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Abstract 

The field of biomedicine is reeling from “information overload”. Indeed, biomedical researchers 

find it almost impossible to stay current with published literature due to the vast amounts of data 

being generated and published. As a result, they are turning to text mining. Over the past two 

decades the field of biomedical text mining has experienced significant advances, such as the 

development of high quality biomedical knowledge bases and ontologies, the construction of 

biomedical search engines and the development of biomedical relationship mining tools. 

However, users still have to manually examine the retrieved documents and connect snippets of 

information from various databases to find answers to their queries. Ideally what is needed is a 

“wise” question answering (QA) system. With the advances in QA systems, including the 

triumph of IBM Watson on Jeopardy!, many biomedical researchers, including myself, believe 

that now is the time to further advance biomedical text mining by developing a biomedical 

question answering system. Such a system would be able to answer questions regarding 

biomedical entities and help researchers better digest existing knowledge and formulate new 

hypothesis. The task of biomedical question answering is faced with two central challenges: 1) 

retrieving relevant information from heterogeneous data sources (structured databases and free-

text collections), and 2) formulating natural language answers from retrieved concepts and 

snippets. My research focuses on developing an association mining tool (PolySearch2) and a 

web-based biomedical question answering system (BioQA), that would provide precise answers 

with encyclopedia-like commentary to a wide range of biomedical questions. In particular, 

PolySearch2 mines concept associations from free-text collections based on co-occurrence 

statistics. BioQA uses PolySearch2 and other tools to decode natural language questions and 

formulate natural language answers for both descriptive and associative queries. Both 
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PolySearch2 and BioQA offer public web interface to answer questions posed by biomedical 

researchers, physicians, students and the inquisitive public. PolySearch2 and BioQA represent an 

integrated solution to the core challenges in biomedical question answering.  
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1. Introduction 

This chapter introduces the concept of biomedical question answering, presents the thesis 

statement and outlines the rest of this thesis regarding my approach to accomplish the task of 

biomedical question answering. 

1.1 Introduction to biomedical question answering 

Biomedical researchers are now finding it almost impossible to stay current with today’s 

research due to the vast amount of data being generated and published. Consider these facts: 1) 

there are more than 60,000 scientific journals published today; 2) nearly 500,000 biomedical 

articles are published each year; 3) there are more than 22,000,000 abstracts in PubMed 

published from 20,000 journals; and 4) there have been more than 50,000,000 scientific articles 

published since 1660. According to a study by Baasiri et al. [9] a researcher would have to scan 

130 different journals and read 27 papers per day to follow a single disease, such as breast 

cancer.  A more recent study by Lu et al. [54], showed that the total number of citations in 

MEDLINE, a central repository for scientific articles in the biomedical domain, is growing at 

more than 4% each year, and that more than 3,000 new articles are being added each day. Figure 

1 shows the number of indexed articles in MEDLINE and the accelerating growth rate of the 

PubMed database [19]. In addition to the rapid growth in published biomedical literature, 

biomedical databases are growing too. GenBank [18], which contains most of the world’s gene 

sequencing information, has grown from just 600 annotated DNA sequences in 1982 to nearly 

200 million annotated DNA sequences today. The Protein Data Bank [69], which houses most of 

the world’s protein structure data, grew from 13 structures in 1976 to more than 120,000 

structures by 2015. ArrayExpress [70], which contains data on gene expression experiments, 

grew from just 1,200 data sets in 2006 to nearly 70,000 today. Adding to the challenge of 

exponential information growth, is the proliferation of domain-specific databases.  For instance, 

the total number of biomolecular databases ever described in the annual Nucleic Acids Research 

(NAR) Database Issue has grown from 90 in 1998 to nearly 1,700 today [80]. These data show 

that it is increasingly difficult for biomedical researchers to keep up with current research, let 

alone learn from past research results.  It is also evident that a considerable amount of useful 

biological knowledge is buried in the form of free text, waiting to be transformed into more 
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accessible formats. Swanson referred to such phenomena as “undiscovered public knowledge” 

[13]. 

 

 

Figure 1: Number of indexed PubMed (Medline) articles by year. 

 

To alleviate the problem of information overload, teams of biocurators are increasingly 

being employed to convert paper-bound text into electronically accessible information through 

the construction of biomedical databases. These databases are frequently serving as the backbone 

of the field’s working knowledge. Biocuration [40] aims at organizing and annotating 

discoveries disseminated by biological researchers. An important aspect of biocuration is that 

useful knowledge in published (i.e. paper) articles is assembled and deposited into electronic 

biomedical knowledge bases that are accessible over the internet. However, biocuration is a 

time-consuming and labor-intensive process that requires the effort of many high-priced domain 

experts. 
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Computer-aided text mining can serve as an important means of reducing the biocuration 

bottleneck as it enables biomedical researchers to rapidly and automatically retrieve existing 

knowledge or discover hidden knowledge in the literature. To date, text mining approaches in 

biomedicine have focused on such tasks as: 1) retrieving relevant documents, 2) extracting 

mentioned biomedical entries and predicting their association (e.g. Protein-Protein Interactions), 

3) learning or enriching biomedical ontologies from text, and most recently, 4) providing salient 

answers for clinical questions [7]. 

 

 

Figure 2: Schema of biocuration workflows and the application of text mining. 

 

Figure 2 illustrates an example of a typical biomedical discovery workflow.  In this 

workflow a biomedical scientist first formulates a hypothesis, then they conduct a literature 

search to find any prior (published) knowledge that may help test the hypothesis or enhance their 

understanding on the subject matter. They then conduct their own experiments to test the 

hypothesis and report their discoveries in a peer reviewed scientific publication. In addition to 

the traditional route of journal publication, a growing number of scientific journals require that 

researchers deposit their experimental data into publicly accessible databases prior to 
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publication. However, snippets of scientific discoveries (such as concentrations of a newly 

discovered metabolite in body fluids) are often buried in the free text of the published article and 

not in an easily accessible abstract. Such knowledge could be extracted manually or semi-

automatically by biocurators and finally deposited into dedicated databases. Text mining 

facilitates scientific discovery and biocuration by first providing a means of retrieving relevant 

articles for literature review and hypothesis formulation, then suggesting hidden associations that 

may have been previously overlooked by researchers (or biocurators). To illustrate the potential 

of text mining in biomedical research, Swanson [13], a mathematician, conducted keyword 

searches on MEDLINE and examined shared terms to formulate hypotheses for previously 

overlooked relations between seemingly disconnected topics, such as magnesium and migraine, 

fish oil and Raynaud's syndrome, and somatomedin C and arginine.  These novel, text-mined 

relationships were later supported by biological experiments or clinical trials [13]. 

 

1.2 Challenges 

Recent attention towards biomedical text mining has focused on developing improved 

search engines and providing easier ways to navigate biomedical publications. These engines use 

ontologies to recognize biomedical named entities (NEs) from text, extract explicit relations 

between entities, construct domain specific lexicons to support other text mining tasks, and 

curate datasets for evaluating text mining techniques. Despite continuing advances and 

improvements in biomedical text mining, a publicly accessible, domain-specific question 

answering (QA) system is still not available. The central idea behind a biomedical QA system is 

to offer structured, precise and salient answers to natural language biomedical questions posed 

by researchers and biocurators. Such a QA system would benefit biomedical researchers, 

physicians, students, and the inquisitive public. Over the past decade we have witnessed huge 

advances in text mining applications including the rise of search engines like Google [68], Bing 

[60], and knowledge engines like Wolfram Alpha [99]. In February 2011, the IBM-developed 

QA system called Watson [28] defeated highly skilled human players on the open-domain 

question answering Jeopardy! challenge. 
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Figure 3: Search engine (Google) results for questions “What is the cause of beri-beri?” and 

“What diseases are caused by E-cadherin mutations?”.  
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Figure 4: Search engine (Bing) results for questions “What is the cause of beri-beri?” and “What 

diseases are caused by E-cadherin mutations?”.  
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Figure 5: Knowledge engine (Wolfram Alpha) results for questions “What is the cause of beri-

beri?” and “What diseases are caused by E-cadherin mutations?”.  
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The success of Watson has motivated text mining researchers to start thinking about 

developing question-answering systems for biomedicine [100]. However, biomedical QA is 

challenging as it is a highly specialized domain. It is somewhat different from open domain QA, 

and the supporting evidence is often stored in heterogeneous sources in various formats that 

cannot yet be searched like web pages on a traditional search engine without explicit 

consolidation and curation. To illustrate the challenge in Biomedical QA, we posed the following 

questions “What is the cause of beri-beri?” and “What diseases are caused by E-cadherin 

mutations?” to Google [68], Bing [60], and Wolfram Alpha [99]. The results are shown in 

Figure 3, Figure 4, and Figure 5. With the first question “What is the cause of beri-beri?”, 

Google [68] is able to return a text snippet (extracted from the top hit) identifying beri-beri as a 

disease caused by thiamine deficiency. Bing [60] is able to return the cause as being thiamine 

deficiency and lists different causes for thiamine deficiency. Wolfram Alpha [99], a knowledge 

engine, is not able to identify beri-beri as a disease but instead assumes it is a language and 

presents regions and number of speakers for the assumed language. With the second question 

“What diseases are caused by E-cadherin mutations?”, both Google and Bing interpret the 

question as a search query and return web pages containing information on E-cadherin and the 

CDH1 gene. The third hit from Google and second hit from Bing indicate a connection between 

E-cadherin and Gastric Cancer but no further information is provided for the potential 

association. Top hits from both search engines now include biomedical publications, but no 

answer snippets or other pieces of evidence are extracted from these publications. Wolfram 

Alpha [99] is capable of mapping E-cadherin to a mouse gene (CDH1) and provides the name 

and genetic sequence for this gene. However, no disease with potential associations to E-

cadherin are shown in Wolfram Alpha’s results. For this question, none of these systems are 

capable of providing descriptions for the concept of “E-cadherin”, and none of them is able to 

provide natural language answers to this question. This little QA experiment illustrates the need 

to develop a specialized biomedical question answering system, capable of accepting questions 

in natural language sentences, and providing natural language answers for the individual posing 

the question. 
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1.3 Thesis Statement 

Over the past two decades a number of keyword-query document retrieval systems (i.e. 

PubMed) have been developed to help alleviate the problems associated with biomedical 

question-answering. However, users still have to manually examine the retrieved documents to 

find answers to their queries. Ideally what is needed is a “wise” question answering (QA) system 

that uses natural language and figures out what the questioner is really asking and composes 

natural language answers.  

My thesis research focuses on developing a biomedical question answering system 

(called BioQA) that would provide precise, natural language answers with encyclopedia-like 

commentary to a wide range of natural language biomedical questions. In particular, this 

biomedical question answering system should be able to handle both descriptive (“What is 

Aspirin?”) and associative queries (“What is the cause of beri-beri?”). Descriptive queries are 

particularly useful for automatically creating annotations of genes/proteins for newly sequenced 

organisms while associative queries are useful for discovering relations between biomedical 

entities. This QA system should also be able to summarize relevant documents and text passages 

using natural language and generate supporting evidence for the returned answers. The design of 

BioQA focuses on answering biomedical questions posed by researchers, physicians, students 

and the inquisitive public.  

In this thesis, I hypothesize that building a biomedical question answering system is 

feasible and I propose the BioQA framework with a prototype implementation to demonstrate the 

feasibility and usability of a QA system in biomedicine. Through the implementation of BioQA, I 

learned that 1) a comprehensive biomedical thesaurus is essential for almost all steps of 

biomedical question answering, and 2) effective summarization algorithms are the key to derive 

natural language answers from relevant concepts and snippets. 
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1.4 Thesis Outline 

In this thesis, I present a framework for building a practical biomedical question 

answering system. To illustrate the feasibility of such framework, I developed a prototype QA 

system, called BioQA. To demonstrate its usability in answering biomedical questions and to 

serve the general public I also created a publicly accessible web interface for BioQA and one of 

its search engines (PolySearch2). The rest of this dissertation is organized as follows: 

Chapter 2 provides an overview on text mining techniques relating to question 

answering. This chapter serves as a brief review and introduces related concepts in natural 

language processing, machine learning, information retrieval and information extraction, as well 

as various evaluation metrics. This chapter also discusses related works in biomedical question 

answering, including biomedical thesauri and ontology curation. It also describes recent 

developments in document retrieval, named entity recognition, ontology matching, relation 

extraction, and automated question answering. 

Chapter 3 presents PolySearch2 [52], a biomedical association extraction system and 

biomedical domain-specific search engine. PolySearch2 is designed to identify latent 

relationships between biomedical entities as well as mining reference snippets as evidence for 

discovered associations. This chapter also introduces PolySearch2's public web interface, its 

enhancements over the legacy PolySearch [16, 17] system, its underlying methodologies and its 

performance evaluation. PolySearch2 served as a precursor to the development of BioQA. 

Chapter 4 presents BioQA, an automated biomedical question answering system. In this 

chapter I propose a biomedical question-answering framework (the BioQA framework) and 

describe how BioQA was assembled and tested. In this chapter, I describe BioQA's public web 

interface, its underlying knowledgebase BioKB, the collection of algorithms for transforming 

input questions with retrieved knowledge to natural language answer summaries, and discuss its 

performance evaluations results. 

Chapter 5 provides further details on the BioQA’s algorithmic framework for named 

entity recognition, question analysis, concept and snippet retrieval, description generation, 

answer synthesis, and automated paraphrasing. 
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Chapter 6 concludes this thesis by reviewing the research contributions of PolySearch2 

and BioQA, as well as the future directions for further research in biomedical question 

answering. 

This thesis is accompanied with three appendices. In these appendices, automated 

description generation (Appendix A), automated paraphrasing (Appendix B), and other 

information extraction techniques used in the BioQA question answering framework (Appendix 

C) are described in detail. 
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2. Background and Related Works 

In this chapter, I briefly review a number of text-mining techniques related to question 

answering (QA). I also introduce related concepts in natural language processing, machine 

learning, information retrieval and extraction, as well as various evaluation metrics. I also survey 

a number of related works associated with question answering, specific to the biomedical 

domain. This includes biomedical thesauri, ontologies, biomedical information retrieval and 

extraction, and prior studies and reports on automated question answering. 

 

2.1 Text Mining Overview 

Text mining utilizes various techniques in natural language processing (NLP), supervised 

machine learning, unsupervised data mining, information retrieval (IR), and information 

extraction (IE) to extract useful information from free text and format it into a well-defined data 

structure. This section provides a brief overview of the key methodologies and applications used 

in text mining. 

 

2.1.1 Natural Language Processing 

Text mining can be viewed as a specific application of natural language processing 

(NLP) techniques [46, 56], which together with other machine learning and data mining 

methods, can be used to discover useful information hidden in raw text. NLP provides the basic 

tools for analyzing the semantics (or meaning) of a sentence. Processing results from various 

NLP algorithms provide additional information for downstream, supervised machine learning or 

unsupervised data mining. Text mining uses NLP techniques in almost all levels, including but 

not limited to, language modelling, Part-of-Speech (POS) tagging, syntactic parsing, semantic 

role labelling, and summarization. Figure 6 shows some of the steps typically used to process 

documents in preparation for further processing with various natural language processing 

algorithms. These terms and processes are explained in more detail below. 
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Figure 6: flow chart diagram showing steps in processing a text collection with various Natural 

Language Processing techniques. 

 

As can be seen in Figure 6, language modeling plays an important role in NLP. A 

language model is a probability distribution of terms occurring across all documents in a text 

collection. Each text document consists of one or more tokens; each token is a delimited 

sequence of characters. For example, in the sentence “virus contains DNA.”, we have three 

tokens “virus”, “contains”, “DNA”, each of which is delimited by white space. Language 

modelling calculates N-gram (N consecutive tokens) frequencies or skip N-gram (N subsequence 

of tokens that need not be consecutive) frequencies from a given body of text (or sequence of 

terms). N-gram language models can be used to provide probability estimates for multiple word 

terms (N-gram) in a given sentence, and assess its relative importance in a text collection. N-

gram frequency calculation is done by counting the occurrence of each unique N-gram in a 

tokenized text collection, and dividing that count by the total number of tokens in that text 

collection. For example, in a text collection with two sentences: [“virus contains DNA”, “plants 

also contain DNA.”], we have six unique tokens [“virus”, “contains”, “contain”, “DNA”, 

“plants”, “also”]. Each token occurs exactly once, but “DNA” occurs twice, so the probability 
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that the token “DNA” occurs in the text collection is estimated to be 2/7, or 0.2857. Notice that 

tokens “contain” and “contains” are same word in different forms, but are counted as different 

tokens. We can convert different forms of the same word to a unique base form using stemming.   

Stemming is a word transformation technique that trims off the suffix of a word so it is 

reverted back to its common base form (stem). For example, the tokens “trim”, “trims”, 

“trimming”, and “trimmed” are converted to the same base form “trim” via word stemming. 

Quite often we calculate N-gram frequency on a stemmed collection of tokens to take into 

account the fact that words can occur in various forms. For example, after stemming, our 

example text collection now contains only five tokens [“virus”, “contain”, “DNA”, “plant”, 

“also”], and both “DNA” and “contain” now occur twice.  

In building language models, we also need to filter out stop words from a sentence. Stop 

words are words that commonly occur in almost every sentence with little significance in 

probability estimation or language modelling. Some examples of stop words are “is”, “are”, 

“also”, “will”, “does”, “do”, “as”, “were”, “has”. In our example, after removing the stop word 

“also” we have a list of four unique tokens [“virus”, “contain”, “DNA”, “plant”], with “DNA” 

occurring twice and “virus” occurring once. The occurrence probability for “DNA” and “virus”, 

adjusted after removing the stop words, is therefore 2/6 or 0.3333, and 1/6 or 0.1667, 

respectively. Language modelling also estimates the occurrence frequency for terms that are 

missing from the corpus (“out-of-vocabulary” or OOV terms) using various “smoothing” 

techniques. For example, we can assume a word that does not occur in the base text collection 

will likely occur with a fixed low probability. For example, the word “animal” does not occur in 

our example text collection and therefore by smoothing we assign it a low occurrence probability 

of, say, 0.00001.  

We can calculate the occurrence probability of a sentence by calculating the cumulative 

probability of each token in the sentence. Smoothing is needed to ensure the cumulative 

probability does not reduce to zero due to an OOV word occurring in the sentence. Language 

modelling techniques are used widely in NLP applications like document retrieval and text 

clustering. For example, Google uses N-gram language models in its web page retrieval 
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algorithms. The Google N-gram data [33] provides frequency counts for more than 1.1 billion 5-

gram (five consecutive word sequences) calculated from indexed web pages.  

Part-of-Speech (POS) tagging assigns POS tags (e.g. nouns, verbs, adjectives, adverbs 

etc.) to each word in a given sentence. The Penn Treebank Project [58] provides a standardized 

collection of POS tags that are widely used in NLP. There are both rule-based POS tagging and 

probabilistic POS tagging approaches. Rule-based approaches attempt to assign a POS tag to a 

word based on its dictionary entry or via context words in a given sentence. Probabilistic POS 

tagging trains a probabilistic machine learning model to predict a word's most probable POS tags 

using probability estimations from a labelled training dataset (prior probability) and the observed 

sequence of words in the input. For example, the Viterbi algorithm [30] implements a Hidden 

Markov Model (HMM) to perform POS tagging for a sentence by predicting the most probable 

sequence of hidden states (POS tags) from a given sequence of observations (words in a given 

sentence). 

Syntactic parsing converts a given sentence into a syntactic parsed tree, which identifies 

syntactic constituents like noun phrases, verb phrases and prepositional phrases. Semantic role 

labelling (SRL) identifies arguments of predicates (or verbs) in a given sentence. For example, 

the semantic roles in the sentence “ATP synthase converts ADP to ATP.” are:   

[ATP synthase (A0/Subject)] [converts (Verb)] [ADP (A1/Object)] to  

[ATP (A2/Indirect Object)]. 

Figure 7 shows an example of a POS-tagged sentence that includes a syntactically parsed tree, 

the dependency relationships between words, as well as the semantic roles for each constituent. 

As illustrated in Figure 7, this sentence about ATP synthase (the root) consists of a noun phrase 

(NP) and a verb phrase (VP). The NP consists of two proper nouns “ATP” and “synthase'', and 

the VP consists of the main verb “converts'' and another NP. The NP consists of a proper noun 

“ADP'' and a prepositional phrase (PP) “to ATP”. The syntactically parsed tree can therefore be 

converted into a dependency tree illustrating the dependencies between words. In this case, the 

sentence root depends on the main verb “converts”, and the verb is dependent on both the subject 

“ATP synthase” and the objects (“ADP'' and “to ATP'') of the sentence. 
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Semantic role labelling is an important step needed to understand the semantics or 

meaning of a sentence. This process provides a higher level of abstraction than a simple syntax 

tree. This is because semantic role labeling can be used to convert sentences with the same 

semantics but different syntactic variations into the same canonical Predicate Argument 

Structure (PAS) [56]. For example, the following sentence can be written in many forms with 

different syntactic variations: “ADP is converted to ATP by ATP synthase.”, “ATP is converted 

from ADP by ATP synthase.'', “By ATP synthase, ADP is converted to ATP''. However, the 

underlying canonical PAS for all three sentence variants “convert([ADP], [ATP], [ATP 

synthase])'' would be identical. 
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Figure 7: Example of a syntactic parse tree with POS tags, a dependency tree, and semantic role 

labels for an example sentence “ATP synthase converts ADP to ATP.” Tag abbreviations: S 

(sentence), NP (noun phrase), VP (verb phrase), PP (prepositional phrase). NNP (singular proper 

noun), VBZ (verb), IN (preposition). 
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2.1.2 Machine Learning 

Machine Learning (ML) is a subfield of computing science that focuses on building 

mathematical models from example training data and uses those models to assign new input data 

instances (supervised machine learning) or explore characteristics in data without class labels 

(unsupervised machine learning). Supervised machine learning is capable of empirically learning 

classification or regression models from labelled training data (a training set) using statistical 

methods. Once properly trained, machine learning models can predict class labels (classification) 

or values (regression) on novel or unseen data (testing set) based on the learning models. Both 

classification and regression tasks are supervised, as they require the input of labelled training 

data. Classifications, in particular, are commonly used in many information retrieval, 

information extraction, and natural language processing applications. These include part-of-

speech tagging, named entity recognition, sentence chunking, syntactic parsing and semantic role 

labelling. Some of the more popular supervised machine learning approaches used in text mining 

include Support Vector Machines (SVMs), Hidden Markov Models (HMMs), Naive Bayes 

Classifiers, and Conditional Random Fields (CRF) [56].  

While classification and regression require labelled training data, unsupervised machine 

learning or data mining [85] does not require such labelled training data. Data mining techniques, 

such as cluster analysis and association analysis, are capable of discovering useful patterns from 

unlabeled data. Cluster analysis assigns data objects to groups called clusters, based on data 

object attributes and a defined measure of their similarity or difference. Popular clustering 

methods include K-means clustering, agglomerative hierarchical clustering, and density-based 

clustering [85]. For example, clustering analysis can be used to organize sentences in a paragraph 

into groups based on the terms in each sentence. Association analysis discovers interesting 

relationships hidden in large data sets. The discovered relationships take the form of association 

rules, which map a set of data objects to another associated data object with a certain degree of 

support and confidence. An advantage of data mining over supervised machine learning is that 

data mining is capable of making data-driven inferences without requiring labelled training data. 

Data mining has many applications in text mining, including document categorization, term 

mapping to concepts in a target ontology, and discovering implicit connections between 

concepts.  
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2.1.3 Information Retrieval 

Information retrieval (IR) fetches relevant documents from a document collection in 

response to user queries expressed in the form of search keywords. Google, a widely used web 

search engine, can be considered an IR system that retrieves relevant web pages (documents) 

from all indexed web pages on the World Wide Web (a very large document collection). 

PubMed, a biomedical article search engine, is yet another example of an IR system that 

retrieves relevant articles among published biomedical articles using Boolean keyword queries 

[66, 67]. Document indices are used in IR systems to ensure rapid and effective retrieval.  

IR systems typically organize documents in a document collection using an inverted 

index. An inverted index is a lookup table mapping a keyword in a document collection to the 

list of documents containing that keyword. IR systems select relevant documents based on user-

defined search keywords by fetching documents with index keywords that either match the 

search keywords or which achieve a certain heuristic matching/relevancy score. IR systems score 

and rank the retrieved document list according to predefined criteria, and return to the user a 

ranked list of relevant documents (hits). The criteria for ranking retrieved documents are 

application specific and can vary from one application to another. For example, Google ranks 

web pages found using search keywords through link structures in the web using its PageRank 

[8] algorithm. On the other hand, Google Scholar ranks retrieved publications by citation 

frequency, and PubMed ranks MEDLINE entries by publication date. IR systems often transform 

and represent documents in a Vector Space Model [46] for more efficient and accurate document 

retrieval. A document can be represented as a “bag of words” with certain word frequency 

counts. This representation transforms a free-text document to a numerical vector, with each 

element in the vector corresponding to occurrence frequency for a word (or N-Gram) in a given 

document. The collection of unique words (or N-Grams) occurring in all documents defines the 

vocabulary. In this model, each word represents a dimension in the Vector Space Model, while 

the size of the vocabulary dictates length of document vector. This is because each document 

vector must contain the same number of elements as the vocabulary. A Vector Space Model can 

have very high dimensionality, quite often on the order of tens or hundreds of thousands of 

dimensions. This is because each dimension implicitly represents a topic (a key phrase, or word 

sequence), while each document represents a vector in this space spanning by the topics 
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(dimensions) it discusses. We use the phrase term frequency (TF) as an occurrence frequency 

measure in a document vector. Weighting terms based solely on term frequency tends to 

emphasize highly popular terms and understate rare terms in a document. However, documents 

can be better distinguished on rare terms that characterize each document. So we also need to 

consider Inverse Document Frequency (IDF), which measures the rareness and importance of a 

term according to the number of documents containing such a term. The intuition is that a term 

occurring in many documents is less discriminative than another term occurring in only a few 

documents. Term Frequency - Inverse Document Frequency (TF-IDF) weighting balances term 

weighting by combining both Term Frequency measure and Inverse Document Frequency, 

tf-idft,d = tft,d × idft 

In the above formula, tft,d is the occurrence frequency of term t in document d, and idft is 

inverse document frequency of term t, which is defined as: 

idft  =  log
N

|{d ∈ D ∶ t ∈ d}|
 

where N is the number of documents in the collection, and |{d ∈ D ∶ t ∈ d}| is the number of 

documents d containing the term t. 

Representing documents through a Vector Space Model enables us to perform vector 

calculations for documents. For example, we can calculate the similarity between two documents 

using the Cosine similarity measure. Since each document is a vector in the Vector Space Model, 

we can define a similarity measure between two documents according to the Cosine value of the 

angle formed by their corresponding document vectors: 

similarity(A, B) =  cos(θ)  =  
∑ AiBi

n
i=1

√∑ Ai
2n

i=1  √∑ Bi
2n

i=1

 

In the above formula, A and B are document vectors, and θ is the angle between A and B. 

Cos(θ) represents the similarity between documents A and B. Ai and Bi are occurrence 

frequency measures (e.g. TF-IDF) for word i (in the vocabulary of size n) in vector A and B, 

respectively. Figure 8 shows a conceptual illustration for the angles between two document 
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vectors in a vector space models. The angle θ between the two documents defines their 

similarity. Cosine similarity is bounded by the interval [0, 1]. Therefore cos(θ) = 1 when two 

document vectors are identical or very highly similar, and cos(θ) =  0 when two document 

vectors are completely opposite or maximally dissimilar to each other. 

 

Figure 8: Illustration of the similarity measure between to document vectors in a vector space 

model. 

 

Information retrieval serves as a basic building block for many text mining systems, so 

there is a clear need for an effective IR system in any practical text mining project. Recently, the 

Apache Software Foundation provided developers with an open source IR engine through the 

Apache Lucene project [38]. Lucene utilizes an efficient data structure (the Lucene index) to 

index and organize gigabytes of text documents onto a hard disk. ElasticSearch [71], an 

enterprise search engine built on top of Lucene, improves scalability and reliability of document 

retrieval by using a collection of distributed shards (Lucene indices) with the ability to 



22 

 

dynamically duplicate and shuffle documents between shards for higher reliability and 

efficiency. Each shard (Lucene index) is a structured collection of documents (JSON objects) 

formatted and indexed for fast retrieval from disk. An ElasticSearch server is essentially a 

collection of machines (nodes), each maintaining one or more shards. ElasticSearch dynamically 

duplicate documents between shards to improve reliability, and it also dynamically shuffles 

documents to recently requested shards to improve document retrieval efficiency. Lucene and 

ElasticSearch [71] are just two among many open source IR systems that are making document 

retrieval much easier and more scalable for open source projects that require efficient retrieval of 

documents from enormous flat file document collections. 

 

2.1.4 Information Extraction 

Information extraction focuses on extracting Named Entities (NEs) and their relationships 

from surface text. Surface text, which is also known as raw text, are expressions that are actually 

used in a sentence, and are implicitly used in mapping concepts in a knowledge domain. The task 

of Named Entity Recognition is the explicit mapping between expressions (surface text) and 

their semantic meanings (concepts) they represent. In the open domain, information extraction 

focuses on the extraction of NEs such as names of companies, people, and places. A naive 

method for named entity recognition (NER) is to use simple dictionary matching. However, 

dictionary-based term matching is often insufficient to extract all NEs, as one typically does not 

have the complete knowledge of all entity names, their synonyms, and their various surface 

forms in written text. Therefore, linguistic or statistical methods, such as rule-based or machine 

learning-based methods, are used for more precise information extraction. Rule-based systems 

require the curation of extraction rules, which are derived by domain experts. Alternately, these 

rules can be generated automatically through machine learning methods followed by manual 

curation. Machine learning-based approaches require the curation of labelled training data and 

the choice of classification features and classification models. Both approaches benefit from 

open domain resources (e.g. WordNet [62]) or domain specific lexicons. Rule-based information 

extraction systems are usually high in precision but low in recall, while machine learning-based 

systems are usually high in recall but low in precision. Due to their complementary strengths and 
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weaknesses, rule-based and machine learning-based methods can be combined to form better 

performing hybrid approaches for NER. NER tasks are non-trivial as they require considerable 

amount of time and effort by domain experts, either by creating hand-crafted rules or creating 

labelled training data. 

Once NEs are recognized from raw text, the next step is mapping them to a target 

ontology. The English language is inherently ambiguous, as the same word can often refer to 

different concepts in different contexts. The situation is worse in biomedicine as there is an 

unusually large number of potentially ambiguous or even conflicting synonyms, acronyms, 

hypernyms and hyponyms. For example, the medical disorder autism can be referred to as 

autistic disorder, Kanner’s Syndrome, autistic spectrum disorder, ASD or Asperger’s syndrome. 

However, the acronym ASD in biomedicine can also refer to acute stress disorder (another 

medical disorder), anti-seizure drug (a medication), Aspartate-semialdehyde dehydrogenase (an 

enzyme), atrial septal defect (a medical condition), and possibly many other concepts in specific 

subdomains. Therefore, extracted NEs need to be normalized, converting from a surface form to 

a canonical form, and disambiguated if there is more than one matching concept in a reference 

ontology. 

The next step in information extraction is determining the relationships between pairs of 

named entities. In situations where reference ontologies exist and the relationships between 

concepts in the ontology are well-defined, then the relationships between NEs can be easily 

derived from the relationships between concepts in the ontology. In cases where there are no 

reference ontologies, relationships can be predicted from concept co-occurrence within the text 

and their syntactic dependencies, semantic roles, or frequency of co-occurring terms. Extracted 

NEs and their relationships represent assertions, facts or knowledge distilled from text. This kind 

of knowledge can be represented using the Predicate Argument Structure (PAS), which defines 

the basic semantic unit of actions. For example, knowledge extracted from the sentence “ATP 

synthase converts ADP to ATP.'' can be represented as “convert([ADP], [ATP], [ATP 

synthase])'' in PAS using the predefined structure “action([source], [product], [enzyme])''. 

Knowledge represented in PAS can be used for further inference and in generating candidate 

answers for question answering. In the open domain, the FrameNet project [11] represents each 
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event using a semantic frame. This approach captures the type of the event, the entities 

participating in the event and their relationships to each other. 

 

2.1.5 Evaluation Metrics 

 In machine learning, we use a special scoring structure called a Confusion Matrix to 

evaluate prediction results. A Confusion matrix assigns predictions to various categories, based 

on the actual label and the predicted label generated from a prediction algorithm.  

Table 1 shows a confusion matrix defining True Positives (TP), False Positives (FP), False 

Negatives (FN), and True Negatives (TN). In machine learning, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is often used to 

measure the fraction of correct predictions among all predictions: 

Accuracy =  
TP + TN

TP + FP + TN + FN
 

 

Accuracy places equal importance on True-Positives and True-Negatives, so a system with high 

accuracy can be accurate in making True-Positives predictions, True-Negative prediction, or 

both. 
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 Predicted Label 

Positive Negative 

Instance 

Label 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Table 1: Confusion Matrix showing the evaluation metric for prediction results. TP denotes the 

number of True-Positives, FP denotes the number of False-Positives and FN denotes the number 

of False-Negatives. 

 

To measure the quality of positive predictions a system predicts, we can use Precision 

(P), Recall (R), and F-measure (F). Precision, recall, and F-measure are often used as evaluation 

metrics in machine learning and text mining, but they may have different meanings in different 

contexts. In Information retrieval, precision is the fraction of retrieved documents that are 

relevant, and recall is the fraction of relevant documents that are actually retrieved. In supervised 

classification, precision is the fraction of data objects with correctly predicted labels, and recall is 

the fraction of data objects predicted with a certain class label among all data objects labelled 

with that same class label. F-measure combines precision and recall into a single score and 

reflects a system's overall performance. Precision, recall, and F-measures [37] are defined as 

follows: 

Precision (P) =
TP

TP + FP
  

Recall (R) =  
TP

TP + FN
 

F − measure (F) =  
2 × P × R

P + R
 

where P stands for precision, R for recall, F for F-measure.  
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When evaluating a system's performance in multiple runs of classifications or retrieval 

results for multiple queries, we use the notion of Average Precision (AP), Average Recall (AR), 

and Average F-measure (AF) by simply taking the arithmetic means of precision, recall, and F-

measure values across multiple classification or query retrieval runs. 

Average Precision (AP) =  
1

n
∑ Pi

n

i

 

 

Average Recall (AR) =  
1

n
∑ Ri

n

i

 

 

Average F-measure (AF) =  
1

n
∑ Fi

n

i

 

Where 𝑛 is the number of classification or query retrieval runs. 

In information retrieval, we need to further discriminate systems based on both the 

content and the order of the retrieval results. This is because information retrieval systems, like 

search engines, need to rank retrieved documents in an ordered list. For example, two search 

engines returning the same collection of documents in a different order would show the same 

accuracy, precision, recall, and F-measure. However, the search engine that ranks more relevant 

documents higher in its results is superior to the one that shows more irrelevant documents at the 

top of its list. Therefore, we need to introduce the notion of Non-Interpolated Average Precision 

(NAP), Mean Average Precision (MAP) and Geometric Mean Average Precision (GMAP) [88, 

89]. 

Noninterpolated Average Precision (NAP) =  
∑ P(r) × rel(r)

‖L‖
r=1

‖LR‖
 

Non-interpolated Average Precision considers both the content and the order of retrieved results. 

‖L‖  is the number of retrieved documents, and ‖LR‖ is the number of relevant documents in 
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‖L‖. Pris the precision of the first r retrieved documents (fraction of relevant documents among 

the first r retrieved documents), and rel(r) is a boolean function which equals to 1 if the r 

document is relevant and 0 otherwise. In this definition, NAP weights each relevant retrieved 

document by its ranking in the ordered list of results. 

To evaluate the performance of a system over multiple runs or retrieval queries, we can 

average over all non-interpolated averaged precision values using either an arithmetic mean or a 

geometric mean as follows. 

Mean Averaged Precision (MAP) =  
1

n
∑ NAPi

n

i=1

 

 

Geometric Mean Average Precision (GMAP) =  √∏(APi +  ϵ)

n

i=1

n

 

In the definition of MAP and GMAP, n is the number of documents in the retrieved list 

and ϵ is a small value that adds to NAPi to avoid zeroing the product of  NAPi on queries 

retrieving entirely irrelevant results. As we can see in these definitions, GMAP places more 

emphasis on retrieval results with low average precision and an information retrieval system's 

overall performance. 
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2.2 Related Work 

Building a biomedical question answering system requires solutions to following 

challenges: 1) Document Retrieval, the retrieval of relevant documents in a large document 

collection; 2) Named Entity Recognition, the recognition and normalization of biomedical 

entities mentioned in raw text; 3) Ontology Mapping, mapping named entities to a target 

ontology; 4) Relation Extraction, the extraction of entity relations; and finally 5) Question 

Answering engines, which analyze question types, generating, scoring, and ranking candidate 

answers, and synthesizing the final natural language answers. This section discusses a number of 

related works or previously published examples for each of the aforementioned challenges. 

 

2.2.1 Biomedical Thesaurus, Lexicons, and Ontologies 

Over the past decade, much effort has been directed at curating domain specific 

thesauruses (or thesauri), lexicons and ontologies for biomedicine. Thesauruses typically provide 

names of biomedical entities, their synonyms and acronyms. Lexicons provide word senses and 

categorize terms into a hierarchy. Ontologies specify entities, their attributes and relationships 

with other entities in the same or different domains of interest. Many biomedical thesauri, 

lexicons, and ontologies exist, each of them serving different purposes. Here I will describe a 

few ontologies, thesauri and lexicons that are most relevant to this research, including Gene 

Ontology, MeSH, UMLS, and BioLexicon.  

Gene Ontology (GO) [6] is one example of an ontology that provides a controlled 

vocabulary to describe gene product characteristics. The three major taxonomies in GO are 

cellular components, molecular functions, and biological process. Medical Subject Headings 

(MeSH) [81] is another example of an ontology that provides a controlled vocabulary to index 

biomedical publications for effective retrieval in the PubMed search engine. Unified Medical 

Language System (UMLS) [14] is a meta-thesaurus combining medical terminologies from 

SNOMED CT, MeSH, Gene Ontology, OMIM, and several other databases, for use in clinical 

text mining applications. The PolySearch thesauri [16, 17] are a collection of thesauri that 

contains comprehensive dictionaries of gene, protein, organ, tissue, subcellular compartments, 
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diseases, drugs, and metabolites extracted from various high quality knowledge bases and 

ontologies. The joint chemical dictionary (Jochem) [39] is a dictionary of chemical names for the 

identification of drugs and metabolites in text. BioLexicon [87] is a biological lexicon that 

provides a dictionary of terminologies extracted from large public bioinformatics data resources, 

along with their surface form variations and frequency counts calculated from MEDLINE 

abstracts. As essentially all biomedical literature is written in English text, open domain 

linguistic resources such as WordNet [62], VerbNet [83] can also be used to mine biomedical 

text. WordNet [62] is a lexical database of the English language. WordNet contains nouns, verbs, 

adjectives, and adverbs organized in collection of cognitive units (synsets). Each synset contains 

a set of synonyms (interlinked by their semantic relations) expressing a distinct concept. VerbNet 

[83] is a similar lexical database to WordNet, but it focuses on verbs and their semantic relations 

found in the English dictionary. 

 

2.2.2 Document Retrieval 

Document retrieval has many applications in QA. For instance, document retrieval can be 

used to retrieve relevant MEDLINE abstracts among millions of raw text documents, or it can be 

used to retrieve relevant data in a knowledgebase (e.g. UniProtKB), or relevant concepts in an 

ontology. PubMed is the primary tool for document retrieval for biomedical literature [66, 67]. It 

is part of NCBI’s Entrez retrieval system and it provides efficient search interface to more than 

20 million MEDLINE publications. As PubMed provides a public API, numerous other 

document retrieval systems have been developed based on PubMed to facilitate better result 

ranking, easier document navigation, and improved information digestion. 

Here I will highlight three online MEDLINE/document retrieval systems: PolySearch, 

GOPubMed and EBIMed. PolySearch [16, 17] supports queries of the form: “given X, find all 

Ys”, where X and Y could be diseases, tissues, cell compartments, gene/protein names, SNPs, 

mutations, drugs and metabolites. Results are ranked by biomedical entities, and supporting 

evidence are scored by the frequency of concept co-occurrence. PolySearch provides an efficient 

way to formulate hypothesis for discovering hidden relations between biomedical entities. 

GOPubMed [22] is a knowledge-based search engine for MEDLINE citations. GOPubMed 



30 

 

recognizes Gene Ontology (GO) terms mentioned in MEDLINE abstracts and labels text sections 

with GO terms. By indexing MEDLINE using GO terms, GOPubMed users can navigate 

MEDLINE through GO or UMLS concepts, instead of generic MeSH indexing. EBIMed [79] 

searches MEDLINE through user defined Boolean queries and digests the returned abstracts by 

recognizing gene/protein names, GO annotations, drugs, and species names. EBIMed then 

extracts entity relationships from the search results. Many other interesting document retrieval 

systems exist and many of these are described in more detail in a recent survey by Lu et al. [54]. 

Many structured biomedical databases provide application programming interfaces, or 

APIs, that allow text mining programs to access database content over the Internet. As 

information about a single biomedical entity may be scattered in many databases, there is a need 

for effective data capture and consolidation from multiple databases. BioSpider [49] is an 

example of a program that was developed to address this issue. Given a search query term, 

BioSpider crawls multiple biomedical databases, then fetches useful information regarding single 

biomedical entities. Similar to PolySearch, BioSpider also retrieves entity relations. However, in 

contrast to PolySearch, BioSpider only retrieves existing relations as they are specified in a 

reference database. DataWrangler [45] is a recently developed program for automated 

aggregation of chemical compounds, proteins, reactions, and pathway annotations across 

multiple database. In contrast to PolySearch, DataWrangler focuses on finding annotations for a 

compound by searching protein, reaction, and pathway annotation databases.  

 

2.2.3 Named Entity Recognition 

Named entity recognition (NER) involves the extraction of terms denoting real world 

entities, such as the names of people and places from raw text. The major approaches used in 

NER are lexicon-based, rule-based, and statistics-based. Lexicon-based methods rely on term 

dictionaries and thesauruses for exact or approximate term matching. Rule-based method 

exploits hand-crafted or machine-learned rules, usually expressed in the form of regular 

expressions, to identify specific text string patterns that extract the terms of interest. Statistical 

methods learn classification rules by training on a dataset through statistical machine learning 

techniques; these methods then classify novel terms to their categories. Because different NER 
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methods have different strengths and weaknesses, there are now several NER systems that 

combine all three types of NER approaches to improve performance. 

In the biomedical domain, NER tasks typically involve the recognition of genes, proteins, 

diseases, drugs, and chemicals from raw text. In the category of lexicon-based methods, Gerner 

et al. described LINNAEUS [32], a species name identification system using the species names 

from the NCBI taxonomy database as their base name dictionary. LINNAEUS exploits hand-

crafted rules to resolve name variants and abbreviations. As an example of a rule-based NER 

method, Narayanaswamy et al. [65] presented a method to recognize gene/protein and chemical 

names using a set of hand-crafted rules, and then categorized the extracted named entities based 

on surrounding keywords. Both lexicon-based and rule-based approaches obtain high precision 

but low recall if a novel term is not captured in the lexicon or expressions containing the key 

term do not fit any matching rules. On the other hand, statistical methods are capable of 

recognizing novel terms with machine-learned classifiers. For example, Akella et al. presented 

NetiNeti [1], a statistical NER system to recognize novel species names and species name 

misspellings using machine-learned classifiers. Given a paragraph of text, NetiNeti generates 

trigrams, bigrams, and unigrams as species name candidates, and then classifies each N-gram as 

being a species name (or not) using a Naive Bayes classifier. 

 

2.2.4 Ontology Matching 

In many text mining scenarios, extracted NEs need to be mapped to concepts in a target 

ontology. This concept mapping step effectively disambiguates the extracted concept, connecting 

an entity name to a concept in an ontology. This defines its meaning and relationship to other 

entities in the same ontology. Concept mapping can be formulated as a document retrieval 

problem, where the extracted NE is treated as a search query and the target ontology as a 

document (concept) collection. For example, Kim et al. [48] showed how it was possible to map 

sentences to UMLS concepts using an unsupervised information retrieval model and clustering. 

They retrieved concepts in UMLS as relevant documents to a given sentence (the search query) 

and selected representative concepts from concept clusters. Concept mapping can also be 

formulated as an information extraction problem, where entities are matched to concepts having 
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the highest degree of lexical or semantic similarity. For example, GOPubMed [22] recognizes 

terms in MEDLINE corresponding to concepts in the Gene Ontology (GO) collection. Noting 

that GO terms, if mentioned in the text, seldom occur as they appear in the Gene Ontology, 

GoPubMed maps different English expressions to GO terms using approximate string matching.  

In particular, the most general text token in a given expression is used to retrieve relevant GO 

terms, and these GO terms are progressively refined using more specific terms in the expression 

[22]. 

Mapping extracted NEs to a target ontology is a data integration task that is associated 

with a certain degree of uncertainty. In particular, the data sources where NEs are extracted may 

not be perfect, and the mappings between extracted NEs and the target ontology may not be 

certain. Dong et al. [23] address this “data integration with uncertainty” problem by introducing 

a probabilistic schema-mapping framework, which attaches probabilities to each named entity to 

concept mapping tuple. With a probability attached to each mapping tuple, the top K answer 

tuples are retrieved to answer an input query. Dong et al. shows that this probabilistic schema 

mapping framework is able to handle uncertainty in multiple levels including underlying data for 

extracting NEs, mapping schema between NEs and target ontology, and also input queries.  

Once terms are mapped to a target ontology, it is possible to assess the semantic 

similarities between terms using the relationships between their corresponding concepts. 

Ontology-based semantic similarity can be edge-based or node-based. Edge-based semantic 

similarity counts the number of edges between two concepts in an ontology, and node-based 

semantic similarity examines ancestors and children of both concepts and then calculates the 

similarity based on the information content (IC) of these nodes [74]. 

 

2.2.5 Relationship Extraction 

It is possible to extract or predict relationships between pairs of named entities co-located 

in raw text from their textual context. Relationship extraction is usually built on top of the results 

of shallow syntactic parsing and semantic role labeling.  More specifically, extraction and 

conversion rules are used to convert the parsed sentence into “relation tuples” or predicates. 
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Machine learning methods can be used to score and select the final set of extracted tuples. In the 

biomedical domain, there has been a great deal of attention focused on extracting protein-protein 

interactions (PPI), as highlighted by the BioCreative challenges [50]. The BioCreative challenges 

were competitions designed motivate researchers to improve extraction accuracy on PPI.  This 

led to many publications on mining PPI from text [102]. Recently, the research community has 

turned their attention to extracting and predicting other relation types, such as disease-drug, and 

food-disease relations [101]. Relation extraction for biomedical entities will likely remain as one 

of the most active topics in biomedical text mining for the next few years. 

 

2.2.6 Question Answering 

All of the aforementioned techniques are necessary to create and curate suitable 

knowledgebases for question answering.  However, developing an effective question answering 

engine is equally important, as specific question answering techniques are needed to generate 

sensible answers for questions typically posed by users. Even though methodologies and 

applications for different QA systems may vary, the underlying architecture is generally quite 

similar. Figure 9 shows the general architecture of a stereotypical QA system, as described by 

Athenikos et al. [7]. In the question processing phase, a QA system first identifies the question 

type and the answer type (question analysis) from the question posed by users. It then converts 

the posed question into a well-formatted search query (query formulation). The converted query 

is then searched against a knowledge base or document collection for relevant documents, 

passages, or database entries (document retrieval). The QA system then generates candidate 

answers based on the search results (candidate generation). It also gathers evidence for each 

candidate through further searches and then scores and ranks them (candidate scoring and 

ranking). Finally, the most probable answer candidate is chosen based on ranking and other 

filtering criteria, and used to synthesize the final answer with evidence (answer synthesis). 
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Figure 9: General architecture of a QA system. This figure is based on a figure found in 

“Athenikos, S.J., and Han, H. (2010) Biomedical question answering: A survey. Computer 

Methods and Programs in Biomedicine, 99(1):1-24, July 2010.” 

 

Athenikos et al. categorized open domain QA systems into three categories: 1) semantic-

based; 2) inference-based, and 3) logic-based systems. Semantic-based QA systems exploit 

lexicon-semantic information extracted from documents. Inference-based QA systems make use 

of inference rules to make inferences based on question clues and existing assertions. Logic-

based QA systems employ explicit logic formulations and theorem-proving techniques to answer 

questions usually posed as logical statements that can be proved or disproved [7]. In recent years, 

many different QA systems have emerged to answer practical questions in both open and 

specialized domains. IBM’s Watson program, with its QA engine called DeepQA, defeated 

human contestants in the famous quiz show Jeopardy! [36]. DeepQA is mostly a semantic-based 

QA system, but it is also capable of generating answer candidates using inference and logic. 

DeepQA relies on the PRISMATIC knowledge base, which contains a set of semantic units 

called “frames'' capturing entities and their relations extracted from a free text corpus like the 
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Wikipedia [24]. DeepQA determines the type of answer, or Lexical answer types (LATs), from 

the given question. DeepQA then uses multiple approaches to generate candidate answers 

through its extensive knowledgebase, its database, and various web searches. The supporting 

evidence retrieval unit of DeepQA then retrieves text passages containing a candidate answer 

and relates them back to the original question. Candidate answers with evidence passages that 

are more relevant to the original question receive a higher score and a better ranking. In addition 

to its exceptional question answering capabilities, DeepQA also has a module that determines 

when to bet, which question to bet on, and how much to bet in order to maximize its final game 

score. I will not go into the details here as the betting module is irrelevant to correctly answering 

a question that has been posed, and thus not particularly relevant to the proposed research.  

Building on the success of Jeopardy!, IBM is currently adapting DeepQA as a clinical 

support system to assist health care providers in making treatment decisions [10]. Over the past 

decade, another company called SRI international conducted yet another large-scale question 

answering project: Project Halo [25]. This project aims at creating a “digital Aristotle'' that 

assists students to learn and scientists to perform their daily research. In contrast to DeepQA, 

project Halo takes an inference-based QA approach. Project Halo employs dozens of trained 

knowledge engineers and domain experts to encode textbook knowledge from textbooks as 

machine readable ontologies and inference rules, which would enable intricate inference and 

answer explanation. Project Halo has been reported to be able to answer questions at the 

Advanced Placement test level. Project Halo continues to advance towards the goal of answering 

college level and advanced research level questions. Despite their success in answering open 

domain questions, both DeepQA and Project Halo are not yet publicly available. In contrast, 

True Knowledge [91] and Wolfram Alpha [99], two commercial open domain QA systems, are 

available over the Internet. True Knowledge is a semantic-based QA system and it uses a similar 

approach as DeepQA. Methodologies and implementation details of Wolfram Alpha are unclear 

due to the limited number of publications for this commercial system.  

In the biomedical domain, QA systems can be classified roughly into two categories: 

clinical QA systems and biological QA systems. Many recent biomedical QA systems focus on 

providing support to disease diagnosis and clinical decision making; therefore, they fall into the 

clinical QA category. Biological QA systems, on the other hand, are more focused on answering 
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broad questions posed in biological research that are also interesting to the medical community. 

To the best of our knowledge, very few biological QA systems exist and none of them are 

publicly available or web accessible. Takahashi et al. [84] proposed to build a semantic-based 

biomedical QA system in 2004, but no implementation details are provided. Gu et al. [34] built 

BioSquash, a QA-oriented multi-document summarization system, which summarizes relevant 

documents for a given question and presents the summarization as an answer. The source code 

for BioSquash is available upon request but no web interface is provided for the public. Anwar et 

al. [2] proposed a framework called BioPathQA that specialized in answering user queries about 

biological pathways. BioPathQA uses Petri Nets to encode biological pathways and it also 

supports pathway simulations. BioPathQA requires that the user compose queries in 

BioPathQA's specialized logical query language, and does not support natural language queries 

or provide textual answers. BioPathQA has been proposed as a framework and no public server 

or API is available to serve the general public.  

With the emergence of several publicly accessible biomedical QA systems there is now a 

growing need to provide a common platform for evaluating biomedical QA systems. This need is 

what has motivated the series of BioASQ challenge. BioASQ (http://bioasq.org) is a semantic 

question answering competition with two well-defined shared tasks. Task A challenges 

participants to automatically index novel MEDLINE abstracts with MeSH tags; Task B 

challenges participants to annotate given natural language questions with relevant articles, text 

snippets, and RDF triples from designated document and concept repositories (Phase A), and 

eventually return an “exact” and “ideal” answer in natural language (Phase B). Participants are 

allowed to process a challenge question set and submit answers within 24 hours. Submission 

results are evaluated both automatically and manually by a panel of biomedical experts. Much 

more detail about the BioASQ challenge is provided in Tsatsaronis et al. [88, 89]. 

In this thesis, I will present both a framework and a prototype, web-based biomedical QA 

system called BioQA. BioQA falls into the semantic based category of biological QA systems. 

This is because BioQA relies on information extracted from databases and text snippets from 

relevant sentences to synthesize its answers. As a biological QA system, BioQA focuses on 

answering general questions that arise in the biological and biomedical domains, and not clinical 

questions specific to medicine. I developed BioQA to answer biomedical questions posed by 
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medical researchers, life scientists, life science students and the general public. Over the next 

two chapters I will describe PolySearch2, a core building block in BioQA, as well as BioQA 

itself.  
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3. PolySerach2: A Text Mining Framework 

A critical task in biomedical question answering and biomedical text mining is the 

discovery of potential associations between various types of biomedical entities or subjects. This 

chapter introduces PolySearch21 (http://polysearch.ca), an online text-mining system for 

identifying relationships between biomedical entities such as human diseases, genes, SNPs, 

proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, 

positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, 

ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a 

generalized “Given X, find all associated Ys” query, where X and Y can be selected from the 

aforementioned biomedical entities. In this chapter, we introduce the PolySearch algorithm, then 

we describe the PolySearch2 web server, and its improvements over the original PolySearch 

system. Finally, we evaluate the performance of PolySearch2 versus the original PolySearch 

system and discuss limitations and future works.   

 

3.1 Introduction 

Keeping pace with the rapidly growing body of biomedical literature is proving to be 

almost impossible. According to a study by Baasiri et al. [9] a researcher would have to scan 130 

different journals and read 27 papers per day to follow a single disease, such as breast cancer. A 

more recent study by Lu et al. [54] showed that the total number of references in MEDLINE, a 

central repository for scientific articles in the biomedical domain, now exceeds 25 million and is 

growing at more than 4% each year. It is also evident that a considerable amount of useful 

biological or biomedical knowledge is essentially buried in the form of free text, waiting to be 

found and transformed into more accessible formats. Swanson referred to such phenomena as 

“undiscovered public knowledge” [13]. The enormous challenges associated with keeping up or 

                                                 
1 Portions of this chapter were published in Nucleic Acids Research under the reference of “Liu, 

Y., Liang, Y., Wishart, D. (2015) PolySearch2: a significantly improved text-mining system for 

discovering associations between human diseases, genes, drugs, metabolites, toxins and more. 

Nucleic Acids Res. 2015 Jul 1;43(W1):W535-42. doi: 10.1093/nar/gkv383. on April 29, 2015. 

http://polysearch.ca/
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digging through this undiscovered public knowledge, especially in the area of biomedical 

knowledge, has led to the development of a number of text mining tools aimed at supporting 

biomedical text extraction, fact finding and text summarization. Some of the better-known or 

more widely used tools include EBIMed [79], CiteXplore [59] and GoPubMed [22]. Their intent 

has been to help life science researchers keep pace with the exploding quantity of scientific 

literature and to facilitate the discovery or re-discovery of important facts or unexpected 

associations. The latter task of “association discovery” is of particular interest and is typified by 

queries such as “Find all genes that are associated with a given disease” or “Find all drugs that 

target a specific protein” or “Find all toxins that damage a specific tissue”. These are queries that 

are either not easily performed or impossible to perform through a regular PubMed search. To 

address this task of association discovery we previously developed a relationship or association 

mining tool called PolySearch [16, 17]. PolySearch was one of the first web-enabled text mining 

tools to support comprehensive and associative text searches of PubMed abstracts.  Specifically, 

the original version of PolySearch supports 'Given X, find all associated Y's' types of queries, 

where X and Y are biomedical terms pertaining to human health and biology. X's can be genes, 

SNPs, proteins, diseases, drugs, metabolites, pathways, tissues, organs, and sub-cellular 

organelles or structures, or a general text keyword; while Y's can be any or all types mentioned 

above. PolySearch's search strategy is based on a critical assumption that the greater the 

frequency with which an X and Y association occurs within a collection of sentences or database 

records, the more significant the association is likely to be. For example, if Bisphenol A (BPA) is 

mentioned 615 times in PubMed as being associated with breast cancer, and only 8 times being 

associated with colon cancer, then one is more likely to have higher confidence in the potential 

BPA-breast cancer association over the BPA-colon cancer association. 

PolySearch has proven to be both popular and effective with >20,000 users and >150 

citations. It has also served as an important text-mining and annotation system for the curation of 

a number of metabolomics databases including DrugBank [51], HMDB [98], T3DB [97], YMDB 

[44], and ECMDB [35]. PolySearch has also been used to assist in disease gene discovery [64] 

[29], protein-protein interaction studies [86, 78], microarray data analysis [26], metabolome 

annotation [35, 44, 77, 98], biomarker discovery [73], as well as in building and assessing other 

biomedical text-mining tools [43, 90]. PolySearch has also been featured in many published 
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biomedical text-mining surveys and tutorials [27, 54, 64]. However, a key limitation with 

PolySearch has been the long search times (2-3 minutes), its limited synonym set (thesauri) and 

its relatively small number of searchable databases. Indeed, since its introduction in 2008 many 

other searchable databases and electronic free-text collections have become available and many 

technological improvements in web interface design, text searching and text mining have taken 

place.  Likewise, many PolySearch users have requested more search options such as MeSH 

terms, adverse health effects, animal taxonomies, medical terms, Gene Ontology and chemical 

ontology terms. In response to these requests and many ongoing technical developments we have 

created a second, much improved version of PolySearch (PolySearch2, available online at 

http://polysearch.ca). This faster (up to 25X) and much improved version now has a far more 

robust underlying framework.  It also includes a much larger collection of databases (20 vs. 7), 

search terms pairs (308 vs. 66), thesauri (20 vs. 9), terms (1,131,328 vs. 57,706) and synonyms 

(2,848,936 vs. 353,862) as well as a substantially improved and modernized interface and its 

underlying search algorithms. We have also upgraded the physical server to further improve its 

performance. A complete description of the new, updated PolySearch2 server follows. 

 

3.2 The PolySearch algorithm 

PolySearch supports 'Given X, find all associated Y's' types of queries, where X and Y 

are biomedical terms pertaining to human health and biology. This section describes the 

PolySearch algorithm, which is fundamental to both the original PolySearch [16, 17] and 

PolySearch2. In this section, “PolySearch” refers to the PolySearch algorithm and not specific to 

the original PolySearch web server. 

PolySearch's search strategy is based on an assumption that the greater the frequency 

with which an X and Y association occurs within a collection of sentences or database records, 

the more significant the association is likely to be. PolySearch uses a text ranking scheme to 

score relevant sentences containing the query and other relevant biomedical terms. The text 

ranking scheme assigns relevancy scores to pertinent sentences and text paragraphs according to 

their “strength” as supporting evidence for potential associations. Given a query term, 

PolySearch first retrieves relevant documents from document collections and breaks each 
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document into individual sentences. PolySearch then scans each sentence and tries to find the 

query term, the association words, and related thesaurus words derived from the query and 

association words. Each relevant sentence, based on the frequency and placement of query, 

association, and/or thesaurus terms, is classified into four categories [R1 (best), R2, R3, R4 

(worst)], in decreasing order of relevancy to the search query. An R4 sentence only contains one 

or more thesaurus terms. Typically, R4 sentences provide baseline statistics of the occurrence 

frequency of thesaurus terms in documents relevant to the query term. An R3 sentence contains 

at least one thesaurus term as well as the query term. As a general rule, R3 sentences represent 

stronger evidence for co-occurrence between the query term and relevant thesaurus terms. An R2 

sentence satisfies all the constraints of an R3 sentence, as well as containing at least one of the 

association words. R2 sentences represent even stronger evidence for co-occurrence between 

query and thesaurus terms. Finally, an R1 sentence is a sentence that it satisfies all constraints of 

an R2 sentence, as well as passing specific pattern recognition criteria. R1 sentences represent 

the strongest evidence PolySearch can find among relevant documents to support the association 

assertion between query and thesaurus terms.  

PolySearch identifies R1 sentences for three main types of patterns: 1) “Query Term-

Association Word-Thesaurus Term”, or a QAT pattern. e.g. “A interacts with B”; 2) “Query 

Term-Thesaurus Term-Associaition Word”, or a QTA pattern. e.g. “A B interaction”, and 3) 

“Association Word-Query Term-Thesaurus Term”, or an AQT pattern. e.g. “Interaction between 

A and B”. Each pattern also imposes further rules to limit the number of words (or tokens) within 

the sentence fragment matching a pattern, as well as between Association words, Query terms, 

and Thesaurus terms. For example, in a compact QAT pattern, the number of tokens matching 

the pattern must be less than 10. When overlapping patterns are present, the most compact 

pattern will be recognized and recorded. For instance, an R2 sentence matching a specific pattern 

is promoted to an R1 sentence. For more implementation details on PolySearch’s pattern 

recognition rules, please refer to Cheng et al. [16]. Once relevant sentences are assigned to R1, 

R2, R3, and R4 categories they are then scored. Each sentence receives points based on pre-

defined scoring scheme according to the document source. For example, in PolySearch2, an 

irrelevant MEDLINE abstract sentence receives 0 points, an R4 sentence receives 1 point, an R3 

sentence receives 5 points, an R2 sentence receives 25 points, and an R1 sentence receives 50 



42 

 

points. This scoring scheme can be different for different sentences identified from different 

document collections and databases. For example, PolySearch2 assigns twice as many points to 

relevant sentences in database records than sentences found in free-text articles. In this case, an 

R1 sentence receives 2 points, an R3 sentence receives 10 points, an R2 sentence receives 50 

points, and an R1 sentence receives 100 points. This scoring algorithm places heavier weights on 

database records than free-text documents, to show that more trust is placed on database records 

than free-text documents as database records have gone through a curation process and are 

therefore more trustworthy as source of supporting evidence. The total score of R1, R2, R3, R4 

sentences found in all relevant documents and database entries for a specific Query term and 

Thesaurus term pair is the overall PolySearch Relevancy Score for the pair. PolySearch 

calculates Relevancy Scores for every Query and Thesaurus term pair and converts the raw 

Relevancy Score for each pair to a standardized Z-score statistic. The conversion from the raw 

Relevancy Score to a standardized Z-score statistic is necessary, as the raw Relevancy Score 

does not consider background probability for a term pair to co-occur in relevant documents by 

chance. The Z-score statistic is a measure for relative importance of a particular term pair among 

all other relevant term pairs. The formula for converting the Relevancy Score to a Z-score is 

shown below: 

Zx,y =  
Rx,y − R̅

σ
 

In this formula, Zx,y is the standardized Z-score statistic for the Relevancy Score Rx,y for 

term pair (x, y). R̅ is the average Relevancy Score and σ is the standard deviation of the 

Relevancy Scores among all term pairs. Finally, each Query-Thesaurus term pair is ranked based 

on their standardized Z-score. Term pairs with higher positive Z-scores correspond to stronger 

evidence for an association, as the observed co-occurrence is less likely due to chance. Term 

pairs with zero or negative Z-scores correspond to weak or no evidence for association, as the 

observed co-occurrence is more likely due to chance. Pairs with negative Z-scores are removed 

from the final results.  
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3.3 Improvements and Enhancements in PolySearch2 

PolySearch2 (http://polysearch.ca) features a number of improvements and enhancements 

including: 1) algorithmic improvements; 2) an improved graphical interface and the 

implementation of modernized web technology; 3) significant database and text search 

enhancements; 4) substantially expanded synonym sets and thesaurus types; and 5) improved 

caching and updating.  These changes have also lead to substantial performance improvements 

relative to the earlier version of PolySearch. Details regarding these changes and improvements 

are described below. 

 

3.3.1 Algorithmic Improvements 

PolySearch2 incorporates a number of algorithmic improvements aimed at strengthening 

the scoring, ranking, and selection of association term candidates. These include: 1) a new 

“tightness measure” to further discriminate association patterns, 2) a “weight boost” for database 

records to favor explicit database associations over free-text articles, 3) a larger collection of 

system filter words, and 4) a filter to remove borderline associations. 

PolySearch2 now uses a “tightness measure” to reward more proximal word co-

occurrences and penalize more distant word co-occurrences. Just as in the original version, 

PolySearch2 assigns relevant sentences into four categories (R1 [best], R2, R3, and R4 [worst]) 

based on a relevancy score as derived from the search query and the matched co-occurrence 

patterns. However, PolySearch2 now measures the word span between matched co-occurrence 

patterns found in a relevant sentence. In particular, it assigns higher relevancy scores to tighter 

patterns with fewer words separating the query term and target term(s), and lower relevancy 

scores to more relaxed patterns with a larger word span between the query term and the target 

term(s). An example of an R1 sentence with a tight co-occurrence pattern could be “Exposure to 

bisphenol A (BPA) increases the risk of breast neoplasms”, while an example R1 sentence with 

relaxed co-occurrence pattern could be “Bisphenol A may play a role in gene regulation 

pathways that are potentially related to the onset and development of breast cancer.” We found 

http://polysearch.ca/
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this tightness measure improves the scoring of co-occurrences and enhances PolySearch2's 

ability to distinguish genuine associations from incidental co-occurrences that arise by chance. 

Unlike the original version of PolySearch, PolySearch2 now assigns greater weight to 

relevant database records than free-text articles. It has been previously shown [16, 17] that 

including database records in the search process consistently improves association accuracy. 

Generally, database records contain high quality, well-structured and carefully curated 

knowledge whereas free-text articles generally contain more ambiguous, implicit knowledge. 

Therefore, it stands to reason that database records should be assigned higher credibility than text 

articles. However, given the sheer volume of biomedical publications and the relatively small 

number of high quality biomedical databases, one is more likely to find relevant free-text articles 

than database records. To counter this bias, PolySearch2 applies an empirically determined 

“weight boost” to the information it finds in database records and assigns greater relevancy 

scores to relevant database records than free-text articles. The “weight boost” reflects the 

difference in credibility associated with database records compared to sentences in free-text 

articles. 

PolySearch2 also incorporates a more extensive collection of “system filter” words than 

the original version of the program (29,718 filter words vs. 7,011 filter words). In particular, 

PolySearch2 now recognizes co-occurrence patterns more consistently thanks to this larger, more 

extensive collection of filter words. System filter words are essentially words that signify a 

strong association. For example, the word “catalyzes” in “Enzyme X catalyzes reaction Y” 

indicates a strong association between Enzyme X and reaction Y. The new and improved set of 

filter words were initially mined from the entire collection of MEDLINE abstracts using Natural 

Language Processing techniques. In creating PolySearch2's list of system filter words, we tagged 

the occurrence of all biomedical entities in the current collection of MEDLINE abstracts, 

extracted text flanking each pair of co-occurrence entities, and classified the flanking text 

according to the co-occurring entity types. We then built N-gram models for common verbs, 

adjectives, adverbs and phrases present in the flanking text for each pair of co-occurrence entity 

types. The list was carefully assessed and manually curated to produce the final filter word set. 

This collection of system filter words helps PolySearch2 recognize strong associations from 
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mere co-occurrences. It also allows it to perform consistently better at recognizing term 

associations than the original version of PolySearch. 

The final algorithmic enhancement to PolySearch2 involved the application of a more 

stringent cut-off to boost precision at the cost of sacrificing a small degree of recall (i.e. the 

precision-recall trade-off). Associations discovered in PolySearch2 are ranked and sorted using 

Z-scores calculated from PolySearch2's raw relevancy score (See [16, 17]). Associations with 

average relevancy scores are assigned zero Z-scores, as they represent borderline or marginal 

associations derived from a particular search. PolySearch2 now removes associations with zero 

Z-scores to boost its precision. This is done at the risk of removing a small number of possible 

genuine associations. For users concerned about the emphasis of recall over precision in their 

results, PolySearch2 also provides an option to include borderline cases (or 'zero Z-score' 

associations). 

 

3.3.2 Graphical Interface and Web Implementation 

PolySearch2 (http://polysearch.ca) features a completely re-designed web interface. 

Figure 10 to Figure 14 show screenshots of various pages from PolySearch2's new web interface. 

Figure 10 shows the query submission page where users can initialize a search query. As with 

the original PolySearch, PolySearch2 still supports a 'Given X find all associated Y's' type of 

query. Users can initialize a search by selecting the desired type of X (query term) and Y (target 

term) from pull-down menus and enter a search query keyword. At this point user can submit a 

"Quick Search" request (Figure 10) or further configure the search using "Advanced Options" 

(Figure 11).  Both of these features are new to PolySearch2. The Quick Search option will direct 

PolySearch2 to search previously computed cache results or to mine associations from the top 

2000 relevant articles or database records across all text collections and databases. In the Quick 

Search, PolySearch2 automatically generates a synonym list (from the PolySearch2 thesauri) and 

proceeds with its regular searching, sorting, scoring, annotation and display (described in detail 

in [17]). "Advanced Options" (Figure 11) offers a greater degree of customizability to the search. 

For instance, users can edit the automatically generated synonym list (from the PolySearch2 

thesaurus), edit custom filter words for identifying association patterns, provide custom negation 
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words for filtering out sentences with negative associations, provide custom target terms to 

search, select or de-select source text collections and databases, indicate the number of 

documents to search, permit the inclusion or exclusion of hits with zero Z-scores (for higher 

recall), and/or provide an E-mail address for notifications.  

 

 

 

 

Figure 10: A screenshot of PolySearch2's query interface showing the PolySearch2 query 

submission form. 
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Figure 11: A screenshot of PolySearch2's query interface showing the advanced option page for 

further query refinement. 
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Figure 12: A screenshot of PolySearch2's result display showing the PolySearch2 result 

overview table. 
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Figure 13: A screenshot of PolySearch2's result display showing the detailed result page with 

supporting evidence for a single association (Bisphenol A – Breast Neoplasm). 
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Figure 14: A screenshot of PolySearch2's result display showing result details with the full 

MEDLINE abstract in highlighted and hyperlinked text. 
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Once a search query is submitted, the user will be redirected to a progress page where the user 

can bookmark the page for later visits. When a search is completed, the user will be redirected to 

a results overview page (Figure 12) showing the associated entities of the selected target 

category (or all categories if the search is against ALL target categories). In Figure 12, a 

screenshot listing the diseases found to be associated with the toxin Bisphenol A is shown. The 

resulting overview table is sorted by Z-scores in descending order, and can be sorted according 

to values in a certain column by clicking on the column header. The overview table lists the Z-

score and PolySearch Relevancy Score (R-score) as well as the name and synonyms for each 

associated entity. Users can review query settings, browse through full tables in a printable 

format or download their results in JSON format by clicking the appropriate links on this page. 

Clicking on the "Details" button on each row takes users to a detailed result page (Figure 13) 

showing the supporting evidence in color-coded and hyperlinked sentences from each relevant 

article in each text collection or biomedical database. For results with MEDLINE abstracts or 

PubMed Central articles, there is an additional "Details" button for each row. Clicking on this 

specific "Details" button takes user to view the full MEDLINE abstract in highlighted and 

hyperlinked text (Figure 14). A result navigation bar with light grey background just below the 

headers of all result pages (Figure 12, Figure 13, and Figure 14) is provided for users to quickly 

review and navigate within the result hierarchy. These features are described in more detail on 

PolySearch2's Documentation web page. 

In addition to the substantially modified and updated graphical user interface, 

PolySearch2 also underwent a complete upgrade and re-implementation of the web front-end 

using the latest web technology standards (HTML5 & Twitter Bootstrap). We have also 

upgraded the underlying physical server to further improve its performance. PolySearch2's back-

end API and front-end web server are deployed on a dedicated tower server machine with 8 cores 

operating at 1.4GHz and multiple Solid-State Drives to facilitate rapid document retrieval and 

analysis. A PolySearch2 API for bulk text mining is also available upon request (with certain 

limitations). The architecture of PolySearch2 (see Figure 15) also allows it to easily scale up its 

computation across multiple machines on a computer cluster or cloud platform should further 

upgrades be needed. PolySearch2 uses the Model-View-Controller (MVC) design pattern: 1) the 

PolySearch2 Search Engine with ElasticSearch (Model layer) organizes document collections. 2) 
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the PolySearch2 API (Controller layer) implements the core PolySearch2 algorithms and queries 

the model layer for search results. 3) the PolySearch2 web server (View layer) is a thin layer of 

graphical user interface that passes user queries to the PolySearch2 API and formats search 

results. Implementing the MVC design allowed us to decouple the logic for maintaining 

document collections, performing searches, and presenting results to users. As a result, we can 

update an individual layer without affecting other layers. PolySearch2 has been tested on a 

variety of platforms and is compatible with most common modern browsers (FireFox, Safari, 

Internet Explorer, Edge, and Chrome) on both computer workstations and mobile devices (tablets 

and smart phones). PolySearch2's analytical algorithm was implemented in Python and it uses 

ElasticSearch (see Figure 15) to manage the document repository and cache results. 
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Figure 15: PolySearch2's system overview showing the architecture of the PolySearch2 web 

server, its API, and the underlying search engine. PolySearch2 uses the Model-View-Controller 

(MVC) design: 1) the PolySearch2 Search Engine with ElasticSearch (Model layer) organizes 

document collections. 2) the PolySearch2 API (Controller layer) implements the core 

PolySearch2 algorithms and queries the model layer for search results. 3) the PolySearch2 web 

server (View layer) is a thin layer of graphical user interface that passes user queries to the 

PolySearch2 API and formats search results. 
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3.3.3 Database and Text Search Enhancements 

In PolySearch2 (http://polysearch.ca), we completely re-implemented the underlying text-

mining framework based on the latest search engine technology (ElasticSearch, 

http://www.elasticsearch.org/) (See Figure 15). The utilization of ElasticSearch allowed us to 

internally host all text collections and databases (totalling 165 Gigabytes) across an 

ElasticSearch cluster running multiple nodes, and efficiently retrieve relevant documents. This 

has led to the ability to search against all thesaurus types simultaneously leading to a significant 

performance improvement and a nearly 25X acceleration in search speed. 

In PolySearch2 we significantly expanded the number of text collections and databases 

(by more than 80%) to include a total of 6 free-text collections and 14 popular, text-rich 

bioinformatics databases. Table 2 shows the statistics for PolySearch2’s database and document 

collection statistics. The latest release of PolySearch2 searches against over 43 million articles 

covering MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles, US 

Patent abstracts, open access textbooks from NCBI and MedlinePlus articles. We believe these 

free-text collections cover a wide range of human knowledge from general information 

(Wikipedia, textbooks and MedlinePlus), to more specific biomedical knowledge (MEDLINE 

and PubMed Central), to technical innovations (US Patent applications). 

While free-text collections represent a body of implicit knowledge, biomedical databases 

represent more specific or more quantitative, high quality curated knowledge. As illustrated in 

the original PolySearch paper [17], incorporating relevant database records into the search 

greatly enhances the resulting accuracy. To further improve on the performance of PolySearch2, 

we incorporated DrugBank (a popular drug and drug metabolite database) [51], HMDB (a human 

metabolite database) [98], T3DB (a toxin and toxin-target database) [97], YMDB (a yeast 

metabolome database) [44], ECMDB (an E. coli metabolome database) [35], OMIM (Online 

Mendelian Inheritance in Man) [36], the UniProt database [92], the Human Protein Reference 

Database [63], DailyMed (FDA-approved drug listing information database) [66, 67], KEGG 

reactions and pathways [47], and the MetaCyc [15] metabolic pathway database. For more 

information on PolySearch2's text collections and databases sources, please consult 

PolySearch2's Documentation web pages. 
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Data Source Database Descriptions Number of 

indexed Records 

OMIM Online Mendelian Inheritance in Man 23,219 

T3DB Toxin and toxin target database 3,713 

HMDB Human Metabolome Database 41,513 

MEDLINE PubMed Abstracts 27,208,664 

Wikipedia Wikipedia abstracts 7,619,689 

USPTO US patent application abstracts 7,996,999 

FooDB Food Metabolite Database 27,509 

KEGG Reactions Kyoto Encyclopedia of Genes and Genomes 9,538 

GO Gene Ontology 40,535 

DailyMed FDA label information on marketed drugs 2,745 

KEGG Pathways Kyoto Encyclopedia of Genes and Genomes 456 

NCBI Books Full-text textbooks on NCBI bookshelf 19,066 

MedlinePlus Medical encyclopedia and dictionary 1,901 

PMC PubMed Central full-text articles 704,539 

UniProtKB UniProt Protein Knowledgebase 541,561 

MetaCyc Metabolic database for pathways, enzymes, 

metabolites, and reactions. 

3,810 

GAD Genetic Association Database 167,298 

HPRD Human Protein Reference Database 18,863 

DrugBank Drug and drug metabolite database 6,825 

 

Table 2: Database and Text Collection Statistics for PolySearch2. PolySearch 2.0 significantly 

expanded the number of text corpora and databases (by >80%) to include a total of 6 free-text 

corpora and 14 bioinformatics databases. The latest server searches against over 43 million 

articles covering Medline abstracts, PubMed Central full-text, Wikipedia articles, US Patent 

abstracts, and open access textbooks. 
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3.3.4 Improved Synonym Collections 

PolySearch2's custom thesauri or synonym collections are critical for the detection of 

biomedical terms mentioned in its databases and text collections. The original version of 

PolySearch had a thesaurus that consisted of 9 categories with 57,706 terms, including names 

and/or synonyms for genes/proteins, gene families, diseases, drugs, metabolites, pathways, 

tissues, organs, and sub-cellular organelles or structures. In PolySearch2, we have significantly 

expanded the number of thesauri from 9 to 20 categories, and from just 57,706 terms to over 1.13 

million term entries with more than 2.84 million synonyms.  

PolySearch2's thesaurus collection now includes terms and synonyms for toxins [97], 

food metabolites [96], biological taxonomies [66, 67], Gene Ontology terms [6], MeSH terms 

and MeSH compounds [81], along with ICD-10 (International Classification of Disease) medical 

codes [8]. Table 3 shows PolySearch2’s thesaurus statistics.  PolySearch2's gene/protein 

thesaurus and gene family thesaurus were compiled from the latest release of UniProt [25], 

Entrez Gene [27], the Human Genome Organisation Gene Nomenclature Committee [75], and 

the Human Protein Reference Database (HPRD) [63]. The disease thesaurus was compiled from 

the Online Mendelian Inheritance in Man (OMIM) and the Unified Medical Language System 

(UMLS) [42]. PolySearch2's drug and metabolite thesauri were compiled from the latest version 

of DrugBank [51] and the Human Metabolome Database (HMDB) [98], respectively. 

PolySearch2's pathway thesaurus was derived from names used for KEGG pathways [47] while 

PolySearch2's tissue thesaurus and organ thesaurus were created manually and the sub-cellular 

localization thesaurus was derived from the HPRD [63]. PolySearch2's toxin thesaurus and food 

metabolite thesaurus were compiled from the latest version of the Toxic Exposome Database 

(T3DB) [97], and FooDB (http://foodb.ca/) [96] respectively. The biological taxonomy thesaurus 

was derived from NCBI's taxonomy archive [66, 67]. PolySearch2's thesauri also feature many 

manually curated terms and synonyms for positive health effects, adverse health effects, drug 

actions, drug effects, and chemical taxonomies. All of these thesauri may be searched via 

PolySearch2's Thesaurus page, and all may be downloaded via PolySearch2's Download page.  

 

  

http://foodb.ca/
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Thesaurus Name Number of Terms Number of 

Synonyms 

Gene Families 404 948 

Adverse Health Effects 135 711 

Health Effects 161 507 

Gene Ontology 40,535 110,477 

Toxins 3,713 39,095 

Biological Taxonomy 607,031 775,728 

Drugs 7,670 37,331 

ICD-10 Codes 91,737 155,331 

Chemical Ontology 4,017 10,098 

Tissues 954 984 

MeSH Terms 26,956 215,327 

Food Metabolites 27,509 39,278 

Genes and Proteins 27,994 287,827 

Drug Effects 424  590 

Metabolic Pathways 456 456 

MeSH Compounds 221,986 716,676 

Human Metabolites 41,793 381,195 

Organs 104 201 

Subcellular Locations 74 175 

Diseases 27,658 76,001 

Total 1,131,328 2,848,936 

 

Table 3: PolySearch2 Thesaurus Statistics. PolySearch 2.0 significantly expanded custom 

thesauri from 9 to 20 categories, and from just 3000 to over 1.13 million term entries. In 

particular, we have expanded the thesauri to include toxins, food metabolites, biological 

taxonomies, pathways, as well as Gene Ontology, MeSH terms, and ICD-10 codes. The thesauri 

also feature many manually curated terms and synonyms for health effects, drug effects, adverse 

effects, and chemical taxonomies. This table summarizes the number of term entries and 

synonyms for each thesaurus.  
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3.3.5 Caching and Auto-Updating 

PolySearch2 features significantly expanded support for results caching and automated 

updating over the original version of PolySearch. Caching allows PolySearch2 to archive the 

results of common queries made by users so that if the same query is made by another user, then 

only a trivial update (if any) needs to be performed over the previously cached material. This 

leads to nearly instantaneous (1-2 sec) results for many common associative queries. 

PolySearch2 also regularly queries itself with thesaurus terms to increase its cache coverage far 

beyond what users may commonly generate. 

The original version of PolySearch accessed the content of all (or nearly all) of its 

databases via the web. This ensured absolute data currency for all its databases, but it slowed the 

operation down substantially as all queries were subject to problems due to heavy website traffic 

loads, intermittent internet outages, varying data download speeds and the extra time needed to 

download large data sets over the web. Because PolySearch2 searches locally maintained 

databases on a (very large) local disk, none of these download or web access issues are 

encountered. However, moving to local databases meant that the data currency problem had to be 

addressed. Consequently, a number of custom scripts and “Cron” jobs were developed so that 

new documents and new database updates are automatically retrieved on a daily basis and 

indexed to ensure that PolySearch2's text collections always contain the documents or data that 

are no more than 24 hours old. 

 

3.4 Performance Evaluation 

To assess the performance of PolySearch2, we conducted a speed test comparing only the 

speed of the original PolySearch with PolySearch2 on various queries with equivalent 

parameters. We then performed four evaluations on PolySearch and PolySearch2 to compare 

their accuracy. Finally, four additional evaluations were conducted to assess the performance of 

PolySearch2 on several novel search tasks. Performance statistics including Precision, Recall, F-

measure, and Accuracy are presented in Table 4 for all 8 evaluations. Evaluation No. 1 assesses 

PolySearch2's ability to identify disease-gene association. Evaluation No. 2 evaluates 
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PolySearch2's ability to identify drug-gene/protein associations. Evaluation No. 3 assesses 

PolySearch2's ability to identify protein-protein interactions. Evaluation No. 4 evaluates 

PolySearch2's metabolite-gene associations. Evaluation No. 5 assesses PolySearch2's ability to 

identify drugs with significant adverse effects, or dangerous drugs". Evaluation No. 6 evaluates 

PolySearch2's ability to identify toxin-disease association. Evaluation No. 7 assesses 

PolySearch2's ability to identify toxin-adverse effect associations. Finally, Evaluation No. 8 

evaluates PolySearch2's ability to identify associations to diseases given natural language 

question queries. All 8 evaluation datasets are available on the “Download” page on the 

PolySearch2 website. 

We first evaluated PolySearch2's performance on four gold standard datasets (Table 4, 

Evaluations 1-4). Specifically, we evaluated PolySearch2's performance in mining: 1) disease-

gene associations, 2) drug-gene associations, 3) protein-protein interactions, and 4) metabolite-

gene associations. PolySearch2's F-measures in these tasks were 88.95, 89.75, 93.79, 90.74, 

respectively. Compared to the original PolySearch system, PolySearch2 achieved a 3-12% 

improvement in its association accuracy. 

Next, we evaluated PolySearch2's performance on three new gold standard datasets 

(Table 4, Evaluations 5-7). These tests were designed to identify 5) adverse drug effect 

associations for identifying 'dangerous drugs', 6) toxin-disease associations, and 7) toxin-adverse 

effect associations. Performance statistics for the legacy PolySearch are not available for these 

datasets due to the novel search types and the size of the testing dataset. PolySearch2's F-

measures on these tests were 85.85, 84.17, and 76.89 respectively.  

Finally, to assess the flexibility of PolySearch2, we conducted an association test using 

BioASQ [35], a biomedical semantic Question Answering challenge's gold standard training 

dataset (Task 3B Training Set, released March 2015), and assessed PolySearch2's performance in 

finding associated disease concepts when presented with free-text sentences. Evaluation 8 (Table 

4) shows PolySearch2's performance evaluation using the BioASQ Task 3B (biomedical 

semantic QA) gold standard training dataset. The search queries are question sentences from 

BioASQ and PolySearch2's disease association results are compared with tagged disease 

concepts in the BioASQ 3B gold standard training data set. 
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Table 5 lists some of the key feature differences between PolySearch and PolySearch2. 

Compared to PolySearch, PolySearch2 has a significantly expanded thesaurus (2x more 

categories, 19x more terms), a much larger collection of filter words (4x increase), more 

databases (2x increase) and many more text corpora (6x increase), as well as supporting more 

(4x increase) search types. We also compared both systems with regard to their analysis speed. 

In the speed test we calculated the speed-up factor by dividing the execution time of the old 

PolySearch by the execution time of PolySearch2 on an identical set of 10 search queries. Both 

systems were located in the same network and both were accessed over the Internet. The cache 

look-up was disabled on both systems. The evaluation was carried out with 10 arbitrary 

keywords having more than 10,000 potentially relevant documents. The keywords were "Autism, 

Acetaminophen, Influenza, Rheumatoid Arthritis, Escherichia coli, Vitamin, Nucleus, p53, ATP, 

cancer". A typical PolySearch2 query with 2,000 or fewer relevant documents was completed in 

less than 20 seconds. On the other hand, a typical PolySearch query was completed in 2-5 

minutes. We found that the time that both PolySearch and PolySearch2 take for keywords and 

search types is quite consistent, so document size is actually the main factor in determining 

overall execution time. Based on our data, PolySearch2 achieved a 5x to 25x speedup over 

PoySearch, depending on the number of documents (from 500 to 10,000) it analyzed. In general, 

the more documents that are analyzed, the greater the speedup, as PolySearch2's initialization 

overhead is amortized across a larger number of document analysis. The above result shows that 

PolySearch2 is substantially faster, more efficient and somewhat more accurate than the original 

PolySearch system. The improvement in computational efficiency is primarily due to the fact 

that we internally host all text collections and databases in PolySearch2.  In the original 

PolySearch, all queries were conducted through web-based APIs (which required querying and 

downloading abstracts from NCBI) or screen scraping on-line databases which is inherently 

slow. The automated update function in PolySearch2 helps ensures the currency of our document 

collections. The improvement in association accuracy can be attributed to the tightness measure 

we introduced to further discriminate matched association patterns, the assignment of weight 

boosting to database records in contrast to text articles, and the imposition of more stringent cut-

offs to boost precision at the expense of recall (precision-recall trade-off). 
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 PolySearch PolySearch2 

Prediction 

Accuracy 

P R F Acc. P R F Acc. 

No. 1 

Disease/Gene 0.6533 1.0000 0.7903 0.6533 0.8708 0.9091 0.8895 0.8525 

No. 2 

Drug/Gene 0.7490 1.0000 0.8565 0.7490 0.9701 0.8351 0.8975 0.8571 

No. 3 

Protein/Protein 0.8396 1.0000 0.9128 0.8396 0.9432 0.9326 0.9379 0.8962 

No. 4 

Metabolite/ 

Gene 

0.7834 1.0000 0.8785 0.7834 0.9579 0.8619 0.9074 0.8614 

No. 5  

Drug/Adverse 

Effects 

- - - - 0.9233 0.8022 0.8585 0.7737 

No. 6 

Toxin/Disease - - - - 0.9054 0.7864 0.8417 0.7810 

No. 7 

Toxin/Adverse 

Effects 

- - - - 0.8808 0.6822 0.7689 0.7854 

No. 8 BioASQ 

Question/ 

Disease 

- - - - 0.7284 0.6052 0.6611 0.7212 

Table 4: Performance evaluation of PolySearch2 vs. PolySearch. P stands for Precision, R stands 

for Recall, F stands for F-measure, and Accu. Stands for accuracy. 
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3.5 Limitations 

No text mining system is perfect and certainly PolySearch2 is not without some 

limitations. One notable limitation is its inability to progressively or interactively adapt to 

specific search needs. High-end search engines such as Google and Yahoo monitor user-

feedback through surreptitious monitoring of user mouse clicks, web-page access and web-page 

dwell times.  This helps these search engines customize or adapt to user preferences and needs. 

Ideally PolySearch2 should be able to adapt to a search task by considering user feedback on the 

quality of discovered associations. For example, users may indicate certain associations to be 

false positives and in subsequent runs PolySearch2 should ideally learn from these negative 

examples and adapt itself to match a user's specific search needs and thereby achieve higher 

accuracy.  We are currently testing several feedback systems and considering adding a “search 

satisfaction” feedback system in future versions of PolySearch2. Another limitation with 

PolySearch2 (and for most text mining systems) is its inability to self-assess its results and to 

extract specific knowledge on its own. While PolySearch2 performs well at extracting strong 

 PolySearch PolySearch2 

Thesaurus 

categories 

9 categories 20 categories 

Thesaurus terms 57,706 terms with 353,862 

synonyms 

1,131,328 terms with 2,848,936 

synonyms 

 

Filter words 7011 29,718 

 

Database Numbers 1 free-text collection and 6 

databases 

6 free-text collections and 14 

databases 

 

Num. of Search 

Types 

66 query combinations 308 query combinations 

 

Analysis Speed 6.5 documents per second 165 documents per second 

 

Mobile Friendly? No Yes 

Table 5: Performance evaluation and feature comparison of PolySearch2 vs. PolySearch. 
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associations between biomedical entities it is not yet capable of assessing its discovered 

associations or extracted relations. For example, PolySearch2 is able to identify a potential 

association between BPA and breast cancer but it is not able to infer a cause-and-effect 

relationship from the discovered association. Part of this limitation is due to the lack of training 

data to perform assessments and to extract relationships. To address this issue, we are hoping to 

use Machine learning (ML) and Natural Language Processing (NLP) techniques to eventually 

convert PolySearch2 from a simple association discovery tool to a more general knowledge 

extraction tool. We are currently working to incorporate this capability into future releases of 

PolySearch2. 

 

3.6 Conclusion 

In this chapter we have described PolySearch2 (http://polysearch.ca), a web server 

designed to facilitate data mining and the semi-automated discovery of text associations between 

a wide range of biomedical entities. PolySearch2 supports “Given X, find all associated Ys” type 

of queries with X and Y from more than 20 types of biomedical subject areas including human 

diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, 

subcellular organelles, positive health effects, negative health effects, drug actions, Gene 

Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical 

taxonomies. Some of the most significant improvements for PolySearch2 include a significant 

modernization of its underlying text-mining framework; a complete upgrade and re-

implementation of the web interface using the latest web technology standards; a substantially 

improved algorithm for improved scoring and ranking of associations; significantly expanded 

custom thesauri and term collections; an expanded number of text collections and databases (by 

>80%); along with significantly improved support for caching and automated updating. 

PolySearch2 now offers greater speed (up to 25X faster), accuracy (3-12% improvement on f-

measures), customizability (additional configurable options) and usability (modern and mobile-

friendly web interface) than the original version. We believe that with these recent 

enhancements, PolySearch2 can better facilitate text-based discovery (and re-discovery) of latent 

associations among many types of biomedical entities and topics.  
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4. BioQA: An Automated Biomedical Question Answering System 

Biomedical information is growing rapidly thanks to steady advances in both biological 

and medical technologies. Most biomedical information is archived in the form of free-text in 

peer-reviewed publications, or stored in various electronic databases using a variety of different 

text-based formats. Our ability to find relevant biomedical records or articles has been greatly 

accelerated by the development of specialized biomedical search engines like NCBI Entrez or 

Google Scholar. However, in order to keep pace with a specific biomedical field or to find 

answers about specific biomedical questions, researchers still need to construct large numbers of 

Boolean queries using a special lexicon of appropriate key words and then manually scan 

through dozens of irrelevant articles just to find the one pertinent paper or the one key finding. 

This is very inefficient. What is needed is a “wise” biomedical question-answering system to 

assist researchers in finding relevant articles or answering specific biomedical questions. Such a 

system would eliminate the time consuming task of manual scanning and make the challenges of 

finding relevant information or answering specific questions far more efficient. In this paper, we 

introduce BioQA, a biomedical question-answering system, as an initial solution to the 

biomedical question-answering task. The BioQA framework specifically organizes biomedical 

information for fast and precise retrieval, and comprises of various algorithms to transform 

natural language questions into natural language answers. BioQA is capable of processing 

natural language questions, performing searches across both free-text collections and various 

biomedical databases, and automatically summarizing the answers with supporting evidence. We 

specifically developed BioQA to handle both descriptive and associative queries. The BioQA 

web server is publicly available online at http://bioqa.ca.  

 

4.1 Introduction 

Biomedical information is growing at an explosive rate. As a result, it is increasingly 

difficult for researchers to keep pace with this rapidly growing body of information [9]. For 

example, PubMed, which contains more than 25 million indexed abstracts from more than 5,140 

journal titles, is growing at rate of 4% each year, and more than 3,000 new articles each day [54]. 

http://bioqa.ca/
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GenBank [18], which contains most of the world’s gene sequencing information, has grown from 

just 600 annotated DNA sequences in 1982 to nearly 200 million annotated DNA sequences 

today. The Protein Data Bank [69], which houses most of the world’s protein structure data, 

grew from 13 structures in 1976 to more than 120,000 structures by 2015. ArrayExpress [70], 

which contains data on gene expression experiments, grew from just 1,200 data sets in 2006 to 

nearly 70,000 today. Adding to the challenge of exponential information growth, is the 

proliferation of domain-specific databases.  For instance, the total number of biomolecular 

databases ever described in the annual Nucleic Acids Research (NAR) Database Issue has grown 

from 90 in 1998 to nearly 1700 today [80].  Each database uses its own schema and therefore 

each resource needs to be accessed or searched according to its own specific query system. To 

address these growing problems of database proliferation and database size, a number of groups 

have started to develop aggregative biomedical search engines or smarter text mining tools. 

These include such systems as NCBI Entrez [66, 67], GoPubMed [22], and PolySearch2 [16, 

17]. However, even with these powerful software tools, researchers still need to manually scan 

through (potentially hundreds of) articles and database records to find answers to simple 

questions, or to find the supporting evidence needed to advance an idea. This bottleneck of 

manual text scanning has arisen because most biological knowledge, whether it is in papers or in 

databases, is buried in the form of free text. This means that queries or questions must be 

constructed as primitive Boolean word queries or Boolean word combinations. The results are 

typically lists of records with differing levels of text matches and widely varying levels of 

relevance. 

Ideally what is needed to overcome this “free text bottleneck” are software tools that can 

efficiently mine biomedical data and rapidly extract or compose answers from relevant snippets 

of information. One approach involves the development of a “wise” biomedical question-

answering (QA) system. Such QA system would ideally accept free text questions and provide 

precise free text answers with encyclopedia-like commentary and appropriate references or 

attribution. Research on developing computer-based QA systems has become increasingly 

popular in recent years, following the success of Watson, an IBM-developed QA system [28]. 

Watson came to prominence by defeating highly skilled human players on the open-domain 

question answering Jeopardy! challenge. The success of Watson has motivated many text mining 
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experts to start developing question answering systems tailored for other applications beyond 

general knowledge or game show trivia. One particular area of interest has been the development 

of QA systems for enhancing biomedical research. BioASQ [82] is a biomedical semantic 

indexing and question answering challenge aimed at accelerating the field of biomedical question 

answering through competitive shared tasks. Two shared tasks are available: 1) indexing novel 

MEDLINE abstracts using MeSH terms (Task A), and 2) retrieving concepts and snippets to 

form natural language answers (Task B). A number of systems have been developed for the 

BioASQ,challenges  including the BioASQ baseline system, the MCTeam system, a modified 

NCBI system and BioQA (described here). The BioASQ team developed a “baseline” system to 

compare with participating teams [88, 89]. The baseline system retrieves the top 50 and top 100 

concepts and snippets returned from their search system, formulates a final answer using greedy 

and Integer Linear Programming algorithms, and further selects candidate answers using Support 

Vector Regression [82, 88]. The MCTeam system [103] participated in the BioASQ challenge 

and this system used MetaMap [5] to identify concept-related words in input query and 

formulated a search query to query a local index of PubMed full-text articles and merge retrieved 

results to final answers. The NCBI system [57] used the PubMed search function to retrieve 

relevant documents and snippets from MEDLINE abstracts, and a dictionary look-up method to 

recognize concepts and resolve concepts to MeSH / Gene Ontology terms using GenNorm [94] 

and MetaMap [5]. The NCBI system then used the PubTator tool to generate and rank candidate 

answers [93, 95]. These tools have been tested and compared through several shared-task 

biomedical QA challenges like BioASQ [82, 88, 89]. Competitions such as BioASQ have 

certainly helped to advance the field of biomedical information retrieval and question answering. 

However, biomedical QA is still facing two core challenges: 1) biomedical information is stored 

in widely dispersed databases in highly heterogeneous formats that make information searching 

and consolidation difficult, and 2) a significant portion of biomedical information is represented 

in the form of free-text, which needs extensive text processing to extract useful information.  

In taking on both challenges, we have developed BioQA. BioQA is a biomedical question 

answering system, capable of handling natural language queries and providing comprehensive 

natural language answers with supporting evidence. In particular, BioQA is able to handle 

descriptive (“What is Aspirin?”) and associative (“What is the cause of beri-beri?”) queries. 
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Descriptive queries are particularly useful for biocurators needing assistance in annotating genes, 

proteins, metabolites, and other biomedical entities, while associative queries are useful for 

finding latent associations between biomedical entities. BioQA is able to automatically 

summarize relevant documents and passages and, in doing so, it is also able to generate 

supporting evidence for the returned answers to assist researchers in analyzing the extracted 

results. We specifically designed BioQA to focus on answering biomedical questions posed by 

researchers, medical practitioners, students, and the inquisitive public. BioQA is available to the 

public on http://bioqa.ca.  

In this chapter, we described the BioQA public web interface and its underlying question 

answering framework. We also discuss, in detail, how BioQA manages and organizes 

heterogeneous biomedical knowledge, as well as the system of algorithms enabling BioQA to 

process natural language queries and relevant text passages. This includes a discussion of how 

BioQA identifies biomedical Named Entities (NEs), how it analyzes free text questions to form 

search queries, how it retrieves relevant documents and databases records, how it synthesizes 

descriptions and how it summarizes and paraphrases natural language answers. Finally, we 

evaluate various components of BioQA with the BioASQ challenge datasets and discuss 

BioQA’s limitations and future directions. 

 

4.2 BioQA’s User Interface 

BioQA (http://bioqa.ca) features a graphical web interface designed to work on both 

computer workstations and mobile devices. Figure 16 to Figure 22 show various pages from 

BioQA’s web interface. Figure 16 shows the question submission page where a user can post a 

question to BioQA to search for relevant concepts and retrieve BioQA’s answers. Users can post 

a question to get a “Quick Answer” or a “Full Answer” from BioQA. A “Quick Answer” query 

searches document collections and BioQA’s knowledge base for relevant concepts, descriptions, 

and information snippets, while a “Full Answer” query performs an additional query to 

PolySearch2 to obtain more relevant concepts and information snippets. Upon submitting a 

question, a user will be redirected to an auto-refreshing query processing page while the question 

is being analyzed and answers are being acquired in the background. Depending on the query 

http://bioqa.ca/
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type and the number of documents that need to be analyzed, a specific query can take from 30 

seconds to a few minutes to process. The BioQA web server caches its results for 7 days and 

users can use the assigned search id to look up and retrieve the cached results using the “Check 

Result” page (not shown in this figure). Once a query has been completed, the user will be 

redirected to an “Answer Synopsis Page” as shown in Figure 17. The synopsis page is a hub with 

links to full textual answers (Figure 18 and Figure 19), relevant concepts (Figure 20), and 

knowledge graphs (Figure 21 and Figure 22). The synopsis page features a tag cloud generated 

via frequently used words from the retrieved snippets to provide a quick visual graphic of the 

text answers. The font size of the words in the tag cloud are proportional to frequencies of 

occurrence in the relevant text snippets. The synopsis page also shows the original questions and 

a short preview of the full answer. A navigation bar with light grey background (Figure 19) is 

provided for users to quickly review and navigate within the result hierarchy. BioQA results are 

also available in JSON format for download. These features are described in more details on 

BioQA’s Documentation web page. 

Clicking on the link marked “Full Answer with References” takes the user to the 

“Answers with References” page showing the full textual answers to user’s posted question. 

Textual answers are formatted into different paragraphs providing information on entity 

descriptions as well as their relationships to each other in the context of the posted question. The 

answer text is color-coded (according the type of recognized biomedical entities) and 

hyperlinked (to relevant external biomedical databases). Moreover, sentences in the answer text 

are annotated with references to the original documents in BioQA’s text collections, and these 

references are hyperlinked to original articles in the corresponding databases (including PubMed, 

PMC, or Wikipedia). For example, Figure 18 shows full BioQA answers to the question “What is 

the cause of beri-beri?”. The first paragraph in this answer defines beri-beri as a cluster of 

symptoms and it is caused by Vitamin B1 (thiamine) deficiency. The BioQA answer also lists 

other related diseases caused by thiamine deficiency, and provides some history on how the 

association between beri-beri and thiamine deficiency was discovered.  Figure 19 shows full 

BioQA answers to the question “What diseases are caused by E-cadherin mutations?”. Similarly, 

this answer first defines E-cadherin as a “calcium-dependent cell adhesion molecule”, describes 

its molecular function and its association with breast cancer. Checking the relevant diseases 
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concepts provided by BioQA (Figure 20) we can see that E-cadherin is found to be associated 

with “malignant tumoral disease”, “gastric cancer”, “breast neoplasm”, “adenocarcinoma”, 

“melanoma”, “prostate neoplasms”, and other cancers.  

BioQA features an automated paraphrasing function (Figure 18) to automatically 

paraphrase sentences (derived from previously published or copyrighted works) in text answers. 

This may be used by users wishing to avoid copyright/plagiarism issues and to help them better 

integrate text snippets into their own work. Clicking on the “Paraphrase Answer Text” link will 

initialize a paraphrasing operation on the initial BioQA answers and, upon completion, the 

paraphrased answer will be displayed again on the same “Answers with References” page with 

the original references. It is worth noting that this automated paraphrasing operation randomizes 

paraphrasing results, so clicking on “Paraphrase Answer Text” again will generate a different set 

of paraphrasing results. (Please refer to Chapter 5 for algorithmic and implementation details on 

BioQA’s paraphrasing function.) BioQA also supplements the generated textual answer with list 

of relevant concepts and a concept network graph for visualization. Clicking on the “View 

Relevant Concepts” (Figure 17) button takes user to the “Relevant Concepts” page (Figure 20) 

which shows the associated entities retrieved by PolySearch2 [52]. The full list of relevant 

categories includes human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic 

pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, 

drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies, 

and chemical taxonomies. Relevant concepts in this page are organized by their categories and 

clicking on each category tab (marked with number of found relevant entities) displays a relevant 

concept table for that particular category. Each relevant concepts table is sorted by the Z-scores 

in descending order, and each list can be sorted by clicking on the column header. The relevant 

concept table lists the Z-score and PolySearch2 Relevancy score (R-score) as well as the name, 

synonyms, and number of supporting text snippets for each associated entity. Each entry is 

hyperlinked to external database records. Users can also download the relevant concepts results 

in JSON format to get further details on the supporting text snippets (hits).  

In addition to textual answers and tables for relevant concepts, BioQA also provides 

another form of answer representation: concept graphs. Concept graphs allow one to easily 

visualize relevant biomedical concepts and their relationships. These can include relationships 
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such as being co-mentioned in relevant text snippets (a co-mentioned graph), or relationships 

derived by being referenced across biomedical databases (a knowledge graph). Figure 21 and 

Figure 22 show screenshots of BioQA’s concept network graphs. On the Answer Synopsis Page 

(Figure 17), users can choose the format for the graph layout (grid, circle, breadth-first, etc.) 

from the drop-down list, and click “Visualize co-mention graph” or “Visualize knowledge 

graph” to view and interact with a concept graph image. In any concept graph layout (Figure 21), 

users can use their mouse or track pad to zoom in/out, re-position the whole graph, reorganize 

individual nodes to achieve better viewing angles or further inspect interesting clusters of nodes 

or edges. Figure 22 shows a zoomed-in view of an example concept network component. Nodes 

in a concept graph represents a biomedical concept or entity.  Nodes are color-coded based on 

concept or entity types and are hyper-linked to corresponding database records. Edges in the 

concept graph represent relationships among concepts. These relationships may include being 

frequently co-mentioned in sentences among relevant text snippets in co-mentioned graphs, or 

being cross-referenced in annotation entries across different biomedical databases. By reviewing 

the relationships among the concepts in a concept graph, users may discover hidden relationships 

between two biomedical entities that are connected via some other biomedical entities. Such 

long-range relationships may not be easily detected using text-mining analysis (e.g. 

PolySearch2), which tend to focus on entities co-mentioned within a sentence. Users can review 

concepts in concept graphs in concept tables by clicking on “View Co-mentioned Graph Nodes” 

or “View Knowledge Graph Nodes” buttons. A concept table shows concept types, the concept 

ID, the concept name (hyperlinked), and synonyms for concepts represented on the 

corresponding concept graphs.  Both co-mentioned graphs and knowledge graphs are available 

for download in JSON format. Under the hood, BioQA uses generated concept graphs to 

discover relationships between entities for the posted question and to generate appropriate textual 

answers. For more information on how BioQA generates its concept graphs and how BioQA’s 

graph-based summarization algorithms work, please refer to the Algorithms section in this paper 

or BioQA’s documentation page. Also see Chapter 5 for implementation details. 
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Figure 16: BioQA’s Query submission page (the Question is: “What is the cause of beri-beri?”). 
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Figure 17: BioQA’s Answer Synopsis page with links to the full answer with references, relevant 

concepts, the results download, and various knowledge graph visualizations (the Question is: 

“What is the cause of beri-beri?”). 
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Figure 18: BioQA’s full answer page (the Question is: “What is the cause of beri-beri?”). 
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Figure 19: BioQA’s full answer page (the Question is: “What diseases are caused by E-cadherin 

mutations?”). 
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Figure 20: BioQA’s relevant concept view for the input question “What diseases are caused by 

E-cadherin mutations?”. 
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Figure 21: BioQA’s Co-occurrence network visualization. (The question is: “What diseases are 

caused by E-cadherin mutations?”) 
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Figure 22: A close-up view on BioQA’s Co-occurrence network visualization. (The question is: 

“What diseases are caused by E-cadherin mutations?”) 

 

Besides providing a public web interface to serve the general public, BioQA also offers 

certain underlying datasets as general resources for the biomedical community. These can be 

used by individuals to build their own text-mining or question answering systems. These datasets 

are fundamental building blocks to BioQA and we believe that by releasing them to the public it 

will help advance the field of biomedical question answering. In particular, BioQA uses 

PolySearch2’s thesauri for its entity recognition module. The PolySearch2 thesauri contain 1.13+ 

million biomedical terms with 2.85+ million synonyms. The complete set of terms are available 

for download on the PolySearch2 web server (http://polysearch.ca). BioQA also uses an in-house 

Medline N-gram dataset for question analysis. BioQA’s Medline N-gram dataset calculates the 

observed frequency of unigrams, bigrams (two consecutive words), trigrams (three words), 4-

grams, and 5-grams from 23+ million Medline titles and abstracts (Medline 2015 Baseline + 

Update). Each N-gram dataset contains 7 to 74 million N-gram entries. BioQA’s Medline N-

gram dataset offers finer granularity than the NLM Lexical System Group’s Medline N-gram 
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dataset [53]. This is because BioQA’s N-gram dataset is created without character length 

restriction and it only filters out singletons (terms that occur only once across the entire dataset). 

Finally, the graphical structure (nodes and edges) in BioQA’s knowledge base (BioKB), which 

was built by aggregating entries and cross-references across 20+ biomedical databases, is also 

available for download in YAML format. All aforementioned datasets, along with BioQA’s 

evaluation datasets, are available for download on the web server’s “Download” pages. 

 

4.3 BioQA’s Knowledge base 

Key to BioQA’s operations and success are its knowledge base and algorithmic 

components. BioQA encapsulates “knowledge” in various representations through a knowledge 

base called BioKB which consists of numerous biomedical databases, text collections, 

knowledge graphs and thesauri. In particular, BioKB consists of three components: 1) a 

comprehensive collection of biomedical thesauri, 2) a large collection of free-text documents, 3) 

an interconnected knowledge graph capturing relationships between biomedical concepts 

annotated with concept description and attributes.  
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Thesaurus Name No. of Terms No. of Synonyms Data Sources 

Genes and Proteins 27994 287,827  

 

UniProt, Entrez Gene, 

HGNC, HPRD, JoChem 

Gene Families 404 948 UniProt, Entrez Gene, 

HGNC, HPRD 

Diseases 27,658 76,001 OMIM, UMLS, SNOMED 

CT 

Drugs 7670 37,331 DrugBank 

Human Metabolites 41,793 381,195 HMDB 

Metabolic Pathways 456 456 KEGG 

Tissues 954 984 Manual curation 

Organs 104 201 Manual curation 

Subcellular structures 74 175 HPRD 

Toxins 3,713 39,095 T3DB 

Food Metabolites 27509 39,278 FooDB 

Biological Taxonomy 607,031 775,728 NCBI Taxonomy and 

Integr8 

Gene Ontology 40,535 110,477 Gene Ontology 

MeSH terms 26956 215,327 MeSH 

MeSH Compounds 221,986 716,676 MeSH 

ICD-10 Medical Codes 91,737 155,331 ICD-10 Codes 

Positive Health Effects 161 507 Manual curation 

Adverse Health Effects 135 711 Manual curation 

Drug Effects 424 590 Manual curation 

Chemical Ontology 4,017 10,098 Manual curation 

Total 1,131,328 2,848,936 All 

 

Table 6: Statistics for BioKBs biomedical thesauri collections. This table shows the name of the 

individual thesaurus, number of terms and synonyms, as well as the primary source. BioKB’s 

thesauri includes terms and synonyms for 20 different types of biomedical entities, including 

genes, proteins, protein families, diseases, human metabolites, drugs and drug metabolites, 

biological pathways, tissues, organs, sub-cellular organelles, toxins, food constituents, biological 

taxonomies, ICD-10 medical codes, positive and adverse health effects, drug effects, and 

chemical taxonomies. 
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BioKB’s biomedical thesauri are the foundation of other high level functionalities like 

biomedical term recognition, term tagging, sentence weighting, and summarization. BioKB 

contains a collection of 20 comprehensive biomedical thesauri with over 1.13 million terms and 

2.84 million synonyms. BioKB’s thesauri collection include terms and synonyms for genes, 

proteins [92], gene families [92], diseases [36], human metabolites [96], drug and drug 

metabolite [51], biological pathways [47], tissues [52], organs [52], sub-cellular organelles or 

structures [52], toxins [97], food metabolites [96], biological taxonomies [76], Gene Ontology 

terms [6], MeSH terms and MeSH compounds [81], ICD-10 (International Classification of 

Disease) medical codes [8], and SNOMED CT (Systematized Nomenclature of Medicine – 

Clinical Terms) [61], as well as positive health effects [52], adverse health effects [52], drug 

actions [52], drug effects [52] and chemical taxonomies. All of these thesaurus terms have been 

checked and curated manually by ourselves and others.  BioKB’s thesauri overlap significantly 

with PolySearch2’s thesauri but they also include many important enhancements. Table 6 

summarizes each of BioKB’s thesauri and the number of terms and synonyms in each thesaurus. 

BioKB’s gene, protein, and gene family thesauri were compiled from the latest release of 

UniProt [92], Entrez Gene [18], the Human Genome Organisation Gene Nomenclature 

Committee (HGNC) [75], and the Human Protein Reference Database (HPRD) [63]. 

Furthermore, BioKB’s thesauri also incorporate dictionary terms and synonyms curated by the 

Joint Chemical Dictionary (JOCHEM) [39] to further improve BioQA’s term recognition 

capability. The disease thesaurus was compiled from Online Mendelian Inheritance in Man 

(OMIM) [36], the Unified Medical Language System (UMLS) [14], and SNOMED CT [61]. The 

drug and metabolite thesauri were compiled from the latest version of DrugBank [51] and 

HMDB [96], respectively. The biological pathway thesaurus was derived from names used for 

KEGG pathways [47]. The tissue thesaurus and organ thesaurus were created manually and the 

sub-cellular localization thesaurus was derived from the HPRD [63]. BioKB’s toxin thesaurus 

and food metabolite thesaurus were compiled from the latest version of the Toxic Exposome 

Database (T3DB) [97], and FooDB [96] respectively. The biological taxonomy thesaurus was 

derived from NCBI’s taxonomy archive and the Integr8 database [76]. BioKB’s thesauri also 

feature many manually curated terms and synonyms for positive health effects, adverse health 

effects, drug actions, drug effects and chemical taxonomies. 
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BioKB also contains a large collection of free-text documents. This free-text document 

collection is the source of all text snippets for BioQA’s document retrieval process. To enhance 

BioQA’s processing speed, all of BioKB’s free-text document collections are hosted internally 

and consist of more than 43 million free-text documents (totaling 65 Gigabytes in storage size). 

This avoids delays caused by posting queries over the internet to external databases. BioQA 

extracts relevant documents and snippets from this document collection to support downstream 

query processing and answer synthesis. BioQA accesses all of BioKB’s free-text collections 

using an ElasticSearch cluster running multiple nodes [3]. Apache ElasticSearch is an open 

source information retrieval system that allows BioQA to efficiently retrieve relevant documents 

from BioKB’s text collection and databases. Prior to being added to the text collection, each 

free-text document is analyzed, parsed, and indexed using BioKB’s thesauri for rapid search and 

retrieval. The incorporation of the latest search engine technologies enables BioQA to search the 

entire BioKB document collection rapidly and to find documents relevant to a BioQA search 

query in just a few seconds. BioKB’s document collections covers a wide spectrum of human 

knowledge in the form of free-text articles, ranging from general knowledge text to biomedical 

specific text. This document collection includes latest release of the MEDLINE abstracts, 

PubMed Central full-text articles, Wikipedia full-text articles, US Patent abstracts, open access 

textbooks from NCBI and MedlinePlus articles. Table 7 lists each free-text document collection, 

along with number of records and storage size requirement. The MEDLINE abstract document 

collection is updated automatically to retrieve latest MEDLINE abstracts online to ensure 

BioKB’s MEDLINE abstracts collection stays current. Other document collections are updated 

when new releases become available. Table 8 lists each structured database, along with number 

of records indexed in BioKB. The cross reference portion of these databases are used to populate 

concept connections in the knowledge graph, while the free text portion of these database are 

indexed in ElasticSearch for mining concept associations.  
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Free-text collection Number of Records Storage Size 

MEDLINE (PubMed) 27,208,664 33.20 GB 

PubMed Central (PMC) 704,539 11.50 GB 

Wikipedia 7,619,689 21.80 GB 

USPTO Patent abstracts 7,996,999 7.60 GB 

NCBI DailyMed 2,745 112 MB 

NCBI Books 19,066 256 MB 

Total 43,551,702 74.45 GB 

 

Table 7: Statistics for BioKB’s free-text document collections. This table shows the name of 

document collections, the number of entries in each document collection, as well as the storage 

size. 

 

Structured Database Number of Records 

OMIM 23,219 

T3DB 3,713 

HMDB 41,513 

FooDB 27,509 

KEGG Reactions 9,538 

KEGG Pathways 456 

Gene Ontology 40,535 

UniProtKB 541,561 

MetaCyc 3,810 

GAD 167,298 

HPRD 18,863 

DrugBank 6,825 

Total 884,840 

 

Table 8: Statistics for BioKB’s structured database collections. This table shows the name of the 

database and the number of entries in each database. 
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Node Type No. Nodes No. 

Attributes 

No. Internal 

Links 

No. External 

Links 

Genes/Proteins 400,303 17 372,394 350,459 

Drugs 7,740 55 4,250 19,689 

Drug Metabolites 1,321 27 876 1,221 

Human Metabolites 41,514 64 0 1,882,510 

Human Enzymes 5,688 33 0 992,105 

Yeast Metabolites 2,027 54 0 22,637 

Yeast Enzymes 5,158 33 0 18,328 

Food Metabolites 21,239 57 0 121,210 

Biological Pathways 465 15 123,656 34,007 

Human Diseases 23,748 40 0 0 

Toxins 4040 72 0 42,825 

Toxin Targets 1,802 40 0 28,851 

Biological 

Taxonomies 

187,547 30 176,505 2,316,239 

E. coli Metabolites 1594 46 0 19,667 

E. coli Enzymes 6481 37 0 22,452 

MeSH Terms 27,455 7 0 0 

Gene Ontology 

Terms 

41,841 8 67,478 0 

Chemical Ontology 

Terms 

4017 8 4,015 5,539 

Total 783,980 643 749,174 5,877,739 

 

Table 9: Statistics for BioKB’s knowledge graph. This table shows the name of each knowledge 

node, the number of node entries, the number of node attribute fields, the number of internal 

links (between nodes of same types), and external links (between nodes of different types). 
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In addition to its biomedical thesauri and document collection, BioKB also consists of an 

extensive biomedical knowledge graph. This knowledge graph contains more than 783,000 

nodes in 18 categories with 749,000 internal links and more than 5.8 million external links. This 

knowledge graph is built by extracting concepts from BioKB’s annotated databases or 

knowledgebases. More specifically, the knowledge graph’s nodes are extracted from UniProt 

[92] (genes/proteins), DrugBank [51] (drugs and drug metabolites), HMDB [98] (human 

metabolites and human enzymes), YMDB [44] (yeast metabolites and enzymes), FooDB (food 

metabolites)[96], KEGG [47] (biological pathways), OMIM [36] (human diseases), T3DB [97] 

(toxins and toxin targets), Integr8 [76] (biological taxonomies), ECMDB [35] (E. coli 

metabolites and enyzmes), MeSH [81] (MeSH terms), GeneOntology [6] (GeneOntology terms), 

and other in-house databases (such as ChemOnt for chemical ontology terms). Table 9 shows 

some of the statistics for BioKB’s knowledge graph with the number of nodes and attributes as 

well as internal and external links regarding knowledge graph concepts.  

BioKB regularly builds and updates its knowledge graph from its own large collection of 

high quality databases. This is done by first extracting the core concepts, synonyms, descriptions, 

and attributes from these databases and then identifying connecting concepts either within the 

same database or across different databases. BioKB downloads each source database in a flat-file 

text format, and then parses each database with custom parser programs capable of extracting 

target fields corresponding to each database-specific file format. Extracted concepts from each 

database are then pooled and compared to resolve internal and external links. Internal links are 

those explicitly referenced by the entry in the source database. For example, Citric Acid 

(DrugBank DB04272) is listed as interacting with aspirin, as aspirin “may increase the 

anticoagulant activity of citric acid”. Therefore, the node on citric acid is internally linked to the 

node on aspirin in the knowledge graph. “Cellular tumor antigen p53” is referenced in the 

DrugBank [23] entry for aspirin (Acetylsalicyclic acid, DB00945), therefore gene TP53 (UniProt 

entry P04637 P53_HUMAN) is linked to aspirin with an external link. In a scenario where a 

node is referencing external concepts that are not represented explicitly in the knowledge graph, 

we create “dummy nodes” with only concept IDs for future graph expansions. Links in the 

knowledge graph are directed, with the source node representing concepts described by the 

source database, and the target node represent concepts referenced by the source database. Each 
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concept on the knowledge graph is standardized to contain a list of synonyms and a description. 

In cases where a description or synopsis is available in the source database, BioKB extracts key 

sentences from the original description as a description for the concept. In cases where a 

description is not available or the original description is too short, BioKB generates descriptions 

using predefined description templates using attribute information found for the same entry. 

Algorithm and example templates as well as entries for generating concept descriptions are 

discussed in detail in Chapter 5 and Appendix A. 

 

4.4 BioQA’s Algorithms 

BioQA utilizes a diverse collection of custom-developed algorithms to analyze user 

queries, perform concept and text snippet retrieval, transform documents and concept retrieval 

results and synthesize or paraphrase answers in various forms. Figure 23 shows the overall 

BioQA workflow, its modules/algorithms and the relationships between its various modules. 

When given a question in natural language text, the “Question Analysis” module analyzes the 

question to extract the question type, the lexical answer type, the query keywords, any 

association words, and contextual noun phrases. Contextual noun phrases are noun phrases that 

are not query keywords but can be used to enhance the search query formation. The “Query 

Processing” module formulates queries for both BioKB and PolySearch2. Query Processing 

module retrieves key concepts derived from the question using BioKB’s underlying 

ElasticSearch [71] index. This module then generates descriptions for each available concept 

using the “Description Generator”, and finally extracts concept networks spanned by the 

concepts in the question and builds co-mentioned concept networks from the relevant 

documents. PolySearch2 accepts a formulated PolySearch2 query and returns a list of relevant 

concepts and text snippets using the PolySearch algorithm [16, 17]. Based on the query analysis, 

and query processing results, the “Answer Synthesis” module ranks relevant concepts, formats 

the concept networks, and synthesizes structured textual answers. The final textual answers are 

synthesized using descriptions retrieved from the “Description Generator”, as well as via 

summarization of relevant snippets using BioQA’s greedy LSI (Latent Semantic Index) [38, 46] 

based summarization algorithm, or via summarization based on relationships among concepts in 
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the knowledge graphs. Upon user request, the “Paraphrase Module” is called to transform the 

initial free-text answer into a paraphrased document. Users can post their questions and view 

relevant concepts, knowledge graphs, and textual answers on the BioQA web interface. 

 

Figure 23: BioQA's knowledge and algorithmic components. 

 

In this section, we briefly described BioQA’s algorithms for: 1) question analysis; 2) 

named entity recognition; 3) concept and text snippet retrieval; 4) description generation; 5) 

answer synthesis, and 6) automated paraphrasing. More information about BioQA’s algorithms 

can be found in Chapter 5 and the Appendices. Chapter 5 describes each algorithm in detail 

while Appendix A shows example description templates for generating descriptions from the 

DrugBank [51] database. Appendix B shows examples of paraphrasing rules used by the 

automated paraphrasing module to transform sentences into equivalent sentence forms. Finally, 

Appendix C describes other information extraction algorithms used by BioQA and BioKB in 

parsing database entries. These algorithms combine the implicit knowledge in BioKB with each 

user query to arrive at a final answer as seen in the BioQA web interface.  

BioQA’s Question Analysis module extracts useful information from posted questions for 

all downstream question-answering processes. Given a question, this module: 1) identifies 

question types, 2) extracts Lexical Answer Type (LAT) information, 3) extracts keywords, 4) 
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extracts association words, and 5) extracts contextual noun phrases. This extracted information 

from the posted question is used to build search queries for concept and text snippet retrieval as 

well as for answer synthesis. BioQA supports both descriptive and associative question types. So 

the Question Analysis module needs to determine whether the posted question is asking for a 

description of certain biomedical entities (descriptive) or asking for associations between certain 

entities (associative). The Question Analysis module uses a rule-based system, which analyzes 

the question prefix to determine the type of question being asked. Another important aspect of 

the Question Analysis module is to extract query keywords and other elements to formulate an 

appropriate search query for BioKB and PolySearch2. BioQA analyzes a given question using 

natural language processing techniques (syntactic analysis and pattern matching) to identify 

query words, contextual noun phrases (non-query noun phrases), lexical answer types, and 

association words. The Question Analysis module tokenizes question text, performs Part-of-

Speech (POS) tagging, and conducts shallow syntactic parsing to identify sentence constituents 

such as the subject(s), verb(s), and predicate(s). Noun phrases are also extracted from the parsed 

sentence using regular expression pattern matching as well as dictionary lookups using the 

PolySearch2 thesaurus [52], and search queries using WordNet [62]. Extracted noun phrases are 

assigned to the query keyword(s) or contextual noun phrases (non-query noun phrase for 

enhancing the specificity of the search query) based on their positions in the sentence. Lexical 

Answer Type (LAT) extraction is use to determine the type or format of the intended answer. For 

example, in a PolySearch2 query, the LAT is the type of biomedical entity we wish to find. 

Consider the following a few examples (with each LAT underlined): “Which parasite causes 

malaria?”, “What diseases are associated with chemical BPA?”. BioQA uses a rule-based 

method to identify the LAT in a posted question. BioQA extract noun phrases in the subject 

between the query prefix words and main verb of a sentence and uses predefined rules to map 

noun phrases to the target LAT. Verbs, adjectives, adverbs, and prepositions in the posted 

question are classified as association words. Using the output from Question Analysis module, 

The Query Processing module combines query keywords, contextual NPs, LATs, and association 

words to form search queries for PolySearch2 and BioKB. In particular, the Query Processing 

module issues formatted queries to PolySearch2 to retrieve relevant concepts with relevancy 

scores. This module also issues search queries to BioKB to find concept descriptions, relevant 

database entries, supporting documents and text snippets. Query Processing results are further 
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processed by the Answer Synthesis module to form natural language answers with supporting 

evidence. An example of a Question Analysis output for the question: “What is aspirin?” is 

shown in Table 10.  

 

Input Question 

What is aspirin? 

Question Analysis Results 

Query Keyword: Aspirin 

Contextual NPs: None 

Question Type: Descriptive 

LAT: Aspirin 

Table 10: Example Question Analysis results for the question “What is aspirin?”. 

 

The ability for BioQA to “recognize” or “tag” biomedical entities in a given free-text 

question as well as entities in relevant sentence snippets is particularly important for Question 

Analysis, Query Processing, and Answer Synthesis. BioQA uses BioTagger, its Named Entity 

Recognition module, to parse noun phrases mentioning biomedical terms. BioTagger, as shown 

in Figure 18 and Figure 19, will take a given natural language sentence, tag biomedical entities, 

color code them, and hyperlink them to corresponding BioKB database entries. The BioTagger 

algorithm combines exact dictionary matching, shallow syntactic parsing, and N-gram language 

models to identify noun phrases. BioTagger first tries to match surface terms to terms in the 

BioKB thesauri by exact dictionary matching a concept’s synonyms against the BioKB thesauri. 

When no exact matching is available, BioTagger performs a combination of POS tagging, 

Probabilistic Context-Free Grammar (PCFG) [46] parsing, and regular expression pattern 

matching to extract noun phrases (NPs) that partially match terms in the BioKB thesauri. Finally, 

BioTagger generates frequent N-grams (for N ranging from 1 to 5) from given sentences and 

searches against an N-gram dataset generated using the entire MEDLINE abstract database. 

BioTagger prefers terms with exact dictionary matches over extracted noun phrases with partial 
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matching or frequent N-grams. BioTagger also prefers longer terms over shorter terms, and more 

frequent terms than less frequent terms. By using a number of algorithmic improvements and 

optimizations, BioTagger is very efficient in processing retrieved documents with a memory 

requirement that is linear to the size of the BioKB thesauri. Furthermore, its time efficiency is 

(best case) linear O(N) or (worst case) O(N2) to the length of the input sentence. An example of a 

BioTagger output for the question: “What is aspirin?” is given in Table 11.  

The Answer Synthesis module generates structured textual answers and augments these 

answers with reference citations, relevant documents and concept network diagrams using 

description generation, concept graph generation, automated summarization and paraphrasing. 

BioQA uses the Description Generator to create descriptions for concepts in a database without a 

description field. The Description Generator first parses a database entry for information fields 

according to the database’s specific schema and stores extracted fields in a lookup dictionary. It 

then generates descriptions by filling in the blanks using pre-defined sentence templates, thereby 

producing a structured description paragraph. Description templates consist of sentence 

templates grouped into multiple ordered sentence groups. A sentence group represents a single 

sentence describing one or more properties for a database entry. Each sentence group contains 

various hand-crafted sentence templates conveying similar information with different syntactic 

variations. Each sentence template contains one or more blank fields to be filled with 

information extracted from corresponding database entry. When all blank fields in a sentence 

template have the corresponding information for a database entry, these sentence templates are 

“triggered”. The Description Generator then randomly selects a “triggered” sentence template in 

the same sentence group to produce one descriptive sentence. The Description Generator module 

then processes each sentence group to produce the remaining descriptive sentences and join all 

generated sentences to produce a free-text paragraph describing the target biomedical concept.  

An example of a Description Generator output for the question: “What is aspirin?” is given in 

Table 12. 
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Input Question 

What is aspirin? 

BioTagger Results 

DB00945: Acetylsalicylic acid (DrugBank) 

 130 Synonyms: Aspirin; Acetylsalicylic acid; 2-Acetoxybenzenecarboxylic acid; 2-

Acetoxybenzoic acid; Azetylsalizylsäure; Acetylsalicylate; Acide acétylsalicylique; ácido 

acetilsalicílico; Acidum acetylsalicylicum; ASA; o-acetoxybenzoic acid; O-

acetylsalicylic acid; Aspirin; o-carboxyphenyl acetate; Polopiryna; Acenterine; Adiro; 

Aspergum; Aspro; Bayer Aspirin; Easprin; Ecotrin; Empirin; Entrophen; Nu-seals; 

Rhodine; Rhonal; Solprin; Solprin acid; St. Joseph Aspirin for Adults; Tasprin; Aspirin; 

2-Carboxyphenyl acetate; 8-hour Bayer; A.S.A.; A.S.A. Empirin; Acesal; Acetal; 

Aceticyl; Acetilsalicilico; Acetilum acidulatum; Acetisal; Acetol; Acetonyl; Acetophen; 

Acetosal; Acetosalic acid; Acetosalin; Acetoxybenzoic acid; Acetylin; Acetylsal; 

Acetysalicylic acid; Acido O-acetil-benzoico; Acido acetilsalicilico; Acimetten; Acisal; 

Acylpyrin; Asagran; Asatard; Ascoden-30; Aspalon; Aspec; Aspirdrops; Aspirine; 

Asteric; Bayer; Bayer Extra Strength Aspirin For Migraine Pain; Benaspir; Bi-prin; 

Bialpirina; Bialpirinia; Bufferin; Caprin; Cemirit; Claradin; Clariprin; Colfarit; 

Contrheuma retard; Coricidin; …. 

HMDB01879: Aspirin (HMDB) 

 63 Synonyms: 2-(Acetyloxy)benzoate; 2-(Acetyloxy)benzoic acid; 2-

Acetoxybenzenecarboxylic acid; …. 

D001241: Aspirin (MeSH) 

 19 Synonyms: 2-(Acetyloxy)benzoic Acid; Acetysal; Acylpyrin; Aloxiprimum; …. 

T3D2936: Aspirin (T3DB) 

 26 Synonyms: 2-Acetoxybenzenecarboxylic Acid; 2-Acetoxybenzoic Acid; 2-

Carboxyphenyl acetate; A.S.A.; ASA; …. 

 

Table 11: Example BioTagger result for the input question “What is aspirin?”. 
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Input Question 

What is aspirin? 

Description Generator Result 

Aspirin (USAN), also known as acetylsalicylic acid (INN, ASA), is a salicylate drug, often 

used as an analgesic to relieve minor aches and pains, as an antipyretic to reduce fever, and 

as an anti-inflammatory medication. 

Table 12: Description Generator results for the question “What is aspirin?” 

 

BioQA uses a Concept Graph Generator module to build a concept graph from the 

relevant concepts found in BioKB’s concept network as well as the co-mentioned concepts found 

in relevant text snippets. A concept graph is an undirected graph where vertices represent 

biomedical concepts and edges represent connections between concepts. Two concepts are 

connected by an edge if either 1) one concept references another concept in a database record, or 

2) both concepts are frequently co-mentioned (above certain statistical cut-off) from the retrieved 

text snippets. As mentioned above, the Question Analysis module parses query keywords and 

noun phrases from a given question, and BioTagger maps them to a collection of corresponding 

biomedical concepts. To build a concept graph from concepts in BioKB’s concept network, the 

Concept Graph Generator module simply extracts the subgraph spanned by the collection of 

concepts found in the given question. In particular, the extracted subgraph includes: nodes 

representing the query term, biomedical terms representing the contextual noun phrases, their 

immediate neighbors and all connecting edges. To build a concept graph from co-mentioned 

concepts in retrieved text snippets, the Concept Graph Generator module scans each relevant 

sentence and extracts pairs of biomedical concepts found in a same sentence. It also keeps a 

numerical count of the frequency of each concept pair in a dictionary data structure. The 

dictionary represents an implicit background concept network, where each pair of co-mentioned 

concepts is connected by an edge, with the strength of an edge being proportional to the 

frequency of it being co-mentioned in a sentence. Next, the module trims this implicit 

background concept network by scoring and ranking each co-mentioned concept pair using Z-
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distribution statistics. Edges with a Z-score lower than 0 (therefore the observed association is 

likely due to chance) are removed from the implicit background network. Finally, the Concept 

Graph Generator module extracts subgraphs from the trimmed background network by including 

only those nodes and edges connecting to concepts found in the given question. Both concept 

networks can be visualized in the BioQA user interface as shown in Figure 21 and Figure 22. An 

example of a Concept Graph Generator output for the question: “What is aspirin?” is given in 

Table 13. 

 

Source 

ID 

Source 

Node 

Type 

Source Node 

Name 

Target Node 

ID 

Target 

Node Type 

Target Node Name 

DB00945 Drug Acetylsalicylic 

acid 

C081124 Compound acetyl chloride 

DB00945 Drug Acetylsalicylic 

acid 

D014481 MeSH United States 

DB00945 Drug Acetylsalicylic 

acid 

DB00316 Drug APAP 

C081124 Compound acetyl chloride DB00936 

 

Drug Salicyclic acid 

D014481 

 

MeSH United States D014486 MeSH United States Food 

and Drug 

Administration 

D014481 MeSH United States D047828 MeSH World War I 

D014481 MeSH United States DB00497 Drug Oxycodone 

DB00316 Drug APAP HMDB01859 Human 

Metabolite 

4'-

Hydroxyacetanilide 

DB00316 Drug APAP C526278 Compound acetaminophen, 

codeine drug 

combination 

DB00316 Drug APAP C019552 Compound Saridon 
 

Table 13: Example of a Concept Graph Generator output on the input question “What is 

aspirin?”. A subset of 10 edges in the concept graph (51 nodes, 44 edges) are shown in this table. 

This table shows the concept ID, node type, and node name for source and target nodes for 

selected edges. 
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Input Question 

What is aspirin? 

Summarization Engine Output 

Aspirin (USAN), also known as acetylsalicylic acid (INN, ASA), is a salicylate drug, often 

used as an analgesic to relieve minor aches and pains, as an antipyretic to reduce fever, and 

as an anti-inflammatory medication. Although aspirin 's use as an antipyretic in adults is 

well-established, many medical societies and regulatory agencies (including the American 

Academy of Family Physicians, the American Academy of Pediatrics, and the U.S. Food 

and Drug Administration (FDA)) strongly advise against using aspirin for treatment of fever 

in children because of the risk of Reye 's syndrome, a rare but often fatal illness associated 

with the use of aspirin or other salicylates in children during episodes of viral or bacterial 

infection. After the association between Reye's syndrome and aspirin was reported, and 

safety measures to prevent it (including a Surgeon General 's warning, and changes to the 

labeling of aspirin-containing drugs) were implemented, aspirin taken by children declined 

considerably in the United States, as did the number of reported cases of Reye's syndrome; a 

similar decline was found in the United Kingdom after warnings against pediatric aspirin use 

were issued. The company's attempts to hold onto its Aspirin sales incited criticism from 

muckraking journalists and the American Medical Association, especially after the 1906 

Pure Food and Drug Act that prevented trademarked drugs from being listed in the United 

States Pharmacopeia; Bayer listed ASA with an intentionally convoluted generic name 

(monoacetic acid ester of salicylic acid) to discourage doctors referring to anything but 

Aspirin. Surgeon General, the Food and Drug Administration, the Centers for Disease 

Control and Prevention, and the American Academy of Pediatrics recommend that aspirin 

and combination products containing aspirin not be given to children under 19 years of age 

during episodes of fever-causing illnesses, because of a concern about Reye's Syndrome.  

Table 14: Summarization engine output for the question “What is aspirin?”. 

  



94 

 

 

Input Question 

What is aspirin? 

Paraphrasing Engine Output 

Acetysal (USAN), also known as acetylsalicylic acid (INN, argininosuccinic acid), is a 

salicylate drug, often used as an analgesic to relieve nonaged aches and pains, as an 

antipyretic to reduce hyperthermias, and as an anti-inflammatory medication. Although 

acetysal's use as an antipyretic in adults is well-established, many medical societies and 

regulatory agencies (including the American Academy of extended Family Physicians, the 

American Academy of Pediatrics, and the U.S. Food and Drug Administration (FDA)) 

strongly advise against using acetysal for therapeutics of fevers in children because of the 

comparative Risks of Reye's symptom Cluster, a rare but often fatal unwellness associated 

with the use of acetysal or other salicylates in children during episodes of viral or bacterial 

Infections. After the associations between Reye's symptom Cluster and acetysal was reported, 

and refuge measures to prevent it (including a Surgeon General's warning, and changes to the 

labeling of acetysal-containing drugs) were implemented, acetysal taken by children declined 

well in the United States, as did the figure of reported cases of Reye's symptom Cluster; a 

similar diminution was found in the United Kingdom after warnings against paediatric 

acetysal use were issued. The company's attempts to hold onto its acylpyrin sales incited 

unfavorable judgment from muckraking journalists and the association, American Medical, 

especially after the 1906 Pure Food and Drug Act that prevented trademarked drugs from 

being listed in the United States Pharmacopeia; acetyl2-Hydroxybenzoic Acid listed 

argininosuccinic acid with a deliberately convoluted generic name (monoacetic acid ester of 

2-Hydroxybenzoic Acid) to discourage doctors referring to anything but acylpyrin. Surgeon 

General, the foods and Drug Administration, the Centers for Disease Control and Prevention, 

and the American Academy of Pediatrics recommend that acetysal and combining products 

containing acetysal not be given to children under 19 years of historic period during episodes 

of fever-causing illnesses, because of a care about Reye's symptom Cluster.  

Table 15: Example Paraphrasing Engine output for synthesized answers with input question 

“What is aspirin?”. 



95 

 

BioQA synthesizes its answers in natural language text using the Summarization Engine 

module. The Summarization Engine combines concept descriptions retrieved from BioKB or 

generated using the Description Generator, with answer paragraphs describing the association 

between relevant concepts. The Summarization Engine “composes” its answers using two 

different algorithms: a) Summarization by Co-mentioned Concept Graph, that is generating a 

summary paragraph from co-mentioned concept information, and 2) Summarization by Greedy 

LSI, that is generating a summary paragraph from relevant text snippets using a greedy algorithm 

on a Latent Semantic Index data structure for relevant documents. The first algorithm 

(Summarization by Co-mentioned Concept Graph) takes advantage of the co-mentioned concept 

graph (built by the Concept Graph Generator module) and the interconnectivity of relevant 

concepts. Synthesizing answers using a co-mentioned concept graph involves a form of implicit 

reasoning, where the algorithm joins sentences describing entity connections across multiple 

linked concepts in the natural order found in the relevant text snippets. In other words, to 

generate a paragraph describing the association between two concepts X and Y, this algorithm 

first finds a shortest path (if any) in the co-mentioned concept graph using the Single Source 

Shortest Path algorithm (e.g. a shortest path connecting concept X and Y could be X-Z-Y, where 

concept Z connects both X and Y) [20]. Then the algorithm traverses each pair of concepts in the 

shortest path (e.g. X-Z, and Z-Y) from the source concept X to the target concept Y, and selects 

the highest ranked sentence (based on PolySearch2’s relevancy score) from all sentences 

containing both concept X and concept Y. The strength of this algorithm is that only sentences 

containing the strongest evidence for the association between the two concepts are included in 

the final summary. The weakness of this algorithm is that a path between two concepts may not 

exist in co-mentioned concept graph. In this case, a default summary is generated using the 

second algorithm (Summarization by Greedy LSI), where the given question “grows” to a 

summary paragraph with the help of a latent semantic index from the relevant documents. 

Synthesizing answers using a document matrix with a latent semantic index involves information 

filtering to identify key terms and key sentences among all relevant text snippets. The second 

algorithm (Summarization by Greedy LSI) first builds a Latent Semantic Index (LSI) from the 

retrieved relevant documents.  Then starting from the given question sentence it greedily 

includes the next most similar sentence to the current summary. Given a question and a 

collection of relevant documents (or text snippets), this algorithm converts each relevant snippet 
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to a document vector representation and then forms a document matrix via a vector space model 

[46, 56]. It then calculates eigenvectors and eigenvalues of the document matrix using Singular 

Value Deposition (SVD) and reduces the dimension of the document matrix by projecting 

document vectors onto a lower dimension space spanned by the eigenvectors. The eigenvectors 

of the document matrix represent key topics (biomedical terms) found among relevant 

documents. Therefore, this dimensional reduction step effectively filters key topics among the 

collection of relevant snippets and indexes each text snippet with key terms. Finally, the 

algorithm greedily generates a summary paragraph using the initial question document vector 

and the LSI document index in subsequent iterations. That is, given an initial question document 

vector, the algorithm retrieves text snippets corresponding to the most similar document vector in 

the document index by Cosine Similarity measure. The algorithm adds the retrieved snippets to 

the summary paragraph, removes snippets similar to the current snippet above an empirical 

threshold, and recalculates the document index, now containing fewer documents. This process 

is repeated until the summary paragraph grows to a certain length, or the document matrix 

contains too few relevant snippets to continue the indexing process. Finally, the Summarization 

Engine performs post-processing on the generated summary paragraph to enhance readability 

and fixes grammatical artifacts (introduced during summarization) to produce the final summary 

paragraphs. An example of a Summarization Engine output generated using the two different 

algorithms in this Engine for the question: “What is aspirin?” is given in Table 14. 

The answers that BioQA generates are almost always composed of previously existing 

text that may or may not be copyrighted. Therefore, BioQA also supports automated 

paraphrasing of natural language answers for those users who wish to include all or part of 

BioQA’s answer in a document without the need to manually paraphrase the answer. The 

Paraphrasing Engine module takes an initial BioQA textual answer, and paraphrases it, sentence 

by sentence according a set of pre-defined rules. Paraphrasing rules falls into substitution, 

enumeration, rearrangement, and transformation categories. Please refer to Appendix C for more 

details and examples regarding these paraphrasing rules. The Paraphrasing Engine module 

applies phrase substitution, word-sense substitution, and synonym substitution to an input 

sentence. In particular, this module applies 2000+ phrase or word substitution rules (see 

Appendix B) to an input sentence to replace a phrase with its semantic equivalent. These 
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substitution rules can be simple or word-sense dependent (substitution rules depends on the Part-

of-Speech tags for the original words). Simple substitution replaces a phrase with an equivalent 

phrase. For example, substituting “also known as” with “also referred to as”. Word-sense 

substitution switches a word based on its Part-of-Speech tag. For example, the word “witness” 

can be substituted with “observe” when “witness” is used as a verb, but with “observer” when 

“witness” is used as a noun. The paraphrase engine then substitutes a word with a valid synonym 

by searching WordNet [62] (English dictionary words) and the BioKB thesaurus (biomedical 

terms). The module recognizes phrases or common expressions such that synonyms substitution 

does not replace a part of a phrase or common expression by mistake. Besides word 

substitutions, this module also performs transformations, enumerations, and rearrangements to 

paraphrase an input sentence. Transformation rules changes a numerical measure to an 

equivalent with different units. Rearrangement rules rearrange words in an expression. In 

paraphrasing, the module also obeys other rules that don’t easily fit into the previous categories. 

For example, it should never change anything in quotes, and never change proper nouns, 

acronyms (“BPA”) or entity names (“Bisphenol A”). When multiple rules are applicable to an 

input sentence, there could be a potential conflict between rules, as more than one rule could be 

substituting the same part of the sentence yielding different results. In this case, only one rule is 

selected among the conflicting rules (according to predefined rule precedence or at random) to 

paraphrase a sentence. Besides handling conflicting rules, The Paraphrasing Engine also 

randomizes paraphrasing results to a certain degree to provide a higher degree of syntactic 

variance. Running the paraphrasing function over and over again should yield a slightly different 

paragraph (but with the same meaning) each time it is run. The output from the Paraphrasing 

Engine is a paraphrased version of the original answer/paragraph with original references. An 

example of a Paraphrasing Engine output (before and after running the Engine) for the question: 

“What is aspirin?” is given in Table 15. 

 In this section, we briefly discussed the various algorithms that BioQA uses for 

performing question analysis, query processing, and answer synthesis. Answer synthesis utilizes 

an algorithm to generate concept descriptions from database entries using predefined templates. 

It also uses an algorithm to build relevant concept graphs from BioKB’s concept network and co-

mentioned concept graph. It then uses an algorithm to automatically summarize concept 
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associations using the concept graph or document matrix, and an algorithm to automatically 

paraphrase the answer. Working as a whole, these algorithms and modules transform an input 

question into answers in a variety of different forms, including natural language answers with 

reference citations, a ranked list of relevant concepts, and an image of the relevant concept 

graphs. 

 

4.5 Performance Evaluations 

In Chapter 3 we previously evaluated the performance of PolySearch2 [8] with regard to 

its information retrieval capacity and sensitivity. In this section we present two different, 

independent evaluations on BioQA with regard to its Query Processing and Answer Synthesis 

components. We first evaluate BioQA’s question analysis module by evaluating its question type 

identification capability. Next, we evaluate BioQA’s answer synthesis modules using the 

BioASQ challenge dataset [82, 88, 89].  

 

4.5.1 Question Analysis Evaluation 

A key aspect for any free-text question-answering system is its ability to accurately 

identify the type of input question being asked.  In most cases it is a matter of distinguishing if a 

question is descriptive or associative. We evaluated BioQA’s question type identification 

algorithm using the BioASQ’s training dataset [82, 88], which consisted of 600 questions with 

specific question types: 1) yes/no, 2) descriptive, 3) associative, and 4) summary. In this 

evaluation we classify summary questions as associative question types. We compare BioQA’s 

prefix rule-based algorithm with three other commonly used algorithms: 1) a K-nearest neighbor 

algorithm 2) a Support Vector Machine classifier, and 3) a Random Forest classifier. The K-

nearest neighbor algorithm is an instance-based learning algorithm, and is often used to evaluate 

classification problems as a baseline system due to its simplicity. Our K-nearest neighbor 

algorithm takes the majority of the top 3 questions that are most similar to the given question in 

the BioASQ training dataset. If the top 3 questions are of different types, we take the question 

type belonging to the most similar question. Support Vector Machine and Random Forest 
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classifiers are both popular choices for classification tasks in text mining due to their excellent 

capacity to handle high dimensional features. In all three classification algorithms, we used 

stemmed bag-of-words features vectors, and Term Frequency / Inversed Document Frequency 

(TF-IDF) term weighting schema [46, 56]. We use cosine similarity as similarity measure 

between feature vectors. Note that in this evaluation, stop-words are not removed as stop words 

can be valuable features for question type prediction. We evaluated all three supervised 

classification algorithms using 5-fold cross validation, and compared their performance with the 

prefix rule-based algorithm used in BioQA. As seen in Table 16, BioQA’s prefix rule algorithm 

outperforms all three supervised classification algorithms. These data illustrate that a supervised 

classification algorithm may not be a better option in question type analysis than a system based 

on hand-crafted empirical rules for this kind of task. We speculate that for supervised 

classification algorithms to achieve the desired accuracy, we would need a much larger training 

dataset. This is likely due to the fact that questions of same type may not share enough words or 

features to sufficiently characterize a specific type of question. Rule-based systems that uses 

hand-craft empirical rules, on the other hand, examine question prefixes based on empirical 

rules, and so they are less prone to the size of training dataset. 

To test this hypothesis, we conducted the following experiment: we converted each 

question in the BioASQ training dataset into a feature vector with stemmed bag-of-words 

features. Similar to our evaluation, stop words were preserved in the feature vectors. We 

weighted each feature using TF-IDF, and measured the cosine similarity between each question 

and the most similar question (excluding itself) among all three question types (yes/no, 

associative, descriptive). We visualized the similarity scores using a series of scatter plots 

(Figure 24, Figure 25, and Figure 26). Each question can be visualized as a data point on a 

scatter plot. The location of each data point corresponds to its maximum similarity score to a 

question type along an axis. If instances of each question type are well separable based on their 

feature vectors, we should see questions of same type cluster into relatively distinct clusters. 

Based on the data in Figure 24, Figure 25, and Figure 26, we see that this is not the case. In 

particular, there is little clustering, indicating question types may not be easily predicted using 

linear machine learned classifiers. Based on this observation, and the overall superior 

performance, BioQA uses an empirical rule-based question type identification algorithm.  
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Question 

Type 

Performance 

Measure 

Prefix Rule KNN SVM Random 

Forest 

Yes/No Precision 0.9241 0.4233 0.5541 0.5468 

Recall 1.00 0.4533 0.2482 0.2165 

Accuracy 0.9769 0.6733 0.7174 0.7289 

F-measure 0.9605 0.4378 0.3428 0.3102 

Associative Precision 0.9438 0.6678 0.6891 0.7558 

Recall 0.6981 0.6294 0.5344 0.5138 

Accuracy 0.8291 0.6598 0.6273 0.6748 

F-measure 0.8026 0.6483 0.6028 0.6117 

Descriptive Precision 0.5811 0.4655 0.6394 0.6809 

Recall 0.8602 0.4839 0.2142 0.2712 

Accuracy 0.8315 0.7623 0.7832 0.8081 

F-measure 0.6936 0.4745 0.3209 0.3879 

Table 16: Performance statistics of BioQA’s question type prediction algorithm (prefix rule) in 

comparison with K-nearest neighbor (KNN), Support Vector Machine (SVM), and Random 

Forest classifiers on the BioASQ training dataset with 600 questions with question type labels. 
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Figure 24: BioASQ Question Similarity Scatter plots: Yes/No questions versus Associative 

questions. 
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Figure 25: BioASQ Question Similarity Scatter plots: Yes/No questions versus Descriptive 

questions. 
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Figure 26: BioASQ Question Similarity Scatter plots: Associative question versus Descriptive 

questions. 
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4.5.2 Answer Synthesis Evaluation  

To assess the overall performance of BioQA in terms of question answering, we 

evaluated it by participating in the first and second BioASQ challenges.  The first BioASQ 

challenge took place in 2013, and the second BioASQ challenge took place in 2014. A total of 11 

participants were involved in BioASQ-1 (2013) and 15 participants in BioASQ-2 (2014) for 

Task B. BioASQ (http://bioasq.org) [82, 88] is a semantic question answering challenge with two 

distinct tasks. Task A challenges participants to automatically index novel MEDLINE abstracts 

with MeSH tags; Task B challenges participants to annotate given natural language questions 

with relevant articles, text snippets, and RDF triples from designated document and concept 

repositories (Phase A), and eventually return an “exact” and an “ideal” answer in natural 

language (Phase B). Participants are allowed to process a challenge question set and submit 

answers within 24 hours. Submission results are evaluated automatically and manually by a 

panel of biomedical experts. Please refer to Satsaronis et al. [82, 88] and Malakasiotis et al. [55] 

for details on the BioASQ challenge and evaluation measures. Specifically, we evaluated 

BioQA’s modules in both Task A and Task B with modifications in order to comply with 

challenge guidelines. The information retrieval module in BioQA was temporarily customized to 

retrieve information from the BioASQ article and concept repository instead of from BioQA’s 

local document and concept repository (BioKB). The Question Processing module was 

customized to accept natural language questions with given question types. The Answer 

Synthesis module was customized to process relevant articles, snippets, and concepts (provided 

by BioASQ) plus information retrieved locally from BioKB and PolySearch2 (e.g. concept 

descriptions and associations), to synthesize the final “exact” and “ideal” answers. Note that the 

version of BioQA used in the first BioASQ challenge was Version v1.1 while the version of 

BioQA used in the second BioASQ challenge was Version v1.2. Version v1.1 is equipped with 

core algorithms for question analysis and answer synthesis. Version v1.2 exploits an algorithm 

for greedily removing sentences with redundant information and “smoothing” sentence transition 

within an answer paragraph by rearranging sentences based on their information connection. The 

current version of BioQA is Version v1.3. Version v1.3 is enhanced with public web interface, 

concept graph visualization, and automated paraphrasing. Performance evaluation presented in 

this section is based on the participation of BioQA version v1.1 in the first BioASQ challenge, 
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and version v1.2 in the second BioASQ challenge. Challenge results are publicly available on the 

BioASQ challenge website (http://bioasq.org), and are discussed in Partalas et al. [72] and 

Balikas et al. [12] with references to BioQA as the “Wishart” systems. Performance statistics 

including precision, recall, accuracy, mean reciprocal rank (MRR), and F-measure and accuracy 

are presented in Table 17 for exact answer formation in six evaluation runs. Automatic and 

manual evaluation scores are presented in Table 18 for ideal answer formation in same six runs. 

Performance evaluations are also available on the evaluation page of the BioQA web server. 

BioQA’s performance in concept retrieval were evaluated with PolySearch2 

(http://polysearch2.ca) [52]. In this section, we focus on discussing BioQA’s ability in 

formulating exact and ideal answers. We used a two-sample t-test to compare key performance 

statistics of BioQA against the performance statistics of the best system among other BioASQ 

participants.  
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 Yes/No Factoid List 

Exact answer 

 

Acc.* Strict 

Acc. 

Lenient 

Acc. 

MRR* Mean 

Prec. 

Recall F-

measur

e* 

Task 1b 

Phase B 

Batch 1 

BioQA 0.9200 0.2222 0.3333 0.3056 0.3186 0.2147 0.2290 

Other 

Best 

0.4800 0.0000 0.2222 0.1056 0.0153 0.0402 0.0204 

Task1b 

Phase B 

Batch 2 

BioQA 0.9615 0.2500 0.3000 0.3000 0.4060 0.3127 0.3336 

Other 

Best 

0.5000 0.0000 0.2500 0.0725 0.0612 0.2062 0.0789 

Task2b 

Phase B 

Batch1 

BioQA 0.8438 0.4400 0.4800 0.4600 0.4478 0.3335 0.3456 

Other 

Best 

0.9375 0.1600 0.1600 0.1600 0.0572 0.0702 0.0614 

Task2b 

PhaseB 

Batch2 

BioQA 0.9286 0.1304 0.1304 0.1304 0.5120 0.4399 0.4261 

Other 

Best 

0.8214 0.0435 0.1739 0.0942 0.1596 0.2057 0.1618 

Task2b 

PhaseB 

Batch3 

BioQA 0.8889 0.0417 0.0833 0.0556 0.4584 0.3763 0.3909 

Other 

Best 

0.8333 0.0417 0.1250 0.0833 0.1195 0.1780 0.1373 

Task2b 

PhaseB 

Batch4 

BioQA 0.9375 0.2500 0.2813 0.2813 0.2659 0.4029 0.2963 

Other 

Best 

0.8750 0.0625 0.1875 0.1120 0.1233 0.1365 0.1062 

Overall 

Average 

BioQA 0.9133 

0.0415 

0.2224 

0.1342 

0.2681 

0.1438 

0.2555 

0.1432 

 0.4015 

0.0926 

0.3467 

0.0793 

0.3369 

0.0696 

Other 

Best 

0.7412 

0.1989 

0.0513 

0.0589 

0.1864 

0.0446 

0.1046 

0.0307 

0.0894 

0.0535 

0.1395 

0.0707 

0.0943 

0.0516 

Table 17: BioASQ Challenge Task B Exact answer formation. This table shows the performance 

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Stric Acc. and Lenient Acc. 

stands for Strict Accuracy, and Lenient Accuracy respectively. MRR stands for mean reciprocal 

rank. Official ranking measures for each answer category are marked with asterisks. Those 

measures for which BioQA’s overall performance was significantly better than the best among 

other participants are shown in bold.  
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 Automatic Scores Manual Scores 

Ideal answer 

 

Rouge-2 Rouge-

SU4 

Readability Recall Precision Repetition 

Task1b 

PhaseB 

Batch1 

BioQA 0.2059 0.2202 3.97 3.71 3.83 4.27 

Other 

Best 

0.2266 0.2636 2.55 3.15 2.54 3.21 

Task1b 

PhaseB 

Batch 1 

BioQA 0.2106 0.2387 4.14 4.14 4.17 4.48 

Other 

Best 

0.2204 0.2659 2.92 3.87 3.08 3.50 

Task2b 

PhaseB 

Batch1 

BioQA 0.4802 0.4814 - - - - 

Other 

Best 

0.4971 0.4971 - - - - 

Task2b 

PhaseB 

Batch2 

BioQA 0.3914 0.4089 - - - - 

Other 

Best 

0.3352 0.3493 - - - - 

Task2b 

PhaseB 

Batch3 

BioQA 0.4331 0.4427 - - - - 

Other 

Best 

0.4282 0.4386 - - - - 

Task2b 

PhaseB 

Batch4 

BioQA 0.4072 0.4295 - - - - 

Other 

Best 

0.3273 0.3677 - - - - 

Overall 

Average 

(Standard 

Deviation) 

BioQA 0.3547 

 0.1174 

0.3702 

0.3952 

4.055 

0.1202 

3.93 

0.30 

4.00 

0.24 

4.38 

0.15 

Other 

Best 

0.3391 

 0.1094 

0.3637 

0.0930 

2.7400 

0.2600 

3.51 

0.51 

2.81 

0.38 

3.36 

0.21 

 

Table 18: BioASQ Challenge Task B Ideal answer formation. This table shows performance 

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Manual scores for Task 2 were 

not available. Those measures for which BioQA’s overall performance scores were significantly 

better than the best among other participants are shown in bold. 
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In the task of formulating exact answers, BioQA responded to each question by providing 

“yes” or “no” answers to Yes/No questions, a list of at most five concepts to factoid questions, 

and a list of at most 100 concepts to list questions. Yes/No questions were evaluated with an 

accuracy score, while factoid questions were evaluated by Mean Reciprocal Rank (MRR), which 

rewards responses containing golden answers (provided by experts) higher in the returned list of 

factoids. List questions were evaluated using standard precision, recall, and F-measure scores 

averaged over all submitted responses. As seen in Table 17, BioQA achieved significantly higher 

accuracy [0.8438 – 0.9615] in Yes/No questions (t = 2.076, df = 5, p = 0.046), significantly 

higher mean reciprocal ranks [0.0556 – 0.4600] in Factoid questions (t = 2.5229, df = 5, p = 

0.0265), and significantly higher F-measure [0.2290 – 0.4261] (t = 6.8542, df = 5, p = 0.0001) in 

list questions than the best system among other participants. This result shows that BioQA is 

quite effective in formulating exact answers. BioQA’s performance in formulating exact answers 

can be attributed to the performance of the named entity recognition and concept ranking 

algorithm in PolySearch2 [52]. 

In the task of formulating ideal answers (Table 18), BioQA responded to each question 

by synthesizing a natural language text answer with at most 200 words. Submitted responses 

were evaluated using both automatic scores (Rouge-2 and Rouge-SU4) and manual scores 

(readability, recall, precision, and repetition). The automatic scoring schemes (Rouge-2 and 

Rouge-SU4) measure overlap ratios between the submitted summary and a set of “gold standard” 

summaries curated by biomedical experts using skip bigrams (Rouge-2) and skip unigrams 

(Rouge-SU4). Manual scores evaluate the readability, recall (concepts in the gold standard also 

occurs in the submitted answer), precision (concepts in the submitted answer also occur in the 

gold standard), and repetition (lack of repeating the same concepts in the submitted answer). 

Manual score ranges from 1 (worst) to 5 (best) and are assigned manually by biomedical experts. 

Readability scores assess how readable a summary is in terms of its content, grammar and style. 

Precision scores and Recall scores are not traditional precision and recall measures, as they 

assess, using a score from 1 to 5, how much information is shared between the submitted 

summary and the set of reference summaries, in comparison with the submitted summary 

(precision score), or the set of reference summaries (recall score). Finally, the Repetition score 

assesses the submitted summary for lack of repetition of the same concepts or text snippets. A 
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higher repetition score indicates the submitted summary contains less repeating information, and 

therefore is a better answer. In this evaluation, BioQA achieves moderate performance in 

automatic scores (Rouge-2 = [0.2059 – 0.4802], Rouge-SU4 = [0.2202 – 0.4814]) in comparison 

with other participating systems. None of BioQA’s automatic scores proved to be significantly 

higher than the best systems among other BioASQ participants. However, when evaluated by 

biomedical experts with manual scores ranging from one (worst) to five (best), BioQA achieved 

a significantly higher Readability score [3.97 - 4.14] (t = 6.4835, df = 2, p = 0.0487), Recall 

score [3.83 – 4.17] (t = 3.7297, df = 2, p = 0.0325), and Repetition score [4.27 – 4.48] (t = 

5.6975, df = 2, p = 0.0147) than the best system among other participants. BioQA achieved a 

moderately higher (not statistically significant) Precision score [3.71 – 4.14] in comparison with 

other systems. Comparing two versions of BioQA, v1.2 achieves higher automatic scores 

(ROUGE-2 and ROUGE-SU4) thanks to the few enhancements implemented in the answer 

synthesis module, which reduces redundant information in the final answer, therefore leaving 

space to more relevant information, and leading to higher ROUGE-2 and ROUGE-SU4 scores. 

BioQA’s relatively high readability score can be attributed to BioQA’s Summarization 

Module with “information smoothing” enhancements. That is, to ensure a smoother transition 

between sentences, BioQA selects a subsequent sentence in the summary based on currently 

selected sentences, avoids sentences starting with anaphor (pronouns referring to information in 

previous sentence), and actively rearranges selected sentences to achieve a better transition 

between sentences. BioQA’s high recall and precision scores can be attributed to the 

Summarization Module’s strict sentence selection techniques. The high repetition score (lack of 

repeated information) can be attributed to BioQA’s Summarization Module which was optimized 

to reduce repeating information. To avoid including repeating information in its final summary, 

BioQA only selects a single key sentence from a set of sentences describing an association from 

a graph-based summarization, and it actively trims sentences containing similar information in 

its sentence matrix-based summarization. Furthermore, avoiding repeated information appears to 

improve the recall score, as the submitted summaries are limited to a maximum of 200 words. 

Therefore, including less repetitive or redundant information means BioQA can deliver a more 

comprehensive summary thereby increasing its chances of overlapping with the “gold standard” 

reference answers. The above result shows that BioQA’s summaries are relatively easy to read, 
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contain more information (as measured against gold-standard answers), and contain less 

redundant information than any other biomedical question-answering system. BioQA also 

achieves a well-balanced performance that takes into account both accuracy and readability when 

synthesizing its answer summaries. However, BioQA is not perfect.  All four manual scores for 

its answer quality are still around 4.0, which suggests there are still room for improvement 

before BioQA can achieve a satisfying performance (overall scores of 5 across all four manual 

scores) to rival human experts.  

 

4.6 Limitations and Future Plans 

No question answering system is perfect and BioQA certainly still has plenty of room for 

improvement. One major limitation is that BioQA is not yet capable of adapting to a specific 

annotation needs. Search engines like Google and Bing monitor user search activity through 

search-log mining and web click frequencies.  These can be used to create better rankings, and 

provide more personalized searches by considering a user’s previous search history. Currently, 

BioQA is a state-less machine, meaning that it treats each search query as a brand new query and 

does not make reference to previous searches. However, a natural use-case scenario for BioQA 

could be that user progressively asks more specific questions through a sequence of related 

searches. Another scenario is that different users may have different needs and some users may 

favor precision over recall while others refer the opposite. We could enhance BioQA to be an 

“adaptive QA” system that constantly improves its answers based on previous query submissions 

(from the same user or during the same search session). In order to adapt to an individual, 

BioQA could be modified to automatically build a custom collection of search keywords from a 

user’s previous searches, and use this keyword list to adjust ranking scores for retrieving 

concepts, text snippets, and answer synthesis. By providing a way for users to rank returned 

answers it may also be possible to help BioQA better adapt to a user’s specific needs. By keeping 

track of a series of questions asked by the same user and taking user feedback into consideration 

for subsequent searches, BioQA could progressively improve upon itself and adapt to individual 

user needs. Over the long term, through the use of the web’s adaptive monitoring tools, BioQA 
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could evolve to be an adaptive and conversational QA engine that delivers answers to users 

through a sequence of human-machine dialogues.  

Another limitation to the current version of BioQA is that it is unable to perform logical 

inference. BioQA addresses the information needs of users by automatically parsing user 

questions, searching for relevant information, and synthesizing textual answers with references. 

The current BioQA framework is solely based on information retrieval, text snippet extraction 

and statistical summarization. It lacks the capacity to perform logical or semantic reasoning. This 

limitation is partly due to a lack of available logical knowledge representations in the biomedical 

domain. Modern QA systems are moving towards reasoning and semantic processing to enhance 

their question answering capabilities and user experience. For example, IBM Watson supports a 

certain degree of semantic reasoning through the use of semantic “frames” that encapsulate 

semantic relations. For example, Watson [28] is able to answer question about capital city in a 

country without the need to perform an extensive text search and summarization. Knowledge 

Engines such as Wolfram Alpha [99] support certain logical reasoning operations like solving 

simple mathematical equations. In order for BioQA to support reasoning, it needs to convert user 

questions to more than just search queries, but also to logical representation to validate against a 

collection of logical entailments representing existing biomedical knowledge. Knowledge 

resource equivalents to FrameNet [11] are still scarce in the biomedical domain. BioQA’s 

biomedical concept network is a first step towards building a biomedical “FrameNet” that 

captures explicit relations between biomedical entities. BioQA can also take advantage of 

domain knowledge available within a smaller subfield. For example, within certain subfields, 

highly structured or curated information exists. For example, KEGG captures knowledge on 

biochemical pathways and reactions between chemicals and enzymes. Therefore, KEGG can be 

used to make certain inferences on biochemical pathways. In this regard it may be possible to 

build and attach specific “inference engines” with subfield-specific knowledge to BioQA, 

thereby enhancing its question answering capability with basic inference capabilities.  
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4.7 Conclusion 

In this chapter, we introduced BioQA, a novel, high-performance biomedical question-

answering system. BioQA contributes to the field of biomedical question-answering by 

introducing an end-to-end QA framework focusing on answering common biomedical questions. 

The task of question answering presents two unique challenges: knowledge representation and 

knowledge transformation. The former deals with knowledge acquisition and representation. 

BioQA solves this component by making use of its unique and extensive knowledgebase – 

BioKB. BioKB encapsulates large numbers of curated thesauri, natural language documents, and 

database entries into a single entity for efficient access. BioQA solves the knowledge 

transformation challenge using a variety of custom algorithms for question analysis, concept and 

text snippet retrieval, and answer synthesis (automated summarization and paraphrasing). In an 

effort to make BioQA accessible and transparent we have also made all of the data in BioKB 

publicly available and have built a public web interface to serve the general public. The BioQA 

framework follows a standard Model-View-Controller (MVC) design, with BioQA’s web 

interface (the view), its underlying knowledge base BioKB (the model), and the collection of 

algorithms (the controller) being fully integrated to realize BioQA’s question answering 

capabilities. BioQA serves as useful framework to illustrate the potential of applying question 

answering, information retrieval and natural language processing techniques to the field of 

biomedicine. It also serves as a useful, publicly assessable web-based server to help researchers, 

educators and the general public address their information needs. We evaluated BioQA’s 

performance by participating in two separate BioASQ biomedical question answering 

challenges. BioQA performed exceptionally well and appears to be the top performing system. 

However, the results also make it clear that there is still room for future improvements for both 

BioQA and other QA systems. Given the progress to date and the growing utility that question-

answering systems are already having, we expect many more high-performing, open access and 

domain-specific question answering systems will soon appear. These QA systems could have a 

significant and positive effect on how data is stored, how information is gained and how 

knowledge is acquired. 
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5. BioQA’s Algorithmic Framework 

BioQA uses a collection of algorithms to analyze user queries, perform concept and text 

snippet retrieval, transform document and concept retrieval results, and synthesize or paraphrase 

answers. Figure 27 shows an overview of BioQA’s algorithmic framework and the relationships 

among its constituent modules.  

 

Figure 27: A flow chart showing BioQA's algorithms and the data flow through the system. 

 

Given a question in natural language text, BioQA’s “Question Analysis” module analyzes 

the question to extract question types, lexical answer types, query keywords, association words, 

and contextual noun phrases. Contextual noun phrases are noun phrases that are not query 

keywords but can be used to enhance search query formation. The Query Processing module 

formulates queries to search BioKB and PolySearch2. BioQA’s Query Processing module 

retrieves key concepts in the question from BioKB’s underlying ElasticSearch [71] index 

associated with BioKB and generates descriptions for each available concept using the 

“Description Generator”. BioKB also contains concept networks spanned by relevant concepts, 

and houses co-mentioned concept networks from relevant documents. BioQA uses PolySearch2 

[52] to retrieve relevant documents and snippets from an in-house document collection. 

PolySearch2 accepts a formulated search query and returns a list of relevant concepts and 
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snippets using the PolySearch2 algorithm [16, 17]. Based on the query analysis and query 

processing results, the “Answer Synthesis” module ranks relevant concepts, formats concept 

networks, and synthesizes textual answers. The final textual answers are synthesized using 

descriptions retrieved from the Description Generator.  Summarization can also be done on 

relevant text snippets using BioQA’s greedy Latent Semantic Index (LSI) [56] based 

summarization algorithm, or summarization can also be done based on relationships among 

concepts in knowledge graphs. Users may also access the “Paraphrase module” which can be 

called to transform the final textual answer into a paraphrased paragraph with random syntactic 

variance.  

In this chapter, I describe BioQA’s various algorithms for question analysis, named entity 

recognition, concept and snippet retrieval, description generation, answer synthesis, and 

automated paraphrasing.  

 

5.1 Named Entity Recognition 

Named Entity Recognition (NER) is a task for identifying concepts mentioned in a given 

text paragraph. These concepts could be implicitly expressed in various manifestations in the 

surface text (expressions that are actually used in a sentence). Named Entity Recognition require 

the parsing of surface text tokens corresponding to a certain concept, or Named Entity (NE). 

BioQA’s Named Entity Recognition (NER) module, called “BioTagger”, recognizes or “tags” 

biomedical terms mentioned in natural language text. Moreover, given a natural language 

sentence, BioTagger assigns words in the sentence as biomedical terms, query terms, association 

words, stop words, negation words, punctuation words, or non-keywords. BioTagger is an 

essential building block which serves multiple purposes within BioQA. These include: 1) 

extracting keywords from user question to form search queries in question analysis; 2) 

recognizing concepts mentioned in relevant snippets during concepts and snippets retrieval; 3) 

indexing relevant sentences by concepts for building co-mentioned networks and synthesizing 

answers. Figure 28 shows an example MEDLINE abstract tagged using BioTagger. Surface text 

tokens recognized as biomedical entities are tagged, color-coded, and hyperlinked to 

corresponding database records.  
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Figure 28: An example MEDLINE abstract tagged by BioTagger. Surface text tokens recognized 

as biomedical entities are tagged, color coded, and hyperlinked to corresponding database 

records. 

 

The BioTagger algorithm combines exact dictionary matching against the BioKB 

thesauri, with noun phrase extraction, and N-gram language models. In the preprocessing stage, 

BioTagger tags stop words, association words, and punctuation using exact dictionary matches 

against a predefined list of such terms. In the term recognition stage, BioTagger first tries to 

recognize an exact match of any surface form of a biomedical concept; when no exact match is 

available, BioTagger uses Part-of-Speech (POS) tagging [46], Probabilistic Context-Free 

Grammar (PCFG) patterns [46], and regular expression patterns to extract noun phrases (NPs) as 

keywords; if no noun phrases are found, BioTagger generates frequent N-grams (for N ranging 

from 1 to 5) from the given sentences according to BioKB’s MEDLINE N-gram dataset 

(available on the BioQA web server). In the above data processing steps, BioTagger prefers 

terms recognized using exact dictionary matches over noun phrases, or frequent N-grams. 

BioTagger also greedily prefers longer terms than shorter terms, as well as more frequent terms 

over less frequent terms. With algorithmic and implementation improvements, BioTagger is 

efficient in processing natural language sentences. Its memory efficient is linear to the size of 

thesauri, and its time efficiency is (best case) linear O(N) or (worst case) O(N2) to length N of 

input sentence. 
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5.2 Question Analysis 

BioQA’s question analysis module extracts useful information from posted questions for 

downstream question answering process. Given a question, this module 1) predicts question 

types, 2) extracts Lexical Answer Types (LAT) [28], 3) extracts keywords, 4) extracts 

association words, and 5) extracts contextual noun phrases. Such information extracted from the 

given question is used to build search queries for concept and text snippet retrieval as well as 

answer synthesis (described in further details below). 

BioQA supports both descriptive and associative question types. The question analysis 

module needs to determine whether the posted question is asking for a description of certain 

biomedical entities (descriptive) or finding associations between entities (associative). “Yes and 

no” questions are a special case of associative questions in the sense that such questions are 

looking at verifying the association as positive or negative between entities. Therefore, Yes/No 

questions are treated as associative questions. The question analysis module uses a rule-based 

algorithm to determine whether a posted question is descriptive or associative. This rule-based 

question type analysis algorithm examines the first five words of a posted question and predicts 

question types based on hand-crafted empirical rules. Here are a few examples in the collection 

of empirical rules on question prefix analysis:  

 if a question starts with “which”, “list”, “name”, “where”, it is more likely an associative 

question;  

 if a question starts with “can”, “could”, “has”, “is”, “are”, “was”, “were”, “have”, “does”, 

“did”, “should”, etc., such question is more likely a yes/no question and therefore also an 

associative question in general.  

 if a question starts with “describe”, “what”, “how”, “define”, “show”, “explain”, 

“provide”, “elaborate”, “who”, or other verbs signifying actions or request, it is more 

likely a descriptive question.  

We conducted an evaluation using the BioASQ’s training dataset [88] of 100 questions, and 

BioQA’s question type predictor achieve F-measure of 0.8026 for associative questions (0.9605 
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for yes/no questions), and 0.6936 for descriptive questions. Details for BioQA’s question type 

analysis evaluation are presented in Chapter 4. 

Besides determining the question type from a posted question, BioQA also analyzes the 

given question syntactically to identify query keywords, contextual noun phrases, lexical answer 

types, and association words. It is important for BioQA to recognize the main verb, subject, and 

predicate in a given sentence. BioQA first identifies the main verb in a given question through 

Part-of-Speech tagging, and uses shallow syntactic parsing to identify boundaries for the Subject 

and Predicate. Noun phrases (NPs) in a posted question are also important as they provide clues 

(query keyword or contextual NPs) for BioQA to search and filter for relevant document and 

snippets. Noun phrases are extracted from a question using regular expression pattern matching 

on a POS-tagged question. A sequence of words is defined as a noun phrase if they are:  

1) one or more proper nouns,  

2) one or more common nouns in singular or plural forms, or  

3) a proper noun or prepositional phrase, followed by an optional adjective, followed by 

one or more common nouns.   

NPs that are adjacent to the main verb in the predicate are treated as query keyword, while 

remaining NPs in the predicate are treated as contextual NPs. The query keyword is used for 

searching document collections for relevant documents, while contextual NPs are useful for 

ranking documents and filtering out relevant text snippets. Both query keyword and contextual 

NPs are used to formulate a customized PolySearch2 query for retrieving relevant concepts and 

snippets. Lexical Answer Types (LAT) are the type of the intended answer. For example, in a 

PolySearch2 query, the LAT is the type of biomedical entity or entities we wish to find. Consider 

the following a few examples (with the LAT underlined): “Which parasite causes malaria?”, 

“What diseases are associated with chemical BPA?”. BioQA uses a rule-based method to 

identify LATs in a posted question. BioQA extracts noun phrases in the subject between the 

query prefix words and the main verb of a sentence. It also uses predefined rules to map noun 

phrases to target LATs. Finally, verbs, adjectives, adverbs, and prepositions in the posted 

question are classified as association words.  
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5.3 Concepts and Snippets Retrieval 

BioQA retrieves relevant concepts, documents, and snippets through PolySearch2. For 

more information on PolySearch2 [52], please refer to Chapter 3. Here we discuss how BioQA 

uses PolySearch2 to achieve its text mining objectives. From Question Analysis, BioQA forms a 

customized PolySearch2 query using information extracted from the input question and submits 

it to PolySearch2 for processing. PolySearch2 processes the customized query differently from 

other general queries, especially with regard to the following aspects: PolySearch2 uses the 

query keyword as a search term to find relevant documents, and then uses the lexical answer type 

and contextual noun phrases in ranking and filtering relevant text snippets. PolySearch2 then 

recognizes concepts (of all categories) mentioned in relevant snippets and scores them for 

relevant concepts. If too few concepts are recognized after filtering relevant concepts with an 

empirical cut-off, PolySearch2 performs an expanded query to include other noun phrases in the 

customized query.  

BioQA uses PolySearch2 results in the following areas: 1) building co-mentioned 

concept networks from the list of relevant concepts and snippets, 2) synthesizing textual answers 

by combining PolySearhc2's snippet results with BioKB's descriptions and relevant snippets in 

the summarization module. 3) integrating PolySearch2's result as relevant concepts for the input 

question.  
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Template Sentence Group Example Generated Sentence 

- DRUG_NAME is also known as 

DRUG_SYNONYM_LIST. 

- DRUG_NAME, also known as 

DRUG_SYNONYM_LIST, is a 

DRUG_CATEGORY. 

-….. 

Moricizine, also known as 

Moracizinum, Ethmozin, Etmozin, 

Moracizine, or Moracizina, is an anti-

arrhythmia agents and voltage-gated 

sodium channel blockers.  

- DRUG_NAME is used in the treatment of 

DISEASE_AND_CONDITION. 

- DRUG_NAME is used in the treatment of 

DISEASE_AND_CONDITION. 

INDICATION_SYNOPSIS. 

- DRUG_NAME is for used in treating 

DISEASE_AND_CONDITION. 

- …. 

Moricizine is used used to treat 

irregular heartbeats (arrhythmias) and 

maintain a normal heart rate. 

- DRUG_NAME is branded as 

BRAND_NAME_LIST. 

- Major brands of DRUG_NAME are 

BRAND_NAME_LIST. 

- Known brands of DRUG_NAME are 

BRAND_NAME_LIST. 

- …. 

Major brands of Moricizine are 

Ethmozine and Etmozins. 

- DRUG_NAME is a PHYSICAL_STATE. 

- DRUG_NAME is a PHYSICAL_STATE with a 

melting point of MELTING_POINT and boiling 

point of BOILING_POINT. 

- …. 

This substance is a solid. 

- DRUG_NAME belongs to the 

CHEMICAL_CLASS_LIST group of drugs, which 

are known to act via the mechanism of action that 

MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_NAME belongs to such chemical 

classes as CHEMICAL_CLASS_LIST. 

DRUG_CLASS_DESCRIPTION. 

- …. 

This compound belongs to the 

phenothiazines. 

Table 19: Example sentence templates in a group and generated description for a DrugBank 

entry DB00680 Moricizine. 
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5.4 Description Generator 

BioQA ensures each database entry in BioKB contains a description.  BioQA extracts 

available description from database entries, and generates descriptions using description 

templates for database entries that are missing a description field, or when the original 

description is too short (e.g. less than 200 characters). Description Generator first parses a given 

database entry for target information fields and stores the extracted fields in a dictionary. It then 

generates descriptions by filling in corresponding blanks using pre-defined sentence templates 

and produces a description paragraph. Description templates consist of sentence templates 

organized in multiple sentence groups. Appendix A shows some example description templates 

for DrugBank [8] entries. Table 19 shows an example sentence group and examples of generated 

descriptive sentences.  

A sentence group represents a single sentence describing one or more properties for a 

database entry. Each sentence group contains multiple hand-crafted sentence templates 

conveying similar information in different syntactic variations. Each sentence template contains 

one or more blank fields (uppercase words as shown in Table 19) to be filled with information 

extracted from the corresponding database entry. A sentence template is “triggered” if all blank 

fields have the corresponding information extracted from the database entry. It is common that a 

database entry simultaneously triggers multiple templates in a sentence group. In that case, 

templates with a greater number of satisfied blank fields (hence carrying more information) are 

preferred. Finally, one triggered template in the group is selected at random to produce a 

descriptive sentence to induce artificial syntactic variations to give the impression of human 

editing. If no templates are triggered due to missing information, no sentence is produced for 

such a sentence group. Sentence templates shown in Table 19 contain multiple sentence 

templates describing a drug chemical’s name, physical state, melting and boiling point. If a 

DrugBank entry contains drug name, physical state, and melting point, any sentence template 

containing all or some of these fields are “triggered”. The Description Generator then randomly 

selects a sentence template to fill in blank fields and produce the final descriptive sentence. 

Description Generator iterates through each sentence group to produce descriptive sentences, and 

organizes them into a descriptive paragraph based on the pre-defined order of sentence groups. 

Sentences are organized into a paragraph in a fixed order to improve readability. For example, 
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the sentence groups in Appendix A describe a DrugBank drug chemical by first describing its 

name, synonyms, and drug category. Then the description provides information about diseases or 

conditions that the drug is intended to treat and the indications for the medication; the text then 

describes brands and manufacturers for the drug and drug approval information. It further 

discusses the drug’s physical state, melting point and boiling point (shown in Table 19), 

chemical and drug class, mechanism of action, absorption, half-life, and route of elimination. 

Finally, the description paragraph describes interacting drugs, drug targets, and catalyzing 

enzymes. Appendix A shows more examples of several generated descriptions with 

corresponding original DrugBank descriptions for comparison. Generated descriptions, along 

with extracted descriptions from database entries, are indexed in BioKB. 

 

5.5 Answer Synthesis 

BioQA synthesizes answers in natural language using automated summarization. First of 

all, BioQA retrieves descriptions from BioKB’s description collection and composes a 

descriptive paragraph to describe key concepts identified in the input question. Besides this first 

descriptive paragraph, BioQA synthesizes further answer paragraphs by summarizing sentences 

describing concept associations in a co-mentioned concept network, and a document index built 

from relevant concepts and snippets retrieved from the PolySearch2 results. This section 

discusses BioQA’s summarization algorithm in using both data structures. 

BioQA summarizes answer paragraphs describing associations between relevant concepts 

using a co-mentioned concept graph, built on-the-fly from relevant concepts and snippets. Nodes 

in the “concept graph” are biomedical entities, and edges in the graph indicate associations 

between entities. Nodes can be biomedical entities identified from the input question (query 

nodes), or from retrieved relevant snippets (relevant nodes). Edges represent an association 

between two connecting nodes. Edges are non-directional and are weighted based on the co-

occurrence frequency of entities represented by the two connecting nodes. BioQA builds a 

concept graph on-the-fly from relevant snippets retrieved for a given question. BioQA keeps 

track of the co-occurrence frequency for each pair of concepts mentioned in the relevant 

sentences. Concept pairs with co-occurrence frequencies above an empirical threshold establish 
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an edge in the concept graph, with relevant sentences mentioning such concept pairs as 

supporting evidence. BioQA then transforms the concept graph to a summary paragraph. BioQA 

first identifies the target subgraph spanned by all question nodes. The target subgraph consists of 

all question nodes, plus any relevant nodes along the shortest paths between each pair of question 

nodes. This target subgraph represents the “concept space” spanned by a given question. BioQA 

then traverses the target subgraph, along shortest paths between each pair of target nodes, and 

joins the supporting sentences to form a summary paragraph in the order of traversal. If there is 

more than one supporting sentence along an edge, a single supporting sentence is selected at 

random among top ranked (according to PolySearch2’s relevancy scores) supporting sentences. 

Figure 29 shows a pseudocode algorithm for BioQA’s summarization algorithm with a co-

mentioned concept graph. Figure 30 shows pseudocode for building a concept graph.  

 

 

Figure 29: BioQA's algorithm on summarization via the co-occurrence concept graph. 
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Figure 30: The Build-Concept-Graph algorithm builds concept graphs from relevant text snippets. 

 

 

 

 

 

 



124 

 

 

 

Figure 31: BioQA’s summarization algorithm using document matrix and Latent Semantic 

Indexing techniques. 
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Figure 32: BioQA's automatic summarization algorithm for building a vector space model from 

retrieved text snippets. 

 

BioQA also generates a summary paragraph from relevant text snippets using Latent 

Semantic Indexing (LSI) [56] on a document matrix. This additional summary is needed when a 

target concept graph is not available or the summary generated from the concept graph is too 

short. Figure 31 shows the pseudocode algorithm for generating descriptions using the document 

matrix and the greedy Latent Semantic Index. Figure 32 shows the pseudocode algorithm for 

building document matrix from a collection of relevant documents. BioQA first builds an LSI 

data structure from relevant concepts (Figure 32), then greedily retrieves the next most similar 

sentence to the current summary, and then updates both the current summary and the LSI data 

structure until the summary reaches a certain length or the LSI data structure is exhausted. Given 

a question and a collection of relevant snippets. BioQA converts relevant snippets to a document 

vectors and form a document matrix using a vector space model. Rows in the document matrix 

represent text snippets, while columns in the document matrix represent terms (or topics). 

BioQA then calculates eigenvalues and eigenvectors of the document matrix using Singular 
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Value Decomposition (SVD) and projects the document matrix to a lower dimension. This step 

effectively filters key terms (topics) among the collection of relevant snippets and indexes each 

snippet with key terms. Next, BioQA greedily forms a summary paragraph using the initial 

question document vector and the document index in subsequent iterations (Figure 31). Given an 

initial question document vector, BioQA retrieves snippets corresponding to the most similar 

document vector in the document index by Cosine Similarity. BioQA adds the retrieved snippets 

to the summary paragraph, removes snippets similar to the current snippet above an empirical 

threshold, and recalculates the document index, now containing fewer documents. This process 

is repeated until the summary paragraph grows to a certain length, or the document matrix 

contains too few relevant snippets to continue the indexing process.   

BioQA generates summary paragraphs using both of the above algorithms and also 

performs post-processing to produce final summary paragraphs. During the post-processing step, 

BioQA rearranges sentences within summary paragraph to enhance readability and fixes 

grammatical artifacts introduced during the summarization process. Synthesizing answer 

paragraphs using the document matrix with latent semantic indexing is a process of information 

filtering for identifying key terms and key snippets among all relevant snippets. On the other 

hand, synthesizing answers using a concept graph built on co-mentioned concepts represents a 

process of implicit reasoning, where we join sentences describing connections of entity across 

multiple connections in the natural order that are found to be associative in relevant snippets.  

 

  



127 

 

5.6 Paraphrasing Module 

In addition to synthesizing textual answers, BioQA also provides an optional 

paraphrasing function for users to include all or part of the synthesized answer in their own work 

without the need to manually paraphrase BioQA’s synthesized answer. BioQA’s paraphrasing 

module accepts an initially synthesized textual answer, and paraphrases it, sentence by sentence, 

according to a set of substitution, enumeration, rearrangement, and transformation rules. Please 

refer to Appendix B for examples of rules corresponding to these categories. This section briefly 

describes each category of rules and their applications in automated paraphrasing. 

The paraphrase engine applies phrase substitution, word-sense substitution, and synonym 

substitution to an input sentence. The paraphrase engine first applies 2000+ phrase or word 

substitution rules (see Appendix B) to an input sentence to replace a phrase with its semantic 

equivalent. These substitution rules can be simple or word-sense dependent (substitution rules 

depends on the Part-of-Speech tag for the original words). Simple substitution replaces a phrase 

with an equivalent phrase. For example, substituting “also known as” with “also referred to as”. 

Word-sense substitution substitutes a word based on its Part-of-Speech tag. For example, the 

word “witness” can be substitute with “observe” when “witness” is used as a verb, but with 

“observer” when “witness” is used as a noun. The paraphrase engine then substitutes a word with 

a valid synonym by searching WordNet [62] (English dictionary words) and the PolySearch2 

biomedical thesaurus [52] (biomedical terms). The paraphrase engine recognizes phrases or 

common expressions such that synonyms substitution does not replace part of a phrase or 

common expression by mistake. Besides substitutions, the paraphrase engine also performs 

transformation, enumeration, and rearrangement rules to paraphrase an input sentence. 

Transformation rules changes a numerical measure to an equivalent expression with different 

units. For example, changing “1000 feet” to “305 meters”, or “10 lb” to 4.5 kg”. If the input 

sentence contains an enumeration of several items, the paraphrase engine randomizes the order 

of items within the enumeration. For example, changing “animals, plants, and fungi” to “plants, 

fungi, and animals”. The paraphrase engine also rearranges words in an expression. For example, 

changing “The A of the B” to “The B’s A”, and changing “A said B” to “B, said A”. These rules 

further paraphrase an input sentence after substitutions. 
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In paraphrasing, the module also obeys other rules that don’t fit into the previous 

categories. For example, it should never change anything in quotes, and never change proper 

nouns, acronyms (“BPA”) or entity names (“Bisphenol A”). This paraphrasing process preserves 

quotes by first extracting quotes from the sentence, paraphrasing the rest, and re-substituting the 

quote back to the paraphrased results. The paraphrase module also detects acronyms (spelled 

entirely in uppercase letters), proper nouns (through syntactic parsing) and entity names (through 

the use of our biomedical thesauri), and preserves these during paraphrasing. Finally, the 

paraphrasing module goes over sentences to detect and fix any article errors (e.g. Changing “a 

immature” to “an immature”, and changing “an historical” to “a historical”) introduced 

accidently during paraphrasing. When multiple rules are applicable to an input sentence, there 

could be a potential conflict between rules, as more than one rule could be substituting the same 

part of the sentence yielding different results. In this case, only one rule is selected among the 

conflicting rules (according to rule precedence or at random) to paraphrase a sentence. Besides 

conflicting rules, BioQA also randomizes paraphrasing results to a certain degree to provide 

higher degree of syntactic variance. Running the paraphrasing function again will yield a slightly 

different result based on the same synthesized answer. 

 

5.7 Conclusion 

In this chapter, I described BioQA’s algorithmic framework for named entity recognition, 

question analysis, concepts and snippets retrieval, description generation, answer synthesis, and 

automated paraphrasing. These algorithms are crucial components of BioQA. Working together 

as a whole, these algorithms transform input question to search queries for finding relevant 

concepts and snippets, and then further derive an answer summary from the retrieved documents 

and database records.    
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6. Concluding Remarks 

The central objective of this thesis was to advance the field of biomedical question 

answering. Traditionally QA systems have focused on answering simple questions or general 

knowledge questions in the open-domain. These might include “What is the temperature in 

Edmonton today?” or “What is the population of Canada?”  Recently there have been significant 

advances in the open domain for more difficult tasks associated with question answering, 

particularly with the roll-out of IBM's Watson [28] on Jeopardy!. However, the field of 

biomedicine still attracts relatively little attention with regard to question answering.  

In this thesis, I hypothesized that with existing technology, it would be possible to build a 

prototype biomedical QA system that could significantly advance the field of QA in 

biomedicine. This served as the motivation to design and implement a comprehensive, end-to-

end QA system called BioQA for biomedical question answering. Noting that a high throughput 

search engine is crucial for BioQA, I started my research by building around the PolySearch 

algorithm [16, 17]. PolySearch was previously developed in 2006-2008 to perform targeted text 

mining of the PubMed/Medline text corpus. I expanded PolySearch to be a much more general 

purpose biomedical search engine (PolySearch2) [52] that could be used to retrieve relevant 

concepts and text snippets from a far wider variety of databases. I also spent much effort in 

creating and curating a controlled vocabulary and dictionary (i.e. the PolySearch2 thesaurus 

collection) as well as maintaining a much larger and more comprehensive collection of databases 

and text resources. I also developed a number of speed-ups, hardware modifications and 

algorithmic improvements that reduced search times in PolySearch from 10s of minutes to mere 

seconds. I further demonstrated that the new version of PolySearch was able to out-perform the 

old version of PolySearch in many different search and query tasks (see Chapter 3 for more 

details).  With the completion of PolySearch2 and the assembly of some of the key data 

infrastructure, I began to explore the next phase of the biomedical QA challenge.  In particular, I 

proposed and implemented a number of innovative algorithms (Chapter 5) to transform input 

questions into search queries, to perform accurate ranking of relevant text snippets, to synthesize 

and paraphrase natural language answers, as well as to generate informative concept graphs. I 

evaluated BioQA’s performance for its various modules using local experiments as well as on 
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the shared tasks of BioASQ challenge [88, 89]. The results from this open and objective 

assessment showed that BioQA performs significantly better than all current biomedical QA 

systems. In an effort to make this resource open and accessible to all, I built a user interface, the 

BioQA web server, and implemented a number of useful graphical displays and interactive 

functions (Chapter 4).  

Through the implementation of BioQA, I learned that 1) a comprehensive biomedical 

thesaurus is essential for almost all steps of biomedical question answering, and 2) effective 

summarization algorithms are key to deriving natural language answers from relevant concepts 

and snippets. A comprehensive biomedical thesaurus is crucial for query processing (parsing 

named entities from input question), documents and snippets retrieval (indexing and retrieving 

documents based on biomedical concepts), and answer synthesis (weighting and organizing 

sentences in summary using concepts mentioned in relevant snippets). A collection of effective 

summarization algorithms, either using statistical summarizations or paths in a concept graph, to 

join relevant sentences and form natural language answers is essential to convert a seemingly 

random collection of relevant sentences and snippets to form a comprehensive summary. 

Therefore, enrichment of BioQA’s biomedical thesaurus and enhancements to BioQA’s 

summarization algorithms should effectively boost BioQA’s overall performance. 

While the current implementation of BioQA offers many positive and useful features, 

there are a number of capabilities or features that could be added to make it better. Currently, 

BioQA is a state-less QA or state-less query system, meaning that it treats each question or query 

as a brand new query and does not make reference to previous searches. I believe it could be 

possible to enhance BioQA to be an “adaptive QA” system that constantly improves its answers 

based on previous query submissions. In order to adapt to an individual, BioQA could be 

modified to automatically build a custom collection of search keywords from a user’s previous 

searches, and to use this keyword list to adjust its ranking scores and the way it performs its 

answer synthesis. By providing an interactive tool (through BioQA’s web site) it may be possible 

for users to rank returned answers thereby acquiring knowledge or training data for BioQA to 

adapt to a user’s specific needs. By keeping track of a series of questions asked by the same user 

and taking user feedback into consideration for subsequent searches, BioQA could progressively 

improve upon itself and adapt to individual user needs. BioQA currently lacks the capacity to 
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perform logical or semantic reasoning. Modern QA systems are moving towards reasoning and 

semantic processing to enhance their question answering capabilities and user experience. For 

example, IBM Watson supports a certain degree of semantic reasoning through the use of 

semantic “frames” that encapsulate semantic relations. Knowledge Engines such as Wolfram 

Alpha support certain logical reasoning operations like solving simple mathematical equations. 

In order for BioQA to support reasoning, it needs to convert user questions to more than just 

search queries, but also to logical representation to validate against a collection of logical 

entailments representing existing biomedical knowledge. This will represent a significant 

challenge, but as more biomedical databases become more logically structured, this may soon be 

possible. I also believe that BioQA could be designed to take advantage of domain knowledge 

available within a smaller subfield. For example, within certain subfields, highly structured or 

curated information exists. For example, SMPDB [45] captures knowledge on biochemical 

pathways and reactions between chemicals and enzymes. Therefore, SMPDB can be used to 

make certain inferences on biochemical pathways. In this regard it may be possible to build and 

attach specific “inference engines” with subfield-specific knowledge to BioQA, thereby 

enhancing its question answering capability with basic inference.  

This work represents one of the first efforts to bring QA concepts into the biomedical 

domain. I believe BioQA is the first biomedical QA system to integrate such a broad range of 

databases and offer such a broad range of capabilities. It is also the first QA system capable of 

searching both highly structured databases and natural language text databases. I believe BioQA 

represents an important new step in the development of text retrieval and data mining tools for 

biomedical research. Continuing our research on the BioQA framework proposed here, we could 

transform not only the way researchers, physicians, educators and the general public use the web 

but also how they learn and do their research. 
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Appendices 

Appendix A: Description Templates for Drugbank Entries 

BioQA uses its Description Generator algorithm to automatically generate short 

descriptions for biomedical entities retrieved from annotated databases without a description 

field. The Description Generator first parses a given database entry for information fields and 

stores the extracted fields in a dictionary. It then generates descriptions by filling in the 

corresponding blanks in pre-defined sentence templates and producing a description paragraph. 

Description templates consist of sentence templates grouped into multiple sentence groups. The 

logic behind Description Generator is discussed in detail in Chapter 5. This section shows 

sentence templates in groups used to describe a DrugBank [51] drug chemical by first describing 

its name, synonyms, and drug category (group 1). Then it talks about diseases or conditions that 

the drug is intended to treat along with the medication’s indication (group 2). Then the 

description talks about brands and manufacturers for the drug, and drug approval information 

(group 3-5). It further discusses the drug’s physical state, melting point and boiling point (group 

6), chemical and drug class, mechanism of action (group 7), absorption, half-life, and route of 

elimination (group 8). Finally, the paragraph describes interactive drugs (group 9), drug targets 

(group 10), and catalyzing enzymes (group 11). 

 

A.1 Example DrugBank Description Templates 

 

Group 1: Describe a drug’s name, list of synonyms, and its primary drug effect. 

- DRUG_NAME is also known as DRUG_SYNONYM_LIST. 

- DRUG_NAME, also known as DRUG_SYNONYM_LIST, is a DRUG_CATEGORY. 

- DRUG_NAME, also known as DRUG_SYNONYM_LIST, is commonly used for its 

DRUG_EFFECT_LIST effects. 

- Known as DRUG_SYNONYM_LIST, DRUG_NAME is most commonly used for its 

DRUG_EFFECT_LIST effects. 
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- Commonly used in the treatment of DISEASE_AND_CONDITION, DRUG_NAME is a 

type of DRUG_CATEGORY drug. 

 

Group 2: Describe which disease and conditions a drug is intended to treat. It’s drug 

category and indications. 

- DRUG_NAME is used in the treatment of DISEASE_AND_CONDITION. 

- DRUG_NAME is used in the treatment of DISEASE_AND_CONDITION. 

INDICATION_SYNOPSIS. 

- DRUG_NAME is for used in treating DISEASE_AND_CONDITION. 

- DRUG_NAME is for used in treating DISEASE_AND_CONDITION. 

INDICATION_SYNOPSIS. 

- DRUG_NAME is approved in treating DISEASE_AND_CONDITION. 

- DRUG_NAME is approved in treating DISEASE_AND_CONDITION. 

INDICATION_SYNOPSIS. 

- A type of DRUG_CATEGORY, DRUG_NAME is commonly used in the treatment of 

DISEASE_AND_CONDITION. 

- DRUG_NAME is a type of DRUG_CATEGORY commonly used in the treatment of 

DISEASE_AND_CONDITION. 

- Although most commonly in for the treatment of DISEASE_AND_CONDITION, 

DRUG_NAME is also sometimes used FOR_INDICATION_SYNOPSIS. 

- Although DRUG_NAME is used FOR_INDICATION_SYNOPSIS, it is most commonly 

indicated for use in the treatment of DISEASE_AND_CONDITION. 

- DRUG_NAME is indicated in the treatment of DISEASE_AND_CONDITION, but has 

also been used FOR_INDICATION_SYNOPSIS. 

- DRUG_NAME is indicated for use in the treatment of many conditions, including 

FOR_INDICATION_SYNOPSIS. 

- DRUG_NAME is used FOR_INDICATION_SYNOPSIS. 

- Although DRUG_NAME INVESTIGATED_INDICATION_SYNOPSIS, it is most 

commonly indicated for use in the treatment of DISEASE_AND_CONDITION. 

- DRUG_NAME is indicated in the treatment of DISEASE_AND_CONDITION, but has 

also been INVESTIGATED_INDICATION_SYNOPSIS. 
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- DRUG_NAME is INVESTIGATED_INDICATION_SYNOPSIS. 

- DRUG_NAME is investigated in clinical trials for treating CLINICAL_TRIALS. 

 

Group 3: Describe a drug’s brand names. 

- DRUG_NAME is branded as BRAND_NAME_LIST. 

- Major brands of DRUG_NAME are BRAND_NAME_LIST. 

- Known brands of DRUG_NAME are BRAND_NAME_LIST. 

 

Group 4: Describe a drug’s various manufacturers. 

- DRUG_NAME is manufactured by pharmaceutical companies include 

MANUFACTUROR_LIST. 

- Major manufacturer of DRUG_NAME are MANUFACTUROR_LIST. 

 

Group 5: Describe a drug’s approval status with approval country, approval date, and 

patent ID number. 

- DRUG_NAME is approved in APPROVAL_COUNTRY on APPROVAL_DATE 

(Patent PATTENT_ID). 

 

Group 6: Describe a drug’s physical state, melting point, and boiling point. 

- DRUG_NAME is a PHYSICAL_STATE. 

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT and 

boiling point of BOILING_POINT. 

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT. 

- In room temperature, DRUG_NAME is a PHYSICAL_STATE with a melting point of 

MELTING_POINT. 

- DRUG_NAME is a PHYSICAL_STATE; its melting point is measured to be 

MELTING_POINT. 

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT and 

boiling point of BOILING_POINT. 

- DRUG_NAME is a PHYSICAL_STATE with a melting point and a boiling point of 

MELTING_POINT and BOILING_POINT, respectively. 
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- DRUG_NAME is a PHYSICAL_STATE with melting points and boiling points of 

MELTING_POINT and BOILING_POINT, respectively. 

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT. 

- DRUG_NAME is a PHYSICAL_STATE with a boiling point of BOILING_POINT. 

 

Group 7: Describe a drug’s chemical class, drug class, and mechanism of action. 

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST that acts by such mechanism of 

action: MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST that acts by such mechanism of 

action: MECHANISM_OF_ACTION_SYNOPSIS. DRUG_CLASS_DESCRIPTION. 

- MECHANISM_OF_ACTION_SYNOPSIS. It is a type of CHEMICAL_CLASS_LIST. 

DRUG_CLASS_DESCRIPTION. 

- MECHANISM_OF_ACTION_SYNOPSIS. It is a type of CHEMICAL_CLASS_LIST. 

- DRUG_NAME belongs to the chemical class known as CHEMICAL_CLASS_LIST 

group of drugs, which are known to act via the mechanism of action that 

MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_NAME belongs to the CHEMICAL_CLASS_LIST group of drugs, which are 

known to act via the mechanism of action that 

MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST, which are known to act via the 

mechanism of action that MECHANISM_OF_ACTION_SYNOPSIS. 

DRUG_CLASS_DESCRIPTION. 

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST, and is believed to work via the 

mechanism of action that MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_NAME belongs to such chemical classes as CHEMICAL_CLASS_LIST. 

DRUG_CLASS_DESCRIPTION. 

- DRUG_NAME belongs to such chemical classes as CHEMICAL_CLASS_LIST. 

- MECHANISM_OF_ACTION_SYNOPSIS. 

- DRUG_CLASS_DESCRIPTION. 
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Group 8: Describes a drug’s absorption, half-life, volume of distribution, and route of 

elimination. 

- DRUG_NAME's ABSORPTION and its half-life is HALF_LIFE. 

ROUTE_OF_ELIMINATION. 

- DRUG_NAME's ABSORPTION and with half life of HALF_LIFE. 

- DRUG_NAME has a half-life of HALF_LIFE and its absorption is that ABSORPTION. 

- DRUG_NAME has an absorption rate of ABSORPTION along with a half-life of 

HALF_LIFE. 

- DRUG_NAME has an absorption rate of ABSORPTION, a half-life of HALF_LIFE, and 

a volume of distribution of VOLUME_OF_DISTRIBUTION. 

- DRUG_NAME's half-life is HALF_LIFE, while its absorption and volume of distribution 

are ABSORPTION and VOLUME_OF_DISTRIBUTION, respectively. 

 

Group 9: Describes a drug’s interacting drugs. 

- It is known that DRUG_NAME interacts with NUM_INTERACTION_DRUGS number 

of drugs including INTERACTION_DRUG_LIST. 

- It is known that DRUG_NAME interacts with INTERACTION_DRUG. 

- DRUG_NAME interacts with NUM_INTERACTION_DRUGS number of drugs 

(INTERACTION_DRUG_LIST). 

- DRUG_NAME interacts with NUM_INTERACTION_DRUGS drugs including 

INTERACTION_DRUG_LIST. 

- NUM_INTERACTION_DRUGS drugs are known to interact with DRUG_NAME 

including INTERACTION_DRUG_LIST. 

- It is known that NUM_INTERACTION_DRUGS drugs interact with DRUG_NAME 

including INTERACTION_DRUG_LIST. 

- NUM_INTERACTION_DRUGS drugs interact with DRUG_NAME. These include 

INTERACTION_DRUG_LIST. 

- INTERACTION_DRUG is known to interact with DRUG_NAME. 

 

Group 10: Describes a drug’s protein targets. 

- DRUG_NAME interacts with target protein TARGET_PROTEIN_LIST. 
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- DRUG_NAME interacts with target protein TARGET_PROTEIN. 

- Known drug targets of DRUG_NAME include DRUG_TARGET_LIST. 

- Known drug targets of DRUG_NAME is TARGET_PROTEIN. 

- Known drug targets of DRUG_NAME including DRUG_TARGET_LIST. 

- DRUG_NAME is known to target DRUG_TARGET_LIST. 

- DRUG_NAME is known to target DRUG_TARGET. 

- The proteins that DRUG_NAME targets include DRUG_TARGET_LIST. 

- DRUG_NAME targets the proteins DRUG_TARGET_LIST. 

- DRUG_NAME targets the protein DRUG_TARGET. 

 

Group 11: Describe a drug’s catalyzing enzymes. 

- Enzymes catalyzing DRUG_NAME includes ENZYME_LIST. 

- It is known that DRUG_NAME is metabolized by ENZYME_LIST. 

- It is known that DRUG_NAME is metabolized by ENZYME. 

- The enzymes known to metabolize DRUG_NAME are ENZYME_LIST. 

- The enzyme known to metabolize DRUG_NAME is ENZYME. 

- ENZYME_LIST are known to metabolize DRUG_NAME. 

- ENZYME is known to metabolize DRUG_NAME. 
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A.2 Example DrugBank Generated Descriptions 

 

Here are a few examples of DrugBank’s original and synthesized descriptions: 

DB00680 Moricizine 

Original  

Description 

An antiarrhythmia agent used primarily for ventricular rhythm disturbances. 

[PubChem] 

Generated  

Description 

Moricizine, also known as Moracizinum, Ethmozin, Etmozin, Moracizine, or 

Moracizina, is an anti-arrhythmia agents and voltage-gated sodium channel 

blockers. Moricizine is used to treat irregular heartbeats (arrhythmias) and 

maintain a normal heart rate. Major brands of Moricizine are Ethmozine and 

Etmozins. This substance is a solid. This compound belongs to the 

phenothiazines. These are polycyclic aromatic compounds containing a 

phenothiazine moiety, which is a linear tricyclic system that consists of a two 

benzene rings joined by a para-thiazine ring. Moricizine has a half-life of 2 

hours (range 1.5-3.5 hours). and its absorption is that well absorbed, absorption 

is complete within 2 to 3 hours Significant first-pass metabolism results in an 

absolute bioavailability of approximately 38% Administration within 30 

minutes after a meal slows the rate, but does not affect the extent of absorption, 

although peak plasma concentrations are reduced. Moricizine targets the protein 

sodium channel protein type 5 subunit alpha. An antiarrhythmia agent used 

primarily for ventricular rhythm disturbances. [PubChem] 
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DB00686 Pentosan Polysulfate 

Original  

Description 

A sulfated pentosyl polysaccharide with heparin-like properties. [PubChem] 

Generated  

Description 

Pentosan Polysulfate is also known as Pentosan sulfuric polyester, Pentosani 

polysulfas, Pentosanpolysulfat, Pentosano polisulfato, or Pentosane polysulfate. 

Pentosan Polysulfate is used for the relief of bladder pain or discomfort 

associated with interstitial cystitis. Major brands of Pentosan Polysulfate are 

Comfora, Tavan-SP, Elmiron, Hemoclar, Thrombocid, Fibrezym, Fibrase, and 

Hemoclar. Pentosan Polysulfate is a solid. Pentosan polysulfate is a polymer of 

xylose hydrogen sulfate and contains two sulfate groups per carbohydrate 

monomer. Pentosan Polysulfate's slow and with half life of 4.8 hours. Known 

drug targets of Pentosan Polysulfate include fibroblast growth factor 2, 

fibroblast growth factor 4, and fibroblast growth factor 1. 

 

 

DB00689 Cephaloglycin 

Original  

Description 

A cephalorsporin antibiotic that is no longer commonly used. 

Generated  

Description 

Cephaloglycin, also known as Cefaloglycinum, Cefaloglycine, or 

Cefaloglicina, is an anti-bacterial agents. Cephaloglycin is used for treatment 

of severe infections caused by susceptible bacteria. This drug is a solid. This 

compound belongs to the cephalosporins. These are compounds containing a 

1,2-thiazine fused to a 2-azetidinone to for an oxo-5-thia-1-

azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid moeity or a derivative thereof. 

This drug targets the protein penicillin-binding protein 2a. 
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DB00217 Bethanidine 

Original  

Description 

A guanidinium antihypertensive agent that acts by blocking adrenergic 

transmission. 

Generated  

Description 

Bethanidine, also known as N,N'-dimethyl-N''-(phenylmethyl)-guanidine or 

Betanidine, is a sympatholytics, antihypertensive agents, and adrenergic 

agents. Bethanidine is used for the treatment of hypertension. This substance 

is a solid. This compound belongs to the benzene and substituted derivatives. 

These are aromatic compounds containing at least one benzene ring. 

Bethanidine's absorbed rapidly in the gastrointestinal tract following oral 

administration and with half life of 9 hours (range 7 to 11 hours). 

Bethanidine is known to target alpha-2b adrenergic receptor, alpha-2a 

adrenergic receptor, atp-sensitive inward rectifier potassium channel 1, and 

alpha-2c adrenergic receptor. 

 

DB01326 Cefamandole 

Original  

Description 

Cefamandole (INN, also known as cephamandole) is a broad-spectrum 

cephalosporin antibiotic. The clinically used form of cefamandole is the 

formate ester cefamandole nafate, a prodrug which is administered 

parenterally. Cefamandole is no longer available in the United States. 

Generated  

Description 

Cefamandole, also known as Cefadole or Cefamandole nafate, is an anti-

bacterial agents. Cefamandole is used for the treatment of serious infections 

caused by susceptible strains of microorganisms. This medication is a solid. 

Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-

binding proteins (PBPs) located inside the bacterial cell wall, causing the 

inhibition of the third and last stage of bacterial cell wall synthesis. It targets 

the protein penicillin-binding protein 2. Cefamandole (INN, also known as 

cephamandole) is a broad-spectrum cephalosporin antibiotic. The clinically 

used form of cefamandole is the formate ester cefamandole nafate, a prodrug 

which is administered parenterally. 
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DB01325 Quinethazone 

Original  

Description 

Quinethazone (INN, brand name Hydromox) is a thiazide diuretic used to 

treat hypertension. Common side effects include dizziness, dry mouth, 

nausea, and low potassium levels. 

Generated  

Description 

Quinethazone is also known as Chinetazone, Quinethazon, Quinethazonum, 

Quinetazona, or Chinethazonum. Quinethazone is used used to treat 

hypertension. Known brands of Quinethazone are Aquamox, Hydromox, and 

Idrokin. It is a solid. This compound belongs to the quinazolines. These are 

compounds containing a quinazoline moiety, which is made up of two fused 

six-member aromatic rings, a benzene ring and a pyrimidine ring. Known 

drug targets of Quinethazone including solute carrier family 12 member 1, 

solute carrier family 12 member 2, carbonic anhydrase 2, solute carrier family 

12 member 3, and carbonic anhydrase 1.  
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DB00318 Codeine 

Original  

Description 

An opioid analgesic related to morphine but with less potent analgesic 

properties and mild sedative effects. It also acts centrally to suppress cough. 

[PubChem] 

Generated  

Description 

Codeine, also known as Methylmorphine, morphine-3-methyl ether, 

Morphine monomethyl ether, Codein, or Codeine anhydrous, is a narcotics, 

antitussive agents, and analgesics, opioid. Codeine is used for treatment and 

management of pain (systemic). Codeine is a solid. This compound belongs 

to the morphinans. These are polycyclic compounds with a four-ring 

skeleton with three condensed six-member rings forming a partially 

hydrogenated phenanthrene moiety, one of which is aromatic while the two 

others are alicyclic. Codeine's well absorbed following oral administration 

with a bioavailability of approximately 90% Maximum plasma 

concentration occurs 60 minutes post-administration Food does not effect 

the rate or extent of absorption of codeine and with half life of plasma half-

lives of codeine and its metabolites have been reported to be approximately 

3 hours. Codeine targets the proteins mu-type opioid receptor, kappa-type 

opioid receptor, and delta-type opioid receptor. Udp-

glucuronosyltransferase 2B4, Cytochrome P450 2D6, Cytochrome P450 

3A5, UDP-glucuronosyltransferase 2B7, Cytochrome P450 3A7, and 

Cytochrome P450 3A4 are known to metabolize Codeine. 
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DB01452 Heroin 

Original  

Description 

A narcotic analgesic that may be habit-forming. It is a controlled substance 

(opium derivative) listed in the U.S. Code of Federal Regulations, Title 21 

Parts 329.1, 1308.11 (1987). Sale is forbidden in the United States by Federal 

statute. (Merck Index, 11th ed) Internationally, heroin is controlled under 

Schedules I and IV of the Single Convention on Narcotic Drugs. It is illegal 

to manufacture, possess, or sell heroin in the United States and the UK. 

However, under the name diamorphine, heroin is a legal prescription drug in 

the United Kingdom. 

Generated  

Description 

Heroin is also known as morphine diacetate, diacetylmorphine, or 

diamorphine. Heroin is used used in the treatment of acute pain, myocardial 

infarction, acute pulmonary oedema, and chronic pain. This drug is a solid. 

This compound belongs to the morphinans. These are polycyclic compounds 

with a four-ring skeleton with three condensed six-member rings forming a 

partially hydrogenated phenanthrene moiety, one of which is aromatic while 

the two others are alicyclic. Heroin's bioavailability is less than 35% and with 

half life of <10 minutes. The proteins that Heroin targets include kappa-type 

opioid receptor, mu-type opioid receptor, and delta-type opioid receptor.A 

narcotic analgesic that may be habit-forming. It is a controlled substance 

(opium derivative) listed in the U.S. Code of Federal Regulations, Title 21 

Parts 329.1, 1308.11 (1987). (Merck Index, 11th ed) Internationally, heroin is 

controlled under Schedules I and IV of the Single Convention on Narcotic 

Drugs. It is illegal to manufacture, possess, or sell heroin in the United States 

and the UK. 
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Appendix B: Automated Paraphrasing Rules 

BioQA uses an automated paraphrasing algorithm to transform a synthesized answer to a 

paraphrased answer. Details for BioQA’s paraphrasing algorithm are discussed in Chapter 5. 

This section shows example paraphrasing rules used by the algorithm to transform sentences. 

BioQA’s automated paraphrasing module achieves paraphrasing results by paraphrasing a 

paragraph sentence-by-sentence according to a set of predefined, hand-crafted paraphrasing 

rules. These rules dictate how part of a sentence should be substituted, enumerated, rearranged, 

or transformed into equivalent expressions. This section shows example paraphrasing rules for 

B.1) simple substitutions, B.2) substitutions based on word sense, B.3) substitutions based on 

enumerations, B.4) rearrangement substitutions, B.5) conversion substitutions, and B.6) other 

substitution rules. Synonym substitution rules with WordNet (English Dictionary words) [62] 

and PolySearch2’s thesausi (Biomedical terms) [52] are not shown here for simplicity. 

 

B.1 Simple Substitution Rules 

Phrase substitution Rules 

- the town of ↔the city of  -  on a voyage ↔ on a journey 

-  the United Kingdom ↔ the UK  -  the construction of ↔ the creation of 

-  the United Kingdom ↔ the Great Britain -  the primary means of ↔ the main way of 

-  the United States ↔ the U.S.  -  a collection of ↔ a combination of 

-  in the vicinity of ↔ in the neighborhood 

of 

 -  a couple of ↔ a few 

-  it is believed that ↔ it is considered that -  a form of ↔ a type of 

-  it is endemic to > it is native to  -  under the command of ↔ under the leadership 

of 

-  it is possible to ↔ it is likely to -  under the direction of ↔ under the leadership of 

-  it is threatened by ↔ it is endangered by … (total 1042 phrase substitution rules) 
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Simple Substitution Rules  

- Every now and then ↔ occasionally -  Offered ↔ made available 

- Stumble upon ↔ discover -  Exclusively ↔ selectively 

-  Unique ↔ one of a kind -  Magical ↔ Amazing 

-  Difficult to ↔ hard to -  A masterpiece ↔ superb 

-  Get ↔ obtain -  That is ↔ that's 

-  In general distribution ↔ widely 

available 

-  Is truly ↔ is definitely 

-  Some of these ↔ A few of these -  A product ↔ a creation 

-  Available ↔ obtainable -  Precision ↔ exacting 

-  Very small ↔ tiny -  At its best ↔ without precedent 

-  So good ↔ of such high quality -  Hand-picked ↔ specially selected 

-  Regularly ↔ routinely (Total 853 simple substitution rules) 

 

B.2 Word Sense Substitution Rules 

-  form (JJ) ↔ type (JJ) -  Refuses (VB) ↔ declines 

-  form (NN) ↔ document (NN) -  Refuse (NN) ↔ waste (NN) 

-  transportation (VB) ↔ transport (VB) -  Decline (NN) ↔ way down 

-  Drag (VB) ↔ haul -  Slight (JJ) ↔ small 

-  Drag (NN) ↔ burden -  Slight (NN) ↔ snub 

-  Really (JJ) ↔ very -  causes (NN) ↔ reasons 

-  Really (RB) ↔ actually -  causes (VB) ↔ leads to 

-  Result (VB) ↔ arise -  cause (NN) ↔ reason 

-  Result (NN) ↔ finding -  cause (VB) ↔ lead to 

-  Brief (JJ) ↔ concise (JJ) -  study (NN) ↔ report 

-  roughly (RB) ↔ approximately -  study (VB) ↔ learn 

-  mean (NN) ↔ average (NN) -  state (VB) ↔ say 

-  Calculating (VB) ↔ determining (VB) -  crash (VB) ↔ collide 

-  Calculating (JJ) ↔ conniving (JJ) -  crash (NN) ↔ collision 

-  Stirring (VB) ↔ mixing -  launching (VB) ↔ sending 
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-  Stirring (JJ) ↔ inspiring -  launching (NN) ↔ initiation 

-  Witness (NN) ↔ observer (NN) -  Expressive (JJ) ↔ evident 

-  Witnesses (NN) ↔ observers (NN) -  Blend (NN) ↔ mixture 

-  Witness (VB) ↔ observe -  Pretty (RB) ↔ very 

-  Refuse (VB) ↔ decline -  Beverage ↔ drink (NN) 

-  Experience (NN) ↔ overview -  Addition (NN) ↔ arrival 

-  Addition (VB) ↔ adding 

 

-  Leader (JJ) ↔ ahead (JJ) 

 

-  Leader (NN) ↔ boss -  That (RB) ↔ which 

-  That (NN) ↔ this -  Cause of (NN) ↔ reason for 

-  The cause (NN) ↔ The reason for this -  Cause (NN) ↔ source 

-  Cause (VB) ↔ generate -  absent (NN) ↔ gone 

-  absent (VB) ↔ without -  murder (NN) ↔ homicide 

-  murder (VB) ↔ kill -  throughout (NN) ↔ everywhere 

-  throughout (JJ) ↔ around -  Beloved (VB) ↔ much loved 

-  Blend (VB) ↔ mix -  Pretty (JJ) > beautiful 

-  Try (NN) ↔ attempt -  Try (VB) ↔ make an effort 

-  Meeting (NN) ↔ conference -  Meeting (VB) ↔ connecting 

-  Support (VB) ↔ hold up -  Support (JJ) ↔ backing 

-  Use (NN) ↔ application -  Use (VB) ↔ employ 

-  Function (VB) ↔ play a role -  Function (NN) ↔ role 

-  First (NN) ↔ number one -  First (JJ) ↔ initial 

-  Show off (NN) ↔ attention grabber -  Show off (VB) ↔ Draw attention to 

him/herself 

-  Accepting (VB) ↔ taking in -  Accepting (NN) ↔ tolerant 

-  Relative (JJ) ↔ comparative -  Relative (NN) ↔ family relation 

-  Form (VB) ↔ make -  Form (NN) ↔ shape 

-  Fail (VB) ↔ not succeed -  Fall (VB) ↔ drop 

-  Fall (NN) ↔ autumn -  Pioneer (VB) ↔ lead the way 

-  Fall (NN) ↔ drop -  Pioneer (VB) ↔ open up 
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-  Pioneer (NN) ↔ forerunner -  Testing (VB) ↔ assessing 

-  Testing (JJ) > taxing -  Experienced (VB) ↔ witnessed 

-  Experienced (NN) ↔ veteran -  Present (VB) ↔ show 

-  Prevent (VB) ↔ stop (VB)  

 

B.3 Enumeration Rules 

-  noun1, noun2 and noun3 ↔ noun3, noun1 and noun 2 

-  Adjective 1 and adjective 2 ↔ adjective 2 and adjective 1 

-  Adjective1, adjective2 and adjective3 ↔ adjective3, adjective1 and adjective2 

 

B.4 Rearrangement Rules 

-  some XXXs ↔ several XXXs 

-  cost of XXX ↔ XXX prices 

-  Looking forward to XXXing ↔ Hoping to XXX 

-  Over XX ↔ more than XX (where XX is a number) 

-  The XXXion of ↔ XXXing 

-  XXX (noun) department ↔ department of XXX 

-  XXX (noun) department ↔ department for XXX 

-  XXX (noun) faculty ↔ faculty of XXX 

-  XXX (noun) office ↔ office of XXX 

-  XXX (noun) office ↔ office for XXX 

-  The [Adj] of the [Noun] ↔ the [Noun]'s [Adj] 

-  XXX said "QUOTEBODY" ↔ "QUOTEBODY" said XXX 

-  XXX said "QUOTEBODY" ↔ XXX noted "QUOTEBODY" 

 

B.5 Conversion Rules 

-  Convert XXX feet to YY meters 

-  Convert XXX pounds to YY kilograms 

-  Convert XXX ft to YY meters 
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-  Convert XXX lbs to YY kilograms 

-  Convert XXX inches to YY centimeters 

-  Convert XXX in. to YY cm. 

B.6 Other Rules 

-  Never change anything in quotes 

-  Never change proper nouns, acronyms or names (terms with upper case letters in the first 

letter position) 
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Appendix C: Other Information Extraction Techniques in BioQA 

In this section, I discuss BioQA’s approach for recognizing chemical terms from free text 

documents, and another approach for extracting attributes for biomedical terms based on 

PolySearch2 [52]. Both algorithms are used in the construction of BioKB, the knowledge base 

component for BioQA. C.1 discusses a chemical term recognition algorithm used to parse 

chemical names from surface text (expressions that are actually used in a sentence). C.2 discuss 

an approach to automatically extract attributes from text. 

 

C.1 Chemical Term Recognition 

Recognizing chemical names from text is challenging as thesauri for chemical names will 

never be complete as new compounds are constantly being discovered and synthesized. In 

developing BioKB, we developed a chemical term recognizer which is capable of recognizing 

IUPAC and IUPAC-like chemical names from text. This chemical term recognizer uses a hybrid 

approach. Given a text paragraph, it first identifies chemical names using strict dictionary match 

with a unified name thesaurus generated by combining Jochem [39], PubChem, DrugBank [51], 

and HMDB [98] names/synonyms. To extract terms that are not present in our chemical 

thesaurus, the chemical name recognizer generates candidate terms by removing all words 

appearing in a general English dictionary, as well as punctuation marks. Candidate terms are then 

classified by a binary Support Vector Machine classifier, trained using N-character substring 

features of chemical names and synonyms in our chemical thesaurus in contrast with words in a 

general English dictionary. Each term is classified as being IUPAC-like or not, and then the 

compound term is assigned a score based on the number of IUPAC terms it contains. Finally, an 

empirical cut-off is used to select compound terms that are most likely to be chemical names. 

Using this chemical name recognizer, we were able to identify 120+ novel compounds that are 

mentioned to be present in urine but not yet captured in the previous version of HMDB [98].  

Additionally, we were also able to confirme 500+ urine compounds that are already in the 

current version of HMDB. The chemical name recognizer is still imperfect as it picks up species 
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names and medical procedures as these terms have not been included as negative examples in the 

original training set.  

 

C.2 Attribute Extraction 

Attribute extraction is yet another important task central to biomedical information 

extraction. For example: 1) given a name for a species or genus, we would like to extract its 

phenotype from a collection of reference databases, 2) given a name for a compound, we would 

like to extract its health effects from a collection of free-text. In developing BioKB, we directed 

a great deal of effort in extracting attributes for biomedical entities from text. In this approach, 

we customized PolySearch2 [52] to each of the information extraction tasks. We first search the 

literature (MEDLINE, PubMed Central articles, etc.) using a target term’s name and synonym as 

search keyword, and then scan relevant text snippets to target the term of interest (a predefined 

list of potential attributes). Finally, an empirical cut-off is applied to the final result so only 

strong associations are considered for further refinement. In this section, we showcase the 

approach for attribute extraction based on the PolySearch2 [52] association finding algorithm. 

Furthermore, we illustrate the approach in action for extracting phenotypic information for 

prokaryotes and health effects for food metabolites.  

Prokaryotes are a kingdom of microbes that include both eubacteria and archaebacteria.  

Phenotypic information for bacteria and archaea are scattered in various bioinformatics databases 

with different formats and different levels of coverage. In a recent effort to consolidate 

phenotypic information for all known prokaryotes (bacteria and archaea), we mined more than a 

dozen online databases and compiled the most comprehensive bacterial phenotype database to 

date. Furthermore, missing data in the phenotype database was calculated from information 

contained in sequenced bacteria genomes, inferred from biochemical pathways, and extrapolated 

from closely related species along branches of the phylogenetic tree. Using the above methods, 

we successfully increase the percent coverage of all data fields from 55.30% to 65.11% with text 

mining and calculations, and finally to 86.92% with taxonomic extrapolation. Table 20 details 

the percent coverage of 14 data fields after initial data wrangling (initial coverage), text mining, 

and extrapolation using taxonomic relations in the NCBI taxonomy. The resulting phenotypic 
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database contains comprehensive phenotypic information for 10,835 prokaryote species and 

strains. This phenotype database contains 38 data fields, including oxygen requirements, gram 

stain, cell shape, motility, temperature range, metabolism, energy sources, associated diseases 

and pathogenicity, just to name a few. Information in this database are integrated in BacMap 

[21], an up-to-date electronic atlas of annotated bacterial genomes, and METAGENassist [4], an 

analytical pipeline for comparative meta-genomic studies. 

 

Data Field Initial Coverage (%) Text Mining  

Coverage (%) 

Taxonomic Extrapolation  

Coverage (%) 

Gram Stain 69.00 71.09 94.68 

Cell Shape 83.56 87.02 97.99 

Motility 50.50 53.26 90.95 

Human Pathogen (Y/N) 17.58 18.76 68.10 

Oxygen Requirement 61.51 63.51 93.38 

Temperature Range 37.27 39.20 82.06 

Symbiotic (Y/N) 20.02 21.35 71.23 

Habitat 78.49 81.53 96.63 

Host Name 11.19 12.06 52.57 

Cell Arrangement 36.80 38.96 78.35 

Sporulation (Y/N) 16.63 17.76 61.94 

Energy Source 33.81 36.30 81.88 

Metabolism 3.42 57.26 91.22 

Disease Association 2.03 96.38 99.34 

Total 55.30 65.11 86.92 

 

Table 20: Percent (%) coverage for selected data fields in the prokaryotic phenotype database in 

BacMap and MetaGenAssist. The phenotype database contains a total of 38 data fields (14 

shown here) for 10,835 prokaryote species, subspecies and strains. 

  



162 

 

Metabolite Health Effects Score Num. 

Ref 

Evidence 

Curcumin anti-oxidant 2454 278 (PMID: 20508869) ... indicating that the 

potent antioxidant curcumin can be used as 

an adjuvant in antiepileptic therapy. 

Curcumin anti-

inflammatory 

1291 155 (PMID: 17569207) in this review, we 

describe both antioxidant and anti-

inammatory properties of curcumin, … 

Curcumin anti-cancer 759 92 (PMID: 20655375) the present study 

indicated the potential of tf-c-sln in 

enhancing the anticancer effect of curcumin 

in breast cancer cells in vitro. 

Curcumin anti-tumor 466 56 (PMID: 16364242) the induction of growth-

arrest and apoptosis ... suggests this be a 

mechanism by which curcumin induces 

antitumor activity in t cell leukemia. 

Curcumin apoptotic 417 50 (PMID: 20138829) in this study we found 

that curcumin induces apoptotic cell death in 

mcf-7 cells ... 

Curcumin Neuroprotectant 389 37 (PMID: 16075466) these findings attribute 

the neuroprotective effect of curcumin 

against i/r-induced neuronal damage... 

Curcumin anti-depressant 108 7 (PMID: 19882093) curcumin can be a useful 

antidepressant especially in cases which 

respond to drugs having mixed effects .... 

Curcumin anti-viral 96 12 (PMID: 21299124) thus, our results suggest 

an important antiviral effect of curcumin 

wherein it potently inhibits coxsackievirus 

replication ... 

Curcumin anti-fungal 59 6 (PMID: 17199240) these results indicate an 

antinociceptive activity of resveratrol and 

curcumin ... 

Table 21: An example of potential health effects extracted from MEDLINE abstracts for 

curcumin, a phytochemical found in the popular Indian spice turmeric. This table lists examples 

of potential health effect (extracted using the in-house attribute extractor), their scores in co-

occurrence analysis, and supporting evidence from reference publications. 
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We also applied similar techniques to extract health effects for food metabolites. Over the 

past few years we have developed a health effect annotator to mine health effects, food tastes, 

and food functions from MEDLINE abstracts for 42,000+ food metabolites that are being 

annotated in the FooDB project. More specifically, the health effect annotator takes a list of 

compound names/synonyms and a manually curated health effect thesaurus as input, and then 

searches MEDLINE abstracts for co-occurrences of health effect terms and compound names 

using a customized PolySearch algorithm [16, 17]. Similar to PolySearch2 [52], the association 

between compounds and health effects are scored and ranked by the frequency of term co-

occurrence. Tighter co-occurrences are given higher scores. We found that specific attention 

should be given to the conclusion part of MEDLINE abstracts, as co-occurrences of compound 

names and health effect terms often signifies a conclusive statement of the association. Table 21 

shows a few examples of the extracted potential health effects of curcumin, a phytochemical 

found in the popular Indian spice turmeric. Same analysis has been conducted on more than 

24,000 compounds in FooDB [96].  

We are working to expand the health effect annotator to be a general attribute learner that 

takes an arbitrary biomedical term, a set of thesaurus terms, and extracts descriptive attributes of 

an entity. Extracted attributes can be used to generate descriptions for a biomedical entity based 

on a certain template. For example, a statement regarding the health effects of curcumin can be 

synthesized as “Curcumin has been shown to exhibit anti-oxidant, anti-inflammatory, anti-

cancer, anti-tumor, apoptotic, neuroprotectant, anti-depressant, anti-viral, anti-fungal, and 

immunomodulator effects.” Many descriptions in ECMDB [35], HMDB [98], and FooDB [96] 

are generated or enriched using this method. 


