximating the action-value function Qπ by solving

QBRM = argmin
Q∈F |A|

sup
h∈F |A|

LBRM (Q, h;π), (6.4)

where the supremum comes from the negative sign of ‖h− TπQ‖2ν . They have shown that
optimizing the new loss function still makes sense and the empirical version of this loss is
unbiased.

The min-max optimization problem (6.4) is equivalent to the set of following coupled
(nested) optimization problems:

h(·;Q) = argmin
h∈F |A|

‖h− TπQ‖2ν ,

QBRM = argmin
Q∈F |A|

[
‖Q− TπQ‖2ν − ‖h(·;Q)− TπQ‖2ν

]
. (6.5)

In practice the norm ‖·‖ν is replaced by the empirical norm ‖·‖Dn and TπQ is replaced

by its sample-based approximation T̂πQ, i.e.,

ĥn(·;Q) = argmin
h∈F |A|

∥∥∥h− T̂πQ∥∥∥2

Dn
, (6.6)

Q̂BRM = argmin
Q∈F |A|

[∥∥∥Q− T̂πQ∥∥∥2

Dn
−
∥∥∥ĥn(·;Q)− T̂πQ

∥∥∥2

Dn

]
. (6.7)

From now on, whenever we refer to the BRM algorithm, we are referring to this modified
BRM.

6.2.2 Least-Squares Temporal Difference Learning

The Least-Squares Temporal Difference learning (LSTD) algorithm for policy evaluation
was first proposed by Bradtke and Barto [1996], and later used in an API procedure
by Lagoudakis and Parr [2003] and is called Least-Squares Policy Iteration (LSPI).

The original formulation of LSTD finds a solution to the fixed-point equation Q =
ΠνT

πQ, where Πν is the ν-weighted projection operator onto the space of admissible
function F |A|, i.e., Πν = ΠF |A|ν

: B(X × A) → B(X × A) is defined by ΠF |A|ν
Q =

argminh∈F |A| ‖h−Q‖
2
ν for Q ∈ B(X ×A). If the operator ΠνT

π is a contraction operator,
Banach fixed-point theorem implies that the combined operator has a unique fixed-point
(Theorem B.3 in Appendix B.5).

Nevertheless, the operator (ΠνT
π) is not contraction for arbitrary choice of ν (an excep-

tion is when ν is the stationary distribution induced by π). Therefore, when the distribution
of samples (Xt, At) ∼ ν is different from the stationary distribution induced by π, this equa-
tion does not necessarily have a unique fixed point.

To address this issue, one may define the LSTD solution as the minimizer of the L2-norm
between Q and ΠνT

πQ:
LLSTD(Q;π) = ‖Q−ΠνT

πQ‖2ν .

Whenever ν is the stationary distribution of π, the solution to this optimization problem is
the same as the solution to Q = ΠνT

πQ. The LSTD solution can therefore be written as
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Algorithm 2 Regularized Policy Iteration(K,Q̂(−1),F |A|,J ,{λ(k)
Q,n, λ

(k)
h,n}Kk=0)

// K: Number of iterations
// Q̂(−1): Initial action-value function
// F |A|: The action-value function space
// J : The regularizer

// {λ(k)
Q,n, λ

(k)
h,n}Kk=0: The regularization coefficients

for k = 0 to K − 1 do
πk(·)← π̂(·; Q̂(k−1))

Generate training sample D(k)
n

Q̂(k) ← REG-LSTD/BRM(πk,D(k)
n ;F |A|, J, λ(k)

Q,n, λ
(k)
h,n)

end for
return Q̂(K−1) and πK(·) = π̂(·; Q̂(K−1))

the solution to the following set of coupled optimization problems:

h(·;Q) = argmin
h∈F |A|

‖h− TπQ‖2ν ,

QLSTD = argmin
Q∈F |A|

‖Q− h(·;Q)‖2ν , (6.8)

where the first equation finds the projection of TπQ onto F |A|, and the second one minimizes
the distance of Q and the projection. The corresponding empirical version based on dataset
Dn is

ĥn(·;Q) = argmin
h∈F |A|

∥∥∥h− T̂πQ∥∥∥2

Dn
, (6.9)

Q̂LSTD = argmin
Q∈F |A|

∥∥∥Q− ĥn(·;Q)
∥∥∥2

Dn
. (6.10)

For general spaces F |A|, these optimization problems can be difficult to solve, but when
F |A| is a linear subspace of B(X ×A), the minimization problem becomes computationally
feasible.

Comparison of BRM and LSTD is noteworthy. The population version of LSTD loss
minimizes the distance between Q and ΠνT

πQ, which is ‖Q−ΠνT
πQ‖2ν . Meanwhile, BRM

minimizes another distance function that is the distance between TπQ and ΠνT
πQ sub-

tracted from the distance between Q and TπQ, i.e., ‖Q− TπQ‖2ν − ‖ĥn(·;Q)− TπQ‖2ν . See
Figure 6.1a for a pictorial presentation of these distances. When F |A| is linear, because
of the Pythagorean theorem, the solution to the modified BRM (6.5) coincides with the
LSTD solution (6.8) [Antos et al., 2008b]. The reason is that the first equation in both

(6.5) and (6.8) finds the projection ĥn(·;Q) of TπQ to F |A|, thus ĥn(·;Q) − TπQ is per-

pendicular to F |A|. Therefore, we can use Pythagorean theorem to get ‖Q − ĥn(·;Q)‖2 =

‖Q−TπQ‖2−‖ĥn(·;Q)−TπQ‖2. This implies that the second equations in (6.5) and (6.8)
have the same solution.

6.3 Regularized Policy Iteration Algorithms

In this section we introduce two Regularized Policy Iteration algorithms, which are instances
of the generic API algorithms. These algorithms are built on the regularized extensions of
BRM (Section 6.2.1) and LSTD (Section 6.2.2) for the task of approximate policy evaluation.

The pseudo-code of the Regularized Policy Iteration algorithms is shown in Algorithm 2.
The algorithm receives K (the number of API iterations), an initial action-value function
Q̂(−1), the function space F |A|, the regularizer J : F |A| → R, and a set of regularization
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Figure 6.1: (a) This figure shows the loss functions minimized by the BRM, the modified
BRM, and the LSTD methods. The function space F |A| is represented by the plane. The
Bellman operator Tπ maps an action-value function Q ∈ F |A| to a function TπQ. The func-
tion TπQ− ΠνT

πQ is orthogonal to F |A|. The original BRM loss function is ‖Q− TπQ‖2ν
(solid line), the modified BRM loss is ‖Q− TπQ‖2ν − ‖TπQ−ΠνT

πQ‖2ν (the difference of

two solid line segments; note the + and − symbols), and the LSTD loss is ‖Q−ΠνT
πQ‖2ν

(dashed line). LSTD and the modified BRM are equivalent for linear function spaces. (b)
REG-LSTD and REG-BRM minimize regularized objective functions. Regularization makes
the function TπQ−ΠνT

πQ to be non-orthogonal to F |A|.

coefficients {λ(k)
Q,n, λ

(k)
h,n}Kk=0. Each iteration starts with a step of policy improvement, i.e.,

πk ← π̂(·; Q̂(k−1) = argmaxa′∈A Q̂
(k−1)(·, a′). For the first iteration (k = 0), one may ignore

this step and provide an initial policy π0 instead of Q̂(−1). Afterwards, we have a data
generating step: at each iteration k = 0, . . . ,K − 1, the agent follows the data generating

policy πbk to obtain D(k)
n = {(X(k)

t , A
(k)
t , R

(k)
t , X ′t

(k)
)}1≤t≤n. For the kth iteration of the

algorithm, we use training samples D(k)
n to evaluate policy πk. In practice, one might

want to change πbk in each iteration in such a way that the agent ultimately achieves a
better performance.4 This relation between the performance and the choice of data samples,
however, is complicated. For simplicity of analysis, in the rest of this work we assume that
a fixed behavior policy is used in all iterations, i.e., πbk = πb. This leads to K independent

datasets D(0)
n , . . . ,D(K−1)

n . From now on, to avoid clutter, we use symbols Dn, Xt, . . . instead

of D(k)
n , X

(k)
t , . . . with the understanding that each Dn in various iterations is referring to

an independent set of data samples, which should be clear from the context.
The approximate policy evaluation step is done by REG-LSTD/BRM, which will be dis-

cussed shortly. These procedures receives policy πk, the training samples D(k)
n , the function

4 There are various heuristics to choose the behavior policy πbk . One is to select a fixed stochastic
stationary policy πb in all iterations. Another is to use a policy based on the most recent estimate of
the action-value function, i.e., Q(k−1). This can be the greedy policy w.r.t. Q(k−1) with some explo-
ration. For instance, suppose ∆π : X × A → [0, 1] is a function of state and action with the property that∑|A|
i=1 ∆π(x, ai) ≤ ε ≤ 1 for all x ∈ X . For a given deterministic policy π : X → A, define the perturbed

policy π ⊕∆π as the probability distribution of action selection at each state as

(π ⊕∆π)(·|x) ,

{
ai with probability ∆π(x, ai)

π(x) with probability 1−
∑|A|
i=1 ∆π(x, ai)

One may then define policy πbk = π̂(·;Q(k−1)) ⊕ ∆π for some choice of ∆π , e.g., ∆π(·, a) = ε/|A| with
0 ≤ ε < 1 (for all a ∈ A).
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space F |A|, the regularizer J , and the regularization coefficients (λ
(k)
Q,n, λ

(k)
h,n), and return an

estimate of the action-value function of policy πk. This procedure repeats for K iterations.
REG-BRM approximately evaluates policy πk by solving the following coupled optimiza-

tion problems:

ĥn(·;Q) = argmin
h∈F |A|

[∥∥∥h− T̂πkQ∥∥∥2

Dn
+ λ

(k)
h,nJ

2(h)

]
, (6.11)

Q̂(k) = argmin
Q∈F |A|

[∥∥∥Q− T̂πkQ∥∥∥2

Dn
−
∥∥∥ĥn(·;Q)− T̂πkQ

∥∥∥2

Dn
+ λ

(k)
Q,nJ

2(Q)

]
, (6.12)

where J : F |A| → R is the regularizer functional (or penalizer), and λ
(k)
h,n, λ

(k)
Q,n > 0 are

regularization coefficients. The regularizer can be any pseudo-norm defined on F |A|; and
Dn is defined as (2.6). We call J(Q) the smoothness of Q.

REG-LSTD approximately evaluates the policy πk by solving the following coupled op-
timization problems:

ĥn(·;Q) = argmin
h∈F |A|

[∥∥∥h− T̂πkQ∥∥∥2

Dn
+ λ

(k)
h,nJ

2(h)

]
, (6.13)

Q̂(k) = argmin
Q∈F |A|

[∥∥∥Q− ĥn(·;Q)
∥∥∥2

Dn
+ λ

(k)
Q,nJ

2(Q)

]
. (6.14)

Note that the difference between (6.6)-(6.7) ((6.9)-(6.10)) and (6.11)-(6.12) ((6.13)-(6.14),
respectively) is the addition of the regularizers J2(h) and J2(Q).

Unlike the non-regularized case described in Section 6.2, the solutions of REG-BRM
and REG-LSTD are not the same. As a result of the regularized projection, (6.11) and

(6.13), the function ĥn(·;Q) − T̂πkQ is not orthogonal to the function space F |A| – even
if F |A| is a linear space. Therefore, the Pythagorean theorem is not applicable anymore:
‖Q− ĥn(·;Q)‖2 6= ‖Q− T̂πkQ‖2 − ‖ĥn(·;Q)− T̂πkQ‖2 (See Figure 6.1b).

6.3.1 Closed-Form Solutions

In this section we provide a closed-form solution for (6.11)-(6.12) and (6.13)-(6.14) for
two cases: 1) When F |A| is a finite dimensional linear space and J(·) is defined as the
weighted squared sum of parameters describing the function (a setup similar to the ridge
regression [Hoerl and Kennard, 1970]) and 2) F |A| is an RKHS and J(·) is the corresponding
inner-product norm, i.e., J(·) = ‖·‖H.

A Parametric Formulation for REG-BRM and REG-LSTD

In this section we consider the case when h and Q are both given as linear combinations of
some basis functions:

h(·) = φ(·)>u, Q(·) = φ(·)>w, (6.15)

where u,w ∈ Rp are parameter vectors and φ(·) ∈ Rp is a vector of p linearly independent
basis functions defined over the space of state-action pairs.5 We further assume that the
regularization terms take the form

J2(h) = u>Ψu ,

J2(Q) = w>Ψw .

5At the cost of using generalized inverses, everything in this section extends to the case when the basis
functions are not linearly independent.
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for some user-defined choice of positive definite matrix Ψ ∈ Rp×p. A simple and common
choice would be Ψ = I. Define Φ,Φ′ ∈ Rn×p and r ∈ Rn as follows

Φ =
(
φ(Z1), . . . ,φ(Zn)

)>
, Φ′ =

(
φ(Z ′1), . . . ,φ(Z ′n)

)>
, r =

(
R1, . . . , Rn

)>
, (6.16)

with Zi = (Xi, Ai) and Z ′i = (X ′i, π(X ′i)).
The solution to REG-BRM is given by the following result.

Proposition 6.1 (Closed-form solution for REG-BRM). Under the setting of this section,
the approximate action-value function returned by REG-BRM is Q̂(·) = φ(·)>w∗, where

w∗ =
[
B>B − γ2C>C + nλQ,nΨ

]−1 (
B> + γC>(ΦA− I)

)
r,

with A =
(
Φ>Φ + nλh,nΨ

)−1

Φ>, B = Φ− γΦ′, C = (ΦA− I)Φ′.

Proof. Using (6.15) and (6.16), we can rewrite (6.11)-(6.12) as

u∗(w) = argmin
u∈Rp

{
1

n

[
Φu− (r + γΦ′w)

]>[
Φu− (r + γΦ′w)

]
+ λh,nu

>Ψu

}
, (6.17)

w∗ = argmin
w∈Rp

{ 1

n

[
Φw − (r + γΦ′w)

]>[
Φw − (r + γΦ′w)

]
− (6.18)

1

n

[
Φu∗(w)− (r + γΦ′w)

]>[
Φu∗(w)− (r + γΦ′w)

]
+ λQ,nw

>Ψw
}
.

Taking the derivative of (6.17) w.r.t. u and equating it to zero, we obtain u∗ as a function
of w:

u∗(w) =
(
Φ>Φ + nλh,nΨ

)−1

Φ>(r + γΦ′w) = A(r + γΦ′w). (6.19)

Plug-in u∗(w) from (6.19) into (6.18), take the derivative w.r.t. w and equate it to zero to
obtain the parameter vector w∗ as announced above.

The solution returned by REG-LSTD is given in the following proposition.

Proposition 6.2 (Closed-form solution for REG-LSTD). Under the setting of this section,
the approximate action-value function returned by REG-LSTD is Q̂(·) = φ(·)>w∗, where

w∗ =
[
E>E + nλQ,nΨ

]−1

E>Ar

with A =
(
Φ>Φ + nλh,nΨ

)−1

Φ> and E = (Φ− γAΦ′).

Proof. Using (6.15) and (6.16), we can rewrite (6.13)-(6.14) as

u∗(w) = argmin
u∈Rp

{ 1

n

[
Φu− (r + γΦ′w)

]>[
Φu− (r + γΦ′w)

]
+ λh,nu

>Ψu
}
, (6.20)

w∗ = argmin
w∈Rp

{[
Φw −Φu∗(w)

]>[
Φw −Φu∗(w)

]
+ λQ,nw

>Ψw
}
. (6.21)

Similar to the parametric REG-BRM, we solve (6.20) and obtain u∗(w) which is the same as
(6.19). If we plug in this u∗(w) into (6.21), take derivate w.r.t. w, and find the minimizer,
the parameter vector w∗ will be as announced.
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RKHS Formulation for REG-BRM and REG-LSTD

A flexible and powerful possibility for choosing the function space F |A| is to work with
a reproducing kernel Hilbert space H : X × A → R defined by a positive definite kernel
k : (X × A) × (X × A) → R, and to use the corresponding RKHS norm ‖·‖2H as the
regularizer J2(·). REG-BRM with an RKHS function space F |A| = H would be

ĥn(·;Q) = argmin
h∈F |A|[=H]

[ ∥∥∥h− T̂πiQ∥∥∥2

Dn
+ λh,n ‖h‖2H

]
, (6.22)

Q̂(k) = argmin
Q∈F |A|[=H]

[ ∥∥∥Q− T̂πiQ∥∥∥2

Dn
−
∥∥∥ĥn(·;Q)− T̂πiQ

∥∥∥2

Dn
+ λQ,n ‖Q‖2H

]
, (6.23)

and the coupled optimization problems for REG-LSTD are

ĥn(·;Q) = argmin
h∈F |A|[=H]

[ ∥∥∥h− T̂πiQ∥∥∥2

Dn
+ λh,n ‖h‖2H

]
, (6.24)

Q̂(k) = argmin
Q∈F |A|[=H]

[ ∥∥∥Q− ĥn(·;Q)
∥∥∥2

Dn
+ λQ,n ‖Q‖2H

]
. (6.25)

We can solve these coupled optimization problems by the application of the Generalized
Representer theorem for RKHS [Schölkopf et al., 2001] (quoted as Theorem B.1 in Ap-
pendix B.1.1). The result, which is stated in the next theorem, shows that the the infinite
dimensional optimization problem defined on F |A| = H boils down to a finite dimensional
problem with the dimension twice the number of data points.

Theorem 6.3. Let Z̃ be a vector defined as Z̃ = (Z1, . . . , Zn, Z
′
1, . . . , Z

′
n)>. Then the

optimizer Q̂ ∈ H of (6.22)-(6.23) can be written as Q̂(·) =
∑2n
i=1 α̃ik(Z̃i, ·) for some values

of α̃ ∈ R2n. The same holds for the solution to (6.24)-(6.25). Further, the coefficient vectors
can be obtained in the following form:

REG-BRM: α̃BRM = (CKQ + nλQ,nI)−1(D> + γC>2 B
>B)r ,

REG-LSTD: α̃LSTD = (F>FKQ + nλQ,nI)−1F>Er ,

where r = (R1, . . . , Rn)> and the matrices KQ,B,C,C2,D,E,F are defined as follows:
Kh ∈ Rn×n is defined as [Kh]ij = k(Zi, Zj), 1 ≤ i, j ≤ n, and KQ ∈ R2n×2n is defined as

[KQ]ij = k(Z̃i, Z̃j),1 ≤ i, j ≤ 2n). Let C1 =
(

In×n 0n×n
)

and C2 =
(

0n×n In×n
)
.

Denote D = C1 − γC2, E = Kh(Kh + nλh,nI)−1, F = C1 − γEC2, B = Kh(Kh +

nλh,nI)−1 − I, and C = D>D − γ2(BC2)>(BC2).

Proof. See Appendix 6.A.

6.4 Theoretical Analysis

In this section, we analyze the statistical properties of REG-LSPI and provide a finite-sample
upper bound on the performance loss ‖Q∗ −QπK‖1,ρ. Here, πK is the policy greedy w.r.t.

Q̂(K−1) and ρ is the performance evaluation measure. The distribution ρ is chosen by the
user and is often different from the sampling distribution ν.

Our study has two main parts. First we analyze the policy evaluation error of REG-LSTD
in Section 6.4.1. We suppose that given any policy π, we obtain Q̂ by solving (6.13)-(6.14)
with πk in these equations being replaced by π. Theorem 6.4 provides an upper bound on
the Bellman error ‖Q̂− TπQ̂‖ν . Next in Section 6.4.3, we show how the Bellman errors of
the policy evaluation procedure propagate through the API procedure (Theorem 6.12). The
main result of this chapter, which is an upper bound on the performance loss ‖Q∗ −QπK‖1,ρ,
is stated as Theorem 6.13 in Section 6.4.4.
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To analyze the statistical performance of the REG-LSPI procedure, we make the follow-
ing assumptions. We discuss their implications and the possible relaxations after stating
each of them.

Assumption A13 (MDP Regularity) The set of states X is a compact subset of Rd.
The random immediate rewards Rt ∼ R(·|Xt, At) (t = 1, 2, . . . ) as well as the expected
immediate rewards r(x, a) are uniformly bounded by Rmax, i.e., |Rt| ≤ Rmax (t = 1, 2, . . . )
and ‖r‖∞ ≤ Rmax.

Generalizing Assumption A13 to state spaces other than a subset of Rd should be possible
under certain regularity conditions. One example could be any Polish space. Neverthe-
less, we do not investigate such generalizations here. The boundedness of the rewards is a
reasonable assumption that can be replaced by a more relaxed condition such as the sub-
Gaussianity of the reward. This increases the technicality of the proofs without adding
much to the intuition.

Assumption A14 (Sampling) At iteration k of REG-LSPI (for k = 0, . . . ,K−1), n fresh
i.i.d. samples are drawn from the stationary distribution ν ∈M(X ×A) induced by a fixed

stochastic policy πb, i.e., D(k)
n =

{(
Z

(k)
t , R

(k)
t , X ′t

(k)
)}n

t=1
, where Z

(k)
t = (X

(k)
t , A

(k)
t ) ∼ ν,

with A
(k)
t ∼ πb(X

(k)
t ), and X ′t

(k) ∼ P (·|X(k)
t , A

(k)
t ). Here (Z

(k)
t ) are i.i.d. We denote π as

the policy being evaluated, which is independent of D(k)
n .

The i.i.d. requirement of Assumption A14 is primarily used to simplify the proofs. With
much extra effort, these results can be extended to the case when the data samples belong
to a single trajectory generated by a fixed policy. In the single trajectory scenario, samples
are not independent anymore, but under certain conditions on the Markov process, (Xt, At)
gradually “forgets” its past. One way to quantify this forgetting is through mixing processes.
For these processes, tools such as independent blocks technique [Yu, 1994; Doukhan, 1994]
or information theoretical inequalities [Samson, 2000] can be used to carry on the analysis
– as have been done by Antos et al. [2008b] in the API context, in Chapter 4 for analyzing
the regularized regression problem, and in Chapter 7 in the context of model selection for
RL problems.

Assumption A15 (Regularizer) Define two regularizer functionals J : B(X ) → R and
J : B(X × A) → R that are pseudo-norms on F and F |A|, respectively.6 For all Q ∈ F |A|
and a ∈ A, we have J(Q(·, a)) ≤ J(Q). Moreover, for the constant function 1 : (x, a) 7→ 1,
it holds that J(1) ≤ 1.

The condition that the regularizers be pseudo-norms is satisfied by many commonly-used
regularizers such as the Sobolev norms, the RKHS norm, and the l2-regularizer defined in
Section 6.3.1 with a positive definite choice of matrix Ψ. If the regularizer J ′ : B(X×A)→ R
is derived from a regularizer J : B(X )→ R through J ′(Q) = ‖(J(Q(·, a))a∈A‖p for some p ∈
[1,∞], then J ′ will satisfy the second part of the assumption. From a computational perspec-

tive, a natural choice for RKHS is to choose p = 2 and to define J ′2(Q) =
∑
a∈A ‖Q(·, a)‖2H

for H being the RKHS defined on X . The assumption that the constant function 1 has a
small smoothness is mild.

Assumption A16 (Capacity of Function Space) For R > 0, let FR = {f ∈ F : J(f) ≤
R}. There exists constants C > 0 and 0 < α < 1 such that for any u,R > 0 the following
metric entropy condition is satisfied:

logN∞(u,FR) ≤ C
(
R

u

)2α

.

6Note that here we are slightly abusing notation as the same symbol is used for the regularizer over both
B(X ) and B(X ×A). However, this should not cause any confusion since in a specific expression the identity
of the reguralizer should always be clear from the context.
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The metric entropy is defined in Appendix B.2. This assumption is satisfied for many
function spaces including Sobolev spaces and various RKHS. Refer to van de Geer [2000];
Zhou [2002, 2003]; Steinwart and Christmann [2008] for many examples. An alternative
assumption would be to have a similar metric entropy for the balls in F |A| (instead of F).
This would slightly change a few steps of the proofs, but leave the results essentially the same.
Moreover, it makes the requirement that J(Q(·, a)) ≤ J(Q) unnecessary. Nevertheless, as
results on the capacity of F is more common in the statistical learning literature, we stick
to the combination of Assumptions A15 and A16.

The metric entropy here is defined w.r.t. the supremum norm. All proofs, except that
of Lemma 6.14, only require the same bound to hold when the supremum norm is replaced
by the more relaxed empirical L2-norm, i.e., those results require that there exists constants
C > 0 and 0 < α < 1 such that for any u,R > 0 and all x1, . . . , xn ∈ X , we have

logN2(u,FR, x1:n) ≤ C
(
R
u

)2α
. Of course, the metric entropy w.r.t. the supremum norm

implies the one with the empirical norm.

Assumption A17 (Function Space Boundedness) The subset F |A| ⊂ B(X ×A;Qmax)
is a separable and complete Carathéodory set with Rmax ≤ Qmax <∞.

Assumption A17 requires all the functions in F |A| to be bounded so that the solutions of
optimization problems (6.13)-(6.14) stay bounded. If they are not, they should be truncated,
and thus, the truncation argument should be used in the analysis, see e.g., the proof of
Theorem 21.1 of Györfi et al. [2002]. The truncation argument does not change the final
result, but complicates the proof at several places, so we stick to the above assumption to
avoid unnecessary clutter. Moreover, in order to avoid the measurability issues resulting
from taking supremum over an uncountable function space F |A|, we require the space to be
a separable and complete Carathéodory set (cf. Section 7.3 of Steinwart and Christmann
2008 – quoted in Appendix B.4).

Assumption A18 (Function Approximation Property) The action-value function of
any policy π belongs to F |A|, i.e., Qπ ∈ F |A|.

This assumption requires that the considered function space is large enough to include the
true action-value function. This is a standard assumption when studying convergence rates
in the supervised learning literature. If the selected function space is rich enough (e.g., a
universal kernel is used), the function approximation error for the class of continuous func-
tions shall be zero [Györfi et al., 2002]. On the other hand, if the space is not large enough,
we might have function approximation error. The behavior of the function approximation
error for certain classes of “small” RKHS has been discussed by Smale and Zhou [2003];
Steinwart and Christmann [2008].

Assumption A19 (Expansion of Smoothness) For all Q ∈ F |A|, there exists constants
0 ≤ LR, LP <∞, dependent only on the MDP and F |A|, such that for any policy π,

J(TπQ) ≤ LR + γLPJ(Q).

We require that the complexity of TπQ be comparable to the complexity of Q itself. In
other words, we require that if Q is smooth according to the norm of a function space
F |A|, it stays smooth after the application of the Bellman operator. We believe that this
is a reasonable assumption for many classes of MDPs with “sufficient” stochasticity. The
intuition is that if the Bellman operator has a “smoothing” effect, the norm of TπQ should
not blow up. Proposition 6.16 in Appendix 6.E presents the conditions that for the so-
called convolutional MDPs, Assumption A19 holds. Briefly speaking, the conditions are
1) the transition probability kernel should have a finite gain (in control-theoretic sense)
in its frequency response, and 2) the reward function should be smooth according to the
regularizer J .
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6.4.1 Policy Evaluation Error

In this section, we focus on the kth iteration of REG-LSPI. To simplify the notation, we

use Dn = {(Zt, Rt, X ′t)}nt=1 to refer to D(k)
n . The policy πk depends on data used in the

earlier iterations, but since we use independent samples D(k)
n for the kth iteration and πk is

independent of D(k)
n , we can safely ignore the randomness of πk by working on the probability

space obtained by conditioning on D(0)
n , . . . ,D(k−1)

n , i.e., the probability space used in the

kth iteration is (Ω, σΩ,Pk) with Pk = P
{
·
∣∣∣D(0)

n , . . . ,D(k−1)
n

}
. In order to avoid clutter,

we do not use the conditional probability symbol. In the rest of this section, π refers to a

σ(D(0)
n , . . . ,D(k−1)

n )-measurable policy and is independent ofDn and Q̂ and ĥn(Q) = ĥn(·;Q)

refer to the solution to (6.13)-(6.14) when π, λh,n, and λQ,n replace πk, λ
(k)
h,n, and λ

(k)
Q,n in

that set of equations, respectively.
The following theorem is the main result of this section and provides an upper bound

on the statistical behavior of the policy evaluation procedure REG-LSTD.

Theorem 6.4 (Policy Evaluation). For any fixed policy π, let Q̂ be the solution to the
optimization problem (6.13)-(6.14) with the choice of

λh,n = λQ,n =

[
1

nJ2(Qπ)

] 1
1+α

.

If Assumptions A13–A19 hold, there exists c(δ) > 0 such that for any n ∈ N and 0 < δ < 1,
we have ∥∥∥Q̂− TπQ̂∥∥∥2

ν
≤ c(δ)n−

1
1+α ,

with probability at least 1− δ. Here c(δ) is equal to

c(δ) = c1
[
1 + (γLP )2

] [
1 + J2(Qπ)

]
ln(1/δ) + c2

(
L

2α
1+α

R +
L2
R

[J(Qπ)]
2

1+α

)
,

for some constants c1, c2 > 0.

Theorem 6.4 indicates how the number of samples and the difficulty of the problem
as characterized by J(Qπ), LP , and LR influence the policy evaluation error. It shows
that if the parameters of the REG-LSTD algorithm is selected properly, one may achieve
the sample complexity upper bound of O(n−1/(1+α)). This upper bound, as we discuss
after stating Theorem 6.13, is optimal for the policy evaluation task. One may note that
the proper selection of the parameters requires the knowledge of some unknown quantities
such as α and J(Qπ). This, however, is not a major concern as a proper model selection
procedure finds parameters that result in a performance which is almost the same as the
optimal performance. We comment on this issue in more detail in Section 6.5.

6.4.2 Proof of Theorem 6.4

To prove Theorem 6.4, we analyze the finite-sample error behavior of the solutions of the
empirical loss functions (6.13) and (6.14). The proof consists of two parts. First by the
application of Lemma 6.5, to be stated below, we study the statistical behavior of the
optimization problem (6.13), which is essentially a regularized least-squares regression result.
Second, we analyze the optimization problem defined by (6.14). The analysis of the latter,
which is done in Lemma 6.9, requires some technical tools to be developed in the rest of
this section.

The following lemma controls the error behavior resulting from the optimization prob-
lem (6.13). This lemma, which is a result on the error upper bound of a regularized regres-
sion estimator, is similar to Theorem 21.1 of Györfi et al. [2002] with two main differences.
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Firstly, it holds uniformly over TπQ (as opposed to a fixed function TπQ); secondly, it holds
for function spaces that satisfy a general metric entropy condition (as opposed to the special
case of Sobolev spaces).

Lemma 6.5 (Convergence of ĥn(Q) to TπQ). For any random Q ∈ F |A|, let ĥn(Q)
be defined according to (6.13). Under Assumptions A13–A17, there exist finite constants
c1, c2 > 0, such that for any n ∈ N and 0 < δ < 1, we have∥∥∥ĥn(Q)− TπQ

∥∥∥2

ν
≤ 4λh,nJ

2(TπQ) + 2λh,nJ
2(Q) + c1

1

nλαh,n
+ c2

ln(1/δ)

n
,

with probability at least 1− δ.

Proof. See Appendix 6.B.

When we use this lemma to prove Theorem 6.4, the action-value function Q that appears
in the bound is the result of the optimization problems defined in (6.14), and so is random.
Lemma 6.8, which we will prove later, provides a deterministic upper bound for this random
quantity.

It turns out that to derive our main result, we require to know more about the behavior
of the regularized regression estimator than what is shown in Lemma 6.5. In particular, we
need an upper bound on the empirical error of the regularized regression estimator ĥn(·;Q)

(cf. (6.26)). Moreover, we should bound the random smoothness J(ĥn(·;Q)) by some de-
terministic quantities, which turns out to be a function of J(TπQ) and J(Q). Theorem 6.6
provides us with the required upper bounds. This theorem is a modification of Theorem
10.2 by van de Geer [2000], with two main differences: 1) it holds uniformly over Q and 2)

ĥn(·;Q) uses the same data Dn that is used to estimate Q itself.
We introduce the following notation: Let w = (x, a, r, x′) and denote Dn by w1, . . . , wn,

i.e, wi = (Xi, Ai, Ri, X
′
i). For a measurable function g : X × A × R × X → R, let ‖g‖2n =

1
n

∑n
i=1 |g(wi)|2. Consider the regularized least squares estimator:

ĥn(·;Q) = argmin
h∈F |A|

[
‖h− [R+ γQ(x′i, π(x′i))]‖

2
n + λh,nJ

2(h)
]
, (6.26)

which is the same as (6.13) with π replacing πk.

Theorem 6.6. For a random function Q, let ĥn(·, Q) be defined according to (6.26). Sup-
pose that Assumptions A13-A18 hold. Then, there exist constants c1, c2 > 0, such that for
any n ∈ N and 0 < δ < 1, we have∥∥∥ĥn(·;Q)− TπQ

∥∥∥
n
≤

c1 max

{
λ
−α/2
h,n

√
ln(1/δ)

n
, J(TπQ)λ

1/2
h,n, (1 + J(Q) + J(TπQ))

(
ln(1/δ)

n

) 1
2(1+α)

}
,

J(ĥn(·;Q)) ≤ c2 max

{
1 + J(TπQ) + J(Q), λ

− 1+α
2

h,n

√
ln(1/δ)

n

}
,

with probability at least 1− δ.

Proof. See Appendix 6.C.

The following lemma, which is the immediate corollary of Theorem 6.6, upper bounds
J(ĥn(Q)) by some function of J(Q), J(TπQ), and J(Qπ). It will be used in the proof of
Lemma 6.11.
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Lemma 6.7 (Smoothness of ĥn(·;Q)). For a random Q, let ĥn(·;Q) be the solution to the
optimization problem (6.13) with the choice of regularization coefficient

λh,n =

[
1

nJ2(Qπ)

] 1
1+α

.

Let Assumptions A13–A17 hold. Then there exits a finite constant c > 0, such that for any
n ∈ N and 0 < δ < 1,

J(ĥn(·;Q)) ≤ c
(

1 + J(TπQ) + J(Q) + J(Qπ)
√

ln(1/δ)
)

holds with probability at least 1− δ.

Proof. With the choice of λh,n =
[

1
nJ2(Qπ)

] 1
1+α

, Theorem 6.6 implies that there exists some

finite constant c > 0 such that for any n ∈ N and 0 < δ < 1,

J(ĥn(Q)) ≤ c max

{
1 + J(TπQ) + J(Q),

[
1

nJ2(Qπ)

]−1/2
√

ln(1/δ)

n

}
≤ c

(
1 + J(TπQ) + J(Q) + J(Qπ)

√
ln(1/δ)

)
holds with probability at least 1− δ.

The following lemma relates J(Q̂) and J(TπQ̂), which are random, to the complexity of
the action-value function of the policy π, i.e., J(Qπ).

Lemma 6.8 (Smoothness of Q̂). Let Assumptions A13–A18 hold, and let Q̂ be the solution
to (6.14) with the choice of

λh,n =

[
1

nJ2(Qπ)

] 1
1+α

.

Then there exists a finite constant c > 0 such that for any n ∈ N and δ > 0, we have

λQ,nJ
2(Q̂) ≤ λQ,nJ2(Qπ) + c

1 + J2(Qπ)

n
1

1+α

ln(1/δ),

with probability at least 1− δ. Moreover, if Assumption A19 holds as well, we get that

λQ,nJ
2(TπQ̂) ≤ 2λQ,nL

2
R + 2(γLP )2

(
λQ,nJ

2(Qπ) + c
J2(Qπ)

n
1

1+α

ln(1/δ)

)
holds with probability at least 1− δ.

Proof. By the optimizer property of Q̂, we have

λQ,nJ
2(Q̂) ≤

∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

Dn
+ λQ,nJ

2(Q̂) ≤
∥∥∥Qπ − ĥn(·;Qπ)

∥∥∥2

Dn
+ λQ,nJ

2(Qπ).

(6.27)

Since by Assumption A18, Qπ = TπQπ ∈ F |A|, Theorem 6.6 shows that with the choice of

λh,n = [ 1
nJ2(Qπ) ]

1
1+α , there exists a finite constant c > 0 such that for any n ∈ N and for

0 < δ < 1, ∥∥∥Qπ − ĥn(·;Qπ)
∥∥∥2

Dn
≤ c1 + J2(Qπ)

n
1

1+α

ln(1/δ) (6.28)

holds with probability at least 1 − δ. Chaining inequalities (6.27) and (6.28) finishes the
first part of the proof. The second part follows immediately from the first part and As-
sumption A19.
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The following lemma upper bounds ‖Q̂− ĥn(·; Q̂)‖ν .

Lemma 6.9 (Convergence of ‖Q̂− ĥn(·; Q̂)‖ν). Let Q̂ be the solution to the set of coupled
optimization problems (6.13)-(6.14). Suppose that Assumptions A13–A19 hold. Then there
exist a finite constant c > 0 such that for any n ∈ N and 0 < δ < 2e−1 and with the choice
of

λh,n = λQ,n =

[
1

nJ2(Qπ)

] 1
1+α

,

we have∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

ν
≤ c

[
1 + J2(Qπ) +

[
1 + (1 + γ2L2

P )α
]
J

2α
1+α (Qπ)

]
ln(1/δ) + L

2α
1+α

R

n
1

1+α

,

with probability at least 1− δ.
Proof. Decompose ∥∥∥Q̂− ĥn(·; Q̂)

∥∥∥2

ν
= I1,n + I2,n,

with

1

2
I1,n =

∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

Dn
+ λQ,nJ

2(Q̂),

I2,n =
∥∥∥Q̂− ĥn(·; Q̂)

∥∥∥2

ν
− I1,n. (6.29)

In what follows, we upper bound each of these terms.
I1,n: Use the optimizer property of Q̂ to get

1

2
I1,n =

∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

Dn
+ λQ,nJ

2(Q̂) ≤ λQ,nJ2(Qπ) +
∥∥∥Qπ − ĥn(·;Qπ)

∥∥∥2

Dn
.

To upper bound
∥∥∥Qπ − ĥn(·;Qπ)

∥∥∥2

Dn
=
∥∥∥TπQπ − ĥn(·;Qπ)

∥∥∥2

Dn
, we evoke Theorem 6.6.

For our choice of λQ,n, there exists a constant c1 > 0 such that for any n ∈ N and 0 < δ1 < 1,
we have

1

2
I1,n ≤ λQ,nJ2(Qπ) + c1

1 + J2(Qπ)

n
1

1+α

ln(1/δ1), (6.30)

with probability at least 1− δ1.
I2,n: With our choice of λQ,n and λh,n, Lemma 6.11, which shall be proven later, indicates
that there exist some finite constants c2, c3, c4 > 0 such that for any n ∈ N and finite J(Qπ),
LR, and LP , and 0 < δ2 < 1, we have

I2,n ≤ c2
1 + L

2α
1+α

R + [J(Qπ)]
2α

1+α [ln(1/δ2)]
α

1+α

n
1

1+α

+ c3
1 + (1 + γ2L2

P )α

nλαQ,n
+ c4

ln(1/δ2)

n
, (6.31)

with probability at least 1− δ2. For δ2 < e−1 ≈ 0.3679 and α ≥ 0, we have [ln(1/δ2)]
α

1+α ≤
ln(1/δ2), and also

1

nλαQ,n
=

[J(Qπ)]
2α

1+α

n
1

1+α

≤ [J(Qπ)]
2α

1+α

n
1

1+α

ln(1/δ2). (6.32)

With the right choice of constants, ln(1/δ2)
n can be absorbed into the other terms. Select

δ1 = δ2 = δ/2. Inequalities (6.30), (6.31), and (6.32) imply that with the specified choice of
λQ,n and λh,n, there exists a finite constant c5 > 0 such that for any 0 < δ < 2e−1, we have

∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

ν
≤ c5

[
1 + J2(Qπ) +

[
1 + (1 + γ2L2

P )α
]
J

2α
1+α (Qπ)

]
ln(1/δ) + L

2α
1+α

R

n
1

1+α

with probability at least 1− δ.
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To upper bound I2,n, defined in (6.29), we simultaneously apply the peeling device (cf.
Section 5.3 of van de Geer 2000; also Appendix B.3) on two different but coupled, function

spaces (one that Q̂ belongs to and the other that ĥn(·; Q̂) belongs to). In each layer of
peeling, we apply an exponential tail inequality to control the relative deviation of the
empirical mean from the true mean (Lemma 4.7 in Appendix 4.A). We also require a covering
number result, which is stated as Lemma 6.10. The final result of this procedure is a tight
upper bound on I2,n, as stated in Lemma 6.11.

To prepare for the peeling argument, define the following subsets of F and F |A|:

Fσ , {f : f ∈ F , J2(f) ≤ σ},
F |A|σ , {f : f ∈ F |A|, J2(f) ≤ σ}.

Let

gQ,h(x, a) ,
1

|A|

|A|∑
j=1

I{a=aj} [Qj(x)− hj(x)]
2
. (6.33)

To simplify the notation, we use z = (x, a) and Z = (X,A) in the rest of this section.
Define Gσ1,σ2

as the space of gQ,h functions with J(Q) ≤ σ1 and J(h) ≤ σ2, i.e.,

Gσ1,σ2
, {gQ,h : Rd ×A → R;Q ∈ F |A|σ1

, h ∈ F |A|σ2
}. (6.34)

The following lemma provides upper bounds on the covering numbers of Gσ1,σ2 .

Lemma 6.10 (Covering Number). Let Assumptions A15, A16, and A17 hold. Then, there
exists a constant c1 > 0, independent of σ1, σ2, α, Qmax, and |A|, such that for any
u > 0 and all ((x1, a1), . . . , (xn, an)) ∈ X ×A, the empirical covering number of the class of
functions Gσ1,σ2 defined in (6.34) w.r.t. the empirical norm ‖·‖2,z1:n is upper bounded by

logN2(u,Gσ1,σ2
, (x, a)1:n) ≤ c1|A|1+α

Q2α
max (σα1 + σα2 )u−2α.

Proof. See Appendix 6.D.

Lemma 6.11 provides a high probability upper bound on I2,n.

Lemma 6.11. Let I2,n be defined according to (6.29). Under Assumptions A13–A17 and A19
and with the choice of

λh,n = λQ,n =

[
1

nJ2(Qπ)

] 1
1+α

,

there exists constants c1, c2, c3 > 0, such that for any n ∈ N, finite J(Qπ), LR, and LP , and
δ > 0 we have

I2,n ≤ c1
1 + L

2α
1+α

R + [J(Qπ)]
2α

1+α [ln(1/δ)]
α

1+α

n
1

1+α

+ c2
1 + (1 + γ2L2

P )α

nλαQ,n
+ c3

ln(1/δ)

n
,

with probability at least 1− δ.

Proof. Let Z = (X,A) be a random variable with distribution ν that is independent from
Dn. Without loss of generality, we assume that Qmax ≥ 1/2. We use the peeling device in
conjunction with Lemmas 6.10 and 4.7 to obtain a tight high-probability upper bound on
I2,n. Based on the definition of I2,n in (6.29) we have

P {I2,n > t} = P

E
[
gQ̂,ĥn(Q̂)(Z)|Dn

]
− 1

n

∑n
i=1 gQ̂,ĥn(Q̂)(Zi)

t+ 2λQ,nJ2(Q̂) + E
[
gQ̂,ĥn(Q̂)(Z)|Dn

] >
1

2

 . (6.35)
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To benefit from the peeling device, we relate the complexity of ĥn(Q̂) to the complexity
of Q̂. For a fixed δ1 > 0 and some constant c > 0, to be specified shortly, define the following
event:

A0 =
{
ω : J2(ĥn(Q̂)) ≤ c

(
1 + J2(TπQ̂) + J2(Q̂) + J2(Qπ) ln(1/δ1)

)}
.

Lemma 6.7 indicates that P {A0} ≥ 1 − δ1, where the constant c here can be chosen to
be four times of the squared value of the constant in the lemma. We have P {I2,n > t} =
P
{
I2,n > t,AC0

}
+ P {I2,n > t,A0} ≤ δ1 + P {I2,n > t,A0}, so we focus on upper bounding

P {I2,n > t,A0}.
Since Q̂ ∈ F |A|, there exists l ∈ N0 such that 2ltI{l 6=0} ≤ 2λQ,nJ

2(Q̂) < 2l+1t.

Fix l ∈ N0. For any Q ∈ F |A|, Assumption A19 relates J(TπQ) to J(Q):

J2(Q) ≤ 2lt

λQ,n
⇒ J2(TπQ) ≤ 2

(
L2
R + γ2L2

P

2lt

λQ,n

)
.

Thus on the event A0, if Q̂ ∈ F |A|
σl1

where σl1 = 2lt
λQ,n

, we also have ĥn(Q̂) ∈ F |A|
σl2

with

σl2 = c

[
2

(
1 + L2

R + (1 + γ2L2
P )

2lt

λQ,n

)
+ J2(Qπ) ln(1/δ1)

]
. (6.36)

Apply the peeling device on (6.35). Plug-in (6.36) and note that if for an l ∈ N0 we have
2λQ,nJ

2(Q̂) ≥ 2ltI{l 6=0}, we also have t+ 2λQ,nJ
2(Q̂) ≥ 2lt to get

P {I2,n > t} = P
{
I2,n > t,AC0

}
+ P {I2,n > t,A0} ≤ δ1 +

∞∑
l=0

P

A0, 2
ltI{l 6=0} ≤ 2λQ,nJ

2(Q̂) < 2l+1t,
E
[
gQ̂,ĥn(Q̂)(Z)|Dn

]
− 1

n

∑n
i=1 gQ̂,ĥn(Q̂)(Zi)

t+ 2λQ,nJ2(Q̂) + E
[
gQ̂,ĥn(Q̂)(Z)|Dn

] >
1

2


≤ δ1 +

∞∑
l=0

P

 sup
gQ,h∈Gσl1,σl2

E [gQ,h(Z)|Dn]− 1
n

∑n
i=1 gQ,h(Zi)

2lt+ E [gQ,h(Z)|Dn]
>

1

2

 . (6.37)

Let us study the behavior of the lth term of the above summation by verifying the
conditions of Lemma 4.7 when ε = 1

2 and η = 2lt.
Condition (A1): Since all functions involved are bounded by Qmax, it is easy to see

that |gQ,h(x, a)| ≤ 1
|A|
∑|A|
j=1 I{a=aj}

∣∣∣[Qj(x)− hj(x)]
2
∣∣∣ ≤ 4

Q2
max

|A| ≤ 4Q2
max. Therefore, K1,

defined in Lemma 4.7, can be set to K1 = 4Q2
max.

Condition (A2): We have E
[∣∣∣[Q(Z)− h(Z)]

2
∣∣∣2] ≤ 4Q2

max E
[
[Q(Z)− h(Z)]

2
]
. Therefore

K2 can be set to K2 = 4Q2
max.

Condition (A3): We should satisfy
√

2
4

√
nα ≥ 288 max{8Q2

max,
√

8Qmax}. Since η = 2lt ≥
t, it is sufficient to have

t ≥ c

n
, (C1)

in which c is a function of Qmax (we can choose c = 2× 46082Q4
max).

Condition (A4): We shall verify that for ε′ ≥ 1
8η = 1

82lt, the following holds:

√
n( 1

2 )( 1
2 )ε′

96
√

2 max{K1, 2K2}
≥

∫ √ε′
( 1
2
)( 1

2
)ε′

16max{K1,2K2}

(
logN2

(
u, {g ∈ Gσ1,σ2

:
1

n

n∑
i=1

g2(zi) ≤ 16ε′}, z1:n

))1/2

du. (6.38)
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Notice that there exists a constant c > 0 such that for any u, ε′ > 0

logN2

(
u,

{
g ∈ Gσ1,σ2 :

1

n

n∑
i=1

g2(zi) ≤ 16ε′

}
, z1:n

)
≤ logN2 (u,Gσ1,σ2 , z1:n)

≤ c (σα1 + σα2 )u−2α, (6.39)

where we used Lemma 6.10 in the second inequality.

Plug (6.39) into (6.38) with the choice of σl1 = 2lt
λQ,n

and σl2 = c[2(1 + L2
R + (1 +

γ2L2
P ) 2lt

λQ,n
) + J2(Qπ) ln(1/δ1)]. Therefore, for some constant c(Qmax), the inequality

c
√
nε′ ≥

∫ √ε′
0


(

2lt

λQ,n

)α
︸ ︷︷ ︸

(a)

+ c

[
2

(
1 + L2

R + (1 + γ2L2
P )

2lt

λQ,n

)
+ J2(Qπ) ln(1/δ1)

]α
︸ ︷︷ ︸

(b)


1/2

u−αdu,

implies (6.38). Because (a + b)
1
2 ≤ (a

1
2 + b

1
2 ) for non-negative a and b, it suffices to verify

the following two conditions:
(a) We shall verify that for ε′ ≥ 1

82lt, we have

c
√
nε′ ≥

(
2lt

λQ,n

)α
2

ε′
1−α
2 ⇔ c

√
nε′

1+α
2 λ

α
2

Q,n

(2lt)
α
2

≥ 1.

Substituting ε′ with 2lt, we see that it is enough if for some constant c > 0,

t ≥ c

2l nλαQ,n
. (D1)

(b) We should verify that for ε′ ≥ 1
82lt, the following is satisfied:

√
nε′ ≥ c

1 + L2
R︸ ︷︷ ︸

b1

+ (1 + γ2L2
P )

2lt

λQ,n︸ ︷︷ ︸
b2

+ J2(Qπ) ln(1/δ1)︸ ︷︷ ︸
b3


α/2

ε′
1−α
2 ,

for some c > 0. After some manipulations, we get that the previous inequality holds if the
following three inequalities are satisfied:

(b1) : t ≥ c′1
1 + L

2α
1+α

R

n
1

1+α

, (D2)

(b2) : t ≥ c′2
(1 + γ2L2

P )α

nλαQ,n
, (D3)

(b3) : t ≥ c′3
[J(Qπ)]

2α
1+α [ln(1/δ1)]

α
1+α

n
1

1+α

, (D4)

for some constants c′1, c
′
2, c
′
3 > 0.

Fix δ > 0 and let δ1 = δ/2. Whenever (C1), (D1), (D2), (D3), and (D4) are satisfied,
for some choice of constants c, c′ > 0 we have

P {I2,n > t} ≤ δ

2
+

∞∑
l=0

60 exp

(
−

n(2lt)( 1
4 )(1− 1

2 )

128× 2304×max{16Q4
max, 4Q

2
max}

)

≤ δ

2
+ c exp(−c′n t).
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Let the LHS be equal δ and solve for t. Considering all aforementioned conditions, we get
that there exists constants c1, c2, c3 > 0 such that for any n ∈ N, finite J(Qπ), LR, and LP ,
and δ > 0, we have

I2,n ≤ c1
1 + L

2α
1+α

R + [J(Qπ)]
2α

1+α [ln(1/δ)]
α

1+α

n
1

1+α

+ c2
1 + (1 + γ2L2

P )α

nλαQ,n
+ c3

ln(1/δ)

n
,

with probability at least 1− δ.

After developing these tools, we are ready to prove Theorem 6.4.

Proof of Theorem 6.4. We want to show that ‖Q̂ − TπQ̂‖ν is small. Since (6.13)-(6.14)

minimize ‖ĥn(·; Q̂) − TπQ̂‖ν and ‖Q̂ − ĥn(·; Q̂)‖ν , we upper bound ‖Q̂ − TπQ̂‖ν in terms
of these quantities as follows:∥∥∥Q̂− TπQ̂∥∥∥2

ν
≤ 2

∥∥∥Q̂− ĥn(·; Q̂)
∥∥∥2

ν
+ 2

∥∥∥ĥn(·; Q̂)− TπQ̂
∥∥∥2

ν
. (6.40)

Let us upper bound each of these two terms in the RHS. Fix δ > 0.
Bounding ‖ĥn(·; Q̂) − TπQ̂‖ν : Lemma 6.5 indicates that there exist constants c1, c2 > 0
such that for any random Q̂ ∈ F |A| and any fixed n ∈ N, we have∥∥∥ĥn(·; Q̂)− TπQ̂

∥∥∥2

ν
≤ λh,n

(
2J2(Q̂) + 4J2(TπQ̂)

)
+ c1

1

nλαh,n
+ c2

ln(3/δ)

n
, (6.41)

with probability at least 1 − δ/3. The condition that TπQ̂ ∈ F |A| is implied by Assump-
tion A19 and Q̂ ∈ F |A|.

Because Q̂ is random itself, the terms J(Q̂) and J(TπQ̂) in the upper bound of (6.41)
are also random. In order to upper bound them, we use Lemma 6.8 that states that upon

the choice of λh,n = λQ,n = [ 1
nJ2(Qπ) ]

1
1+α , there exists a constant c3 > 0 such that for any

n ∈ N,

λh,nJ
2(Q̂) = λQ,nJ

2(Q̂) ≤ λQ,nJ2(Qπ) + c3
1 + J2(Qπ)

n
1

1+α

ln(3/δ) (6.42)

holds with probability at least 1− δ/3. Use Assumption A19 to get

λh,nJ
2(TπQ̂) ≤ 2λQ,nL

2
R + 2(γLP )2

(
λQ,nJ

2(Qπ) + c3
1 + J2(Qπ)

n
1

1+α

ln(3/δ)

)
(6.43)

holds with the same probability. Plugging (6.42) and (6.43) into (6.41) and using the selected
schedule for λQ,n and λh,n, we get∥∥∥ĥn(·; Q̂)− TπQ̂

∥∥∥2

ν
≤[(

2 + c1 + 8(γLP )2
)
J

2α
1+α (Qπ) + c3

(
2 + 8(γLP )2

) (
1 + J2(Qπ)

)
ln(3/δ) +

8L2
R

J
2

1+α (Qπ)

]
1

n
1

1+α

+ c2
ln(3/δ)

n
,

with probability at least 1− 2
3δ. By the proper choice of constants, the term c2n

−1 ln(3/δ)

can be absorbed into n
−1
1+α ln(3/δ). Therefore, there exists a constant c4 > 0 such that∥∥∥ĥn(·; Q̂)− TπQ̂
∥∥∥2

ν
≤[

c4
[
1 + (γLP )2

] [
J

2α
1+α (Qπ) +

(
1 + J2(Qπ)

)
ln(1/δ)

]
+

8L2
R

[J(Qπ)]
2

1+α

]
1

n
1

1+α

, (6.44)
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with probability at least 1− 2
3δ.

Bounding ‖Q̂− ĥn(·; Q̂)‖ν : With our choice of λQ,n and λh,n, Lemma 6.9 states that there
exists a constant c5 > 0 such that for any n ∈ N,

∥∥∥Q̂− ĥn(·; ·; Q̂)
∥∥∥2

ν
≤ c5

[
1 + J2(Qπ) +

[
1 + (1 + γ2L2

P )α
]
J

2α
1+α (Qπ)

]
ln(1/δ) + L

2α
1+α

R

n
1

1+α

,

(6.45)

holds with probability at least 1− δ/3.
Thus, inequality (6.40) alongside upper bounds (6.44) and (6.45) indicate that there

exist constants c6, c7 > 0 such that for any n ∈ N and δ > 0, we have

∥∥∥Q̂− TπQ̂∥∥∥2

ν
≤
c7
[
1 + (γLP )2

] [
1 + J

2α
1+α (Qπ) + J2(Qπ)

]
ln(1/δ) + c8

(
L

2α
1+α

R +
L2
R

[J(Qπ)]
2

1+α

)
n

1
1+α

≤
2c7
[
1 + (γLP )2

] [
1 + J2(Qπ)

]
ln(1/δ) + c8

(
L

2α
1+α

R +
L2
R

[J(Qπ)]
2

1+α

)
n

1
1+α

with probability at least 1− δ.

6.4.3 Error Propagation in API

Consider an API algorithm that generates the sequence Q̂(0) → π1 → Q̂(1) → π2 →
· · · → Q̂(K−1) → πK , where πk is the greedy policy w.r.t. Q̂(k−1) and Q̂(k) is the ap-
proximate action-value function for policy πk. For the sequence (Q̂(k))K−1

k=0 , denote the
Bellman Residual (BR) of the kth action-value function

εBR
k = Q̂(k) − TπkQ̂(k). (6.46)

The goal of this section is to study the effect of the ν-weighted L2-norm of the Bellman
residual sequence {εBR

k }
K−1
k=0 on the performance loss ‖Q∗ −QπK‖1,ρ of the resulting policy

πK . Because of the dynamical nature of the MDP, the performance loss ‖Q∗ −QπK‖p,ρ
depends on the difference between the sampling distribution ν and the future state-action
distribution in the form of ρPπ1Pπ2 · · · . The precise form of this dependence will be for-
malized in Theorems 6.12, which is the same as Theorem 3.2 in Chapter 3. Before stating
the results, we define the following concentrability coefficients that are used in a change of
measure argument, see e.g., Munos [2007]; Antos et al. [2008b] and Chapter 3 of this thesis.

Definition 6.1 (Expected Concentrability of the Future State-Action Distribution). Given
ρ, ν ∈ M(X × A), m ≥ 0, and an arbitrary sequence of stationary policies (πm)m≥1, let
ρPπ1Pπ2 · · ·Pπm ∈M(X ×A) denote the future state-action distribution obtained when the
first state-action is distributed according to ρ and then we follow the sequence of policies
(πk)mk=1. Define the following concentrability coefficients:

cPI1,ρ,ν(m1,m2;π) ,

E

∣∣∣∣∣d
(
ρ(Pπ

∗
)m1(Pπ)m2

)
dν

(X,A)

∣∣∣∣∣
2
 1

2

,

with (X,A) ∼ ν. If the future state-action distribution ρ(Pπ
∗
)m1(Pπ)m2 is not absolutely

continuous w.r.t. ν, then we take cPI1,ρ,ν(m1,m2;π) =∞.

In order to compactly present our results, we define the following notation:

ak =
(1− γ)γK−k−1

1− γK+1
. (0 ≤ k < K) (6.47)
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Theorem 6.12 (Error Propagation for API – Theorem 3.2 in Chapter 3). Let p ≥ 1 be a
real number, K be a positive integer, and Qmax ≤ Rmax

1−γ . Then for any sequence (Q̂(k))K−1
k=0 ⊂

B(X ×A, Qmax) and the corresponding sequence (εBR
k )K−1

k=0 defined in (6.46), we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

PI,ρ,ν(K; r)E
1
2p (εBR

0 , . . . , εBR
K−1; r) + γ

K
p −1Rmax

]
.

where E(εBR
0 , . . . , εBR

K−1; r) =
∑K−1
k=0 a2r

k

∥∥εBR
k

∥∥2p

2p,ν
and

CPI,ρ,ν(K; r) =

(
1− γ

2

)2

sup
π′0,...,π

′
K

K−1∑
k=0

a
2(1−r)
k

(∑
m≥0

γm
(
cPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

cPI1,ρ,ν(K − k,m;π′k)
))2

.

6.4.4 Performance Loss of REG-LSPI

In this section, we use the error propagation result (Theorem 6.12 in Section 6.4.3) together
with the upper bound on the policy evaluation error (Theorem 6.4 in Section 6.4.1) to derive
an upper bound on the performance loss ‖Q∗ −QπK‖1,ρ of REG-LSPI. This is the main

theoretical result of this work. Before stating the result, let us denote Π̂(F |A|) as the set of
all policies that are greedy w.r.t. a member of F |A|, i.e., Π̂(F |A|) = {π̂(·;Q) : Q ∈ F |A|}.

Theorem 6.13. Let (Q̂(k))K−1
k=0 be the solutions of the optimization problem (6.13)-(6.14)

with the choice of

λ
(k)
h,n = λ

(k)
Q,n =

[
1

nJ2(Qπk)

] 1
1+α

.

Let Assumptions A13–A17 hold; Assumptions A18 and A19 hold for any π ∈ Π̂(F |A|), and
infr∈[0,1] CPI,ρ,ν(K; r) < ∞. Then, there exists CLSTD(δ,K; ρ, ν) such that for any n ∈ N
and 0 < δ < 1, we have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
CLSTD(δ,K; ρ, ν)n−

1
2(1+α) + γK−1Rmax

]
,

with probability at least 1− δ.

In this theorem, the function CLSTD(δ,K; ρ, ν) = CLSTD(δ,K; ρ, ν;LR, LP , α, β, γ) is

CLSTD(δ,K; ρ, ν;LR, LP , α, β, γ) = C
1
2

I (δ) inf
r∈[0,1]

{(
1− γ

1− γK+1

)r (
1− (γ2r)K

1− γ2r

) 1
2

C
1
2

PI,ρ,ν(K; r)

}
.

with CI(δ) being defined as

CI(δ) = sup
π∈Π̂(F |A|)

[
c1
(
1 + (γLP )2

) [
1 + J2(Qπ)

]
ln

(
K

δ

)
+ c2

(
L

2α
1+α

R +
L2
R

[J(Qπ)]
2

1+α

)]
,

in which c1, c2 > 0 are universal constants.

Proof. Fix 0 < δ < 1. For each iteration k = 0, . . . ,K − 1, invoke Theorem 6.4 with the
confidence parameter δ/K and take the supremum over all policies to upper bound the
Bellman residual error ‖εBR

k ‖ν as∥∥∥Q̂(k) − TπkQ̂(k)
∥∥∥2

ν
≤ sup
π∈Π

c

(
J(Qπ), LR, LP , α, β, γ,

δ

K

)
︸ ︷︷ ︸

c′

n−
1

1+α ,
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which holds with probability at least 1− δ
K . Here c(·) is defined as in Theorem 6.4. For any

r ∈ [0, 1], we have

E(εBR
0 , . . . , εBR

K−1; r) =

K−1∑
k=0

a2r
k

∥∥εBR
k

∥∥2

ν
≤ c′ n−

1
1+α

K−1∑
k=0

a2r
k = c′ n−

1
1+α

(
1− γ

1− γK+1

)2r
1− (γ2r)K

1− γ2r
,

where we used the definition of ak (6.47). We then apply Theorem 6.12 with the choice of
p = 1 to get that with probability at least 1− δ, we have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
CLSTD(ρ, ν;K)n−

1
1+α + γK−1Rmax

]
.

Here

CLSTD(ρ, ν;K) =[
sup
π∈Π

c

(
J(Qπ), LR, LP , α, γ,

δ

K

)] 1
2

inf
r∈[0,1]

{(
1− γ

1− γK+1

)r (
1− (γ2r)K

1− γ2r

) 1
2

C
1
2

PI,ρ,ν(K; r)

}
.

Theorem 6.13 upper bounds the performance loss and relates it to the number of samples
n, the capacity of the function space quantified by α, the number of iterations K, the
concentrability coefficients, and some other properties of the MDP such as LR, LP , and γ.

This theorem indicates that the effect of number of samples in the upper bound is

O(n−
1

2(1+α) ). This upper bound is notable because it is the minimax rate for the regression
problem when the regression function belongs to a function space F with a packing entropy in
the same form as in the upper bound of Assumption A16 [Yang and Barron, 1999]. Since the
regression problem is a subset of the policy evaluation subtask of RL/Planning problem, the
minimax rate for regression is also a minimax rate for the policy evaluation in RL/Planning
problems. Nevertheless, the optimality of the error bound for the policy evaluation task
does not necessarily imply that the algorithm has the optimal sample complexity rate for
the corresponding RL/Planning problem as well. The reason is that it is possible to get
close to the optimal policy, which is arguably the goal of learning, even though the estimate
of the action-value function is inaccurate.

The term CLSTD has two components that deserve some discussion. The first is CPI,ρ,ν(·; r)
that describes the effect of the sampling distribution ν and the evaluation distribution ρ, as
well as the transition probability kernel of the MDP itself on the performance loss. This term
has been thoroughly discussed in Chapter 3. The other term is CI that mainly describes the
effect of LR, LP , and supπ∈Π̂(F |A|) J(Qπ) on the performance loss. These quantities depend

on the MDP, as well as the function space F |A|. If the function space is “matched” with
the MDP, these quantities would be small, otherwise they may even be infinite.

Note that CI provides an upper bound on the constant in front of REG-LSTD procedure
by taking supremum over all policies in Π̂(F |A|). This might be a conservative estimate as
the actual encountered policies are the rather restricted random sequence π0, π1, . . . , πK−1

generated by the REG-LSPI procedure. One might expect that as Q̂(k) converges to Q∗, the
value of J(Qπk+1) also converges to J(Q∗). We postpone the analysis of this finer structure
of the problem to future work.

Theorem 6.13 might be compared with the result of Antos et al. [2008b], who intro-
duced a BRM-based API procedure and studied its statistical properties. Although these
two results address different algorithms (REG-LSPI vs. BRM), comparing them can still
be insightful. The simplified upper bound of Antos et al. [2008b] for ‖Q∗ − QπK‖1,ρ is

C
1/2
ρ,ν

√
VF log(n) + ln(K/δ)n−1/4, in which VF is the “effective” dimension of F and is de-

fined based on the pseudo-dimension of sub-graphs of F and the so-called “VC-crossing
dimension” of F ; and Cρ,ν is a concentrability coefficient and plays a similar rule to
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our CPI,ρ,ν(K; r). In contrast, our simplified upper bound is CLSTD(δ)n−
1

2(1+α) , in which

CLSTD(δ) can roughly be factored into C
1
2

PI,ρ,ν(K; r)C1(J(Qπ), LR, LP )
√

ln(K/δ).
One difference of these two results is that Antos et al. [2008b] consider parametric

function spaces, which have finite effective dimension VF . The way they use this as-
sumption is equivalent to assuming that logN1(u,F , x1:n) ≤ VF log( 1

u ) as opposed to

logN2(u,FB , x1:n) ≤ C
(
R
u

)2α
of Assumption A16. Our assumption lets us describe the

capacity of infinite dimensional function spaces F . Disregarding this crucial difference,
one may also note that our upper bound’s dependence on the number of samples (i.e.,

O(n−
1

2(1+α) )) is much faster than theirs (i.e., O(n−1/4)). This is more noticeable when
we apply our result to a finite dimensional function space, which can be done by letting
α → 0 at a certain rate, to recover the error upper bound of n−1/2. This improvement
is mainly because of more advanced techniques used in our analysis, e.g., the relative de-
viation tail inequality and the peeling device. The other difference is in the definition of
concentrability coefficients (CPI,ρ,ν(K) vs. Cρ,ν). In Definition 6.1, we use the expectation
of Radon-Nikodym derivative of two distributions while their definition uses the supremum
of a similar quantity. This can be a significant improvement in the multiplicative constant
of the upper bound. For more information regarding this improvement, which can also be
used to improve the result of Antos et al. [2008b] as well, refer to Chapter 3.

6.5 Conclusion and Future Work

In this work we introduced two regularization-based API algorithms to solve RL/Planning
problems with large state spaces. The core of these algorithms are novel policy evaluation
methods, namely REG-BRM and REG-LSTD, that estimate the action-value functions by
solving two coupled optimization problems with regularized objective functions. Our for-
mulation was general and could incorporate many types of function spaces and regularizers.

We showed how these algorithms can be implemented efficiently when the function space
is either the span of a finite number of basis functions (parametric model) or an RKHS
(nonparametric model). The RKHS formulation has some advantages such as the generality
to work with different input domains and the ease of choosing/changing the kernel function
and consequently the function space. This flexibility is a key ingredient for an adaptive
algorithm.

Afterwards, we focused on the statistical properties of REG-LSPI and provided an error
upper bound on the performance loss of the resulting policy (Theorem 6.13). The error
bound showed the role of the sample size, complexity of function space (quantified by its
metric entropy in Assumption A16), and the intrinsic properties of MDP such as the be-
havior of concentrability coefficients and the smoothness-expansion property of the Bellman
operator (Assumption A19). The result showed that the dependence on the sample size for
the task of policy evaluation is optimal.

To our best knowledge this (and its conference version [Farahmand et al., 2009b]) along-
side our other work on Regularized Fitted Q-Iteration [Farahmand et al., 2008, 2009a, 2011a]
and Chapter 5) are the first work that address the finite-sample performance of a regularized
RL algorithm. Nevertheless, there have been a few other work that also used regularization
for RL/Planning problems without thoroughly analyzing them. We briefly mention them
in the what follows.

Jung and Polani [2006] studied adding regularization to BRM, but their solution is
restricted to deterministic problems. The main contribution of that work was the develop-
ment of fast incremental algorithms using sparsification techniques. The l1-regularization
has been considered by Loth et al. [2007], who were similarly concerned with incremen-
tal implementations and computational efficiency. Xu et al. [2007] provided a kernel-based
LSPI. They used sparsification to provide basis functions for the LSTD procedure. Although
sparsification controls the complexity of the estimate, to our best knowledge its effect on
the generalization error is not well-understood. Sparsification is fundamentally different
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from our approach. In our method, the empirical error and the regularization term jointly
determine the solution. In sparsification methods, however, one selects a subset of data
points based on some criteria and then use them as basis functions. Kolter and Ng [2009]
formulated an l1-regularization extension of LSTD and provided LARS-like algorithm [Efron
et al., 2004] to efficiently compute the solutions. Taylor and Parr [2009] unified several ker-
nelized reinforcement learning algorithms, and showed the equivalence of kernelized value
function approximators such as GPTD [Engel et al., 2005], the work of Xu et al. [2007], and
a few other methods with a model-based reinforcement learning algorithm that has certain
regularization on the transition kernel estimator, reward estimators, or both. Their result
was obtained by considering two separate regularized regression problems: one with the
reward function and the other with k(X,X ′) as the regression function. Thus it is different
from our formulation that is stated as a coupled optimization problem in an RKHS.

This work is a step forward to understand regularization-based algorithms for solving
RL/Planning problems. We briefly comment on several possibilities for future studies.
Computational Considerations. Devising a computationally efficient implementation
of REG-LSPI/BRM is important to ensure that it is a practical algorithm for real-world
problems. The naive implementation of these algorithms requires the computation time of
O(n3K), which is prohibitive for large sample sizes. One possible workaround is to reduce
the effective number of samples by the sparsification technique [Engel et al., 2005; Jung
and Polani, 2006; Xu et al., 2007]. The other is to use elegant vector-matrix multiplication
methods, which are used in iterative methods for matrix inversion, such as those based
on the Fast Multipole Methods [Beatson and Greengard, 1997] and the Fast Gauss Trans-
form [Yang et al., 2004]. These methods can reduce the computational cost of vector-matrix
multiplication from O(n2) to O(n log n), which results in computation time of O(n2K log n)
for REG-LSPI/BRM, at the cost of some small but controlled numerical error. Another
approach is to use stochastic gradient methods to approximately solve the corresponding
optimization problem. This is especially appealing in the light of results such as Bottou
and Bousquet [2008] who show that given a fixed amount of computation time, the gen-
eralization error resulting from learning with stochastic gradient methods as the optimizer
might be less than that of gradient descent methods. Refer to Section 5.6 for more detailed
discussion.
Other Regularizers. Our formulation of REG-BRM and REG-LSTD is general for many
classes of regularizers J . Our statistical analysis is also valid whenever the function space
satisfies the required metric entropy assumption (Assumption A16). Our closed-form solu-
tions of Section 6.3.1, however, is specially tailored to RKHS with its inner-product norm
and to parametric models with the l2-norm as the regularizer. One may indeed think of
other types of regularizers, such as total variation norm [Mammen and van de Geer, 1997]
or l1-norm.

The l1-regularization is a viable possibility and can be used to exploit sparsity of the
action-value function similar to the way it has been used in regression [Tibshirani, 1996].
Nevertheless, the use of the l1-regularization for LSTD/BRM is not computationally straight-
forward. The reason is that if we want to use the l1-norm in (6.11)-(6.12) or (6.13)-(6.14)
as the regularizer J , we do not have a closed-form solution for the coupled optimization
problems anymore. This prevents us from plugging-in ĥn(·;Q) directly to the second opti-
mization problem.

One idea is to solve these two optimization problems concurrently by a gradient-descent
method, and plug-in the most recent solution of ĥn(·;Q) into the second optimization prob-
lem. One should show that this procedure has a unique stable fixed point. By using a
two-time-scale gradient-descent algorithm, singular perturbation theory [Khalil, 2001, Chap-
ter 11] might provide a way to prove the convergence to a close neighborhood of the original
fixed-point solution. This claim requires further investigations.
Continuous Action Space. A practically important question is how to extend REG-
LSPI/BRM to deal with continuous action MDPs as well. Again, we face the same difficulties
as discussed in Section 5.6.
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Influence of the MDP on Smoothness. An open theoretical question is to characterize
the properties of MDP that determine the function space to which the action-value func-
tion belongs. A similar question is how the values of LP and LR in Assumption A19 are
related to the intrinsic properties of the MDP. We partially addressed this question for the
convolutional MDPs, but analysis for more general MDPs is remained to be done.
Model Selection. An important issue in the successful application of any RL/Planning
algorithm, including REG-LSPI/BRM, is the proper choice of parameters. In REG-BRM
and REG-LSTD we are faced with the choice of F |A| and the corresponding regularization

parameters λQ,n and λh,n. In Theorem 6.13 we select λh,n = λQ,n = [ 1
nJ2(Qπ) ]

1
1+α . This

choice, however, requires the knowledge of J(Qπ) that is not available. In addition, we have
assumed that Qπ is in F |A| and the application of Tπ on some Q ∈ F |A| is well-behaving,
i.e., the roughness of TπQ measured according to the natural norm of the space, J(TπQ),
is not much larger than J(Q). In other words, one must select a function space F |A| that
“matches” with the MDP. In Chapter 7, we address the question of parameter selection in
the RL/Planning context and introduce BErMin, a complexity-regularization-based model
selection algorithm, and analyze its properties.
Other Technical Questions. A technical question that has not yet been addressed is how
to extend our results from the i.i.d. process to more general mixing processes [Doukhan,
1994; Yu, 1994]. A possible approach is to use independent block technique – similar to
Chapter 4. We postpone this extension to future research.

Appendices

Proofs and Auxiliary Results

In these appendices, we first prove Theorem 6.3, which provides the closed-form solutions
for REG-LSTD and REG-BRM when the function space is an RKHS (Appendix 6.A).
After that, we prove Lemma 6.5, which is an extension of Theorem 21.1 of Györfi et al.
[2002] (Appendix 6.B). Moreover, we present a modified version of Theorem 10.2 of van de
Geer [2000] (Appendix 6.C). We then prove the covering number bound of Lemma 6.10
(Appendix 6.D). Afterwards, we introduce convolutional MDPs as an instance of problems
that satisfy Assumption A19 (Appendix 6.E).

6.A Proof of Theorem 6.3

Proof. REG-BRM: First, notice that the optimization problem (6.23) can be written in

the form cn(Q)+λQ,n ‖Q‖2H
Q→ min! with an appropriately defined functional cn. In order to

apply the Representer theorem [Schölkopf et al., 2001], we require to show that cn depends
on Q only through the data-points Z1, Z

′
1, . . . , Zn, Z

′
n. This is immediate for all the terms

that define cn except the term that involves ĥn(·;Q). However, since ĥn is defined as the
solution to the optimization problem (6.22), calling for the Representer theorem once again,

we observe that ĥn can be written in the form

ĥn(·;Q) =

n∑
t=1

β∗t k(Zt, ·),

where β∗ = (β∗1 , . . . , β
∗
t )> satisfies

β∗ = argmin
β∈Rn

[∥∥∥Khβ − T̂πkQ
∥∥∥2

n
+ λβ>Khβ

]
.

Solving this minimization problem leads to

β∗ = (Kh + nλh,nI)−1(T̂πkQ).
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In both equations (T̂πkQ) is viewed as the n-dimensional vector((
T̂πkQ

)
(Z1), . . . ,

(
T̂πkQ

)
(Zn)

)>
=
(
R1 + γQ(Z ′1), . . . , Rn + γQ(Z ′n)

)>
.

Thus, β∗ depends on Q only through Q(Z ′1), . . . , Q(Z ′n). Plugging this solution into (6.23),
we get that cn(Q) indeed depends on Q through

Q(Z1), Q(Z ′1), · · · , Q(Zn), Q(Z ′n),

and thus on data points Z1, Z
′
1, · · · , Zn, Z ′n. The Representer theorem then implies that the

minimizer of cn(Q) + λQ,n ‖Q‖2H can be written in the form Q(·) =
∑2n
i=1 α̃ik(Z̃i, ·), where

Z̃i = Zi if i ≤ n and Z̃i = Z ′i−n, otherwise.
Let α̃ = (α1, . . . , αn, α

′
1, . . . , α

′
n)>, using the reproducing kernel property of k we get

the optimization problem

‖C1KQα̃− (r + γC2KQα̃)‖2n − ‖B(r + γC2KQα̃)‖2n + λQ,nα̃
>KQα̃

α̃→ min!.

Solving this for α̃ concludes the proof for REG-BRM.
REG-LSTD: The first part of the proof that shows cn depends on Q only through the data-
points Z1, Z

′
1, . . . , Zn, Z

′
n is exactly the same as the proof of REG-BRM. Thus, using the Rep-

resenter theorem, the minimizer of (6.25) can be written in the form Q(·) =
∑2n
i=1 α̃ik(Z̃i, ·),

where Z̃i = Zi if i ≤ n and Z̃i = Z ′i−n, otherwise. Let α̃ = (α1, . . . , αn, α
′
1, . . . , α

′
n)>, using

the reproducing kernel property of k we get the optimization problem

‖(C1 − γEC2)KQα̃−Er‖2n + λQ,nα̃
>KQα̃

α̃→ min!.

Replacing C1 − γEC2 with F and solving for α̃ concludes the proof.

6.B Proof of Lemma 6.5

Proof of Lemma 6.5. Without loss of generality, assume thatQmax ≥ 1/2. Denote z = (x, a)
and let Z = (X,A) ∼ ν, R ∼ R(·|X,A), and X ′ ∼ P (·|X,A) be random variables that are
independent of Dn = {(Xi, Ai, Ri, X

′
i)}ni=1. Define the following error decomposition∫

X×A

∣∣∣ĥn(z;Q)− TπQ(z)
∣∣∣2 dν(z) = E

[∣∣∣ĥn(Z;Q)− [R+ γQ(X ′, π(X ′))]
∣∣∣2∣∣∣∣Dn]−

E
[
|TπQ(Z)− [R+ γQ(X ′, π(X ′))]|2

]
= I1,n + I2,n,

with

1

2
I1,n =

1

n

n∑
i=1

∣∣∣ĥn(Zi;Q)− [Ri + γQ(X ′i, π(X ′i))]
∣∣∣2 − |TπQ(Zi)− [Ri + γQ(X ′i, π(X ′i))]|

2
+

λh,n

(
J2(ĥn(·;Q)) + J2(Q) + J2(TπQ)

)
,

I2,n = E
[∣∣∣ĥn(Z;Q)− T̂πQ(Z)

∣∣∣2 − ∣∣∣TπQ(Z)− T̂πQ(Z)
∣∣∣2∣∣∣∣Dn]− I1,n.

By the optimizer property of ĥn(·;Q), we get

I1,n ≤ 2

[
1

n

n∑
i=1

∣∣∣TπQ(Zi)− T̂πQ(Zi)
∣∣∣2 − ∣∣∣TπQ(Zi)− T̂πQ(Zi)

∣∣∣2 +

λh,n
(
J2(TπQ) + J2(Q) + J2(TπQ)

) ]
= 4λh,nJ

2(TπQ) + 2λh,nJ
2(Q). (6.48)
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Now we turn to P {I2,n > t}. Given functions h,Q ∈ F |A| and a fixed policy π, for
w = (x, a, r, x′) define g : X ×A× R×X → R as

gh,Q(w) = |h(z)− [r + γQ(x′, π(x′))]|2 − |TπQ(z)− [r + γQ(x′, π(x′))]|2 .

Define the following function spaces for l = 0, 1, . . . :

Gl ,
{
g : X ×A× R×X → R : h,Q, TπQ ∈ F |A|; J2(h), J2(Q), J2(TπQ) ≤ 2lt

λh,n

}
.

Denote W = (X,A,R,X ′) and Wi = (Xi, Ai, Ri, X
′
i). Apply the peeling device to get

P {I2,n > t} ≤
∞∑
l=0

P

(
∃h,Q ∈ F |A|, 2lt I{l 6=0} ≤ 2λh,n

(
J2(h) + J2(Q) + J2(TπQ)

)
< 2l+1t;

s.t.
E [gh,Q(W )|Dn]− 1

n

∑n
i=1 gh,Q(Wi)

t+ 2λh,n (J2(h) + J2(Q) + J2(TπQ)) + E [gh,Q(W )|Dn]
>

1

2

)

≤
∞∑
l=0

P

(
sup
g∈Gl

E [g(W )|Dn]− 1
n

∑n
i=1 g(Wi)

2lt+ E [g(W )|Dn]
>

1

2

)
.

Here we used the simple fact that if J2(h) + J2(Q) + J2(TπQ) < 2lt
λh,n

, then J2(h), J2(Q),

and J2(TπQ) are also smaller than 2lt
λh,n

.

We study the the behavior of the lth term of the above summation by verifying the
conditions of Lemma 4.7 – similar to what we did in the proof of Lemma 6.11.

It is easy to verify that (A1) and (A2) are satisfied with the choice of K1 = K2 = 4Q2
max.

Condition (A3) is satisfied whenever

t ≥ c1
n
, (6.49)

for some constant c1 > 0 depending on Qmax (the constant can be set to c1 = 2×46082Q2
max).

To verify condition (A4), we first require an upper bound on N2(u,Gl, w1:n) for any
sequence w1:n. This can be done similar to the proof of Lemma 6.10: denote Fl = {f : f ∈
F , J2(f) ≤ 2lt

λh,n
}. For gh1,Q1

, gh2,Q2
∈ Gl and any sequence w1:n we have

1

2

n∑
i=1

|gh1,Q1
(wi)− gh2,Q2

(wi)|2

≤ 12(2 + γ)2Q2
max

1

n

n∑
i=1

[
|h1(zi)− h2(zi)|2 + 4γ2 |Q1(x′i, π(x′i))−Q2(x′i, π(x′i))|

2
+

|TπQ1(zi)− TπQ2(zi)|2
]

≤ 12(2 + γ)2Q2
max

1

n

n∑
i=1

∑
a∈A

[
|h1(xi, a)− h2(xi, a)|2 + 4γ2 |Q1(x′i, a)−Q2(x′i, a)|2 +

|TπQ1(xi, a)− TπQ2(xi, a)|2
]
.

With the same covering set argument as in the proof of Lemma 6.10, we get that for any
u > 0,

N2(18
√

2|A|Qmax u,Gl, w1:n) ≤ N2(u,Fl, x1:n)|A| ×N2(u,Fl, x′1:n)|A| ×N2(u,Fl, x1:n)|A|.

Evoke Assumption A16 to get

logN2(u,Gl, w1:n) ≤ c(|A|, Qmax)

(
2lt

λh,n

)α
u−2α.
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Plugging this covering number result into condition (A4), one can verify that the condi-
tion is satisfied if

t ≥ c2
nλαh,n

, (6.50)

for a constant c2 > 0, which is the function of Qmax and |A| only. Therefore, Lemma 4.7
indicates that

P {I2,n > t} ≤ 60

∞∑
l=0

exp

(
− n(t+ 2lt)(1/4)(1/2)

128× 2304×max{16Q4
max, 4Q

2
max}

)
≤ c3 exp(−c4nt).

(6.51)

for some constants c3, c4 > 0.
Combining (6.48), (6.49), (6.50), and (6.51), we find that there exist constants c5, c6 > 0

such that for any n ∈ N and 0 < δ < 1, we have

∥∥∥ĥn(Q)− TπQ
∥∥∥2

ν
≤ 4λh,nJ

2(TπQ) + 2λh,nJ
2(Q) + c5

1

nλαh,n
+ c6

ln(1/δ)

n
.

Here, c5 is a function of Qmax and |A| only, and c6 is a function of Qmax.

6.C Proof of Theorem 6.6

To prove Theorem 6.6, we use a modification of Lemmas 3.2 and 8.4 by van de Geer [2000]
specialized to our problem.

Let us denote z = (x, a) ∈ Z = X ×A and Z ′ = (x, a,R,X ′) ∈ Z ′ = X ×A×R×X with
(R,X ′) ∼ P (·, ·|x, a). Let Dn denote the set {(xi, ai, Ri, X ′i)}ni=1 of independent random
variables. We use zi to refer to (xi, ai) and Z ′i to refer to (xi, ai, Ri, X

′
i). Let Pn be the

probability measure that puts mass 1/n on z1, . . . , zn, i.e., Pn = 1
n

∑n
i=1 δzi , in which δz is

the Dirac’s delta function that puts a mass of 1 at z.
Denote G : Z → R and G′ : Z ′ → R3|A| that is defined as G′ =

{
(Q,TπQ,1) : Q ∈ F |A|

}
with 1 : X ×A → R|A| being a bounded constant function (and not necessarily equal to 1).
We use ‖g‖∞ and ‖g′‖∞ to denote the supremum norm of functions in G and G′, respectively.

The supremum norm of (g, g′) ∈ G × G′ is defined by ‖(g, g′)‖∞ , max{‖g‖∞ , ‖g′‖∞}.
For g ∈ G, we define ‖g‖Pn , [ 1

n

∑n
i=1 g

2(zi)]
1/2. To simplify the notation, we use the

following definition of the inner product: Fix n ∈ N. Consider z1, . . . , zn as a set of
points in Z, and a real-valued sequence w = (w1, . . . , wn). For a function g ∈ G, define
〈w , g 〉n , 1

n

∑n
i=1 wig(zi).

For any g′ = (Q,TπQ,1) ∈ G′, define the mapping W̄ (g′)(x, a, r, x′) : X×A×R×X → R
by W̄ (g′)(x, a, r, x′) = r 1+γQ(x′, π(x′))−TπQ(x, a). For any fixed g′ ∈ G′ and i = 1, . . . , n,
define the random variables Wi(g

′) = W̄ (g′)(Z ′i) and let W (g′) denote the random vector
[W1(g′) . . .Wn(g′)]>. Notice that Wi(g

′) can be re-written as Wi(g
′) = (Ri − rπ(zi)) +

γ(Q(zi)−PπQ(X ′, π(X ′)), thus for any fixed g′, E [Wi(g
′)] = 0 (i = 1, . . . , n). For notational

simplification, we use a ∨ b = max{a, b}.

Lemma 6.14 (Modified Lemma 3.2 of van de Geer [2000]). Fix the sequence (zi)
n
i=1 ⊂ Z and

let (Z ′i)
n
i=1 ⊂ Z ′ be the sequence of independent random variables defined as above. Assume

that for some constants L ≥ R > 0, it holds that supg∈G ‖g‖Pn ≤ R, supg′∈G′ ‖g′‖∞ ≤ L,
and |Ri| ≤ L (1 ≤ i ≤ n) almost surely. There exists a constant C such that for all 0 ≤ ε < δ
satisfying

√
n(δ − ε) ≥ C L

[∫ R

ε
28L

[logN∞(u,G × G′)]1/2du ∨R

]
, (6.52)
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we have

P

{
sup

(g,g′)∈G×G′

∣∣∣∣∣ 1n
n∑
i=1

Wi(g
′)g(zi)

∣∣∣∣∣ ≥ δ
}
≤ 2 exp

(
− n(δ − ε)2

27 · 37 (RL)2

)
.

The difference of this lemma with Lemma 3.2 of van de Geer [2000], other than the
fact that we specialized it to our specific choice of W , is that the latter assumes that the
components of W are independent random variables, while we let W (g′) be a function of
g′ ∈ G′. This is required for our particular application in Theorem 6.6. Let us turn to the
proof of this result.

Proof. First note that for any g1, g2 ∈ G, and g′1, g
′
2 ∈ G′, we have

1

n

n∑
i=1

Wi(g
′
1)g1(zi)−Wi(g

′
2)g2(zi) =

1

n

n∑
i=1

(Ri − r(zi))(g1(zi)− g2(zi))

+
1

n

n∑
i=1

γ [(Q1(X ′i, π(X ′i))− PπQ1(zi))− (Q2(X ′i, π(X ′i))− PπQ2(zi))] g1(zi)

+
1

n

n∑
i=1

γ(Q2(X ′i, π(X ′i))− PπQ2(zi))(g1(zi)− g2(zi))

≤ 2L ‖g1 − g2‖Pn + γR [‖Q1 −Q2‖∞ + ‖PπQ1 − PπQ2‖∞] + 3γL ‖g1 − g2‖Pn
= (2 + 3γ)L ‖g1 − g2‖Pn + γR ‖Q1 −Q2‖∞ +R ‖TπQ1 − TπQ2‖∞ , (6.53)

where we used the boundedness assumptions, the definition of the supremum norm, and
1
n

∑n
i=1 |g1(zi)− g2(zi)| ≤ ‖g1 − g2‖Pn to get the inequality.

Let {(gsj , g′j
s
)}Nsj=1 with Ns = N∞(2−sR,G × G′) be a minimal 2−sR-covering of G × G′

w.r.t. the supremum norm. For any (g, g′) ∈ G × G′, there exists a (gs, (Qs, (TπQ)s,1)) =
(gs, g′s) ∈ {(gsj , g′j

s
)}Nsj=1 such that ‖(g, g′)− (gs, g′s)‖∞ ≤ 2−sR (Note that (TπQ)s should

be interpreted as a function from the covering set). This implies that ‖Qs −Q‖∞ and
‖(TπQ)s − TπQ‖∞ are smaller than 2−sR as well. Moreover, ‖gs − g‖Pn ≤ ‖g

s − g‖∞ ≤
2−sR. By (6.53) we get∣∣∣∣∣ 1n

n∑
i=1

Wi(g
′s)gs(zi)−Wi(g)g(zi)

∣∣∣∣∣ ≤ [(2 + 3γ)L+ (1 + γ)R](2−sR) ≤ (3 + 4γ)L(2−sR)

≤ 7RL 2−s.

Choose S = min{s ≥ 1 : 2−s ≤ ε
7RL}, which entails that for any (g, g′) ∈ G × G′, the

mesh defined by {(gSj , g′j
S

)}NSj=1 approximates the inner product of [g(z1) · · · g(zn)]> and
W (g′) with an error less than ε. So it suffices to prove the exponential inequality for

P

{
max

j=1,...,NS

∣∣∣∣∣ 1n
n∑
i=1

Wi(g
′
j
S

)gSj (zi)

∣∣∣∣∣ ≥ δ − ε
}
.

We use chaining technique as follows (we choose g0 ≡ 0, so Wi(g
′0)g0(zi) = 0 for all
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1 ≤ i ≤ n):

1

n

n∑
i=1

Wi(g
′S)gS(zi) =

1

n

n∑
i=1

S∑
s=1

(
Wi(g

′s)gs(zi)−Wi(g
′s−1)gs−1(zi)

)
=

S∑
s=1

[
1

n

n∑
i=1

(Ri − r(zi))(gs(zi)− gs−1(zi)) +

1

n

n∑
i=1

γ
[
(Qs(X ′i, π(X ′i))− (PπQ)s(zi))− (Qs−1(X ′i, π(X ′i))− (PπQ)s−1(zi))

]
gs(zi) +

1

n

n∑
i=1

γ(Qs−1(X ′i, π(X ′i))− (PπQ)s−1Qs−1(zi))(g
s(zi)− gs−1(zi))

]

Because each of these summations consist of bounded random variables with expectation
zero, we may use Hoeffding’s inequality alongside union bound to upper bound them. To
apply Hoeffding’s inequality, we require an upper bound on the sum of squared values
of random variables involved. To begin, we have |gs(zi) − gs−1(zi)| = |gs(zi) − g(zi) +
g(zi) − gs−1(zi)| ≤ 2−sR + 2−(s−1)R = 3 × 2−sR. Similarly, both

∥∥Qs −Qs−1
∥∥
∞ and∥∥(TπQ)s − (TπQ)s−1

∥∥
∞ are smaller than 3 × 2−sR. As a result, for the first term we get

1
n

∑n
i=1

[
(Ri − r(zi))(gs(zi)− gs−1(zi))

]2 ≤ 36(RL)22−2s. For the second term we have

1

n

n∑
i=1

∣∣γ [(Qs(X ′i, π(X ′i))− (PπQ)s(zi))− (Qs−1(X ′i, π(X ′i))− (PπQ)s−1(zi))
]
gs(zi)

∣∣2
≤ 2γ2

[∥∥Qs −Qs−1
∥∥2

∞ + γ−2
∥∥(TπQ)s − (TπQ)s−1

∥∥2

∞

]
‖gs‖2Pn

≤ 2(1 + γ2)32(2−sR)2R2 ≤ 36R42−2s,

in which we used
∥∥(PπQ)s − (PπQ)s−1

∥∥
∞ = γ−1

∥∥(TπQ)s − (TπQ)s−1
∥∥
∞. And finally,

1

n

n∑
i=1

∣∣γ(Qs−1(X ′i, π(X ′i))− (Pπ)s−1Q2(zi))(g
s(zi)− gs−1(zi))

∣∣2 ≤ (3L)232(2−sR)2

= 92(RL)22−2s,

where we used the fact that |γQ(X ′i, π(X ′i)) − γPπQ(zi)| = |r(zi) + γQ(X ′i, π(X ′i)) −
TπQ(zi)| ≤ (2 + γ)L ≤ 3L for any L-bounded Q and TπQ.

Let ηs be a sequence of positive real-valued numbers satisfying
∑S
s=1 ηs ≤ 1. We have
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P1 = P

{
sup

(g,g′)∈G×G′

∣∣∣∣∣ 1n
n∑
i=1

Wi(g
′)g(zi)

∣∣∣∣∣ ≤ δ
}

≤ P

{
max

j=1,...,NS

∣∣∣∣∣ 1n
n∑
i=1

Wi(g
′
j
S

)gSj (zi)

∣∣∣∣∣ ≥ δ − ε
}

≤
S∑
s=1

P

{∣∣∣∣∣ 1n
n∑
i=1

(Ri − r(zi))(gs(zi)− gs−1(zi))

∣∣∣∣∣ ≥ ηs(δ − ε)
3

}

+ P

{∣∣∣∣∣ 1n
n∑
i=1

γ
[
(Qs(X ′i, π(X ′i))− (PπQ)s(zi))−

(Qs−1(X ′i, π(X ′i))− (PπQ)s−1(zi))
]
gs(zi)

∣∣∣∣∣ ≥ ηs(δ − ε)
3

}

+ P

{∣∣∣∣∣ 1n
n∑
i=1

γ(Qs−1(X ′i, π(X ′i))− (PπQ)s−1Qs−1(zi))(g
s(zi)− gs−1(zi))

∣∣∣∣∣ ≥ ηs(δ − ε)
3

}

≤
S∑
s=1

exp

(
− 2(δ − ε)2η2

sn

4× 92(RL)22−2s

)
+NsNs−1 exp

(
− 2(δ − ε)2η2

sn

4× 92R42−2s

)
+NsNs−1 exp

(
− 2(δ − ε)2η2

sn

3× 92(RL)22−2s

)
≤

S∑
s=1

exp

(
3 logNs −

2(δ − ε)2η2
sn

4× 92(RL)22−2s

)
. (6.54)

Choose

ηs =
33RL2−s(logNs)

1/2

√
n(δ − ε)

∨ 2−s
√
s

8
.

It can be shown that by this choice of ηs,
∑S
s=1 ηs ≤ 1. Take C in (6.52) sufficiently large

such that

√
n(δ − ε) ≥ 2× 33RL

S∑
s=1

2−s[logN∞(2−sL,G × G′)]1/2 ∨ 72
√

6 log 2RL. (6.55)

We have logNs ≤ n(δ−ε)2η2s
36(RL)22−2s , so P1 in (6.54) can be upper bounded as follows

P1 ≤
S∑
s=1

exp

(
− n(δ − ε)2η2

s

2× 35(RL)22−2s

)
.

Since ηs ≥ 2−s
√
s/8 too, we have

P1 ≤
S∑
s=1

exp

(
− n(δ − ε)22−2ss

27 × 35(RL)22−2s

)
≤
∞∑
s=1

exp

(
− n(δ − ε)2s

27 × 35(RL)2

)
≤

exp
(
− n(δ−ε)2

27×35(RL)2

)
1− exp

(
− n(δ−ε)2

27×35(RL)2

)
≤ 2 exp

(
− n(δ − ε)2

27 × 35(RL)2

)
,

where in the last inequality we used the assumption that
√
n(δ − ε) ≥ 72

√
6 log 6RL

(cf. (6.55)).
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One can show that (6.55) is satisfied if

√
n(δ − ε) ≥ 36L

∫ R

ε
28L

[logN∞(u,G × G′)]1/2du ∨ 72
√

6 log 2RL,

so C can be chosen as C = 36(2
√

6 log 2R ∨ 1).

The following lemma, which is based on Lemma 6.14, is used in the proof of Theorem 6.6.

Lemma 6.15 (Modified Lemma 8.4 of van de Geer [2000]). Fix the sequence (zi)
n
i=1 ⊂ Z and

define Pn = 1
n

∑n
i=1 δzi . Let (Z ′i)

n
i=1 ⊂ Z ′ be the sequence of independent random variables

defined as before. Assume that for some constants L ≥ R > 0, it holds that supg∈G ‖g‖Pn ≤
R, supg′∈G′ ‖g′‖∞ ≤ L, and |Ri| ≤ L (1 ≤ i ≤ n) almost surely. Furthermore, suppose that
there exit 0 < α < 1 and a finite constant A such that for all u > 0, logN∞(u,G × G′) ≤
Au−2α. Then for some constant c depending only on R, L, and α, for all t ≥ c/

√
n, we

have

P

{
sup

(g,g′)∈G×G′

| 〈W (g′) , g 〉n |
‖g‖1−αPn

≥ t

}
≤ c exp

(
−nt

2

c2

)
.

Proof. The proof is essentially the same as the original proof of Lemma 8.4 of van de Geer
[2000] with the difference that all supg∈G, s.t. ‖g‖Qn≤δ

in that proof should be replaced by

sup(g,g′)∈G×G′ s.t. ‖g‖Pn≤δ
.

Let us now turn to the proof of Theorem 6.6.

Proof of Theorem 6.6. We reproduce the proof of Theorem 10.2 by van de Geer [2000] with
some modifications in order to get a high probability bound that holds uniformly over Q.

Recall that in the optimization problem, we use wi = (Xi, Ai, Ri, X
′
i) (i = 1, . . . , n) to

denote the ith elements of the dataset Dn = {(Xi, Ai, Ri, X
′
i)}ni=1. Also for a measurable

function f : X ×A×R×X → R, we denote ‖f‖2n = 1
n

∑n
i=1 |f(wi)|2. We also let (X,A) ∼ ν,

R ∼ R(·|X,A), and X ′ ∼ P (·|X,A) be random variables that are independent of Dn.
For anyQ ∈ F |A| and the corresponding TπQ ∈ F |A|, define the mapping, W̄ (Q,TπQ,1) :

X ×A×R×X → R by W̄ (Q,TπQ,1)(X,A,R,X ′) = R 1+γQ(X ′, π(X ′))−TπQ(X,A), in
which 1 ∈ F |A| is the constant function defined on X×A with the value of one. For any fixed
Q and i = 1, . . . , n, define the random variables Wi(Q) = W̄ (Q,TπQ,1)(Xi, Ai, Ri, X

′
i) and

let W (Q) denote the random vector [W1(Q) . . .Wn(Q)]>. Notice that |Wi(Q)| ≤ 3Qmax,
and we have E [Wi(Q) | Q] = 0 (i = 1, . . . , n).

From the optimizing property of ĥn = ĥn(·, Q), we have∥∥∥ĥn(·;Q)− [R+ γQ(X ′i, π(X ′i))]
∥∥∥2

n
+ λh,nJ

2(ĥn(·;Q)) ≤

‖TπQ− [R+ γQ(X ′i, π(X ′i))]‖
2
n + λh,nJ

2(TπQ).

After rearranging, we get∥∥∥ĥn(·;Q)− TπQ
∥∥∥2

n
+ λh,nJ

2(ĥn(·;Q)) ≤ 2
〈
W (Q) , ĥn(·;Q)− TπQ

〉
n

+ λh,nJ
2(TπQ).

To upper bound
∣∣∣〈W (Q,TπQ) , ĥn(·;Q)− TπQ

〉
n

∣∣∣, we consider two cases: when J(ĥn(·;Q))+

J(Q) + J(TπQ) is larger or equal to one and the other when it is smaller. First we focus on

when J(ĥn(·;Q)) + J(Q) + J(TπQ) ≥ 1.
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When J(ĥn(·;Q))+J(Q)+J(TπQ) ≥ 1: Define the normalized function spacesG : X×A →
R and G′ : X ×A× R×X → R3 as follows

G =

{
h− TπQ

J(h) + J(Q) + J(TπQ)
: h,Q ∈ F |A|, J(h) + J(Q) + J(TπQ) ≥ 1

}
,

G′ =

{
(Q,TπQ,1)

J(h) + J(Q) + J(TπQ)
: h,Q ∈ F |A|, J(h) + J(Q) + J(TπQ) ≥ 1

}
.

The functions in G and G′ are bounded by 2Qmax and (Qmax, Qmax, 1), respectively. To
show this for G′, note that for any g′ ∈ G′, we have the following component-wise inequalities:

|g′| =
∣∣∣∣ (Q,TπQ,1)

J(h) + J(Q) + J(TπQ)

∣∣∣∣ ≤ (Qmax, Qmax, 1)

J(h) + J(Q) + J(TπQ)
≤ (Qmax, Qmax, 1),

because J(h) +J(Q) +J(TπQ) ≥ 1 in addition to the fact that all Q and TπQ are bounded
by Qmax. A similar argument shows the boundedness of any g ∈ G as well, and as a result
1
n

∑n
i=1 |g(Xi, Ai)|2 ≤ Q2

max.

It is easy to see that for finite |A|, if logN∞(u, {f ∈ F : J(f) ≤ 1}) ≤ C
(

1
u

)2α
, then

logN∞(u, {f ∈ F |A| : J(f) ≤ 1}) ≤ C1u
−2α. Here the constant C1 depends on |A|. Since

all functions g ∈ G has J(f) smaller than 1, one can see that G ⊂ {f ∈ F |A| : J(f) ≤ 1}.
Therefore, logN∞(u,G) ≤ C1u

−2α too.
To upper bound the capacity of G′, notice that for any (f (1), f (2), f (3)) = g′ ∈ G′,

the value of J(f (1)), J(f (2)), and J(f (3)) are all smaller than 1 (recall that J(1) ≤ 1 by
assumption). So G′ is a subset of the product space {f ∈ F |A| : J(f) ≤ 1}3, and as a result
logN∞(u,G′) ≤ 3Cu−2α. Therefore, logN∞(u,G × G′) ≤ Au−2α for some constant A > 0.

Lemma 6.15, applied on the probability space obtained by conditioning on {(X1, A1), . . . , (Xn, An)},
implies that there exists a finite constant c > 0 such that for any δ > 0,〈

Ri1+γQ(X′i,π(X′i))−T
πQ(Xi,Ai)

J(h)+J(Q)+J(TπQ) , ĥn−TπQ
J(h)+J(Q)+J(TπQ)

〉
n∥∥∥ ĥn−TπQ

J(h)+J(Q)+J(TπQ)

∥∥∥1−α

n

≤ sup
(g,g′)∈G×G′

|〈W (g′) , g 〉n|
‖g‖1−αn

≤ c
√

ln(c/δ)

n

holds with probability at least 1− δ. Therefore for some constant c1 > 0,∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤

c1

∥∥∥ĥn − TπQ∥∥∥1−α

n

(
J(ĥn) + J(Q) + J(TπQ)

)1+α
√

ln(1/δ)

n
+ λh,nJ

2(TπQ) (6.56)

holds, with probability at least 1 − δ. We consider two cases depending whether J(ĥn) >

J(Q) + J(TπQ) or J(ĥn) ≤ J(Q) + J(TπQ).
Case 1. J(ĝn) > J(Q) + J(TπQ): From (6.56) we have

∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤ 21+αc1

∥∥∥ĥn − TπQ∥∥∥1−α

n
Jα(ĥn)

√
ln(1/δ)

n
+ λh,nJ

2(TπQ).

Therefore, at least one of the following inequalities holds:∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤ 22+αc1

∥∥∥ĥn − TπQ∥∥∥1−α

n
Jα(ĥn)

√
ln(1/δ)

n
, (6.57)∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤ 2λh,nJ
2(TπQ). (6.58)
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From (6.57) we infer that ‖ĥn − TπQ‖n ≤ c2[J(ĥn)]
α

1+α

(
ln(1/δ)
n

) 1
2(1+α)

for some con-

stant c2 > 0, which can be set to c2 = 2
2+α
1+α c

1
1+α

1 . Plug this result into (6.57) to get

J(ĥn) ≤ c3λ
− 1+α

2

h,n

√
ln(1/δ)
n for some c3 > 0. Use this upper bound on J(ĥn) to infer that

‖ĥn − TπQ‖n ≤ c4λ
−α2
h,n

√
ln(1/δ)
n . From inequality (6.58), we get that ‖ĥn − TπQ‖n ≤

√
2λ

1/2
h,nJ(TπQ) and J(ĥn) ≤

√
2J(TπQ).

Case 2. J(ĝn) ≤ J(Q) + J(TπQ) and J(Q) + J(TπQ) > 0: Evidently, J(ĝn) ≤ J(Q) +

J(TπQ), so we focus on upper bounding ‖ĥn − TπQ‖n. From (6.56), we have∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤

21+α c1

∥∥∥ĥn − TπQ∥∥∥1−α

n
(J(Q) + J(TπQ))

1+α

√
ln(1/δ)

n
+ λh,nJ

2(TπQ).

Similar to the previous case, either of the following inequalities holds:∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤ 22+α c1

∥∥∥ĥn − TπQ∥∥∥1−α

n
(J(Q) + J(TπQ))

1+α

√
ln(1/δ)

n
,

(6.59)∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn) ≤ 2λh,nJ
2(TπQ). (6.60)

From (6.59), we infer that ‖ĥn − TπQ‖n ≤ c5 (J(Q) + J(TπQ))
(

ln(1/δ)
n

) 1
2(1+α)

for some

constant c5 > 0. Inequality (6.60) results in ‖ĥn − TπQ‖n ≤
√

2J(TπQ)λ
1/2
h,n.

Taking the maximum over the upper bounds in all four cases, we get that there exist
some c6(α), c7(α) > 0 such that for any fixed n ∈ N and 0 < δ < 1,∥∥∥ĥn − TπQ∥∥∥

n
≤ c6 max

{
λ
−α/2
h,n

√
ln(1/δ)

n
, J(TπQ)λ

1/2
h,n, (J(Q) + J(TπQ))

(
ln(1/δ)

n

) 1
2(1+α)

}
,

J(ĥn(·;Q)) ≤ c7 max

{
J(TπQ) + J(Q), λ

− 1+α
2

h,n

√
ln(1/δ)

n

}
(6.61)

holds with probability at least 1− δ.
When J(ĥn(·;Q)) + J(Q) + J(TπQ) < 1: This case is similar to the previous one with the
exception that we do not require to define normalized function spaces, i.e.,

G =
{
h− TπQ : h,Q ∈ F |A|, J(h) + J(Q) + J(TπQ) < 1

}
,

G′ =
{

(Q,TπQ,1) : h,Q ∈ F |A|, J(h) + J(Q) + J(TπQ) < 1
}
.

The capacities of these two function spaces are bounded by their definition. So Lemma 6.15
implies that there exists a finite constant c > 0 such that for any δ > 0,〈

Ri1 + γQ(X ′i, π(X ′i))− TπQ(Xi, Ai) , ĥn − TπQ
〉
n∥∥∥ĥn − TπQ∥∥∥1−α

n

≤ sup
(g,g′)∈G×G′

|〈W (g′) , g 〉n|
‖g‖1−αn

≤ c
√

ln(c/δ)

n

holds with probability at least 1− δ. Therefore for some constant c1 > 0,∥∥∥ĥn − TπQ∥∥∥2

n
+ λh,nJ

2(ĥn(·;Q)) ≤ c1
∥∥∥ĥn − TπQ∥∥∥1−α

n

√
ln(1/δ)

n
+ λh,nJ

2(TπQ)
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holds, with probability at least 1−δ. Thus, either ‖ĥn−TπQ‖2n ≤ 2c1‖ĥn−TπQ‖1−αn

√
ln(1/δ)
n

or ‖ĥn−TπQ‖2n ≤ 2λh,nJ
2(TπQ), with the same probability. This implies that there exists

a constant c8 > 0 such that for any fixed n ∈ N and 0 < δ < 1,

∥∥∥ĥn − TπQ∥∥∥
n
≤ c8 max

{
λ

1/2
h,nJ(TπQ),

(
ln(1/δ)

n

) 1
1+α

}
(6.62)

holds with probability at least 1 − δ. Evidently we also have J(ĥn(·;Q)) ≤ 1. Combining
inequalities (6.61) and (6.62) finishes the proof.

6.D Proof of Lemma 6.10

Next, we prove Lemma 6.10 that relates the covering number of Gσ1,σ2
to the covering

number of Fσ1
and Fσ2

.

Proof. For gQ1,h1 , gQ2,h2 ∈ Gσ1,σ2 and zi = (xi, ai), we have

1

n

n∑
i=1

|gQ1,h1
(zi)− gQ2,h2

(zi)|2

=
1

n

n∑
i=1

[
(Q1(zi)− h1(zi))

2 − (Q2(zi)− h2(zi))
2
]2

≤ 16Q2
max

1

n

n∑
i=1

[(Q1(zi)−Q2(zi)) + (h1(zi)− h2(zi))]
2

≤ 32Q2
max

1

n

n∑
i=1

|A|∑
j=1

[
(Q1,j(xi)−Q2,j(xi))

2
+ (h1,j(xi)− h2,j(xi))

2
]
.

Assumption A15 implies that Q1,j , Q2,j ∈ Fσ1
and h1,j , h2,j ∈ Fσ2

for all j = 1, · · · , |A|.
Therefore, an u-cover on Qj ∈ Fσ1 and hj ∈ Fσ2 (for j = 1, · · · , |A|) w.r.t. the empirical

norms ‖·‖x1:n
defines an 8Qmax

√
|A| u-cover on Gσ1,σ2

w.r.t. ‖·‖z1:n . Thus,

N2

(
8Qmax

√
|A|u,Gσ1,σ2

, (x, a)1:n

)
≤ N2 (u,Fσ1

, x1:n)
|A| ×N2 (u,Fσ2

, x1:n)
|A|

.

Assumption A16 then implies that for a constant c1, independent of u, |A|, Qmax, and α,
and for all ((x1, a1), . . . , (xn, an)) ∈ X ×A we have

logN2(u,Gσ1,σ2
, (x, a)1:n) ≤ c1|A|1+α

Q2α
max (σα1 + σα2 )u−2α.

6.E Convolutional MDPs and Assumption A19

In this appendix, we show that Assumption A19 holds for a certain class of MDPs. This
class is defined by one dimensional MDPs in which the next state X ′ is drawn according to
X ′ ∼ X +W (π(X)), in which W (a) is a probability distribution that is only a function of
a = π(X).

Proposition 6.16. Suppose that X = [−π, π] is the unit circle and F is the Sobolev space
Wk,2(X ) and J(·) is defined as the corresponding norm ‖·‖Wk,2 . For a function f ∈ F , let

f̃(n) be the nth Fourier coefficient, i.e., f̃(n) = 1
2π

∫ π
−π f(x)e−jnxdx. Consider the MDPs
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that have the convolutional transition probability kernel, that is, for any policy π and V ∈ F ,
there exists Kπ(x, y) = Kπ(x− y) such that∫

X
P (dy|x, π(x))V (y) =

∫
X
Kπ(x− y)V (y)dy = Kπ ∗ V.

Moreover, assume that Kπ, V ∈ L1(X ). For a given policy π, let rπ(x) = r(x, π(x)),
x ∈ X . Then Assumption A19 is satisfied with the choice of LR = supπ ‖rπ‖Wk,2 and

LP = supπ maxn |K̃π(n)|.

Proof. By the convolution theorem, K̃π ∗ V (n) = K̃π(n) Ṽ (n). It is also known that for

V ∈ F , we have ‖V ‖Wk,2 =
∑∞
n=−∞

(
1 + |n|2

)k |Ṽ (n)|2. Thus,

‖Kπ ∗ V ‖2Wk,2 =

∞∑
n=−∞

(1 + |n|2)k|K̃π(n)|2|Ṽ (n)|2 ≤
[
max
n
|K̃π(n)|2

] ∞∑
n=−∞

(1 + |n|2)k|Ṽ (n)|2

=
[
max
n
|K̃π(n)|2

]
‖V ‖2Wk,2 .

Therefore, ‖TπV ‖Wk,2 ≤ ‖rπ‖Wk,2 +γ
[
maxn |K̃π(n)|

]
‖V ‖Wk,2 . Taking supremum over all

policies finishes the proof.
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Chapter 7

Model Selection in
Reinforcement Learning

7.1 Introduction

One of the most important open questions in reinforcement learning is how to optimally
choose the function approximation architecture and its parameters for a given problem. For
instance, a designer must decide about the number, the location, and the shape of basis
functions of a radial basis function network; the number of layers and neurons in a neural
network; or the number of tilings and their resolutions in a tile coding (cf. Chapter 8 of
the book of Sutton and Barto [1998]). Other examples are the regularization coefficient
and/or kernel parameters of a regularized kernel-based reinforcement learning algorithm
(Chapters 5 and 6 of this work; Engel et al. 2005; Jung and Polani 2006; Loth et al. 2007;
Taylor and Parr 2009; Kolter and Ng 2009), or other parameters that directly or indirectly
determine the function approximation architecture (e.g., the parameters of the evolutionary
algorithm NEAT in Whiteson and Stone 2006). At an even higher level, one has to decide
about which of these function approximation methods should be used. All these can be
represented as a choice of parameters, if the word parameter is understood in a sufficiently
general sense.1

It is widely recognized that the best choice is problem dependent. Hence, it makes sense
to choose the parameters data-dependently with the ultimate goal of picking them such
that the resulting performance is almost as good as if the algorithm’s best, but unknown,
problem-dependent parameter setting was used.

In this chapter we study the problem of automatic parameters tuning in the offline
sampling scenario (Section 2.2) for MDPs. This problem is difficult because in the offline
sampling scenario there is no direct way to evaluate the performance of a given policy. We
investigate parameter tuning when we want to find a good approximation to the fixed point
of the Bellman optimality operator.

To make the goal of systematic parameter tuning clear, consider the following setting:
Assume that we are given a learning algorithm A that takes the data Dn and a parametrized
function space F |A|(p) and then proposes an action-value function Qn = A(Dn,F |A|(p))
which is an element of F |A|(p). The task of A, ideally, is to come up with a function
Qn ∈ F |A|(p) whose Bellman error is close to that of the best possible choice from F |A|(p).
For example, the algorithm A might be RFQI (Chapter 5) or REG-LSPI/BRM (Chapter 6).
And the parameter p might be the regularization coefficients and the parameter describing
the kernel function.

Suppose p∗ is the unknown parameter for the algorithm A on a given problem that
achieves the smallest Bellman error. The goal of this work is to design a parameter-tuning

1This chapter is the result of the collaboration of the author with Csaba Szepesvári.
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algorithm that, given the data, chooses a parameter p̂ such that the resulting performance is
(almost) as good as the performance of the algorithm A running on the data with F |A|(p∗).
If a parameter-tuning algorithm achieves this goal, we call it adaptive.

7.1.1 Contributions

In supervised learning, a classical method to achieve adaptivity is complexity regulariza-
tion [Barron, 1991; Bartlett et al., 2002; Wegkamp, 2003; Lugosi and Wegkamp, 2004]. A
straightforward adoption of complexity regularization to our problem suggests the following
procedure:

Assume that the possible parameter settings are enumerated in a list p1, p2, . . . . For
k = 1, 2, . . ., run algorithm A using the function space F |A|(pk) to obtain an action-value
function candidate Qk = A(Dn,F |A|(pk)). Next, estimate the Bellman error of Qk, e.g.,
using a hold-out data with n observations. Let the resulting estimate be BEn(Qk). Then
choose

k̂ = argmin
k≥1

[
C1 BEn(Qk) + C2

log k

n

]
,

where C1 ≥ 1 and C2 > 0 are well-chosen constants. Generic model selection results can
then be used to show that this procedure is indeed adaptive, provided that BEn(Qk) is an
unbiased estimate of the Bellman error of Qk (Theorem 7.1).

Unfortunately, we know of no way to derive an unbiased estimate of the Bellman error
of Qk based on a finite amount of data. Therefore the above procedure, which is standard
in supervised learning setting, is not adequate for reinforcement learning problems.

The main algorithmic contribution of the work is a method called BErMin, which is
similar to the above mentioned procedure, but can in fact be implemented and still achieves
adaptivity. This method overcomes the difficulty of not being able to measure the Bellman
error directly. We discuss BErMin in Section 7.3, and provide an intuitive explanation of
why the algorithm works (Section 7.3.1). After the pseudo-code of the algorithm is presented
in Section 7.3.2, we give an example of how BErMin may be used in conjunction with a
standard reinforcement learning algorithm, such as LSPI (Lagoudakis and Parr [2003]), in
order to make an almost parameter-free meta-algorithm (Section 7.3.3).

The main theoretical contribution of this work is Theorem 7.2 that shows that BErMin has
an oracle-like property (Section 7.4.2), in the sense that it selects the model with the mini-
mum Bellman error up to a multiplicative constant and some additional terms that converge
to zero. This indeed implies that the procedure is adaptive in a sense that will be precisely
defined (Theorem 7.3 in Section 7.4.3).

In addition to these main contributions, we provide some auxiliary results that might
have applications in more general than reinforcement learning context. In particular, The-
orem 7.1 is an umbrella result for complexity-regularization-based model selection, and its
application leads to Theorem 7.2. This theorem is a generalized form of Theorem 3 of
Bartlett et al. 2002 with some differences that we discuss in Section 7.4.1. Later on in
the appendix, we provide a noncentral tail inequalities for Hidden Markov Processes that
helps us to obtain faster rates by controlling the variance of a random variable (Lemma 7.4
and Lemma 7.7 in Section 7.C). Finally, in Section 7.D we provide a procedure to estimate
the excess error of a regression problem. Interesting on its own, this result will be used in
BErMin.

7.2 Problem Definition

Suppose that we are given a list of action-value functionsQ1, Q2, . . . , QP (with the possibility
of P > n, or even P = ∞) and a dataset Dn, the latter satisfying the standard offline
sampling assumption. Our goal is to devise a procedure that selects the action-value function
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amongst {Q1, . . . , QP } that has the smallest (integrated, squared) Bellman (optimality)
error. Thus, the ideal procedure would return Qk̂, where

k̂ = argmin
1≤k≤P

‖Qk − T ∗Qk‖2ν .

The idea of using the Bellman error as a criterion of optimization is not new. The al-
gorithms implementing generalized policy iteration can be viewed as working towards min-
imizing it, e.g., Lagoudakis and Parr [2003]; Antos et al. [2008b]. There are also some basis
generation/adaptation methods that use the Bellman error to guide their search, e.g., Men-
ache et al. [2005]; Keller et al. [2006]; Parr et al. [2007]. For a justification of minimizing
the Bellman error see the discussion in the paper by Antos et al. [2008b] following their
Theorem 4, or Lemma 7 of Antos et al. [2007].

Unfortunately, the Bellman error is not easy to work with. This is because neither T ∗

nor Tπ is available in the learning setting. Moreover, even though T̂ ∗ (T̂π) provides an
unbiased estimate to T ∗ (respectively, Tπ) in the sense of Proposition 2.1, these operators
cannot be used in a simple manner to estimate the Bellman error. One might think that
given any fixed function Q, the mean-squared empirical Bellman residual, ‖Q− T̂ ∗Q‖2n, is a
reasonable estimate to the Bellman error. However, it follows from a standard bias-variance
decomposition that

E
[
‖Q− T̂ ∗Q‖2n

]
= ‖Q− T ∗Q‖2ν + E

[
‖T̂ ∗Q− T ∗Q‖2n

]
6= ‖Q− T ∗Q‖2ν ,

which shows that ‖Q− T̂ ∗Q‖2n is a biased estimate. In fact, from the above decomposition,
we see that selecting the policies based on the mean-squared empirical Bellman residual

leads to favoring policies whose underlying variance-like term E
[
‖T ∗Q− T̂ ∗Q‖2n

]
is small,

as noted previously by, e.g., Menache et al. [2005] or Antos et al. [2008b].
The main contribution of this work is a procedure, BErMin, and its analysis that shows

that BErMin finds a candidate whose Bellman error is not much larger than that of the
best candidate.

Remark 7.1. In the analysis below, for the sake of simplicity, we assume that Q1, . . . , QP
are fixed deterministic functions. In practice, these functions would be estimated based
on some data, in which case, they would become random (data-dependent) functions. Our
results, however, still continue to hold provided that the sample Dn used to evaluate the
candidates is independent of Q1, . . . , QP . In particular, in this case the results can be stated
and proven on the probability space obtained by conditioning on the data that generated
Q1, . . . , QP (the proofs would work word-by-word with no further changes). The study of
the case when the same data is used to generate Q1, . . . , QP is left for future work. One
possible starting point for such a study could be the work by Antos et al. [2008b], who have
analyzed the theoretical properties of approximate policy iteration when the same data is
used in all iterations, with the main message of their result being that the correlations
arising from reusing the same data are not necessarily catastrophic.

7.3 Model Selection Algorithm for Bellman Error Min-
imization (BErMin)

The purpose of this section is to introduce BErMin, a complexity regularization-based
model selection algorithm for the problem of finding the Bellman error minimizer among
the action-value function candidates {Qk}Pk=1. The setup is as described in Section 7.2. We
start by describing the main idea behind the algorithm in Section 7.3.1, while the algorithm
itself is presented in Section 7.3.2. Finally in Section 7.3.3, we show an example of how
BErMin may be used to devise an almost parameter-free reinforcement learning algorithm
by modifying the conventional LSPI algorithm.
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Figure 7.1: When the problem is to estimate the difference between T ∗Qk (solid green line)
and Qk (bold, solid blue line) and the function T ∗Qk is unknown, one may use samples from
T̂ ∗Qk (red dots) and solve a regression problem to get Q̃k (dashed red line). This estimate
can be used in place of T ∗Qk to construct an estimate of T ∗Qk −Qk.

7.3.1 The Idea Behind the Algorithm

The basic idea behind our approach is that while the Bellman operator T ∗ itself is not
accessible, one still may approximately learn T ∗Q and use it to estimate the Bellman error.
Thanks to the definition of the empirical Bellman operator T̂ ∗ (Definition 2.8), the regression
function underlying

Dn,k =
{(

(X1, A1), (T̂ ∗Qk)(X1, A1)
)
, . . . ,

(
(Xn, An), (T̂ ∗Qk)(Xn, An)

)}
(7.1)

is T ∗Qk (cf. Proposition 2.1). Thus, we can feed Dn,k to a regression procedure which,
ideally, returns a “good” approximation to T ∗Qk. As the regression method one can use
any of the large number of state-of-the-art techniques, such as the regularized least-squares
regression algorithm of Chapter 4 (cf., the books by Hastie et al. 2001; Györfi et al. 2002;
Wasserman 2007; Rasmussen and Williams 2006; Bishop 2006). Although the discussion
of the relative merits of the available methods is beyond the scope of this chapter, we will
shortly be more specific about the desired properties of the method.

Let the action-value function returned by the chosen regression algorithm be denoted by
Q̃k. If Q̃k is close to T ∗Qk, then by calculating ‖Qk− Q̃k‖2n ≈ ‖Qk− Q̃k‖2ν ≈ ‖Qk−T ∗Qk‖2ν
one can select the action-value function with the smallest Bellman error based on computing

argmin
1≤k≤P

‖Qk − Q̃k‖2n.

Figure 7.1 depicts function Q̃k and its relation to Qk and T ∗Qk.
The problem with this procedure is that it might be overly optimistic and thus it may

result in an uncontrolled error. To see why, imagine that for some index k0 whose associated
Bellman error ‖Qk0−T ∗Qk0‖2ν is “large”, the regression procedure returns an estimate such
that ‖Qk0−Q̃k0‖2ν � ‖Qk0−T ∗Qk0‖2ν (for example, because the regression procedure might
be biased towards action-values close to zero, Qk0 might be close to zero, while T ∗Qk0 might
be far from zero, cf. also Figure 7.2). As a result, the above procedure will likely select k0,
and thus might miss some other index with a lower Bellman error. To avoid this problem,
we must guard the procedure against the underestimation of the Bellman error.

This situation is illustrated in Figure 7.2. The function T ∗Qk is once approximated by

Q̃
(1)
k and the other time by Q̃

(2)
k . For Q̃

(2)
k , the value of ‖Qk − Q̃(2)

k ‖ν is small, even though

112



Figure 7.2: Consider the problem of estimating the Bellman error ‖Qk−T ∗Qk‖2ν . If T ∗Qk is

replaced by a surrogate Q̃
(1)
k , ‖Qk − Q̃(1)

k ‖2ν gives a relatively good estimate of this quantity

because Q̃
(1)
k is close to T ∗Qk. However, when Q̃

(2)
k replaces T ∗Qk, the resulting estimate

of the Bellman error becomes poor and ‖Qk − Q̃(2)
k ‖2ν would be an underestimate of the

true Bellman error. This might lead to the unjust selection of the candidate Qk. One way
to protect oneself against such mistakes is to take into account how well the surrogate Q̃k
approximates T ∗Q.

it is a bad estimate of ‖Qk − T ∗Qk‖ν . On the other hand, ‖Qk − Q̃(1)
k ‖ν is a larger number

but provides a better estimate of the true Bellman error.
BErMin achieves this by correcting ‖Qk − Q̃k‖2ν with ‖T ∗Qk − Q̃k‖2ν . Since

‖Qk − T ∗Qk‖2ν ≤ 2
[
‖Qk − Q̃k‖2ν + ‖T ∗Qk − Q̃k‖2ν

]
,

the correction indeed prevents the choice of an overly optimistic estimate (the sum in the
brackets cannot be less than half of the estimated quantity). The first term of the right-
hand side can be estimated by ‖Qk − Q̃k‖2n. We further assume that we are provided with
a (tight) high-probability upper bound, b̄k, on ‖T ∗Qk − Q̃k‖2ν , i.e., ‖T ∗Qk − Q̃k‖2ν ≤ b̄k
with high probability. We propose to select the action-value function corresponding to the
minimum of ‖Qk − Q̃k‖2n + b̄k. If b̄k is a sufficiently tight bound, we expect that using b̄k
in place of ‖T ∗Qk − Q̃k‖2ν will not introduce any significant further bias. Going back to the

example in Figure 7.2, the value of b̄k corresponding to Q̃
(2)
k is large, so it can compensate

the underestimation caused by ‖Qk − Q̃(2)
k ‖ν .

We want to take care of one more detail. We would like our procedure to handle situations
where the number of candidate action-value functions, P , is very large, or even potentially
infinite. The latter situation arises when one transforms the algorithm into an anytime
method, whose computation budget may or may not be limited, which keeps generating
candidates if given more time. As a consequence of this, we add another penalty term that
prevents optimistic selection bias and we will let P =∞. If P is finite and small compared
to n, this penalty term can safely be ignored.

7.3.2 BErMin Algorithm

BErMin, shown as Algorithm 3, implements the ideas described in the previous section. A
graphical illustration of the procedure is given on Figure 7.3.

The algorithm’s inputs are the candidate action-value functions, the dataset D(m,n), a
regression procedure Regress, a desired error probability δ, and three constants: 0 < a < 1,
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Algorithm 3 BErMin({Qk}k=1,2,...,D(m,n),Regress(·), δ, a,B, τ)

1: Split D(m,n) into two disjoint parts: D(m,n) = D′m ∪ D′′n.

2: Choose (Ck) such that S =
∑
k≥1 exp(− (1−a)2an

16B2τ(1+a)Ck) <∞.

3: Choose (δ′k) such that
∑
k≥1 δ

′
k = δ/2.

4: for k = 1, 2, . . . do
5: (Q̃k, b̄k)← Regress(D′m,k, δ′k)

6: ek ← 1
|D′′n |

∑
(X,A)∈D′′n

(Qk(X,A)− Q̃k(X,A))2

7: RRL
k ← 1

(1−a)2 ek + b̄k
8: end for
9: k̂ ← argmink≥1

[
RRL
k + Ck

]
10: return k̂

Lo
ss

Figure 7.3: A graphical illustration of the BErMin algorithm. The error ‖Qk− Q̃k‖ν (blue,

leftmost bar) is estimated by
∥∥∥Qk − Q̃k∥∥∥2

n
(green, second bar from left), this is topped

by b̄k, an upper bound on ‖Q̃k − T ∗Qk‖2ν . This is followed by inflating this result by a
factor of 1

(1−a)2 (brown, third bar, dark segment). Finally, the algorithm adds a complexity

regularization term Ck (e.g., Ck = 32B2τ(1+a)
a(1−a)2n ln(k)) (red, third bar), and the minimum of

all these values will be selected. In this figure, BErMin would select the function Q2.

B, and τ . Here a is a tuning parameter, the constant B is the bound on all functions
involved (that is Qk, Q̃k, T ∗Qk, and b̄k), and τ is the forgetting time of the Markov chain
(cf. Definition 7.1 in Appendix 7.B). The effect of these values on the quality of the solution
is quantified in Theorem 7.2.

The algorithm initializes its data structures in three steps. In the first line the dataset
is split into two disjoint parts, the first having m points, the second having n points. In
Line 2, the values of the constants (Ck) are chosen such that they satisfy a Kraft-McMillan-
like inequality ∑

k≥1

exp

(
− (1− a)2an

16B2τ(1 + a)
Ck

)
<∞.

One feasible choice is Ck = 32B2τ(1+a)
(1−a)2an ln(k), but any other choice is possible as long as it

satisfies the required condition. The choice of these values should reflect one’s prior beliefs
about the suitability of the candidate functions. The default choice above (which increases
with k) reflects the prior belief that functions with higher indices are less suitable. Such a
choice can be justified, e.g., if Qk is expected to become more susceptible to overfitting as
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the value of k increases. When one has a finite number of models (i.e., P <∞) and no good
prior knowledge about the suitability of Qk, one can use Ck ≡ const. In Line 3, we choose
the confidence parameters (δ′k) such that their sum is δ/2. One possible choice is δ′k = 3

π2
δ
k2

(when P is finite, one can simply use δ′K = δk/P ). For consistency, it might be a good idea
to make δk and Ck behave “similarly” as a function k.

In Line 5 the regression procedure Regress is called with the dataset D′m,k derived from
D′m using (7.1) (i.e., D′m,k depends on Qk) and δ′k as the confidence parameter. The require-

ment on Regress is that it returns Q̃k, an estimate of T ∗Qk, and b̄k, a high-probability
upper bound on the excess risk ‖Q̃k − T ∗Qk‖2ν . The upper bound on the excess risk is re-
quired to hold with probability at least 1−δ′k (cf. Assumption A20). One possible approach
to estimate the excess risk is proposed in Section 7.D.

In Line 6, the dataset D′′n is used to empirically estimate ‖Qk − Q̃k‖2ν , i.e., the blue
bars in Figure 7.3 are estimated by the green bars. The error of this is expected to be well
controlled (and “small”). In the next line the two error estimates are combined to yield RRL

k

(brown bars in Figure 7.3). In Line 9 this estimate is further biased upwards (red portion
of bars in the graph) by the amount of Ck and then the minimizer of RRL

k +Ck is selected,
where k = 1, 2, . . . , giving rise to the value returned by the procedure.

Remark 7.2 (Computational Complexity). The complexity of BErMin is expected to be
dominated by the cost of running Regress. Let us assume that BErMin selects the
candidate returned amongst P candidates. If the computational complexity of Regress is
O(r(m)), the computational complexity of BErMin becomes O((n+r(m))P ). Thus, know-
ing the amount of time available, one could come up with an estimate of how many models
can be evaluated. However, we think that a better approach is to run the algorithm in an
anytime fashion until the computational budget is exhausted. Although BErMin is not
expected to be cheap, overall it might still be cheaper than an ad-hoc tuning method with
a human in the loop, though admittedly, this would be hard to measure in practice.

Remark 7.3 (Candidate Models: An Example). An important question is what candidate
functions one should feed to BErMin and how these are found. In general, this will depend
on what a priori information one has about the unknown MDP. Even though this is not the
focus of this work, we give an example when we assume a priori that the optimal action-
value function belongs to a Sobolev space (Definition B.3 in Appendix B.1), but the identity
of the Sobolev space to which the function belongs is unknown.

For a pair (k, J) ∈ N× R+, define

F(k, J) = { f ∈Wk(Rd ×A) : ‖f‖Wk(Rd×A) ≤ J } .

Note that ∪k∈N,J∈R+
F(k, J) is a huge space. For regression problems, it is known that the

minimax optimal rate of estimating functions belonging to F(k, J) isO(J2d/(2k+d)m−2k/(2k+d))
[Györfi et al., 2002]. Here, m is the number of samples used in the learning procedure and
although we use the same letter to denote the number of samples as in D′m, this should be
considered as a coincidence.

Assume now that the true action-value function belongs to F(k∗, J∗) for some unknown
(k∗, J∗) ∈ N× R+. Define the set of candidate function spaces as (F(k, J))(k,J)∈Pm , where

Pm =
{

(k, J) ∈ N× N :
⌈
d
2

⌉
≤ k ≤ m, J ∈ {20, 21 . . . , 2dlog2me}

}
.

This set defines a grid on both the smoothness order k and the size of the smoothness term
J . As we see shortly, the resolution of this grid is set such that F(k∗, J∗) is contained within
a member of (F(k, J))(k,J)∈Pm that is not much larger than F(k∗, J∗) itself.

Suppose that we have a learning algorithm A that can be configured to seek the estimate
of the action-value function in F(k, J) and has the convergence rate ofO(J2d/(2k+d)m−2k/(2k+d)),
provided that the true optimal action-value function indeed belongs to F(k, J) (for instance,
the algorithms of Chapters 5 and 6 are guaranteed to have such an optimal dependence on
the number of samples). Construct Q(k,J) = A(Dm,F(k, J)) for all (k, J) ∈ Pm. Note that
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for m large enough there is a pair (k′, J ′) in Pm, close to (k∗, J∗), such that F(k∗, J∗) is
contained within F(k′, J ′). In particular if m ≥ max{k∗, J∗}, then there exists (k′, J ′) ∈ Pm
such that k′ = k∗, J ′ ≤ 2J∗, and F(k∗, J∗) ⊂ F(k′, J ′). The convergence rate of the esti-
mator based on (k′, J ′)[= (k∗, J ′)] is O(J ′2d/(2k

∗+d)m−2k∗/(2k∗+d)), which is to be compared

with the optimal rate, O(J∗2d/(2k
∗+d)m−2k∗/(2k∗+d)). We see that asymptotically, the rate

associated with the model (k′, J ′) is within at most a factor of 2 of the optimal rate. Thus,
even when the set of models is restricted to a set with less than m(log2(m) + 1) elements,
by selecting an appropriate model amongst them, one can match the asymptotic rate of
the true model, up to a constant factor. Thus, if we can prove that the model selected by
BErMin is almost as good as (k′, J ′) in terms of its Bellman error, we get that BErMin
also comes within a constant factor of the Bellman error of the best model. This is the
subject of Theorem 7.2, which will be stated in the next section.

7.3.3 Adaptive Linear LSPI

The choice of function approximation is crucial for the success of many RL algorithms.
BErMin, as a model selection algorithm, may be used to automate this procedure. The
result would be an almost “parameter-free” meta-algorithm that data-dependently choose
the right function approximator for a given problem. In this section we suggest a potential
way that LSPI (Lagoudakis and Parr 2003) with linear function approximator may be mod-
ified in order to automatically select the right function approximator. A similar approach
may be used for other algorithms too.

The crucial point to notice is that the right choice of function approximator depends
on many factors including (i) the MDP itself, (ii) the number of available samples, and
(iii) the iteration number of LSPI. The dependence of MDP is evident: different problems
have different optimal value functions and therefore require different function approxima-
tions. Moreover, when we do not have many data samples, it is a bad idea to try to use a
complicated function approximator, and vice versa. The right function approximator also
depends on the iteration number of LSPI since the change of the policy leads to the change
of its value function and the corresponding function space. These suggest that, computa-
tional burden aside, any change in the number of samples or the iteration of LSPI demands
a new round of model selection. The modified LSPI algorithm is shown in Algorithm 4.

Algorithm 4 is very similar to the original LSPI algorithm of Lagoudakis and Parr 2003.
The major difference is that it gets a set of basis functions {Φk}Pk=1 in which P is the
number of potential function approximation models. Each model represents a different
function approximation architecture with varying number and form of basis functions. For
example, one may assign a new model for each potential bandwidth in RBF-based basis
functions.

The algorithm collects samples according to some behavior/exploration policy. After-
wards the samples are divided into two disjoint subsets Dlearn and Deval. The former is used
for the LSTD procedure while the latter is used for BErMin. Our suggestion is that the
size of these two sample sets should be in the same order.

In the main loop of Algorithm 4, it approximately evaluates a given policy π for all P
sets of basis functions. This is different from the conventional LSPI in which we only deal
with one set of basis functions. The next step is calling BErMin and passing {Qk}k=1,2,...,P

alongside the evaluation data setDeval, the regression algorithm Regress(·), and the param-
eters δ/K, a, B, and τ . The regression algorithm can be any standard regression algorithm
of choice, see Section 7.3.1 for some examples. The parameters a and B are defined as in
Section 7.3.2. The confidence parameter passed is δ/K, so that the probability of failure
caused by BErMin procedure over all K iterations would be less than δ. Note that the
value of δ is the probability of error caused only by BErMin and not the error caused by
LSTDQ.

Finally, there is a possibility of collecting new data samples after each iteration of LSPI.
This new data may be collected according to the newly obtained policy π or any other
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Algorithm 4 LSPI+Model Selection({Φk}Pk=1, γ, π0,Regress(·), a, b, δ,K)

// {Φk}Pk=1: Sets of basis functions
// γ: Discount factor
// π0: Initial policy
// Regress: The regression procedure
// a,B, τ : Parameters of BErMin
// K: The number of iterations
Collect data D in the form of {(Xi, Ai, Ri, X

′
i)} following π0 (or any other exploration

policy)
Split D into Dlearn and Deval

π ← π0

for t = 1 to K do
// Policy Evaluation step for all potential models
for k = 1, . . . , P do

Qk ← LSTDQ(Dlearn,Φk, γ, π)
end for
// Model Selection step

k̂ ← BErMin({Qk}k=1,2,...,P ,Deval,Regress(·), δK , a, B, τ)
// Policy Improvement step
π ← π̂(·;Qk̂)
// [Optional step] Collecting more data
[Optional] Collect data D(t) according to π (or any other exploration policy).

[Optional] Split D(t) to D(t)
learn and D

(t)
eval.

[Optional] Dlearn ← Dlearn ∪ D(t)
learn, Deval ← Deval ∪ D(t)

eval.
end for

exploration policy. The resulting data samples should again be split into two disjoint subsets
of Dlearn and Deval and combined with the previous data sets. Of course, one may gradually
eliminate “old” data samples to avoid severe distribution mismatch caused by the non-
stationarity of the whole process.

7.4 Theoretical Analysis

The goal of this section is to provide a theoretical justification for the BErMin procedure.
We start with a rather abstract complexity regularization-based model selection algorithm
and its analysis in Section 7.4.1. The main result proven there (Theorem 7.1), which goes
beyond the setting of reinforcement learning, will be the basis of our main result, Theo-
rem 7.2, which is presented in Section 7.4.2. Theorem 7.2 shows that BErMin has an
oracle-like behavior, in the sense that with high probability it selects the model with the
minimum Bellman error up to a multiplicative constant and some additional terms that
converge to zero. Finally, in Section 7.4.3, we introduce the concept of adaptivity and prove
that the oracle-like behavior of BErMin leads to its adaptivity (Theorem 7.3).

7.4.1 A Generic Model-Selection Theorem

The theorem presented in this section concerns a generic complexity regularization-based
model selection procedure. The theorem and its proof technique are similar to Theorem 3
of Bartlett et al. [2002]. The main difference to this previous work is that our result is stated
for an abstract setting where we are concerned with selecting the minimum amongst a set of
values measured in noise, whereas Bartlett et al. [2002] developed their result in a specific
supervised learning setting. Further, we make the role of non-central tail inequalities needed
for the risk estimators explicit. Finally, we prove another related result, which will be useful
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for our later developments. Nevertheless, the main proof technique is essentially the same
as used in the proof of Theorem 3 of Bartlett et al. [2002]. For further similar results on
complexity regularization, see Barron [1991]; Lugosi and Wegkamp [2004].

Theorem 7.1 (Key Technical Model Selection Theorem). Consider two sequences of ran-
dom variables, Lk,Rk, k = 1, 2, . . . . Assume that there exist positive constants c1, c2, c3, c4
and 0 < a < 1, such that for any 0 < δ ≤ 1 and k = 1, 2, . . . , the random variables Lk, Rk
satisfy

P
{

(1− a)Rk ≥ Lk −
1

c2
ln
c1
δ

}
≥ 1− δ , (7.2)

P
{

1

1 + a
Rk ≤ E [Rk] +

1

c4
ln
c3
δ

}
≥ 1− δ . (7.3)

Let Ck (k = 1, 2, . . . ) be a deterministic sequence that satisfies

c5 ,
∑
k≥1

exp (−c2(1− a)Ck) <∞ , (7.4)

c6 ,
∑
k≥1

exp

(
−c4

1 + 2a

1 + a
Ck

)
<∞, (7.5)

and define k̂ by
k̂ ← argmin

k≥1
[Rk + Ck] .

Then, the following hold true:
(A) For any 0 < δ < 1, with probability at least 1− δ, it holds that

Lk̂ < (1− a2) min
k≥1
{E [Rk] + 2Ck}+

ln( 2c1c5
δ )

c2
+

(1− a2) ln( 2c3c6
δ )

c4
.

(B) For any α > 0,
Lk̂ ≤ (1− a2) min

k≥1
{E [Rk] + 2Ck}+ α

holds with probability at least 1−
{
c1c5 exp

(
− c2α2

)
+ c3c6 exp

(
− c4α

2(1−a2)

)}
.

In a typical application of this theorem, Lk would be the loss associated to some candi-
date k (from a set of at most countable candidates) and the random variable Rk would be
a tightly concentrated, inflated estimate of Lk so that (1− a)Rk is still an overestimate of
Lk, as required by condition (7.2). The theorem then yields that the loss associated with
the selected candidate is not much larger than constant times the minimum of the losses
biased by the “small’ quantities Ck. In the appendix we show that conditions (7.2)-(7.3)
are always satisfied for a slightly inflated estimate of Lk that tightly concentrates around
its mean.

Proof. Fix 0 < δ1, δ2 ≤ 1. We start by bounding the deviation ∆ = Lk̂−(1−a2) mink {E [Rk] + 2Ck}.
By adding and subtracting (1− a) mink(Rk + Ck), we can decompose ∆ into two terms as
follows:

∆ =

(
Lk̂ − (1− a) min

k
(Rk + Ck)

)
︸ ︷︷ ︸

∆1

+(1−a)

(
min
k

(Rk + Ck)− (1 + a) min
k

(E [Rk] + 2Ck)

)
︸ ︷︷ ︸

∆2

.

To bound the first term of this sum, we use that mink(Rk + Ck) = Rk̂ + Ck̂, which holds

thanks to the definition k̂. Thus, we have

∆1 = Lk̂ − (1− a)(Rk̂ + Ck̂) ≤ max
k
{Lk − (1− a)(Rk + Ck)} .
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Choose any 0 < δ′k ≤ 1 such that
∑
k δ
′
k = δ1. By condition (7.2), with probability 1 − δ1,

the quantity on the right-hand side of the last inequality is upper bounded by

max
k

{
1

c2
ln
c1
δ′k
− (1− a)Ck

}
.

In particular, if we choose δ′k = δ1/c5 exp(−c2(1 − a)Ck), the argument of the maximum
becomes 1

c2
ln c1

δ′k
− (1− a)Ck = 1

c2
ln c1c5

δ1
and thus we get that

∆1 ≤
1

c2
ln
c1c5
δ1

holds with probability 1− δ1.
Now, using minθ f(θ)−minθ g(θ) ≤ maxθ(f(θ)− g(θ)), ∆2 can be bounded by

∆2 ≤ (1 + a) max
k

(
Rk

1 + a
− E [Rk]− 1 + 2a

1 + a
Ck

)
.

By condition (7.3), for any 0 < δ′′k ≤ 1 such that
∑
k δ
′′
k = δ2, it holds with probability 1−δ2

that the quantity on the right-hand side of the above inequality is upper bounded by

(1 + a) max
k

(
1

c4
ln
c3
δ′′k
− 1 + 2a

1 + a
Ck

)
.

Choosing δ′′k = δ2/c6 exp(−c4 1+2a
1+a Ck), we get that 1

c4
ln c3

δ′′k
− 1+2a

1+a Ck = 1
c4

ln c3c6
δ2

, therefore,

with probability 1− δ2,

∆2 ≤
1 + a

c4
ln
c3c6
δ2

.

Combining the inequalities obtained for ∆1 and ∆2, we get that with probability 1−(δ1+δ2),

∆ ≤ 1

c2
ln
c1c5
δ1

+
1− a2

c4
ln
c3c6
δ2

. (7.6)

To show Part (A), fix 0 < δ ≤ 1. Using the definition of ∆ and (7.6), by choosing
δ1 = δ2 = δ/2 we get Part (A). To prove Part (B), fix some α > 0. Choosing δ1 =
c1c5 exp(−c2α/2), δ2 = c3c6 exp(−c4α/(2(1− a2))), from (7.6) we get that with probability
1− (δ1 + δ2) the inequality ∆ ≤ α holds, thus finishing the proof.

7.4.2 Model Selection for Reinforcement Learning and Planning

In this section we state and prove our main result which shows that BErMin has an oracle-
like behavior. We prove the result under the following assumption.

Assumption A20 Assume that the following hold:

1. The standard offline sampling assumption is satisfied by the data set

D′′n = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)}

and the time-homogeneous Markov chain X1, X2, . . . , Xn uniformly quickly forgets its
past with a forgetting time τ (cf. Definition 7.1 in Appendix 7.B).

2. The functions Qk, Q̃k, T ∗Qk (k ≥ 1) are bounded by a deterministic quantity B > 0.

3. The functions Qk (k ≥ 1) are deterministic.

4. For each k and for any 0 < δ′k < 1, (Q̃k, b̄k) = Regress(D′m,k, δ′k) are σ(D′m)-

measurable, b̄k ∈ [0, 4B2] and ‖Q̃k − T ∗Qk‖2ν ≤ b̄k holds with probability at least
1− δ′k.
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5. For (Xi, Ai, Ri, X
′
i) ∈ D′′n, the distribution of (Xi, Ai) givenD′m is ν: P {(Xi, Ai) ∈ U |D′m} =

ν(U) for any measurable set U ⊂ X ×A.

A couple of remarks on these assumptions are in order.

Remark 7.4. The standard offline sampling assumption was discussed in Section 2.2.1. The
additional assumption here demands that the Markov chain should “forget its past” uni-
formly fast. The actual definition, which we think is often satisfied, is somewhat technical
and is given in the appendix. Here we note that this condition is satisfied if the Markov
chain is uniformly ergodic (or, in other words, if the so-called Doeblin condition holds for
the Markov chain [Meyn and Tweedie, 2009]). Note that if the chain mixes but the “mix-
ing rate” is slow, a result similar to the one presented below would still hold, but possibly
with a worse rate. On another note, although we have not made any specific distributional
assumptions about D′m, it is expected that D′m should satisfy similar assumptions to D′′n to
make b̄k small.

Remark 7.5. If the immediate rewards are bounded with probability one, most algorithms
would return deterministically bounded value functions. If this is not known to hold for
some algorithm, but a bound rmax on the immediate reward function is known, then bound-
edness can be achieved by truncating the value functions Qk and Q̃k so that they take
values in the interval [−B,B] = [−rmax/(1 − γ), rmax/(1 − γ)] (i.e., instead of Qk(x, a),
use min(max(Qk(x, a),−B), B)). Since the target of learning in both cases is a function
with range contained in [−B,B], truncating the action-values this way introduces no loss of
quality.

Remark 7.6. That the functions (Qk) are deterministic is not an essential requirement, as
already noted in Remark 7.1.

Remark 7.7. In Line 5 of Algorithm 3, we call (Q̃k, b̄k)← Regress(D′m,k, δ′k). The condition

that
∑
k≥1 δ

′
k = δ/2 ensures that simultaneously, for all k ≥ 1, ‖Q̃k−T ∗Qk‖2ν ≤ b̄k(δ′k) holds

with probability at least 1− δ/2.

Remark 7.8. One approach to get the required high probability estimates bk is described in
Section 7.D.

Remark 7.9. The success of BErMin will depend critically on the quality of the regression
procedure, Regress, that it calls. If the value-function estimation procedure A used to
calculate the candidate action-value functions is available, one appealing idea is to reuse
this procedure for the purpose of computing the functions (Q̃k). This can be done when A
also accepts the value of the discount factor as input γ. In this case, one could feed A with
γ = 0 and the data

D′m,k =
{(

X,A, (T̂ ∗Qk)(X,A), X ′
)

: (X,A,R,X ′) ∈ D′m
}

to produce Q̃k, where we have replaced the immediate rewards in the data with the estimates
of T ∗Qk.2 This works because with γ = 0 the problem of finding the optimal value function
becomes equivalent to estimating the immediate reward function based on the available
sample. When producing the estimate Q̃k it would make sense to use the same tuning of A
as the one used to produce Qk. This will be further explored in Section 7.4.3. Nevertheless,
one is not limited to this choice and, in fact, it makes perfect sense to use an adaptive
regression procedure. This can be done based on Theorem 7.1 or in many other ways (for
some recent works on adaptive regression estimation, refer to e.g., Wegkamp 2003; van der
Vaart et al. 2006 or Arlot and Celisse 2009).

We are ready to present the main result of this work:

2Note that here and in what follows we use the notation T̂ ∗ liberally to be interpreted based on the local
context as the empirical Bellman operator underlying the dataset whose samples T̂ ∗ interacts with in the
given expression. Thus, in the above case, (T̂ ∗Q)(X,A) is meant to be computed based on D′m.
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Theorem 7.2 (Model Selection for RL/Planning). Let Assumption A20 hold. Consider
the BErMin algorithm defined in Section 7.3 used with some 0 < a < 1, 0 < δ ≤ 1, and
(Ck)k≥1 such that

S ,
∑
k≥1

exp

(
− (1− a)2an

16B2τ (1 + a)
Ck

)
<∞ (7.7)

holds. Let k̂ be the index selected by BErMin. Then, with probability at least 1− δ,

‖Qk̂ − T
∗Qk̂‖

2
ν ≤

4(1 + a) min
k≥1

{
2

(1− a)2
‖Qk − T ∗Qk‖2ν +

3

(1− a)2
b̄k + 2Ck

}
+

96B2τ (1 + a)

(1− a)2an
ln

(
4S

δ

)
.

Note that Ck = 32B2τ(1+a)
(1−a)2an ln(k) satisfies S < ∞ (in particular, with this choice we get

S = π2/6). A detailed discussion of the result is given after its proof.

Proof. By the triangle inequality and (|x|+ |y|)2 ≤ 2(x2 + y2), we get

‖Qk̂ − T
∗Qk̂‖

2
ν ≤ 2

(
‖Qk̂ − Q̃k̂‖

2
ν + ‖Q̃k̂ − T

∗Qk̂‖
2
ν

)
.

Define Lk = ‖Q̃k − Qk‖2ν + (1 − a)bk. The first term on the right-hand side of the last
inequality can be upper bounded by Lk̂, while, outside of an error event E1 of probability

mass at most δ/2, the second term can be upper bounded by bk̂. Using the definition of Lk,
we can further upper bound this term by Lk̂/(1− a), thus obtaining that on Ec1

‖Qk̂ − T
∗Qk̂‖

2
ν ≤

2(2− a)

1− a
Lk̂ ≤

4

1− a
Lk̂ .

Thus, the problem is reduced to that of bounding Lk̂. For this, we will use Theorem 7.1.
Let

‖Q̃k −Qk‖2n =
1

n

∑
(x,a,r,x′)∈D′′n

(Q̃k(x, a)−Qk(x, a))2.

Note that by our assumptions and conventions for multisets, this sum has n terms. Define

Rk =
1

(1− a)2
‖Q̃k −Qk‖2n + bk .

With these definitions, the index k̂ returned by BErMin can be given as

k̂ = argmin
k≥1

[Rk + Ck] .

Thus, provided that (Rk), (Lk) satisfy (7.2)–(7.3) and (Ck) satisfies (7.4)–(7.5), we will be
able to conclude from Theorem 7.1 a bound on Lk̂ and thus also on the Bellman error of

the selected action-value function. Since Q̃k, bk are themselves a function of D′m, we will
use Theorem 7.1 on the probability space Ωm = (Ω, σΩ,Pm) with Pm(·) = P(·|D′m), i.e., we
will apply the theorem on the probability space obtained by conditioning on D′m. Since a
bound on a conditional probability gives a bound on the unconditioned probability, this will
be sufficient to conclude a high probability bound on Lk̂.

Let us consider (7.2). This condition requires that for some c1, c2 > 0, for any 0 < δ′ ≤ 1,
Pm(Lk − (1− a)Rk ≤ 1

c2
ln c1

δ′ ) ≥ 1− δ′. By the definition of Lk and Rk,

Lk − (1− a)Rk = ‖Q̃k −Qk‖2ν + (1− a)bk −
(

1

1− a
‖Q̃k −Qk‖2n + (1− a)bk

)
= ‖Q̃k −Qk‖2ν −

1

1− a
‖Q̃k −Qk‖2n .
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Our plan is to use Lemma 7.7 of Appendix 7.C to provide the required bound. For this

notice that E
[
‖Q̃k −Qk‖2n|D′m

]
= ‖Q̃k −Qk‖2ν and that ‖Q̃k −Qk‖2n can be written as an

average of the values taken by the function f : X ×A → R, (x, a) 7→ (Q̃k(x, a)−Qk(x, a))2

over a Markov chain taking values in X ×A. By Assumption A20.1, the forgetting time of
the underlying X -valued chain is bounded by τ . It follows from the definition of forgetting
times and that the actions are sampled from a fixed behavior policy that the forgetting time
of the X ×A-valued chain is also bounded by τ . Further, by Assumption A20.2, the range of
f is in [0, 4B2]. Thus, by the first part of Lemma 7.7, Pm(‖Q̃k −Qk‖2ν − 1

1−a‖Q̃k −Qk‖
2
n ≤

8B2(1+a)τ
(1−a)an ln 1

δ′ ) ≥ 1− δ′. Thus, condition (7.2) holds with c1 = 1 and c2 = (1−a)an
8B2(1+a)τ .

Now, let us consider (7.3). This condition requires that for some c3, c4 > 0, for each
0 < δ′ ≤ 1, Pm( 1

1+aRk − E [Rk|D′m] ≤ 1
c4

ln c3
δ′ ) ≥ 1 − δ′. Again, Rk is an average of the

function f : X × A → R, (x, a) 7→ 1
(1−a)2 (Q̃k(x, a) −Qk(x, a))2 + bk over an X × A-valued

Markov chain with forgetting time bounded by τ . The range of function f is contained
in [0, 4B2(1 + 1

(1−a)2 )]. Therefore, the second part of Lemma 7.7 gives that the required

inequality holds with c3 = 1, c4 = (1−a)2an
8B2(1+(1−a)2)τ .

It remains to check (7.4) and (7.5). A simple calculation gives that condition (7.7)
ensures that both c5 =

∑
k≥1 exp(−c2(1− a)Ck) and c6 =

∑
k≥1 exp(−c4 1+2a

1+a Ck) are finite
and upper bounded by S. Therefore, by Part (A) of Theorem 7.1,

Lk̂ ≤ (1− a2) min
k≥1

[
1

(1− a)2
‖Q̃k −Qk‖2ν + b̄k + 2Ck

]
+ ∆1 , (7.8)

holds outside of an error event E2 of probability mass at most δ/2, where

∆1 =
ln( 2c5

δ/2 )

c2
+

(1− a2) ln( 2c6
δ/2 )

c4
≤ 8B2τ(1 + a)(2 + (1− a)2)

(1− a)an
ln

(
4S

δ

)
.

It remains to upper bound ‖Q̃k −Qk‖2ν . For this note that on Ec1 the inequalities ‖Q̃k −
T ∗Qk‖2ν ≤ bk hold simultaneously for all k ≥ 1. Hence, on this event, ‖Q̃k − Qk‖2ν ≤
2(‖Qk − T ∗Qk‖2ν + bk). Thus, on (E1 ∪ E2)c,

‖Qk̂ − T
∗Qk̂‖

2
ν ≤ 4(1 + a) min

k≥1

[
2

(1− a)2
‖Qk − T ∗Qk‖2ν +

2 + (1− a)2

(1− a)2
b̄k + 2Ck

]
+

4∆1

1− a

Bounding 2 + (1− a)2 by 3 gives the final result.

To gain a better understanding of the bound of Theorem 7.2, we discuss the contribution
of each of its right-hand side terms.

The term ‖Qk − T ∗Qk‖2ν is the true Bellman error of each candidate action-value func-
tion Qk, and is a measure of the approximation error. This is the main quantity of interest
and the ultimate goal of the minimization, which is not accessible to us. An oracle, having
access to T ∗Qk, would select k̂ = argmink≥1 ‖Qk − T ∗Qk‖2ν .

By definition, the term b̄k is a bound on how well Q̃k approximates T ∗Qk. We need
two conditions to hold true to make this term small: The regression procedure Regress
should return a good estimate of T ∗Qk, while the bound returned on the excess risk by the
same procedure should also be a tight bound on the excess-risk of the returned regressor.
In Section 7.D of the Appendix we show how these goals can be achieved by building on
Theorem 7.1 in a quite general situation. To make the whole procedure competitive with an
oracle, one should ensure that b̄k is comparable to the size of Bellman-error ‖Qk −T ∗Qk‖2ν .
How to achieve this is further discussed in Section 7.4.3.

The third term of the bound is the complexity regularizer Ck and shows the price we
pay to have an algorithm that works with a very large (or even infinite) number of models.
As discussed earlier, the choice of Ck should reflect our prior belief about the suitability of
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the candidates. Note that if one has a finite number of models, then one can use Ck = 0. In
the general case, Ck will depend on k, but it is still expected to be small compared to the
other terms. The complexity regularizer has an information theoretic interpretation, which
is discussed by Barron [1991]; Barron et al. [2008].

The term outside the minimizer comes from the randomness of the sample D′′n used to
estimate one component of the Bellman error. This term, just like Ck, converges to zero at
a parametric rate, and it is thus expected to be small compared to the other terms. Note
the tradeoff between the terms (Ck) and this last term.

Another tradeoff exists between the first two and the last two terms. This tradeoff is
governed by a: as a approaches zero, the constant in front of the first two terms become
smaller, but the last two terms diverge to infinity (see the specific form of Ck after the
statement of the theorem). Moreover, as a approaches 1, the multipliers of all these terms
blow up. As the first two terms often go to zero slower than the last one as the number of
samples grows, one expects that a value of a close to zero will give the best tradeoff and in
fact letting a go to zero like a ∼ n−

1
2 might be the best choice. However, when the first

two terms are fast (i.e., they converge to zero at the O(1/n) rate) then one should keep a
bounded away from zero to get the best asymptotic rate.

Remark 7.10. The result also holds true for policy evaluation, when given some policy π,
the goal is to select a function Qk that minimizes the Bellman error ‖TπQk −Qk‖ν . In

order to use BErMin for this problem, in the definition of the dataset, T̂π should be used
in place of T̂ ∗. In fact, the only property of T̂ ∗ that we used in the proof was the property
stated in Proposition 2.1, which holds for both T ∗ and Tπ.

Remark 7.11. If the forgetting time τ or an upper bound thereof is not known, one may use
τ̂(n) = τ0 f(n) in the BErMin procedure for some τ0 > 0, and a positive-valued function
f that diverges. Then, as soon as τ̂ > τ , the conclusion of Theorem 7.2 will hold with τ in
the bound replaced by τ̂ . In order to get the asymptotically best rate, one should choose
a function f that grows slowly and a small value of τ0. For example, when f(n) = ln(n),
the asymptotic bound is increased only by a logarithmic factor. However, a slowly growing
f with a small τ0 can lead to a poor transient performance. On the other hand, if f grows
faster (e.g., f(n) = nr for some 0 < r < 1) or when τ0 is larger, the transient performance
is expected to improve at the price of a worse asymptotic performance.

7.4.3 Adaptivity

The purpose of this section is to show that BErMin can be made an adaptive procedure in
a well-defined sense. We start with explaining what we mean by adaptivity.

The concept of adaptivity

We consider the special case when the algorithm A used to compute Qk, in addition to
a dataset, takes as input a function space F(pk), the discount factor 0 < γ < 1 and the
confidence parameter 0 < δ ≤ 1. The idea is that when A is run with this input, it will
output an action-value function belonging to F(pk). For a given k, F(pk) may or may not
hold the optimal action-value function. As a result, F(pk) will impact the quality of Qk
returned by A in two ways: First, if F(pk) is large, the limiting Bellman error of Qk (as
the number of samples converges to infinity) is expected to be smaller. Let us denote this
quantity by ak(T ∗) (the parameters signifying that the limiting error depends on k and on
the MDP through T ∗). The second effect is that if F(pk) is large, the algorithm A will be
more susceptible to overfitting. Overall, we expect that for any k, T ∗, 0 < δ ≤ 1, n ≥ 1, a
high-probability bound of the form

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(1/δ)), (7.9)
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which holds with probability at least 1− 2
π2 δ, will hold for A.3 Here, the second term bounds

the error that results from using a finite number of samples. In this term, cT∗ is a constant
that depends on T ∗ only (i.e., on the MDP), but is independent of F(pk), n and δ. On the

other hand, bk does not depend on T ∗. If in the limit of an infinite sample, ‖Qk − T ∗Qk‖2ν
converges to infQ∈F(pk) ‖Q− T ∗Q‖ν , then ak(T ∗) = infQ∈F(pk) ‖Q− T ∗Q‖

2
ν . Thus, in this

case ak(T ∗) becomes equal to the (squared) approximation error underlying F(pk) and the
second term is said to bound the estimation error. Typically, bk is a polynomial of the ratio
of its arguments and scales with how “large” F(pk) is and it is expected that bk → ∞ as
k →∞. It is assumed that (7.9) is a tight bound of this form (at this stage, the particular
form of the above bound is unimportant). Note that being a tight bound, in general one
cannot compute this bound as this would require a priori knowledge of quantities which, in
general, are a priori unknown. For example, ak(T ∗) is typically unknown. Thus, only an
oracle could evaluate these bounds.

By (7.9), it follows that the inequalities

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(k2/δ)) (7.10)

hold simultaneously for all k ≥ 1, with probability at least 1 − δ/3. Thus, an oracle,
having access to the bounds on the right-hand side could select the index k∗ such that
‖Qk∗ − T ∗Qk∗‖2ν = βn, where

βn , min
k≥1

{
ak(T ∗) + cT∗ bk(n, ln(k2/δ))

}
.

We call a procedure adaptive if it only uses data set Dn but still matches the error of the
candidate k∗ up to a constant factor. Formally, if k̂ is the index selected by a procedure
then we call the procedure adaptive, if for some C, c ≥ 1 it holds that for each MDP of
interest4, n ≥ 1, 0 < δ < 1/c, we have∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ C min

k≥1

{
ak(T ∗) + cT∗bk(n, ln(k2/δ))

}
,

with probability 1− c δ.

The adaptivity of BErMin

In this section we assume that m = n, i.e., the initial data has an even length which is
split into two equal halves. The purpose of this section is to show that BErMin can be
used as the basis of an adaptive procedure. For this, we propose to use A as the regression
procedure Regress used in BErMin. To make our proposal formal, assume that A takes
four parameters: the function space, the dataset, the discount factor, and the confidence
parameter, and it returns both an action-value estimate and a confidence bound. We propose
that BErMin should use

(Q̃k, b̄k,n(δ)) = A
(
F(pk),D′n,k, 0, 2

π2
δ
k2

)
with

D′n,k = D′n(Qk) =
{(
X1, A1, (T̂

∗Qk)(X1, A1), X ′1

)
, . . . ,

(
Xn, An, (T̂

∗Qk)(Xn, An), X ′n

)}
.

Since γ = 0, algorithm A acts as a regression procedure that works in the function space
F(pk) (and will in fact disregard the next states X ′1, . . . , X

′
n).

We make the following assumption on b̄k,n returned by A:

3The purpose of constant 2
π2 is to simplify subsequent developments, but is otherwise unimportant due

to the logarithmic dependence of bk on 1/δ.
4The class of MDPs can be restricted. Then the procedure is called adaptive within the chosen class.
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Assumption A21 Tightness of b̄k,n There exists some C ≥ 1 such that for each MDP of
interest, sample-size n, model index k, action-value function Q bounded by B and confidence
parameter 0 < δ < 1, when A is fed with F(pk), D′n(Q), γ = 0, and δ then b̄k,n(δ) returned
by A satisfies

b̄k,n(δ) ≤ C
[

inf
Q′∈F(p)

‖Q′ − T ∗Q‖2ν + bk
(
n, ln( 2

π2δ )
)]

(7.11)

with probability at least 1− δ.5

Note that we make no assumption on how A behaves when its input is different from the
above. In particular, we make no assumption about whether b̄k,n(δ) will be tight when A
is fed with γ > 0. A crucial point about the above assumption is that it uses the same bk
functions which are used in the definition of adaptivity.

Since b̄k,n(δ) is an upper bound on the error of the action-value function returned by
A, the above assumption implies two things about A when used as a regression procedure.
First, in the limit of infinite samples the function returned should become close (up to a
positive constant) to the theoretically best approximation error. In fact, many regression
algorithms (such as the ones mentioned earlier) satisfy this condition (and can in fact achieve
the approximation error). Second, the term bounding estimation error underlying A when
used as a regression procedure, apart from a constant factor, should be the same as the
corresponding term when A is used to approximate the fixed point of some non-constant
operator. This is again reasonable, since regression in general is expected to be easier than
fixed point estimation.

Now, we are ready to state the main result of this section:

Theorem 7.3. Let Assumptions A20 and A21 hold and assume that m = n. In addition,
assume that (i) for each k ≥ 1, (7.9) holds with probability at least 1− δ where cT∗ ≥ C∗ for
some positive constant C∗ that is independent of T ∗; and (ii) for any index k ≥ 1, L > 0, we
have bk(n,L) = Ω(L/n). Then, when BErMin is used with Regress = A with γ = 0 and

Ck = 32B2τ(1+a)
(1−a)2an ln(k), the resulting procedure is adaptive: there exists a positive constant

C ′′ such that for each MDP, n ≥ 1, and 0 < δ < 1, the Bellman-error of the action-value
function selected by BErMin is bounded by∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ C ′′βn = C ′′min

k≥1

[
ak(T ∗) + cT∗ bk

(
n, ln(k

2

δ )
)]
,

with probability at least 1− 5
3δ.

Proof. From Theorem 7.2, with the choice of Ck = 32B2τ(1+a)
(1−a)2an ln(k), we have that with

probability at least 1− δ,∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ min

k≥1

[
c1 ‖Qk − T ∗Qk‖2ν + c2 b̄k,n

(
2
π2

δ
k2

)
+ c3

ln(k)

n

]
+ c4

ln(1/δ)

n

holds for some constants c1, c2, c3, c4 > 0 which do not depend on the MDP, δ and n. From
Assumption A21, we get that the inequalities

b̄k,n
(

2
π2

δ
k2

)
≤ C

[
inf

Q′∈F(p)
‖Q′ − T ∗Qk‖

2
ν + bk(n, ln(k2/δ))

]
≤ C

[
‖Qk − T ∗Qk‖2ν + bk(n, ln(k2/δ))

]
(7.12)

hold simultaneously for all k ≥ 1 with probability at least 1−δ/3. Thus, for some c′1, c
′
2 > 0,∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ min

k≥1

[
c′1 ‖Qk − T ∗Qk‖

2
ν + c′2 bk

(
n, ln(k

2

δ )
)

+ c3
ln(k)

n

]
+ c4

ln(1/δ)

n

5As before, the constant π2/2 is included only to simplify some further results.
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holds with probability at least 1− 4
3δ. Now, by (ii), ln(k)

n = O
(
bk

(
n, ln k2

δ

))
and ln(1/δ)

n =

O
(
bk

(
n, ln k2

δ

))
. Hence, with some C ′ > 0, on the event where the previous inequality

holds, ∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ C ′min

k≥1

[
‖Qk − T ∗Qk‖2ν + bk

(
n, ln k2

δ

) ]
holds, too. By (7.9), the inequalities

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(k2/δ))

hold simultaneously for all k ≥ 1 with probability 1− δ/3. Hence, with probability 1− 5
3δ,

with some C ′′ > 0,∥∥Qk̂ − T ∗Qk̂∥∥2

ν
≤ C ′′min

k≥1

[
ak(T ∗) + cT∗ bk

(
n, ln(k

2

δ )
)]

= C ′′βn ,

where we used that, by assumption, cT∗ is bounded away from zero.

7.5 Conclusion

In this work we suggested a principled approach for the tuning of reinforcement learning
algorithms in the offline and non-interactive scenario. The problem was formulated as that
of finding an action-value function with a small Bellman error among a set of candidate
functions. BErMin, a complexity regularization-based algorithm, was introduced for this
purpose.

Our main theoretical result, Theorem 7.2, is a finite-sample high-probability upper bound
that shows that the Bellman error of the action-value function selected by BErMin is
almost as small as that of an oracle who has access to the true Bellman errors. This result
was further elaborated in Section 7.4.3, where we have shown that BErMin can be made
adaptive in the sense that it can compete with an oracle who selects the model with the
smallest error bounds (Theorem 7.3). As far as we know, this is the first work that considers
adaptivity in a reinforcement learning scenario. The main message of our results is that just
like in supervised learning, it is possible to learn almost as fast as if one had extra a priori
information.

In this chapter we focused on the goal of finding an action-value function with a small
Bellman error. However, the primary goal in reinforcement learning is to find good policies.
Is it possible to derive results similar to ours for this alternative problem? In what follows
we consider two possible approaches.

First, still sticking to the action-value based approach, one might be tempted to consider
the projected Bellman error, instead of the Bellman error. To recap, for some function space
F |A|, the projected Bellman error of Q ∈ F |A| is defined as ‖Q−ΠF |A|T

∗Q‖, where ΠF |A|
is the projection operator that maps its argument to the closest point on F |A| w.r.t. an
appropriate norm. The projected Bellman error is typically defined for linear function
spaces F |A|, therefore we also restrict our discussion to such spaces. The advantage of
the projected Bellman error then is that its magnitude can be readily estimated based
on a sample (see, e.g., Antos et al. 2008b; Szepesvári 2010). However promising this is,
unfortunately, the projected Bellman error is unsuitable for model selection purposes as it
eliminates the component of the error that is orthogonal to F |A| (see also Remark 3.1 in
Section 3.2). Thus, even if one could calculate the exact values of the projected Bellman
error, this knowledge would be useless for model selection purposes. This limitation of
the projected Bellman error is also apparent if we note that under the so-called on-policy
sampling condition and when F |A| is a nontrivial space, the projected Bellman error is
always zero, independently of the choice of F |A|. Therefore, the projected Bellman-error
alone contains no information about the suitability of F |A|.
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Let us consider the next alternative, which we might call model-(or simulation-)based
policy selection. Assume as before that the problem is already reduced to that of selecting
the best policy from a list of policy candidates π1, . . . , πP . Let the performance be measured
as the expected total discounted reward with respect to some known initial distribution ρ.
For an MDP M and policy π, let this measure be V π(M,ρ).

One way to avoid using value functions is to use part of the data to build an approximate
model M̂ = (X ,A, P̂ , γ) of the MDP of interest. Assume that for any learned model P̂ ,
one can efficiently generate virtual trajectories for the initial distribution ρ and any policy
of interest π. For 1 ≤ i ≤ P , let V πi(M̂, ρ) be the average of the returns obtained by
following policy πi in M̂ . If P̂ is close enough to P , in an appropriate norm, and enough
virtual trajectories are used, the estimates of V πi(M̂, ρ) will be close to V πi(M,ρ) and
thus it makes sense to select the policy with the maximum estimated expected return. The
quality of this procedure will ultimately depend on how well M̂ approximates M (since
generating virtual trajectories is cheap), i.e., the problem of designing an effective policy
selection method is reduced to that of learning a good generative model. Model learning
based on sampled transitions falls into the realm of supervised learning. Hence, having
an adaptive procedure for policy-selection will hinge upon if we have an adaptive model-
learning procedure. Studying the advantages and disadvantages of this approach will be the
topic of future work.

Future Work

Although in this chapter we made some progress toward reinforcement learning algorithms
that require minimum human supervision, the problem is far from being solved. In partic-
ular, the following questions require further investigation:

• How to generate the list of candidate action-value functions (Q1, Q2, . . .)? In what
order should we run the methods available? We briefly discussed this issue in Re-
mark 7.3 in an abstract setting. However, a more thorough, systematic approach
would be desired and much remains to be done in this respect.

• How can one achieve adaptivity in online and interactive learning scenarios? The
current work is specific to the offline learning scenario, where we could not benefit
from interacting with the environment. However, it is unclear if adaptivity can be
achieved in the online, interactive scenarios.

• How can one construct data-dependent estimates of the forgetting time parameter τ?
Both Meir [2000] and Modha and Masry [1998] face a similar situation; their respec-
tive procedures require the knowledge of the β-mixing coefficients of the dependent
stochastic process. As far as we know, there is yet no rigorous procedure to esti-
mate such parameters in the general case. Nevertheless, McDonald [2010] has recently
proposed to use a mutual information-based estimator to upper bound the β-mixing
coefficients, but the sample-efficiency of the method is yet to be shown. Meanwhile,
one may use the procedure described in Remark 7.11 at the cost of a marginally slower
than 1/n extra loss.

• What is the relation between the quality of the solution of the fixed point of the
Bellman optimality operator and the performance of the corresponding greedy policy?
An extension of Theorem 5.3 of Munos 2007 alongside the machinery developed in
Chapter 3 could be helpful in this respect.

• We derived some data-dependent bounds on the excess-risk of a regression procedure
that operates in a large function space which suited our immediate needs. However,
the bound is asymptotic in nature and is potentially suboptimal. Can this bound be
improved?
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• Finally, we briefly touched upon alternatives to value-function estimation methods.
We have identified a model-based approach as one possible alternative. The model-
based approach, however, should be tailored so that the irrelevant aspects of the world
are not paid attention to while learning the model. How to do this remains another
very intriguing open problem.

Appendices

In the following appendices, we provide some auxiliary technical results that are omit-
ted from the main body of the text. We start with a noncentral tail inequality (Ap-
pendix 7.A, Lemma 7.4), followed by a Bernstein-like concentration inequality for Hidden
Markov Processes (Appendix 7.B, Theorem 7.6). We put these two results together to obtain
a noncentral tail inequality for the considered class of dependent sequences (Appendix 7.C,
Lemma 7.7). Finally in Appendix 7.D, we consider the problem of deriving high-probability
excess-risk bounds in a regression setting.

7.A Noncentral Tail Inequalities

The following result shows that if a random variable X satisfies a Bernstein-like inequal-
ity, the probability distribution of X being ε-smaller than (1 − a)E [X] or ε-larger than
(1 + a)E [X] (for 0 < a < 1) decays with the rate exp(−c ε) for some c independent of ε.
This should be contrasted with the slower exp(−c′ ε2) concentration rate of X around its
expectation E [X] (for ε “small”).

Lemma 7.4 (Noncentral Tail Inequality). Let X be a random variable whose expected value
is nonnegative. Assume that for some V > 0 and for all ε > 0, X satisfies the following
Bernstein-like tail inequality

P {E [X]−X ≥ ε} ≤ exp

(
− V ε2

E [X] + ε

)
. (7.13)

Then, for any 0 < a < 1, ε > 0,

P
{
E [X]− 1

1− a
X ≥ ε

}
≤ exp

(
−V (1− a)aε

(1 + a)

)
.

Similarly, if for some V > 0 and for all ε > 0 it holds that

P {X − E [X] ≥ ε} ≤ exp

(
− V ε2

E [X] + ε

)
(7.14)

then for all 0 < a < 1 and ε > 0, it also holds that

P
{

1

1 + a
X − E [X] ≥ ε

}
≤ exp (−V aε) .
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Proof. We have

P
{
E [X]− (1− a)−1X ≥ ε

}
= P {E [X]−X ≥ ε(1− a) + aE [X]}

≤ exp

(
− V ((1− a)ε+ aE [X])

2

(1 + a)E [X] + (1− a)ε

)

≤ exp

(
− V ((1− a)ε+ aE [X])

2

((1− a)ε+ aE [X]) ( 1+a
a )

)

= exp

(
−V a ((1− a)ε+ aE [X])

1 + a

)
≤ exp

(
−V (1− a)aε

1 + a

)
,

where we used (7.13) to get the first inequality, added a positive value to upper bound the
denominator in the second inequality, and used the fact that E [X] ≥ 0 to derive the last
inequality.

Similarly, (7.14) leads to

P
{

(1 + a)−1X − E [X] > ε
}

= P {X − E [X] > ε(1 + a) + aE [X]}

≤ exp

(
− V ((1 + a)ε+ aE [X])

2

(1 + a)E [X] + (1 + a)ε

)

≤ exp

(
− V ((1 + a)ε+ aE [X])

2

((1 + a)ε+ aE [X]) ( 1+a
a )

)

= exp

(
−V a ((1 + a)ε+ aE [X])

1 + a

)
≤ exp (−V aε) .

7.B Concentration Inequality for Hidden Markov Pro-
cesses (HMPs)

The classical Bernstein inequality for independent and identically distributed sequences
(e.g., Györfi et al. [2002, Appendix A]) can be shown to hold for the sequences of dependent
random variables under various conditions. Such extensions are very useful when studying
reinforcement learning algorithms when the standard assumption is that the data comes
from some Markov chain. In this section we give such an extension based on Samson [2000].

Let X1, . . . , Xn be a time-homogeneous Markov chain with transition kernel P (·|·) taking
values in some measurable space X . We shall consider the concentration of the average of
the Hidden-Markov Process

(X1, f(X1)), . . . , (Xn, f(Xn)),

where f : X → [0, B] is a fixed measurable function. To arrive at such an inequality, we
need a characterization of how fast (Xi) forgets its past.

For i > 0, let P i(·|x) be the i-step transition probability kernel: P i(A|x) = P {Xi+1 ∈ A |X1 = x}
(for all A ⊂ X measurable). Define the upper-triangular matrix Γn = (γij) ∈ Rn×n as fol-
lows:

γ2
ij = sup

(x,y)∈X 2

∥∥P j−i(·|x)− P j−i(·|y)
∥∥

TV
. (7.15)
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for 1 ≤ i < j ≤ n and let γii = 1 (1 ≤ i ≤ n).
Matrix Γn, and its operator norm ‖Γn‖ w.r.t. the 2-norm, are measures of dependence

for the random sequence X1, X2, . . . , Xn. For example if the Xis are independent, Γn = I
and ‖Γn‖ = 1. In general ‖Γn‖, which appears in the forthcoming concentration inequalities
for dependent sequences, can grow with n. Since the concentration bounds are homogeneous
in n/ ‖Γn‖2, a larger value ‖Γn‖2 means a smaller “effective” sample size. This motivates
the following definition.

Definition 7.1. We say that a time-homogeneous Markov chain uniformly quickly forgets
its past if τ = supn≥1 ‖Γn‖

2
< +∞. Further, τ is called the forgetting time of the chain.

Conditions under which a Markov chain uniformly quickly forgets its past are of major
interest. The following proposition, extracted from the discussion on pages 421–422 of the
paper by Samson [2000], gives such a condition.

Proposition 7.5. Let µ be some nonnegative measure on X with nonzero mass µ0. Let
P i be the i-step transition kernel as defined above. Assume that there exists some integer r
such that for all x ∈ X and all measurable sets A,

P r(A|x) ≤ µ(A). (7.16)

Then,

‖Γn‖ ≤
√

2

1− ρ 1
2r

,

where ρ = 1− µ0.

Meyn and Tweedie [2009] calls homogeneous Markov chains that satisfy the majorization
condition (7.16) uniformly ergodic. We note in passing that there are other cases when
supn≥1 ‖Γn‖ is finite. Most notable, this holds when the Markov chain is contracting. The
matrix Γn can also be defined for more general dependent processes and such that the
theorem below remains valid. With such a definition, ‖Γn‖ can be shown to be bounded for
general Φ-dependent processes.

The following result is a trivial corollary of Theorem 2 of Samson [2000] (Theorem 2
is stated for empirical processes and can be considered as a generalization of Talagrand’s
inequality to dependent random variables):

Theorem 7.6. Let f be a measurable function on X whose values lie in [0, B], X1, . . . , Xn

be a homogeneous Markov chain taking values in X and let Γn be the matrix with elements
defined by (7.15). Let

Z =
1

n

n∑
i=1

f(Xi).

Then, for every ε ≥ 0,

P {Z − E [Z] ≥ ε} ≤ exp

(
− ε2 n

2B ‖Γn‖2 (E [Z] + ε)

)
,

P {E [Z]− Z ≥ ε} ≤ exp

(
− ε2 n

2B ‖Γn‖2 E [Z]

)
.

7.C Noncentral Tail Inequality for HMPs

By putting together the results of the last two sections we obtain the following noncentrail
tail inequality for HMPs.
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Lemma 7.7. Let X1, X2, . . . , Xn be a time-homogenous Markov chain taking values in
some measurable space X , and f be a measurable function with 0 ≤ f ≤ B. Let Z =
1
n

∑n
i=1 f(Xi). Let Γn be the matrix with elements defined by (7.15). Then, for any 0 <

a < 1,

P
{
E [Z]− 1

1− a
Z ≥ ε

}
≤ exp

(
− (1− a)anε

2B ‖Γn‖2 (1 + a)

)
,

P
{

1

1 + a
Z − E [Z] ≥ ε

}
≤ exp

(
− anε

2B ‖Γn‖2

)
.

Proof. According to Theorem 7.6,

P {Z − E [Z] ≥ ε} ≤ exp

(
− ε2n

2B ‖Γn‖2 (E [Z] + ε)

)
and

P {E [Z]− Z ≥ ε} ≤ exp

(
− ε2n

2B ‖Γn‖2 E [Z]

)

≤ exp

(
− ε2n

2B ‖Γn‖2 (E [Z] + ε)

)
.

These inequalities have the same form as the Bernstein-like inequality in Lemma 7.4 with
the choice of V = n

2B‖Γn‖2
, and therefore imply the result.

7.D Excess-Risk Estimation

Assumption A20 requires that BErMin has access to a function b̄ such that the excess risk
‖Q̃k − T ∗Qk‖2ν is below b̄(δ) with probability at least 1 − δ. In this section, we provide a
general approach to come up with such a function. To avoid clutter, the notation of this
section is not specialized to the reinforcement learning setup. The conversion, however, is
straightforward: the function f∗ here is the same as T ∗Qk (k = 1, . . . , P ) and the estimate

f̂ is the same as Q̃k that is returned by the Regress module in Algorithm 3. The random
variables Xi ∈ X should be “read as” (Xi, Ai) ∈ X ×A and Yi = T̂ ∗Qk(Xi, Ai).

The task of estimating the excess risk is difficult because what can directly be estimated
based on the sample is the loss, and the expected loss of a predictor is larger than the
excess risk by the loss of the best regressor, which is an unknown quantity. In this section
we attack this problem under the assumption that the best regressor belongs to a known
function space F . We target the problem of simultaneously estimating a regressor and
returning a high-probability risk bound for the excess risk of the computed regressor. If F
was a “small” function space (e.g., it had a finite pseudo-dimension) then any procedure
(such as empirical risk minimization) with known bounds on its estimation error would
directly give a solution: The estimation error bound would provide a bound on the excess
risk. To increase generality, here we consider the case when F is too large for such a simple
approach to succeed, but F can be decomposed into an infinite sequence of “small” function
spaces, Fk: F = ∪kFk. Under this assumption the natural approach is to perform model
selection and return the estimation error of the selected model. The reason this can be
successful is because model selection will ultimately select a sufficiently complex model. We
develop this idea in the rest of this section.

7.D.1 The Excess-Risk Estimation Algorithm

Let (X1, Y1), . . . , (Xn, Yn) be a stationary, time-homogeneous Markov chain taking values
in X × [−B,B] for X ⊂ Rd and let the regression function f∗ be defined by f∗(x) =

131



Algorithm 5 Regress({Dn,D′n}, {F1,F2, . . . }, an, τ, (Ck))

1: // Let {(X ′t, Y ′t )} be the input-output pairs in D′n: D′n = {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)}.

2: for k = 1, 2, . . . do
3: f̂k ← A(Dn,Fk).

4: R̄k = 1
(1−an)2

1
n

∑n
i=1(f̂k(X ′i)− Y ′i )2.

5: end for
6: k̂ ← argmink≥1

[
R̄k + Ck

]
.

7: Choose β1, β2, . . . such that βk ≥ 0 and
∑
k≥1 βk = 2/3.

8: return f̂k̂ and Bk̂(n, ·βk̂, τ)

E [Yi|Xi = x]. Let τ be an upper bound on the forgetting time of (Xi, Yi) (cf. Appendix 7.B).
Denote the stationary distribution underlying (Xi) by ν. GivenDn = {(X1, Y1), . . . , (Xn, Yn)},
the goal is to provide a good estimate f̂ of f∗ and a high confidence upper bound on the
excess-risk

‖f̂ − f∗‖2 , ‖f̂ − f∗‖22,ν .

We assume that we are given a sequence of nested function spaces (Fk) and f∗ is known
to belong to their union ∪k≥1Fk. We further assume that we are given an algorithm A,

which, given Fk, δ, and a dataset of n points, returns an estimate f̂k of f∗ that belongs to
Fk. We further assume that for any k ≥ 1 there exist functions Ak and Bk such that for
any 0 < δ ≤ 1,

Lk , ‖f̂k − f∗‖2 ≤ Ak(f∗) + Bk(n, δ, τ) (7.17)

holds with probability 1− δ and that the value Bk(n, δ, τ), which possibly depends on the
data, can be computed at any arguments (n, δ, τ) and hence is available to our algorithm.
No similar assumption is made about function Ak.

The algorithm that we propose works with the data split in half: The first half, Dn,
is used to find the candidates f̂k (by calling A), while the second half is used to run the
model-selection algorithm to approximately select the candidate with the smallest excess
risk. Finally, the algorithm returns the function Bk(n, ·βk, τ) for the selected value of k
as the high-probability bound on the excess-risk returns. Here, βk ≥ 0,

∑
k≥1 βk = 2/3

determines the prior distribution of the error probability δ. The algorithm is given as
Algorithm 5. For simplicity, we assume that the full dataset, Dn ∪D′n holds 2n data points.

Bounds of the type (7.17) are of major interest in the theory of regression estimation.
The first term, which depends only on k and f∗ and is independent of n and δ corresponds to
the so-called approximation error and shows how well one can approximate f∗ with elements
of Fk. The second term is a bound on the error resulting from using a finite sample, i.e., it
bounds the estimation error. When the sample is made of a sequence of independent, identi-
cally distributed random variables, there are many results in the literature that can provide
bounds of the type (7.17), e.g., Györfi et al. 2002; van de Geer 2000; Lugosi and Wegkamp
2004; Bartlett et al. 2005. The case of dependent sample is much less explored. However,
since at the heart of most result are exponential tail inequalities and most exponential tail
inequalities available for the independent case have been extended to the dependent case,
one expects that with some work existing bounds can be readily extended to the dependent
case (see Chapter 4 for some recent results along this direction and a discussion of some
prior work).

7.D.2 Theoretical Analysis of the Excess Error Estimator

The purpose of this section is to prove that under some technical conditions the regression
estimate returned by Algorithm 5 satisfies an oracle-like property and the returned bound
is a proper high-probability bound on the excess risk of the resulting estimator. The first
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part of the statement follows easily from Theorem 7.1 and Lemma 7.7. The proof of this
part is included mainly for the sake of completeness. The main novelty is the second part.
The main idea underlying the proof of the second part is that for n large enough, with high
probability k̂ will be such that Ak̂(f∗) = 0 and thus, by inequality (7.17), Bk̂(n, δβk̂, τ) will
bound the excess risk Lk̂.
The assumptions under which we prove our result are as follows:

Assumption A22

Assumptions on the data:

1. Dn = {(X1, Y1), . . . , (Xn, Yn)}, D′n = {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)}, Xi, X

′
i ∈ X ,

|Yi|, |Y ′i | ≤ B for some B > 0.

2. Dn and D′n are independent.

3. (X ′i, Y
′
i ) is a time-homogenous, stationary Markov chain and its forgetting time

is upper bounded by τ . We denote by ν the stationary distribution underlying
(X ′i) and we let ‖·‖ = ‖·‖ν .

Assumptions on (Fk) and the regressor function f∗:

1. The function spaces F1,F2, . . . hold measurable, real-valued functions with do-
main X bounded by B > 0.

2. The function f∗(x) = E [Y ′t |X ′t = x] belongs to ∪k≥1Fk.

Assumptions on algorithm A and functions Ak, Bk:

1. For any n ≥ 1, k ≥ 1, A returns a σ(Dn)-measurable function f̂k that belongs to
Fk and the error bound (7.17) holds for this function with probability 1− δ.

2. The functions Ak are such that for some C > 1, Ak(f∗) ≤ C inff∈Fk ‖f − f∗‖2
holds for all k ≥ 1 and Ak(·) ≥ Ak+1(·) holds for any k ≥ 1.

3. The function Bk(n, δ, τ)
n→∞−−−−→ 0 is a decreasing function of n and an increasing

function of τ .

Note that we did not need to assume that the function spaces are nested, because in the proof
all we need is that the functions (Ak) satisfy Ak+1 ≤ Ak. If Ak(f∗) = C inff∈Fk ‖f − f∗‖2,
then the nestedness of (Fk) implies that (Ak) is a pointwise decreasing sequence of functions.

The following theorem is the main result of this section.

Theorem 7.8. Assume that the conditions listed in Assumption A22 hold and the value of
an given to the algorithm depends on n and in particular an = cn−1/2 with some c > 0.
Assume that the penalty factors, Ck = Ck(n), passed to Algorithm 5 are such that for any
fixed k, Ck(n) is a strictly decreasing function of n and for any fixed n,

Sn =
∑
k≥1

exp

(
− (1− an)2ann

8B2(1 + an)τ
Ck(n)

)
<∞. (7.18)

Let f̂ and b̂ be the pair returned by Algorithm 5. Then, the following hold:
(A) For any 0 < δ ≤ 1,

∥∥∥f̂ − f∗∥∥∥2

≤(1− a2
n) min

k≥1


∥∥∥f̂k − f∗∥∥∥2

(1− an)2
+ 2Ck(n)

+
2an

1− an
L(f∗) +

16B2(1 + an)τ ln( 2Sn
δ )

(1− an)ann

holds with probability at least 1− δ, where L(f) = E
[
(f(X ′1)− Y ′1)2

]
.

(B) Fix 0 < δ ≤ 1. Then, there exists n0 = n0(f∗, δ) ≥ 1 such that for any n ≥ n0, the

inequality
∥∥∥f̂ − f∗∥∥∥2

≤ b̂(δ) holds with probability at least 1− δ.
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Note that by selecting an ∝ n−1/2, Part (A) shows that the procedure’s excess error
above the oracle’s performance is O(n−1/2).

Proof. Let k̂ be the index selected by Algorithm 5. A standard calculation shows that
E
[
R̄k|Dn

]
= 1

(1−an)2L(f̂k), where for any fixed function f , L(f) = E
[
(f(X ′1)− Y ′1)2

]
de-

notes the squared prediction loss of f . Our goal is to apply Theorem 7.1 to derive a bound on
L(fk̂) and then relate L(fk̂) to the excess risk Lk̂. We verify the conditions of Theorem 7.1.
As before, the theorem is applied to the probability space obtained by conditioning w.r.t.
Dn. Let us first verify conditions (7.2)-(7.3) of Theorem 7.1, which connect L(f̂k) and Rk.
In order to verify these conditions, we use Lemma 7.7. Let g : X × R → R be defined by
x 7→ (f̂k(x) − y)2. By assumption, the range of g is a subset of [0, 4B2]. Hence, applying
Lemma 7.7 to Z = 1/n

∑n
i=1 g(X ′i, Y

′
i ), exploiting that (1−an)2R̄k = Z, after some algebra

we get that for all ε > 0, the following inequalities are satisfied:

P
{
L(f̂k)− (1− an)R̄k > ε

∣∣∣Dn} ≤ exp

(
− (1− an)an

8B2τ(1 + an)
ε

)
,

P
{

1

1 + an
R̄k − E

[
R̄k|Dn

]
> ε
∣∣∣Dn} ≤ exp

(
− (1− an)2ann

8B2τ
ε

)
.

Choosing c1, c3 = 1, c2 = (1−an)ann
8B2τ(1+an) , and c4 = (1−an)2ann

8B2τ , we see that conditions (7.2) and

(7.3) of Theorem 7.1 are satisfied. Further, let c5 (c6) of Theorem 7.1 be defined as in (7.4)
(respectively, as in (7.5)). Then, if (Ck(n)) is chosen such that (7.18) is satisfied, we also
have c6 ≤ c5 = Sn < +∞, as required. Therefore, Part (B) of Theorem 7.1 with the choice
of α = α(n, an, δ), where

α(n, an, δ) =
16B2(1 + an)τ ln( 2Sn

δ )

(1− an)ann

implies that with probability 1− δ,

L(f̂k̂) ≤ (1− a2
n) min

k≥1

[
1

(1− an)2
L(f̂k) + 2Ck(n)

]
+ α(n, an, δ) .

Subtract L(f∗) from both sides and use that Lk = L(f̂k)− L(f∗) to get

Lk̂ ≤ (1− a2
n) min

k≥1

[
1

(1− an)2
Lk + 2Ck(n)

]
+

2an
1− an

L(f∗) + α(n, an, δ) .

This finishes the proof of Part (A).
Let us now prove Part (B). Fix some 0 < δ ≤ 1. Let E1 be the error event where

∥∥∥f̂k̂ − f∗∥∥∥2

≤ (1− a2
n) min

k≥1


∥∥∥f̂k − f∗∥∥∥2

(1− an)2
+ 2Ck(n)

+
2an

1− an
L(f∗) + α(n, an, δ/3) (7.19)

fails to hold. By Part (A), P {E1} ≤ δ/3. Let E2 be the error event where one of the
inequalities ∥∥∥f̂k − f∗∥∥∥2

≤ Ak(f∗) + Bk(n, βkδ, τ), k = 1, 2, . . . (7.20)

fails to hold. By assumption and the choice of (βk), P {E2} ≤ 2δ/3. Our goal is to show that
for n large enough, outside of E = E1∪E2, Ak̂(f∗) = 0. Indeed, if this holds then outside of E ,∥∥∥f̂k̂ − f∗∥∥∥2

≤ Ak̂(f∗) + Bk̂(n, βk̂δ, τ) = Bk̂(n, βk̂δ, τ), which implies the desired statement.

In the rest of the proof, all of our derivations will be done on the event Ec. Let k∗ be the
first index where Ak(f∗) = 0. Note that k∗ is well-defined by our assumption that relates
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Ak(f∗) to the approximation errors, inff∈Fk ‖f−f∗‖2, and because f∗ ∈ ∪k≥1Fk. If k∗ = 1,

then k̂ ≥ k∗ and thus Ak̂(f∗) = 0 holds, too. Therefore, from now on assume that k∗ > 1.
From (7.19), it follows that

∥∥∥f̂k̂ − f∗∥∥∥2

≤ (1− a2
n)


∥∥∥f̂k∗ − f∗∥∥∥2

(1− an)2
+ 2Ck∗(n)

+
2an

1− an
L(f∗) + α(n, an, δ/3) .

By (7.20), we also have ‖f̂k∗−f∗‖2 ≤ Ak∗(f
∗)+Bk∗(n, βk∗δ, τ) = Bk∗(n, βk∗δ, τ). Chaining

these inequalities gives∥∥∥f̂k̂ − f∗∥∥∥2

≤ (1− a2
n)

[
Bk∗(n, βk∗δ, τ)

(1− an)2
+ 2Ck∗(n)

]
+

2an
1− an

L(f∗) + α(n, an,
δ
3 ). (7.21)

Let n0 be the first integer such that the right-hand side of (7.21) is strictly below 0 <
Ak∗−1(f∗)/C. Such an index exists because the right-hand side of (7.21) converges to zero

as n → ∞. Since f̂k̂ ∈ Fk̂, we have inff∈Fk̂ ‖f − f
∗‖2 ≤ ‖f̂k̂ − f

∗‖2. Therefore, if n ≥ n0,

k̂ = k̂n is such that Ak̂(f∗) ≤ C inff∈Fk̂ ‖f − f
∗‖2 ≤ C‖f̂k̂ − f

∗‖2 < Ak∗−1(f∗) and thus,
by the definition of k∗, Ak̂(f∗) = 0, thus finishing the proof.
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Chapter 8

Concluding Remarks

In this thesis, we have investigated a regularization-based approach to solve RL/Planning
problems with large state spaces. We developed a regularized AVI algorithm, RFQI, in
Chapter 5 and two regularized API algorithms, namely REG-BRM and REG-LSPI, in
Chapter 6. All these algorithms are formulated as regularized optimization problems with
a rather general choice of the function space and regularizer. When the function space was
an RKHS, we provided closed-form solutions for the corresponding optimization problems.
The main emphasis of this thesis has been on the analysis of the statistical properties of the
proposed algorithms. Under generic assumptions on the capacity of the function space and
some properties of the MDP, we provided the performance loss upper bounds for RFQI and
REG-LSPI. We also investigated the model selection problem for RL/Planning problems
in Chapter 7. We developed and studied a complexity-regularization algorithm to find the
minimum of the Bellman error among a set of candidate action-value functions.

In our endeavor, we also addressed some other issues that are not specific to regularization-
based RL/Planning algorithms but have been relevant to our discussion:

• We examined how the errors at each iteration of AVI/API would affect the quality of
the resulting policy. These results can be used for any AVI/API algorithm – parametric
or nonparametric (Chapter 3).

• We studied regularized least-squares regression with the β-mixing input data (Chap-
ter 4). We provided an error upper bound on the excess error and showed that under
certain assumptions, most importantly having an exponentially fast mixing process,
the convergence rate is asymptotically the same as the rate for the i.i.d. input process.
This result is used to analyze the RFQI algorithm.

From a philosophical standpoint, this work provided a concrete formalism of the Oc-
cam’s Razor principle: given some data from interaction with an MDP, the regularization-
based algorithms prefer “simpler” explanations for the estimate of the value function. This
work extends the previous formalisms, which have focused on the prediction problems in the
supervised learning setting, to the new ground of sequential decision-making problems and
control. We have seen that the concept of simplicity is context-dependent as it is specified
by the choice of the function space and the corresponding regularizer. Varying these two
leads to different ways of preferring simpler solutions.

8.1 Suggestions for Future Research

This thesis opens up several possibilities for further investigations. We have already com-
mented on some of them in the concluding sections of each chapter, but in order to make
them more accessible, we briefly review them here too.
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Computational Efficiency

The focus of this work has been on laying the foundation of regularization-based RL/Planning
algorithms and studying their statistical properties. Although our algorithms are computa-
tionally tractable, their naive implementations may not lead to a computer program that
can handle millions of data samples with the contemporary hardware technology. There-
fore, one has to address this issue by devising elegant numerical algorithms. Three possible
approaches are 1) to use iterative algorithms in conjunction with fast matrix-vector mul-
tiplication (e.g., using ideas from the Fast Multipole Methods), 2) to sparsify the samples
and work with a representative subset of samples, and 3) to apply stochastic gradient-based
algorithms. See Section 5.6 for more detail.

Continuous Action Space

Many real-world applications, including almost all control engineering and robotics prob-
lems, are best described by a continuous action space. Discretizing a continuous action
space and using an algorithm that is designed to work with finite action spaces does not
scale well with the dimensionality of the action space.

Our general formulation of RFQI, REG-LSPI, and REG-BRM allows us to choose a
function space, such as an RKHS, that has a continuous action domain. The difficulty,
however, is that the current analysis assumes that one may find maxa′∈AQ(x, a) for a given
action-value function Q. Of course finding the maximizer is not feasible for a large A and an
arbitrary Q function – for this is an instance of global optimization problem. One possibility
is to search locally around some given action a0 and return the value of the local maximizer.
This inexact policy improvement requires new error propagation results.

Partial Observable Problems

The working assumption of this thesis has been that the the state of the system is accessible.
In many real-world problems, however, this assumption does not hold. What we have instead
is an observation that might not be a sufficient statistic of the history. Showing that how
the current algorithms can be extended, if needed, to handle these types of problems is the
topic of future research.

Online Regularized RL/Planning Algorithms

Our methods are stated and most of our results are proven in the offline learning scenario.
One can argue that many real-world problems are better described by an agent in a continual
interaction with its environment.

To have an online RL/Planning algorithms, one should modify our algorithms so that
they incrementally update their action-value function estimates in a computationally inex-
pensive manner. One difficulty for nonparametric methods such as ours is that the effective
function space is changing when new samples are added. Efficient re-estimation of the value
function in this sequence of ever-changing function spaces deserves further investigation.

Other Regularizers

The formulations of RFQI, REG-LPSI, and REG-BRM are general and allow different
choices of the function space and regularizers. Moreover, from the statistical point of view
our results hold for a large class of function spaces and regularizers that satisfy the specified
capacity condition and a few other assumptions. Nonetheless, one should ask two questions
before using a function space and a regularizer:

1. Does this pair of the function space and the regularizer provide a natural way of
controlling the complexity for the given problem?

137



2. How can the corresponding optimization problems be solved?

For instance, consider the choice of the l1-regularization. The first question asks whether
sparsity-inducing regularization is an appropriate choice for the RL/Planning problem in
hand. If the basis functions are an over-complete dictionary, such as wavelet basis, the
choice of the l1-regularization seems viable. Or if we know that many input variables are
irrelevant to the representation of the action-value function, this choice is also appropriate.
The second question asks if we can efficiently solve the optimization problems with the l1-
regularizer. For RFQI, this is not a major issue as we essentially should solve a LASSO
problem. This is not, however, the case for REG-LSPI and REG-BRM. See the discussion
of Section 6.5.

Model-based Policy Selection Algorithm

The model selection approach we have advocated in Chapter 7 is an indirect one because it
selects the best policy according to the estimate of its Bellman error. As briefly suggested
in Section 7.5, a more direct approach is possible too: Learn the model of the environment,
generate virtual samples from the learned model, and use these samples to assess the quality
of different policies. If the learned model is a close approximation to the environment, which
calls for an appropriate model selection itself, one might expect to get an accurate evaluation
of the performance for each policy. Therefore, the ranking of the performance based on the
learned model would be close to the the true ranking of the policies. A rigorous study of this
model-based policy selection algorithm is required for better understanding of the relative
advantages and disadvantages of these two approaches.

Regularities of MDP

In this thesis, we related the sample complexity of learning to the properties of the action-
value function space (such as its metric entropy) and the norm-expansion property of the
Bellman operator in that space (Assumptions A11 and A19) – see Theorems 5.8 and 6.13.
An interesting question is how these properties are related to the regularities of the transition
probability kernel P and the reward kernel R. We partially addressed this question for a
certain class of MDPs, which we called convolutional MDPs (Section 6.E), but more studies
is required.

Aside theoretical appeal, an answer to this question might also have practical implica-
tions. It helps us to better understand what types of function spaces should we expect to
confront in RL/Planning problems. This can be used to design a better set of candidate
models (cf. Remark 7.3). For instance if we know that the reward function is quadratic
in the magnitude of the state error and the action (control signal) and the MDP is a lin-
ear system with additive Gaussian noise (e.g., classical Linear Quadratic Regulator (LQR)
setup), what is the right choice of the RKHS for this problem and what are the values of
LP and LR in Assumptions A11 and A19?1

Another related open question is to characterize the dynamics of concentrability coeffi-
cients defined in Chapter 3 and to relate it to the properties of the transition probability
kernel P .

Lower Bounds for RL/Planning

The focus of this thesis has been on providing sample complexity upper bounds on the
performance loss. To show the tightness of upper bounds, one should also provide a matching
lower bound. This problem can be seen from two aspects. The first is whether the value
estimation task in an RL/Planning problem is done optimally or not, and the other is

1We know that the optimal cost-to-go function of the LQR problem is quadratic in state.
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whether the optimal estimation of the value function is necessary to perform optimally (i.e.,
the optimal convergence rate for the performance loss).

The value estimation task in an RL/Planning problem can be considered as a general-
ization of regression problems (a regression problem can be reduced to a value estimation
problem for the corresponding RL/Planning problem that has γ = 0). Our upper bounds
show that the behavior of the sample complexity is essentially the same as those suggested
by the usual lower bounds in the regression literature. This indicates that the estimation
part of our results are optimal when both R and P are unknown. Nevertheless, one may
consider a different scenario when P is not known but the reward function r is known a
priori. In this scenario, whenever γ = 0, there is nothing to learn: we already know the best
estimate of the action-value function and it is Q(x, a) = r(x, a). But when γ > 0, we still
require to estimate the action-value function based on samples. Thus, the question is what
can be said about the lower bound on the sample complexity for the value estimation task?

Nevertheless, it is not clear whether the optimal estimation of the value function is
necessary for the optimal performance of the agent. One can easily imagine situations
where the value function is estimated inaccurately, but the selected policy (e.g., the greedy
policy w.r.t the estimated action-value function) is the optimal one. Therefore, one can
rightfully ask what the true sample complexity of an RL/Planning problem is regardless of
whether a value-based approach is followed or not.

Exploration-Exploitation Tradeoff

Throughout the thesis, we assumed that the data sampling distribution ν is fixed. As it is
apparent from the definition of concentrability coefficients in Chapter 3, the choice of ν has
direct effect on the quality of the resulting policy.

The choice of ν can be studied in two different scenarios. In the first scenario, the
goal is to find the best policy given a finite budget of actively collected samples. This is
closer to the spirit of offline learning. The goal of the second scenario is to minimize the
regret in online learning. This scenario is usually called the exploration-exploitation tradeoff
problem. Efficient solutions for both of these problems are crucial for an agent that solves
large RL/Planning problems.

Regularized RL algorithms for Average Reward MDPs and SMDPs

Many sequential decision-making problems are best described not by discounted MDPs,
but by other classes of problems such as average reward MDPs or Semi-Markov Decision
Processes (SMDP). Extending our current methods to these classes of sequential decision-
making problems is the topic of future research.
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András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with
Bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning, 71:89–129, 2008b. 16, 20, 21, 23, 24, 26, 32, 33, 34, 35, 36, 74, 75, 76,
77, 82, 92, 94, 95, 111, 126

Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection.
Statistics Surveys, 4:40–79, 2009. 56, 69, 120

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337 – 404, May 1950. 157

Jean-Yves Audibert and Alexander B. Tsybakov. Fast learning rates for plug-in classifiers.
The Annals of Statistics, 35(2):608–633, 2007. 155

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforce-
ment learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems 21, pages 89–96, 2009. 17

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation.
In Proceedings of the Twelfth International Conference on Machine Learning, pages 30–37.
Morgan Kaufmann, 1995. 74

Andrew R. Barron. Complexity regularization with application to artificial neural networks.
In G. Roussas, editor, Nonparametric Function Estimation and Related Topics, pages 561–
576. Kluwer Academic Publishers, 1991. 110, 118, 123

Andrew R. Barron, Cong Huang, Jonathan Q. Li, and Xi Luo. The MDL principle, maxi-
mum likelihoods, and statistical risk. In Peter Grünwald, Petri Myllymäki, Ioan Tabus,
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Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection and error esti-
mation. Machine Learning, 48(1-3):85–113, 2002. 56, 110, 117, 118

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities.
The Annals of Statistics, 33(4):1497–1537, 2005. 132

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, pages 319–350, 2001. 13

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Wavelets,
Multilevel Methods and Elliptic PDEs, pages 1–37. Oxford University Press, 1997. 68, 96

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of represen-
tations for domain adaptation. In Bernhard Schölkopf, John C. Platt, Thomas Hoffman,
Bernhard Schölkopf, John C. Platt, and Thomas Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 137–144. MIT Press, 2006. 74

Sergei Natanovich Bernstein. Sur l’extension du théorème limite du calcul des probabilités
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mation for uncalibrated visual servoing. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 5564–5569, May 2010. 1

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004. 38, 52, 157

Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics. Springer,
2008. 1, 142, 144

David Silver, Richard S. Sutton, and Martin Müller. Reinforcement learning of local shape
in the game of go. In Manuela M. Veloso, editor, International Joint Conference on
Artificial Intelligence (IJCAI), pages 1053–1058, 2007. 2

Steve Smale and Ding-Xuan Zhou. Estimating the approximation error in learning theory.
Analysis and Applications, 1(1):17–41, 2003. 45, 59, 83

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008. 38, 44,
54, 58, 59, 83, 158

Ingo Steinwart, Don Hush, and Clint Scovel. Learning from dependent observations. Journal
of Multivariate Analysis, 100(1):175–194, 2009. 37

Hongwei Sun and Qiang Wu. Regularized least square regression with dependent samples.
Advances in Computational Mathematics, 32:175–189, 2010. 37

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Adap-
tive Computation and Machine Learning). The MIT Press, 1998. 7, 12, 17, 75, 109

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver,
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Appendix A

Supervised Learning

The supervised learning literature provides two types of insights about the RL/Planning
problems:

• A lower bound for a regression problem leads to a lower bound for a related policy
evaluation problem.

• The powerful supervised learning algorithms may inspire us to design new algorithms
for the RL/Planning problems with large state spaces.

One can easily see that the regression problem is indeed a special case of the policy
evaluation problem when the discount factor γ is set to zero. Consequently a lower bound
for the regression problem is also a lower bound for the subproblem of policy evaluation in
the RL/Planning context. In Section A.1, we survey some lower bounds for the regression
problem. We quote a result that shows that if the problem does not have any well-behaving
regularity, the learning process can be arbitrary slow. On the other hand if the problem
has some kind of regularities, learning becomes feasible and we may have a reasonable
convergence rate. These regularities are usually measured according to some notion of
complexity of the problem. Examples of complexity measures are the Vapnik-Chervonenkis
(VC) dimension [Vapnik, 1998], various notions of smoothness [Györfi et al., 2002], metric
entropy [Yang and Barron, 1999], the degree of sparsity [Lafferty and Wasserman, 2006;
Zhang, 2009a], and the global and local Rademacher complexities [Bartlett and Mendelson,
2002; Koltchinskii, 2006] of the function (hypothesis) space to which the target function
belongs. Section A.2 is devoted to various types of regularities that are well-studied in the
supervised learning literature.

Another way that the supervised learning literature can help is as the source of inspira-
tion to design new RL/Planning algorithms. The existence of many flexible and adaptive
supervised learning algorithms encourages us to adopt them for RL/Planning problems.
The focus of this work has been the regularization-based algorithms as described in Chap-
ters 5, 6, and 7. Evidently, the regularization-based algorithms are not the only powerful
class of algorithms in the supervised learning literature, and one may expect to design new
algorithms based on other powerful techniques too. The literature on supervised learning
is abundant and we do not even attempt to review them here. Instead, we refer the reader
to standard textbooks such as Hastie et al. [2001]; Bishop [2006] for the comprehensive cov-
erage of the supervised learning algorithms and Devroye et al. [1996]; Györfi et al. [2002];
Wasserman [2007] for theoretical analyses of them.

A.1 Lower Bounds for the Regression Problem

The lower bounds or slow rates provide insight about the intrinsic difficulty of learning
problems. They show how many samples are required in the worst case to estimate the
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regression/classifier/density/value function up to a specific accuracy. These results are in-
teresting because they demonstrate the intrinsic difficulty of learning problems – as opposed
to the performance of a particular algorithm. Briefly speaking, the available lower bounds
indicate that learning can be hopelessly difficult, unless there are some intrinsic regularities
in the problem. If there are, an estimator exists that has a rate of convergence, which
itself depends on some well-specified notion of the problem’s complexity. In this section, we
present some particular examples of lower bound results for the regression problem and in
Section A.2 we discuss different types of regularities from a higher-level viewpoint.

First let us briefly formalize the regression problem, which will be the focus of the rest of
this section. Consider a pair of random variables (X,Y ) where X ∈ X and Y ∈ R with the
joint probability distribution µXY (or simply µ). Also assume that we are given a dataset
Dn = {(Xi, Yi)}ni=1 with (Xi, Yi) ∼ µXY . The regression function is a real-valued function
with the domain X and is defined as m(x) = E [Y |X = x]. It can be shown that this function

is the minimizer of the L2-risk, i.e., m← argminf ‖f(X)− Y ‖2µ.
When we do not know the joint distribution µXY , which is usually the case in practice,

we cannot analytically determine the regression function m. Instead, we use samples Dn
to estimate the function m̂n(·;Dn) : X → R. The goal is to have an estimate m̂n(·;Dn)
that has a small excess error ‖m̂n(·;Dn)−m‖. The following negative result shows that Negative Re-

sultthe regression problem can be arbitrary difficult.

Theorem A.1 (Györfi et al. [2002] – Theorem 3.1). Let {an} be a sequence of positive
numbers converging to zero. For every fixed sequence of regression estimates {m̂n(·;Dn)},
there exists a distribution µXY , such that X is uniformly distributed on [0, 1], Y = m(X) =
±1, and

lim sup
n→∞

E
[
‖m̂n −m‖2

]
an

≥ 1.

This theorem states that for a subset of all regression problems, where X is distributed
uniformly and Y is noiseless samples that can be either +1 or −1, the convergence rate can
be arbitrary slow. This result indicates that we cannot hope to have any estimator that
has a convergence rate for all problems – even if the distribution of X is known and Y s are
noiseless.

Nevertheless, if we restrict the range of problems µXY to a small subset of joint distri-
butions with certain amount of structure/regularities, we can get a convergence rate. In
the rest of this section, we provide several examples of such results. The difference between
these examples is in the way the regularity is defined. First, we cover the smoothness reg-
ularities, then we provide a result when the regularity is defined according to the metric
packing entropy of the function space (Definition B.6 in Appendix B.2), and finally we cite
a result regarding the influence of the geometry of the function space on the convergence
rate.

Let us define the class of (p, C)-smooth functions [Györfi et al., 2002, Chapter 3]. Smoothness
Lower
BoundDefinition A.1 ((p, C)-smoothness). Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and

let C > 0. A function f : Rd −→ R is called (p, C)-smooth if for every α = (α1, . . . , αd)

(αi ∈ N0,
∑d
i=1 αi = k) the partial derivative ∂kf

∂x
α1
1 ...∂x

αd
d

exists and for all x, y ∈ Rd satisfies∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)− ∂kf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C ‖x− z‖β .
Define F (p,C) to be the set of all (p, C)-smooth functions f : Rd −→ R.

Let us define the following class of regression problems.

Definition A.2 (Class of D(p,C) Problems). Let D(p,C) be the class of regression problems
such that
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• X is uniformly distributed on [0, 1]d,

• Y = m(X) + η, where X and η are independent and η is a standard normal random
variable,

• m ∈ F (p,C).

We have the following lower bound.

Theorem A.2 (Minimax and Individual Lower Bounds for D(p,C) –Antos et al. [2000]).
For the class D(p,C), there exists some constant B independent of C such that

lim inf
n→∞

inf
m̂n

sup
(X,Y )∈D(p,C)

E
[
‖m̂n −m‖2

]
≥ BC

2d
2p+dn−

2p
2p+d ,

This is called the minimax lower bound of convergence. Moreover, consider {bn} as an
arbitrary positive sequence tending to zero. We have

inf
m̂n

sup
(X,Y )∈D(p,C)

lim sup
n→∞

E
[
‖m̂n −m‖2

]
> bnn

− 2p
2p+d .

which is called the individual lower bound of convergence.

As another related example, Nussbaum [1985] considers the regression problem with
fixed design. He provides an optimal minimax rate with sharp constants when the regression
function belongs to {f : f ∈Wk(Rd), ‖Dmf‖2 ≤ J2

0}.
One may also provide a lower bound for learning when the complexity of the function Metric En-

tropy Lower
Bound

space is described according to its metric entropy. Consider the regression model Yi =
m(Xi) + ηi (i = 1, . . . , n) with ηis are i.i.d. with the standard normal distribution and Xis
are also i.i.d. with the distribution µX . LetM(ε,F , ‖·‖2,µX ) be the ε-packing number of F
w.r.t. ‖·‖2,µX .

Theorem A.3 (Minimax Lower Bound for the Class of Controlled Metric Packing Entropy
– Theorem 6 of Yang and Barron [1999]). For the class of bounded functions F , assume
that for some 0 < ρ < 1,

lim inf
ε→0

M
(
ρ ε,F , ‖·‖2,µX

)
M
(
ε,F , ‖·‖2,µX

) > 1.

Choose εn such that logM(εn,F , ‖·‖2,µX ) = nε2
n. Then

inf
m̂n

sup
m∈F

E
[
‖m̂n −m‖2

]
= Θ(ε2

n).

This theorem is relevant to our results in which the capacity is described according to the
metric entropy condition (cf. Assumptions A2, A7, and A16). According to this theorem,
a capacity condition in the form of N (ε,F , ‖·‖2,µX ) = ε−2α (for a fixed 0 < α < 1 and

any ε > 0), implies a minimax optimal convergence rate of Θ(n−
1

1+α ) for the squared error,
which is the same rate as our upper bounds in Chapters 4, 5, 6.

Some results are geometric flavored. They indicate that if the function space F from Geometric
Lower
Bound

which the estimator m̂n(·;Dn) is picked has a “bad” geometry, the learning cannot be very
fast. The notions of badness can be defined in different ways. For instance, Lee et al. [1998,
2008] show that if the closure of a finite dimensional function space F is not convex, the
L2-loss of any learning algorithm cannot converge to the best possible function in F faster
than O( 1√

n
). The following theorem due to Mendelson [2008] is a modification of the result

of Lee et al. [1998]
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Theorem A.4 (Mendelson [2008]). Let F ⊂ L2(µX ) be a compact class of functions bounded
by 1. Assume that there is a random variable Y bounded by B for which inff∈F E

[
|Y − f |2

]
has more than a unique minimizer in F . Consider a learning algorithm that for every integer
n and any sample Dn assigns a function m̂n(·;Dn) ∈ F . Then there are constants c and n0

depending only on F , B, and µX such that for any n ≥ n0,

sup
Y ∈{Y :‖Y ‖∞≤B}

E
[
|Y − m̂n(X;Dn)|2

]
− inf
f∈F

E
[
|Y − f(X)|2

]
≥ c√

n
.

The difference between these results and Theorems A.2 and A.3 is that the source of
difficulty here is not because of the richness of the function space but is the consequence of
its bad geometry.

A.2 On Regularities

The results of Section A.1 show that solving a regression problem might not be possible
unless there is some underlying regularities in the problem. In that case, it is desirable to
have an adaptive algorithm that automatically detects the present regularity and exploits it.
In this section we provide a high-level overview of the following common types of regularities
studied in the statistics/supervised learning literature:

• Smoothness

• Sparsity

• Low-Dimensionality of the Input Manifold

• Low-Noise Margin Condition

Smoothness of the target function is one of the most common ways to describe the Smoothness
regularity of a problem. There are various notions of smoothness such as Hölderian smooth-
ness that requires the derivatives of the function to be Hölder continuous (Definition B.2
in Appendix B.2) and the smoothness according to the Sobolev norm that requires the
weak-derivatives of the function to be Lp-integrable (Definition B.3 in Appendix B.2). This
latter notion of smoothness allows the function to have occasional discontinuities. For a
comprehensive treatment of various notions of smoothness, refer to Triebel [2006, Chapter
1: How to Measure Smoothness], and for some typical results on the statistical behavior of
estimators under these conditions, refer to Györfi et al. [2002].

Sparsity is another type of regularity that has recently attracted considerable atten- Sparsity
tion [Tibshirani, 1996; Donoho and Johnstone, 1995; Zou, 2006; Zhang, 2009b; Lafferty and
Wasserman, 2006]. Consider a p-dimensional function space F with {Φi}pi=1 as its basis
functions, i.e., any function f ∈ F has an expansion f(·) =

∑p
i=1 wiΦi(·) for w ∈ Rp.

A function f is said to be s-sparse when the number of non-zero elements of w is s, i.e.,
s = |{wi 6= 0 : i = 1, . . . , p}|. Sparsity of the target function allows us to design more ef-
ficient estimation procedures. If the true s-sparse function has the parameter vector w∗,
one can show that under certain conditions on the design matrix, the parameter estimation

error ‖ŵ − w∗‖2 of LASSO [Tibshirani, 1996] would be O( s log(p)
n ). If p is comparable to n

(or even p� n) and the target function is s-sparse with s� n, the improvement over O( pn )
behavior of a procedure that does not exploit the sparsity is notable. For the review on the
conditions that allow a procedure such as LASSO to achieve such a rate, see e.g., van de
Geer and Bühlmann [2009]; Raskutti et al. [2010]. Raskutti et al. [2009] provides minimax
convergence rates for estimation when w∗ belongs to an lq-ball with q ∈ [0, 1].

Low-dimensionality of data manifold is a geometrical regularity describing the situation Low-
dimensional
Data Mani-
fold

that input data belongs to a D-dimensional space X but they are confined (or close) to a
d-dimensional manifold M ⊂ X . We call an algorithm manifold-adaptive if it exploits this
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property and performs as if the dimension of the input space is d. This leads to a huge
statistical performance gain whenever d� D.

Recently, there have been a few theoretical results that show the possibility of having
manifold-adaptive algorithms. Farahmand et al. [2007b] shows that the sample complex-
ity of estimating the dimension of manifold M depends mainly on the intrinsic dimension
d of M and not the dimension D of the embedding space X . Farahmand et al. [2007c]
present a result that shows that a simpleK-nearest neighborhood regression algorithm is also
manifold-adaptive (Note that the conventional K-nearest neighborhood-based algorithms do
not exploit other regularities of the problem such as its smoothness). See the work of Farah-
mand et al. [2011b] for the detailed discussion of this result. Among other works that prove
manifold-adaptivity of a procedure, we can refer to Scott and Nowak [2006] that introduces
dyadic decision trees for classification. Another approach with favorable manifold-adaptive
properties is Random Projection Tree (Dasgupta and Freund [2008]) which is a variant of
k-d trees. It uses random splitting directions instead of splitting along a coordinate direction
and uses the randomly-perturbed median as the point of splitting. Nevertheless, to best of
our knowledge, we are far from a general statistical theory of manifold-adaptive algorithms.

Low-noise margin condition is another type of regularity that appears in classification Low-Noise
Marginproblems. This condition is regarding the behavior of a posteriori probability function η(x) =

P {Y = 1|X = x} around the critical decision point 1
2 (for 0/1-classification problem). It

turns out that if η(x) is far away from 1
2 for most x ∈ X , one can show improved convergence

rates for the classification problem, see e.g., [Tsybakov, 2004; Audibert and Tsybakov, 2007]
and Section 5.2 of Boucheron et al. [2005]. The quantitative behavior of η(x) around 1

2 can
be described by different conditions such as the Massart or Tsybachov noise conditions.

Our short discussion here about different types of regularities should not imply that
these are the only possible regularities one may exploit in any problem. There are several
other types of regularities that explicitly or implicitly have been studied in the machine
learning and statistics literature (e.g., ANOVA decomposability). Moreover, one can be
sure that there will be several undiscovered regularities in real-world learning problems that
might be useful to consider when designing new algorithms. One may also speculate that
real-world RL/Planning problems have regularities that do not come up in the supervised
learning problems. Discovering and studying them should be the subject of future research.
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Appendix B

Mathematical Background

In this appendix, we briefly review some mathematical definitions and results that are used
in the thesis.

B.1 Function Spaces

Definition B.1. For X an open subset of Rd, a function f : X → R is Hölder continuous
if for some nonnegative finite real numbers C and α,

|f(x)− f(y)| ≤ C|x− y|α. (x, y ∈ X )

The value of α is called the exponent of the Hölder condition.

For example, when α = 1, the Hölder continuity is the same as Lipschitz continuity; and
α = 0 implies that the function is bounded.

Definition B.2. Let k be a nonnegative integer number and 0 < α ≤ 1. The Hölder space
Cα,k(X ) is the space of all functions with domain X that have derivatives up to order k and
their kth partial derivatives are Hölder continuous with exponent α.

Definition B.3 (Sobolev Space Wk,p(X ) – Devore [1998]). Let k be a nonnegative integer
number and 1 ≤ p ≤ ∞. The Sobolev space Wk,p(X ) for open and connected subset X of
Rd is the space of all measurable functions whose distributional derivative of order k is in
Lp(X ), i.e., ∥∥∥∥ ∂|α|f

∂xα1
1 · · · ∂x

αd
d

∥∥∥∥
Lp(X )

<∞,

for every multi-index |α| ≤ k. The semi-norm for Wk,p(X ) is defined as

|f |Wk,p(X ) ,
∑
|α|=k

∥∥∥∥ ∂|α|f

∂xα1
1 . . . ∂xαdd

∥∥∥∥
Lp(X )

,

and their norm by ‖f‖Wk,p(X ) , |f |Wk,p(X ) + ‖f‖Lp(X ). Denote Wk,2(Rd) by Wk(Rd).

Sobolev spaces generalize Hölder spaces by allowing functions that are only almost every-
where differentiable. Another relevant class of function spaces is the class of Besov spaces
Bsp,q(X ) for 0 < p, q ≤ ∞ and s > 0. Besov spaces generalize Sobolev spaces by letting

0 < p < 1 and having fractional smoothness order s. For instance, Bs2,2(Rd) is the same as

Ws,2(Rd). We do not define Besov spaces here, and only mention that Besov spaces can be
defined with the help of modulus of smoothness. See Devore [1998] for more information.
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One may extend this definition to domain X × A with a finite A as well. First, define
the distributional derivative of order k of Q ∈ F |A| by

∂|α|Q

∂xα1
1 · · · ∂x

αd
d

=


∂|α|Q(x,a1)

∂x
α1
1 ···∂x

αd
d

· · ·
∂|α|Q(x,a|A|)

∂x
αd
1 ···∂x

αd
d

 .
Also define the L2(X ×A)-norm of Q as ‖Q‖L2(X×A) =

∑
a∈A ‖Q(·, a)‖L2(X ). This leads to

‖Q‖2Wk(Rd×A) =
∑
a∈A ‖Q(·, a)‖2Wk(Rd).

B.1.1 Reproducing Kernel Hilbert Spaces

The following definition of an RKHS is borrowed from Aronszajn [1950].

Definition B.4 (Aronszajn [1950]). Let H be a Hilbert space defined in X with the inner
product 〈 · , · 〉. The function k(x, y) of x and y in X is called a reproducing kernel of F
if

• For every y ∈ X , k(·, y) ∈ H.

• For every y ∈ X , and for every f ∈ H, we have f(y) = 〈 f(x) , k(x, y) 〉.

We quote the following slight generalization of Schölkopf et al. [2001, Theorem 1]).

Theorem B.1 (Generalized Representer Theorem). Let Ω : [0,∞)→ R be a strictly mono-
tonically increasing function, X be a set, H be an RKHS with kernel k : X × X → R, and
cn : Xn → R be an arbitrary loss function. Then any f ∈ H minimizing

cn
(
f(x1), . . . , f(xn)

)
+ Ω

(
‖f‖H

)
admits a representation of the form f(x) =

∑n
t=1 αtk(xt, ·).

For more information on RKHSs and their properties, see e.g., Aronszajn [1950], Wahba
[1990], Schölkopf and Smola [2002], Cucker and Smale [2002, Chapter III], Shawe-Taylor
and Cristianini [2004], and Rasmussen and Williams [2006, Section 6.1].

B.2 Covering Number and Metric Entropy

The following definitions are from Györfi et al. [2002, Chapter 9].

Definition B.5 (Covering Number – Definition 9.3 of Györfi et al. [2002]). Let ε > 0, F
be a set of real-valued functions defined on X , and νX be a probability measure on X .

1. Every finite collection of Nε = {f1, . . . , fNε} defined on X with the property that for
every f ∈ F , there is a function f ′ ∈ Nε such that ‖f − f ′‖p,νX < ε is called an
ε-cover of F w.r.t. ‖·‖p,νX .

2. Let N (ε,F , ‖·‖p,νX ) be the size of the smallest ε-cover of F w.r.t. ‖·‖p,νX . If no
finite ε-cover exists, take N (ε,F , ‖·‖p,νX ) = ∞. Then N (ε,F , ‖·‖p,νX ) is called an
ε-covering number of F and logN (ε,F , ‖·‖p,νX ) is called the metric entropy of
F w.r.t. the same norm.

The ε-covering of F w.r.t. the supremum norm ‖·‖∞ is denoted by N∞(ε,F). For x1:n =
(x1, . . . , xn) ∈ Xn, one may also define the empirical measure νX ,n(A) = 1

n

∑n
i=1 I{xi∈A}

for A ⊂ X . This leads to the empirical covering number of F w.r.t. the empirical
norm ‖·‖p,n and is denoted by Np(ε,F , x1:n) (or occasionally Np(ε,F , xn1 )). If X1:n =
(X1, . . . , Xn) is a sequence of random variables, the covering number Np(ε,F , X1:n) is a
random variable too.

A related concept is the packing number of a class of functions F .
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Definition B.6 (Packing Number – Definition 9.4 of Györfi et al. [2002]). Let ε > 0, F be
a set of real-valued functions defined on X , and νX be a probability measure on X .

1. A finite set Mε = {f1, . . . , fMε
} is said to be an ε-packing of F w.r.t. ‖·‖p,νX if for

any fi, fj ∈Mε (fi 6= fj), we have ‖fi − fj‖p,νX > ε.

2. Let M(ε,F , ‖·‖p,νX ) be the size of the largest ε-packing of F w.r.t. ‖·‖p,νX . If for
every M ∈ N, there exists an ε-packing of F w.r.t. ‖·‖p,νX with size M , then take
M(ε,F , ‖·‖p,νX ) = ∞. Then M(ε,F , ‖·‖p,νX ) is called an ε-packing number of F
w.r.t. ‖·‖p,νX .

In this work, we often refer to the covering number and the metric entropy of a class of
functions. Occasionally, however, we may refer to the packing number of a class of functions.
In these cases, we use metric packing entropy number to refer to the logarithm of the packing
number.

The following is an example upper bound on the metric entropy of certain classes of
RKHSs.

Proposition B.2 (Theorem 4 – Zhou [2003]). let K : [0, 1]d × [0, 1]d → R be a Mercer
kernel. If s > 0 and K lies in Lip∗(s, C([0, 1]d × [0, 1]d)), then

logN2(u, IK(BR)) ≤ C
(
R

u

) 2d
s

,

where IK(BR) is the inclusion of BR in C(X), the space of continuous functions, and A is
the closure of A.

Refer to Györfi et al. [2002]; van de Geer [2000]; Zhou [2002, 2003] for some other examples.

B.3 Peeling Device

The following definition of the peeling device is from Section 5.3 of van de Geer [2000].
Consider the function space F and let Xn(f) be an appropriately-defined stochastic

process indexed by F . Consider the function τ : F → [ρ,∞) (ρ > 0). The goal is to have a
probability upper bound on the weighted process |Xn(f)|/τ(f).

Let (σl)l≥0 be a strictly increasing sequence with σ0 = 0 and liml→∞ σl = ∞. The
function space F can be “peeled” off into the following “smaller” function spaces:

F =
⋃
l≥1

Fσl

with Fσl , { f ∈ F : σl−1 ≤ τ(f) < σl } (l = 1, 2, . . . ). For any positive a, we have

P

{
sup
f∈F

|Xn(f)|
τ(f)

> a

}
≤
∑
l≥1

P

{
sup
f∈Fσl

|Xn(f)|
τ(f)

> a

}
≤
∑
l≥1

P

{
sup

f∈F,τ(f)<σl

|Xn(f)| > aσl−1

}
.

This procedure is called the peeling device; and each l = 1, 2, . . . denotes a layer of peeling.

B.4 Carathéodory Sets

The definition and properties of Carathéodory sets are borrowed from Section 7.3 of Stein-
wart and Christmann [2008].

Let (T, d) be a metric space and (X , σX ) be a measurable space. A family of measurable
maps (ft)t∈T is called a Carathéodory family if t 7→ ft(x) is continuous for all x ∈ X .
Moreover, if T is separable or complete, we say that (ft)t∈T is separable or complete,
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respectively. A measurable set F on X is (separable or complete) Carathéodory set if there
exists a (separable or complete) metric space (T, d) and a Carathéodory family (ft)t∈T such
that F = { ft : t ∈ T }. A Carathéodory set F satisfies

sup
f∈F

f(x) = sup
t∈T

ft(x) = sup
t∈S

ft(x)

for all dense S ⊂ T . For a separable Carathéodory set F , the map x 7→ supt∈T ft(x) is
measurable. Also for a separable and complete Carathéodory set F , the map (x, t) 7→ ft(x)
is measurable.

B.5 Fixed-Point Theorem

Theorem B.3 (Banach Fixed-Point Theorem – Hutson et al. [2005]). Let (X , d) be a non-
empty complete metric space. Let L : X → X be a contraction mapping on X . Then the
map L admits a unique fixed point f∗ = Lf∗ with f∗ ∈ X . The fixed point can be found by
the iterative application of L on arbitrary f0 ∈ X , i.e., f∗ = limk→∞ Lkf0.
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