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Abstract

The Witness is a game with difficult combinatorial puzzles that are challeng-

ing for both human players and artificial intelligence based solvers. Indeed,

the number of candidate solution paths to the largest puzzle considered in

this thesis is on the order of 1015 and search-based solvers can require large

amounts of time and memory to solve such puzzles. We accelerate search by

automatically learning human-explainable predicates that predict whether a

partial path to a Witness-type puzzle is not completable to a solution path.

We prove a key property of one of the learned predicates which allows us to

use it for pruning successor states in search. Our method accelerates search

by an average of six times while maintaining completeness of the underlying

search. We also explain how our predicate speeds up search on a specific puz-

zle instance by over 1,000 times. Conversely given a fixed search time budget

per puzzle our predicate-accelerated search can solve more puzzle instances of

larger sizes than the baseline search. We also empirically compare the perfor-

mance of our learned predicate to two popular competitors, weighted A* and

Levin tree search with neural networks, and show that our learned predicate

outperforms both of them in terms of how much they speed up a baseline.
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Preface

Parts of the work presented in this thesis are also described in a technical

report (Stevens, Bulitko, and Thue 2023) and was co-authored with my super-

visor, Professor Vadim Bulitko, and Professor David Thue of Carleton Univer-

sity. For the technical report, I wrote all of the code, ran all of the experiments,

and was the lead author of the report. Vadim had the initial idea of applying

inductive logic programming, provided weekly guidance, and re-wrote and pro-

vided many edits to the report. David helped discuss the report on a weekly

basis, also re-wrote and provided edits to the report, and had the initial idea

for the proof of Theorem 4.

To reflect the collaborative nature of the work, I use the word ‘we’ through-

out the thesis. For each chapter of the thesis, I will describe its content adapted

from the report as well as my new post-report content:

� I modified Chapter 1 from the introduction section of the report to reflect

the additional results of weighted A* and Levin tree search in this thesis.

� I modified Chapter 2 from the problem formulation section of the report

extensively with the discussion of the theorems, proofs, pruning, and

search trees.

� I modified Chapter 3 from the related work section of the report with new

discussion around procedural content generation, SAT solvers, planning,

and another logical reasoning system.

� I expanded Chapter 4 from the proposed approach of the report. In

particular, in Section 4.2 all of the discussion of using inductive logic
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programming for the specific puzzle instance including the background

knowledge and positive/negative examples are novel.

� I expanded Chapter 5 from the empirical evaluation from the report.

Sections 5.1-5.4, 5.6, and 5.9 are all adapted from the report. I added

the results on sorting (Section 5.5), weighted A* (Section 5.7), Levin tree

search with neural networks (Section 5.8), and an explanation of local

constraint checking in Section 5.9.

� I expanded Chapter 6 from the open questions and future work in the

report. I added new discussion around decision trees and portfolio plan-

ning with a specific example of a puzzle instance it could be useful on.

� I expanded Chapter 7 of the conclusions from the report to discuss the

new results with sorting, weighted A*, and Levin tree search with neural

networks.

� I adapted Appendix D from the empirical evaluation of the report. The

other appendices are all novel to this thesis.
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Dedicated to the memory of my sister, Cassie Stevens. Cassie deeply loved

animals and cared about environmental issues. She is dearly missed and

through this tribute I hope for her memory to live on.
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Chapter 1

Introduction

The Witness is a well known game with challenging combinatorial puz-

zles (Thekla, Inc. 2016). Solving its puzzles automatically with artificial in-

telligence (AI) can be useful both to players and to puzzle designers. Indeed

both players and puzzle designers can use such an AI puzzle solver to see a

solution to a particularly challenging puzzle instance. Designers can also use

the AI solver in concert with a procedural puzzle generator to generate puzzles

with desired solution qualities (De Kegel and Haahr 2019).

Various search techniques can be applied to Witness puzzles. For instance,

in the triangle Witness-type puzzles that we use for our testbed in this thesis

(Figure 2.1), a complete search can enumerate all possible paths for smaller

puzzles (Sturtevant 2023). However, for puzzles of larger sizes such search

becomes intractable. For instance, for the puzzle size of 8 × 8, the number of

candidate solution paths from the bottom left to the top right corner is on the

order of 1015 (Iwashita, Kawahara, and Minato 2012). Note that arbitrary-

sized, triangle Witness-type puzzles are NP-complete (Abel et al. 2020).

To scale up search to larger instances of Witness puzzles, we automati-

cally learn a predicate (i.e., a binary function) that predicts whether a partial

path considered during search can be completed to a solution path. We use

such a predicate to focus the search on more promising partial paths. We com-

pare the effectiveness of our machine-learned predicate with a human-designed

predicate that implements a simple strategy for pruning partial paths that vi-

olate local constraints. We also compare our machine-learned predicate to two
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other approaches, weighted A* (Pohl 1970) and Levin tree search with neural

networks (Orseau and Lelis 2021).

We automatically learn predicates from training data using an off-the-

shelf Inductive Logic Programming (ILP) system, Popper (Cropper and Morel

2021). The learned predicates are human readable which can shed light on the

puzzle structure and be useful to game designers.

This thesis makes the following contributions. First, we present a method

for machine-learning predicates from triangle Witness-type puzzles. Second,

we demonstrate human explainability of the learned predicate. Third, the

human explainability allows us to prove a key property of the predicate which

in turn enables its use for pruning while maintaining completeness. In other

words, given enough time and memory, our predicate-accelerated search will

solve any triangle Witness-type puzzle that is solvable. Fourth, we empirically

evaluate our approach and present the substantial performance gains over the

baseline on puzzle instances we generated. We show our predicate-accelerated

search also speeds up search more on our testing set than both weighted A*

and Levin tree search with neural networks. We finally show that running

our learning process with less human knowledge causes it to learn the missing

human knowledge.

Finally we make our code and data available upon request to the commu-

nity in the hope of introducing the triangle Witness-type puzzles as a standard

benchmark to the community of Artificial Intelligence and Procedural Content

Generation via Machine Learning (Summerville et al. 2018) game researchers.
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Chapter 2

Problem Formulation

We first formally define the Witness-type triangle puzzle considered in this

thesis. We then describe how heuristic search can be used to solve such puzzle

instances with predicates to accelerate search. Finally, we describe perfor-

mance measures to test efficacy of these predicates.

2.1 The Witness Triangle Puzzle

In the commercial video game, The Witness (Thekla, Inc. 2016), triangle

puzzles are scattered throughout the open world environment for players to

find and solve. They also play a part of the final challenge to players. In this

section, we formally describe the rules of triangle puzzles from the game. Note

that the puzzles considered in this thesis are computer generated.

An m × n Witness-type triangle puzzle instance p = (G,vstart, vgoal,C) is a

single-player combinatorial puzzle using the constraint in the triangle puzzle

from The Witness ; we refer to them henceforth as Witness puzzles.

Witness puzzles are played on a two-dimensional rectangular grid withm×n
squares. Here, G = (V,E) is a graph representing the grid. Each vertex v ∈ V
is a vertex on the grid where each corner of a puzzle square is situated at a

vertex. An m×n puzzle is thus represented by an (m+1)×(n+1) rectangular
grid of vertices and edges. To illustrate: the 1 × 2 puzzle in Figure 2.1 has

one row of two squares. It is represented by a 2 × 3 rectangular grid with two

rows of three vertices each (shown as the blue circles). There are seven edges,

e1, . . . , e7, connecting the six vertices.
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Figure 2.1: A 1 × 2 Witness puzzle. The green dashed line solves the puzzle
since the solution path intersects the left square once and right square twice
which are equal to the number of triangles in their respective squares. The
red dotted line is not a solution to the puzzle.

Each square is delineated by four grid edges and can carry a constraint c ∈ C
which associates that square with a positive number of triangles contained in

that square. A solution to the puzzle is a path on G which (i) connects the

start vertex vstart to the goal vertex vgoal using the edges in E, (ii) never visits

a vertex more than once, and (iii) satisfies all constraints in C. To satisfy a

square’s constraint c ∈ C (i.e., the k > 0 triangles in that square) the path must

include exactly k of that square’s four edges. We say that a path intersects a

square if the path includes at least one of the square’s edges. A square without

triangles imposes no constraints.

To illustrate, the 1 × 2 puzzle in Figure 2.1 has two constraints. The left

square contains a single triangle (k = 1) which means that any solution path

to the puzzle must include exactly one of the square’s edges. The right square

carries two triangles (k = 2) which imposes the constraint of including two of

the square’s edges in any solution path.

The red dotted line connecting the start and goal vertices in Figure 2.1 is

not a solution since it violates both constraints (i.e., includes two edges from

the first square and only one edge from the second square). On the other hand,

the dashed green line is a solution satisfying both constraints. A partial path is

any path in G that starts out in vstart but does not reach vgoal. A partial path
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is incompletable if it is not a prefix of a solution. In Figure 2.1, the partial

path [e3, e6] is incompletable while [e1, e2] is completable. Solution length is

the number of edges in the solution.

2.2 Search for Solving Witness Puzzles

We now describe an A* search algorithm (Hart, Nilsson, and Raphael 1968)

adapted for solving Witness puzzles (Algorithm 1). Let P be the space of all

puzzles and L be the space of all partial paths on the puzzles. We adapt A*

by adding the use of a function π ∶ P ×L→ R.

The search starts at vstart and proceeds by expanding its search frontier

(i.e., the open list) containing partial paths and housed in a priority queue.

The priority queue is sorted by (π, g+h,h) meaning that lower values of π are

returned from the queue first. Ties among π values are broken in favor of lower

g +h (length of the partial path so far + a heuristic estimate of the remaining

length). Remaining ties are broken in favor of the lower heuristic estimate h

of the remaining length which is equivalent to breaking ties towards higher g,

a common technique in A* search. Any residual ties are then broken in an

arbitrary fixed order. Given the four-connected rectangular grid underlying

our Witness puzzles, we use Manhattan distance (MD) as the heuristic h.

We will demonstrate benefits of restricting π to a two-valued function, that

is, π ∶ P × L → {True,False}. Such a predicate takes a puzzle instance and a

partial path on that puzzle and returns True if the partial path is predicted

to be incompletable to a solution and False otherwise, in which case we say π

predicts the partial path is completable. In sorting by π, partial paths for which

π returns False are placed earlier in the queue than paths labeled True. An

accurate predicate will thus focus Algorithm 1 on completable partial paths.

Furthermore the binary nature of the predicate allows us to switch from

sorting the open list by π to pruning partial paths by π without even putting

them on the open list. Later in this section we will discuss when such a switch

from sorting to pruning can be made while maintaining completeness of the

underlying A* search.
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Algorithm 1: A* search for Witness puzzles.

input : puzzle p = (G,vstart, vgoal,C), predicate π
output: solution ℓ

1 Q← priority queue sorted by (π, g + h,h)
2 push vstart onto Q
3 while Q ≠ ∅ do
4 ℓ← head(Q)
5 Q← Q ∖ ℓ
6 v ← end(ℓ)
7 foreach vnew ∈ N(v) ∖ ℓ do
8 ℓnew ← [ℓ, vnew]
9 if vnew = vgoal then

10 if ∀c ∈ C [ℓnew satisfies c] then
11 return ℓnew

12 else
13 push ℓnew onto Q

14 return ∅

The search loop continues as long as the open list is not empty (line 3) and

a solution is not found (line 11). The first sorted element of the open list, a

partial path ℓ, is retrieved and removed from the queue in lines 4 and 5 and

the last vertex v of the path is retrieved in line 6. We then expand the end

of the path v by generating all neighbours vnew of v in the graph G that are

not already on the path ℓ (line 7). We generate each new path by appending

vnew to the end of ℓ (line 8). If the new path ℓnew reaches the goal vertex, we

check if it satisfies all constraints in C (line 10). If so, the search stops and

the solution is returned in line 11. Otherwise, each new partial path is put

onto the open list with its π, g +h, and h values (line 13). When π is constant

(e.g., always True or always False) we have the standard A* algorithm.

Note that Algorithm 1’s search is complete (i.e., it will find a solution to a

puzzle if there is one) even when π has false positives, since any solution that

is wrongly predicted to be incompletable by π will still end up in the queue –

just with a lower priority.

We prune partial paths that π predicts are incompletable by never putting

them on the queue. Line 13 in Algorithm 1 is replaced with the lines below:
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13’ if Not π(p, ℓnew) then
14’ push ℓnew onto Q

In line 13’ if π predicts ℓnew is completable for a puzzle p, then we push ℓnew

onto Q as before in line 14’. Otherwise if π predicts ℓnew is incompletable (i.e.,

π(p, ℓnew) is True) we prune ℓnew. We refer to Algorithm 1 replacing line 13

with line 13’ and 14’ above as Algorithm 1 with pruning throughout the thesis.

Theorem 1. When π has no false positives (i.e., π returns True only if a

partial path is indeed incompletable) we can use π to prune partial paths

that π predicts are incompletable by never putting them in the queue while

preserving completeness of the search.

Proof. Assume that pruning by replacing line 13 with line 13’ and line 14’

makes Algorithm 1 return no solution for a puzzle that has a solution. Since

the open list starts with vstart, which is completable since the puzzle has a

solution, at some point in line 13’ a partial path which is completable must

have been incorrectly pruned from Q. However, we assumed that π has no

false positives, which means that such pruning cannot happen.

Define a search tree as a tree with the initial state of the search (the partial

path containing only the starting vertex vstart) as the root partial path. The

children of each partial path are obtained by adding a new vertex to the end

of the path (line 8 of Algorithm 1). An example of the first two layers of a

search tree for solving the puzzle in Figure 2.1 is shown in Figure 2.2. The

root of the tree, A, only contains the path of the starting vertex (the ⋆). The
two children of A are the partial paths shown with dashed lines moving right

from the start (B) and moving up from the start (C). The two children of B

are the partial paths moving right (D) and moving up (E). The partial path

C only has one child, since it can be extended only to the partial path F .
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Figure 2.2: A partial search tree for solving the Witness puzzle in Figure 2.1.
The dashed lines show the partial paths for solving the puzzle so far. The two
vertex markers ⋆,♡ mark the start and goal vertices of the grid.

2.3 Baseline

Any partial path that includes more of a square’s edges than there are triangles

in that square cannot possibly be completed to a full solution. Suppose that

we had a predicate, which we refer to as local constraint checking throughout

the thesis, that predicted path incompletability based on this observation.

Theorem 2. The local constraint checking predicate has no false positives,

that is, if it predicts a path is incompletable, then it is actually incompletable.

Proof. Suppose for the sake of contradiction that local constraint checking

predicts a partial path ℓ is incompletable that is actually completable. Notice

adding any edges to such a path would still result in a path that violated the

triangle constraint that made local constraint checking predict True. Therefore

it is impossible for ℓ to be completable to a solution path.

Corollary 1. Since the local constraint checking predicate has no false posi-

tives, by Theorems 1 and 2, we can use local constraint checking for pruning

of partial paths while preserving completeness of the search.
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To illustrate, consider the search tree in Figure 2.2 for solving the puzzle

in Figure 2.1. The predicate would label partial paths E and F incompletable

since they include two edges of the square that has one triangle in it. Since

this predicate has no false positives, these partial paths (and all of their com-

pletions) can be pruned from the search tree. Consequently, of the partial

paths of length two (the bottom row in the figure), only D would be added to

the priority queue. This partial path is a solution prefix.

We refer to the local constraint checking predicate throughout the thesis as

πbaseline. We use Algorithm 1 with pruning using the local constraint checking

predicate (implemented by hand) as our baseline.

2.4 Accelerating the Search

The problem we tackle in this thesis is to automatically find a predicate π

that speeds up Algorithm 1 with pruning on a set of Witness puzzles P =
{p1, . . . , pn}. We use two metrics to quantify the speed-up: improvements in

the solution time and the number of nodes expanded.

For a given puzzle p ∈ P , let the time it takes our baseline with pruning to

solve the puzzle be t(πbaseline, p,prune) and the number of nodes expanded by

the baseline be given by E(πbaseline, p,prune). Similarly let the time it takes

Algorithm 1 with pruning using a learned predicate π be t(π, p,prune) and
the number of nodes expanded be E(π, p,prune).

The relative time reduction from using the predicate π on the set of puzzle

instances P is defined as the time speedup:

speedupt(π,P ,prune) =
∑p∈P t(πbaseline, p,prune)
∑p∈P t(π, p,prune)

. (2.1)

Similarly the expansion speedup is:

speedupE(π,P ,prune) =
∑p∈P E(πbaseline, p,prune)
∑p∈P E(π, p,prune)

. (2.2)

Note that the set P can consist of a single problem instance which then defines

a per-instance speedup.

We can also define the speedup measure when using Algorithm 1 for sorting

instead of pruning. Let the time it takes Algorithm 1 using a learned predicate
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π be t(π, p, sort) and the number of nodes expanded be E(π, p, sort). We can

then define the time and expansion speedup with sorting to be

speedupt(π,P , sort) = ∑p∈P t(πbaseline, p, sort)
∑p∈P t(π, p, sort)

(2.3)

speedupE(π,P , sort) =
∑p∈P E(πbaseline, p, sort)
∑p∈P E(π, p, sort)

. (2.4)

Theorem 3. Given a predicate π that has no false positives, for every set

of puzzles P the expansion speedup metrics for sorting and pruning are the

same, that is speedupE(π,P ,prune) = speedupE(π,P , sort).

Proof. We begin by proving that on a single puzzle instance p that Algorithm 1

with pruning or sorting expands the same number of nodes. Note that Algo-

rithm 1 with pruning is the same as with sorting except partial paths that are

predicted to be incompletable in line 13’ are not added to the open list. How-

ever, partial paths that are predicted to be incompletable will not be expanded

in Algorithm 1 with sorting. This is because they are given a lower priority in

the open list than the solution path which is predicted to be completable by

π since π has no false positives. Thus Algorithm 1 will keep expanding com-

pletable partial paths until it finds a solution before it ever expands a partial

path predicted to be incompletable by π. Since both approaches sort com-

pletable partial paths in the same way we have E(π, p,prune) = E(π, p, sort).
Since we proved this on every puzzle instance, we therefore see that

∑p∈P E(π, p,prune) = ∑p∈P E(π, p, sort) for every predicate π with no false posi-

tives. In particular since we proved πbaseline has no false positives in Theorem 2

we see that the numerator and denominator of Equation 2.2 and Equation 2.4

are the same, so we conclude speedupE(π,P ,prune) = speedupE(π,P , sort).

Treating the time speedup measure as an objective function, we set out to

find an approximate solution to the optimization problem:

π∗ = argmax
π∈Π

speedupt(π,P , sort) (2.5)
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where Π is a space of predicates defined on puzzle instances and paths. Thus,

given a puzzle instance set P we wish to find the predicate π∗ which speeds

up Algorithm 1 with sorting the most relative to the baseline.

A desirable solution to the optimization problem would be found auto-

matically by a computer and will be portable: a predicate synthesized for one

puzzle should speed up search on other puzzles. We also prefer the predicate to

be compact and human readable insomuch as their operation can be analyzed

and explained by a human. Finally, we prefer the predicate to be verifiable

in that it has no false positives so it can be used for pruning and maintain

completeness of Algorithm 1 with pruning.
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Chapter 3

Related Work

Browne (2013) used deductive search to solve Slitherlink puzzles (Nikoli Co.,

Ltd 1989) whose constraints are similar to triangle Witness puzzles. They

modelled each puzzle as a constraint satisfaction problem and used hand-

coded rules to manually reduce the domains of each variable. In our work, we

aim to automatically find such rules that can speed up search. Other work

that uses SAT solvers for solving puzzles (Bright et al. 2020) is parallel to our

work. These solvers by themselves have a large number of possible solutions

to search over, therefore the predicates we learn can speed up such solvers.

Butler, Torlak, and Popović (2017) used program synthesis to find strate-

gies for solving Nonogram puzzles. They evaluate the output of their system

by comparing it to a set of documented strategies, while we test the effective-

ness of our learned predicate in speeding up A* search for solving puzzles in

The Witness. Krishnan and Martens (2022) synthesized chess tactics using

ILP. However, their approach required data from human chess games. On the

other hand, the data we use for training Popper is generated by a computer.

Furthermore, they do not test the effectiveness of their chess tactics in actual

games, while we test the effectiveness of our predicates on Witness puzzles.

Krajňanskỳ et al. (2014) learned predicates for pruning actions in classical

planning. This approach and similar work in classical planning that pruned

states from heuristic search use the relaxed plan of a problem (Hoffmann and

Nebel 2001; Richter and Westphal 2010). Such a relaxed plan is computed

by dropping constraints from a problem. However, an effective constraint re-
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laxation strategy is not obvious for triangle Witness puzzles since removing

a single constraint can substantially change the solution path. For instance,

Sturtevant, Decroocq, et al. (2020) demonstrated the consequences of mak-

ing small changes to a puzzle in the game Snakebird. It remains an open

question to see if other relaxation strategies may lead to helpful actions for

solving Witness puzzles (Hoffmann and Nebel 2001). Furthermore, other log-

ical reasoning systems such as Theorist (Poole, Goebel, and Aleliunas 1987)

benefit from finding potential hypothesis with a dataset that grows in size. In

our work, we keep the dataset fixed for learning predicates and only learn a

predicate on a single puzzle instance at a time.

Chen, Sturtevant, and White (2023) automatically found the difficulty of

puzzles using human-designed predicates for solving different types of Witness

puzzles. Our work is parallel to theirs in that automatically finding these

predicates can improve the puzzle difficulty estimator. Also the predicates

they use are also human-designed while ours are machine-learned.

Sturtevant and Ota (2018) generated Witness puzzles using a different con-

straint in the game using exhaustive procedural content generation which can

deterministically generates all possible puzzles of a given size. The gener-

ators we present in our work are stochastic on the other hand. Bulitko and

Botea (2021) evolve Romanian crossword maps to find instances on which their

AI solver can achieve high scores. In our work, we do not generate puzzles

with the goal of achieving a high performance with any solver.

Research using MAP-Elites (Mouret and Clune 2015), an algorithm for

generating diverse content, also attempts to generate content with specific

properties such as levels that require a certain amount of dexterity (Khalifa

et al. 2018). However, we solve puzzles while they generate levels. Cook et

al. (2013) generated mechanics for solving puzzles in a platformer game using

an evolutionary search. Their method is specific to platformer games which

does not have a natural extension to the logical puzzles in The Witness.

Bulitko, Wang, et al. (2022) used genetic algorithms and simulated anneal-

ing to synthesize algebraic heuristic functions that speed up search on video

game maps. Our work is complementary in that they synthesized heuristic
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functions while we hold the heuristic function fixed and attempt to synthe-

size predicates. Chen and Sturtevant (2021) used priority functions to avoid

reopening nodes in heuristic search. These priority functions were manually

designed and based on g and h, which makes it unclear how to encode a binary

property of a given path using them. We do make a comparison between our

approach and weighted A*, which uses priority functions of the form g +w ⋅h.
Botea and Bulitko (2022) used multiple expansion tiers, placeholder nodes

and constraint propagation to speed up solving Romanian crosswords puzzles.

The tiers were defined by the two types of words specific to Romanian cross-

words and the number of points they contribute to the solution. Their tiering

mechanism is similar to our sorting of the open list with a predicate but we

have an additional ability to completely prune partial paths instead of delaying

their expansions. Furthermore our predicates are machine-learned.

Orseau and Lelis (2021) extended the Levin tree search algorithm to learn a

neural network for both the policy and heuristic, which they call policy-guided

heuristic search, to solve a different non-triangular type of Witness puzzle. We

adapt their method to our type of Witness puzzles and empirically compare

its performance to our approach. We provide background on Levin tree search

as well as policy-guided heuristic search in Appendix A.
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Chapter 4

Proposed Approach

In this chapter we begin by showing our predicate synthesis algorithm for

finding an incompletability predicate, π. In order to achieve the preferences

outlined in Section 2.4, we use inductive logic programming. In particular,

inductive logic programming enables the predicates to be found automati-

cally and to be human readable. We later on show theoretically that one of

the learned predicates provably lacks false positives and can thus be used for

pruning while preserving search completeness (Theorem 1).

4.1 Predicate Synthesis Algorithm

Our overall approach is shown in the pseudocode in Algorithm 2.*

Lines 2 through 5 of Algorithm 2 comprise our machine learning algorithm

for the predicates with the puzzle sets Ptrain, Pfilter1 , Pfilter2 , and Pfilter3 being

the data used for machine learning. The predicate π○ is the sole output of the

learning process.

Each instance p from the first set, Ptrain, is used to generate positive and

negative training examples for Popper (Section 4.2). For each p ∈ Ptrain, Popper
learns an incompletability predicate πp in line 2.

We have no guarantees on how the predicated learned on single instances

will perform on other instances so we filter the predicates. We therefore parti-

tion the filtering set into three disjoint subsets, Pfilter1 , Pfilter2 , and Pfilter3 such

*Henceforth in this section we generalize argmax in (x1, . . . , xk) ← argmaxx∈X f(x) to
return the k elements from X that have the k maximum values of f .
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Algorithm 2: Predicate synthesis algorithm for incompletability
predicates.

input : training problem set Ptrain, filter problem sets Pfilter1 , Pfilter2 ,
and Pfilter3 , filter numbers k1 and k2

output: predicate π○

assert : ∣Pfilter1 ∣ < ∣Pfilter2 ∣ < ∣Pfilter3 ∣ and ∣Ptrain∣ > k1 > k2
1 foreach p ∈ Ptrain do
2 πp ← Popper(p)
3 (π1, . . . , πk1)← argmax

{πp ∣ p∈Ptrain}
speedupt(πp,Pfilter1 , sort)

4 (π1, . . . , πk2)← argmax
{πi ∣ i∈{1,...,k1}}

speedupt(πi,Pfilter2 , sort)

5 π○ ← argmax
{πi ∣ i∈{1,...,k2}}

speedupt(πi,Pfilter3 , sort)

6 return π○

that ∣Pfilter1 ∣ < ∣Pfilter2 ∣ < ∣Pfilter3 ∣ to implement our version of the triage used by

Bulitko, Hernandez, and Lelis (2021).

We first evaluate each of the generated incompletability predicates on

Pfilter1 . Note we use the sorting speedup metric since we do not know yet

whether or not the predicates have any false positives. We then choose the k1

predicates with the highest time speedup in line 3. We then evaluate these k1

predicates on a second, larger set of puzzle instances, Pfilter2 . We retain the k2

predicates with the highest time speedup in line 4.

Finally, we evaluate the remaining k2 predicates on the largest filter set of

puzzles, Pfilter3 and the single highest-speedup predicate π○ is selected in line 5.

The predicate π○ is the sole output of the learning process and constitutes our

machine-learned approximation to π∗ (Equation 2.5).

To measure performance of the learned predicate π○ we use a novel test-

ing set of puzzle instances, Ptest, disjoint from the training and filtering

sets and thus not seen by the learning algorithm. On this set we measure

speedupt(π○,Ptest, sort) and speedupE(π○,Ptest, sort). If we can successfully

show that the learned predicate has no false positives then we can also mea-

sure speedupt(π○,Ptest,prune) and speedupE(π○,Ptest,prune).
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4.2 Learning Predicates from Puzzle

Instances

We begin by detailing our approach of how Popper learns a predicate in line 2

of Algorithm 2. To simplify the learning task we will learn a predicate π′

defined on a single constraint from the set of constraints contained in the

puzzle p and a partial path. Then to compute π in Algorithm 1 we will call

π′ repeatedly on each constraint from in the puzzle. If π′ returns True for any

constraint we immediately set π to True. Otherwise we set the output of π to

False (Appendix B).

Figure 4.1: Augmented version of the puzzle from Figure 2.1

To learn an incompletability predicate, we use inductive logic program-

ming. A problem in inductive logic programming (Cropper, Dumančić, et al.

2022; Muggleton 1991) is specified by background knowledge, which includes

basic function definitions and knowledge about the problem setting, as well as

positive and negative examples. The goal of inductive logic programming is to

produce a predicate such that all positive examples are satisfied (entailed) by

the predicate, and all of the negative examples are not satisfied by the predi-

cate. The inductive logic programming algorithm we use is Popper (Cropper

and Morel 2021) which learns predicates in the Prolog programming language.

We illustrate with the puzzle from Figure 2.1 which we augment with addi-

tional notation in Figure 4.1.
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Predicate Returns True if

edge(A,B,C) A is an edge connecting vertices B and C

square(A,B,C) B is the number of triangles and
C is the list of edges around square A

path(A,B) B is the list of edges in path A

pathHead(A,B) B is the vertex at the head of path A

count(A,B,C) the number of occurrences of list A
in list B is C, that is ∣A ∩B∣ = C

len(A,B) the length of list A is B

gte(A,B) A ≥ B
greaterThan(A,B) A > B

incident(A, B) last vertex of path A has an edge
incident to it in square B

notIncident(A,B) last vertex of path A does not have
an edge incident to it in square B

one(A), two(A),
three(A) A is 1, 2 or 3 respectively.

Table 4.1: Predicate building blocks for the background knowledge given to
Popper.

We supply Popper with background knowledge: predicates to use as building

blocks while learning the incompletability predicate (Table 4.1). For instance,

count(A,B,C) specifies the number of elements in common between lists A and

B is C. Thus count([1,2], [2,3], 1) is True, while count([1, 2, 3], [2, 3, 4], 3)

is False since the lists have two elements in common.

The predicates in Table 4.2 can be used to describe a puzzle instance,

for instance Figure 4.1 is described in Table 4.2. In Table 4.2 for example

square(c1, 1, [e1, e3, e4, e6]) states the fact that the square c1 in Figure 4.1

contains one triangle and is defined by the edges listed: e1, e3, e4, e6.

To generate examples for Popper given a puzzle instance p we enumerate all

paths (without vertex repetitions) between the start and the goal vertices and

check to see which are solutions to the puzzle. Any partial path that is not the

prefix of a solution is incompletable and is thus recorded as a positive training
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edge(e1, v1, v2). edge(e3, v1, v4). edge(e3, v4, v1). edge(e6, v4, v5).
edge(e1, v2, v1). edge(e2, v2, v3). edge(e4, v2, v5). edge(e6, v5, v4).
edge(e4, v5, v2). edge(e7, v5, v6). edge(e2, v3, v2). edge(e5, v3, v6).
edge(e7, v6, v5). edge(e5, v6, v3).
square(c1, 1, [e1, e3, e4, e6]). square(c2, 2, [e2, e4, e5, e7]).
path(p2,[e1]). path(p3,[e3]). path(p4,[e1, e2]). path(p5,[e1, e4]).
path(p6,[e3, e6]). path(p7,[e1, e4, e6]).
path(p8,[e3, e6, e4]). path(p9,[e3, e6, e4, e2]).
pathHead(p2,v2). pathHead(p3,v4). pathHead(p4,v3). pathHead(p5,v5).
pathHead(p6,v5). pathHead(p7,v4). pathHead(p8,v2). pathHead(p9,v3).

Table 4.2: The background knowledge describing the puzzle in Figure 4.1.

example. Any other partial path is recorded as a negative training example.

For example, the only solution to the puzzle in Figure 2.1 is [e1, e2, e5]. We

show the positive and negative training examples in Table 4.3. Notice the only

prefixes of the solution path are p2 = [e1] and p4 = [e1, e2] which are the two

negative training examples in Table 4.3.

neg(incompletable(p2, [c1 , c2 ])). pos(incompletable(p3, [c1 , c2 ])).
neg(incompletable(p4, [c1 , c2 ])). pos(incompletable(p5, [c1 , c2 ])).
pos(incompletable(p6, [c1 , c2 ])). pos(incompletable(p7, [c1 , c2 ])).
pos(incompletable(p8, [c1 , c2 ])). pos(incompletable(p9, [c1 , c2 ])).

Table 4.3: Positive and negative training examples given to Popper.

The background knowledge, a bias file controlling Popper’s operation (Ap-

pendix B), and the training examples for a single puzzle instance p are given as

inputs to Popper. Popper then attempts to learn a predicate πp that predicts

incompletability for a partial path and a single constraint (Appendix B).

Popper uses answer set programming to generate predicates (Cropper and

Morel 2021). Popper can then evaluate a candidate predicate using the positive

and negative examples. If a candidate predicate satisfies a negative example,

Popper prunes generalizations (disjunctions of the candidate predicate) from

the space of candidates. If a predicate fails to satisfy some positive examples,

Popper prunes specializations (conjunctions of the candidate predicate) from

the space. This allows Popper to prune multiple candidate predicates from the

remaining set of candidate predicates based on a single predicate.

Pruning disjunctions and/or conjunctions of the candicate predicate adds
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extra constraints to the generation phase, used by answer set programming,

to further constrain the next program generated. This loop continues until

a solution predicate is found. If Popper cannot find a predicate that satisfies

all positive examples and does not satisfy any negative examples, it returns

a predicate that satisfies the most positive examples while not satisfying any

negative examples. If no such predicate is found, Popper reports finding no

solution.

Popper generates predicates of increasing size, where the size of a predicate

is the number of head and body predicates contained in it. The smallest size

of a predicate is 2, which consists of one head and body predicate. One of the

first such predicates considered is

h1 = f(A,B) :- incident(A,B).

This predicate will return True for all of the examples in Table 4.3 since

every partial path is incident to at least one of the two squares c1 and c2. Thus

h1 satisfies the two negative examples for partial paths p2 and p4. Therefore,

Popper prunes generalizations of h1. A generalization of h1 is a disjunction

with other predicates, therefore predicates such as

f(A,B) :- incident(A,B); incident(B,A).

are pruned. Note the semicolon in Prolog indicates a logical or. Pruning

the generalization of h1 give additional constraints that Popper must take into

consideration during the next generation step.

For the example puzzle in Figure 4.1 this process of generating and evalu-

ating predicates is continued by Popper until πex is learned after considering

1,625 predicates in total. Note the commas are equivalent to logical ands.

πex(A,B):- square(B,D,E),path(A,C),count(E,C,F),greaterThan(F,D).

πex(A,B):- notIncident(A,B),path(A,D),one(C),len(D,C).

As we later show in Appendix C, the first clause (the first line of πex ending

with the period) is equivalent to local constraint checking, while the second

clause of this predicate may have false positives on some puzzle instances.
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Chapter 5

Evaluation

In this chapter we describe the puzzle sets and hyperparameters used in our

empirical study. We then present and discuss the results.

5.1 Puzzle Sets and Hyper Parameters for

Learning a Predicate

As there is no existing repository of triangle puzzle instances we generated

them using our generators in Appendix D with the hope the generators will

be used by the community to build additional triangle puzzle datasets.

To generate a puzzle set we sampled the length and width of the puzzle

uniformly at random between 2 and a maximum size. Note there are fewer

possible puzzles of smaller sizes (such as 2 × 2) so the overall distribution of

puzzle sizes is not uniform. Puzzle sets Ptrain,Pfilter1 ,Pfilter2 ,Pfilter3 , and Ptest
were generated with Algorithm 3 (Appendix D).

We generated Ptrain as a set of 500 puzzles of sizes between 2 × 2 to 4 × 4.
The number of puzzles and the puzzle sizes were chosen to generate enough

training data so that Popper can learn each predicate within a few minutes.

We picked the maximum number of variables used when Popper generates

predicates to be 7. Setting the number of variables higher creates the potential

to learn better predicates but the learning time increases substantially. The

filter sets contained puzzles of sizes between 2 × 2 and 5 × 5 with ∣Pfilter1 ∣ =
100, ∣Pfilter2 ∣ = 500, and ∣Pfilter3 ∣ = 2,500. The predicates were filtered to the top

k1 = 25 predicates, then the top k2 = 5 predicates, and finally determine π○.
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size squares instances expansions solution time (sec)

2 × 2 4 135 11.2 ± 6.4 0.0005 ± 0.0002
2 × 3 6 1,321 30.5 ± 24.4 0.001 ± 0.0006
2 × 4 8 1,788 71.7 ± 66.5 0.002 ± 0.002
3 × 3 9 1,012 109.4 ± 114.0 0.003 ± 0.003
2 × 5 10 1,977 172.8 ± 182.2 0.005 ± 0.005
3 × 4 12 2,112 400.9 ± 526.9 0.01 ± 0.02
3 × 5 15 2,313 1,533.1 ± 2,418.8 0.05 ± 0.08
4 × 4 16 1,137 2,397.2 ± 3,741.3 0.08 ± 0.13
4 × 5 20 2,123 1.4 × 104 ± 2.5 × 104 0.5 ± 1.1
5 × 5 25 1,082 1.4 × 105 ± 2.9 × 105 6.6 ± 14.8

Table 5.1: The 15,000 instances in Ptest by puzzle size. Average number of
expansions and wall time for the baseline search with πbaseline are listed as well.

The testing set Ptest contained 15,000 puzzles of sizes between 2 × 2 and

5 × 5. The test size included more puzzles to get more reliable results for

speedupt(π○,Ptest, sort) and speedupE(π○,Ptest, sort). The distribution of test-

ing puzzle sizes is listed in Table 5.1. The large standard deviation is due to

variance between puzzles in terms of their difficulty for the baseline algorithm.

5.2 A Learned Predicate: π○

Learned predicates progress through triage based on how much time speedup

they offer in line 3 to line 5 in Algorithm 2. In using Algorithm 1 to evalu-

ate a learned predicate, a partial path was predicted to be incompletable if

either local constraint checking (i.e., πbaseline returned True (Section 2.3)) or

the learned predicate predicted the partial path was incompletable.

To find the initial set of learned predicates, running Popper on 500 puzzle

instances in Ptrain produced 489 predicates with 11 runs not finding a solution

in the approximate one-hour time limit. All experimental runs were done on

the Digital Research Alliance of Canada’s Cedar cluster using the Intel Xeon

processors. On each of the successful runs, Popper took an average of about

eight and a half minutes, with a range of [0.15, 60.1] minutes. This large

range reflects the difference between learning predicates for smaller puzzles
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Predicate π○(A,B) Simplified Python

1

square(B,D,C), path(A,E),
count(E,C,F),
notIncident(A,B),
three(D), one(F).

if path.head is not incident to square
and puzzle.triangles[square]=3
and path.edges[square]=1:
incompletable=True

2 Same except two(F). Same except path.edges[square]=2

Table 5.2: Output of Algorithm 2: the predicate π○. On the left the predicate
is shown in Prolog and on the right pseudocode in Python.

which have fewer examples to learn from (less than 30) and larger puzzles that

have many examples to learn from (over 40,000).

Our learning algorithm for predicates, Algorithm 2, returned the predicate

shown in Table 5.2 as π○; its value computed as a logical disjunction of the two

clauses. These two clauses offer useful additions to what πbaseline checks. They

capture the idea that if a partial path leaves a three-triangle constraint square’s

edges without including enough of them, the path can never return there

because doing so would require visiting one of the square’s vertices twice. This

is implemented by returning True if the path head is not incident to the square

(notIncident(A,B)), the number of triangles is 3 (three(D)), and the number

of current intersections is 1 or 2 (one(F) or two(F)).

Note that while the table lists our learned predicate π○ in Prolog it can

be ported to another language. In our experiments we re-implemented π○ in

Python in which our A* was implemented. This allowed us to call π○ from

Algorithm 1 without invoking Prolog, improving search speed substantially

(Appendix E).

5.3 Verifiability of π○

The fact that the learned predicate is a binary function with only two values,

True and False, invites us to use it in Algorithm 1 with pruning instead of

merely putting incompletable partial paths at the end of the open list (the

original line 13 of Algorithm 1). Pruning speeds up search relative to sorting

because it never puts partial paths it predicts are incompletable on the open list
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but it also carries the risk of pruning a prefix to the only solution by mistake.

Doing so may render Algorithm 1 incomplete on that puzzle instance.

A partial path is pruned when π returns True on it. Thus if the predicate

has no false positives (i.e., never returns True on a prefix of a solution) then

such π preserves completeness of Algorithm 1 by Theorem 1.

Theorem 4. The learned predicate π○ in Table 5.2 has no false positives (i.e,

it never predicts that a solution prefix is incompletable).

Proof. Since π○ consist of a disjunction of the two clauses in Table 5.2, it

suffices to prove that each individual clause yields no false positives.

In both clauses by square(B,D,C) and three(D) we know that B is a

square containing a three-triangle constraint with the list of edges given by C.

Let the vertices incident to this square be v1, v2, v3, v4. By path(A,E) we know

that A is a path with the list of edges E. Furthermore by notIncident(A,B)

we know that the head of path A (a vertex in the graph) is not incident to

any edge in square B. Therefore the head of the path is not v1, v2, v3 or v4.

In the first clause given count(E, C, F) and one(F) we know that path A

(with edges in E) and square B (with edges in C) share only a single edge in

common. Without loss of generality, let vertices v1 and v2 be the two vertices

along this shared edge (the edge (v1, v2) in the red dotted line in Figure 5.1).

Figure 5.1: Portion of a Witness puzzle with a partial path for the one(F) case
drawn in a red dotted line and for the two(F) case drawn in a blue dashed
line.

Assume that path A is completable. Hence square B’s triangle constraint

must be satisfied which means that path A needs to be extended to include two
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more of square B’s edges. However, every pair of the three remaining edges in

square B contain an edge that either has v1 or v2 as one of its vertices. Thus

this extension of A would need to visit the same vertex twice, which violates

rule (ii) of Witness puzzles from Section 2.1. Thus path A is incompletable

which contradicts our assumption.

The proof for the second clause is similar, however, we are given count(E,

C, F) and two(F) instead, so we know that path A and square B share two

edges in common in this case. These two edges must include at least three

vertices in square B. Without loss of generality, assume these vertices are v1,

v4, and v3 (the edges (v1, v4) and (v4, v3) of the blue dashed line in Figure 5.1).

Assume that path A is completable so an extension of A needs to include

one more of square B’s edges. However, any additional edge will include at

least one of the vertices v1 or v3, so this extension of A would need to visit the

same vertex twice which violates rule (ii) of Witness puzzles from Section 2.1.

Hence path A is incompletable which contradicts our assumption.

Since we have shown each clause has no false positives their disjunction,

π○, has no false positives.

5.4 Search Acceleration of π○

On the test set Ptest we compared two Python implementations of Algo-

rithm 1 with pruning using π○ and πbaseline. The predicate π○ had the following

speedups:

speedupt(π○,Ptest,prune) = 6.38, (5.1)

speedupE(π○,Ptest,prune) = 6.27. (5.2)

The range of time speedups was [0.59, 1414] and of expansion speedups

was [1,1447]. Thus Algorithm 1 with pruning using π○ never expanded more

nodes than the baseline on any problem in Ptest. When computing the per

puzzle instance time speedup for each p ∈ Ptest, the predicate π○ had a time

speedup of less than 1 (i.e., speedupt(π○, p,prune) < 1) on roughly a third

(33.5%) of instances. However, π○ also has the potential to significantly speed
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Figure 5.2: Time and expansion speedup of π○ on Ptest.

up search, and on one instance had a time speedup of 1,414 and expansion

speedup of 1,447. We analyze this instance in Section 5.6.1.

We partitioned the 15,000 instances from Ptest into ten buckets based on

size (Table 5.1). Figure 5.2 shows time and expansion speedups for the in-

stances in each bucket, plotted as a function of the number of squares in the

bucket’s puzzles. The speedup afforded by using the predicate appears to in-

crease with the puzzle size. This is possibly because larger puzzles on average

have more constraints when generated with Algorithm 3 (an average of 5.2 on

5×5 puzzles compared to 1.9 on 2×2 puzzles) in Appendix D. Thus since pred-

icate π○ only applies to three-triangle constraints, there are on average more

three triangle constraints that π○ applies to (an average of 1.5 on 5×5 puzzles

compared to 0.6 on 2 × 2 puzzles), potentially resulting in a higher speedup.

This is illustrated with the puzzle in Figure 5.3 which has five three-triangle

constraints. We show a distribution of the expansion speedups in Figure 5.6.
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5.5 Sorting with π○

We were able to prove that π○ had no false positives and thus could be used for

Algorithm 1 with pruning. It is of interest to consider the speedups afforded

by π○ when used for sorting instead of pruning:

speedupt(π○,Ptest, sort) = 6.66, (5.3)

speedupE(π○,Ptest, sort) = 6.27. (5.4)

Observe that the expansion speedup is the same for sorting and pruning as

we proved in Theorem 3, however, the time speedup is now higher as follows.

Using πbaseline for sorting in Algorithm 1 takes about 11% longer to solve all

the puzzles compared to when used for pruning. On the other hand, using π○

for sorting takes only about 6% longer to solve all the puzzles compared to

when used for pruning.

5.6 Solving Large Puzzles with π○

In this section we explore how the learned predicate π○ can speed up search

on large puzzles. We begin by showing a puzzle instance with a large speedup

in the first section and then show how Algorithm 1 with pruning using our

learned predicate π○ can perform on solving puzzles larger than 5 × 5.

5.6.1 A Puzzle with a Large Speedup

In this section we show the puzzle instance from our testing set Ptest where π○

sped up Algorithm 1 the most. On this instance, Algorithm 1 with pruning

using π○ had a time speedup of 1,414 and expansion speedup of 1,447. The 5×5
puzzle is shown in Figure 5.3. We show that predicate π○ forces Algorithm 1

with pruning to have the first eight vertices visited in a solution to Figure 5.3

to be [1,2,3,4,5,6,7,8]. This demonstrates how Algorithm 1 with pruning

using π○ can sometimes eliminate many partial paths from its search tree.

From the start vertex (⋆) we can either move up to vertex 3 or right

to vertex 1. Either path has one edge in common with the three-triangle
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Figure 5.3: A 5 × 5 Witness puzzle. The vertices are numbered to show the
partial path that pruning with π○ forces Algorithm 1 to take. The two vertex
markers ⋆,♡ mark the start and goal vertices.

square, so predicate π○ predict that leaving this square before satisfying the

square’s triangle constraint will result in an incompletable path. There are

two possible paths to satisfy the three-triangle constraint: [3,2,1] or [1,2,3].
In the first case, we are then forced to move right from vertex 1, which would

then intersect a one-triangle square twice. The first line of π○ detects that this

is incompletable, forcing the sequence of moves to be [1,2,3].
From vertex 3 we can only move up to vertex 4. From vertex 4 we cannot

move right since then the path will intersect a two-triangle square three times,

which π○ detects is incompletable. Thus we must move up to vertex 5 and our

partial path so far is [1,2,3,4,5].
From vertex 5 we must move either up to vertex 6 or right to vertex 8.

In either case we have one edge in common with the three-triangle square.

Predicate π○ predicts that leaving this square without satisfying the square’s

triangle constraint will make the path incompletable. We have two ways to

satisfy the three-triangle constraint: either [6,7,8] or [8,7,6]. In the latter

case, our partial path would be [1,2,3,4,5,8,7,6], and our only move without

repeating vertices is up to the goal. However, there are still squares with trian-
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gle constraints that are not satisfied so this path is invalid. Thus no successor

states of this partial path will be added to the open list due to the if state-

ments in line 10 of Algorithm 1 returning False. Hence the former case is the

only possibility and the starting sequence of eight moves is [1,2,3,4,5,6,7,8].

5.6.2 Solving Large Puzzle Instances

We investigated how large a puzzle could be solved with Algorithm 1 with

pruning using π○ given a fixed time and memory limit. We generated a set of

500 puzzle instances of each of the following sizes: 5×5, 5×6, 5×7, 5×8, 6×6,
6 × 7, 6 × 8, 7 × 7, 7 × 8, and 8 × 8 using Algorithm 4 in Appendix D.*
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Figure 5.4: Rounded percentage of puzzle instances solved by Algorithm 1
with pruning using πbaseline (left) and with π○ (right).

We then ran Algorithm 1 with pruning using π○ and πbaseline for solving

these large puzzles. We recorded the number of puzzle instances solved using

each of the predicates under a time limit of {1,5,15,30} minutes and memory

limit of 128 Gbytes (Figure 5.4).

The puzzle instances were difficult for the baseline search: only the 25 and

30 square puzzles could all be solved in under 30 minutes. Algorithm 1 with

pruning using π○ solved all puzzles up to 36 squares as well as over half of

the 64 square puzzles. Furthermore, Algorithm 1 with pruning using π○ given

a time limit of 5 minutes solves approximately 84% of puzzles which is more

than the 83% using πbaseline solves given a time limit of 30 minutes.

*We chose it over Algorithm 3 as it can generate larger puzzle instances faster, not
needing to verify existence of a solution.
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We show an example of a puzzle that is not solvable by Algorithm 1 with

pruning using π○ in under 30 minutes in Chapter 6.

5.7 Weighted A*

A variation of A* search is weighted A* (Pohl 1970). In it, nodes are inserted

into the priority queue by (π, g + w ⋅ h,h), where w is a weight. Notice that

when w = 1 we have Algorithm 1. When the value of the weight is w = 0,

we have breadth-first search since nodes are expanded by the smallest value

of g first. Also when the value of the weight is sufficiently high, nodes are

expanded by lowest value of the heuristic first. To implement weighted A* we

can replace line 1 of Algorithm 1 with the line 1’ below:

1’ Q← priority queue sorted by (π, g +w ⋅ h,h)

We evaluate weighted A* with pruning using πbaseline to see how its per-

formance compares to that of Algorithm 1 with pruning using the learned

predicate π○. Define Ptrain+filter = Ptrain ∪ Pfilter1 ∪ Pfilter2 ∪ Pfilter3 as all of

the problems in the training and filter sets. For a given weight w, let the

time it takes weighted A* with pruning using πbaseline to solve puzzle p be

t(πbaseline,w, p,prune) and the number of expansions be E(πbaseline,w, p,prune).
We extend the definition of time and expansion speedup in Equation 2.1

and Equation 2.2 to allow the first argument to be a weight instead of a

predicate. We can then define the time and expansion speedup for weighted

A* with pruning to be

speedupt(w,P ,prune) =
∑p∈P t(πbaseline,w, p,prune)
∑p∈P t(πbaseline, p,prune)

speedupE(w,P ,prune) =
∑p∈P E(πbaseline,w, p,prune)
∑p∈P E(πbaseline, p,prune)

.

We compute the weight which takes the least time to solve the puzzles in the

training and filtering set by sampling 100 weights in an interval of 0.1 between

0 and 9.9:

w○ = argmax
w∈{0,0.1,...,9.9}

speedupt(w,Ptrain+filter,prune). (5.5)
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Figure 5.5: Time speedup of solving the problems in Ptrain+filter using weighted
A* with various weights.

Figure 5.5 plots the speedup as a function of weight. The best weight found

is w○ = 1.9 which gives us the following performance on the test set:

speedupt(w○,Ptest,prune) = 1.11, (5.6)

speedupE(w○,Ptest,prune) = 1.04. (5.7)

These speedups are sufficiently below the speedups afforded by π○.

5.8 Levin Tree Search with Neural Networks

We extended the work of Orseau and Lelis (2021) to add local constraint

checking to their policy-guided heuristic search algorithm, PHS*, described

in Appendix A. We trained a neural network, ANN, for PHS* on the 500

problems in Ptrain for 2.52 hours on a local computer with an Intel i5-12600K

and NVIDIA GeForce RTX 3060 until all of the problems in the training set

were solved by bootstrapping (Arfaee, Zilles, and Holte 2011). Bootstrapping

works by solving puzzles with an expansion budget and if on the last iteration
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no new puzzles were solved, the budget for expansions is doubled. We then

solved the 15,000 problems in Ptest on the Digital Research Alliance of Canada’s

Cedar Cluster with Tesla V100s using the neural network ANN.

Let the time it takes PHS* with ANN using pruning with πbaseline to

solve puzzle p be t(πbaseline,ANN, p,prune) and the number of expansions be

E(πbaseline,ANN, p,prune). We extend the definition of time and expansion

speedup in Equation 2.1 and Equation 2.2 to allow the first argument to be a

neural network instead. We can then define the time and expansion speedup

for policy-guided heuristic search to be:

speedupt(ANN,P ,prune) =
∑p∈P t(πbaseline,ANN, p,prune)
∑p∈P t(πbaseline, p,prune)

speedupE(ANN,P ,prune) =
∑p∈P E(πbaseline,ANN, p,prune)
∑p∈P E(πbaseline, p,prune)

.

Using the ANN learned from training above, we obtain the following time

and expansion speedups:

speedupt(ANN,Ptest,prune) = 0.02, (5.8)

speedupE(ANN,Ptest,prune) = 0.77. (5.9)

The range of expansion speedups for the neural network was [0.003, 511] and
time speedups was [3 × 10−5,7.8]. Observe that the time speedup is about 39

times lower than the expansion speedup. One theory for why this occurred is

due to the neural network forward-pass time for each expanded node in the

search tree.

Overall, the performance of the neural network is worse than the previous

two methods. One theory for why this is the case is that the number of puzzles

instance from Ptrain with only 500 puzzles was too small. This may lead to the

neural network overfitting to these training instances. Secondly, the puzzle

sizes between the training and testing set are also different. In particular, the

largest puzzle set in the training set is 4 × 4, while the testing set has puzzle

sizes of up to size 5 × 5.
These lead the neural network to have the potential to misguide the search.

When computing the per puzzle instance expansion speedup the neural net-

work had an expansion speedup of less than 1 on 65% of instances. We show
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Figure 5.6: Cumulative distribution of puzzle instances with expansion
speedups for Algorithm 1 with pruning using π○ compared to weighted A*
using w○ and PHS* using ANN.

a cumulative distribution of the number of puzzle instances with various ex-

pansion speedups for the three methods in Figure 5.6.

To overcome the problem of having too little data for the neural network

to train, we then generated a new dataset of 50,000 puzzle instances of sizes

2 × 2 to 4 × 4 that are disjoint from the testing set. This neural network took

138.5 hours to train to solve all these puzzle instances. We call the neural

network that was trained on these ANN-50k.

The time and expansion speedup for this network are shown below:

speedupt(ANN-50k,Ptest,prune) = 0.02, (5.10)

speedupE(ANN-50k,Ptest,prune) = 1.04. (5.11)

Note that the time speedup is similar to what it was before with ANN (Equa-

tion 5.8), while the expansion speedup is similar to the expansion speedup of

weighted A* using w○ (Equation 5.7). The plot of bucketing the expansion

speedups by puzzle size is shown in Figure 5.7. Observe that PHS* using

ANN-50k outperformed pruning using π○ on the puzzles of size 3×4 and 4×4.
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Figure 5.7: Expansion speedup of pruning using π○ compared to PHS* using
ANN-50k on Ptest.

These two puzzle sizes were the largest in the training set. This shows the

potential PHS* has to learn a policy to effectively solve puzzles, however, it

remains an open question of how to extend the work of Orseau and Lelis (2021)

to train a neural network on puzzles of size 5 × 5.

5.9 Learned Predicate without πbaseline

We experimented with using Algorithm 1 without πbaseline. While in Section 5.2

we used πbaseline by default in computing the speedups on the filter set, we

now run Algorithm 1 with only the learned predicates. We re-ran Algorithm 2

by taking the 489 predicates learned by Popper and evaluated them on the

filter sets without πbaseline. The final predicate returned by Algorithm 2, π
′

contained three clauses. Two of the three clauses were functionally equivalent

to the learned predicate π○ in Table 5.2. Interestingly, the third clause

square(B,D,E),path(A,C),count(E,C,F),greaterThan(F,D).
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is equivalent to πbaseline as it performs local constraint checking. Since

path(A,C) we know that A is a path with the list of edges given by C. Further-

more by square(B,D,E) we know that B is a square containing D triangles

with the list of edges defining the square given by E. By count(E,C,F) we

know that the number of edges in common between the path and square is

equal to F. Finally, by greaterThan(F,D) we know that the number of edges

in common is larger than the number of triangles in the square. This is the

same as local constraint checking, πbaseline.

Thus the learned predicate π′ is equivalent to the learned predicate π○

disjuncted with πbaseline. This means that without any prior knowledge of

completability our approach automatically learned a predicate that captures

the human-designed πbaseline.
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Chapter 6

Open Questions & Future Work

We have demonstrated how an off-the-shelf ILP system with a triage-based

filtering method (Algorithm 2) is able to learn a predicate that substantially

speeds up a baseline search algorithm in solving Witness puzzles. The results

lead us to the following open questions.

How much does the background knowledge provided to Popper impact the

final predicates learned? In particular, one can attempt to find the minimum

background knowledge needed to learn the predicates in Table 5.2. Conversely,

future work can study how to extend the grammar to learn a predicate that

can speed up search even more.

Future work can also compare our approach to other types of program syn-

thesis such as bottom-up search or genetic algorithms. It can also explore au-

tomatically converting predicates from Prolog to Python to gain performance

benefits without the effort of a manual re-implementation.

Since the final predicate learned can be converted into if and else statements

(Table 5.2), future work can also explore how decision tree learners can learn

the predicate (Alur, Radhakrishna, and Udupa 2017; Orfanos and Lelis 2023;

Trivedi et al. 2021). Future work can see which features are needed to construct

such a decision tree, similar to Table 4.1.

Future work can also investigate portfolio search where Algorithm 1 with

pruning using another learned predicate is run in parallel with Algorithm 1 and

π○. As Algorithm 1 with pruning using π○ is complete (Theorem 4) the other

learned predicate can be used for pruning even if it has false positives. Thus
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on some puzzle instances the aggressively pruning member of the portfolio can

yield a solution more quickly than Algorithm 1 with pruning using the more

conservative π○.

Figure 6.1: On the left is an initial partial path to complete the column of
2-triangle squares. On the right is a full solution to the puzzle.

For example consider the puzzle in Figure 6.1. This puzzle was in the

dataset from Section 5.6.2 and was not solvable by Algorithm 1 with pruning

using π○ in under 30 minutes and 128 GBytes of memory (Figure 5.4). However

this puzzle was solvable by a human using the strategy of moving up along the

first column and then down along the second column to satisfy the 2-triangle

squares. This strategy is similar to an opening move book in chess and to

the puzzle in Figure 5.3 where the first few moves of solving the puzzle were

forced. Using such an aggressively pruning predicate where only the partial

path from the left part of Figure 6.1 is considered would lead to significantly

speeding up search on this problem. Notice furthermore that there is only one

3-triangle square in Figure 6.1 which is likely why Algorithm 1 with pruning

using π○ was not able to solve it in 30 minutes.
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Chapter 7

Conclusions

Searching for solutions to Witness puzzles can be combinatorially difficult.

We presented an automated approach to speeding up a variation of A*

via machine-learned, human-explainable predicates that predict the incom-

pletability of a partial path. Their human explainability can offer insights to

both Witness players and puzzle designers (e.g., the solution in Figure 5.3).

Our approach to learning such predicates may afford the opportunity to prove

that the predicates have no false positives which in turn allows them to be used

to prune successor nodes in Algorithm 1 and preserve completeness. When

used for pruning or sorting our predicate accelerated the baseline search by

between six to seven times on our test puzzle instances. We also showed how

Algorithm 1 with pruning can solve more 64 square puzzles than the baseline.

We finally showed that our method sped up search more than weighted A*

and Levin tree search with neural networks (Orseau and Lelis 2021).

In closing, we hope that our work presented in this thesis will encourage

other game AI researchers to add Witness puzzles to their portfolio of game

AI testbeds. To that end we will be sharing our code and data sets to the

community upon request.

38



References

Abel, Zachary et al. (2020). “Who witnesses The Witness? Finding witnesses in
The Witness is hard and sometimes impossible.” In: Theoretical Computer
Science 839, pp. 41–102.

Alur, Rajeev, Arjun Radhakrishna, and Abhishek Udupa (2017). “Scaling enu-
merative program synthesis via divide and conquer.” In: Proceedings of
the Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 319–336.

Arfaee, Shahab Jabbari, Sandra Zilles, and Robert C Holte (2011). “Learning
heuristic functions for large state spaces.” In: Artificial Intelligence 175.16-
17, pp. 2075–2098.

Blow, Jonathan (2011). Truth in Game Design. Presented at Game Developers
Conference Europe. url: http://gdcvault.com/play/1014982/Truth-
in-Game.

Botea, Adi and Vadim Bulitko (2022). “Tiered State Expansion in Optimiza-
tion Crosswords.” In: Proceedings of the Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, pp. 79–86.

Bright, Curtis, Jürgen Gerhard, Ilias Kotsireas, and Vijay Ganesh (2020). “Ef-
fective problem solving using SAT solvers.” In: Maple in Mathematics Ed-
ucation and Research. Springer, pp. 205–219.

Browne, Cameron (2013). “Deductive search for logic puzzles.” In: Proceedings
of the Conference on Computational Inteligence in Games, pp. 1–8.

Bulitko, Vadim and Adi Botea (2021). “Evolving romanian crossword puzzles
with deep learning and heuristic search.” In: Proceedings of the Conference
on Games, pp. 1–5.

Bulitko, Vadim, Sergio Poo Hernandez, and Levi H. S. Lelis (2021). “Fast
Synthesis of Algebraic Heuristic Functions for Video-game Pathfinding.”
In: Proceedings of the Conference on Games, pp. 1–5.

Bulitko, Vadim, Shuwei Wang, Justin Stevens, and Levi H. S. Lelis (2022).
“Portability and Explainability of Synthesized Formula-based Heuristics.”
In: Proceedings of the International Symposium on Combinatorial Search,
pp. 29–37.

Butler, Eric, Emina Torlak, and Zoran Popović (2017). “Synthesizing inter-
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Appendix A

Levin Tree Search

We illustrate how Levin tree search works (Levin 1973) on an example. Con-

sider the search tree in Figure 2.2 augmented with a policy that gives a con-

ditional probability of a child node given the parent node in Figure A.1.

Figure A.1: Search tree with a policy for solving the puzzle from Figure 2.1.

Let n0 be the root node of the search tree. Define the depth of a node n

as d(n′) = d(n) + 1, where n′ is a child node of n, with d(n0) = 0. That is,

the depth of a node is the number of edges away from the root of the tree the

node is. For instance, in the tree in Figure A.1, d(A) = 0, d(B) = d(C) = 1,
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and d(D) = d(E) = d(F ) = 2. Furthermore, define the probability of getting to

a given node n recursively by the formula π(n′) = π(n∣n′)π(n), and π(n0) = 1,
where n′ is a child node of n (Orseau and Lelis 2021). That is, the probability

of a given node is the product of all the probabilities to get from the root to that

node. Notice that we use the definition π as π ∶ P × L → R from Section 2.2

since each node in the search tree has a partial path in it. For example,

π(A) = 1, π(B) = 0.8, π(C) = 0.2, π(D) = 0.8 ⋅ 0.9 = 0.72, π(E) = 0.8 ⋅ 0.1 = 0.08,
and π(F ) = 0.2 ⋅ 1 = 0.2.

The ratio d(n)/π(n) is called the Levin value of node n. Levin tree search

is a best-first search algorithm that sorts the open list by their Levin values.

That is, nodes with smaller values of d/π are expanded from the open list first.

To illustrate, for the search tree in Figure A.1, we begin by adding the

node A to the open list with its value of d(A)/π(A) = 0/1 = 0. We then remove A

from the open list and add its children to the open list. The children of A are

B and C with Levin values of

d(B)/π(B) = 1/0.8 = 1.25 (A.1)

d(C)/π(C) = 1/0.2 = 5. (A.2)

Of these, B has a lower value, therefore B’s children, D, and E are added to

the open list with Levin values of

d(D)/π(D) = 2/(0.8⋅0.9) = 2.7
d(E)/π(E) = 2/(0.8⋅0.1) = 25.

The open list now contains (C,5), (D,2.7), and (E,25). Of these, D has

the lowest value, therefore we expand it first. The only child ofD is the solution

path shown in green in Figure 2.1, therefore, the search algorithm stops here.

Notice that similar to local constraint checking (Section 2.3), Levin tree search

also does not expand nodes E or F .

Orseau and Lelis (2021) added an additional factor to Levin tree search to

learn a heuristic function from training data on solving other puzzles to guide

the search. They propose policy-guided heuristic search (PHS) which adds a

node n to the open list with its value computed by d(n)+h(n)
π(n) . In their work
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they use a neural network with two outputs of both a probability function

(policy) π and a heuristic, h. The actions in a heuristic search problem are

moving up, down, left, and right, so the policy predicts the probability of

taking these actions. Observe that the numerator considers the entire cost

of the path (with the current length of the node plus the estimated cost to

go), while the denominator computes the probability of a node using the same

recursive formula as in Levin tree search.

Note the probability of node n is computed by multiplying d(n) numbers

together. Hence the geometric mean of these probabilities is π(n)1/d(n). Since
the length of the entire solution path is estimated to be d(n) + h(n), multi-

plying the geometric mean by itself d(n) + h(n) times gives a probability of

π(n)
d(n)+h(n)

d(n) = π(n)1+
h(n)
d(n) . Thus in an improved version of policy-guided heuris-

tic search, PHS*, nodes are added to the open list with the value of d(n)+h(n)
π(n)1+

h(n)
d(n)

.

Notice in this formula Orseau and Lelis (2021) train a neural network for both

the probabilities, π(n), and for the heuristic, h(n).
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Appendix B

Prolog Files Used by Popper

In this section, I show two of the Prolog files used by Popper in order to learn

incompletability predicates. In particular, I begin by showing the the recursive

formula for how the incompletability predicate learned on a single constraint

is used to evaluate all of the constraints as described in Section 4.2. I then

show the bias file used by Popper in learning predicates.

The recursive incompletability predicate is shown below:

not(incompletable([], )).

incompletable([C∣T], P):- breaksConstraint(C, P); incompletable(T, P).

The incompletability predicate takes in two arguments, a list of con-

straints and partial path P. If the list of constraints is empty, then the base

case says that no partial path was detected to be incompletable, and there-

fore returns False. The recursive case is shown in the second line. For each

constraint C, the partial path P is checked to see if it breaks the single con-

straint through the breaksConstraint predicate which is learned. If so, then

the entire predicate returns True showing that the partial path P breaks at

least one of the constraints. If the partial path is not detected to break the

constraint of the predicate, then the recursive call checks to see if it breaks

any constraints in the rest of the list, T.

I now show the bias file used by Popper in learning the breaksConstraint

predicate. Notice that breaksConstraint is the desired head predicate (mean-

ing it is the target predicate we are trying to learn) with arity 2, meaning it

takes in two arguments.
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The predicate count is a body predicate (meaning it is used to learn the

target predicate). The types of the first two arguments of count are lists

while the third argument is an integer. Recall from before that for example,

count([1, 2], [2, 3], 1) is True. The direction of the arguments is in, in, out

meaning the first two arguments are input (ground) while the third argument

is output (unground).

Below all of the body predicates are shown with each respective arity,

type, and direction. Notice there is also the addition of the constants, which

are defined as the integers 1, 2, and 3 (for the triangle constraints).

head pred(breaksConstraint, 2).

body pred(path, 2).

body pred(count, 3).

body pred(square, 3).

body pred(greaterThan, 2).

body pred(gte, 2).

body pred(len, 2).

body pred(adjacent, 2).

body pred(notAdjacent, 2).

max vars(7).

type(breaksConstraint, (element, element)).

type(path,(element, list)).

type(count,(list, list, int)).

type(square, (element, int, list)).

type(greaterThan, (int, int)).

type(gte, (int, int)).

type(len, (list, int)).

type(adjacent, (element, element)).

type(notAdjacent, (element, element)).

constant(one, int).

constant(two, int).

constant(three, int).

direction(breaksConstraint, (in, in)).
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direction(path,(in, out)).

direction(count,(in, in, out)).

direction(square, (in, out, out)).

direction(greaterThan, (in, in)).

direction(gte, (in, in)).

direction(len, (in, out)).

direction(adjacent, (in, in)).

direction(notAdjacent, (in, in)).

body pred(P,1):- constant(P, ).

type(P,(T,)):- constant(P,T).

direction(P,(out,)):-constant(P, ).
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Appendix C

Example of False Positives with
a Predicate

As we mentioned in Section 4.2, Popper can learn a predicate with false pos-

itives. In this Appendix, we analyze the predicate that was learned on our

running example puzzle in Figure 2.1:

πex(A,B):- square(B,D,E),path(A,C),count(E,C,F),greaterThan(F,D).

πex(A,B):- notIncident(A,B),path(A,D),one(C),len(D,C).

The first clause of the predicate as mentioned in Section 5.9 is equivalent

to local constraint checking. Of the incompletable partial paths (the positive

examples) in Table 4.3, local constraint checking makes the incompletable

predicate return True for paths p5, p6, p7, p8, and p9. In the second clause,

by path(A,D) we know that A is a partial path across a list of edges D. By

len(D,C) and one(C) we know that D has one edge in it. Furthermore by

notIncident(A,B) we see that the head of path A (a vertex in the graph) is

not incident to any edge in square B. Therefore the second clause returns True

for any partial paths of length 1 that are not incident to square B.

Note that the second clause of πex returns True for path p3 and c2 since

p3 is not incident to square c2 and also the length of path p3 is equal to one.

Furthermore, this predicate does not cover any of the negative examples, since

path p2 is adjacent to both squares, while path p4 has length of two. Thus

this predicate satisfies all the positive examples while satisfying none of the

negative examples for the puzzle in Figure 2.1 and so Popper returns πex as

the solution by its learning algorithm described in Section 4.2.
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However, the second clause of predicate πex may have false positives. For

example, consider the puzzle in Figure C.1. The second clause of πex predicts

that the partial path e3 is incompletable since the head of the path is not

incident to square c2 and the length of the path is 1. However, the only

solution to this puzzle is [e3, e6, e4, e2, e5]. Therefore if predicate πex was used

for pruning, it would prune the only valid solution of this puzzle. Therefore

Algorithm 1 with pruning using πex is not complete since πex has false positives.

Figure C.1: An example of a partial path on which πex has a false positive.
The red dashed line shows the partial path that πex incorrectly predicts as
incompletable.
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Appendix D

Puzzle Generators

In this Appendix, I show the algorithms used to generate the puzzles used for

our evaluation (Chapter 5).

Algorithm 3: Generate a puzzle instance by placing triangles ran-
domly.

input : puzzle dimensions m,n
output: puzzle p

1 repeat
2 p← empty puzzle(m × n)
3 goal← random location on peripheral of puzzle
4 k ← U({1, . . . , ⌊mn/2⌋})
5 S ← k randomly picked squares from the grid
6 foreach s ∈ S do
7 q ← U({1,2,3})
8 put q triangles into square s

9 ℓ← Algorithm 1’s solution to p

10 until ℓ ≠ ∅
11 return p

The first generator places triangles randomly on the grid (Algorithm 3).

In line 2 we create an empty m×n Witness puzzle. We randomly initialize the

goal location to be any vertex that is peripheral to the graph (meaning it has

edge degree less than 4) such that vstart ≠ vgoal in line 3. The starting location,

vstart, is always fixed to be the bottom left corner.

In lines 4 and 5 we pick the number of squares containing triangles uni-

formly randomly between 1 and half of all squares (in the spirit of the challenge

room maze in the actual game (Thekla, Inc. 2016)). We then randomly select
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such squares in the grid. For each of these squares we uniformly randomly

assign between 1 and 3 triangles to it in lines 7 and 8. After generating the

puzzle we use Algorithm 1 with pruning using πbaseline to determine if the puz-

zle is solvable (line 9). If it is not, we restart the generation process (i.e., go

to line 2).

The second puzzle generator (Algorithm 4) starts with a path from the

start vertex to the goal vertex and then populates the empty grid with triangles

so that the path becomes a solution to the puzzle (in the spirit of work by

Blow (2011)).

Algorithm 4: Generate a puzzle instance from a path.

input : puzzle dimensions m,n
output: puzzle p

1 p← empty puzzle (m × n)
2 ℓ← random path from start to goal
3 S′ ← all squares in p with at least one edge in ℓ
4 k ← U({1, . . . , ∣S′∣})
5 S ← k randomly picked squares from S′

6 foreach s ∈ S do
7 q ← count s’s edges in ℓ
8 put q triangles in square s

9 return p

Line 2 generates a path from the start to the goal vertices that does not

contain repeating vertices. We then find all squares that have at least one

edge in ℓ (line 3) and uniformly randomly sample a number of these squares

(lines 4-5). For each of these squares, we add to the puzzle the number of

edges it has in ℓ so that ℓ is a solution to the puzzle.
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Appendix E

π○ Computed by Prolog

Instead of converting the predicate to Python, we now show the results of

keeping the local constraint checking (written in Python) followed by using

the learned predicate computed by Prolog.

The time speedup and expansion speedup of with π○ computed by Prolog

(denoted π○prolog) are shown below:

speedupt(π○prolog,Ptest, sort) = 1.15, (E.1)

speedupE(π○prolog,Ptest, sort) = 6.27. (E.2)

Notice that the expansion speedup is the same as before since π○prolog is

functionally equivalent to π○ computed in Python and by Theorem 3 we know

the expansions are the same for pruning and sorting. On the other hand, the

time speedup is lower now since calling Prolog from Python is slower than

running the Python-converted predicate.
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