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Abstract

Many learning situations involve learning the conditional distribution ppy|xq

when the training data is drawn from the training distribution ptrpxq, even

though it will later be used to predict for instances drawn from a different test

distribution ptepxq. Most current approaches focus on learning how to reweigh

the training examples, to make them resemble the test distribution. However,

reweighing does not always help, because (we show that) the test error also

depends on the correctness of the underlying model class. This thesis analyses

this situation by viewing the problem of learning under changing distributions

as a game between a learner and an adversary. We characterize when such

reweighing is needed, and also provide an algorithm, robust covariate shift

adjustment (RCSA), that provides relevant weights. Our empirical studies, on

UCI datasets and a real-world cancer prognostic prediction dataset, show that

our analysis applies, and that our RCSA works effectively.
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Chapter 1

Introduction

Consider classifying images of cars and motorcycles as a machine learning

task, where images of red cars and black motorcycles are given as the training

dataset. A trained classifier may give a prediction rule that every red vehicle

is a car while every black vehicle is a motorcycle. This rule is sufficient if we

only care about red cars and black motorcycles, i.e., if the test images are “of

the same kind” as the training images. What if we provide the classifier an

image of a black car? Based on this prediction rule, it will be classified as a

motorcycle, which is obviously wrong. However, if we detect in advance that

the test images are “different” from what we have in the training set, we can

adjust our classifier and learn a more robust prediction rule, such as every

four-wheeled vehicle is a car while every two-wheeled vehicle is a motorcycle.

Also consider predicting the survival time of a cancer patient, where patient

data is collected from different cities, with different underlying distributions.

If we train our predicting model on data from one city, is the model readily

applicable to patients in another city? What are the consequences if the gender

ratios are significantly different in different datasets? Do we need to re-train

or adjust the model? All of these questions are crucial and require serious

consideration in order to guarantee the effectiveness of a model. Addressing

the problem of distribution shift has a wide range of applications, including

but not limited to natural language processing [14, 9], bioinformatics [26] and

sentiment classification [22].

Traditional machine learning often explicitly or implicitly assumes that
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the data used for training a model come from the same distribution as that

of the test data. However, this assumption is violated in many real-world

applications: the training distribution ptrpx, yq may be different from the test

distribution ptepx, yq, where x P X is the input variable and y P Y is the output

variable, X and Y are their respective domains.

Learning will be effective and meaningful only when the training distribu-

tion and test distribution are somehow related. If the training distribution is

completely irrelevant to the test distribution, learning itself will be hopeless,

because we cannot extract useful information or knowledge from training data

to resolve a problem in the test set. Therefore, assumption about how the dis-

tributions differ from each other is required. In this thesis, we investigate the

problem of distribution change under covariate shift assumption [27], in which

both training and test distributions share the same conditional distribution

ppy|xq, while their marginal distributions, ptrpxq and ptepxq, are different. To

correct the shifted distribution, major efforts have been dedicated to impor-

tance reweighing approaches [32, 5, 11, 37, 16]. However, it is not clear how a

learner will react to the weights.

In this thesis, we relate covariate shift to model misspecification [35]. We

notice that importance reweighing helps most where the model misspecification

is large. As illustrated in Figure 1.1, consider the regression task with additive

Gaussian noise:

y “ fpxq ` ε, ε „ N p0, 0.32
q, (1.1)

where we have 100 training instances x fromN p0.5, 0.52q and 100 test instances

from N p0, 0.32q [27]. Assume we are going to fit the data with a linear model

θ P Θ “ R2, i.e., our prediction will be ŷ “ θ1 ¨x`θ0. As shown in Figure 1.1a,

if the true model is fpxq “ x ` 1, which is linear, then the unweighed model

performs well on the test set even though the marginal test distribution is

shifted. However, if the true model is fpxq “ x3´x`1 (as in Figure 1.1b), the

model class Θ is noticeably misspecified. Then reweighing or model revision

is required.

The goal of this thesis is to study when importance reweighing can help
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(a) Linear model fpxq “ x` 1.
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(b) Cubic model fpxq “ x3 ´ x` 1.

Figure 1.1: Fitting linear lines for data generated from different models.

a learner deal with covariate shift. We model this problem of learning under

changing test distributions as a game between a learner and an adversary.

The learner chooses a model θ from a set Θ to minimize the loss, while the

adversary chooses a reweighing function α from a set A to create new marginal

test distributions to maximize the loss. The set of strategies A is determined

by our prior knowledge on how the test distributions might change. We show

that the minimax solution of this game can be efficiently computed for many

learning problems: e.g., when the loss function is convex in θ and the set of

reweighing functions are linear in α. Our key observation is that the question

on whether importance reweighing is needed, can depend on whether there is

a dominant strategy θ P Θ of the learner against the adversarial set A. By

comparing the value of the minimax solution against the unweighed solution,

we can test for the existence of such a dominant strategy and hence decide

whether importance reweighing could be helpful.

1.1 Thesis Statement

We show that the problem of covariate shift is highly correlated to model

specification. Specifically, when covariate shift occurs, if the underlying model

class is highly misspecified, density ratio correction algorithms could produce

better performance in test set; if the model class is relatively well-specified,

density ratio correction would not give better performance in test set.
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1.2 Thesis Contributions

This thesis focuses on three interrelated but distinct tasks:

1. Given a model class Θ and only labelled training set, how to learn a

model that is robust to certain covariate shifts?

2. Given a model class Θ, both labelled training set and unlabelled test set,

how to achieve good performance in this test set?

3. Given a model class Θ and only labelled training set, do we need to

reweigh training instances to cope with certain covariate shifts?

There are three major contributions in this work:

• We introduce a robust learning formulation (Task 1) and a density ratio

correction method (Task 2), robust covariate shift adjustment (RCSA),

that ties density ratio correction to the learning problem.

• We provide a theoretical analysis for understanding why density ratio

correction does not help in many covariate shift scenarios, which relates

to whether the model class is misspecified. (Task 3)

• We provide a systematic method for checking the model against different

covariate shift scenarios, to help the user decide if density ratio correction

could be helpful, as opposed to considering a different model class. (Task

3)

1.3 Thesis Organization

Chapter 2 provides the background and related work. Chapter 3 describes our

game-theoretic formulation of learning under uncertain test distributions, as

well as how to correct distribution shift when unlabelled test points are avail-

able (Task 1 and Task 2). Chapter 4 characterizes the test for whether density

ratio correction may be necessary and some associated theoretical results (Task

3). Chapter 5 provides experimental evaluation of this test on real datasets

4



against different classes of adversaries and compares our reweighing method

with existing algorithms. Chapter 6 concludes the thesis by summarizing our

contributions and outlining future work.
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Chapter 2

Related Work

2.1 Covariate Shift

Machine learning techniques often impose specific assumptions on the relation

between the training and test distributions (i.e., ptrpx, yq and ptepx, yq) in order

to guarantee learnability. For instance, most traditional machine learning

methods assume that data on which a model is built comes from the same

distribution (or source) as those for testing, i.e., ptrpx, yq “ ptepx, yq. In some

other transfer learning [19] scenarios, ptrpx, yq and ptepx, yq are more or less

different in a non-trivial sense. Specifically, our covariate shift assumes the

following:

ptrpx, yq “ ptrpxq ppy | xq

ptepx, yq “ ptepxq ppy | xq

ptrpxq ‰ ptepxq.

Note that we implicitly assume that the training input xtr and test input xte

come from the same domain X . They only differ in terms of the marginal

distributions, ptrpxq and ptepxq.

To address the issues caused by covariate shift, importance reweighing [23,

29, 33] approaches are relatively popular in the machine learning literature.

2.1.1 Importance Reweighing

Shimodaira [27] showed that given covariate shift and model misspecification,
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reweighing each instance with

wpxq “
ptepxq

ptrpxq
(2.1)

is asymptotically optimal for log-likelihood estimation. Because of this quan-

tity, importance reweighing is sometimes referred to as density ratio correction

in this thesis. As we do not always have enough data, they provided a theoret-

ical analysis on the trade-off between bias and variance of the estimator when

dataset is of moderate size. A practical information criterion was proposed to

select appropriate weight form when the data is limited. However, ptepxq and

ptrpxq were assumed to be known in their paper, which is not true in many

real-world applications. Moreover, these distributions are difficult to estimate,

especially in high-dimensional space. This work was extended later, where an

(almost) unbiased estimator for L2 generalization error was proposed [30]. In

our work, we do not assume ptrpxq and ptepxq to be known in advance when

correcting covariate shift.

Instead of estimating ptepxq and ptrpxq separately, it is more suitable to

estimate wpxq directly from training and test data. Sugiyama et al. [32]

proposed Kullback-Leibler importance estimation procedure (KLIEP), which

minimizes the Kullback-Leibler divergence (KL divergence) from ptepxq to

pptepxq “ pwpxqptrpxq. The proposed linearly parametric form was

pwpxq “
ÿ

l

αlϕlpxq, (2.2)

where αl are the parameters to be learned and ϕlpxq are non-negative basis

functions. In practice, Gaussian kernel was applied as ϕlpxq, and its param-

eters were tuned based on KL divergence score with cross validation. Ya-

mada et al. [37] then proposed a similar approach, relative unconstrained least-

squares importance fitting (RuLSIF), which minimizes Pearson divergence in-

stead of KL divergence. This approach is also related to Kanamori et al.

[15, 16]. Their works resemble ours in that we both estimate the reweighing

function via a linearly parametrized form (Eq.(2.2)). However, notice that

their approaches decouple the estimation of weights and the learning task,

which is potentially inferior because it may includes weights that might be
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irrelevant to the underlying task. For example, when we have a mislabelled

training point that is close to test points, it is very likely to be up-weighed

because its proximity to test points, but this will incur a large error rate since

it is mislabelled. If we are aware of the underlying classification task, the

mislabelled point is less likely to be up-weighed, as it will increase the loss.

Kernel mean matching (KMM) [13, 11] depicts a bijection between prob-

ability measure and marginal polytope. As a result, the shifted distribution

can be corrected by a reweighing function to match means in a reproducing

kernel Hilbert space (RKHS) [25] induced by a kernel. A recent analysis [38]

showed that KMM is effective when the estimator in question (for example,

generalization error estimator) is related to the underlying RKHS. However,

this condition is difficult or impossible to verify and appears almost always

violated in practice. Therefore, KMM is not always easy to tune [7, 32]. Our

work and some other approaches [20, 21] also adapt the idea of matching

means (first moments) of the dataset to correct shifted distribution, but we

extend their approaches from a two-step optimization to a game framework

that jointly learns a model and weights with covariate shift correction.

2.1.2 Other Approaches and Theories

There are some approaches that explain covariate shift in a probabilistic point

of view. Zadrozny [39] introduced the notion of binary selection variable, s, to

characterize the selection mechanism of biased sample. An instance associated

with s “ 1 is selected into training sample. s is considered to be independent of

y given x, that is, pps|x, yq “ pps|xq. Given pps|xq, reweigh each instance with

wpxq “ pps“1q
pps“1|xq

, where pps “ 1q “
ř

x pps “ 1, xq. Such reweighing function

is optimal if pps “ 1|xq is positive for all x, i.e., the support of ptepxq should

be a subset of the support of ptrpxq. As pointed out by Bickel et al. [4, 5],

this approach cannot resolve unseen instances with ptepxq ‰ 0 but ptrpxq “ 0.

Therefore, a generalized approach was proposed [4, 5]. Figure 2.1 summarises

their approach. A data pool was introduced and samples are selected based

on a selection variable s. The binary variable s determines whether a instance

goes to training set or test set. The selection is controlled by v, while the

8
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n m

n`m

Figure 2.1: Graphical model of Bickel et al. [4, 5].

model is characterized by θ. To be specific,

ppy “ 1|x;θq “
1

1` expp´θTxq
, (2.3)

pps “ 1|x;vq “
1

1` expp´vTxq
. (2.4)

Similar to our work, they perform a joint optimization to learn both weights

(via v) and model (θ) simultaneously. Their approach is capable of encoding

instances that are either ptrpxq “ 0 or ptepxq “ 0 because of the data pool.

However, differing from our approach, which is convex with weak conditions,

their optimization is convex only with very specific conditions.

Storkey and Sugiyama [28] introduced a joint approach to distinguish data

sources and learn a regressor. They assumed that training data comes from

two possible sources, one of which is the source that generates test data. It is

slightly different from our covariate shift scenario, which assumes both train-

ing and test models share the same discriminative model ppy|xq. They use

Expectation-Maximization (EM) to find local solution for their work, while in

our work, we are able to find the global solution because our task is convex.

Besides all these approaches, there are many other works focusing on the

theoretical analysis of statistical learning bounds for covariate shift. Based on

the A-distance between distributions [17], Ben-David et al. [1] gave a bound

on L1 generalization error given the presence of mismatched distributions.

Analyses on other forms of error were also introduced in the literature [27, 30,

8]. There are also some approaches detecting mismatched distributions [10].

However, most of their analyses neglect the effect of the model class. In this

thesis, we consider both covariate shift and model misspecification.
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2.2 Model Misspecification

Besides covariate shift, model misspecification is another factor that con-

tributes to the performance on test set. Model misspecification is better rec-

ognized and studied in the field of econometrics/statistics than in the machine

learning community. Our work is influenced by White [35], who proposed a

model misspecification test based on the difference between model parameter

θ in two situations. Analysis on squared loss [35] and log likelihood [36] were

provided when the model class was misspecified. They introduced a heuristic

reweighing function, while comparatively, in our work, the reweighing function

is shaped as an adversary that creates worst case scenario for the learner.

Machine learning literature often implicitly or explicitly assumes that the

model class at hand is correctly specified for the learning problem [1, 34].

However, this assumption is not always true in real-world applications. It is

possibly efficient to tell whether a linear model is well-specified, but there is

no easy way to verify whether a non-linear model class is sufficient for the

learning task. Many machine learning publications ignore the issue of model

misspecification and simply attempt to learn the “best” model θ˚ in a given

model class Θ.

Shimodaira [27] pointed out a connection between model misspecification

and covariate shift, showing that covariate shift correction could be effective

when the model class is misspecified. However, little quantitative evidence was

provided for the claim. Gretton et al. [11] also suggested the similar conclusion:

when the model class is “simpler” than the true model, reweighing methods

are more likely to produce better results than unweighed learning. Theoretical

analysis on the relationship between model misspecification and covariate shift

is still missing. It is not clear how covariate shift will influence the learning task

when the model class is correctly specified or misspecified. Our work partially

resolves this issue in that we theoretically analyse the effect of importance

reweighing in well-specified scenarios in terms of dominant strategy (discussed

later), and empirically investigate the effect of model specification in covariate

shift cases.

10



Chapter 3

Learning Under Uncertain Test
Distributions as a Game

In this chapter, we introduce the problem formulation and our robust covariate

shift adjustment (RCSA) algorithm.

Suppose we are given a training sample px1, y1q, ¨ ¨ ¨ , pxn, ynq drawn inde-

pendently and identically from a joint distribution ptrpx, yq, and that the test

distribution ptepx, yq is the same as ptrpx, yq. The most common and well-

established method to learn a prediction function f : X ÞÑ Y is through

solving the following empirical risk minimization (ERM) problem:

min
θPΘ

1

n

n
ÿ

i“1

lpfθpxiq, yiq ` λΩpθq, (3.1)

where the prediction function fθp¨q is parametrized by a vector θ, lp¨, ¨q is a

loss function, Ωp¨q is a regularizer on θ to control overfitting and λ P R is

regularization parameter.

When there is covariate shift, the feature distribution ptepxq is different

from ptrpxq but the conditional distribution ppy|xq representing the classifica-

tion/regression rule remains the same across training and test sets. In this

scenario, one of the most common approach to correct for the effect of covari-

ate shift is to reweigh the training instances in the ERM problem to reflect

their true proportions on the test set:

min
θPΘ

1

n

n
ÿ

i“1

wpxiq lpfθpxiq, yiq ` λΩpθq, (3.2)

11



where wpxiq is a reweighing function that approximates the density ratio

ptepxiq{ptrpxiq. There are many different methods for estimating the density

ratio wpxq using unlabelled test data [23, 29]. Consequently the learning prob-

lem becomes a two-step estimation problem, where the density ratio wpxq is

estimated first before the estimation of θ in Eq. (3.2).

This two-step estimation procedure can improve the prediction accuracy

on the test set if the density ratio wpxq is accurate. However, the separation

of density ratio estimation step and model learning step can lead to miss-

ing important interactions between these two steps. For example, wpxq can

reweigh instances based on features in x that are irrelevant to the prediction

problem for learning θ, thus reducing the effective sample size in the second

stage. Also, if there is little or no model misspecification, there is no need to

do density ratio correction and reweighing merely increases the variance of the

final learned predictor θ [27]. In general, there is no easy way to tell whether

density ratio correction helps or hurts in this two-step procedure, unless we

have labelled data from the test distribution.

In this work we tie the two problems of density ratio estimation and learning

a predictor together through the robust Bayes framework [12]. The learner

tries to minimize the loss by selecting a model θ P Θ, while the adversary tries

to maximize the loss by selecting a reweighing function wp¨q P W . Formally,

we model the learning problem as a (regularized) minimax game:

min
θPΘ

max
wPW

1

n

n
ÿ

i“1

wpxiq lpfθpxiq, yiq ` λΩpθq. (3.3)

The learner can be seen as minimizing the worst case loss over the set of test

distributions W produced by the adversary. The definition of the strategy set

W used by the adversary is important in our approach, as it determines the

extent to which any model misspecification can be exploited by the adversary

to increase the loss. Depending on the application scenario, it can be defined

using our prior knowledge on how the test distributions could change, or with

unlabelled test data if they are available.

To refine this formulation, we assume the reweighing functions wpxq are

12



linearly parametrized:

wαpxq “
k
ÿ

j“1

αjkjpxq, (3.4)

where α contains the mixing coefficients and kjpxq are non-negative basis

functions. For example, kjpxq could be non-negative kernel function, say, the

Gaussian kernel

Kpbj, xq “ exp

ˆ

´
||bj ´ x||

2

2σ2

˙

(3.5)

with basis bj, or it could be Ijpxq, the indicator function for the jth disjoint

group of the data, representing groups from different genders, age ranges, or

k-means clusters, etc. It could be seen as the conditional probability ppx|jq

of observing x given class j in a mixture model. As for α, it is generally con-

strained to lie in some compact subspace A of the non-negative quadrant of

Euclidean space. This linear formulation is flexible enough to capture many

different types of uncertainties in the test distributions, and yet simple enough

to be solved efficiently as a convex optimization problem. Therefore, we con-

sider uncertain test distributions and optimize the following minimax game:

min
θPΘ

max
αPRk

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq ` λΩpθq

s.t.
1

n

n
ÿ

i“1

wαpxiq “ 1, 0 ď αj ď B.

(3.6)

The sum-to-one normalization constraint ensures that wαpxq behaves like a

Radon-Nikodym derivative [6] that properly reweighs the training distribution

to a potential test distribution [27, 32]:

1 “

ż

X
ptepxqdx “

ż

X
wpxqptrpxqdx «

1

n

n
ÿ

i“1

wαpxiq.

The bounds B P R on the parameters αj ensure that the reweighing function

wαpxq is bounded, which naturally controls the capacity of the adversary. In

this formulation, the strategy set1 An of the adversary is the intersection of a

hypercube and an affine subspace:

An “
#

α

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wαpxiq “ 1, 0 ď αj ď B

+

, (3.7)

1We use the subscript n to denote its dependence on the sample tx1, ¨ ¨ ¨ , xnu.
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which is closed and convex.

For the games defined above between the learner and the adversary, a

minimax solution pθ˚,α˚q exists. This claim is based on the well-known result

on the existence of saddle points for functions Jpθ,αq that are convex in θ

and concave in α.

Proposition 1 Define

Jpθ,αq “
1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq. (3.8)

If lpfθp¨q, ¨q is convex in θ and wαp¨q is concave in α, and Θ and A are both

bounded closed convex sets, then a saddle point pθ˚,α˚q exists for J , i.e.,

Jpθ˚,αq ď Jpθ˚,α˚q ď Jpθ,α˚q @θ P Θ, @α P A, (3.9)

and

Jpθ˚,α˚q “ min
θPΘ

max
αPA

Jpθ,αq “ max
αPA

min
θPΘ

Jpθ,αq (3.10)

Proof. Direct from Rockafellar [24, Corollary 37.3.2].

3.1 Solving the Training Problem

We first define the adversarial loss as

LAnpθq “ max
αPAn

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq. (3.11)

The training problem in Eq. (3.6) can be solved efficiently for loss functions

lpfθp¨q, ¨q that are convex in θ. Notice the adversarial loss in Eq. (3.11) is a

convex function in θ if lpfθp¨q, ¨q is convex in θ, as we are taking the maximum

over a set of convex functions. By Danskin’s Theorem [3], a subgradient of

LAnpθ
1q at a point θ1 is:

B

Bθ
LAnpθ

1
q “

1

n

n
ÿ

i“1

wα1pxiq
B

Bθ
lpfθ1pxiq, yiq, (3.12)

where α1 is the solution of the maximization problem with θ1 fixed:

α1 “ argmax
αPAn

1

n

n
ÿ

i“1

wαpxiq lpfθ1pxiq, yiq. (3.13)
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Since the strategy set An is linearly constrained and the objective is also

linear, α1 in Eq. (3.13) can be solved easily using linear programming. Knowing

how to compute the subgradient, we can just treat the robust training problem

as a convex empirical risk minimization problem with the adversarial loss. The

optimization problem can be solved efficiently with subgradient methods [3] or

bundle methods [18]; in the experiments below we employ the proximal bundle

method for training.

3.2 Incorporating Unlabelled Test Data via Mo-

ment Matching Constraints

If unlabelled test data txn`1, . . . , xn`mu are available, we would expect the

reweighing functions wαpxq used by the adversary to produce test distributions

that are close to the unlabelled data, especially when covariate shift occurs.

In this case we can further restrict the strategy set An of the adversary via

moment matching constraints:

min
θPΘ

max
αPRk

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq ` λΩpθq

s.t.
1

n

n
ÿ

i“1

wαpxiq “ 1, 0 ď αj ď B

1

n

n
ÿ

i“1

wαpxiqφpxiq “
1

m

n`m
ÿ

i“n`1

φpxiq, (3.14)

where φp¨q are feature functions similar to those used in maximum entropy

models [2]. Let Knα “ sφte represent the linear constraint of Eq. (3.14), then

the strategy set An of the adversary becomes

An “
#

α

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wαpxiq “ 1, 0 ď αj ď B, Knα “ sφte

+

, (3.15)

which is closed and convex.

In practice, it might not be feasible to satisfy all the moment matching

constraints. It is also unwise to enforce these as hard constraints, as the small

test sample might not be representative of the true test distribution. We prefer
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to solve the soft version of the optimization problem instead:

min
θPΘ

max
α,ξ

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq ` λΩpθq ´ µ}ξ}pp

s.t.
1

n

n
ÿ

i“1

wαpxiq “ 1, 0 ď αj ď B

1

n

n
ÿ

i“1

wαpxiqφpxiq ´
1

m

n`m
ÿ

i“n`1

φpxiq “ ξ. (3.16)

The parameter µ P R controls how hard we want the moment matching con-

straints to be. Note that the sign of µ}ξ}pp is negative because we are penalizing

a maximization problem (the adversary). If we use the L1-norm, }ξ}1, on ξ,

then we are directly penalizing the absolute constraint violation, while using

L2-norm, }ξ}2, for ξ allows the matching features φ to be kernelized, similar

to the approach in kernel mean matching [13]. We refer to problem (3.16) as

robust covariate shift adjustment (RCSA).
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Chapter 4

Relating Covariate Shift to
Model Misspecification

This chapter relates covariate shift to model misspecification and describes a

procedure for testing whether correcting for covariate shift could be needed,

assuming the test distribution comes from the strategy set An of the adversary.

We will also state and discuss several theoretical results to justify our test.

Their proofs are in the appendix.

Let pθn be a solution of the robust Bayes game:

pθn “ argmin
θPΘ

max
αPAn

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq. (4.1)

Let sθn be a solution of the unweighed empirical risk minimization problem:

sθn “ argmin
θPΘ

1

n

n
ÿ

i“1

lpfθpxiq, yiq. (4.2)

The main idea of the test is to compare the adversarial losses LAnp
pθnq and

LAnp
sθnq. If LAnp

sθnq is substantially larger than LAnp
pθnq, then the adversary

can find a strategy α1 P An that exploits the model sθn’s weaknesses much

better than the minimax solution pθn. In this case, density ratio correction could

help, if the test distribution is characterized by α1 (the certificate produced

by minimax formula) while the training distribution is not.

The first result is concerned with the convergence of the objective value of

Eq. (3.6). Let AS be the support of the strategy set An without the stochastic

constraints, such as the normalization constraint 1
n

řn
i“1wαpxiq “ 1 or the
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moment matching constraint Knα “ sφte. That is, AS is the part that does

not depend on the training sample, e.g., the hypercube 0 ď αj ď B in the

previous chapter. Define

LAnpθq “ max
αPAn

1

n

n
ÿ

i“1

wαpxiq lpfθpxiq, yiq, where

An “
#

α P AS
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wαpxiq “ 1

+

, and

LA8pθq “ max
αPA8

ż

wαpxq lpfθpxq, yqdF px, yq, where

A8 “
"

α P AS
ˇ

ˇ

ˇ

ˇ

ż

wαpxqdF px, yq “ 1

*

,

(4.3)

where pxi, yiq is drawn according to the (Borel) probability measure F px, yq

for i “ 1, ¨ ¨ ¨ , n.

Theorem 2 Suppose the support AS for α and Θ for θ are each closed, con-

vex, and bounded. Suppose also wαpxq and lpfθpxq, yq are bounded continuous

functions in α and θ for each px, yq pair. If the set satisfying the normal-

ization constraint tα P AS|
ş

wαpxqdF px, yq “ 1u is non-empty in the relative

interior of AS, then we have, for all θ P Θ,

LAnpθq Ñ LA8pθq (4.4)

in probability, i.e., for all ε, δ ą 0, we can find m P N such that for all n ě m,

we have

|LAnpθq ´ LA8pθq| ă ε (4.5)

with probability at least 1´ δ.

Thm. 2 shows that the sample adversarial loss converges to a distribution

limit for all θ P Θ. For simplicity, Thm. 2 does not consider the moment

matching constraints Knα “ sφte or Knα´ sφte “ ξ, but these can be handled

in the proof with techniques similar to the normalization constraint.

Our second result is on using this limit as the payoff of the game between

the learner and the adversary, to decide whether density ratio correction could

be helpful.
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Definition 3 (Dominant Strategy) We say that θ: P Θ is a dominant

strategy for the learner if, for all α P A8, for all θ1 P Θ,

ż

wαpxq lpfθ:pxq, yqdF px, yq ď

ż

wαpxq lpfθ1pxq, yqdF px, yq. (4.6)

The existence of a dominant strategy of the learner is the key criterion in

deciding whether density ratio correction is necessary. If such a strategy θ:

exists, then it gives lower or equal loss compared to other models θ1, no matter

which reweighing function wαpxq is used. Thus if one can find a θ:, no density

ratio correction is needed, as long as the training and test distributions come

from the given adversarial set. However, if no such strategy exists, then for any

model θ, there exist another model θ1 and a reweighing function wα1pxq such

that θ1 has strictly lower loss than θ on wα1pxq. This means that a reweighing

wα1pxq and its corresponding model θ1 are preferable. As a result, density

ratio correction could necessary if the test set is drawn from wα1pxq while the

training set is not.

Let sθ be the solution of the unweighed loss minimization problem

sθ “ argmin
θPΘ

ż

lpfθpxq, yqdF px, yq, (4.7)

and pθ be the solution of the reweighed adversarial loss minimization problem

pθ “ argmin
θPΘ

max
αPA8

ż

wαpxq lpfθpxq, yqdF px, yq. (4.8)

Our second result states that, if a dominant strategy θ: exists, then under suit-

able assumption on the adversary, the unweighed solution sθ is also a dominant

strategy.

Theorem 4 Suppose the reweighing function wαpxq is linear in α, and the

constant reweighing α0 with wα0pxq “ 1 is in the relative interior of A8. If

a dominant strategy θ: of the learner exists, then the unweighed solution sθ is

also a dominant strategy for the learner.

As any dominant strategy θ: minimizes the adversarial loss in Eq. (3.11),

Thm. 4 implies that the unweighed solution sθ will also minimize the adversarial
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loss. Therefore by comparing the value of the minimax solution LA8p
pθq (which

by definition minimizes the adversarial loss) against LA8p
sθq, we can tell if a

dominant strategy exists. If they are not equal, then we are certain that no

such dominant strategy exists, and density ratio correction could be helpful,

depending on the distributions from which the training and test sets are drawn.

On the other hand, if they are equal, we cannot conclude that a dominant

strategy exists, as it is possible that the reweighed adversarial distribution

matches the uniform unweighed distribution arbitrarily closely. However, such

examples are rather contrived and we never encountered such a situation in

any of our experiments. As Thm. 2 shows LAnpθq converges to LA8pθq for all

θ P Θ, our experiments will compare the empirical adversarial loss LAnp
pθnq

against LAnp
sθnq for the test set, with samples drawn via cross validation.

Now, we can relate our game formulation for learning under uncertain test

distributions to model misspecification.

Definition 5 (Pointwise Domination) A parameter θ‹ is said to point-

wisely dominate all θ1 P Θ over the loss function lp¨, ¨q if, for all x P X and

for all θ1 P Θ,
ż

lpfθ‹pxq, yq ppy|xq dy ď

ż

lpfθ1pxq, yq ppy|xq dy, (4.9)

That is to say, there is a single θ‹ that pointwisely minimizes the loss l for all

x P X .

It is easy to see that this pointwise domination condition is implied by the

traditional definition of model misspecification when lp¨, ¨q is the log loss:

lpfθpxq, yq “ ´ log pθpy|xq. (4.10)

If ppy|xq is the true conditional distribution, then we say that the model class

is correctly specified if there exists θ‹ P Θ such that pθ‹py|xq “ ppy|xq. The

pointwise domination condition then becomes:

´

ż

ppy|xq log pθ‹py|xq dy ď ´

ż

ppy|xq log pθ1py|xq dy. (4.11)

This inequality always holds because pθ‹py|xq “ ppy|xq minimizes the entropy

on the left hand side. Therefore, a correctly specified model always implies the
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existence of a pointwise dominator θ‹. However, the converse is not always

true, as the underlying model class Θ might be too weak (e.g., Θ contains only

a single model θ).

It is easy to show that the pointwise domination condition implies the

existence of a dominant strategy θ: (Def. 3), against any class of adversary A:

Theorem 6 Suppose a pointwise dominator θ‹ exists, then θ‹ is also a dom-

inant strategy for the learner, against any bounded adversarial set A.

The chain of implications can be summarized as:

No model misspecification for Θ

ñ Pointwise dominator exists for Θ

ñ Dominant strategy against any bounded adversary A exists

ñ Regular unweighed solution sθ is a dominant strategy against

some adversary A8
ñ sθ should have no worse performance than robust reweighed

solution pθ, i.e., LA8p
sθq and LA8p

pθq should be equal.

The first implication is a result of the definition of pointwise dominator (Def. 5).

Thm. 6 states the second implication. The third implication is Thm. 4, while

the forth one is a result of the definition of dominant strategy (Def. 3) and

the definition of robust learner pθ (Eq. 4.8). To compare LA8p
sθq and LA8p

pθq

in practice, we use the convergence theorem (Thm. 2) and compare their em-

pirical estimations LAnp
sθnq and LAnp

pθnq. If LAnp
sθnq is substantially larger

than LAnp
pθnq, then the adversary can find a strategy α1 P An that exploits

the model sθn’s weaknesses much better than the minimax solution pθn. In this

case, density ratio correction could help, if the test distribution is character-

ized by α1 (the certificate produced by minimax formula) while the training

distribution is not. If LAnp
sθnq is very close to LAnp

pθnq, then it is unlikely that

density ratio correction will improve the learning performance, as long as the

training and test distributions come from the given adversarial set.

We can see that “no model misspecification” is a very strong condition, as

it requires a dominant strategy against any bounded adversary A, including
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pathologically spiky test distributions with tall spikes and small support, or

distributions with arbitrary points of discontinuities. Also, there is an implicit

assumption in using density ratio correction that covariate shifts on the test set

are not represented by arbitrarily complex functions. Otherwise estimation of

density ratio cannot take place and covariate shift correction is not possible.

We believe it is better to test the model class Θ against a restricted set of

potential changes in the test distributions represented by our adversarial set

A8, than to assume the learner is going to face arbitrary changes in the test

distribution as required by model misspecification.
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Chapter 5

Empirical Studies

This chapter presents experimental results on toy examples as well as real-

world datasets to empirically demonstrate our dominant strategy detection

procedure and to show the effectiveness of our robust covariate shift adjust-

ment (RCSA) algorithm.

5.1 Experiment on Toy Datasets

We first present two toy examples to show the performance of our RCSA

algorithm. We construct a linear model, f1pxq “ x ` 1 ` ε, and a non-linear

(cubic) model, f2pxq “ x3´x`1`ε, where ε „ N p0, 0.12q is additive Gaussian

noise.1 A linear regressor fθpxq “ θ1 ¨x` θ0 is learned from data with squared

loss: lpfθpxiq, yiq “ ||θ
Txi ´ yi||

2. For the regularizer, we use the L2 norm of

θ: Ωpθq “ 1
2
||θ||22.

First we show how to detect whether a dominant strategy exists with vari-

ous adversarial sets A. We generate 500 data points uniformly in the interval

r´1.5, 2s which we partition into training and test sets via 10-fold cross val-

idation. To construct reasonable adversaries, we use Eq.(3.4) with Gaussian

kernel as our reweighing function. As we mentioned earlier, the adversarial set

is determined by prior knowledge of how the test distribution might change.

In this toy example, we use a large range of σ, based on the average distance

from an instance to its n
c
-nearest neighbours, where n is the number of train-

ing points and c P t2, 4, 8, 16, ¨ ¨ ¨ u. The smaller σ is, the more powerful the

1This toy example is adapted from Shimodaira [27].
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adversary can be, i.e., the more possible test distributions it can generate. The

bases, bj, are chosen to be the training points. B is set to be 5, a bound that

is rarely reached in practice due to the normalization constraint. Therefore,

this bound does not significantly limit the adversary’s power, as it allows the

adversary to put as much importance on a single kernel as it wants. We tune

the parameter λ via 10-fold cross validation.2 Figure 5.1a shows that LAnp
pθnq

and LAnp
sθnq (mean and one standard deviation as error bar) are very close for

all σ in the linear example, indicating that the adversary cannot exploit the

weakness of linear learner. Figure 5.1b shows that, for the non-linear exam-

ple, even with moderate σ, there is a noticeable difference between LAnp
pθnq

against LAnp
sθnq, strongly suggesting that no dominant strategy exists in this

case, which suggests that covariate shift correction may be necessary if test

distribution is shifted in the non-linear example.

To see how the adversary creates different adversarial losses in a non-linear

example, we fix the σ to the average distance from an instance to its n
5
-nearest

neighbour and illustrate a concrete example in Figure 5.1c. It is obvious that

the adversary tends to put more weights at the test points where the loss of the

classifier learned from training data is large. Our robust formulation takes the

adversary into consideration and prevents any point from having too large a

loss. As a result, the adversary cannot undermine the robust learner severely,

which leads to the gap of the adversarial losses of robust and regular learners

in Figure 5.1b.

Now we consider the performance of RCSA in the non-linear example with

covariate shift. We generated 100 training points from N p0.5, 0.52q and 100

test points from N p0, 0.32q [27]. Here we set σ as the average distance from an

instance to its n
5
-nearest neighbour. We correct covariate shift using Eq. (3.16),

where p is set to 2 for kernelization and µ is set to be the ratio of empirical

test loss to empirical moment difference between training and test sets. This

particular choice of µ balances our effort on minimizing the loss and enforcing

2Here, as there is no covariate shift, we just use simple cross validation. Whenever test
distribution is shifted in the experiment, parameters are tuned via importance weighted
cross validation [31].
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(a) Linear example.
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(b) Non-linear example.
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(c) Adversarial reweighing.
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(d) Reweighing for shift.

Figure 5.1: Toy examples. Adversarial test losses are shown in Figures 5.1a
and 5.1b, where the x-axis shows the value of σ. Figure 5.1c provides a non-
linear example to show how the adversary attacks the regressors by reweighing
the test points, with output on the left y-axis and weight on the right y-axis.
Figure 5.1d provides a concrete instantiation of RCSA reweighing for covariate
shift in non-linear example.

moments to match. As shown in Figure 5.1d, the RCSA regressor has much

better performance compared with regular unweighed regressor on test set.

The reweigh function decays quickly as we move away from test set.

5.2 Experiment on Real-world Datasets

This section presents the experimental results of RCSA algorithm on real world

datasets to demonstrate how our formulation determines whether there is a

dominant strategy against some adversaries and if so, how to correct such

covariate shifts. We investigate both regression problems using squared loss,
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Table 5.1: Dataset Summary

Dataset Size Dim Type

Australian 690 14 Classification

Breast cancer 683 10 Classification

German numer 1000 24 Classification

Heart 270 13 Classification

Ionosphere 351 34 Classification

Liver disorder 345 6 Classification

Sonar 208 60 Classification

Splice 1000 60 Classification

Auto-mpg 392 6 Regression

Cancer 1523 40 Regression

and classification problems using hinge loss: lpfθpxiq, yiq “ maxp0, 1´yiθ
Txiq.

A linear model is learned from the dataset unless otherwise specified.

5.2.1 Datasets

We obtain some classification datasets from UCI repository3. All are binary

classification problems. For regression task, we use Auto-mpg dataset, which is

considered to be natural covariate shift scenario, as it contains data collected

from 3 different cities. We also have a set of cancer patient survival time data

provided by our medical collaborators, containing 1523 uncensored patients

with 40 features, including gender, site and stage of cancer, and various blood

work measurements obtained at the time of diagnosis. Table 5.1 shows the

summary of the datasets we used in the experiments.

5.2.2 Dominant Strategy Detection

To construct reasonable adversaries, Gaussian kernel is applied to Eq.(3.4). We

set σ to be the average distance from an instance to its n
5
-nearest neighbour.

We set the bases bj to be the training points and set B to be 5. It is possible

to set up another adversarial set, as it depends on user’s belief about how

the test distribution may change. However, this experiment focuses on test

distributions that come from this particular adversarial set.

3http://archive.ics.uci.edu/ml/index.html
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Table 5.2: Average Robust and Non-robust Adversarial Test Losses of Linear
Model: over 10 Runs

Dataset Robust Non-robust t-test

Australian 0.4222 ˘ 0.1011 0.4041 ˘ 0.107 ˆ

Breast cancer 0.2936 ˘ 0.09871 0.3197 ˘ 0.09698 ˆ

German numer 0.6548 ˘ 0.1038 0.6597 ˘ 0.1122 ˆ

Heart 0.5769 ˘ 0.176 0.5813 ˘ 0.1781 ˆ

Ionosphere 0.5483 ˘ 0.1092 0.5795 ˘ 0.1137 ˆ

Liver disorders 1.054 ˘ 0.06216 1.31 ˘ 0.1706
‘

Sonar 0.8559 ˘ 0.1313 0.8505 ˘ 0.1278 ˆ

Splice 0.5299 ˘ 0.06923 0.5304 ˘ 0.07541 ˆ

Auto-mpg12 0.7572 ˘ 0.0377 0.8698 ˘ 0.03188
‘

Auto-mpg13 0.4092 ˘ 0.02557 0.5058 ˘ 0.02356
‘

Cancer 0.8968 ˘ 0.1684 0.8827 ˘ 0.176 ˆ

Experimental results are shown in Table 5.2 and Figure 5.2a. Auto-mpg12

explores when the training data comes from city 1 and test data is from city 2,

while Auto-mpg13 explores when training data comes from city 1 and test data

comes from city 3. Here we focus on the adversarial losses of robust versus

regular models. A significant difference indicates that there is no dominant

strategy and thus, the linear model is vulnerable to our reweighing adversary.

For classification datasets and the cancer dataset, we apply 10-fold cross vali-

dation to obtain training and test sets. For Auto-mpg, we fix the test set and

apply 10-fold cross validation to obtain training set. Figure 5.2a presents these

losses over the datasets (mean and one standard deviation as error bar). Ta-

ble 5.2 presents these losses (mean ˘ one standard deviation) over the datasets,

and includes a tick mark to indicate when two losses are significantly different

(t-test with significance level 0.05). Our result indicates that the linear model

is vulnerable for the Liver disorders and Auto-mpg datasets.

To further substantiate the incapability of the linear model, we attempted

to detect dominant strategy for a Gaussian model set Θ (i.e., changing from

linear kernel to Gaussian kernel with kernel width chosen with cross validation

by learner). Results are shown in Table 5.3 and Figure 5.2b. The gap of

adversarial losses between robust and regular models shrinks significantly as
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Table 5.3: Average Robust and Non-robust Adversarial Test Losses of Gaus-
sian Model: over 10 Runs

Dataset Robust Non-robust t-test

Australian 0.3917 ˘ 0.1035 0.3899 ˘ 0.1043 ˆ

Breast cancer 0.2512 ˘ 0.1255 0.245 ˘ 0.1278 ˆ

German numer 0.6098 ˘ 0.07473 0.609 ˘ 0.07513 ˆ

Heart 0.4804 ˘ 0.1333 0.4846 ˘ 0.1371 ˆ

Ionosphere 0.2248 ˘ 0.06474 0.2196 ˘ 0.06396 ˆ

Liver disorders 1.132 ˘ 0.4512 1.173 ˘ 0.5103 ˆ

Sonar 0.3977 ˘ 0.1014 0.4 ˘ 0.1001 ˆ

Splice 0.3653 ˘ 0.04783 0.3656 ˘ 0.04541 ˆ

Auto-mpg12 0.6585 ˘ 0.03384 0.6738 ˘ 0.02765 ˆ

Auto-mpg13 0.3514 ˘ 0.02925 0.373 ˘ 0.01601 ˆ

Cancer 0.8888 ˘ 0.1413 0.8837 ˘ 0.142 ˆ
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Figure 5.2: Experimental results for dominant strategy detection and covariate
shift correction. Figure 5.2a and Figure 5.2b show the adversarial test losses
of robust and regular learners.

in Figure 5.2b. Our result indicates that t-test no longer claims a significant

difference between these losses and the adversary cannot severely undermine

the performance of regular learning. Therefore, model revision can be a good

alternative to performing covariate shift correction.

We also investigate the effect of different adversarial sets. Specifically, we

vary the kernel width σ in the reweighing basis function Eq. (3.4) as in the toy

example of Section 5.1. The adversarial training losses are reported in Fig-

ure 5.3. We choose the adversarial training loss here because the adversarial
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loss on the test set under 10-fold cross validation is sometimes less representa-

tive of the true generalization adversarial loss, especially when σ is very small.

This is due to the small test set size and the presence of unseen noisy data.

Different from the toy example above, we cannot guarantee that the support

of training sample includes that of test sample. Unseen noisy data can incur

very large loss for both robust and regular models because of its unpredictable

nature, which a powerful adversary can exploit. Therefore, we focus on ad-

versarial training losses in Figure 5.3. Note that for Liver disorders and

Auto-mpg datasets, there are noticeable difference between robust and regular

adversarial losses for moderate σ, which resembles our non-linear example in

Figure 5.1b. When it comes to other datasets, the difference between adver-

sarial losses is not obvious until σ becomes small enough. This is reasonable

because every real-world dataset has some noise and as the adversary becomes

more and more powerful, it will concentrate more and more mass on such noisy

data. Such a baleful and powerful adversary will eventually exploit the noisy

points and undermine the performance of linear model for real-world datasets

even if the underlying true model is linear. It is also worth mentioning that if

test distribution ptepxq is highly shifted, which can happen when σ are small,

density ratio correction will be necessary for not only Liver disorders and

Auto-mpg but also some other datasets.

5.2.3 Reweighing Algorithm for Covariate Shift Sce-
nario

As previously mentioned, the reweighing mechanism could improve the perfor-

mance if the model is vulnerable to the reweighing adversary. For the covari-

ate shift correction task, we set the test points as the reference bases bj of the

weight function (Eq. (3.4)), because they are more informative than training

points about the test distribution, as suggested by Sugiyama et al. [32]. We

use the same choices of p and µ as in the toy example. The reweighing set (σ

and B) is chosen as in Section 5.2.2.

To create covariate shift scenarios in the classification datasets, we apply

the following mechanism to obtain shifted test set: we first randomly pick 75%
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Figure 5.3: Adversarial training losses for different σs.

of the set for robust training Eq. (3.6); from adversarial test loss Eq. (3.11),

every test instance has a weight; the probability that a test instance x remains

in the test set is min
´

1, wαpxq
1{m

¯

, where m is the number of test points at

the moment (25% of the set). About 10% of the whole dataset remain as

the test set after filtering. Then we run reweighing algorithms on this split.
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The intuition of this filtering is that instances that are up-weighed by the

adversary are more favourable to be in test set. The procedure is performed

10 times, leading to the average test losses reported in Table 5.4 and Figure 5.4.

Auto-mpg is a natural covariate shift scenario so we do not need to artificially

partition the dataset. We applied 10-fold cross validation to obtain the training

set. We consider two covariate shift scenarios in the cancer survival time

prediction:

1. Gender split. The dataset contains about 60% male and 40% female

patients. In gender split, we randomly take 20% of the male and 80%

of the female patients into training set, while the rest goes to test set.

That is, the training set is dominated by male patients while the test set

is dominated by female patients.

2. Cancer stage split. Approximately 70% of the dataset are of stage-4.

In cancer stage split, we randomly take 20% of stage-1-to-3 and 80% of

stage-4 patients to training set, while the rest goes to test set. That is,

the training set is dominated by stage-4 patients while the test set is

dominated by stage-1-to-3 patients.

Table 5.4 and Figure 5.4 compares the test losses of RCSA with the regular

unweighed learning algorithm, the clustering-based reweighing algorithm [7],

KLIEP [32] and RuLSIF [37]. Recall that the linear model is insufficient for

the Liver disorders and Auto-mpg datasets. As a result, by putting more

weights on the training instances that are similar to test instances, the reweigh-

ing algorithms are able to produce models with smaller test losses. Although

our robust game formulation is mainly designed to detect dominant strategy,

our RCSA algorithm can correct shifted distribution using the moment match-

ing constraint. As shown in Table 5.4 and Figure 5.4, our method performs on

par with state-of-the-art algorithms when covariate shift correction is required.

For the datasets that appear linear (i.e., where the linear model performs rel-

atively well), we found that the reweighing algorithms did not significantly

reduce the test losses. In some cases, reweighing actually increased the test

losses due to the presence of noise.
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Table 5.4: Average Test Losses of Different Reweighing Algorithms with Linear
Model: over 10 Runs

Dataset Unweighed Clust KLIEP RuLSIF RCSA

Australian 0.3185 0.3188 0.3187 0.317 0.3209

Breast cancer 0.07606 0.07611 0.07971 0.08801 0.08036

German numer 0.5879 0.5842 0.5841 0.5848 0.5809

Heart 0.4846 0.4824 0.4908 0.4807 0.4832

Ionosphere 0.2965 0.2712 0.2918 0.2948 0.2848

Liver disorders 0.7875 0.7446 0.7702 0.7222 0.7213

Sonar 0.5781 0.5604 0.5667 0.56 0.5642

Splice 0.462 0.4637 0.4612 0.4603 0.4563

Auto-mpg12 0.4503 0.3329 0.3547 0.3249 0.3385

Auto-mpg13 0.4053 0.2057 0.2497 0.2071 0.2063

Cancer-gender 0.7766 0.7766 0.7762 0.7915 0.7762

Cancer-stage 0.9306 0.9304 0.9271 0.9221 0.9252
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Figure 5.4: Performance of reweighing algorithms with linear model.
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Chapter 6

Conclusion

6.1 Future Work

There are several research directions that we can further explore.

• We plan to convert our current asymptotic analysis of the game between

learner and adversary into a finite sample analysis. This can lead to

improved understanding of the variance in this robust game formulation

and improved detection tests.

• We also plan to extend our game interpretation to consider ε-dominant

strategies instead of dominant strategies. As every real-world dataset

has some noise, allowing ε tolerance would be helpful to understand the

extent to which our detection procedure remains effective.

• One major limitation of our detection procedure is that we cannot cer-

tainly claim the existence of dominant strategy when robust and regular

learners perform equally well against a pre-defined adversarial set (see

the discussion on Theorem 4). In such cases, reweighing algorithms may

not improve the performance on test set but revising the model class may

help. Detecting such situations would be beneficial for future studies.

• In this thesis, we used moment matching constraints to reweigh training

instances such that the reweighed training sample resembles the test

sample. However, moment matching constraint is not the only way to

enforce sample similarity. It is possible to encode sample similarity based
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on some other divergences (for example, Sugiyama et al. [32], Yamada

et al. [37]), which may lead to better performance in test set.

6.2 Conclusions and Contributions

We have provided a method for determining if covariate shift correction is

needed under a pre-defined set of potential changes in the test distribution.

This is useful for ensuring the learned predictor will still perform well when

there are uncertainties about the test example distribution in the deployment

environment. It can also be used to decide if a model class revision of Θ is

necessary.

Experimental results show that our detection test is effective on UCI datasets

and a real-world cancer patient dataset. This analysis shows the importance of

studying the interaction of covariate shift and model misspecification, because

the final test set error depends on both factors.
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Appendix

Proof of Theorem 2

Notice the reweighed loss is linear in α for fixed θ:

1

n

n
ÿ

i“1

wαpxiqlpfθpxiq, yiq “
k
ÿ

j“1

αj
1

n

n
ÿ

i“1

kjpxiqlpfθpxiq, yiq

“ hTnα,

where

phnqj “
1

n

n
ÿ

i“1

kjpxiqlpfθpxiq, yiq.

Therefore we can write LAnpθq as:

LAnpθq “ max
αPAn

hTnα

Similarly, define the corresponding cost vector h for the expected adver-

sarial loss such that

phqj “

ż

kjpxq lθpfpxq, yqdF px, yq, (6.1)

and we have

LA8 “ max
αPA8

hTα

Similarly, define for the normalization constraint:

1

n

n
ÿ

i“1

wαpxiq “
k
ÿ

j“1

αj
1

n

n
ÿ

i“1

kjpxiq “ g
T
nα,

where

pgnqj “
1

n

n
ÿ

i“1

kjpxiq.

Define the corresponding constraint vector g such that

pgqj “

ż

kjpxq dF px, yq.
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Translating into the new notations, we want to prove

ˇ

ˇ

ˇ

ˇ

max
αPAS :gTα“1

hTα´ max
αPAS :gTnα“1

hTnα

ˇ

ˇ

ˇ

ˇ

ă ε

with probability at least 1´ δ, for all sufficiently large n.

To prove the result we need two lemmas, whose proofs appear after the

main proof. The first lemma states that the sample cost vector hn converges

in the infinite limit to h. The second lemma states that near the feasible

solutions of gTα “ 1, there are feasible solutions of finite sample constraint

gTnα “ 1 for large n, and also vice versa.

Lemma 7 Assume the basis kjpxq for the reweighing function wpxq are bounded

above by Bk, and the loss function l bounded above by Bl. We then have

Prp}hn ´ h}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

Lemma 8 Suppose ε, δ ą 0 are given and let α˚ P A8. Then there exists

m P N such that, for all n ě m, with probability at least 1 ´ δ, we can find

αn P An such that

}α˚ ´αn} ď ε

Similarly, suppose ε, δ ą 0 are given. Then there exists m P N such that

for all n ě m, for any αn P An, with probability at least 1 ´ δ, we can find

α˚ P A8 such that

}αn ´α
˚
} ď ε.

Proof of Main Theorem

By Lemma 7, there exists n1 P N such that for all n ě n1, }h´hn} ď ε{p2Bαq

with probability 1´ δ{3. [condition 1]

Let hTα˚ “ maxαPA8 h
Tα. By Lemma 8, there exists n2 P N such that for

all n ě n2, we can find α1n P An with }α˚ ´ α1n} ď ε{p2}h}q with probability

1´ δ{3 [condition 2]. Condition 1 and 2 give
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max
αPA8

hTα´ max
αPAn

hTnα ď h
Tα˚ ´ hTnα

1
n

“ hTα˚ ´ hTα1n ` h
Tα1n ´ h

T
nα

1
n

“ hT pα˚ ´α1nq ` ph´ hnq
Tα1n

ď }h}}α˚ ´α1n} ` }h´ hn}}α
1
n}

ď }h}
ε

2}h}
`

ε

2Bα

Bα

“ ε

Similarly, let hTnα
˚
n “ maxαPAn h

T
nα. By Lemma 8, there exists n3 P N

such that for each n ě n3, we can find α1 P A8 with }α˚n ´α
1} ď ε{2}h} with

probability 1´ δ{3 [condition 3]. Condition 1 and 3 give

max
αPAn

hTnα´ max
αPA8

hTα ď hTnα
˚
n ´ h

Tα1

ď hTnα
˚
n ´ h

Tα˚n ` h
Tα˚n ´ h

Tα1

“ phn ´ hq
Tα˚n ` h

T
pα˚n ´α

1
q

ď }hn ´ h}}α
˚
n} ` }h}}α

˚
n ´α

1
}

ď
ε

2Bα

Bα ` }h}
ε

2}h}

“ ε

Therefore when n ě maxtn1, n2, n3u, with probability at least 1 ´ δ (by

union bound), we have

|max
αPAn

hTnα´ max
αPA8

hTα| ď ε ˝

Proof of Lemma 7

By Hoeffding’s inequality, we have

Prp|phnqj ´ phqj| ą
ε

k
q ď 2 exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

By union bound, we have

Prp}hn ´ h}1 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

As }hn ´ h}2 ď }hn ´ h}1, we have

Prp}hn ´ h}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

. ˝
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Eη : gTα=1+η

E0 : gTα=1

f(η)

g(η)

A

Figure 6.1: Definition of fpηq and gpηq

Proof of Lemma 8

Using Hoeffding’s inequality and union bound (similar to the proof of Lemma 7),

we have

Prp}gn ´ g}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kk

2

˙

. (6.2)

Define

Eη “ tα P AS|gTα “ 1` ηu

for η P R. This is the set of subspace parallel to gTα “ 1 (E0). Define also

fpηq the maximum distance of any points in Eη to E0, and gpηq the maximum

distance of any points in E0 to Eη (see Fig. 6.1), i.e.,

fpηq “ max
αPEη

min
α1PE0

}α´α1},

gpηq “ max
αPE0

min
α1PEη

}α´α1}.

Suppose ε, δ ą 0 are given. Using Lemma 9 below, fpηq Ñ 0 as η Ñ 0, so

we can find η0 ą 0 such that fpηq ă ε whenever |η| ă η0. From Eq. (6.2), we

can find m P N such that for all n ě m, }gn ´ g} ă η0{Bα with probability at

least 1´ δ.

Let αn P An for n ě m, we have

|gTαn ´ 1| “ |gTαn ´ g
T
nαn| ď }g ´ gn}}αn} ď

η0

Bα

Bα “ η0 (6.3)

with probability at least 1 ´ δ. Hence the subspace gTnα “ 1, i.e. An, lies

between Eη0 and E´η0 with probability 1´ δ. Specifically for a fixed αn P An,

it lies on Eη for some η with |η| ă η0.
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E0

Eη0

gT
nα = 1

< ε

α∗

αn

Figure 6.2: Illustration for proof of Lemma 8

Therefore

min
α1PE0

}αn ´α
1
} ď max

αPEη
min
α1PE0

}α´α1}

“ fpηq ď ε

with probability 1´ δ.

For the second part, let α˚ P A8p“ E0q, and ε, δ ą 0 be given. Using

Lemma 9 below, gpηq Ñ 0 as η Ñ 0, so we can find η0 ą 0 such that gpηq ă ε

whenever |η| ă η0. By Eq. (6.3) above we can find m P N such that An lies

entirely between E´η0 and Eη0 with probability at least 1´ δ. By definition

min
α1PEη0

}α˚ ´α1} ď gpη0q ď ε.

Let αη0 be a point on Eη0 minimizing the distance to α˚, then the line joining

αη0 and α˚ has to intersect with the subspace gTnα “ 1 at some αn (see

Fig. 6.2). This holds for all n ě m and we have }αn ´ α
˚} ď ε. The same

argument applies to the case when gTnα “ 1 lies between E0 and E´η0 . Thus

min
α1PAn

}α1 ´α˚} ď ε

for all n ě m, with probability at least 1´ δ.

Lemma 9

fpηq “ max
αPEη

min
α1PE0

}α´α1}

gpηq “ max
αPE0

min
α1PEη

}α´α1}

converge to 0 as η Ñ 0.
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Proof. We want to show fpηq Ñ 0 as η Ñ 0. If not, then there exists

f0 ą 0 and a sequence tηtu
8
t“1 with ηt Ñ 0, such that fpηtq ě f0 infinitely

often. We collect all those indices tn such that fpηtnq ě f0, and form a new

sequence µn “ ηtn . Let

αn “ argmax
αPEµn

min
α1PE0

}α´α1}.

As αn lies in a compact set AS, there exist a convergent subsequence, say

βn. Let the subsequence βn converge to some β, and by continuity we know

gTβ “ 1, so β P E0.

The function

spαq “ min
α1PE0

}α´α1}

is a continuous function in α (minimum of a bivariate continuous function

over a compact set).

We have spβnq ě f0 and βn Ñ β, so spβnq converges to some f 10 ě f0 as

s is continuous. However, since β P E0, we have spβq “ 0. This creates a

contradiction and therefore fpηq Ñ 0.

Next we want to show gpηq Ñ 0 as η Ñ 0. Given γ ą 0, as E0 is compact,

we can cover E0 with at most k balls of radius γ{2 for some finite k. We label

the centres of these balls as αj, 1 ď j ď k.

We consider the case where η ą 0. The case for η ă 0 is symmetric. By

the assumption of the theorem the set tα P AS | gTα “ 1u is non-empty in

the relative interior of AS. So there exists η ą 0 such that Eη is non-empty.

Without loss of generality assume E1 non-empty (can rescale with any positive

constant other than 1), define

dj “ min
α1PE1

}αj ´α
1
}.

By convexity (see Fig. 6.3), for 0 ă η ď 1,

min
α1PEη

}αj ´α
1
} ď η min

α1PE1

}αj ´α
1
} “ ηdj
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A

E1

E0

Eη

d1
d2

αj

d1 = min
α′∈E1

‖αj − α′‖

d2 ≥ min
α′∈Eη

‖αj − α′‖
d2 = ηd1

Figure 6.3: Illustration for the proof of Lemma 9

For any α P E0, it lies within one of the k balls, say αj. We have

min
α1PEη

}α´α1} ď min
α1PEη

r}α´αj} ` }αj ´α
1
}s

“ }α´αj} ` min
α1PEη

}αj ´α
1
}

ď
γ

2
` ηdj

Since the k balls altogether cover E0, for all α P E0, when η ď γ
2 max1ďjďk dj

,

min
α1PEη

}α´α1} ď
γ

2
` η max

1ďjďk
dj

ď
γ

2
`
γ

2
“ γ

Hence

max
αPE0

min
α1PEη

}α´α1} ď γ

whenever η ď minp1, γ{p2 max1ďjďk djqq. The argument for η ă 0 is symmet-

ric. Therefore gpηq Ñ 0 as η Ñ 0.

Proof of Theorem 4

Proof. We use hpθq from Eq. (6.1) to denote the cost vector for expected

adversarial loss, with the extra argument θ to emphasize its dependence on θ.

As θ: is a dominant strategy, we have

hpθ:qTα ď hpsθqTα

ñphpθ:q ´ hpsθqqTα ď 0 (6.4)

for all α P A8. By definition sθ minimizes the adversarial loss for the constant

unweighed strategy α0 of the adversary, so we have

phpθ:q ´ hpsθqqTα0 “ 0. (6.5)
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Let α1 P A8. As α0 is in the relative interior of A8 and A8 is convex, there

exists ε ą 0 such that

α2 “ α1 ` p1` εqpα0 ´α
1
q

is in A8. Now by Eq. (6.4) and (6.5), we have three colinear points such that

phpθ:q ´ hpsθqqTα1 ď 0

phpθ:q ´ hpsθqqTα0 “ 0

phpθ:q ´ hpsθqqTα2 ď 0.

So phpθ:q ´ hpsθqqTα must be identically 0 on the interval rα1,α2s, as it is a

linear function in α.

This shows hpsθqTα1 “ hpθ:qTα1. Asα1 is arbitrary, the unweighed solution

sθ is also a dominant strategy for the learner Θ.

Proof of Theorem 6

Proof. By definition of pointwise dominator

ż

lpfθ‹pxq, yqdF py | xq ´

ż

lpfθ1pxq, yqdF py | xq ď 0

for all θ1 P Θ. Given any bounded adversarial set A, any α P A, wαpxq is a

non-negative function of x. Therefore integrating with respect to dF pxq gives

ż

wαpxq

„
ż

lpfθ‹pxq, yqdF py | xq ´

ż

lpfθ1pxq, yqdF py | xq



dF pxq ď 0

ż

wαpxqlpfθ‹pxq, yqdF px, yq ď

ż

wαpxqlpfθ1pxq, yqdF px, yq.

Thus θ‹ is also a dominant strategy against the adversarial set A.
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