
Scalable Solutions to Image Abnormality Detection and
Restoration using Limited Contextual Information

by

Subhayan Mukherjee

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Subhayan Mukherjee, 2020



Abstract

Detecting and interpreting image abnormalities and restoring images are essen-

tial to many processing pipelines in diverse fields. Challenges involved include

randomness and unstructured nature of image artefacts (from signal process-

ing perspective) and performance constraints imposed by resource-constrained

systems (computational perspective). This thesis studies three such scenarios

involving different sensor modalities, and proposes novel approaches to address

such challenges using computer vision and machine learning techniques. The

three scenarios are: GPU-friendly debanding for mobile HDR, MRI abnormal-

ity detection, and InSAR signal recovery for WAM. Below, we summarize each

scenario, and outline the unique challenges involved in solving them.

In the first scenario, in High-Dynamic-Range (HDR) imaging domain, we

propose how to perceptually eliminate quantization artefacts resulting from

dynamic range conversion, without distorting image contents, by adding noise

patterns in the mobile Graphics Processing Unit (GPU) computing environ-

ment with limited computational resources. Traditional filtering methods are

computationally non-ideal due to limited access to neighborhood information.

We introduce a pixel based solution which does not rely on any neighborhood

information. We impose a real-world transmission scenario where the receiving

end cannot access the un-quantized (original) image. Most existing methods

assume access to the original image, and this makes the image restoration

problem easier to address. Our challenge is designing noise patterns that are

perceptually pleasant, i.e. blended into the image content naturally based on
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the intensity profile and dynamic range conversion characteristics of the image.

In the second scenario, we apply our methods to medical imaging: Magnetic

Resonance (MR) images of preterm infant brains. We propose abnormality de-

tection without using tissue priors (atlas) from a single acquisition sequence

(T1-weighted). The rate of preterm births is increasing worldwide at an alarm-

ing rate. Preterm infant brains are at extremely high risk of developing ab-

normalities, which deter neuro-development. Traditional segmentation-based

lesion detection methods rely on brain atlases to guide segmentation. For

rapidly evolving preterm infant brains, such reliable atlases are unavailable,

and low signal-to-noise ratio of small preterm infant brains complicates the

restoration of tissue intensities. This motivates our solution design using more

generic structural assumptions and heuristics for atlas-free WMI detection.

In the third scenario, for Wide Area Monitoring (WAM) via ground move-

ment prediction from noisy interferometric images, e.g. nation-wide moni-

toring for earthquake prediction or landslide prediction at mining sites, we

propose image detail recovery through unsupervised learning-based filtering

and filter output confidence prediction due to unavailability of clean training

data. Filtering and confidence estimation are crucial steps in interferometric

image processing pipelines. Challenges arise due to atmospheric factors, e.g.

moisture, corrupting the images during acquisition. Also, corresponding pix-

els in time series images get decorrelated due to other undesired movements

on the ground, e.g. moving vehicles on roads, vegetation and flowing water.

Intermediate results of the filtering and confidence estimation steps can also

influence the quality of the pipeline’s final result. Traditional algorithms in

this area were not designed by prioritizing scalability via parallelism, without

sacrificing accuracy, which are crucial for WAM, and addressed in this thesis.

Thus, our main contribution is proposing novel solutions in scenarios where

traditional image abnormality detection / restoration approaches are inade-
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quate to address the signal processing and computational challenges involved.
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Preface

I started my PhD studies by applying my image processing knowledge and

skills to investigate how WMI in preterm newborns could impact their de-

velopmental defects at a later age. However, our collaborator did not have

sufficient data to perform further study. Furthermore, in order to obtain more

reliable analysis, longitudinal data over a 10 years period is preferred. There-

fore, the research was put on hold.

Then I got an internship opportunity in Dolby, California on HDR research

from 2016 September to 2017 April. However, when I returned to UofA, only

limited work could be conducted because the research outcome needs to be

validated on HDR monitors, which was too expensive for the lab to purchase.

From 2017 July, I started to work on the CARIC funded InSAR project

with industrial partner 3vG Vancouver. In this project, I applied my computer

vision skills combined with machine learning approaches.

The contents of this thesis have mostly been published or currently under

review in peer-reviewed international conferences or journals/letters. Chapter

3 describes the first algorithm to detect WMI and PVH from single sequence

(T1) MRI in preterm infants without using brain atlas, as published in Springer

- Medical and Biological Engineering and Computing and International Con-

ference on Smart Multimedia (ICSM) (Springer LNCS proceedings). Chapter 4

describes the first application of CNNs to InSAR phase filtering and coherence

estimation and has been published in IEEE Sensors, while its extension to gen-

erative modelling as described in the same chapter, is currently under review

with IEEE Geoscience and Remote Sensing Letters. Chapter 5 describes the

first de-banding method which uses dithering directly on the quantized image

without accessing any neighborhood information, as published in ICSM.
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I write this thesis in first person plural to acknowledge and honor the

contribution of my advisors and collaborators.
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Glossary

Adaptive Balloon Snake (ABS)

A technique of demarcating the outline of an object from an image by
deforming an initial contour based on energy function minimization.

Backward Look-Up Table (BLUT)

HDR code-words indexed by SDR code-words in a 1:1 correspondence.

CerebroSpinal Fluid (CSF)

A clear body fluid found in the brain and spinal cord which provides
immunity and mechanical protection to the brain inside the skull.

Computer Aided Detection (CAD)

Computational methods to reduce observational oversights (false nega-
tives) by physicians in interpreting medical images for disease diagnosis.

Contrast-to-Noise Ratio (CNR)

An image quality measure similar to SNR except that it substracts the
bias from the signal before computing the ratio.

Convolutional Neural Network (CNN)

A type of neural network characterized by shared weights and translation
invariance, usually applied in image analysis.

Cumulative Distribution Function (CDF)

A function of a random variable which takes a real value and outputs
the probability of the variable taking values lesser than that value.

Differential Mean Opinion Score (DMOS)

Difference of mean opinion scores for reference and processed images.

Digital Elevation Model (DEM)

A three dimensional graphical representation of the surface of a terrain.

Digital Imaging and Communications in Medicine (DICOM)

A medical imaging communication and management standard.

Electro-Optical Transfer Function (EOTF)

A function for converting display data to a particular brightness (nits).
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Enhanced Dynamic Range (EDR)

A synonym for HDR.

Expectation Maximization (EM)

An iterative approximation of the likelihood function for incomplete or
missing data or latent variables.

FLuid-Attenuated Inversion Recovery (FLAIR)

An MRI sequence used to null signals originating from certain types of
tissues in order to emphasize others.

Genetic Algorithm (GA)

Optimization inspired by natural selection principles like mutation.

Graphics Processing Unit (GPU)

Electronic circuits specially designed for rapid memory access to accel-
erate generation of images for display output. Their structure is highly
parallel, suited for algorithms that benefit from parallel data processing.

Grey Matter (GM)

Nerve cells of the human brain.

High Dynamic Range (HDR)

Image capturing/processing/display technologies which achieve higher
range of luminosity using more than 8 bits per pixel.

Interferometric Synthetic Aperture Radar (InSAR)

A radar-based remote sensing technique which uses phase difference of
waves returning to the satellite while capturing successive SAR images
to generate surface elevation or deformation maps.

inverse Tone-Mapping Operator (iTMO)

A function to expand an LDR image into HDR for display.

Joint Photographic Experts Group (JPEG)

A lossy still image compression standard developed and maintained by
an international committee having the same name.

Low Dynamic Range (LDR)

Traditional image capturing/processing/display technologies which pro-
duce lower range of luminosity than HDR using 8 bits per pixel.

Magnetic Resonance (MR)

Quantum mechanical phenomenon where a magnetic element switches its
energy states when tickled with a magnetic field of appropriate frequency.

Magnetic Resonance Imaging (MRI)

A radiology technique for capturing the anatomy and physiological pro-
cesses of the human body using strong magnetic fields.
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Markov Random Field (MRF)

A set of random variables represented as an undirected graph having
Markov property.

Maximally Stable Extremal Regions (MSER)

A method to detect blobs in images by extracting co-variant regions as
stable connected components of the image’s gray-level sets.

Montreal Neurological Institute (MNI)

A neuroscience research and medical center located in Montreal, Canada.

Periventricular-IntraVentricular Hemorrhage (PIVH)

The pathology associated with a PVH extending to the space between
the two ventricles of the human brain.

PeriVentricular Hemorrhage (PVH)

Blood vessel ruptures in the vicinity of the ventricles in the human brain.

Probabilistic Fuzzy C-Means (PFCM)

A modification of the fuzzy clustering algorithm for normally distributed
data objects, which uses a probabilistic distance for clustering.

Rectified Linear Unit (ReLU)

An activation function used in neural networks which outputs its input
if positive and zero otherwise.

Self-Organizing Map (SOM)

A dimensionality reduction method using neural networks trained in an
unsupervised manner to create a low dimensional discrete representation
of the input space.

Signal-to-Noise Ratio (SNR)

Ratio between signal and background noise power, expressed in decibels.

Standard Dynamic Range (SDR)

A synonym for LDR.

Synthetic Aperture Radar (SAR)

A type of radar which achieves fine imaging resolution by utilizing the
motion of the antenna over the region of interest.

White Matter (WM)

Fibrous tissue carrying signals between nerve cells in the human brain.

White Matter Injury (WMI)

Preterm birth-related injuries to the white matter tissue, often caused
due to blood pressure fluctuations or inflammations. Such injuries severely
increase risks of neuro-developmental deficits in later stages of life.

Wide Area Monitoring (WAM)

Monitoring land displacement over an area spanning multiple provinces
or territories for safety of infrastructure like oil and natural gas pipelines.
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Chapter 1

Introduction

Image abnormality detection aims to detect, quantify, or interpret aberrations

or artefacts in an image, based on prior domain knowledge of how a corre-

sponding clean or normal image should look like. On the other hand, image

restoration deals with improving the quality of a distorted image, to get back

the original image by removing the aberrations or artefacts present. In a broad

sense, the general goal of image restoration is to improve the usability of the

image to the end user. Depending on the application area and acquisition

modality, the specific goals can be to discover patterns in the image which got

hidden due to the distortion, to improve the perceptual quality of the image to

the human observer, etc. Similarly, depending on the application area, image

abnormality detection can help assess potential perceptual degradation of the

image due to artefacts, the usefulness of the image in a processing pipeline,

or the presence of features of concern to the particular imaging application

(target identification). While image abnormality detection and restoration in

general have been sufficiently explored by researchers over the past several

decades, often, particular use cases suffer from lack of contextual information

and/or call for scalable solutions, not addressed by general-purpose methods.

In this thesis, we explore such gaps in literature and show using specific use

cases, how challenges unique to acquisition modalities and application areas

can be solved using novel computer vision and machine learning approaches.
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1.1 Image abnormality paradigms

Image abnormality estimation and restoration can be viewed in the broader

context of image quality analysis, which has been an actively researched area.

However, its focus paradigms have changed over time, or newer paradigms

have come up and coexisted with traditional ones [79]. There are four such

types of paradigms speaking broadly, and in the present day and age, one can

observe that all of them co-exist, although the amount of research focus varies

across paradigms. Also, depending on the type of application, one paradigm

may be more suitable than others for image analysis and restoration:

1. Signal paradigm: This includes methods which operate based on the

properties of the image signal, sometimes through spectral analysis.

2. Artifact paradigm: The includes methods which tie image quality to

the defects or degradation which happen as a result of, for example

compression, like JPEG blocking artifacts. Sometimes, they also take

into account the image’s perceptual quality.

3. Information paradigm: The third category includes methods which con-

sider the image capturing process as information transfer through a chan-

nel between the source (real world) and the receiver (camera sensor) often

using information theoretic tools like entropy and channel capacity for

image quality analysis and restoration.

4. Aesthetics paradigm: This is arguably the most difficult category and

aims to quantify and enhance the aesthetics of the image. This is an

interdisciplinary exercise at the intersection of diverse fields including

psychology, biology and philosophy.

We consider few challenging problems belonging to the first two paradigms,

provide a short summary of their significance and challenges and summarize

why existing methods are insufficient or unsuitable for addressing those prob-

lems. Note that, the research to tackle any particular problem in its entirety
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can span across more than a single paradigm. Still, the research can be char-

acterized by its core functionality, to be dominantly aligned to one paradigm.

Next, we summarize the scope of application of our research to address the

aforementioned challenges, leading to a summary of our contributions. We

conclude by describing the organization of subsequent chapters of this thesis.

1.2 Signal paradigm problems

1.2.1 MRI abnormality detection

Significance and challenges due to scalability requirements and lim-
ited contextual information availability

The first problem we investigate in the signal paradigm deals with Magnetic

Resonance Imaging (MRI) of preterm infant brains. Preterm infants are those

born prematurely, before the normal gestational period of 36 weeks. They

are at high risk of developing brain abnormalities (lesions) like White Matter

Injury (WMI) or Periventricular Hemorrhage (PVH) which can cause severe

neuro-developmental deficits later in life. Detecting brain injuries in adults is a

well researched problem because of readily available brain tissue segmentation

maps called brain atlases. However, preterm infants have underdeveloped

brains whose structure changes rapidly. Thus, it is difficult to obtain reliable

brain atlases. Ideally, we have to be able to detect the aforementioned brain

injuries without using any atlas. The sheer volume of brain MRI data obtained

as hundreds of slices for a single scan of a single patient makes complete manual

inspection by radiologists unfeasible. Apart from these clinical challenges,

the signal processing challenges arise from the small size, patient movements

during scanning etc. which yields a very low signal-to-noise ratio (SNR). The

resulting distortions make it very difficult for a computational algorithm to

detect the patterns in the MRI signal indicative of brain damage.

Key weaknesses of existing MRI abnormality detection approaches

Due to the practical problems mentioned above, although previous research has

extensively studied automated feature extraction and segmentation in adult
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brain images [60], [81], [105], the same is not true for preterm or even term

neonates. Other recent works on detecting brain lesions from MRIs [63], [106]

are not specific to preterm neonates. Some publicly available medical diag-

nostic software packages [113], [115] often have popular brain lesion detection

methods embedded in them, but require multiple scans of the same subject

using multiple modalities [113], [115] which are impractical to obtain due to

the practical problems mentioned before. The work from Griffis et al. [47]

for detecting ischemic stroke lesions can function based on a single sequence

(T1) scan. T1 scans are characterized by short time intervals between succes-

sive radio-frequency pulse sequences (short Repetition Time, TR) and quick

receipt of the echo after RF pulse delivery (short Echo Time, TE). However,

Griffis’ is a supervised method and requires training on expert annotated scans,

which are difficult to obtain for preterm infants. Also, Griffis’ work performs

Montreal Neurological Institute (MNI) brain template based segmentation,

which is possible for adult brains having a fixed structure, whereas register-

ing preterm infant brains to fixed atlases is impractical due to their rapid

structural changes. Our earlier algorithm [20] used a stochastic process to

estimate intensity variation likelihood in target pixels belonging to a WMI.

However, it requires an already segmented White Matter (WM) region and

worked for high resolution and noise-free slices, thus rendering it impractical

for preterm neonate MR scans. Moreover, attempts at detecting another re-

lated type of injury, Periventricular-Intraventricular Hemorrhage (PIVH) in

preterm infants has recently started gaining increased attention. But such

attempts have resorted to (complete or partial) manual examination by ra-

diologists or subject matter experts [2], [5], [57], [77], [95]. However, huge

volume of MRI data makes manual examination impractical, thus requiring

efficient automated methods, which further motivates our research.

Scope of application of our research

Our research to address the aforementioned challenges amounts to a CAD

system which can help physicians detect WMI/PVH from T1 sequence 2D

DICOM MRI slices of preterm infant brains, without requiring any brain at-
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las. Thus, our contribution is purely on the MRI processing/analysis using

our developed software algorithms, and not concerned with improving MRI

hardware components or optimizing MRI acquisition parameters to improve

lesion detection/diagnosis. The MRI slices were provided by our collaborator

in SickKids Hospital, Toronto.

Our research contributions

We developed the first fully automated single-sequence (T1) MRI WMI/PVH

detection approach suitable for preterm infants which bypasses the require-

ment of traditional brain atlas-based accurate WM segmentation in the WMI/PVH

detection pipeline. As explained earlier, since reliable preterm infant brain at-

lases are unavailable, this is an important contribution for preterm WMI/PVH

detection, and also drastically reduces the execution time by skipping the com-

putationally expensive WM segmentation and using heuristics instead.

1.2.2 InSAR signal recovery for WAM

Significance and challenges due to scalability requirements and lim-
ited contextual information availability

The second problem we investigate in the signal paradigm deals with Inter-

ferometric Synthetic Aperture Radar (InSAR) used to measure movement of

the earth surface from satellite microwave imagery. Here, the challenges arise

from the unavailability of clean InSAR images due to the contamination of the

reflected microwave signals during their passage through the atmosphere. Sev-

eral factors like turbulence and moisture are responsible for such contamina-

tion. Yet another factor is loss in correlation between chronologically ordered

images of the same location on the earth’s surface due to human activities

like passing vehicles or construction work or natural phenomenon like random

scattering of microwaves by vegetation and water bodies. Thus, in order to

improve the usability of the highly contaminated microwave images, we need

to recover the underlying true signal and quantify the extent of signal recov-

ery for each point of the image (coherence). We attempt to develop a solution

for monitoring ground movements for a wide area (WAM) which refers to a
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landmass having area comparable to a province (state) or even a country. For

such applications, data volume becomes a prime concern. Even for monitoring

a localized area like a mining site (few square kilometers), the images have

billions of pixels, thus mandating scalable solutions via parallel processing.

Key weaknesses of existing InSAR signal recovery approaches

Research in this area started with the simple boxcar filter, and is still widely

used today. Boxcar filtering involves computing moving average over a rectan-

gular window. However, InSAR-acquired ground imagery are non-stationary

(constantly change) due to topography variations and line-of-slight land dis-

placements. This makes sample average methods like boxcar unsuitable for

InSAR denoising [114]. Additional limitations arise from strong smoothing ef-

fect of filtering and loss in spatial resolution, ultimately resulting in noticeable

errors in phase and coherence estimation near signal discontinuities. Subse-

quent methods which tried to address this problem may be broadly classified as

spatial methods, e.g., Lee [70], and frequency based methods, e.g., Goldstein

[44] and their numerous improvements [17], [41], [61], [120], [133], [137]. They

are adaptive to the local fringe direction and/or local noise. Frequency based

methods gradually evolved into the wavelet domain [10], [75], [139] as wavelet

based filtering helps preserve spatial resolution. Local modeling based [12],

[53] methods and Markov Random Field (MRF) based methods [31], [37] have

also been explored, although MRF requires modeling the prior distribution,

which is a challenging problem. Recently researchers have achieved promising

results in non-local filtering of various types of SAR images such as amplitude,

interferometric phase, polarimetric and multitemporal stack images [28], [117].

However, for wide area monitoring using InSAR images, we have to process

a huge volume of data which necessitates parallel processing. In recent years,

efficient GPU-based software architectures have made extremely fast inference

possible for neural network models. For image processing problems in partic-

ular, Convolutional Neural Networks have shown promising results in visual

pattern recognition. While despeckling of SAR images [129], [134], [135], [140]

and geo-localization accuracy improvement of optical satellite images [82] us-
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ing neural networks have been attempted, CNN-based learning approaches to

InSAR images have not been explored. This motivates us to design CNN-

based scalable solutions for InSAR phase filtering and coherence estimation to

exploit the scalability of massively parallel GPU architectures for WAM.

Scope of application of our research

Our research to address the aforementioned challenges amounts to replacing

the filtering and coherence estimation (using traditional methods) stage of the

InSAR processing pipeline with our developed scalable software algorithms

based on unsupervised learning using CNNs, and subsequently, generative

modelling. Thus, our direct contribution is to one particular stage of the In-

SAR processing/analysis, and not concerned with improving InSAR hardware

components or optimizing InSAR acquisition parameters to improve process-

ing. However, filtering and coherence estimation are among the most critical

stages of the pipeline, as outputs of our developed algorithms (filtered phase

and coherence) are input to the next stage (unwrapping), which computes the

distance of ground points from the InSAR sensor mounted on the satellite.

Thus, it has significant influence on later stages of the pipeline and final out-

puts, like accurate DEM generation or estimation of geophysical parameters.

Our research contributions

We developed the first CNN-based phase filtering and coherence estimation

solution for InSAR and subsequently improved it to develop a generative mod-

elling based approach. Both developed algorithms are based on unsupervised

learning on noisy InSAR data, and thus do not require training on clean In-

SAR images which are unavailable as such. Traditional algorithms in this

area had not been designed by prioritizing scalability, which is a primary re-

quirement for our specific use case (WAM). Also, generative modelling is an

improvement over traditional approaches in that, for the input noisy image,

the trained model outputs a Gaussian distribution for the predicted clean im-

age. Thus, we can sample from this distribution to generate new images, which

are slight variations of the clean image. This can be used in InSAR machine
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learning for data augmentation [116], or to test InSAR processing chains by

running the same chain all the way through but with slightly different im-

ages (interferograms) to measure the variance of the outputs of the complete

processing chain. This can potentially be a good error analysis method.

1.3 Artifact paradigm problem

1.3.1 GPU-friendly debanding for mobile HDR

Significance and challenges due to scalability requirements and lim-
ited contextual information availability

The problem we investigate in the artifact paradigm deals with perceptual

masking of banding artifacts (due to quantization) in High Dynamic Range

(HDR) displays, tailored to the mobile Graphics Processing Unit (GPU) envi-

ronment. HDR displays are becoming ubiquitous nowadays, even in handheld

consumer electronic devices like mobile phones. HDR images have 10+ bits per

pixel, compared to the traditional Low Dynamic Range (LDR) devices which

have 8 bits per pixel. However, for backward compatibility with the majority

of available visual content (which is still largely LDR), bit depth conversion in

software and hardware often result in quantization artifacts when the content

is played back on HDR screens. The specific type of artifact we address is

banding artifacts which are characterized by bands of color instead of smooth

gradients, in low-texture image regions like the sunset sky. Traditional so-

lutions to banding relied on neighborhood operations like filtering, which is

not ideal for GPU environments. In GPUs, independent operations on in-

dividual pixels are preferred, rather than pixel neighborhood based filtering

operations. Traditional pixel-based solutions like dithering assumed availabil-

ity of the original, unquantized signal. This is impractical in many real-world

scenarios where only the quantized signal is available. Thus, for debanding

on the mobile GPU platform, we require a pixel-based solution which works

directly on the quantized signal.
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Key weaknesses of existing debanding approaches

A popular approach to debanding is adding noise (dithering). Traditional

dithering methods can be classified as adaptive or non-adaptive depending

on whether or not they use pixel neighborhood information, but both types

require access to the original, unquantized (high bit-depth) pixel values, as

they perform dithering before or during quantization [8], [38], [40], [51], [59],

[62], [89], [90], [103], [125], [131], [132]. However, for certain applications

which require image quantization or compression, only the quantized data is

available at the dithering stage. Examples of such scenarios include a video

decoder which decodes a 10-bit bit-stream but outputs a 8-bit signal, or when

a 8-bit signal is received. If we have the unquantized data available, adding

zero-mean noise can remove banding, but not from quantized signal. Also,

for our application area of mobile GPUs, the computation capacity is limited

and accessing neighborhood information is costly in terms of memory I/O and

timing. Thus filtering and false contour detection based approaches are not

suitable [9], [26], [55], [69], [126], [127].

Scope of application of our research

Since de-banding is a mature research area, it is important to note that our

dithering solution is applicable to specific types of de-banding scenarios, as

explained earlier. Also, our research does not concern itself with specific details

of the iTMO, and can be used with any iTMO as such. We only assume that

the iTMO can be formalized as a one-to-one mapping between its input and

output code-words and can thus be pre-loaded and stored in memory as a

BLUT, to be subsequently accessed by our developed algorithm at run time.

Our research contributions

We developed the first dithering solution to address de-banding use cases where

one has access to only the quantized signal and must refrain from accessing

neighborhood information due to architectural and computational constraints.

Our solution is structured as two independent parts. The first part deals
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with offline generation of novel noise patterns which are effective in perceptual

masking of banding artefacts and blend well with the scene, so as to not cause

visual irritation to human observers. The second part deals with online injec-

tion of those noise patterns modulated by the slope of the iTMO, besides other

factors. The modular nature of our solution facilitates future researchers to

use our noise patterns in conjunction with their own noise injection solutions,

and thus potentially opens up new avenues of research.

1.4 Organization of the thesis

The rest of this thesis further motivates and describes our developed algo-

rithms and validation results, and is organized as follows: Chapter 2 is a short

summary of few parametric and structural optimization based image segmenta-

tion algorithms to help the reader understand some related literature reviewed

in Chapter 3 and the segmentation algorithm used in Chapter 4. Chapter 3

describes the first published algorithm to detect WMI and PVH from single

sequence (T1) MRI in preterm infants without using brain atlas. Chapter

4 describes the first published application of CNNs to InSAR phase filtering

and coherence estimation and its extension to generative modelling. Chap-

ter 5 describes the first de-banding method in literature which uses dithering

directly on the quantized image without accessing any neighborhood informa-

tion. Chapter 6 has our concluding remarks and directions of future research.
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Chapter 2

Segmentation via Parametric
and Structural Optimization

In this chapter, we briefly discuss few image segmentation algorithms based on

parametric and structural optimization (hereafter referred to as PSO). Some

of these concepts will help the reader understand the related work presented

in Chapter 3 as well as the Chan-Vese segmentation algorithm used in the first

method proposed in Chapter 4. We will also briefly discuss the rationale behind

our choice of when to use (or not to use) PSO in our proposed algorithms.

PSO deviates from the simpler pixel-based (thresholding) segmentation

algorithms like Otsu [94] in that PSO is performed by deforming a (set of)

initial curve(s) based on certain criteria, rather than simply values of pixel

intensities. Examples of such criteria include that the curve conforms to image

edges and is a smoothly varying curve, as opposed to being extremely jagged.

From this example, we can see that there is often a trade-off between the

criteria, but overall, PSO is arguably more similar to how humans approach

a manual segmentation task, by trying to draw shapes or contours around

objects of interest in an image, rather than just trying to aggregate pixels

having certain intensities. A pictorial depiction of how PSO works is shown in

Fig. 2.1. In actual PSO implementations, the iterative process can be fixed to

a certain maximum number of iterations, or allowed to continue till the shape

of the curve does not change significantly, as defined by a tolerance value. At

any iteration, an energy function quantifies how good or bad the curve is. The

curve iteratively evolves to reduce/minimize this energy function, as explained

11



Figure 2.1: PSO deforms a rough initial contour (left) through successive
iterations (centre) such that it finally delineates the object of interest (right).

in subsequent sections of this chapter, with reference to specific algorithms.

2.1 Snakes

Snakes start with the idea of a parametric representation of a curve. Instead of

representing a curve conventionally as y = f(x) (in the 2D case) where y and

x are the dependent and independent variables respectively, snakes represent a

curve as the x and y coordinates being functions X(s) and Y (s) respectively of

a continuous parameter s ∈ [0, 1] such that we can trace out a closed contour

in the 2D plane by smoothly changing s. For example, if we wanted a circle of

radius r, we would define x(s) = r cos (2πs) and y(s) = r sin (2πs). One benefit

of this is that it allows us to represent arbitrarily shaped curves more efficiently

than the conventional Cartesian representation. We define the Energy E as

a function of the curve c to have an internal part which depends only on the

shape of the curve and an external part which depends on image intensities,

thus balancing between the two criteria we mentioned earlier, as in Eq. 2.1.

E(c) = Einternal(c) + Eexternal(c) (2.1)

The internal energy of the curve can in turn be represented as the sum of the

single and double derivatives of the curve. The former ensures that the curve

is not stretched too much (low elastic energy) while the latter ensures that the

curve does not change its curvature abruptly, as shown in Eq. 2.2, where c(s)

represents the curve and α and β balance the effects of the derivatives.
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Einternal(c) =

∫ 1

0

α
∥∥c′(s)∥∥2

+ β
∥∥c′′(s)∥∥2

ds (2.2)

The external energy on the other hand is designed to take on low values

when the curve coincides with strong edges in the image, as shown in Eq. 2.3.

Eexternal(c) =

∫ 1

0

−‖∇I(c(s))‖2ds

=

∫ 1

0

−

[(
∂I

∂x
(x(s), y(s))

)2

+

(
∂I

∂y
(x(s), y(s))

)2
] (2.3)

Deriving the details of the process of minimizing E(c) involves variational

calculus and is beyond the score of this discussion. However, we present some

intuitions of how the algorithm works in practice, as in the real world, we have

the discrete pixel grid instead of the theoretical X-Y plane. A curve is thus

parameterized by a set of K points on the grid (connected by straight lines)

and the greater the number of points, the smoother the representation of the

curve, at the cost of higher computational complexity. We thus express the

curve as c(s, t) where s ∈ [1, 2, ..., K] is the index of the point on the curve

and t is the iteration number, as the curve evolves taking steps from c(s, t−1)

to c(s, t) along the gradient of E(c) until the boundary points stop changing.

However, the snake method does not detect strong edges that are at a

distance from the curve, and it is sensitive to noise which creates small gradi-

ents and confuses the method. A solution is to slightly blur the image as on

one hand, this decreases the effect of noise and on the other hand, distributes

strong gradients (edges) to the adjacent image regions. However, this solution

does not work when the initial contour is too far away from the edge.

2.2 Active Contours

A better solution to the problem described above is a technique called Gradient

Vector Flow (GVF). Here, in addition to using the magnitude of the image

gradient e(x, y) (edge map), we create a new vector field over the image plane

v(x, y) with the x-component vx(x, y) and y-component vy(x, y) as in Eq. 2.4,
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where v is defined to minimize the term shown shown in Eq. 2.5, with ∇e

giving the magnitude of the edge map, and µ serving as a tuning parameter.

v(x, y) =

[
vx(x, y)
vy(x, y)

]
(2.4)

∫∫
µ

[(
∂Vx
∂x

)2

+

(
∂vx
∂y

)2

+

(
∂vy
∂x

)2

+

(
∂vy
∂y

)2
]

+ ‖∇e‖2 ‖v −∇e‖2dxdy

(2.5)

The intuition here is that when ∇e has a large value (strong gradient, edges

in image) v simply follows the edge gradient, and when ∇e has a small value

(weak gradient, flat image regions), v falls off smoothly. This effectively causes

the strong edges in the image to get diffused out to guide the curve’s evolution.

This method works better than the basic snakes method, but fails in cases

where the immediate background of the object of interest has strong texture.

There are also concerns which apply to both methods. Firstly, the method to

initialize the curve is left unspecified. Secondly, in practical implementations,

we have to keep track of the number and distribution of points on the curve

and make sure that the points probe into the concave boundaries of the object

of interest. Lastly, a single snake cannot segment (wrap into) multiple objects

of interest at once, or segment the inner boundaries of objects with holes.

2.3 Level Sets

To solve the above problems in a better way, instead of parameterizing the

curve with a set of points, we can consider the whole image plane as a discrete

grid structure (x, y) and define a level-set function φ(x, y) and instead of evolv-

ing a curve, we evolve this function. Pixels (C) where φ(x, y) = 0 implicitly

define our objects of interest, and this can include multiple objects or holes

inside objects, as in Eq. 2.6. The advantage of this is that since we evolve

the whole function over the entire X-Y plane, we can change the topology of

our target curve(s) on the fly, instead of starting off with initially assumed

curve(s). This formulation helps discover our target curve(s) over iterations.
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C = {(x, y) | φ(x, y) = 0} (2.6)

Thus, φ(x, y) can be a signed distance function: for points inside a region

it would be negative, zero on the boundary and positive outside the region. In

practical implementations, like earlier, we can evolve the function φ(x, y, t).

2.4 Chan-Vese algorithm

All the above (edge-based) methods assume that somewhere in the image there

are strong edges, but in some practical scenarios this assumption might not

hold, so we need a region-based algorithm like Chan-Vese. It assumes that

the image can be partitioned into two regions, one inside the curve and the

other outside, and has an energy function that ensures that that the variance

of pixels inside and outside the curve are low, and favors a short curve with

small area, as in Eq. 2.7 where I denotes inside pixels with mean µI , O denotes

outside pixels with mean µO, I(x, y) denotes image intensity at coordinates

(x, y), and L(c) and A(c) denote the length and area of curve c respectively.

The λ’s balance the effects of the four terms in the energy function E(c). The

first two terms in Eq. 2.7 try to maximize the difference between distributions

of pixels inside and outside the curve. Thus, Chan-Vese succeeds even in those

scenarios where the object of interest has a strongly textured background.

E(c) = λ1

∫
I

(
I(x, y)− µI

)2
dxdy+λ2

∫
O

(
I(x, y)− µO

)2
dxdy+λ3L(c)+λ4A(c)

(2.7)

Relevance to Thesis

All above methods are slow, as they evolve the curve over successive iterations

based on multiple considerations. Chapter 3 shows how this affects our earlier

WMI detection algorithm [20] based on level sets. However, Chapter 4 shows

Chan-Vese can effectively segment fuzzy raw coherence maps while preparing

the training data (offline) and not during the actual coherence prediction.
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Chapter 3

MRI abnormality detection

3.1 Introduction

In this Chapter, we will show how earlier algorithms, e.g. level set, are insuf-

ficient to address the MRI abnormality detection problem.

3.1.1 MRI basics

Magnetic Resonance Imaging (MRI) is a medical imaging technology used by

clinicians to see soft tissues such as muscles, blood vessels, ligaments and in-

ternal organs. MRI scanners capture sections through the body which can be

used to make three-dimensional images. For example, Fig. 3.1 shows a 3D

reconstruction of the structures inside an adult human head obtained using

MRI. An MRI machine uses a powerful magnetic field to align the magneti-

zation of some atoms in the body. Radio frequency fields systematically alter

the alignment of this magnetization. This causes the nuclei to produce a ro-

tating magnetic field detectable by the scanner. This information is recorded

to construct an image of the body. Images are constructed when protons in

different tissues return to equilibrium state at different rates. MRI machines

look like a large block with a tube running through the middle of the machine,

called the bore of the magnet. The bore is where the patient is located for the

duration of the scan, as shown in Fig. 3.2. The MRI machine picks points in

the patient’s body, decides what type of tissue the points define, then compiles

the points into 2D and 3D images. Once the 3D image is created, the MRI

machine creates a model of the tissue. This allows the clinician to diagnose
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Figure 3.1: 3D reconstruction of adult human head from MRI.

Figure 3.2: Typical MRI scanner with magnetic strength = 3 Tesla.

without the use of invasive surgery. MRI is considered ideally suited for soft

tissue problems, such as diagnosis of multiple sclerosis (MS), brain tumours,

spinal infections etc. Advantages of MRI include no radiation exposure, and

good grey-white differentiation, which refers to the appearance of the interface

between cerebral and cerebellar white matter and grey matter. A weakness of

MRI is that scans require patients to hold very still for long periods of time,

up to 90 minutes or more in some cases. The procedure is done in multiple

parts, and takes time to switch between different scans and fields of view.
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3.1.2 Motivation and Clinical Significance

The premature infant brain’s immaturity makes it inherently more suscepti-

ble to injury [118] often leading to developmental deficits or even fatalities

in subsequent stages of life [77]. Degree of prematurity of the infant is pos-

itively correlated with likelihood of brain damage. Near the center of brain,

in each half, there exists a C-shaped cavity having cerebrospinal fluid, called

the lateral ventricles. The area of the premature infant brain most vulner-

able to injury is the periventricular area, which is a brain tissue rim lining

the outside of each lateral ventricle. A dense network of thin, fragile (prone

to rupture) blood vessels called capillaries are present in each periventricular

area. Unfortunately, more premature infants have more of these capillaries [5].

During premature birth, the fetus is abruptly expelled from the controlled en-

vironment of the uterus to the hostile, highly stimulating environment outside.

The resulting shock and physiological stress causes the capillaries to rupture.

Initially, periventricular hemorrhage or PVH occurs as the immediate periven-

tricular areas start bleeding. Continued bleeding creates an expanding volume

of blood which severs the adjacent lateral ventricles, thus causing an intraven-

tricular hemorrhage or IVH.

The periventricular areas serve two important purposes:

1. The brain’s outer layers (cerebral cortex) is formed by new brain cells

which form and develop in the periventricular areas, and gradually move

to form the outer layers. The cerebral cortex handles several vital func-

tions of the brain, including learning and intelligence, behavior and per-

sonality, and speech. It also has considerable influence on control and

strength of muscles.

2. Periventricular areas serve as passages for motor nerve signals to the

muscles originating from the cerebral cortex.

PVH/IVH may cause brain injury via several mechanisms. If damaged

new brain cells developing in the periventricular area ultimately move outward

and get embedded inside the cerebral cortex, they impair the functions and
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distort the structure of the cerebral cortex. Unfortunately, the infant does not

even start using various parts of the cerebral cortex for months or even years

after birth. Thus, the developmental issues arising out of the aforementioned

damages to the cerebral cortex are not even apparent until later stages of

life. Nonetheless, the implications of cerebral cortex damage are debilitating:

learning and language difficulties, arrested mental development, behavioral

and personality disorders, convulsions, etc.

MR studies of neonatal periventricular-intraventricular hemorrhage (PIVH)

are scarce. Acute MR findings of adult and neonatal hemorrhage are con-

sidered similar. However, the medical community believes that, due to rapid

myelination and maturation of the premature infant brain, subacute and chronic

MR appearance of hemorrhagic evolution in premature infants are possibly

quite distinct from those in adults [2].

All these emphasizes the need for both early detection and long-term de-

velopmental follow-up for high-risk infants [57], [95].

Early detection is possible by examining images of high-risk infants’ brains

acquired using scanning devices like Magnetic Resonance Imaging (MRI). To

make this possible, the different types of brain tissues in an image need to be

identified in order to look for abnormalities.

Another recent research investigated the clinical significance of Injuries to

the White Matter (WM) tissues of the brain (WMI) in 216 pre-term neonates

[48] where correlations were found between WMI volume and location and

neurological developmental disorders. WMI volume and location was quanti-

fied in the test subjects’ MRI following manual WMI segmentation. Then, the

subjects were tracked over an 18-month period via assessment of their motor,

cognitive and language abilities. The chief findings from their study were:

1. Irrespective of lesion location, greater WMI volumes predicted poor mo-

tor outcomes.

2. Greater WMI volumes in frontal, parietal, and temporal lobes have ad-

verse motor outcomes.

3. Only frontal WMI volumes predicted adverse cognitive outcomes.
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4. Frontal lobe lesions predict adverse cognitive and language development.

5. Adverse motor outcomes are predicted by widespread injury.

An important conclusion from this study was that the volume of frontal lobe

lesions were the most predictive of the neuro-developmental outcomes. Hence,

it is important to detect and localize WMI in pre-term neonates.

3.1.3 Computational and Signal Processing Challenges

Brain tissue segmentation generally refers to the separation of the brain into

three functional components; namely, Grey Matter (GM), White Matter (WM)

and Cerebro-Spinal Fluid (CSF). Segmentation is often performed as the first

step in detection of physiological abnormalities, in volumetric study and diag-

nostic analysis [32]. Seizures, strokes, brain infections and injuries are often

hard to determine by manual examination of image scans, since significant

features may not be obvious on a 2D DICOM slice. Also, manual examination

can be subjective; and interpretation may vary from one expert to another.

Even the same expert may make different decisions at different times. Thus,

the commonly adopted gold standard in the clinical community is to obtain

at least two consistent interpretations out of three expert opinions. However,

getting datasets of preterm neonates with ground truth annotation by multiple

clinical experts is not feasible in practice.

To address this issue, Computer Aided (or Assisted) Detection (CAD) has

gained increasing attention in clinical research. For example, semi-automated

approaches, like the Clusterize algorithm [22], have been applied to identify

brain lesions in stroke victims and have been shown to significantly speed up le-

sion demarcation without loss of precision and reproducibility [49]. Computer

programs designed for CAD [15] aim to detect potential abnormalities, such as

Brain Tumors and Multiple Sclerosis brain lesions [11] by identifying suspected

features on the image for further inspection by a radiologist. The benefit of

CAD is two-fold: (1) When there is a backlog, e.g., in looking through X-ray

films, due to an insufficient number of radiologists, CAD is used to pre-screen

and thus reduce the workload of radiologists; and (2) when a large sequence of
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image scans need to be compared or examined as an integrated volume, CAD

helps to detect patterns that are difficult if not impossible for human eyes to

comprehend. CAD software can pin-point the areas of concern. Radiologists

can then focus on these identified regions to arrive at the diagnosis.

Automated feature extraction and segmentation in adult brain images have

been extensively studied over the past years [60], [81], [105]. However, the same

is not true for neonates, whether preterm or term, because of several practical

challenges in obtaining and analyzing MR images of neonate brains, including:

1. Lack of a reliable anatomical map, or atlas for an neonate brain, to guide

the segmentation process in areas of low contrast and help distinguish

tissues of similar intensities. Even when such atlases are available, they

need to be registered onto the test MR image, which is a difficult process,

because the neonate brain undergoes rapid structural and physiological

changes during maturation.

2. Neonates tend to move during the MRI scan process, which is highly

sensitive to patient movements. Motion artifacts, blurring, etc. degrade

the quality of the MR images.

3. Neonate brains are small in size and the duration for which a neonate

is scanned is also shorter than adults. This results in a low Contrast-

to-Noise ratio (CNR), low Signal-to-Noise ratio (SNR) and low spatial

resolution.

4. Contrast between grey matter (GM) and white matter (WM) in both

T1- and T2-weighted images (T1w and T2w) is different from the adult

brain. Most parts of the neonate brain are non-myelinated at birth,

where WM appears less intense in T1 images and more intense in T2

images, whereas this trend is reversed for a fully myelinated adult brain

(contrast inversion).

Thus, a WMI detection algorithm for pre-term infants should not be overly

dependent on an atlas. It should work on noisy, low-resolution images with
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motion artefacts, and be automated as much as possible (least human inter-

vention), so that the algorithm can integrate well with the CAD pipeline.

In preterm neonates, the characteristic of brain injury is multi-focal WMI

in the first weeks after birth, where using T1 weighted (T1w) MR images of the

neonate’s brain for detection is more effective [18], [85]. Hence, in this work we

adopt the atlas-free approach to analyze T1 weighted (T1w) MR images. We

anticipate that this method will also be relevant to detecting WMI in elderly

patients with leukoariosis [24].

3.1.4 Our Computational and Clinical Contributions

Our most important advancement with respect to related work and our earlier

pre-term WMI detection algorithm [20] (both described in the next section)

is to eliminate the dependence of the WMI detection step on a pre-segmented

WM region. As explained earlier, this gives primarily two important benefits:

1. The execution time for WMI detection decreases drastically, since we

do not perform the time-consuming segmentation of the white matter

region. This is the main contribution of our present work from the

computational perspective.

2. Since we bypass segmentation, no brain atlas is required. For pre-term

infants, it is difficult to obtain reliable brain atlases. Thus, obviating

the requirement of brain atlases for pre-term infant WMI detection is

our clinical contribution.

Moreover, although PIVH in preterm infants has recently started gaining

increased attention, attempts at detecting such abnormalities have been (fully

or partly) through manual examination by radiologists or subject matter ex-

perts [2], [5], [57], [77], [95]. However, such manual examination has its own

limitations, as outlined earlier.

Our proposed approach is the first fully automated method to detect periven-

tricular hemorrhage from preterm infants’ brain MR images.

It should be noted that our proposed method is different from existing

atlas-free segmentation methods in literature which use local contrast and
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geometric traits, brain morphology and tissue connectivity to guide segmen-

tation. The strength of atlas-free methods is that they can accommodate

changes in anatomy of the developing (neonate) brain, as they are not bound

by constraints imposed by the atlas. However, their main weakness is the

computational complexity of the segmentation process itself. We bypass seg-

mentation to overcome this weakness.

3.1.5 Differences with Related Work

As described later, one of the steps in our proposed method involves the lo-

calization of ventricles as a collection of blobs detected using the Maximally

Stable Extremal Regions (MSER) algorithm [78] and optimized using Genetic

Algorithms (GAs) [43]. MSER or its modified forms have been used earlier to

detect various retinopathy pathologies [110], segment ultrasound liver images

[141], localize cell nuclei in microscopic images [121], isolate fetal brain tis-

sues from maternal anatomy during fetal brain in-utero MR imaging [64] and

for 3D segmentation of simulated brain MR images [33]. However, they have

not been tested in preterm brain WMI detection. The main advantage of the

MSER algorithm is that there is no need to specify an initial contour, which is

necessary and often drawn manually in other algorithms. For example, brain

tissue segmentation approaches based on Active Contour Models [72], [86],

[98], [108], [109] require an initial contour. Furthermore, the region stability

of MSER is constrained by local information obtained in the neighbourhood

and can accommodate large intra-image variations [121].

Medical images often have poor image contrast and are associated with ar-

tifacts that result in missing or diffuse organ/tissue boundaries. The resulting

search space is therefore often noisy with a multitude of local optima. Ge-

netic Algorithms (GAs) benefit medical image segmentation [80] as they are

less prone to get stuck in a local optima. GAs have been used in a learning-

based approach to segment and label numerous neuroanatomic structures in-

cluding left/right and third ventricles [122]. Their approach was based on

observer-defined contours of neuroanatomic structures, which were used as a

priori knowledge. However, in the context of preterm neonate brain WMI
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detection, it is not possible to obtain sufficient number of expert-annotated

training images (for learning or validation). A variant of GAs called parallel

genetic algorithms have been used earlier for volumetric segmentation of lat-

eral ventricles [35] on simulated Brainweb images, but not on preterm brain

images. Their strategy for choosing the initial population involves deriving an

initial surface by segmenting the ventricle slice-by-slice (using a 2D method),

and then solving an evolution equation (formulated using that initial surface)

using a finite-difference method, whose result is used to generate the initial

population for the GA. In contrast, our initial population for the GA includes

all regions detected by MSER on individual (2D) slices.

Ortiz et al. [93] applied an atlas-free fully automated method to segment

brain MRIs into different types of tissues. During pre-processing, they removed

the background noise in the image using Otsu’s method by minimizing the

intra-class variance of the signal and noise voxels. Then, 24 important 1st order

statistical features (intensity, mean and variance) and 2nd order statistical

features (energy, entropy, contrast etc.) were extracted. Most discriminatory

features were selected using a Genetic Algorithm. Next, a Self-Organizing

Map (SOM) was trained using the selected features in an unsupervised way.

A label representing a type of brain tissue was then assigned to each SOM

unit. Their method performed better than Constrained Gaussian Mixture

Model [46] in classifying WM and CSF, and gave promising results on high-

resolution MRIs. Although this method is atlas-free, it does not work well on

low-resolution preterm neonate MRIs. An example of a noisy low resolution

(96×112) preterm neonate MRI used to test our method is shown in Fig. 3.3a,

compared to a relatively noise-free image of much higher resolution (512×512)

used by Ortiz et al. [93] shown in Fig. 3.3b.

Farzan [36] first segmented the brain tissues into GM, WM and CSF using

Bayesian segmentation and then improved the results using domain knowledge

obtained from experts in the form of heuristics. For applying the heuristics,

the eight adjacent pixels of each pixel (its neighbours) were considered. A

sample heuristic is: If “neighbours are WM,” then “new centre is WM.” The

method assumes Normal Distribution of grey values in all tissues and uses
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(a) An example of a low
resolution 2D slice from
our preterm neonate
dataset.

(b) An example of high
resolution slice used by
Ortiz et al. [93]

Figure 3.3: Comparison of image qualities to illustrate the challenge in seg-
menting low resolution preterm neonate brain MR images.

Expectation Maximization (EM) to maximize the likelihood probability of

tissues. They compared their outputs against the expert-annotated versions

in terms of sensitivity and specificity of each tissue type. Although the use of

heuristics to classify tissues is the strength of this method, the target feature

on a single 2D slice may not be obvious due to noise or artifacts. To address

this issue, we analyze adjacent slices to validate and recover candidate features.

In [74] the authors applied skull-stripping as the initial step in the brain

MR image segmentation process. The proposed hybrid skull-stripping algo-

rithm, based on the Adaptive Balloon Snake (ABS) model has two steps: (1)

Pixel clustering using Probabilistic Fuzzy C-Means (PFCM), which outputs a

labelled image to identify the brain boundary; followed by (2) a contour ini-

tialized outside the surface of the brain. This contour is evolved guided by an

ABS model. However, the ABS method employed here has the limitation that

it ends up segmenting the contours into multiple objects. In comparison, our

method effectively avoids the skull-stripping step and can discriminate irrele-

vant regions and false positives using their distance from the brain boundary.

In [58] the authors propose MSmetrix, which is an automatic MRI-based

lesion segmentation method. This method is acquisition device independent,

meaning that no parameter tuning is needed for the type of scanner deployed.
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Differing from previous work [71], where multi-channel images were used simul-

taneously for lesion segmentation, their approach incorporates human expert

input. By using T1-weighted and FLAIR images independently, they aim to

fully exploit the characteristics of each sequence. Their unsupervised approach

segments 3D T1-weighted and FLAIR MRIs into WM, GM and CSF follow-

ing a probabilistic model, and treating WM lesions as outliers. The method

assumes Gaussian distribution of the image intensities for each tissue class.

However, this method uses MNI-atlas for skull stripping and GM, WM, CSF

classification. Thus, it is not suitable for preterm neonates, where no reliable

atlas is available as explained earlier.

There exist other very recent works on detection of brain lesions from

MRIs [63], [106], but they are not specifically for preterm neonates. Some

popular brain lesion detection methods are embedded in publicly available

medical diagnostic software packages [113], [115], but they require multiple

scans of the same subject using multiple modalities [113], [115]. Our method

only needs a single sequence and takes T1 images as input. An example of

using T1 images is the work of Griffis et al. [47]. It is a supervised method

for detecting ischemic stroke lesions in T1-weighted MR scans using a naive

Bayes classifier, which is trained on expert annotated scans. In contrast, our

method is unsupervised and requires no training. Also, Griffis’s work [47]

performs probabilistic segmentation of the scanned MR slices into four tissue

classes (GM, GM, CSF and non-brain tissues). The output is subsequently

normalized to the Montreal Neurological Institute (MNI) template space using

the New Segmentation tool implemented in SPM12 [123]. Although their

MNI atlas cannot be used to register preterm brains because of the rapid

structural changes in preterm brains as explained earlier, we still tried out

their segmentation step on our dataset to analyze its time performance. Their

method took 1 minute and 17.5 seconds to complete, whereas our proposed

method took 41.5 seconds. This comparison further validates the fast time

performance of our proposed method. Our time gain is attributed by skipping

the segmentation of WM, and instead, approximating the normal range of WM

intensities by collecting samples from the WM region.
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Relatively less research has been done on WMI detection in preterm neonates

compared to WMI in adults and other tissue abnormalities. In our earlier algo-

rithm [20] we use a stochastic process that estimates the likelihood of intensity

variations in target pixels belonging to a WMI. First, it detects the boundaries

between normal and injured regions of the white matter. Next, it measures

pixel similarity to identify WMI regions. While the results showed effective

WMI detection, the experiments were performed on relatively high resolution

and noise-free slices, which may not often be the case for preterm neonate

MR scans. In fact, as we will show later, when this method is tested on low-

resolution noisy datasets, its accuracy is considerably lower. Also, the WMI

prediction was done on individual slices, without considering adjacent slices.

As we will show later, aggregating detection results of adjacent slices to pre-

dict WMI is crucial in low-resolution noisy scenarios, where the likelihood of

detecting false positives and missing targets on a single slice is high.

3.2 Proposed Method

Our method considers both 2D and 3D spatial correlations. To give a high-

level overview of our proposed method: we first detect potential WMIs in each

2D slice of the DICOM volume (coarse detection). We then analyze the WMI

pixel correlation between each 2D slice and its adjacent slices in the DICOM

volume. In the Fine Detection process, the Coarse Detection result obtained

from a 2D slice is then validated with its adjacent slice information, in order to

reduce false positives and recover true positives. An overview of the proposed

method is shown in Fig. 3.4. Note that n adjacent slices are defined in the

computational model, and n = 1 is used in the current implementation.

3.2.1 Coarse Detection phase

Our central idea behind White Matter Injury detection is to search for abrupt

intensity peaks (hyper-intensities) in the white matter region of the brain.

Since the intensities in the white matter are normally distributed [36], [58], the

WMI represents an outlier with respect to the range of white matter intensities.

27



Figure 3.4: An overview of our proposed method.
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As described later, we detect the ventricles as blobs in a 2D slice image. We

then use a contour roughly between the ventricles and the brain boundary for

estimating the range of white matter intensities. This is done by considering

the intensities inside that contour which do not belong to the ventricles. The

outlier intensities which are greater than the normal range would be potential

candidates for WMI. In order to eliminate false positives, we further filter

these candidates based on the size and distance criteria before a WM hyper-

intensity is classified as WMI. All of these steps are performed on a single 2D

slice (coarse detection).

Note that unlike traditional brain lesion detection methods, our method

does not need to segment the WM into distinct patches. Instead, we sample the

WM region to estimate the normal range of WM intensities. As shown later,

this results in a significant reduction in execution time (without compromising

accuracy) when compared to earlier segmentation-based WMI detection work

[20]. However, if the ventricles are included in the estimation of WM normal

intensities, the result will be unreliable. Thus, we identify the ventricles and

eliminate them from our samples, using a confidence-based patch classification

technique described later.

We next describe individuals steps of the coarse detection phase in detail,

followed by those of the fine detection phase. The reader can refer to Fig. 3.6

for outputs of individual steps of this entire processing pipeline.

Background segregation

Anisotropic Diffusion was used as a pre-processing step to de-noise those brain

MRIs which were extremely noisy. The parameters used were 1
7

for the inte-

gration constant, 3 for the gradient modulus threshold and the 2nd conduction

coefficient function as proposed by Perona & Malik [97], because these param-

eter values, with 15 iterations, produced the best results.

Otsu’s method [94] was applied for separating the brain from the (noisy)

background. Otsu’s method separates an input grey-scale image into fore-

ground and background by determining a global threshold to minimize the

intra-class variance of foreground and background pixels. It iterates through
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all the possible thresholds in the image to find the threshold that gives the

smallest within class variance.

Thus, by running Otsu’s method on the input image I, we obtained a

binary threshold ThO, such that intensities in I falling above ThO constitute

the foreground as determined by Otsu’s method. The holes in the foreground

were filled using the fill operation based on morphological reconstruction [119],

giving foreground mask Mf .

Similarly, the background mask Mb is obtained by taking the complement

of Mf (Eq. 3.1). Using the background mask, we clean the background by

altering the intensities of all background pixels to 255 (white). Thus, we

remove the unwanted intensity variations (noise) in the background, which

may interfere with subsequent processing. The rationale behind setting the

background to white (and not black) will be explained later.

Mb = Mf (3.1)

Modelling ventricles as a collection of Maximally Stable Extremal
Regions

We detect the ventricle as blobs inside the brain using the Maximally Stable

Extremal Regions (MSER) algorithm [78]. MSER in an image is a connected

region, which can be detected by an extremal property of the intensity function

in the region and on its outer boundary. MSERs have properties that assist

in their superior performance as a stable local detector: the set of MSERs is

closed under continuous geometric transformations; MSERs are invariant to

affine intensity changes and lastly, MSERs are detected at different scales.

Confidence based image patch classification for Ventricle detection

In order to prevent the MSER algorithm from including other parts of the

brain as connected regions of the ventricles, we filter out these invalid parts by

assigning a confidence value to each region based on its T1 intensity and its

distance from the brain boundary. The applied criteria were motivated by the

observation that ventricles are comprised of low-intensity (T1) image patches,
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and are near the center of the brain. To detect the ventricles, we first calculate

the following matrices:

Dp

The distance transform [104] of Mb (using the L1 norm or city-block

distance measure) is normalized to the [0, 1] range. We experimented

using the L1 and L2 norms and got better results with L1. Distance

transform of each point inside the brain gives its distance to the nearest

point lying on the brain boundary (background mask). Thus, the points

lying more towards the centre of the brain (where we expect to find the

ventricles) tend to get higher values.

Ic

The normalized complement of I: Since I is a grey-scale image, this

means Ic = 255 − I. Ic is then normalized to the [0, 1] range. As the

points inside the ventricles have low grey scale values (T1 images), the

inverted image has high grey scale values. Recalling that in an earlier

step, the background was marked white, allowing the ventricles to be

easily extracted in the inverted image. After the ventricle detection

step, the background is inverted to black with a zero value.

Lp

The [0, 1] normalized Hadamard product of the matrices Dp and Ic, i.e.,

Lp = Dp • Ic: This means that the distance transform of each point is

multiplied with its (inverted) intensity. Following the definition of Dp

and Ic, we can infer that the points lying inside the ventricle will have

very high values for Lp, which can be used as a confidence measure for

determining if a given point inside the brain belongs to the ventricles.

We apply the MSER algorithm on I, which detects blobs. MSER is one of

the fastest region detectors because of its linear implementation [91]. It is also

affine invariant, has good repeatability and performs well to classify patches

with similar grey scale values on images containing homogeneous regions with

distinctive boundaries. Let us assume that the MSER extracts R regions from
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I, denoted as r1, r2, r3, ..., rR. For each region ri, we calculate the average

confidence Ci, which is the average of Lp values for the pixels belonging to ri.

Thus, our problem is reduced to finding the maximal set of optimal regions

Sv = {r1, r2, ..., rv} forming the ventricles. As demonstrated later, sub-optimal

ventricle detection results do not affect the accuracy of WMI detection.

Patch fitness evaluation for Ventricle detection

We model ventricle detection as an optimization problem and solve it using

Genetic Algorithm (GA) [43]. When applying GA to our preterm brain images,

for each region ri (mentioned earlier), we have to make a binary choice of

either to include it in a candidate solution, or leave it out. Thus, we represent

a candidate solution as a bit string. We define a fitness function to obtain the

candidate selection solution:

Fs = Ns ∗ C1 ∗ C2 ∗ ... ∗ CNs (3.2)

where Ns is the number of regions selected and Cj refers to the confidence of

the selected region j. Thus, a GA returns the optimal choice of regions Sv,

which are most likely to constitute the ventricles. As we will see later, this sub-

optimal result of ventricle detection would not affect the overall effectiveness

of the proposed method.

We also define a mask Mv for all pixels pi belonging to the ventricles deter-

mined by the GA.

Mv = {pi ∈ rj ∀ rj ∈ Sv} (3.3)

Detecting WM hyper-intensities

Next, we consider the white matter (WM) region around the ventricles. Our

goal is to exclude the region where no WMI is present. Let Dv be the distance

transform of Mv and we choose a contour that follows the relation:

∣∣Dp −Dv

∣∣ ≤ 1 (3.4)
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This generates a contour, whose points are roughly halfway between the ven-

tricles and the brain boundary. Thus, the mask Mw enclosed by the contour

gives the candidate region, with the ventricles and the patches falsely detected

as ventricles represented as holes. However, as we will show later, false ventri-

cle detection does not affect the final WMI extraction. Also, ventricle patches

included in Mw undetected by MSER (or GA) will not interfere in WMI de-

tection, as their intensities are below the WM mean intensity.

Using the pixels described by Mw, we calculate their Median Md and Me-

dian Absolute Deviation Ma. Any grey level g in the image I, satisfying Eq.

3.5, represents a potential WMI based on the Modified Z-score metric [56].

0.6745× g −Md

Ma

> 0 (3.5)

The Modified Z-score uses the median instead of the mean, as the former is

more robust to outliers. Also, as mentioned earlier, the parts of the ventricles

undetected by MSER (or GA) lie in the range of values for g satisfying Eq.

3.6, and thus are not included as WMI.

0.6745× g −Md

Ma

< 0 (3.6)

Filtering WM hyper-intensities

The next step is to define a mask Mc for the potential WMI candidates, such

that pixels of image I whose grey level g satisfies Eq. 3.5 belong to Mc. We

enumerate the 8-connected objects found in Mc using the method described in

[50] (page 40-48). The general procedure is described below.

1. Run-length encode the input image.

2. Scan the runs, assign preliminary labels, and store label equivalences in

a local equivalence table.

3. Resolve the equivalence classes.

4. Relabel the runs based on the resolved equivalence classes.
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The above procedure returns a set of objects Sw = {O1, O2, ..., Ow}. We

then compute the sizes of the corresponding objects as {NO1 , NO2 , ..., NOw}.

We discard the 5% largest objects, e.g., segments of the skull boundary, as

they are outliers. Our experimental observations verified that in T1 images,

the skull shares similar intensity as the WM injuries; both lie above the normal

range of WM intensities. Thus, the skull naturally forms the biggest objects in

the set Sw (within the top 5%). In the next step, we perform a binary classifi-

cation (big and small) of the remaining objects based on their sizes, using the

K-means clustering algorithm. We initialize the starting means (or centroids)

of the K-means algorithm with the sizes of the smallest and the largest objects

(among the remaining 95%). Note that the WM injuries often fall in the small

category, while the big category contains brain tissue boundaries. We impose

these size constraint in our algorithm. Using the above process, we further en-

force a distance constraint, based on our expert-annotated dataset, that WM

injuries cannot lie close to the skull. More false positive WMI detections are

eliminated subsequently in the fine detection process described next.

3.2.2 Fine Detection phase

The second phase of our algorithm combines the coarse detection results from

adjacent DICOM slices. This is motivated by the understanding that white

matter injury (WMI) position cannot change abruptly across slices. We con-

sider slice number i in which a WMI is detected at a particular location (x, y);

then, the same WMI spanning across slice (i± n) will be roughly at the same

location (n = 1 in the current implementation). We allow a distance tolerance

threshold to account for a slight variation in position. By interpolating be-

tween slices, the algorithm can also identify noise and recover occluded WMI

caused by weak intensity contrast. False positives can be reduced by consider-

ing adjacent slices. Since the coarse detection step is computationally efficient,

the overall time performance is improved because fine detection is applied only

on a small set of slices, which contain potential WMI candidates.

Let li ∈ L−1, lj ∈ L0 and lk ∈ L1 be the centroids of the WMI regions

detected in slice numbers (n−1), n and (n+1) respectively. Our fine detection
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Table 3.1: MRI Acquisition Parameters

Slice Thickness
(mm)

Field Strength
(Tesla)

TR/TE
(ms)

# of Signal
Averaging

Flip angle
(degrees)

Acquisition
Matrix

1 1.5 36/9.2 1 30 192/96

constraint is defined in Eq. 3.7 and Eq. 3.8, where T is the set of positives

predicted by the fine detection step and it consists of elements lj which satisfies

either Eq. 3.7 or Eq. 3.8. The notation dist is the distance between two WMI

centres and Dth denotes the distance tolerance threshold. We use a normalized

Euclidean distance (0, 1) with Dth = 0.1. Experiments showed that these

parameter values produced the best results.

lj ∈ T ⇔ ∃ li ∈ L−1 | dist(lj, li) ≤ Dth (3.7)

lj ∈ T ⇔ ∃ lk ∈ L1 | dist(lj, lk) ≤ Dth (3.8)

3.3 Results

We evaluate our method qualitatively and quantitatively using noisy and low-

resolution (96×112) preterm neonate brain DICOM slices from three subjects

provided by the SickKids Hospital in Toronto. Wherever applicable, WMIs

were marked by expert radiologists on the slices as ground truth. Fig. 3.5

presents two representative Ground Truth WMIs marked on coronal cross-

sections of two of those subjects. The MRI acquisition parameters are men-

tioned in Table 3.1.

It should be noted that WMI were not present in the slices from the first

subject. However, those slices present more challenging scenarios for the ven-

tricle detection step, due to the particular shape of the ventricles in them, as

compared to slices from the other two subjects. Thus, in Fig. 3.7 we show

results of ventricle detection on slices from the first subject and demonstrate

the full WMI detection process on a representative slice from the third sub-

ject in Fig. 3.6. Also, throughout this work, we consider WMI detection on

slices from the second and third subject only. For quantitative evaluation, we
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(a) WMI marked on a 2D slice from
DICOM stack of 2nd subject.

(b) WMI marked on a 2D slice from
DICOM stack of 3rd subject.

Figure 3.5: Visualization of representative Ground Truth WMIs on coronal
cross-sections of subjects.

use the standard metrics: sensitivity and specificity, given in Eq. 3.9 and Eq.

3.10. We compare our results with a recent work on WMI detection [20]. It

should, however, be noted that, the set of pixels in each slice used for com-

puting sensitivity and specificity are those belonging to the brain and not the

background.

Thus, true positives are the ground truth WMI correctly classified by a

particular algorithm and similarly, true negatives are the correctly classified

non-WMI pixels of the brain. False positives are the non-WMI pixels incor-

rectly classified as WMI, and similarly, false negatives refer to the missed

detections.

Also, in case of [20], significant variation in WMI detection performance

in terms of sensitivity and specificity was noted by even slightly varying the

upper threshold, T for marking the potential WMI boundaries after calculating

the transition matrix for each subject. Thus, for each subject, the value of

T has to be tuned separately to get the best performance for that subject,

while using the method proposed in [20]. To cover these cases, we varied the

value of of T for Subject-2 and Subject-3 to report the resulting variation

in WMI detection performance for the method [20]. On the other hand, our
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proposed method does not have such issues as it does not use any parameters

in the main detection phase. The method [20] has several other parameters in

addition to T . However, the most significant variations in its output resulted

particularly from even minute changes in T , and hence we specifically highlight

this parameter. Also, note that our work focuses on WMI detection in MRIs

of preterm neonate brains, specifically on WM hyper-intensities in T1 images.

Since there is insufficient relevant research result in the literature to compare,

we chose a few WM lesion detection methods to show that applying those

methods to our application does not produce better results.

sensitivity =
True Positives

True Positives+ False Negatives
(3.9)

specificity =
True Negatives

True Negatives+ False Positives
(3.10)

In Fig. 3.6 we illustrate the steps of our proposed method with a DICOM

slice, and compare our WMI detection result with the expert-annotated ground

truth. An input slice and ground truth are shown in Fig. 3.6a and Fig. 3.6b

respectively. The output of Otsu’s method before and after the morphological

hole filling operation is shown in Fig. 3.6c and Fig. 3.6d respectively. GA

returns the set of blobs most likely to constitute the ventricles, as shown in

Fig. 3.6e. However, it may be argued that for this particular input slice, the

ventricles appear as relatively simple, regular shapes. Thus, we additionally

show that the proposed ventricle detection approach works even for slices

where the ventricles appear as more complex, irregular shapes, in Fig. 3.7.

However, these slices do not contain WMI and are thus not used henceforth in

showing WMI detection. The detected contour around the ventricles is shown

in Fig. 3.6f. True ventricles and the patches falsely detected as ventricles are

represented as holes in Fig. 3.6g. Brain hyperintensities based on the Modified

Z-score metric are shown in Fig. 3.6h. The result of coarse detection, after

imposing the size and distance constraints, is shown in Fig. 3.6i. Comparing

with the ground truth shown in Fig. 3.6b, we see that there is both true

positive and false positive WM injuries. Many of these false positives are

eliminated by our fine detection step, as shown in Fig. 3.6j.
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(a) Input Slice (b) Ground Truth with anno-
tated WMI (Red)

(c) Otsu’s method

(d) Hole-filling (e) Ventricle detection (f) Contour of Eq. 3.4

(g) Region mask Mw (h) Hyperintensities detection (i) Coarse detection includes
false positives
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(j) Fine detection re-
moves many false posi-
tives

Figure 3.6: An illustration of the various steps in our proposed method.

Figure 3.7: Result of blob detection (top row) and refinement (bottom row)
to locate ventricles using the MSER algorithm on Slices 1 through 7. Each
detected blob has been shown using a different colour for ease of visualization.

39



3.3.1 Quantitative Results

WMI Detection Accuracy

The sensitivity and specificity comparisons of proposed method with the method

in [20] are presented in Table 3.2 (for each slice) and Table 3.3 (averaged over

slices). Since we vary the value of T [20], the scores reported for the method

in [20] have been averaged over those obtained for individual values of T for

each slice. It can be seen that the average sensitivity and specificity are higher

in case of the proposed method as compared to the one in [20], even though

the proposed method does not segment the WM region.

Although the average sensitivity may appear as low for the proposed method,

however, for some of the slices, the proposed method actually detects all the

true positive WMIs, as shown later in the Qualitative Results section. The

reason for the decrease in average sensitivity is due to missed detections in

some other slices, and our analysis of the same is presented when we discuss

the effects of our size and distance constraint features in the Discussion sec-

tion. However, our proposed method is not dependent on any parameter like

our earlier method [20], which is very sensitive to the value of T which drives

down its average sensitivity.

Since the sensitivity / specificity of proposed method are only slightly

higher than that of [20], we perform the (non-parametric) Wilcoxon Rank-

Sum test to investigate the statistical significance of these results. We per-

form the test using sensitivity, as it has a comparatively larger difference than

specificity. We define ‘Sample 1’ as collection of sensitivity scores of proposed

method and likewise, ‘Sample 2’ for the method [20]. We choose the rank-sum

test as, although the two samples are independent, the sample size is small,

which precludes the application of other (parametric) tests like Student’s t-

test. For the same reason, we opt to perform a two-tailed test, and choose the

significance level α = 0.01 instead of 0.005. We put both samples together and

organize it in ascending order, assign ranks to them, taking care of assigning

the average rank to values with rank ties, as shown in the Table 3.4.

The sum of ranks for Sample 1 is R1 = 3 + 3 + 3 + 6 + 13 + 13 + 13 = 54.
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Table 3.2: Quantitative Comparison (for each slice) of Proposed Method using
varying parameter values in [20]

Slice No
Sensitivity
(Method [20])

Sensitivity
(Proposed)

Specificity
(Method [20])

Specificity
(Proposed)

8 67.85 0 99.49 99.27
9 0 100 99.44 98.91
10 66.67 100 98.79 98.80
11 75 100 98.97 99.80
12 74.09 0 99.60 99.96
13 50.83 48.42 99.72 99.82
14 0 0 98.63 99.89

The sum of ranks for Sample 2 is R2 = 3+3+7+8+9+10+11 = 51. Hence,

the test statistic is R = R1 = 54. The rank-sum test is performed as follows:

1. Null and Alternative Hypotheses: The following null (H0) and alterna-

tive (Ha) hypotheses need to be tested:

H0: Median (Difference) = 0

Ha: Median (Difference) 6= 0

2. Rejection Region: The critical value for the signficance level 0.01 and the

two-tail test is Rc = 12, and the null hypothesis is rejected if R ≤ 12.

3. Decision about the null hypothesis: Since in this case R = 54 > 12, there

is not enough evidence to claim that the population median of differences

is different than 0, at the 0.01 significance level.

We repeated the rank-sum test with α = 0.05 for which Rc = 21, and the

null hypothesis is rejected if R ≤ 21. Since even in this case R = 54 > 21,

there is not enough evidence to claim that the population median of differences

is different than 0, at the 0.05 significance level. Thus, We see from the rank-

sum tests and Table 3.3, that the chief advantage of the proposed method

as compared to [20] lies in eliminating dependency on brain atlas and saving

computational time by bypassing the time-consuming full WM segmentation.

In order to assess the effectiveness of our size and distance constraint fea-

tures, we also compute the average sensitivity and specificity scores across all
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Table 3.3: Accuracy & Execution Time comparison of Our Method with
Method [20] by varying its parameter values

Average
Sensitivity
(Method [20])

Sensitivity
(Proposed)

Specificity
(Method [20])

Specificity
(Proposed)

47.90 49.77 99.23 99.49

Time(ms)
Per Slice
(Method [20])

Per Slice
(Proposed)

Per Volume
(Method [20])

Per Volume
(Proposed)

4150 500 796800 41500

Table 3.4: Wilcoxon Rank-Sum Test comparing Proposed Method’s sensitivity
with Method [20]

Sample Value Rank Rank (Adjusted for ties)

1 0 1 3
1 0 2 3
1 0 3 3
2 0 4 3
2 0 5 3
1 48.42 6 6
2 50.83 7 7
2 66.67 8 8
2 67.85 9 9
2 74.09 10 10
2 75 11 11
1 100 12 13
1 100 13 13
1 100 14 13
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Table 3.5: Effectiveness of the Size and Distance Constraints on Proposed
Method

Constraint
Sensitivity
(average)

True Positives
(average)

Specificity
(average)

False Positives
(average)

Both 49.77 36.71 99.49 501.86
None 100 110.71 56.70 32271
Size 49.77 36.71 97.82 1657.57
Distance 49.77 36.71 99.30 501.86

Table 3.6: Proposed Method’s Reduced performance with Minimum Lesion
Size constraint [14]

Minimum Size
Sensitivity
(average)

True Positives
(average)

Specificity
(average)

False Positives
(average)

Min.Size N/A 49.77 36.71 99.49 501.86
Min.Size = 100 21.20 27.57 99.87 99.71
Min.Size = 150 6.92 26.28 99.94 49.71
Min.Size = 250 0 0 100 0

slices for the proposed method in each of the following scenarios:

1. with both constraints;

2. with no constraint;

3. with only size constraint; and,

4. with only distance constraint;

The above results are aggregated and presented in Table 3.5.

We conduct another experiment by restricting the minimum allowed lesion

size, in terms of number of voxels, and the effect of this on WMI detection

accuracy is presented in Table 3.6. The motivation behind this experiment is

that sometimes random White Matter intensity variations may occur simply

as a result of noise, and not the presence of actual White Matter Injury, as

argued by authors in [14].

43



Execution Time Performance

For time performance, the average (serial) per-slice execution time of the pro-

posed method is around 500 milliseconds on a Ubuntu 14.04 PC with 16 GB

RAM and an Intel Core i7-4790 3.60 GHz CPU. Note that for the per-volume

execution time to process a DICOM stack of 192 slices, the proposed method

takes less than 500 × 192 milliseconds. This is because our method first per-

forms coarse detection on all slices (which takes about 210 milliseconds per

slice), benefiting the subsequent fine detection. The fine detection step focuses

on a smaller set of WMI candidates and takes less than 6 milliseconds per slice.

Thus, the total time taken to process the entire DICOM volume of 192 slices

is 41460 milliseconds, or ≈ 41.5 seconds.

In comparison, the average per slice execution time of the segmentation-

based preterm WMI detection method [20] is around 3.75 seconds (segmen-

tation) + 0.4 seconds (detection) = 4.15 seconds (total). Its per volume exe-

cution time is 796.8 seconds = 13 minutes and 16.8 seconds. Also, note that

the earlier method [20] performs only coarse detection without considering ad-

jacent slices. This is because most of the execution time is taken up by the

segmentation phase, whereas our proposed method bypasses segmentation,

achieving better time performance without compromising accuracy.

Thus, from a comparison of the WMI detection accuracy and execution

time of proposed method and our earlier work [20] shown in Table 3.3, we can

conclude that our new method greatly reduces the execution time, but still

manages to improve WMI detection accuracy compared to our old method.

Table 3.7 shows hemorrhage detection results on three representative DI-

COM slices of a preterm infant brain provided by SickKids Hospital in Toronto.

3.3.2 Qualitative Results

Figs. 3.8 through 3.10 present a side-by-side comparison of the output from

[20] and the proposed method for three representative slices belonging to the

2nd and 3rd subjects. We observe that many false positives detected in [20] for

certain values of T are eliminated using our new method. Overall, Figs. 3.8
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(a) Input Slice (b) Our Method (c) Ground Truth

(d) T = 0.005 [20] (e) T = 0.015 (f) T = 0.025

(g) T = 0.035 (h) T = 0.045 (i) T = 0.055

Figure 3.8: Comparison of Proposed Method and [20] using Slice 9.

through 3.10 show how our method performs better than the method in [20].

Fig. 3.11 shows hemorrhage detection results on three representative DI-

COM slices of a preterm infant brain provided by SickKids Hospital in Toronto.

There are false positives mostly due to noise, but only one false negative (Slice

3, left hemorrhage) which also reflects in the quantitative results in Table 3.7.

A closer examination of the false positive detections reveals that they often

have similar visual characteristics as the true positive detections. The best

example of this is the false positive detection adjacent to the lower-right corner

of the right ventricle in Slice 3 (Fig. 3.11).
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(a) Input Slice (b) Our Method (c) Ground Truth

(d) T = 0.005 [20] (e) T = 0.015 (f) T = 0.025

(g) T = 0.035 (h) T = 0.045 (i) T = 0.055

Figure 3.9: Comparison of Proposed Method and [20] using Slice 10.

Table 3.7: Periventricular hemorrhage detection quantitative results

Slice# Sensitivity Specificity
1 1.0000 0.9972
2 1.0000 0.9970
3 0.5056 0.9904
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(a) Input Slice (b) Our Method (c) Ground Truth

(d) T = 0.005 [20] (e) T = 0.015 (f) T = 0.025

(g) T = 0.035 (h) T = 0.045 (i) T = 0.055

Figure 3.10: Comparison of Proposed Method and [20] using Slice 11.
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(a) Slice 1 with Ground Truth (d) Slice 1 Hemorrhage Detection

(b) Slice 2 with Ground Truth (e) Slice 2 Hemorrhage Detection

(c) Slice 3 with Ground Truth (f) Slice 3 Hemorrhage Detection

Figure 3.11: Periventricular hemorrhage detection using proposed method on
DICOM slices obtained from SickKids Hospital, Toronto. Red squares mark
True Positives.
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3.4 Discussion

From the qualitative analysis, specifically Figs. 3.8 through 3.10, we observe

the high dependence of the method in [20] on its parameter T , whereas the

method we propose in this work gives consistent results. There are instances

where our proposed method detects the true positive WMI but deviates from

the overall ground truth due to many false positive detections, e.g. Fig 3.8.

However, a closer examination (Fig. 3.12a) reveals that the false positives

often have similar visual characteristics as the true positive detections, and is

thus difficult to identify.

Another strength of our method is that, even when the ventricles do not ap-

pear in a particular slice, the WMI detection performance is not compromised,

as can be seen in Fig. 3.8. Most importantly, our method does not perform

segmentation of the entire WM region like most other lesion detection methods

in general. In fact, many such methods, assume that an already clearly seg-

mented WM region will be supplied as input, so that the method only focuses

on WMI detection disregarding potential segmentation errors. In any case,

false positives which are obvious can be easily identified by the human expert

when reviewing the computer assisted detection (first level filtering) results.

From the quantitative analysis, we can see that the enforcement of size and

distance constraints clearly increases the specificity, and decreases the sensi-

tivity. Specificity increases as false positives WMI detections are eliminated

by the enforcement of the constraints. Sensitivity decreases because the con-

straints erroneously eliminate some true positive WMI detections. We believe

that additional criteria based on prior clinical knowledge is needed in order to

selectively retain the true positive WMI detections while discarding the false

positives. This is especially true for situations in which the true positive WMIs

are difficult to perceive visually. However, the size constraint feature of our

proposed method does not impose any limitation on the minimum size of lesion

to consider. In fact, in all of the three instances shown in Fig. 3.8, Fig. 3.9 and

Fig. 3.10, the sensitivity is 100% (no misses), despite the ground truth lesions

being very small. We additionally show the WMI detection performance of
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(a) False positives often have similar visual characteristics as true positive WMI de-
tections: Original Slice (left); WMI detected by proposed method (middle); Ground
Truth (right). The white directional arrows point to the regions of false positive
detections. The black directional arrows point to the location of true positives. The
slices have been magnified and contrast of mid-tone region of the histogram of the
entire figure has been enhanced for ease of visualization.

(b) Input Slice with Big
Lesions

(c) Proposed Method de-
tects Big Lesions

(d) Ground Truth show-
ing Big Lesions

Figure 3.12: True and false positive WMI detection performance of proposed
method relative to lesion size: top row shows small lesions, bottom row shows
big lesions.
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proposed method for large lesions in Figs. 3.12b through 3.12d. These figures

had been used earlier to illustrate the various steps of our proposed method,

in Fig. 3.6.

On the other hand, a specificity of 100 with no constraint implies that our

WM hyper-intensity detection approach is robust enough to detect all true

positive WMIs. Among the two constraints, the distance constraint alone per-

forms as well as its combination with the size constraint. This is because, as

we move from the periphery of the brain towards the vicinity of the ventricles,

the size of the connected components of detected WM hyper-intensities keeps

decreasing, as can be seen in Fig. 3.6h. The periphery has larger connected

components, like skull and cortical ribbon, whereas those nearer to the ventri-

cles are more likely to be true WMI. Thus, in this respect, the distance criteria

subsumes the size criteria for WMI detection.

Furthermore, it should be borne in mind that even a small increase in

the number of true positive WMI detection results in a large increase in the

sensitivity score, and the opposite is true for false positives and specificity. The

reason is that, in our preterm brain WMI detection based on the given ground

truth, the total number of positives (WMIs) is very small compared to the

total number of negatives (healthy brain tissue). Thus, the numerical values

of sensitivity and specificity should be interpreted in light of the actual number

of true positives and false positives while assessing the relative performance of

the proposed method.

3.4.1 Slice Thickness

The inter-slice distance (thickness) in our test dataset is 1-mm and the mag-

netic strength of the MRI scans is 1.5 Tesla. It has been shown by Savlo et al.

[112] that if we vary the slice thickness between 1-mm and 3-mm, the texture

features used to detect lesions remain visible. While very thin slices would

reduce the signal-to-noise ratio (SNR) resulting in unreliable texture patterns,

very thick slices would compromise the texture detail.
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3.4.2 Applicability of general assumptions regarding WM
lesion characteristics

Multiple sclerosis lesion detection by thresholding FLAIR images, and subse-

quent refinement of the threshold mask in order to differentiate lesion regions

from normal tissue, has been performed in [14]. The authors define a set of

rules, like “Lesions are mostly surrounded by WM voxels” and “Lesions should

not be present between the ventricles,” which are true in our test dataset as

well. However, other rules like “Lesions (targets) should be of a minimum

size” might not be true in our case. In their work, the authors set this min-

imum size as 10 voxels representing 30 mm3, which approximately represent

a cube with 3 mm edges. They argue that due to inherent noise and inten-

sity inhomogeneities in MR images, some voxels with random high intensities

may persist even after the preprocessing stage. Thus, to remove these small

outliers, they discard all lesion regions that do not have the defined minimum

size. In terms of preterm WMI detection, the size of preterm neonate brains

is very small, the MRIs themselves are of very low resolution and have a very

low contrast-to-noise ratio. Thus, it is inaccurate to discard random high in-

tensities assuming they are noise, because true WMIs can span just a small

subset of voxels in each slice, as shown in our expert-annotated ground truth

dataset. This observation is verified by our experimental results presented in

Table 3.6, which shows that a minimum size cannot be imposed on preterm

neonate WMI. It can be seen that by increasing the minimum size (in terms of

number of voxels), there is an increasing number of missing detections, which

lowers the sensitivity score. By the time we increase the minimum size to

250 voxels, all slices having correct targets detected in an unconstrained en-

vironment would have missed all correct detections. For this reason, the size

criteria for eliminating false-positive in our proposed method does not impose

a minimum acceptable WMI size. The specificity score increases as a result of

increasing the minimum allowed lesion size, because fewer lesions are detected

as such which also decreases the chance of false positive detections, as seen in

Table 3.6. However, clearly, this cannot be regarded as an advantage at the
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cost of severely increasing missed true detections.

3.5 Conclusion

We presented a robust and efficient method for the detection of white mat-

ter injury in preterm neonate brain MRI scans. We introduced a fast, au-

tomatic, unsupervised and atlas-free WMI detection approach, which avoids

the WM segmentation step. We apply GA-based image patch classification to

sample WM intensities and subsequently eliminate false positives using size-

based and distance-based criteria. We also use adjacent slice validation. The

proposed method is an effective technique for WMI and PVH detection in

preterm neonates. Experimental results show that our method outperforms

related work. However, there exist challenging MR scans, where the WMI

cannot be identified purely relying on visual cues, leading to the failure of all

methods. Our work also opens up new research possibilities to improve ex-

isting algorithms by incorporating demographic and other clinical information

of patients to identify candidate targets. However, as of now, we do not have

such data, and thus cannot work in that direction.
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Chapter 4

InSAR signal recovery for WAM

4.1 Introduction

InSAR or Interferometric Synthetic Aperture Radar is an emerging, highly

successful remote sensing technique for measuring several geophysical quanti-

ties like surface deformation [92]. It is based on generating an interferogram

as the complex difference of two SAR acquisitions of the same scene from

slightly different view angles, as shown in Fig. 4.1. The wrapped interfer-

ometric phase is then unwrapped to subsequently produce Digital Elevation

Models (DEMs). However, several decorrelation factors create strong phase

noise, affecting unwrapping and DEM accuracy [136]. Thus phase filtering is

preferred, even when it results in some decrease in resolution and increase in

spatial correlation [83] and we need filters adapted to enhance phase rather

than amplitude [142]. Filtering the real and imaginary parts of the com-

plex phase in its wrapped form [73], [99] can avoid blurring edges, whereas

unwrapping before filtering increases computation and potentially decreases

accuracy [92]. The boxcar filtering approach is still widely used today. This

essentially involves computing moving average using a rectangular window.

However, ground images acquired using InSAR constantly change (also called

non-stationary) due to variations in topography and land displacements along

the line of sight. This makes sample average methods like boxcar not the best

solution for denoising InSAR images [114]. Also, strong smoothing effect of

boxcar filtering results in spatial resolution loss, and noticeable errors in phase

and coherence estimation near signal discontinuities. Thus, simple boxcar av-
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eraging and non-adaptive filtering methods tend to distort the phase [83], [99].

Methods that adapt their parameters based on, e.g. local phase quality (co-

herence) yield better results, as coherence is related to phase noise deviation

[73], [136]. Consequently, over the past few decades, various filtering methods

have been developed to address the problem of non-stationary InSAR phase

estimation. They are broadly classified as spatial methods, e.g., Lee [70], and

frequency based methods, e.g., Goldstein [44]. Both filters, as well as [130] are

adaptive to the local fringe direction. The Lee filter averages similar phase

values in the locally adaptive estimation window, while the Goldstein filter

discards all but the most dominant component of the local power spectrum.

Both the original and the modified Goldstein filter of Baran et al. [7] preserves

the signal in high coherence (low noise) areas, and thus, are adaptive to local

noise as well. Enhancements of the Lee filter [17], [41], [133], [137] improve

the adaptation to local fringe structure, whereas modifications to the Gold-

stein and Baran filters improve coherence estimation to avoid under-filtering

the incoherent regions [61], [120]. Frequency based methods have been ex-

tended to the wavelet domain [75], including un-decimated wavelet transform

[10] and wavelet packets [139], as filtering in wavelet domain preserves the

spatial resolution, but struggles to filter dense fringes, whereas spatial meth-

ods in general sacrificed spatial resolution [138]. The additive noise model

of interferometric phase [70] inspired early filtering methods which assumed

a stationary and consistent phase over the filtering window, but real-world

challenges of strong topographic change and restrictions imposed on window

size motivated more recent non-linear models [54] and per-pixel filtering [128].

Local modeling based on polynomial approximation [12] and sparse coding

[53] have been explored. Markov Random Field (MRF) based methods [31],

[37] have also been attempted, though prior distribution modeling (required for

MRF) is a challenging problem in itself. Recent attempts at Non-local filtering

of various types of SAR images, which perform pixel estimation by matching

patches over the whole image instead of just the pixel neighborhood, produced

state-of-the-art results on amplitude, interferometric phase, polarimetric and

multitemporal stack images [28], [117].
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Figure 4.1: InSAR image capture by two passes of the satellite.

Recent advances in parallel computing architectures have motivated par-

allelism in the InSAR processing pipeline [96], which is critical to our pro-

posed phase filtering method for InSAR-based Wide Area Monitoring (WAM)

across geographical regions on petabytes of data. While optical images used in

commercial or public applications are typically few megapixels in dimension,

InSAR image dimensions can easily go upto the order of gigapixels (103 times

larger), thereby making algorithmic scalability a prime concern for InSAR

processing. Thus, we use a Convolutional Neural Network (CNN) architec-

ture which seamlessly integrates with modern parallel architectures built on

Graphics Processing Units (GPUs) and rival human performance on pattern

recognition tasks. CNNs’ use in InSAR phase processing in particular has

been limited to volcano deformation monitoring [1] via transfer learning using

a popular pre-trained optical image classification CNN [66], but not direct

training on InSAR data. While Neural Network based despeckling of SAR

images [129], [134], [135], [140] and geo-localization accuracy improvement of

optical satellite images [82] have been attempted, the use of Convolutional

Neural Network (CNN) based learning approaches to InSAR images has not

been explored. Note that, methods like PtSel [102] which operate on a time

series of numerous interferograms cannot start monitoring till all images of the

stack have been acquired by numerous passes of the satellite. However, this

could delay the start of monitoring by months, as each pass of the satellite

happens only after about a week or more, depending on the particular satel-
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lite cluster involved. This is impractical for many real-world applications like

mines where miners are at risk from ground subsidence / landslides which can

happen much earlier than the time required to acquire all the images required

to start applying algorithms like PtSel. Thus, the current work focuses on,

and compares against only those existing methods which work using a single

interferogram.

In this work, we propose interferogram denoising and coherence prediction

using CNN architectures. We show that even in the absence of any clean train-

ing images, unsupervised learning (using only noisy InSAR images) via CNN

architectures and generative modelling can outperform traditional methods.

4.2 Proposed Methods

We first describe the initial method we developed (CNN-InSAR) which uses

two separate CNN architectures for filtering the phase and predicting the co-

herence, given the noisy input image. We subsequently describe our improve-

ment on this method by introducing generative modeling into the CNN to

filter phase and predict coherence using a single architecture (GenInSAR).

4.2.1 CNN-InSAR: CNN-based phase filtering and co-
herence estimation

Dimensionality Reduction for InSAR Denoising via CNN

While most supervised neural network based learning architectures require

pairs of noisy and clean training images to learn how to transform an un-

seen noisy image to clean image, autoencoders do not have this limitation.

Autoencoders can perform unsupervised learning as they can learn from the

noisy data itself to reconstruct the input noisy data. Since it performs dimen-

sionality reduction within the network, it learns to reconstruct from a latent

representation of its input, which is in a lower dimensional space (the ‘encoded’

layer). Consequently, it learns only features that are essential to reconstruct

its input, getting rid of the noise in the process. However, if there is excessive

dimensionality reduction, the image detail also gets lost along with the noise.
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Figure 4.2: Autoencoder CNN for denoising InSAR images.

Thus, there is a trade-off.

The structure of our autoencoder is shown in Fig. 4.2. It should be noted

that we do not constrain the size of the images used to train the network or run

inference using the trained network (we can use whole image or patches). Also,

the number of channels in the input is two, representing the real and imaginary

part of the complex interferogram image. Thus, we exploit information from

both channels. Nevertheless, we first process both the channels separately

to saturate the outlier amplitudes, as some pixels in the input interferogram

might have extremely high amplitudes. This may confuse the CNN during

training / inference. Let the pixels in the interferogram be represented by Z

= [z 1, z 2, ... zN ] with amplitudes A = [a1, a2, ... aN ]. We can compute

the amplitude of each pixel and threshold them to be A’ = saturate(A, M ),

where M is the mask denoting outlier amplitude values. The outliers are

computed as in [25]. After saturation and normalization, real and imaginary

channel values lie between -1 and +1. We add 1 to the two channels to use

the Rectified Linear Unit (ReLU) activation for introducing nonlinearity in

the CNN to learn complex features.

In Fig. 4.2, each CNN layer is represented by a box. Output feature map

count is indicated by the integer at the top (2, 8, 16) whereas filter dimension

is indicated at the bottom (3×3). Each 2D convolutional layer learns a number

of filters. The maxpooling layer subsamples its input feature maps, while the

upsampling layer brings them back to their original size. The output of the last

convolutional layer has two feature maps representing the real and imaginary

channel of the denoised interferogram. Mean squared error between the output
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Figure 4.3: CNN for InSAR coherence estimation.

channels and their corresponding input channels is reduced using the popular

Adam optimizer to train the network, by updating its filter weights and biases,

using gradient backpropagation. The network is trained using 60×60 patches

extracted from noisy, real-world InSAR images. Maxpool downsampling factor

is 3. Xavier style weight initialization [42] is used for both networks.

CNN-based Coherence Estimation to reduce Artefacts

We propose the coherence estimation CNN shown in Fig. 4.3. This architec-

ture also has two channel noisy interferogram input, and the preprocessing for

the channels is same as the one described earlier. However, we do not have any

downsampling or upsampling, and the output is a single channel, as we require

prediction of just the amplitude of the coherence. While the design is simi-

lar to the earlier network, the activation for final convolution layer is sigmoid

instead of ReLU. This is because, pixel coherence is a value between 0 and

1 (sigmoid output). We use kernel regularization in the 2nd last convolution

layer to limit standard deviation between learned filter weights for that layer.

This helps make the coherence estimates sharper and less grainy. For training

this network, we first use 11×11 patches to compute the raw coherence (Eq.

4.1) between the training noisy images and their filtered version output by the

fully trained filtering network described earlier.

γ̂ =

∑
n,m u1(n,m) · u∗2(n,m) · e−jφ(n,m)√∑
n,m

∣∣u1(n,m)
∣∣2∑

n,m

∣∣u2(n,m)
∣∣2 (4.1)

where pixel n of interferogram u1 and pixel m of interferogram u2 have the

topographic phase correction factor Φ, and the asterisk on top of u2 denotes
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Figure 4.4: Preprocess raw 11× 11 coherence to remove artefacts.

complex conjugate. A relatively larger window size is used to reduce bias in

raw coherence computation, but this also makes the coherence speckled. So,

instead of training directly on raw coherence, we preprocess the raw coherence

to make it sharper. We first segment the raw coherence using Chan-Vese seg-

mentation [16], which is useful for segmenting objects with ill-defined bound-

aries like our case. The segmentation isolates incoherent areas from coherent

ones. We set coherence of all coherent areas to 1 (full coherence). For each

incoherent area, we set its coherence to { Mean minus Standard Deviation }

of coherence of all pixels comprising that area. We then extract corresponding

64×64 patches from training noisy image and its preprocessed coherence to

train the coherence prediction CNN. The result of pre-processing is shown in

Fig. 4.4 for a sample training image, where dark and light pixels show values

closer to 0 (low coherence) and 1 (high coherence) respectively.

4.2.2 GenInSAR: CNN-based generative modeling for
phase filtering and coherence estimation

Building on CNN-InSAR, we next propose GenInSAR, a novel InSAR phase

filter inspired by Mixture Density Networks (MDN) [13]. A CNN’s convolu-

tional layers operating on a phase patch predict the parameters of a bi-variate

Gaussian distribution (real and imaginary channel) of the center pixel. The
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predicted vector ~µ represents the filtered pixel. Its coherence is a function

of the predicted ~σ. This approach improves phase filtering, and being a gen-

erative model, sampling from this distribution generates new interferograms

which are slight variations on the filter output, and can be utilized to improve

the InSAR pipeline, as discussed later on.

In contrast to CNN-InSAR, GenInSAR performs joint phase filtering and

coherence estimation using only a single neural network. Our approach pre-

dicts the distribution of the center pixel given only its neighborhood (patch)

and is thus embarrassingly parallel [52]. In contrast, non-local filters [29], [30]

require computing patch similarity and suffer from terrace-like DEM artefacts,

over-smoothing and rare patch effect [3]. For similar computational concerns,

we do not adopt strategies that are iterative [83], [142] (could also result in

loss of detailed features [83]), multi-stage [3], [142] and require optimization

during inference, e.g. via sparse coding [92].

Figure 4.5: Architecture of GenInSAR.

The architecture of GenInSAR is shown in Fig. 4.5. The input to the archi-

tecture is a 11× 11 phase patch centered around the pixel to be filtered. That

pixel is removed from the input patch to avoid learning the identity mapping.

We can understand this more clearly in terms of the training (fitting) and test-

ing (prediction) steps. While training, patches extracted from a fixed set of

phase images (training set) are input to the model. We set 20% dropout rate

[124] for the first dropout layer and 50% for the remaining ones during training

to prevent over-fitting. Dropout randomly sets a fraction of activations of its

preceding layer to zero. Intuitively, this forces the network to learn simpler

mappings for each training example, thus preventing over-fitting. Convolu-

tional layers [68] of increasing filter size (3 × 3, 4 × 4, 5 × 5) and decreasing

filter counts (32, 16, 8), each followed by an Exponential Linear Unit activa-

tion [23] (not shown) with α = 1.0 promote fast convergence and non-linear
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mappings. It also allows negative outputs ≥ −1.0 (lower limit of cos θ and

sin θ). Specifically, we use depth-wise separable 2D convolutions [111] with

one filter per input channel (depth) Ĝk,l,m =
∑

i,j K̂i,j,m ·Fk+i−1,l+j−1,m for fast

computation and convergence, where the mth kernel K̂m is applied to mth k× l

input feature map Fm to obtain mth output feature map Ĝm, followed by a

1 × 1 convolution to combine the outputs. Finally, following MDN working

principle, dense connections (weighted sums of all filter outputs) to the distri-

bution fitting module outputs those Gaussian parameter values (~µ, ~σ) for the

real and imaginary channel that make the input patch’s central pixel (training

target) most likely.

Thus, our training is completely unsupervised, as we learn from the in-

put data itself, without requiring its “clean” version as the training target.

The central pixel tq (surrounded by its neighborhood pixels, xq) is treated

as a sample drawn from the reference Gaussian distribution chosen to best

encompass all n training set examples {xq, tq}, by minimizing the loss E =

− ln
∏n

q=1 p
(
tq|xq

)
p (xq) via gradient descent back-propagation using Adam

optimizer [65]. The network is thus trained to parameterize a Gaussian den-

sity that best encompasses observed (noisy) data, by minimizing E. During

testing, the central pixel is still removed from the input patch, but dropout

and distribution fitting are not required: We predict the central pixel without

any time-consuming optimization.

GenInSAR does not train to predict γ. It is directly computed from the

predicted ~σ. A nice property of γ is that it seems to be a better measure

of filtering quality and filter output reliability, which partially depends on

the spatial noise pattern (neighborhood), not just the noise underlying the

center pixel. Considering two SAR acquisitions (u1, u2) with resulting inter-

ferometric unwrapped phase θ having probability density p(θ), variance σ2
θ ,

and real and imaginary components (R, I) with predicted variances (σ2
R, σ

2
I ),

we derive γ as the normalized index of mutual linear predictability of ran-

dom variables u1 and u2, thus quantifying noise in interferometric acquisitions:

γ =
E{u1u∗2}√

E{|u1|2}
√
E{|u2|2}

= E {u1u
∗
2} since for our normalized input phasors, γ’s
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denominator reduces to 1.

γ =
∫∞
−∞ p(θ)e

iθdθ =
∫∞
−∞

e
− θ2

2σ2
θ

σθ
√

2π
[cos θ + i sin θ]dθ = e−

σ2θ
2

Again, σ2
R + σ2

I = E
{
R2
}
− E{R}2 + E

{
I2
}
− E{I}2

=
∫∞
−∞ p(θ) cos2 θdθ +

∫∞
−∞ p(θ) sin2 θdθ

−
(∫∞
−∞ p(θ) cos θdθ

)2

−
(∫∞
−∞ p(θ) sin θdθ

)2

= e−σ
2
θ

(
cosh

(
σ2
θ

)
+ sinh

(
σ2
θ

))
− e−σ2

θ − 0

= 1− e−σ2
θ = 1− γ2 =⇒ γ =

√
1− (σ2

R + σ2
I ) (4.2)

We assume a Gaussian distribution for the unwrapped phase noise, to

approximate the InSAR multiplicative speckle noise distribution. Generally, a

Gaussian Mixture Model can approximate any distribution arbitrarily well by

adding more terms, but we lower the free parameter count to achieve a lower

bias. Moreover, since the number of effective samples is low, highly accurate

characterization of the true underlying distribution is not necessary, since the

mean for the two distributions will be equivalent and the only difference will

be in the variance. Thus, the variance might be slightly underestimated, but

this is a common problem with most coherence estimators.

GenInSAR’s chief advantage is that we can train it directly on real InSAR

data. Thus, we have a filter that learns the real distribution of the data rather

than relying on assumptions. This is very useful, as nowadays, countless im-

ages are being acquired daily by an ever-increasing number of SAR satellites

around the world, creating a huge archive of real training data. Although most

traditional filters rely on the spatial context to estimate the phase and coher-

ence, GenInSAR’s coherence qualitatively appears to be more of an indication

of the confidence of its estimated phase. This is a useful feature, because

in real-world applications, GenInSAR might encounter a feature that it was

not trained on, so there might be some error in its phase estimation. In that

case, it would predict a low coherence, and that pixel will be down weighted

or removed in subsequent stages of InSAR processing. Additionally, in areas
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that are noisy but very smooth, the predicted coherence might be biased up

slightly because GenInSAR is more confident of its estimated phase, as it can

make better use of the contextual information.

4.3 Results and Discussion

We implemented both the networks comprising CNN-InSAR using Keras with

Tensorflow back-end. We trained the filtering CNN and coherence estima-

tion CNN by extracting 500 60×60 sized and 64×64 sized patches patches

respectively from each of 135 1000×1000 training interferograms. The CNNs

converged after 50 and 100 epochs respectively. During testing CNN-InSAR,

we use the whole input noisy interferogram, instead of just patches, whereas

for GenInSAR, the input is always the patch centered around a pixel.

We also implemented GenInSAR in Keras [21] with Tensorflow-GPU back-

end, and compared its performance with CNN-InSAR and four existing meth-

ods: Boxcar, Goldstein, NLInSAR, NLSAR, all implemented / executed in

OpenCL 1.2 on 8 GB NVIDIA 1070 GPU. We present the qualitative and

quantitative results of those experiments for real and simulated images respec-

tively. For qualitative analysis, we observe whether a filter tends to over-filter

less noisy regions, especially those having interferometric fringes, which might

get distorted as a result (undesirable). For the coherence, we look at whether

the filter can clearly distinguish between coherent and incoherent areas of the

image. The metrics used for quantitative analysis are Root-Mean-Square-Error

(RMSE) of the InSAR phase and coherence, Residue Reduction Percentage

(RRP) [83], [136], [138], and Phase Cosine Error, ε∆θcos (Eq. 4.3) where gi and

f̄i denote ith ground truth and complex conjugate of filtered pixels of an n

pixel interferogram. Residues are phase inconsistencies emphasized by com-

puting curl of phase differences over the range of a reduced closed integral loop

of four spatially adjacent pixels [27], [138], which are non-zero if residues are

present. Most residues are caused by noise. However, few arise from signal

structure, like steep change in topography or heavy deformations, and those

residues should be preserved during filtering. Filtering should remove all other
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residues to facilitate phase unwrapping. Those that cannot be removed should

have low values in the filter’s output coherence map; this prevents error prop-

agation during phase difference integration by the unwrapper. Hence, filtering

aims to reduce residues (high RRP) but preserve details (low Phase RMSE,

ε∆θcos). These criteria drive our evaluations, as described next.

4.3.1 Experiments using satellite InSAR images

We trained GenInSAR for 100 epochs on 5 million 11× 11 patches extracted

from numerous interferograms of an airport and a mining site, having resolu-

tions 5060× 4040 and 1000× 1000 respectively, in batches of 64 patches each.

We tested the model on 1000× 1000 interferograms of a different mining site,

by extracting one 11× 11 patch for each pixel (at center). The interferogram

edges were replicated for obtaining patches corresponding to the edge pixels.

Fig. 4.6 shows outputs for a test interferogram using proposed and existing

methods. GenInSAR is a generative model: its filtered output per pixel (i, j)

corresponds to the mean ~µi,j (and ~σi,j) of the distribution predicted for that

pixel. To show this, we randomly sample five times from the normal distribu-

tion N( ~µi,j, ~σi,j ∗ α) setting α = 0.1, and generate pixel ~Pi,j for five images in

Fig. 4.7, which are slightly different outputs for the same input test interfero-

gram of Fig. 4.6. Higher values of α generate more variations in the outputs,

but also tend to make them noisy. This can be used in InSAR machine learning

for data augmentation [116], or to test InSAR processing chains by running the

same chain all the way through but with slightly different interferograms to

measure variance of the outputs of the complete processing chain, and might

be good for error analysis as well.

4.3.2 Experiments using simulated InSAR images

Satellite interferograms are always noisy, and thus cannot be used for quan-

titative analysis. So we used an InSAR simulator that can simulate ground

truth interferograms with Gaussian bubbles, roads and buildings. We followed

a similar training strategy as satellite InSAR images for training GenInSAR

with simulated InSAR images, by adding Gaussian noise to simulated ground
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(a) Input Phase (b) Goldstein Phase (c) Boxcar Phase

(d) Boxcar Coherence (e) NLInSAR Phase (f) NLInSAR Coherence

(g) NLSAR Phase (h) NLSAR Coherence (i) CNN-InSAR Phase

(j) CNN-InSAR Coher-
ence

(k) GenInSAR Phase (l) GenInSAR Coherence
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Figure 4.6: Filtered phase and coherence outputs for satellite InSAR images
processed by GenInSAR, CNN-InSAR, and four existing methods. Visualiza-
tions for phase are coloured between –π (blue) to +π (red), and coherence
between 0 (black: low) to 1 (white: high) respectively.

Figure 4.7: Cropped interferometric phase images generated by GenInSAR for
the same noisy input. Visualizations coloured from –π (blue) to +π (red).

truth images, and inputting patches extracted from those noisy versions. For

CNN-InSAR, we generated two sets of results: one using the model as-is and

another by retraining it with simulated noisy images as mentioned above. For

evaluating the proposed and five existing methods mentioned earlier includ-

ing CNN-InSAR (as-is and retrained), we used a set of 60 1000 × 1000 noisy

simulated images. Fig. 4.8 shows the performance of all methods for a sam-

ple simulated test image. The corresponding clean (ground truth) versions of

those images facilitated quantitative evaluation in terms of the three metrics

mentioned earlier. Table 4.1 shows overall superior quantitative performance

of GenInSAR against others and almost linear speedup with increasing number

of GPUs, as it filters each pixel independently, based on its neighborhood.

The results show that coherence produced via both the CNN-based meth-

ods clearly marks where the signal could be reliably recovered, and creates

lesser phase artefacts in incoherent regions compared to the non-local meth-

ods. CNN-InSAR creates far less spatial variance in coherence estimates in

incoherent areas by using a large window size (11×11) to compute raw coher-

ence, preprocessing it before training, and regularizing kernel weights of the

2nd last convolution layer. As shown earlier, the raw coherence is generated

by multiplying the input interferogram with complex conjugate of its filtered

version to prevent the signals from biasing down the coherence estimates.

However, where denoising fails to remove noise, this cancels out noise in areas
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where noise is present in both input and filtered version, and thus drives up

coherence of affected regions. GenInSAR circumvents this problem with its

unique approach to coherence estimation based on the estimated parameters

of the Gaussian generating the filtered (central) pixel. Goldstein and NLSAR

tend to warp fringes and Goldstein under-filters near incoherent areas.

GenInSAR almost totally reduces residues and produces far less over-

smoothing/artefacts around branch cuts compared to Boxcar because its great-

est strength is unsupervised learning of true spatial smoothing only from noisy

training data. It could potentially detect real residues better if trained more

on such types of features, and an efficient implementation like those of four

existing methods [4] could reduce it’s run time. In general, NLInSAR handles

residues well and avoids artefacts by selecting neighbors with similar phase, but

produces streaking correlated with amplitude bands. NLSAR (conservatively)

interpolates well only over heavy noise. A final future work for GenInSAR is

improving the coherence function to more elegantly handle practical scenarios

where the input data does not lie on the unit circle as currently, (σ2
R + σ2

I ) is

clipped to [0, 1], although most values lie in that range.

ε∆θcos =
1

n

n∑
i=1

1

2
(1− cos(arg (gif̄i))) (4.3)

4.3.3 Key observations from few other experiments

It may be interesting to note that, when we started to investigate the prob-

lem of InSAR phase filtering and coherence estimation for WAM, we tried

sparse coding approaches based on learning a dictionary of features, using

both optical natural images (landscapes, portraits, etc.) and InSAR images.

We observed that, although the approach seems to work for optical images, it

cannot be directly carried over to InSAR filtering for WAM, because of two

factors. Firstly, the prediction step involves optimization, which greatly slows

down the prediction performance. Especially, the approach that seemed most

promising involved multi-scale prediction using dictionaries of different patch

sizes. There, both the training and the prediction time increases drastically as
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(a) Ground Truth Phase (b) Input Phase (c) Ground Truth Coher-
ence

(d) Goldstein Phase (e) Boxcar Phase (f) Boxcar Coherence

(g) NLInSAR Phase (h) NLInSAR Coherence (i) NLSAR Phase

(j) NLSAR Coherence (k) CNN-InSAR (as-is)
Phase

(l) CNN-InSAR (as-is)
Coherence
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(m) CNN-InSAR (re-
trained) Phase

(n) CNN-InSAR (re-
trained) Coherence

(o) GenInSAR Phase (p) GenInSAR Coherence

Figure 4.8: Filtered phase and coherence outputs for simulated InSAR images
processed by GenInSAR, CNN-InSAR, and four existing methods. Visualiza-
tions for phase are coloured between –π (blue) to +π (red), and coherence
between 0 (black: low) to 1 (white: high) respectively.
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Table 4.1: Quantitative evaluation of GenInSAR, CNN-InSAR, and four ex-
isting methods, and scalability of GenInSAR over increasing GPU counts

Method
Name

Phase
RMSE

Coherence
RMSE

Residue
Red. %

Cosine
Error (ε∆θcos)

Time
(sec)

CNN-InSAR
(as-is)

1.270
±0.191

0.257
±0.013

92.74
±3.30

0.060
±0.036

1.42

CNN-InSAR
(retrained)

1.392
±0.192

0.200
±0.025

86.91
±4.71

0.073
±0.040

1.42

NLSAR
1.537
±0.073

0.301
±0.055

35.85
±17.71

0.132
±0.012

11.49

NLInSAR
0.850
±0.122

0.159
±0.018

97.59
±2.08

0.014
±0.009

20.44

Goldstein
1.260
±0.229

N/A
88.51
±11.96

0.048
±0.040

2.17

Boxcar
1.025
±0.173

0.143
±0.018

97.64
±1.94

0.025
±0.021

1.32

Proposed
(GenInSAR)

0.805
±0.128

0.144
±0.025

99.66
±0.20

0.010
±0.008

20.61

GPU Count 64 32 16 8 4 2 1

Time (sec) 0.38 0.65 1.35 2.44 5.11 9.38 20.61

we include more scales, and especially larger patch sizes. Secondly, it is diffi-

cult to have an intuitive or elegant coherence formulation using this approach,

and it involves too many assumptions or heuristics, which often do not work.

4.4 Conclusion

We propose CNN-based filtering and coherence estimation for InSAR images

and develop it further into a generative modelling based approach. It cre-

ates lesser phase artefacts in incoherent regions and outputs coherence clearly

showing where the signal could be reliably recovered, which are desirable prop-

erties of an InSAR filter in the context of the entire InSAR processing pipeline.

Our experiments demonstrate the capability of CNN-based learning for InSAR

filtering and coherence estimation. Future directions of research can focus

on improving GenInSAR’s coherence function to more elegantly handle those

practical scenarios where the input data does not lie on the unit circle.

71



Chapter 5

GPU-friendly debanding for
mobile HDR

5.1 Introduction

HDR imaging with 12+ bits per color channel is becoming commonplace [84].

Traditional 8-bit LDR imaging has much smaller dynamic range (peak bright-

ness 100 nits) with narrow color gamut compared to HDR (peak brightness

1000+ nits) with wide color gamut. A visualization of how HDR compares with

SDR is shown in Fig. 5.1. However, current videos are mostly distributed at 8-

bit depth. Modern cameras can capture 12-/16-bit videos, but for compression

or transmission, they are quantized to 8 bits. Moreover, videos are tuned for

100 nits LDR displays, which use gamma encoding1 and Rec.7092 color space.

In order to watch LDR videos on HDR displays, inverse Tone-Mapping Op-

erator (iTMO) [34], [100] must be applied. If the HDR display uses different

Electro-Optical Transfer Function (EOTF) (e.g., Perceptual Quantizer [84])

and color space (e.g., DCI-P3 [107]), the iTMO can also include an EOTF [84]

conversion and color space conversion. iTMO has been explored in [6], [19],

[67], [101], and is not the focus of this work. iTMO-generated HDR videos

often suffer from false contours called banding/ringing artifacts, arising due to

the Mach band effect [39], [45]. Banding occurs especially when the iTMO is

a one-to-one mapping, because 8-bit LDR video has maximum 256 codewords

1https://www.itu.int/rec/R-REC-BT.1886/en
2https://www.itu.int/rec/R-REC-BT.709/
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Figure 5.1: A visualization of how HDR compares against SDR

(only 220 codewords in Rec. 6013 and Rec. 7094). Hence, the output HDR

video also has 256 codewords. According to [84], to show a banding-free im-

age on a 1000+ nits display, 12-bit (i.e., 4096) codewords, is necessary. The

dithering approach is an attempt to mask banding by placing a combination

of pixels with different colors, within a neighborhood, so that the combination

perceptually distracts the banding artefacts [90].

Adaptive dithering methods use neighborhood information in addition to

pixel values, whereas non-adaptive methods use only pixel values. But these

traditional dithering methods, which are performed before or during quantiza-

tion, need to access the original high bit-depth and un-quantized pixel values

[8], [38], [40], [51], [59], [62], [89], [90], [103], [125], [131], [132]. However, many

applications require image compression or quantization, where only quantized

data is available at the dithering stage. Later on, we prove mathematically

3https://www.itu.int/rec/R-REC-BT.601/
4https://www.itu.int/rec/R-REC-BT.709/
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: (a, b): Quantized Image and its Cropped region with banding;
(c, d): Output from Proposed Method and the same Cropped; (e): Circular
Noise, compared with (f): Curved Noise, which shows better blending result.
Our method de-bands quantized images effectively. Note that (a-f) are tone-
mapped in order to visualize banding/noise in printed form or LDR displays.
This is a very challenging image in our dataset.
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that while adding zero-mean noise can remove banding from un-quantized

data, the same method cannot remove the banding from quantized signal. So,

we need to use other noise patterns, which this work focuses on.

We propose a method to perform dithering on the quantized pixel values.

One use case is where video decoder can decode 10 bit bit-stream but only

output 8 bits signal. Another use case is: where an 8-bit bit-stream is received.

The former case arises when the bit depth interface between two connected

hardware chips are different. The latter happens for an 8-bit AVC5/HEVC6

bit stream. We especially consider mobile computing environment where com-

putation capacity is limited and neighbor information is difficult to utilize.

GPU usage is an example where having neighboring information is expensive

in terms of memory I/O and timing. The inadequate neighbor information

limits the usage of filtering and false contour prediction based on neighbor-

hood information [9], [26], [55], [69], [126], [127]. To address these issues, our

method is guided by single-pixel operation based dithering, without the need

to detect texture-less regions. We assume that the said mobile device is HDR-

capable (quite common nowadays). So, the input image would undergo inverse

tone mapping to output an HDR image of significantly higher bit-depth.

It is interesting to note that finite or infinite impulse response filters that

work on individual pixels across consecutive sets of frames along the temporal

dimension might be explored as future work for temporal debanding, but our

current focus is spatial debanding on individual frames, or in the more general

case, simply HDR images. Although such filters are cheap in terms of memory

and I/O, they increase dependency between GPU worker threads, especially

in our use case (debanding on individual frames). So, we do not explore such

filters for algorithm development or comparison in our current work.

To demonstrate the difference in number of computational operations be-

tween a pixel-based (dithering) and patch-based (filtering) approach, let us

assume a Full-HD video frame size 1920× 1080 with 3 channels. Even a sim-

5 https://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-H.264-201003-S!!PDF-
E&type=items

6 https://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-H.265-201612-I!!PDF-
E&type=items
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ple convolution operation using a typically sized 5 × 5 filter kernel involves

25 multiplication operations followed by 1 addition operation per pixel, i.e.

1920 × 1080 × 3 × 26 = 161, 740, 800 operations per frame, whereas a pixel-

based approach would require just over 1920×1080×3 = 6, 220, 800 operations

of adding noise to each pixel. Considering at least 24 frames per second for

smooth video playback, this would translate to an additional 3,881,779,200 op-

erations per second (3.88 Giga Floating Point Operations Per Second or 3.88

GFLOPS) for filtering compared to just 149,299,200 operations per second

(0.15 GFLOPS) for dithering. Thus, even popular smartphones like Samsung

Galaxy S, LG Optimus 2X, Motorola Droid Razr, Galaxy Nexus etc. cannot

playback such videos, because their GPUs support only upto 3.2 GFLOPS.

Fig. 5.2(a-d) show how de-banding is performed by proposed method and

Fig. 5.2(e, f) compares the circular and curved noise patterns. Note that

images in Fig. 5.2 have been tone-mapped using [76] since our original HDR

output images can only be effectively perceived on HDR displays. Fig. 5.2(a,

b) show how banding is easily visible in texture-less regions (sky) but less

visible in textured regions (airplane). Fig. 5.2d shows how noise injection

depends on the degree of banding at input intensity. Our goal is to inject

minimal noise so that the banding is masked but the image is visually pleasant.

For consistency, we henceforth refer LDR as SDR (Standard Dynamic

range) and HDR as EDR (Enhanced Dynamic range) in this work. We con-

sider the images to be in the Y-Cb-Cr color space, where Y is luminance (luma)

and Cb and Cr are the two chrominance (chroma) channels. We also consider

the inverse tone mapping function as a one-to-one mapping between the SDR

and EDR intensities in the Y channel. Thus, it can be computed once for

each frame and stored as a look-up table, indexed by the SDR code-words.

We call this look-up table as BLUT (Backward Look-Up Table) as it is used

to get back the EDR image from the SDR. We assume that the original SDR

uses 10 bits in each channel, and thus has 1024 code-words with integer values

in the range [0, 1023], but due to its quantization to 8 bits per channel, the

input to proposed method has only 256 code-words. We simulate quantiza-

tion by right shifting the original SDR input by 2 bits and then left-shifting
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it by 2-bits. Thus, the input is still 10 bits, but has very sparsely distributed

code-words (banding). The EDR uses 16 bits per channel, but its code-words

are normalized to the [0, 1) range. We assume that chrominance channels are

inverse tone mapped using methods other than look-up tables, so we dither

them without assuming any look-up tables. We assume that a range of luma

intensities near the top and bottom of the code-word range are clipped, as

shown in Fig. 5.3a. This is a common use case where the range of intensities

is restricted to SMPTE range7. We will henceforth refer to the highest SDR

intensity in the lower flat region as Y0 and the lowest SDR intensity in the

upper flat region as Y1 respectively.

5.1.1 Motivation

To motivate our method, we prove mathematically that, while adding zero-

mean noise can easily remove banding from un-quantized data, the same

method cannot remove the banding from quantized signal.

For the proofs, we first define the following notations:

syji: i th pixel of j th frame for SDR Y channel from the video decoder (e.g.

10 bit)

nyji: i th pixel of j th frame added noise for SDR Y channel

f yj (·): jth frame inverse tone mapping function.

∆: quantization step size

To prove that dithering before quantization can easily break banding, we

have to prove that E[f yj (syji)] = f yj (syji)

Let us denote the rounded value after quantization as

qyji =

⌊
syji + 0.5∆

∆

⌋
Therefore, the truncated value (residual) is

αyji =
syji + 0.5∆

∆
−

⌊
syji + 0.5∆

∆

⌋

Let us further define βyji = 1− αyji
7 https://kws.smpte.org/kws/public/projects/project/details?project id=161
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The noise CDF is P (·). The CDF for noise smaller thanβyji is P (βyji).

Having noise smaller than βyji will be quantized to qyji. The CDF for noise

larger than βyji is 1−P (βyji). Having noise larger than βyji will be quantized to

qyji + 1.

E[syji] = E[∆ ·
⌊
syji+n

y
ji+0.5∆

∆

⌋
]

= ∆ ·
∫∞
−∞

⌊
syji+n

y
ji+0.5∆

∆

⌋
· dnyji

= ∆ · (
∫ βyji
−∞ q

y
ji · dn

y
ji +

∫∞
βyji

(qyji + 1) · dnyji)
= ∆ · (qyji · P (βyji) + (qyji + 1) · (1− P (βyji))
= ∆ · (qyji + 1− P (βyji))

If P (·) is uniform between [-0.5 0.5], then we can get back to original signal,

i.e., E[syji] = syji

Then,

E[f yj (syji)] = f yj (syji)

We will now extend the above proof to deduce that dithering using local zero-

mean noise like simple Gaussian noise cannot break the banding. In the com-

puting environment we are considering, the most effective noise injection can

be during inverse tone mapping. Thus, the input, X to the inverse tone map-

ping function is X = ∆ ·
⌊
syji+0.5∆

∆

⌋
The output from the inverse tone mapping function is f yj (X)

So, the expected value of the inverse tone mapping function is E[f yj (X)] =

f yj (∆ ·
⌊
syji+0.5∆

∆

⌋
) since the signal and noise are independent, and noise is

zero-mean. Adding noise will not affect the quantized results. Thus, we know

having a local zero-mean noise cannot mask the banding artifact. Even if

we add Multimodal Random Number Dithering noise, which is still a local

zero-mean noise, the banding artifact cannot be removed.

5.2 Proposed Method

Our proposed method considers different regions of the BLUT which are mu-

tually exclusive. An example of BLUT is shown in Fig. 5.3a, where the

horizontal axis has SDR code-words and the vertical axis has the normalized

EDR code-words.
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(a) (b)

Figure 5.3: (a) BLUT for Y channel from a sunset scene b) Extraction of
square block of circular pattern noise

We refer to SDR intensities lesser than Y0 as ‘lower flat region’ and greater

than or equal to Y1 as ‘upper flat region’. Experiments showed that the small-

est SDR intensity, whose corresponding normalized EDR intensity greater

than the ‘0.625’ can be treated as the starting intensity for highlight re-

gion. For example, for 4000 nits display, this EDR intensity would be 3000

nits. Let the corresponding SDR intensity be denoted by ‘Yh’. Let all indi-

vidual SDR intensities be denoted by t and the set of all SDR intensities

be denoted by T = {t0, t1, t2, . . . , t1023}. Let the ‘lower flat region’,

BLUTDown = {t < Y0}. Let the ‘low-lights & mid-tones region’, BLUTMid =

{Y0 ≤ t < Yh}. Let the ‘highlights region before reaching the upper flat re-

gion’, BLUTHigh = {Yh ≤ t < Y1}. Let the ‘upper flat region’,BLUTUp =

{t ≥ Y1}. Thus, we partition the BLUT into 4 separate regions: T =

{BLUTDown
⋃
BLUTMid

⋃
BLUTHigh

⋃
BLUTUp}

5.2.1 Markov Gaussian Noise

The most straightforward dithering method is adding simple Gaussian noise

to images. Our experiments showed that, increasing the mean and standard

deviation of the Gaussian distribution perceptually masks banding artefacts,

but makes the image progressively noisier. If we add global non-zero mean

noise to the image, the image may appear to be darker or brighter depending
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Figure 5.4: Two-state Markov-Gaussian Noise generator

on whether the mean is negative or positive, respectively. On the other hand,

if we add local zero-mean noise, it cannot break the banding artefacts. So,

in the proposed method we create noise patterns which have a global zero

mean property, although locally the noise pattern has non-zero means to break

banding. Using Markov chain to build state transition, where each state has

non-zero mean noise can help to achieve this local non-zero mean goal.

As shown in Fig. 5.4, while applying the Markov Gaussian model of noise

generation to each pixel, we need to know that pixel’s previous state. Based

on that, with an intra-state probability p, we can stay in the same state, or

with an inter-state probability 1-p to move to another state. In each state, we

generate different Gaussian noise with different parameters (non-zero-mean).

Consider a two-state Markov chain, where each state has intra-state tran-

sition probability p and inter-state 1-p. In each state, s, we can generate a

Gaussian noise with mean µs, variance σs, i.e. (µ0, σ0) for state 0 and (µ1, σ1)

for state 1. We use the value µ0 = 2, σ0 = 1, µ1 = −2, σ1 = 1 in our imple-

mentation, as these values gave the best results based on our experiments.

As we can see by comparing the patterns in Fig. 5.5, higher intra-state

transition probability can generate longer texture which, according to our

experimental observations, has better ability to destroy the banding artefact,

but at the same time makes the image noisier.
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Figure 5.5: Two-state Markov Gaussian Noise with intra-state transition prob-
abilities 0.6 (top-left), 0.7 (top-right), 0.8 (bottom-left), and 0.9 (bottom-right)

5.2.2 Enhancement of Markov Gaussian Noise

Orientation of Noise Stripes

A limitation of the 2-state Markov Gaussian noise is that it can generate noise

patterns (stripes) in only two fixed directions: horizontal and vertical. But, it

was observed experimentally that this looks unnatural, and the effectiveness of

de-banding also depends on the angle at which the stripes meet the simulated

contours. So, we proceed to make the noise pattern curved instead of straight,

in order to ensure that it meets the contours at all possible orientations (angles)

and also blends with the image content, thus looking more natural. To generate

curved patterns using the 2-state Markov Gaussian noise generator, we first

create concentric circles of decreasing radius R, (R-1), (R-2) . . . (R-Nm),

where Nm is an integer lesser than R. In our implementation, we use Nm =

(R-1). Since the value of each pixel on the circumference of each circle will

map to a corresponding noise value output by the 2-state Markov Gaussian

noise generator, we determine in Eq. 5.1 the length, ‘L’ of the sequence which

the noise generator should generate to construct a Ab×Ab square noise block.
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L = 2π
Nm∑
v=0

((
Ab√

2
)− v) (5.1)

Typical value of R = 200/
√

2 ∼ 142 (we use square blocks of each side

length, Ab = 200). This metric is illustrated in Fig. 5.3b. Radius of the

biggest circle is R. Its diameter is 2*R, which is also the length of each side of

the larger square. The length of each side of the smaller square is Ab, which is

ultimately extracted as a square block of circular noise pattern. To be more

specific, to create the circle of radius R, per the properties of a circle inscribed

inside a square, we need to inscribe it in a square matrix whose length of each

side = 2*R. The magnitude of the greatest radius, R is also related to the

desired size of the noise block. Specifically, it can be shown from the geometric

properties of a square inscribed in a circle that, if the length of each side of

the square (block) is ‘Ab’ then the radius of the biggest circle is (R=Ab/
√

2)

and its circumference, C = 2π * (Ab/
√

2). Following this approach, for each

circle, starting with the point on its circumference subtending the least angle

θ (counter-clockwise) w.r.t the horizontal axis, we copy the output of the noise

generator to that pixel. Similarly, for the next pixel on the circumference in

increasing order of θ, we copy the next output of noise generator, and so on.

Fig. 5.6a shows an example of circular noise pattern. Although Fig. 5.6 uses

one particular value of transition probability (0.815), the proposed method

actually adaptively determines this value based on BLUT slope. Thus, this

value is dictated by the BLUT of the current image.

To generate a curved pattern from a circular pattern, we first need to

partition the square block of circular noise into four equal-sized quadrants or

sub-blocks. We treat each quadrant as an independent image and choose a

set of points as the sites for performing Voronoi tessellation for generating the

irregular sized patches (Voronoi cells). A Voronoi diagram (Fig. 5.7) is a par-

titioning of a plane into regions based on distance to points in a specific subset

of the plane. That set of points (called seeds, sites, or generators) is specified

beforehand, and for each seed there is a corresponding region consisting of all

points closer to that seed than to any other. These regions are called Voronoi
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(a)

(b)

Figure 5.6: Convert (a) Circular to (b) Curved Markov-Gaussian Noise; Block
size = 200× 200; Trans. Prob. = 0.815
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Figure 5.7: Voronoi Tessellation of arbitrary matrix; adjacent cells: shown in
different colors; sites (*): red

cells. Of course, in the finite sense, the plane represents a matrix, and the sites

represent discrete locations inside the matrix, as shown in the diagram below.

Here the sites are marked in red asterisks and the adjacent Voronoi cells are

shown in as different colors as possible just for ease of visualization.

In our proposed method, while generating the curved noise pattern from

the circular pattern, we cannot simply divide each quadrant into identical sized

square- or rectangular-shaped patches to replace them with each other, as this

would result in blocky artifacts in the noise matrix, as observed in our exper-

iments. To overcome this issue, we need to use Voronoi Tessellation to create

irregular-shaped blocks (Voronoi cells) and replace them with each other. The

number of cells is determined by the number of sites, and for our case, we

made it proportional to the size of the image. The location of the sites must

be random for each frame, so that the noise pattern does not remain fixed for

all frames. Experiments showed that a fixed noise pattern with changing frame

contents (video) looks unnatural. The shape of the cells is determined by the

distance metric used. Experimental results showed that the city-block distance

metric gave the best results. The process of tessellation is deterministic, i.e.,

for the same number and location of sites and same distance metric, the output

of tessellation will not change. This is why we apply identical tessellation to

each quadrant of the circular noise block, so that the resultant patches (cells)

have one-to-one correspondence with each other across quadrants. Specifically,

84



we select the same set of points for each quadrant. Since Voronoi tessellation is

a deterministic process, we now have one-to-one correspondence between the

cells in all quadrants with respect to their shapes and sizes. Now, for each cell

of each quadrant, we replace its contents with those of any randomly selected

cell from its corresponding set of four co-located cells across all quadrants.

We then integrate the quadrants to get the curved pattern block shown in Fig

5.6b. We generate such blocks and concatenate them to get the noise matrix

which is added to the quantized image. Experiments showed that a block size

of 200× 200 gave good results. If we would have simply concatenated blocks

of circular (not curved) pattern to create the noise matrix, then the dithered

image would have had an impression of the patterns of circles and looked ugly,

as seen from our experiments. Our experiments also showed that even if we

concatenate different sized blocks of circular patterns of different transition

probabilities, or even irregular shaped blocks (using tessellation), we can still

sometimes see impressions of long circular arcs on the dithered image, if we

observe closely on the EDR display. This was the basic motivation behind

making the noise stripes curved, like short arcs of a circle. Typical number

of sites (Ns) is 300. Generating a block of circular noise offline takes 11.79

seconds, and converting that block to curved noise real-time, with randomly

initialized site locations for each image, only takes 0.11 seconds. Randomness

ensures that the noise pattern changes naturally across video frames. The se-

rial execution time per frame is 4.36 seconds on Matlab running on a Windows

10, AMD 4.2 MHz, 16 GB RAM PC.

Noise Variance and Transition Probability

The transition probability of the 2-state Markov Chain may become a bottle-

neck in determining the effectiveness of de-banding; a higher transition prob-

ability will do a better de-banding, but make the image noisier. Similarly, we

can increase the variance of the noise to get rid of more banding, but making

the image noisier. We alter the noise variance as

D = Q+ s ·Np (5.2)
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where ‘s ’ is the noise variance and Np is the matrix containing the generated

noise pattern. Q is the image after quantization and has banding artefacts.

We add noise to Q to produce the dithered image D, to reduce banding. In the

following, we label the type of texture generated from the transition probability

function as pattern of the noise. To reduce computation, we store in memory

noise patterns having transition probabilities

PT = {0.545 + k * 0.045} where k = [0, 1, 2 . . . 9].

An effective way to compute the transitional probability for any given

intensity is to use the slope of the Backward Look-Up Table (BLUT) at that

intensity as an indication of the degree of banding likely to be present for that

intensity. The noise pattern for all pixels having that intensity will be selected

according to this slope, fetched from memory, and added to those pixels. The

fine granularity of probabilities in PT ensures that the aggregated noise pattern

applied finally to the entire quantized image does not have abrupt variations

in spatially adjacent regions. The rationale behind this assumption is that,

wherever the BLUT has a steep slope, adjacent SDR intensities are mapped

to EDR intensities which are far apart from each other, and thus, more prone

to introduce banding artefacts in the backward reshaped (EDR) image. Thus,

wherever the banding is more noticeable, we need to use more structured noise

for de-banding, i.e., higher intra-state transition probability noise.

Computing the BLUT slope at individual intensities is neither efficient nor

effective; hence we calculate the slope over a range of intensities. Experiments

showed that the best results were obtained when this range is eight consecutive

SDR intensities, as well as when different operations (noise variance, noise

patterns) are applied in each BLUT range. We elaborate this BLUT slope

computation as follows:

Let us denote EDR intensity corresponding to SDR intensity t as Et =

BLUT (t). To calculate the slope, Zt at SDR intensity t, we first select every

8th SDR intensity starting from 0. Let this set of intensities be denoted by W

= { t0, t7, t15, . . . , t1023 }. Next, we get the EDR intensities corresponding

to these SDR intensities as EW = { Et0, Et7, Et15, . . . , Et1023 }. The slope,

Zt at SDR intensity t is computed following the below steps:
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1. For each SDR intensity t ∈ T, find the biggest tp ∈ W
and smallest tn ∈ W such that {tp ≤ t ≤ tn}
2. Zt = | Etn – Etp | // absolute difference

Even though slope = rise
run

, we do not divide Zt (rise) by tn-tp (run), because

the difference of tn and tp will always be 8.

Based on slope of BLUT, we define the transition probability determination

factor Gt at SDR intensity t as follows:

Gt = log2 (1 + t1023 ∗ Zt) (5.3)

Since the Zt value is a fraction, we multiply it with the highest SDR in-

tensity and add 1 to the result to ensure that the input to the logarithm is

non-negative. The logarithm itself ensures that Gt does not increase abruptly

when the BLUT rises steeply, otherwise there may be big variations in noise

pattern between adjacent image regions. In Eq. 5.3, if Zt = 0 then Gt = 0, its

minimum possible value. Thus, flat regions of BLUT still have noise, but with

minimum transition probability. We cannot put zero noise in those regions, as

that may create stark contrast with the surrounding regions having noise, and

thus make the image look unnatural. Finally, the transition probability index

popt to be used for intensity t is determined as shown in Eq. 5.4.

popt = arg max{Gt > p · PL} ∀t ∈ BLUTMid

= arg max{Gt > p · PH} ∀t ∈ BLUTHigh
(5.4)

where PL = 1 and PH = 3 ensure that we favor lower transition probabilities

for the highlight region. This is because we want to make the highlight region

less noisy, as experiments proved that noise in the highlights is more easily

visible. Also, we use the horizontal pattern (Fig. 5.5) in BLUTHigh and

BLUTUp due to its lesser visibility (than curved pattern) in high intensities.

We use a fixed minimum value of variance for the flat regions SLumamin ,SChromamin

and constant variance SLumaC ,SChromaC for BLUTMid. In BLUTHigh, variance

falls from SC to Smin per Eq. 5.5.
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Table 5.1: BLUT-Aware Variance and Noise Pattern

Range Luma Noise Injection Chroma Noise Injection
BLUTDown Variance = SLumamin = 2

Curved Noise Pattern
Trans. Prob. = PT [0]

Variance = SChromamin = 1
Curved Noise Pattern
Trans. Prob. = PT [5]

BLUTMid Variance = SLumaC = 5
Curved Noise Pattern
Transition Probability de-
pends on BLUT slope

Variance =SChromaC = 2.5
Curved Noise Pattern
Trans. Prob. = PT [5]

BLUTHigh Variance deceases gradually
from 5 to 2
Horizontal Noise Pattern
Transition Probability de-
pends on BLUT slope

Variance is modulated by
luma, and variance deceases
gradually from 2.5 to 1
Horizontal Noise Pattern
Trans. Prob. = PT [5]

BLUTUp Variance = SLumamin = 2
Horizontal Noise Pattern
Trans. Prob. = PT [0]

Variance = SChromamin = 1
Horizontal Noise Pattern
Trans. Prob. = PT [5]

sLumat = S
Luma
C

(
SLumamin

SLumaC

) (t−Yh)
(Y1−Yh)

sChromat = S
Chroma
C

(
SChromamin

SChromaC

) (t−Yh)
(Y1−Yh)

(5.5)

where st is noise variance at intensity t for t ∈ BLUTHigh. Both luma

and chroma noise variance are decreased from C to min over the same range

BLUTHigh for any frame. So, chroma noise variance is modulated by luma.

The constants SC and Smin were obtained experimentally. Table 5.1 summa-

rizes these points. It may be noted that we use lower variance in chroma

channel to inject less noise, as we observed much less banding in chroma.

Thus, from the above discussion and Table 5.1, we can infer that both the

noise variance and transition probability are bounded, and neither of them are

linear over the entire BLUT range.
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5.3 Results and Discussion

5.3.1 Dataset

In order to understand the impact of banding, and the factors affecting the

design and testing of our proposed method, we observed on a 4000 nits EDR

display, Y, Cb, and Cr channels of all frames extracted from five sequences

created at Dolby Vision research lab. We classified the banding into nine cate-

gories, based on the following criteria: (a) Degree of banding (weak, moderate,

strong), and (b) Luma intensity at which banding is present (dark regions,

mid-tones, highlights). Accordingly, we selected 20 scenes from those five se-

quences. Each scene is composed of six consecutive frames. Thus, our dataset

has 120 frames from different categories.

5.3.2 Quality of Dithered Images

We verified by running the proposed method on our dataset, that the noise

pattern and variance change smoothly across successive frames, which is im-

portant in order to deliver videos in good visual quality, and that there are

no detrimental side-effects of proposed dithering method on image quality. It

should be noted that comparing the output of proposed method to other de-

banding methods which use pixel neighborhood information or sparse / dense

filters instead of dithering would be unfair because of their inapplicability to

our use cases (GPUs, mobile devices) as briefly mentioned earlier, because sim-

ple pixel-based operations and low resource requirements are essential for our

use cases. Also, comparisons to other inverse tone mapping methods would be

pointless as inverse tone mapping is not the aim of our proposed method.

5.3.3 Subjective Testing

Subjective testing was conducted on 12 subjects with computing science and

engineering backgrounds. Pairs of images were shown on the 4000 nits EDR

display and subjects were asked to compare the images and choose their pre-

ferred image using the Google Form on their smart phones, with the lights off

in the room. The questionnaire is shown in Fig. 5.8.
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Figure 5.8: Google Forms Questionnaire for Subjective Tests
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Table 5.2: Image pair displayed randomly to subjects

Test-ID ImageA ImageB
Test-1 Simple Gaussian Noise Proposed Adaptive Method

Noise
Test-2 Proposed Adaptive Method

Noise
Non-adaptive Method Noise
(curved)

Test-3 Low-Pass Filtered Gaussian
Noise

Proposed Adaptive Method
Noise

The questionnaire asks the subject which of the two images is preferred,

or has no preference. In the former case, the subject is asked whether the

preferred image is slightly better or much better than the other, and (option-

ally) whether the preferred image has lesser banding and/or lesser noise than

the other one, so that later, we could account for human errors during the

rating by the subjects. Initially, the subjects were trained by showing sample

images with different degrees of banding in different intensity ranges, to make

them familiar with the criteria for their opinion. For each of the three actual

tests, five image pairs were shown in different order in each test, per Table 5.2,

though these details were not revealed to subjects during subjective testing to

avoid biasedness. It should be noted that, although we refer to our proposed

method as ‘adaptive’, it simply means BLUT-slope modulated dithering, and

not usage of neighborhood information at run-time like traditional adaptive

dithering methods mentioned earlier. The non-adaptive version of our pro-

posed method uses the curved noise for all intensities of luma and chroma,

with fixed noise variance and fixed transition probability.

The subjective opinion scores were assigned these values:

1. If a method is preferred by the subject as “much better than the other

method” then it gets a score of +2

2. If a method is preferred by the subject as “slightly better than the other

method” then it gets a score of +1

3. In case of “NO preference”, both methods get a score of 0

The test results in terms of DMOS are shown in Table 5.3. Positive DMOS

values and confidence interval plots at significance level α = 0.05 shown in
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Table 5.3: DMOS scores from Subjective Test results

Test-ID Differential Mean Opinion Scores (DMOS)
Test-1 1.066666667
Test-2 0.7166666667
Test-3 1.033333333

Fig. 5.9 indicate that proposed adaptive method outperformed other methods,

namely, dithering using simple Gaussian, non-adaptive method (curved noise)

and low-pass filtered Gaussian noise.

5.4 Conclusion

In this work, we proposed a method for pixel-based, adaptive dithering, mod-

ulated by slope of the inverse tone mapping function. Our goal is to work

in a resource constrained and time efficient environment, so we did not use

neighborhood information during run-time. Our method achieves significantly

better de-banding compared to simple Gaussian noise with and without low-

pass filter, as well as the non-adaptive version of proposed method. Better

results can potentially be obtained by dense- and sparse-filter based methods,

or dithering methods which utilize spatial location information of pixels at run

time. But these methods are more computationally resource intensive.

Our research also opens up new directions in investigating whether noise

pattern should be different in image regions of higher luma intensity and color

saturation, as opposed to regions of neutral color. This may involve fine-tuning

variance of BLUT-modulated noise, based on color saturation. Lastly, since

we separate the (offline) noise pattern generation and (online) noise injection

modules in our proposed method design, we thus pave the way for future re-

searchers to use our noise patterns in conjunction with their own noise injection

schemes, thereby potentially opening up new avenues of research.
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(a) Test-1 confidence interval plot

(b) Test-2 confidence interval plot

(c) Test-3 confidence interval plot

Figure 5.9: Confidence interval plots at significance level α = 0.05 showing
superior performance of proposed adaptive method.
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Chapter 6

Conclusion and Future Work

In this thesis, we explored image abnormality detection/restoration scenarios

involving different sensor modalities, where existing methods were insufficient

to address the computational and signal processing challenges involved due

to scalability requirements or availability of limited contextual information.

Here we suggest potential future directions which interested researchers can

continue to explore in these fields.

In WMI detection from preterm brain MRIs, we addressed the lack of reli-

able atlases using heuristics and more generic assumptions about human brain

structure, and developed a segmentation-free method which also drastically

reduces computation. The future directions of research would involve explor-

ing more clinical investigations into the correlations between WMI and patient

information like demographic factors, and how those could be incorporated to

improve the WMI detection process.

In InSAR phase filtering and coherence estimation for WAM, we showed

the promise of CNN-based unsupervised learning solutions to address the lack

of clean training data, which naturally lend to parallelism using GPUs, thus

addressing the data volume concerns of WAM. We also showed how CNN-based

generative modelling can not only improve over existing methods, but also

has auxiliary benefits like helping in data augmentation for machine learning

InSAR applications. The future direction involves improving the coherence

estimation of our proposed GenInSAR method to better handle those practical

scenarios where the the input data does not lie on the unit circle.
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As an aside from the purely CNN-based InSAR filtering described in this

thesis, we briefly explored the possibility of using GPU implementations of

traditional denoising algorithms in conjunction with CNN-based methods for

tuning the former’s parameters based on the input image [87]. This approach

combines the explain-ability of traditional computer vision based denoising

methods with the data-driven processing of CNNs. It might be interesting

to develop and extend this type of approach to InSAR images and compare

performance. Similarly, it might be interesting to develop a coherence classifi-

cation method based on GenInSAR and compare its performance with that of

the CNN-InSAR-based one [88] we briefly worked upon as auxiliary research.

In dithering-based debanding suitable for mobile GPUs, we addressed the

lack of neighborhood information, lack of access to the original (un-quantized)

image and computational constraints of a mobile environment by designing

a pixel-based solution to debanding based on novel noise pattern generation

and efficient noise injection based on the intensity profile of the image and the

slope of the iTMO. Future directions of research could involve investigations

into whether noise pattern should be different in image regions of higher luma

intensity and color saturation, as opposed to regions of neutral color. This

may involve fine-tuning variance of BLUT-modulated noise, based on color

saturation. Lastly, we separate (offline) noise pattern generation from (online)

noise injection based on simple pixel operations in our proposed method design.

This not only makes the proposed solution efficient and feasible to implement

on a mobile environment, but also paves the way for future researchers to

use our noise patterns in conjunction with their own noise injection schemes,

thereby potentially opening up new avenues of research.
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based clustering for brain tumor segmentation of t1w MRI images,”
Computer Methods and Programs in Biomedicine, vol. 140, pp. 19–28,
Mar. 2017.

[64] K. Keraudren, M. Kuklisova-Murgasova, V. Kyriakopoulou, C. Mala-
mateniou, M. Rutherford, B. Kainz, J. Hajnal, and D. Rueckert, “Au-
tomated fetal brain segmentation from 2d MRI slices for motion cor-
rection,” NeuroImage, vol. 101, pp. 633–643, Nov. 2014.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097–
1105.

[67] P. Kuo, C. Tang, and S. Chien, “Content-adaptive inverse tone map-
ping,” in 2012 Visual Communications and Image Processing, Nov.
2012, pp. 1–6.

[68] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, issn: 1558-2256.

[69] J. W. Lee, B. R. Lim, R.-H. Park, J.-S. Kim, and W. Ahn, “Two-stage
false contour detection using directional contrast and its application
to adaptive false contour reduction,” IEEE Transactions on Consumer
Electronics, vol. 52, no. 1, pp. 179–188, Feb. 2006, issn: 0098-3063.

101



[70] J.-S. Lee, K. P. Papathanassiou, T. L. Ainsworth, M. R. Grunes, and
A. Reigber, “A new technique for noise filtering of sar interferometric
phase images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 36, no. 5, pp. 1456–1465, Sep. 1998, issn: 0196-2892.

[71] K. V. Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P.
Suetens, “Automated segmentation of multiple sclerosis lesions by model
outlier detection,” IEEE Transactions on Medical Imaging, vol. 20,
no. 8, pp. 677–688, Aug. 2001, issn: 0278-0062.

[72] H. Li, A. Yezzi, and L. D. Cohen, “Computer vision for biomedi-
cal image applications: First international workshop, cvbia 2005, bei-
jing, china, october 21, 2005. proceedings,” in, Y. Liu, T. Jiang, and
C. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
ch. Fast 3D Brain Segmentation Using Dual-Front Active Contours
with Optional User-Interaction, pp. 335–345, isbn: 978-3-540-32125-5.

[73] X. Lin and D. Niu, “Experiments of interferometric phase filtering
through weighted nuclear norm minimization,” in Proceedings of the
2nd International Conference on Big Data Technologies, ser. ICBDT2019,
Jinan, China: ACM, 2019, pp. 278–282, isbn: 978-1-4503-7192-6.

[74] H.-T. Liu, T. Sheu, and H.-H. Chang, “Automatic segmentation of
brain MR images using an adaptive balloon snake model with fuzzy
classification,” Medical & Biological Engineering & Computing, vol. 51,
no. 10, pp. 1091–1104, 2013, issn: 0140-0118.

[75] C. Lopez-Martinez and X. Fabregas, “Modeling and reduction of sar
interferometric phase noise in the wavelet domain,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 40, no. 12, pp. 2553–2566, Dec.
2002, issn: 0196-2892.

[76] R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “A perceptual framework
for contrast processing of high dynamic range images,” ACM Trans.
Appl. Percept., vol. 3, no. 3, pp. 286–308, Jul. 2006, issn: 1544-3558.

[77] S. T. M. Marba, J. P. S. Caldas, L. E. F. Vinagre, and M. A. Pessoto,
“Incidence of periventricular/intraventricular hemorrhage in very low
birth weight infants: A 15-year cohort study,” pt, Jornal de Pediatria,
vol. 87, pp. 505–511, Dec. 2011, issn: 0021-7557.

[78] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline
stereo from maximally stable extremal regions,” in Proc. BMVC, 2002,
pp. 36.1–36.10, isbn: 1-901725-19-7.

[79] H. Matre, “A review of image quality assessment methods with appli-
cation to computational photography,” in MIPPR 2015: Multispectral
Image Acquisition, Processing, and Analysis, Z. Cao, J. K. Udupa, and
H. Matre, Eds., SPIE, Dec. 2015.

102



[80] U. Maulik, “Medical image segmentation using genetic algorithms,”
IEEE Transactions on Information Technology in Biomedicine, vol. 13,
no. 2, pp. 166–173, Mar. 2009, issn: 1089-7771.

[81] A. Mekhmoukh and K. Mokrani, “Improved fuzzy c-means based par-
ticle swarm optimization (PSO) initialization and outlier rejection with
level set methods for MR brain image segmentation,” Computer Meth-
ods and Programs in Biomedicine, vol. 122, no. 2, pp. 266–281, Nov.
2015.

[82] N. Merkle, W. Luo, S. Auer, R. Müller, and R. Urtasun, “Exploiting
deep matching and sar data for the geo-localization accuracy improve-
ment of optical satellite images,” Remote Sensing, vol. 9, no. 6, 2017,
issn: 2072-4292.

[83] A. Mestre-Quereda, J. M. Lopez-Sanchez, J. Selva, and P. J. Gonzalez,
“An improved phase filter for differential sar interferometry based on
an iterative method,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 56, no. 8, pp. 4477–4491, Aug. 2018, issn: 1558-0644.

[84] S. Miller, M. Nezamabadi, and S. Daly, “Perceptual signal coding for
more efficient usage of bit codes,” in The 2012 Annual Technical Con-
ference Exhibition, Oct. 2012, pp. 1–9.

[85] S. P. Miller, D. M. Ferriero, C. Leonard, R. Piecuch, D. V. Glidden, J. C.
Partridge, M. Perez, P. Mukherjee, D. B. Vigneron, and A. J. Barkovich,
“Early brain injury in premature newborns detected with magnetic
resonance imaging is associated with adverse early neurodevelopmental
outcome,” The Journal of Pediatrics, vol. 147, no. 5, pp. 609–616, Nov.
2005.

[86] J. C. Moreno, V. S. Prasath, H. Proença, and K. Palaniappan, “Fast
and globally convex multiphase active contours for brain MRI segmen-
tation,” Computer Vision and Image Understanding, vol. 125, pp. 237–
250, Aug. 2014.

[87] S. Mukherjee, N. K. Kottayil, X. Sun, and I. Cheng, “Cnn-based real-
time parameter tuning for optimizing denoising filter performance,”
in Image Analysis and Recognition, F. Karray, A. Campilho, and A.
Yu, Eds., Cham: Springer International Publishing, 2019, pp. 112–125,
isbn: 978-3-030-27202-9.

[88] S. Mukherjee, A. Zimmer, X. Sun, P. Ghuman, and I. Cheng, “Cnn-
based insar coherence classification,” in 2018 IEEE SENSORS, Oct.
2018, pp. 1–4.

[89] A. N. Netravali and B. G. Haskell, Digital Pictures. Springer US, 1988.

[90] T. Q. Nguyen, J. Kay, and J. Pasquale, “Fast source-based dithering
for networked digital video,” in High-Speed Networking and Multimedia
Computing, A. A. Rodriguez, M.-S. Chen, and J. Maitan, Eds., SPIE,
Apr. 1994.

103



[91] D. Nistér and H. Stewénius, “Linear time maximally stable extremal
regions,” English, in Computer Vision – ECCV 2008, ser. Lecture Notes
in Computer Science, D. Forsyth, P. Torr, and A. Zisserman, Eds.,
vol. 5303, Springer Berlin Heidelberg, 2008, pp. 183–196, isbn: 978-3-
540-88685-3.

[92] C. Ojha, A. Fusco, and I. M. Pinto, “Interferometric sar phase denoising
using proximity-based k-svd technique,” Sensors, vol. 19, no. 12, 2019,
issn: 1424-8220.

[93] A. Ortiz, J. Gorriz, J. Ramirez, and D. Salas-Gonzalez, “Improving
MR brain image segmentation using self-organising maps and entropy-
gradient clustering,” Information Sciences, vol. 262, pp. 117–136, 2014,
issn: 0020-0255.

[94] N. Ostu, “A threshold selection method from gray-level histograms,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 9, no. 1,
pp. 62–66, Jan. 1979, issn: 0018-9472.

[95] X. Ou, C. Glasier, R. Ramakrishnaiah, S. Mulkey, Z. Ding, T. Angtu-
aco, A. Andres, and J. Kaiser, “Impaired white matter development in
extremely low-birth-weight infants with previous brain hemorrhage,”
American Journal of Neuroradiology, vol. 35, no. 10, pp. 1983–1989,
May 2014.

[96] A. Pepe, Y. Yang, M. Manzo, and R. Lanari, “Improved emcf-sbas
processing chain based on advanced techniques for the noise-filtering
and selection of small baseline multi-look dinsar interferograms,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 8, pp. 4394–
4417, Aug. 2015, issn: 1558-0644.

[97] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic
diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7,
pp. 629–639, Jul. 1990, issn: 0162-8828.

[98] X. Qian, J. Wang, S. Guo, and Q. Li, “An active contour model for
medical image segmentation with application to brain CT image,” Med.
Phys., vol. 40, no. 2, p. 021 911, Feb. 2013.

[99] X. Qing, J. Guowang, Z. Caiying, W. Zhengde, H. Yu, and Y. Peizhang,
“The filtering and phase unwrapping of interferogram,” in Proceedings
of International Society for Photogrammetry and Remote Sensing (IS-
PRS), Volume XXXV, Technical Commission V1/Working Group 4,
Istanbul, Turkey, 2004.

[100] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and
K. Myszkowski, High Dynamic Range Imaging (2nd Edition). Elsevier,
2010.

104



[101] A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich,
L. Whitehead, and G. Ward, “Ldr2hdr: On-the-fly reverse tone map-
ping of legacy video and photographs,” in In SIGGRAPH ’07: ACM
SIGGRAPH 2007 papers, ACM Press, 2007.

[102] T. Reza, A. Zimmer, J. M. D. Blasco, P. Ghuman, T. K. Aasawat, and
M. Ripeanu, “Accelerating persistent scatterer pixel selection for insar
processing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 1, pp. 16–30, 2018.

[103] L. Roberts, “Picture coding using pseudo-random noise,” IRE Trans-
actions on Information Theory, vol. 8, no. 2, pp. 145–154, Feb. 1962,
issn: 0096-1000.

[104] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, no. 4, pp. 471–494, Oct. 1966, issn: 0004-
5411.

[105] E. Roura, A. Oliver, M. Cabezas, J. C. Vilanova, À. Rovira, L. Ramió-
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