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Abstract

Neural approaches to sequence labeling often use a Conditional Random Field

(CRF) to model their output dependencies, while Recurrent Neural Networks

(RNN) are used for the same purpose in other tasks. We set out to establish

RNNs as an attractive alternative to CRFs for sequence labeling. To do so, we

address one of the RNN’s most prominent shortcomings, the fact that it is not

exposed to its own errors with the maximum-likelihood training. We frame

the prediction of the output sequence as a sequential decision-making process,

where the RNN takes a series of actions without being conditioned on the

ground-truth labels. We then train the network with an output-adjusted actor-

critic algorithm (AC-RNN). We comprehensively compare this strategy with

maximum-likelihood training for both RNNs and CRFs on three structured-

output tasks. The proposed AC-RNN efficiently matches the performance of

the CRF on NER and CCG tagging, and outperforms it on machine transliter-

ation. We show that the output-adjusted actor-critic training is significantly

better than other techniques for addressing RNN’s exposure bias, such as

Scheduled Sampling, and Self-Critical policy training.
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Chapter 1

Introduction

The language can be viewed as a sequence of written or spoken tokens. An

English sentence is a left-to-right sequence of words/punctuations. Similarly,

words in Persian are right-to-left sequence of characters. Accordingly, in many

of the Natural Language Processing (NLP) tasks, we predict an output se-

quence Y = (y1, y2, y3, ..., yl′) given the input sequence X = (x1, x2, x3, ..., xl),

where there is a structure among both input and output tokens. As an exam-

ple, for translating an English sentence into German, we should generate an

output sequence of German words, which convey the same English side mean-

ing following German grammar. This structured prediction problem also arises

in other domains such as image segmentation in computer vision (Nowozin and

Lampert, 2011) or Gene prediction in bioinformatics (Culotta et al., 2005). In

NLP, we identify three versions for this problem:

• Sequence Labeling:

The lengths of input and output sequences are the same (l = l′), and

there is a one-to-one monotonic mapping between each xi and yi. In this

version, we label each token xi with one of the possible output tags. As

an example, in the Named Entity Recognition (NER) task, for the input

sentence ‘I study at the University of Alberta’, we assign one predefined

type (‘Organization’, ‘Person’, etc.) to each input token. The multi-

word entity ‘University of Alberta’ is tagged as an organization resulting

in the output sequence ‘- - - - Org Org Org’.

We can also consider the task of Combinatory Categorical Grammar
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Figure 1.1: CCG supertagging of the sentence ‘AirCanada Serves Edmonton’.

Figure 1.2: Transliteration of the name ‘Osheen’ into Persian.

(CCG) supertagging (Clark and Curran, 2004), where we label each word

in a sentence with one of 1,284 morphosyntactic categories from CCG-

bank (Hockenmaier and Steedman, 2007). The example shown in Figure

1.1 illustrates that the given supertag to the verb ‘Serves’ contains this

information that the verb is preceded by one noun phrase on the left

(denoted by backward slash), and is followed by another noun phrase on

the right (denoted by forward slash).

• Sequence Transduction:

The lengths of input and output sequences might not match (l 6= l′),

and there are many-to-many mappings between input and output to-

kens, still these mappings are monotonically aligned. As a character-

level transduction task, we can consider transliteration where the goal

is to convert a word from a source to a target script on the basis of the

word’s pronunciation (Knight and Graehl, 1998). The Figure 1.2 illus-

trates the alignments for the transliteration of the name ‘Osheen’ into

Persian where there are 1-2, 2-1, and 1-1 mappings between the English

and Persian letters.

• General Sequence-to-Sequence:

In a general case, the translation task has input and output sequences

of different lengths, and there are non-monotonic alignments (with re-

2



Figure 1.3: Translation of the sentence ‘Peter sees the house now’ into Ger-
man.

ordering) between the source and target tokens (Figure 1.3). An English

sentence with the grammar rule ‘subject + verb + object + adverb’ will

not necessarily keep the same order of its parts-of-speeches once trans-

lated into a different language (e.g. ‘adverb + verb + subject + object’

in German).

Throughout this work, we only focus on sequence labeling and transduction

tasks. We investigate statistical methods for modelling the discriminative

distribution P (Y |X). Given an input X, during the inference phase, we search

for the optimal output Y that maximizes P (Y |X).

In order to predict the output sequence Y given the input X, we should

capture two types of dependencies. First, we need to capture the context-

dependent relations among input tokens. This goal was previously achieved

with hand-engineered features defined for a bag of words or characters ap-

peared together in the sentence. Recently, deep neural architectures are dom-

inant for this purpose, especially Recurrent Neural Networks (RNN) (Good-

fellow et al., 2016) which have been widely used as the feature representation

layer across all NLP tasks, including NER (Huang et al., 2015), CCG supertag-

ging (Kadari et al., 2017; Wu et al., 2017; Lewis et al., 2016; Xu, 2016; Vaswani

et al., 2016), transliteration (Jadidinejad, 2016; Rosca and Breuel, 2016), and

machine translation (Sutskever et al., 2014).

The second type of dependencies is among the output tokens. The Condi-

tional Random Field (CRF) (Lafferty et al., 2001) is a popular probabilistic

model to capture these output dependencies. It has been widely used in se-

quence labeling models with hand-engineered features (Finkel et al., 2005;
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Ratinov and Roth, 2009), as well as in recent models with neural feature rep-

resentations (Huang et al., 2015; Chiu and Nichols, 2016; Lample et al., 2016).

The CRF has been less effective in transduction and translation tasks mainly

due to its inability to generate an output sequence of a different length from its

input, and its costly computation in tasks with large output vocabularies. Ac-

cordingly, recent transliteration and translation models employ another RNN

over the output sequence to capture output dependencies (Grundkiewicz and

Heafield, 2018; Jadidinejad, 2016; Rosca and Breuel, 2016; Luong et al., 2015;

Sutskever et al., 2014). This RNN is referred to as a decoder RNN, and the

RNN-based representation layer is referred to as encoder. The encoder-decoder

RNNs have been used in various NLP tasks, such as grammatical error correc-

tion (Yuan and Briscoe, 2016), sentence summarization (Rennie et al., 2017)

or dialogue generation (Li et al., 2017). Still, all recent works on sequence

labeling use CRF to model output dependencies (Moon et al., 2018; Xu et al.,

2017; Strubell et al., 2017; Yang et al., 2016; Bharadwaj et al., 2016; Kuru

et al., 2016; Gillick et al., 2016).

1.1 Motivation

A general approach is needed to capture output dependencies for various struc-

tured prediction tasks in NLP. In this dissertation, we set out to establish the

decoder RNN as an attractive alternative to the CRF in order to provide

such a general method. Using a decoder RNN instead of a CRF has several

potential advantages, such as simplified implementation, tracking longer de-

pendencies, and allowing for larger output vocabularies. Unifying methods for

different NLP tasks would simplify multitask learning, which is necessary for

real NLP-oriented applications (e.g. information retrieval).

1.2 Challenges

The CRF is an undirected Random field which defines a sequence-level score

for each possible output sequence. It then globally normalizes these scores to

form the distribution P (Y |X) (details will be discussed in section 3.3). Al-
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ternatively, the decoder RNN (section 3.4) is a left-to-right directed Bayesian

network, which is trained with token-level locally-normalized objectives. Shift-

ing from the CRF’s sequence-level training objective to the decoder RNN’s

sequence of token-level objectives may lead to suboptimal performance due to

exposure bias. Exposure bias stems from the token-level maximum-likelihood

objective typically used in RNN training, which does not expose the model to

its own errors (Bengio et al., 2015; Ranzato et al., 2016; Wiseman and Rush,

2016). RNNs are typically conditioned on ground-truth labels during training,

while at test time, the model is conditioned on its own predictions, creating a

train-test mismatch. As sequence-level models, CRFs are immune to exposure

bias.

1.3 Objectives

In this work, we will propose an effective training strategy to counter RNN’s

exposure-bias problem. To do so, we will frame the prediction of the output

sequence as a sequential decision-making process, where the decoder RNN

takes a series of actions without being conditioned on the ground-truth labels.

We will employ an actor-critic reinforcement learning objective (Konda and

Tsitsiklis, 2003; Mnih et al., 2016) to train the model using the binary rewards

defined for each action. We will introduce the supervision of the gold labels

into this objective through an output-adjusted training. Overall, the new

training procedure will completely expose the RNN to its own errors.

We will conduct comprehensive analysis comparing against CRF under con-

trolled conditions using a shared implementation. We will experiment on three

structured output tasks: NER, CCG supertagging, and transliteration. More-

over, we will compare our proposed training strategy with previous methods

suggested for addressing exposure bias. We will empirically demonstrate that

our training method is significantly better than Scheduled Sampling (Bengio

et al., 2015). We will also demonstrate that our approach is more suitable for

sequence labeling and transduction tasks than other reinforcement learning

methods such as Self-Critical method of Rennie et al. (2017).
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1.4 Outline

This work is organized as follows. We first discuss the preliminary background

information on Language Models and Recurrent Neural Networks in Chapter

2. In Chapter 3, we investigate the current state-of-the-art feature representa-

tion layers for each task, and discuss CRF and decoder RNNs in detail. The

Chapter 4 introduces our output-adjusted actor-critic algorithm. Our com-

prehensive experiments are presented in Chapter 5. We then provide future

directions in Chapter 6, and summarize this dissertation in Chapter 7.

6



Chapter 2

Sequence Modelling

In this chapter, we provide the background information needed to design our

discriminative models to compute P (Y |X). We first start with the concept

of Language Modelling (LM), which assigns a probability to a sentence repre-

senting how natural that sentence is in a specific language. We briefly discuss

n-gram, and feed-forward neural LMs. We then review recent techniques for

mapping words and characters into real-valued feature vectors. Finally, we

discuss recurrent neural LMs.

2.1 N-gram and Feed-Forward LM

There is no doubt that language evolves over time. Thousands of different

languages are spoken around the world. It is infeasible to model a language by

developing rules for every usage, and updating them for every newly emerged

phrase. What does make ‘Sup, yo’ a grammatical English phrase compared

to ‘Soup, yo’? The former can be supported by collecting thousand dialogues,

whereas the latter is a bizarre usage of the food ‘soup’ with the slang ‘yo’

(hello).

The statistical language modelling aims at assigning the probability P (X)

to the sentence X, which represents how natural the sentence X is in a spe-

cific language. If we collect 100 English phrases where we observe the phrase

‘Sup, yo’ once, and ‘What’s up’ 5 times, we can estimate P (‘Sup, yo’)=0.01

and P (‘What’s up’)=0.05. The phrase ‘Soup, yo’ gets a zero probability as

it never appears in our corpus. Still, we cannot learn the distribution P
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for every combination through counting. Let assume X consists of l tokens,

X = (x1, x2, x3, ..., xl), and we have 100,000 types (i.e. distinct tokens) in

total. There would be 100, 000l combinations of these types. The unseen com-

binations cannot always have a zero probability. The phrase ‘Yo, what’s up?’

never appears in our collected corpus, but it is grammatically correct.

The n-gram LMs (Jurafsky and Martin, 2000) learn the distribution P by

applying the following assumptions:

• Employing the multiplication rule to learn the probability of each token
conditioned on its left context:
P (X = x1, x2, x3, ..., xl)

.
= P (x1)×P (x2|x1)×P (x3|x1, x2)×...×P (xl|x1, ..., xl−1)

• Considering only the previous n− 1 tokens:
P (xt|x1, ..., xt−1) ≈ P (xt|xt−n+1, ..., xt−1)

By counting xtt−n+1 and xt−1t−n+1 in a corpus, P (xt|xt−1t−n+1) is estimated with
Count(xtt−n+1)

Count(xt−1
t−n+1)

. In practice, n < 7 as many of the high-order n-grams are rarely

present in any corpora. The counting approach treats two semantically-similar

types (e.g. Queen & King) as completely different concepts. It is desirable

to generalize from the phrases ‘Queen was in charge’ and ‘The King is re-

sponsible’ to the sentence ‘The Queen was responsible’. The n-gram LMs rely

on smoothing techniques (Jurafsky and Martin, 2000) to assign a non-zero

probability to the unseen bigram ‘was responsible’.

In a seminal work, Bengio et al. (2003) represent each token as a real-valued

vector in Rn, and jointly learn these vectors along with the distribution P

using a feed-forward neural network, which could successfully surpass n-gram

LMs. As an example, the proposed network predicts the token ‘responsible’

conditioned on the trigram ‘The King is’:

f = concat{em(the), em(king), em(is)}

h = tanh(W × f + b1)

s = U × h+ b2

p(responsible|the, king, is) =
esresponsible∑
word e

sword

(2.1)

The input of the network is the concatenated vectors of the tokens ‘the’,

‘king’, and ‘is’ extracted from a word-embedding matrix M (we assume the

8



function em looks up the corresponding column in the embedding matrix M).

To train this network, the probability of ‘responsible’ given its left context

is maximized through back-propagating the cross entropy objective to the

parameters W , U , b1, b2, and the embedding matrix M (the number of labels

is equal to the vocabulary size). The vectors for two semantically-similar

concepts can now potentially be close in Rn, and despite n-gram LMs, the

neural LM can generalize to other similar concepts (i.e. ‘Queen’) trained only

with the previously seen concept ‘King’ (Bengio et al., 2003). Still, the n-gram

and feed-forward LMs cannot capture long-range dependencies in a sentence

or paragraph since both are limited to short window-based contexts (n < 7).

2.2 Embeddings

The word embeddings are created by mapping words into limited-in-dimension

vectors. Word2vec1, introduced by Mikolov et al. (2013), uses a feed-forward

neural network to learn these vectors. In the Skip-Gram architecture of

word2vec, the network is trained on a large corpus in order to predict the

surrounding words of each token. In the sentence ‘The King is responsible’

assuming the token ‘King’ is the centre word, and we have a context window

of size 2, the Skip-Gram is trained according to the following feed-forward

network using the training instances (‘King’, ‘the’), (‘King’, ‘is’), and (‘King’,

‘responsible’):
f = em(king)

s = U × f + b1

p(responsible|king) =
esresponsible∑
word e

sword

(2.2)

In the network 2.2, d is the length of the input word vector f , and the

output matrix U has v rows, and d columns, where v is the vocabulary size.

If the word j appears in the context of the input word i, by maximizing the

softmax function above, we maximize the dot product of the vectors em(i)

and Uj,.. At the end of training, two words, which co-occur frequently in the

language, will be close points in the vector space.

1https://code.google.com/archive/p/word2vec/
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Figure 2.1: The semantic relations captured with Glove word embeddings for
concepts around man-woman.

The advent of Graphical Processing Units (GPU) for fast training neural

networks on billion words has paved the way for the derived word embeddings

to be a helpful prior knowledge for NLP tasks. Similarly, Pennington et al.

(2014) introduce Glove2 embeddings which uses a log-bilinear regression model

combining the context prediction approach of word2vec with co-occurrence

statistics of two arbitrary words. The Glove is trained with the objective

J =
∑v

i,j=1 g(Fij)(em(i) ·Uj,. + bi + b′j − logFij), where Fij is the co-occurrence

frequency of the words j and i, bi and b′j are the corresponding scaler biases,

and g is an empirically designed function smoothing too rare or too frequent

co-occurrences. The Figure 2.1 illustrates the captured semantic relations for

types related to man-woman. We can simply re-construct the vector of ‘Queen’

from the vectors of ‘Man’, ‘Woman’, and ‘King’. In this work, we will use these

pre-trained Glove embeddings in our experiments.

Several NLP tasks are operating on low-level types such as on charac-

2https://nlp.stanford.edu/projects/glove/
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ters (e.g. ‘s’ and ‘h’) in transliteration, or on phonemes (e.g. /S/ sound of

‘sh’) in speech recognition. The aforementioned approaches for learning word

embeddings can also be applied to build character embeddings, however, it

is sufficient to initialize character vectors randomly, and jointly learn them

within the NLP task as many of the alphabets have less than hundred letters.

It is still arguable that a single vector representation for each type cannot

model the full semantic and grammatical regularities of language. There is

ongoing research to include morphology information (e.g. ‘writing’ compared

to ‘wrote’) into word embeddings (Nicolai et al., 2015; Bojanowski et al., 2017),

and to differentiate embeddings of polysemous words (e.g. bank as the money

institution compared to the bank of river) (Arora et al., 2016).

2.3 Recurrent Neural LM

The written language can be viewed as a sequence of tokens. There are typi-

cally dependencies among these tokens. As an example, in the sentences ‘The

King was responsible himself’, and ‘Queen is in charge herself’, the reflex-

ive pronouns (‘himself’ and ‘herself’) grammatically depend on the gender of

the subjects. The n-gram and feed-forward neural LMs both capture these

dependencies by creating a context window around each token. However,

window-based approaches fail to model long-range dependencies, as for the

‘Queen-herself’ dependency of the sentence ‘The Queen, who criticized the

King publicly on social media, was in fact responsible herself for the decision’.

The Recurrent Neural Network (RNN) makes it possible to model these

long-range dependencies. The RNN adds a connection that references the

previous hidden state ht−1 when calculating the hidden state of the current

time step t, recursively defined as RNN(x, ht−1)
.
= tanh(W×x+Q×ht−1+b1).

The matrices W and Q are the corresponding weights for the input x and the

previous hidden state ht−1. The RNN-based language model for the input
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sentence X = (x1, x2, x3, ..., xl) can be written in equations as:

ht = RNN(em(xt−1), ht−1)

s = U × ht + b2

p(xt|x1, x2, ..., xt−1) =
esxt∑

word e
sword

(2.3)

The ability to pass information across an arbitrary number of consecutive time

steps is the key strength of RNN-based LMs, which allows them to handle long-

distance dependencies, and outperform n-gram and feed-forward LMs (Mikolov

et al., 2010).

There is still a major issue in training the vanilla RNN model described

above. It has been demonstrated that the gradient of the RNN’s loss computed

at each step, which back-propagates through all previous time steps, can di-

minish to zero, or explode exponentially (Pascanu et al., 2012). To prevent the

exploding effect, the gradients are clipped according to a maximum norm. To

resolve the vanishing gradient issue, and make a recurrent network remember

longer steps, Chung et al. (2014) introduce Gated Recurrent Units (GRU) and

compare it with Long Short-Term Memory (LSTM) networks introduced by

Hochreiter and Schmidhuber (1997). Recently, the LSTM network has been

widely used in various NLP tasks, which employs several internal gates to aug-

ment/clear its encoded information from the input sequence. The following

equations summarize the computation of LSTM(x, ht−1):

it = sigmoid(Wi × x+Qi × ht−1 + bi)

ft = sigmoid(Wf × x+Qf × ht−1 + bf )

ot = sigmoid(Wo × x+Qo × ht−1 + bo)

nt = tanh(Wn × x+Qn × ht−1 + bn)

ht = ot · tanh(ct) ct = ft · ct−1 + it · nt

(2.4)

The it is the input gate rejecting or accepting the new memory nt, and

the forget vector ft can clear the buffered memory ct−1. The output vector

ot controls the emission of ct as the output state ht. The LSTM network

is a dynamical system which creates shortcut paths for the gradients to be

back-propagated to the earlier steps, so it allows the network to capture long-

range dependencies. Despite the vanilla RNN which only multiplies the hidden

12



state to a matrix, the LSTM adds the new information to its buffer. This

addition effectively creates these shortcut paths that bypass multiple temporal

steps, and allow the error to be back-propagated without too quickly vanishing.

Still, the LSTM can have exploding gradients (further details are provided by

Hochreiter and Schmidhuber (1997) and Chung et al. (2014)).
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Chapter 3

Conditional Sequence Modelling

In this chapter, we describe our techniques for mapping the input sequence

X = (x1, x2, x3, ..., xl) into the output sequence Y = (y1, y2, y3, ..., yl′) where

each yt is an output token. We first introduce the state-of-the-art models

for transforming (encoding) the input X into a sequence of hidden vectors

H = (h1, h2, ..., hl). We then investigate the following three discriminative

decoding techniques for predicting the output sequence Y given H: Indepen-

dent Prediction, Linear-Chain Conditional Random Fields, and decoder RNNs.

We will study each of these methods in detail at both training and inference

phases. The distribution P (Y |X) formed by these methods is referred to as a

conditional language model.

3.1 Encoders

Following Huang et al. (2015), the encoder of our sequence labeler employs a

bi-directional RNN over the tokens in the sequence X. The bi-directional RNN

transforms context-independent token representations into representations of

tokens-in-context, allowing each position to potentially encode information

from the entire input sequence (Figure 3.1). The hidden-dense layer applies a

linear affine transformation to cut half the dimensions of its input, and then

passes the result through a tanh activation function.

For sequence labeling, it has been shown that the prefix-suffix information

of the words can be extracted using another character-level model, whether

using RNNs (Lample et al., 2016) or Convolutional Neural Networks (Ma and
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Figure 3.1: Time-unfolded encoder for labeling the sentence ‘I went to the
Grand Mall’. F retrieves the computed feature vectors. The symbol ‘+’ de-
notes the concatenation of the forward (left-to-right) and backward (right-to-
left) outputs. The LSTM block receives the input & previous state to generate
a new state.

Figure 3.2: Sub-encoder for building the feature vector of ‘Mall’ used in the
encoder of Figure 3.1. em retrieves word or character embeddings.
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Figure 3.3: Time-unfolded encoder for transliterating ‘Osheen’. em retrieves
character vector representations.

Hovy, 2016). This extra information is helpful for out-of-vocabulary words,

and resemble word-shape patterns previously used in feature-based methods

(Finkel et al., 2005). In the NER task, the model should learn this knowledge

that several person names end with the suffix ‘ie’ (e.g. Ellie, Natalie, Sophie,

Charlie, etc.) Therefore, we follow Lample et al. (2016), and build our context-

independent word representation by combining a word-embedding matrix1

with the outputs of another bi-directional RNN applied to each word’s charac-

ters (Figure 3.2). The final states of the forward and backward character-level

RNNs are concatenated to the word’s embedding, and then passed through a

dropout layer2. We then concatenate capitalization pattern indicators to these

feature vectors (e.g. first letter is capital or all letters are capital).

Following Jadidinejad (2016), and Rosca and Breuel (2016), for translit-

eration, where we operate exclusively on the character level, we only apply a

bi-directional RNN on the character representations, which are provided by a

randomly initialized character-embedding matrix (Figure 3.3).

1The word embeddings are initialized using embeddings pre-trained on a large corpus.
2Masking out some dimensions during training for regularization (Srivastava et al., 2014).
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Figure 3.4: The Independent Prediction.

3.2 Independent Prediction (INDP)

Given an input X, we look for an output sequence Y = (y1, y2, ..., yl) where

each yt is an output token. In the encoder, we transform the input X into

a sequence of hidden vectors H = (h1, h2, ..., hl) where each ht observes all

tokens in X. Given these vectors, the INDP method does not account for

output dependencies at all. Instead, it independently predicts the output at

time t by mapping ht into the probability distribution pINDP(yt|ht) using a

softmax layer:
s = U × ht + b

pINDP(yt|ht) =
esyt∑

label e
slabel

(3.1)

This results in a sequence-level probability of P (Y |X) =
∏

t pINDP(yt|ht). The

Figure 3.4 illustrates the probabilistic graphical representation of the INDP.

During training, we maximize pINDP(yt|ht) for the gold label yt. For the infer-

ence phase, we greedily select the output token with the highest probability

at each step: ŷt = argmaxlabel pINDP(label|ht). The INDP method is not ap-

plicable to the transduction task where the input and output sequences have

different lengths.

3.3 Conditional Random Field (CRF)

In sequence labeling, there are typically dependencies between the output

tokens. The most prominent and widely used approach to track these depen-

dencies is the linear-chain CRF (Lafferty et al., 2001), which uses dynamic

17



Figure 3.5: The Linear-Chain CRF.

Algorithm 1 Forward Algorithm

· Given: v: total number of labels, l: length of sequence

· Input: E(labeli, labelj, t), and transition matrix T

· Initialize forward matrix F [l, v]

· For i=1 to v:

· F [1, i] = exp{E(label0, labeli, 1)}

· For t=2 to l:

· For i=1 to v:

· F [t, i] =
∑v

j=1 F [t− 1, j]× exp{E(labelj, labeli, t)}

· For i=1 to v:

· F [l, i] = F [l, i]× exp{Tlabeli,labell+1
}

· Z =
∑v

i=1 F [l, i]

programming over an undirected graphical model (Figure 3.5) to maintain

a well-defined probability distribution over the output sequences, effectively

modelling P (Y |X) = PCRF(Y |H), where PCRF hides first-order Markov depen-

dencies over Y . The CRF can be used as a node over the LSTM-based encoder,

while still allowing the system to train end-to-end (Huang et al., 2015).

Let ψ(label1, ..., labell) be the score (energy) for an output sequence of

length l, and E(labelt−1, labelt, t) the scores of independent prediction of labelt,
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and its transition from labelt−1, we then have:

ψ(labell1) =

[
l∑

t=1

E(labelt−1, labelt, t)

]
+ Tlabell,labell+1

E(labeli, labelj, t) = Tlabeli,labelj + St,labelj

(3.2)

The label0 and labell+1 are the special start and end symbols. The square

matrix T of size v+2 stores the transition score for two adjacent labels, where

v denotes the total number of labels. The matrix S of size l × v keeps the

emission scores at each step, where the row St = U × ht + b. We define the

distribution PCRF(Y |H) = exp{ψ(y1,...,yl)}
Z

, where Z =
∑

labell1
exp{ψ(labell1)} is

our normalization constant enumerating over all possible output sequences.

The partition function Z can be efficiently computed in a linear-chain CRF

using the Forward algorithm shown in Algorithm 1, where the array cell F [t, i]

stores the sum of exponentiated scores for different paths that predict the

label i at time step t. Then, we have Z =
∑v

i=1 F [l, i]. During training, the

loss -logPCRF(Y |H) is back-propagated to the matrix T , and to the encoder

through matrix S. For inference, CRF employs the Viterbi algorithm shown

in Algorithm 2 to predict the best output sequence Ŷ that maximizes PCRF.

As CRF operates over a neural encoder, it is necessary to train the net-

work end-to-end processing the mini-batches of input instances in parallel. It

is notable that the Forward algorithm for a single input sequence has a time

complexity of θ(l × v2), and a memory complexity of θ(v2) (because of matrix

T , and l � v). With the recent computing resources (GPU cards), we can

assume that the linear operations over matrices can be computed in a constant

time. As a result, it is possible to compute the algorithm’s recursion step with

a single loop over the input sequence in the time complexity of θ(l), and mem-

ory complexity of θ(v2). With the batch-processing of input sequences, the

time complexity can remain θ(l), however the linear operations over matrices

will require the memory complexity of θ(batch size × v2), due to the matrix

broadcasting required for the summation of the matrices T and S.

In addition, the linear-chain CRF is not applicable to transduction tasks.

In our experiments, in order to allow CRF to generate output of a different

length from its input, we pad both sequences with extra end symbols up to a
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Algorithm 2 Viterbi Algorithm

· Given: v: total number of labels, l: length of sequence

· Input: E(labeli, labelj, t), and transition matrix T

· Initialize score matrix V [l, v]

· Initialize path back-pointer array BP [l, v]

· For i=1 to v:

· V [1, i] = exp{E(label0, labeli, 1)}
· BP [1, i] = label0

· For t=2 to l:

· For i=1 to v:

· V [t, i] = maxvj=1 V [t− 1, j]× exp{E(labelj, labeli, t)}
· maxj = argmaxvj=1 V [t− 1, j]× exp{E(labelj, labeli, t)}
· BP [t, i] = labelmaxj

· For i=1 to v:

· V [l, i] = V [l, i]× exp{Tlabeli,labell+1
}

· maxi = argmaxvi=1 V [l, i]

· bestLastLabel = labelmaxi
· Backtrace best labels by following BP starting from bestLastLabel

fixed maximum length, and let CRF decode until the end of the padded source

sequence. It controls its target length by outputting padding tokens.

3.4 Decoder RNN

An alternative technique for predicting the output sequence Y is to use a

decoder RNN on top of the encoder, as is typically done in Neural Machine

Translation (NMT) (Sutskever et al., 2014), and has been done for CCG su-

pertagging (Vaswani et al., 2016). The decoder RNN generates output to-

kens incrementally from left-to-right where it forms a distribution for each

step based on the generated tokens of the previous steps, and the relevant

source-side tokens. Let dt be the recurrent decoder state, summarizing the

output sequence up to time t, and let ct be the context vector that summa-

rizes the relevant tokens of the input X for time t. For sequence labeling,
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the source-to-target alignment is trivial, and ct is provided directly by the

encoder: ct = ht. For transliteration, where the input and output sequence

lengths do not match, similar to the standard practice in NMT, an attention

mechanism (Bahdanau et al., 2015) learns an alignment model that provides

a scalar probability αt,t′ for each target position t and source position t′, giv-

ing us the context vector ct =
∑

t′ αt,t′ht′ . The dt is then recursively defined

as: dt = RNN(dt−1, ct−1, em(yt−1)), where the previous dt−1 and ct−1 are both

inputs to the decoder RNN, and em retrieves the feature vector of the pre-

vious output token yt−1. Finally, a softmax layer is applied to the vectors

dt and ct which defines the probability distribution pRNN(yt|ct, dt), resulting

in a sequence model of: P (Y |X) =
∏

t pRNN(yt|X, yt−11 ) =
∏

t pRNN(yt|ct, dt).

The full computation of pRNN(yt|X, yt−11 ) can be summarized in the following

equations:
dt = RNN(dt−1, ct−1, em(yt−1))

score(dt, ht′) = dTt ×W ′ × ht′ 1 ≤ t′ ≤ l

αt,t′ =
escore(dt,ht′ )∑
j e

score(dt,hj)
1 ≤ t′ ≤ l

ct =
l∑

t′=1

αt,t′ht′

s = U2 × tanh(U1 × concat{ct, dt}+ b1) + b2

pRNN(yt|X, yt−11 ) =
esyt∑
ỹ e

sỹ

(3.3)

To learn the alignment model for transliteration, we use the soft-general

attention mechanism of Luong et al. (2015). The decoder RNN requires the

new parameters M ′: output embedding matrix retrieved by em, W ′: attention

matrix mapping source hidden space to decoder hidden space, U1, b1, U2, and

b2: weights and biases of the softmax layer, and RNN(): the internal weights

and biases of the RNN unit.

Similar to the INDP and CRF models, the encoder-decoder RNNs are

trained with the maximum-likelihood objective Jml(θ) =
∑

X,Y logPθ(Y |X).

For training the network, the gold-standard previous token yt−1 is always fed

into the decoder at time t (Figure 3.6). This procedure is known as Teacher

Forcing (Goodfellow et al., 2016). At test time, we use the model’s generated
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Figure 3.6: Teacher Forcing decoder RNN during maximum-likelihood training
with the gold previous token yt−1. We omit the dependency of the context
vector ct on the decoder hidden state dt.

Figure 3.7: Decoder RNN at inference phase with the perviously generated
token ~yt−1.
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output ~yt−1 (Figure 3.7). Because of this train-test mismatch, the network is

not exposed to its own errors during training, and suffers from exposure bias

(Bengio et al., 2015).

During the testing phase in the decoder RNN, we can use the greedy or

beam search to generate the output tokens. In the greedy search, at each

time step, we generate the token with the highest probability according the

formed softmax distribution. In the beam search, for each time step, we keep

a list of top b most probable sequences (b is the beam size). In the next time

step, we generate b tokens for each of the sequences already in the beam list

feeding their last generated token into the decoder RNN.3 Then, out of b × b

possible sequences, we select new top b sequences (based on the likelihood of

each sequence), and update the beam list.

3We also need to feed the corresponding previous decoder state and context vector into
the decoder RNN for each sequence in the beam list.
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Chapter 4

Solutions for Exposure Bias

Using a decoder RNN instead of a CRF has several potential advantages, such

as simplified implementation, tracking longer dependencies, and allowing for

larger output vocabularies. However, shifting from the CRF’s sequence-level

training objective to the decoder RNN’s sequence of token-level objectives may

lead to suboptimal performance due to exposure bias. We set out to establish

the decoder RNN as an attractive alternative to the CRF. In this chapter, we

first discuss all prior works applied to resolve exposure bias, and then introduce

our solution output-adjusted actor-critic training which adopts the actor-critic

reinforcement learning, and specializes it for sequence labeling.

4.1 Prior Solutions

We review the following major techniques applied to resolve exposure bias in

decoder RNNs: Scheduled Sampling, Beam-search Training, Professor Forcing,

Reinforcement Learning, and Learning to Search. To our knowledge, none of

these prior works has compared its method against CRF.

4.1.1 Scheduled Sampling (SS)

Bengio et al. (2015) introduce the notion of scheduled sampling, where the

decoder RNN is gradually exposed to its own errors. In this approach, at each

time step t with probability ε, we feed the ground-truth token yt−1 into the de-

coder RNN, otherwise we use the model’s greedily-generated token ŷt−1. The

sampling probability is annealed at every training epoch so that we use gold-
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standard inputs at the beginning of the training, but while approaching the

end, we instead condition the predictions on the model-generated inputs. We

consider this approach as one of our baselines. Although Scheduled Sampling

has been shown to outperform the Teacher Forcing maximum-likelihood ob-

jective on several sequence-to-sequence tasks (Bengio et al., 2015), it has been

demonstrated that as ε approaches zero, the model learns a biased conditional

distribution which is different than the true distribution (Huszár, 2015).

4.1.2 Beam-search Training

Wiseman and Rush (2016) employ beam search in the training phase where the

gold sequence remains at the top of the beam list at each step. In this approach,

if the gold sequence is not ranked first, the method recognizes a violation, and

its corresponding cost is back-propagated to the model’s parameters. This

method linearly increases the training time with respect to the beam size.

4.1.3 Professor Forcing

Lamb et al. (2016) introduce the Professor Forcing method based on the Gen-

erative Adversarial Networks (Goodfellow et al., 2014) to encourage the dy-

namics (parameters hidden space) of the decoder RNN to be the same during

training and testing (the discriminator is fooled accordingly), however, they

report lower results compared to the Teacher Forcing technique on shorter

sequences with length less than 100.

4.1.4 Reinforcement Learning (RL)

Reinforcement learning has been applied to structured prediction tasks (Maes

et al., 2009). One of the contributions in this dissertation is to take Maes’s

formalism of Structured Prediction Markov-Decision Process (SP-MDP), and

apply it to deep neural architectures, whereas Maes et al. (2009) only investi-

gated non-neural feature-based methods. Recently Ranzato et al. (2016) apply

the REINFORCE algorithm (Williams, 1992) to Neural Machine Translation

(NMT), to train the network with a reward derived from the BLEU score
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of each generated sequence. Bahdanau et al. (2017) apply the actor-critic

algorithm in NMT by applying a reward-reshaping approach to construct in-

termediate BLEU feedback at each step. Rennie et al. (2017) introduce a Self-

Critical (SC) training approach that does not require a critic model, which has

been shown to outperform REINFORCE in the image captioning task. This

method has also been applied to abstract summarization (Paulus et al., 2018).

The SC training is intended to represent the state-of-the-art in reinforce-

ment learning for sequence-to-sequence models with sequence-level rewards,

which will be another baseline in our experiments. The SC training samples

a token based on the probability distribution formed over all tokens at each

step, resulting in the sampled sequence Ỹ = (ỹ1, ..., ỹl′). The Ỹ is then com-

pared to the greedily-sampled sequence Ŷ = (ŷ1, ..., ŷl′). The SC defines a

sequence-level cost (∆) between the sampled sequences and the gold predic-

tion Y , optimizing Jsc =
∑

X,Y

(
∆(Ŷ , Y )−∆(Ỹ , Y )

)
× logPRNN(Ỹ |X). If the

sampled sequence Ỹ has a lower cost than the greedily-sampled sequence, the

likelihood of Ỹ will be increased.

Unlike these previous works that apply reinforcement-learning techniques

to optimize an available external metric such as ROUGE in text summariza-

tion, or BLEU in translation, giving one reward at the end of each sequence, we

demonstrate that sequence labeling tasks benefit from the binary rewards that

are available at each step. In addition, Bahdanau et al. (2017), and Paulus

et al. (2018) combine the Teacher Forcing maximum-likelihood objective with

their proposed RL objectives, which require two forward computations in the

decoder RNN, one for conditioning on the ground-truth labels, another for

the RL objective without conditioning on the ground-truth labels. In this

work, we will incorporate the supervision of the gold label into the actor-critic

algorithm itself without any extra computation. Despite Bahdanau et al.

(2017), our method employs a simpler critic architecture, where Bahdanau

et al. (2017) use separate encoder-decoder RNNs for their critic model, which

doubles the parameters of the network. Moreover, our approach will not rely

on any schedules to pre-train the critic model. We will also present the first

direct, controlled comparison between CRFs and any form of RNN.
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4.1.5 Learning to Search

The Beam-search training is a special variant of the search-based methods de-

signed for structured prediction problems (Daumé III, 2006; Daumé III et al.,

2009; Ross et al., 2011; Chang et al., 2015). The Scheduled Sampling can

also be considered as a special variant of this meta-learning approach. The

main idea behind it is to transform the structured prediction into a simpler

multi-class classification problem. To achieve this, Daumé III et al. (2009)

propose in their SEARN algorithm to train a local classifier to predict each

token sequentially, thus searching step by step in the big combinatorial space

of the structured outputs. Recently Leblond et al. (2018) apply this SEARN

algorithm to encoder-decoder RNNs (SEARNN) to resolve the exposure bias,

where it generates several output sequences for a given input, feeding gold la-

bels or the generated ones into the decoder RNN following reference or learned

policies (or a mixture of both) at different time steps. The sequence-level costs

are then defined for each of these searched outputs, and the local classifier (i.e.

decoder RNN) is trained based on these costs. The SEARNN has been shown

to perform slightly worse than the actor-critic method of Bahdanau et al.

(2017) in NMT (Leblond et al., 2018).

4.2 Our Solution Output-Adjusted Actor-Critic

Training

We frame the prediction of the output sequence as a sequential decision-making

process, where the decoder RNN takes a series of actions without being con-

ditioned on the ground-truth labels. We adopt the formalism of deterministic

Markov Decision Process (MDP) designed for Structured Prediction by Maes

et al. (2009). An SP-MDP environment is defined with four arguments S, A,

T , and r where S is the finite set of all states, A is the set of all possible

discrete actions, T : S × A → S is a transition function between states, and

r : S × A → R is the reward function. The following characteristics are also

defined in SP-MDP which are specific for sequence labeling:
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• States:

Each state St is a pair of input sequence X and the partially-generated

output sequence up to time step t: St
.
= (X, [ŷ1, ..., ŷt−1]). The start and

end states are denoted as S1
.
= (X, []) and Sl′+1

.
= (X, [ŷ1, ..., ŷl′ ]) where

l′ is the length of the complete output sequence. Therefore, for a given

input X, we have a finite number of states.

• Actions:

An action at each state is one possible output token (label). We have a

finite set of possible labels (actions) for each step.

• Transitions:

Transitions are deterministic. At state St = (X, [ŷ1, ..., ŷt−1]), we take

the action At = ŷt, and move to the state St+1 = (X, [ŷ1, ..., ŷt−1, ŷt]).

• Rewards:

We employ per-position rewards for sequence labeling and transduction

tasks. For the action At = ŷt, the per-position reward rt is +1 if the

action ŷt is the same as the gold token yt, and 0 otherwise.

In reinforcement learning, there is an actor (agent) that observes the cur-

rent state of the environment, and takes an action accordingly. It then receives

the corresponding reward for that action, and moves to the next state of the

environment (Sutton and Barto, 1998). Such actor in the SP-MDP environ-

ment will have the following trajectory of states, actions, and rewards starting

from the state S1:

S1, ŷ1, r1; S2, ŷ2, r2; S3, ... ; Sl′ , ŷl′ , rl′ ; Sl′+1

The goal of reinforcement learning is to make the actor choose actions that

will maximize its future rewards. Accordingly, in the policy gradient methods,

a stochastic policy (probability distribution) is defined over the actions. The

notation πθ(ŷt|St) denotes the policy for taking the action ŷt conditioned on

the current state of the environment St. The internal structure of the actor

is given by the parameter set θ, which is used by the policy function πθ. By
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defining the return Gt =
∑l′

i=t ri as the sum of future rewards after selecting

the action ŷt, the learning objective Jpg(θ) is to update the parameter set θ

such that the state-value function Vπθ(S1) for the start state is maximized,

where:

Jpg(θ)
.
= Vπθ(S1) (4.1)

Vπθ(St)
.
= Eπθ [Gt|St] = Eπθ [rt + rt+1 + ...+ rl′ |St] (4.2)

The policy gradient theorem (Sutton et al., 1999) recommends the following

objective for updating the parameter set θ (see Appendix A for a specific proof

in the SP-MDP environment):

∂Jpg(θ)

∂θ
= Eŷ1,...,ŷl′∼πθ

[
l′∑
t=1

∂log(πθ(ŷt|St))
∂θ

(Gt − bθ′(St))

]
(4.3)

The actor needs to select a series of actions ŷ1, ..., ŷl′ according to its current

policy. The gradient of the objective ∂Jpg(θ)

∂θ
suggests that we should update

θ in a direction such that the log-likelihood of the action ŷt is increased if it

receives a higher return Gt. To reduce variance of the gradients, it is helpful

to compare Gt against the baseline value bθ′(St) which estimates the average

of the returns previously received at state St. If the new action ŷt has a return

higher than the average, it should be preferred more by the policy function

(i.e. its probability should be increased). Formally, bθ′(St) can be a function

estimating Vπθ(St). We can estimate the expectation for the policy gradient

objective with an average over multiple interactions of the actor within the

SP-MDP: ∂Jpg(θ)

∂θ
≈ 1

n

∑
(Xi,ŷi1 ,...,ŷil′

)

∑l′i
t=1

∂log(πθ(ŷit |St))
∂θ

(Git − bθ′(Sit)).

4.2.1 Actor-Critic for Decoder RNN in SP-MDP

We adopt the actor-critic (AC) version of the policy gradient objective (Sutton

and Barto, 1998; Konda and Tsitsiklis, 2003; Mnih et al., 2016) to train the

decoder RNN within the SP-MDP environment. In AC training, the decoder

RNN first generates a greedy output sequence according to its current model,

similar to how it would during testing. We calculate a sequence-level credit

(return) for each prediction by comparing it to the gold-standard. The AC

update modifies our RNN to improve credits at each step. This process also
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Algorithm 3 Output-Adjusted Actor-Critic Training

· Given: n as hyper-parameter

· Input: Source X and Target Y

· Greedy decode X using θ to get:

· the output sequence Ŷ = (ŷ1, ..., ŷl′)

· decoder RNN states D = (d1, ..., dl′)

· context vectors C = (c1, ..., cl′)

· For each output target position t:

· rt = 1 if ŷt = yt, 0 otherwise

· Vθ′(t) = ValueNetwork(dt, ct, θ
′)

· lossθ = 0; lossθ′ = 0

· For each output target position t:

· Gt =
∑n−1

i=0 [rt+i] + Vθ′ (t+ n)

· δt = Gt − Vθ′(t)
· aδt = adjust(yt, ŷt, δt)× δt
· lossθ = lossθ − aδt ln pθ(ŷt|X, ŷt′<t)
· lossθ′ = lossθ′ + δt × δt

· Back-propagate through lossθ and lossθ′ as normal to update θ and θ′

respectively

· Do not Back-propagate into Gt to update θ′

exposes the decoder to its own errors, alleviating exposure bias. Algorithm 3

provides pseudo code for the training process, which we expand upon in the

following paragraphs.

We define the token-level reward rt as +1 if the generated token ŷt is the

same as the gold token yt, and as 0 otherwise. We compute the sequence-level

credit Gt for each decoding step using the multi-step Temporal Difference

return (Sutton and Barto, 1998):

Gt =
∑n−1

i=0 [rt+i] + Vθ′ (t+ n)

The step count n allows us to control our bias-variance trade-off, with a

large n resulting in less bias but higher variance. The critic Vθ′ (t) is a regression
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Input phrase the University of Alberta
Reference tags O Org Org Org

Model’s prediction O Org O Loc
Jml logP (O) logP (Org|O) logP (Org|O Org) logP (Org|O Org Org)
Jac 1.9 logP (O) 0.9 logP (Org|O) −0.1 logP (O|O Org) −0.1 logP (Loc|O Org O)

Table 4.1: The formed probabilities by maximum-likelihood (Jml) and actor-
critic (Jac) objectives for named entity tagging of the phrase ‘the University
of Alberta’. The advantage terms δt = 1.9, 0.9, . . . given in Jac are computed
using n = 4, and V (t) = 0.1.

model that estimates the expected return E [Gt], taking the context vector ct

and the decoder’s hidden state dt as input.1 It is trained jointly alongside our

decoder RNN, using a distinct optimizer (without back-propagating errors

through ct and dt). With this critic in place, the update for the AC algorithm

is defined as

∂Jac(θ)
∂θ

=
∑

t

∂ log(pθ(ŷt|X,ŷt′<t))
∂θ

(δt)

where:

δt = Gt − Vθ′(t)

The AC update changes the prediction likelihood proportionally to the advan-

tage δt of the token ŷt. Therefore, if Gt > Vθ′ (t), the decoder should increase

the likelihood. The AC error ∂Jac(θ)
∂θ

back-propagates only through the actor’s

prediction likelihood pθ.

Table 4.1 illustrates an example in NER, where the model tends to incor-

rectly label an entity as ‘Location’ instead of ‘Organization’. We directly give

negative credits for the invalid predictions with the Jac objective.

4.2.2 Critic Architecture

We employ a non-linear feed-forward neural network as our critic, which uses

leaky-ReLU activation functions (Nair and Hinton, 2010) in the first two hid-

den layers. In the output layer, it uses a linear transformation to generate a

scalar value. The ValueNetwork in Algorithm 3 refers to this critic model. To

1We assume the current state of the SP-MDP environment is observed by the vectors ct,
which summarizes the relevant input tokens, and the decoder state dt, which summarizes
the previously generated output tokens.
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learn the parameter set θ′ in the critic, we use a semi-gradient update (Sutton

and Barto, 1998). We do not use the full gradient in the Mean Squared error

to train this regression model. Accordingly, for
∂lossθ′
∂θ′

= ∂(δt×δt)
∂θ′

, instead of

using 2δt
∂(Gt−Vθ′ (t))

∂θ′
, we use the update 2δt

∂Vθ′ (t)
∂θ′

. The Temporal Difference

return Gt uses the critic’s estimate Vθ′ (t + n). The full gradient will cause a

feedback loop as by doing so, we will allow Gt to match with Vθ′(t) in order

to reduce the Mean Squared error, however, in the critic model, we need to

improve our previous estimates to match with the newly observed Gt.

4.2.3 Output-Adjusted Training

Due to the inevitable regression error of the critic, and the fact that it is

randomly initialized at the beginning, the advantage δt can undesirably become

negative for a correctly-selected tag, or positive for a wrongly-selected tag.

Optimizing the network according to these invalid advantages would increase

the probability of the wrong tags, while decreasing the probability of the true

tag. In such cases, to help critic update itself and form better estimates in

the next iteration, we clip δt to zero by defining the adjusted advantage aδt as

adjust(yt, ŷt, δt) × δt where:

adjust(yt, ŷt, δt) =


0 if ŷt = yt & δt < 0

0 if ŷt 6= yt & δt > 0

1 otherwise

By setting the advantage aδt to 0, the adjust term effectively switches off the

entire actor update when the advantage has the wrong polarity. Note that the

critic is always updated. The output-adjusted training can also be interpreted

as a combination of two advantages δt + δ′t, where:

δ′t =


−δt if ŷt = yt & δt < 0

−δt if ŷt 6= yt & δt > 0

0 otherwise

The δ′t adds the supervision of the gold label into the objective as it is always

positive for the correctly selected tag, and negative for the wrongly selected

token.
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Similar to prior RL works (Ranzato et al., 2016; Bahdanau et al., 2017;

Paulus et al., 2018), we pre-train the network using the Teacher Forcing

maximum-likelihood objective (Jml). We then continue training from the best

model using our output-adjusted actor-critic objective. Figure 4.1 shows devel-

opment set performance, starting from the same Jml-pre-trained point, for our

output-adjusted objective, as compared to standard actor-critic, REINFORCE

with baseline, and normal REINFORCE on German NER. We observe that the

output-adjusted training helps the model reach a higher point compared to all

other objectives. As discussed in section 4.1.4, despite prior RL methods, the

output-adjusted actor-critic objective does not require any schedule for pre-

training the critic. It also avoids the necessity of combining the actor-critic

objective with the Teacher Forcing maximum-likelihood training, as compared

in Figure 4.1. After the pre-training phase, the related works still combine the

maximum-likelihood training with their proposed RL objectives.
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Figure 4.1: The output-adjusted actor-critic objective compared to alternative
policy-gradient objectives on German NER with 17 possible output tags. All
objectives are maximized using Gradient Ascent with a fixed step size of 0.5
for actor-critic, and 0.01 for REINFORCE objectives. For REINFORCE ob-
jectives, we set n = l′ in the Temporal Difference credits (i.e. sum all rewards
until the end of sequence). All methods are trained 20 times with different
random seeds using the same hyper-parameters.
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Chapter 5

Experiments

In this chapter, we report our experiments comparing the following three main

models:

• RNN: encoder-decoder RNN trained with the maximum-likelihood ob-

jective

• CRF: encoder RNN with CRF layer trained with maximum-likelihood

objective

• AC-RNN: encoder-decoder RNN pre-trained with the maximum-likelihood

objective, and fine-tuned with the output-adjusted actor-critic objective.

We comprehensively compare AC-RNN, CRF, and RNN on three tasks: NER

tagging, CCG supertagging, and transliteration. We then compare the output-

adjusted actor-critic objective with Scheduled Sampling on NER. Finally, we

compare our training strategy to the Self-Critical method of Rennie et al.

(2017).

5.1 Setup

5.1.1 Datasets

To conduct the NER experiments, we use the English and German datasets of

the CoNLL-2003 shared task (Tjong Kim Sang and De Meulder, 2003). Both

datasets are annotated with 4 different entity types: ‘Location’, ‘Organization’,

‘Person’, and ‘Miscellaneous’ (e.g. events, nationalities, etc.). The Tables
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Split Sentences LOC ORG PER MISC
Training set 14987 7140 6321 6600 3438

Development set 3466 1837 1341 1842 922
Test set 3684 1668 1661 1617 702

Table 5.1: The number of sentences and annotated named entities on the
CoNLL-2003 English dataset.

Split Sentences LOC ORG PER MISC
Training set 12705 4363 2427 2773 2288

Development set 3068 1181 1241 1401 1010
Test set 3160 1035 773 1195 670

Table 5.2: The number of sentences and annotated named entities on the
CoNLL-2003 German dataset.

5.1 and 5.2 provide the number of sentences and annotated entities for each

dataset. As we have multi-word named entities (e.g. ‘University of Alberta’),

we employ the ‘BILOU’ tagging scheme1 (Ratinov and Roth, 2009) to detect

boundary of an entity in which ‘B’ indicates the beginning of an entity, ‘I’ is

for interior words, ‘L’ marks the end of a span and ‘U’ represents single-word

named entities. Overall, we have 17 output labels for each input token.

For CCG supertagging, we use the English CCGbank (Hockenmaier and

Steedman, 2007), the standard sections {02-21}, {00}, and {23} as the train,

development, and test sets, respectively. The train, dev, and test sets con-

tain 38798, 1888, and 2327 sentences, respectively. We consider all the 1284

supertags appeared in the train set.

We use pre-trained, 100-dimensional Glove embeddings (section 2.2) for

all English word-level tasks, and fine-tune them during training. For German

NER, we obtain the embeddings (64 dimensions) of Lample et al. (2016), which

are trained on a German monolingual dataset from the 2010 Machine Trans-

lation Workshop. We apply no preprocessing on the datasets except replacing

the numbers and unknown words with the ‘NUM’ and ‘UNK’ symbols.

We conduct the transliteration experiments on the English-to-Chinese (EnCh),

English-to-Japanese (EnJa), English-to-Persian (EnPe), and English-to-Thai

1Also known as the ‘IOBES’ tagging scheme.
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(EnTh) datasets of the NEWS-2018 shared task.2 The training sets contain

approximately 40K, 30K, 10K and 30K instances for EnCh, EnJa, EnPe, and

EnTh, respectively, while the development sets have 1K instances. We train

the models on the training sets, and evaluate them on the development sets.

We hold out 10% of the training sets as our internal tuning sets.

5.1.2 Implementation Details

We implement all our models in a shared code base using the PyTorch3 frame-

work (Paszke et al., 2017). The framework builds computational graphs dy-

namically during training, and has an auto-differentiation feature to back-

propagate errors to all trainable parameters. The framework also provides

various matrix mathematical operations, and includes the implementation of

RNNs and different optimizers. Our developed tool with its implemented mod-

els is publicly available at https://github.com/SaeedNajafi/ac-tagger.

5.1.3 Training Details

For the experiments, our different models share the same encoder, using the

same number of hidden units. Table 5.3 summarizes the hyper-parameters

used in our experiments. The maximum-likelihood training is done with the

Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0005. The

RL training is done with the mini-batch gradient ascent (θ = θ + α∂Jac(θ)
∂θ

)

using a fixed step size of 0.5 for NER & CCG, and 0.1 for transliteration

experiments4. The critic is trained with a separate Adam optimizer with the

learning rate of 0.0005. We employ a linear-chain first-order undirected graph

in the CRF model.

As performance varies depending on the random initialization, we train

each model 20 times for NER and 5 times for CCG using different random

seeds which are the same for all models. We report scores averaged across

these runs ± the standard deviations. Due to time constraints, for the translit-

2http://workshop.colips.org/news2018/shared.html
3https://pytorch.org/
4We also tried Adam and RMSProp optimizers for the RL training, but both completely

diverged.
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Hyper-parameter En-NER/De-NER CCG TL
char embedding size 32 32 128

output embedding size 32 128 128
max gradient norm 5.0 5.0 10.0

encoder units 256 512 256
decoder units 256 512 256

batch size 32 10 64
n 2/4 8 6

dropout 0.5 0.5 0.5
RNN gate LSTM LSTM LSTM

Table 5.3: The hyper-parameters used in the experiments.

eration experiments, we train each model only once.

5.1.4 Evaluation

We compute the standard evaluation metric for each task: entity-level F1-

score5 for NER, tagging accuracy for CCG, and word-level accuracy for translit-

eration. For the models with decoder RNNs, we report the results achieved

using a beam search with a beam of size 10. For the NER and CCG exper-

iments, we conduct the significance tests on the unseen final test sets, using

the Student’s t-test over random replications at the significance level of 0.05.

5.2 Results

5.2.1 Main Comparisons

As our primary empirical study, we compare the AC-RNN to CRF and RNN

models. For NER and CCG experiments, we consider independent prediction

of the labels (INDP, see section 3.2) as another baseline.

The results of the NER experiments are shown in Tables 5.4 and 5.5. We

observe that by modelling the output dependencies in the RNN, we achieve a

significant improvement over the baseline INDP, about 1% F1-score on both

English and German datasets. With respect to prior work, our CRF model

replicates the reported results on English NER. On German NER, we cannot

5A multi-word entity is predicted correctly if all of its words have the correct labels.
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Model Dev Test
INDP 93.63 ±0.13 89.77 ±0.21
RNN 94.43 ±0.16 90.75 ±0.23
CRF 94.47 ±0.12 90.80 ±0.19

AC-RNN 94.54 ±0.12 90.96 ±0.15
Lample et al. (2016) 90.94

Table 5.4: Average entity-level F1-score for English NER on the CoNLL-2003
datasets. Reimers and Gurevych (2017) report 90.81 as the median perfor-
mance for the CRF model of Lample et al. (2016) trained with 41 randoms
seeds.

Model Dev Test
INDP 75.51 ±0.28 72.15 ±0.57
RNN 76.85 ±0.39 73.52 ±0.36
CRF 76.27 ±0.35 73.59 ±0.36

AC-RNN 77.10 ±0.29 73.82 ±0.29
Lample et al. (2016) 78.76

Table 5.5: Average entity-level F1-score for German NER on the CoNLL-2003
dataset.

replicate the CRF results of Lample et al. (2016), although we obtained their

German word embeddings. We attribute this discrepancy to different pre-

processing of the dataset. Moreover, AC-RNN significantly outperforms both

RNN and CRF on both English and German test sets with the corresponding

P values of 0.001 and 0.004 for RNN, and 0.003 and 0.016 for CRF. These

results demonstrate that AC-RNN is successful at overcoming the RNN’s ex-

posure bias, and represents a strong alternative to CRF for named entity

recognition.

On CCG supertagging (Table 5.6), AC-RNN is significantly better than

all other models with the P values of 0.019, 0.025, and 0.002, respectively,

and is competitive with reported state-of-the-art results. For this task, we

had expected the improvements to be larger, because of CCG supertagging’s

potential for long-distance output dependencies. Instead, the results show that

independent predictions do surprisingly well.

The CCG experiments reveal that AC-RNN is trained more efficiently than

CRF. Table 5.7 shows the time and memory requirements for each method.

We observe that, due to the large output vocabulary size of the task (1284
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Model Dev Test
INDP 94.24 ±0.03 94.25 ±0.11
RNN 94.25 ±0.06 94.28 ±0.09
CRF 94.31 ±0.07 94.15 ±0.11

AC-RNN 94.43 ±0.08 94.39 ±0.06
Vaswani et al. (2016) 94.24 94.50
Kadari et al. (2017) 94.37� 94.49�

Table 5.6: Average top-1 accuracy for English CCG supertagging. The �

results are achieved with CRF training.

Model Memory (GB) Time (m)
INDP 1.3 5
RNN 1.8 11
CRF 9.8 50

AC-RNN 1.5 10

Table 5.7: The required GPU memory and execution time for one training
epoch of the models on CCG supertagging using mini-batches of size 10.

supertags), CRF is five times slower than AC-RNN during training, while the

batched version of its Forward algorithm requires six times more GPU memory.

The Forward algorithm of CRF runs out of memory with the mini-batch size

of 16 on a 12-GB Graphical Processing Unit.

The transliteration results in Table 5.8 show that AC-RNN outperforms

CRF (likely due to CRF’s inability for predicting an output of a different length

from its input), as well as RNN (likely due to its exposure bias). The translit-

eration experiments support our hypothesis that AC-RNN is more generally-

applicable than CRF, and the improvements from the biased actor-critic train-

ing transfer to other tasks.

To confirm that our RNN baseline performs reasonably well, we validate

our transliteration model against a standard NMT implementation as provided

Model EnCh EnJa EnPe EnTh
CRF 67.6 45.8 75.6 32.2
RNN 70.6 51.6 76.3 39.7

AC-RNN 72.3 52.4 77.8 41.4
OpenNMT 70.1 47.7 70.5 36.3

Table 5.8: The word-level transliteration accuracy on the development sets of
NEWS-2018 shared task.
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Model Dev Test
RNN 76.85 ±0.39 73.52 ±0.36

SS-RNN 76.93 ±0.32 73.65 ±0.29
AC-RNN 77.10 ±0.29 73.82 ±0.29

Table 5.9: The output-adjusted actor-critic training compared to Scheduled
Sampling on German NER.

Figure 5.1: The sensitivity of Scheduled Sampling on the choice of sampling
schedule on German NER. Higher k results in less sampling.

by the OpenNMT tool (Klein et al., 2017). We apply the tool “as-is” with

its default translation hyper-parameters. Note that our RNN system in this

experiment is also an NMT-style model with the attention mechanism.

5.2.2 Scheduled Sampling Comparisons

In the next experiment, we compare the output-adjusted actor-critic objec-

tive to Scheduled Sampling. We implement this approach using the inverse

sigmoid schedule of Bengio et al. (2015) for annealing ε, and denote it as

SS-RNN. The Table 5.9 shows the comparison of SS-RNN with AC-RNN

on German NER. Both systems improve over RNN, but AC-RNN is signif-

icantly better than SS-RNN with the P value of 0.040. This result supports

our hypothesis that the reinforcement-learning solutions should outperform

Scheduled Sampling, as the output-adjusted actor-critic training considers the

entire sequence, whereas Scheduled Sampling addresses only exposure to the
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Model EnCh EnJa EnPe EnTh
RNN 70.6 51.6 76.3 39.7

SC-RNN 70.2 51.8 77.2 41.3
AC-RNN 72.3 52.4 77.8 41.4

Table 5.10: The output-adjusted actor-critic objective compared to the Self-
Critical policy training on the development sets of the NEWS-2018 shared
task.

Model Dev Test
RNN 76.85 ±0.39 73.52 ±0.36

SC-RNN 76.71 ±0.27 73.50 ±0.42
AC-RNN 77.10 ±0.29 73.82 ±0.29

Table 5.11: The output-adjusted actor-critic training compared to the Self-
Critical policy training on German NER.

immediately previous token. We also observe that Scheduled Sampling, unlike

the output-adjusted actor-critic training, is highly sensitive to the choice of

sampling schedule (Figure 5.1).

5.2.3 Self-Critical Comparisons

In our final experiment, we compare the output-adjusted actor-critic training

with the Self-Critical policy training of Rennie et al. (2017) which does not

require a critic model. This method is intended to represent the state-of-the-art

in reinforcement learning for sequence-to-sequence models with sequence-level

rewards, to be contrasted against our AC-RNN and its position-level rewards.

The transliteration results shown in Table 5.10 indicate that the Self-

Critical training improves over RNN on EnJa and EnPe, and EnTh, how-

ever, it fails to beat AC-RNN across all the evaluation sets. On German

NER, the Self-Critical training cannot improve over RNN as shown in Ta-

ble 5.11. These observations are aligned with our initial hypothesis that the

reinforcement-learning techniques, applied to sequence labeling and transduc-

tion tasks, would benefit more from modelling the intermediate rewards, as is

done with the Temporal Difference credits in the output-adjusted actor-critic

training (section 4.2.1).
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Chapter 6

Future Work

We have proposed an output-adjusted actor-critic algorithm to train encoder-

decoder RNNs, which fine-tunes the model after the maximum-likelihood pre-

training phase. A possible future direction is to propose a single objec-

tive which unifies these two separate phases. Although our output-adjusted

method incorporates the supervision of the gold label into the actor-critic ob-

jective, it is still slower than the Teacher Forcing maximum-likelihood to train

the network from the scratch. Recently, Norouzi et al. (2016) motivates a

reward-augmented maximum-likelihood method which adds noise to the tar-

get labels according to their expected rewards. Still, this approach has neither

been compared to the reinforcement learning objectives, nor studied against

the CRF training.

In addition, other family of policy gradient methods can be investigated

for resolving exposure bias. We can study the similarity between the natural

policy gradient (Kakade, 2002), and our output-adjusted actor-critic applied

over the maximum-likelihood objective. It is also worth investigating the off-

policy actor-critic models (Degris et al., 2012) which are more general than

the Self-Critical training. The SC method can be considered an off-policy

approach where it utilizes a behavioural policy (i.e. sampling) to generate

the sampled sequence, and the learning is guided with the greedily-sampled

sequence (given by the greedy target policy).

Finally, the CRF models should be adapted for tasks with large output

vocabularies. Recently, Mensch and Blondel (2018) smooth the max oper-
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ations used in the Viterbi algorithm of CRF for NER task. Relaxing the

dynamic-programming computations used in the CRF can reduce its memory

complexity.
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Chapter 7

Conclusion

We have proposed an output-adjusted actor-critic algorithm to train encoder-

decoder RNNs for sequence labeling and transduction tasks. Though related

reinforcement-learning algorithms have previously been applied to sequence-

to-sequence tasks, our proposed AC-RNN is specialized to sequence-labeling

by taking advantage of the per-position rewards. To our knowledge, we have

presented the first direct, controlled comparison between CRFs and any form

of RNN. On NER and CCG supertagging, our system significantly outperforms

both RNN and CRF, establishing the AC-RNN as an efficient alternative for

sequence labeling. The advantages of AC-RNN in terms of efficiency and flexi-

bility include fast training, small memory footprint, and the ease of application

to other transduction tasks, such as transliteration. Finally, we showed that

our proposal for handling exposure-bias outperforms the related alternatives

of Scheduled Sampling and Self-Critical policy training.
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Appendix A

A.1 Policy Gradient Theorem in SP-MDP

Theorem A.1.1. In the SP-MDP environment with deterministic transitions

between states, for the input sequence X, the output sequence of length l′, and

the policy πθ(ŷt|St), we have Vπθ(S1) =
∑l′

t=1

∑
ŷ1,...,ŷt

πθ(ŷ1, ..., ŷt|X)rt, where

rt is the reward for selecting the possible action ŷt.

Proof. In the SP-MDP with deterministic transitions, for a given input X,

states depend only on the previously selected actions. By the definition

Vπθ(S1)
.
= Eπθ [G1|S1] = Eπθ [r1 + r2 + ...+ rl′ |S1], we have:

Vπθ(S1) = Eπθ [r1|S1] + Eπθ [r2|S1] + ...+ Eπθ [rl′ |S1] =∑
ŷ1

πθ(ŷ1|X)r1 +
∑
ŷ1

πθ(ŷ1|X)
∑
ŷ2

πθ(ŷ2|ŷ1, X)r2 + ...

+
∑
ŷ1

πθ(ŷ1|X)
∑
ŷ2

πθ(ŷ2|ŷ1, X)
∑
ŷ3

...×
∑
ŷl′

πθ(ŷl′ |ŷ1, ..., ŷl′−1, X)rl′ =

∑
ŷ1

πθ(ŷ1|X)r1 +
∑
ŷ1

∑
ŷ2

πθ(ŷ2|ŷ1, X)πθ(ŷ1|X)r2 + ...

+
∑
ŷ1

∑
ŷ2

...
∑
ŷl′

πθ(ŷl′ |ŷ1, ..., ŷl′−1, X)× ...× πθ(ŷ2|ŷ1, X)πθ(ŷ1|X)rl′ =

l′∑
t=1

∑
ŷ1,...,ŷt

πθ(ŷt|ŷ1, ..., ŷt−1, X)× ...× πθ(ŷ2|ŷ1, X)πθ(ŷ1|X)rt =

l′∑
t=1

∑
ŷ1,...,ŷt

πθ(ŷ1, ..., ŷt|X)rt

Theorem A.1.2. For the objective function Jpg(θ)
.
= Vπθ(S1) in the SP-MDP
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environment with the input sequence X, the output sequence of length l′, and

the policy πθ(ŷt|St), we have ∂Jpg(θ)

∂θ
= Eŷ1,...,ŷl′∼πθ [

∑l′

t=1
∂log(πθ(ŷt|ŷ1,...,ŷt−1,X))

∂θ
(Gt)].

Proof. We can use the result of the Theorem A.1.1 to calculate ∂Jpg(θ)

∂θ
=

∂Vπθ (S1)

∂θ
:

∂Jpg(θ)

∂θ
=
∂Vπθ(S1)

∂θ
=

l′∑
t=1

∑
ŷ1,...,ŷt

∂πθ(ŷ1, ..., ŷt|X)

∂θ
rt =

l′∑
t=1

∑
ŷ1,...,ŷt

πθ(ŷ1, ..., ŷt|X)× [
∂πθ(ŷ1, ..., ŷt|X)

∂θ
× 1

πθ(ŷ1, ..., ŷt|X)
× rt] =

l′∑
t=1

∑
ŷ1,...,ŷt

πθ(ŷ1, ..., ŷt|X)× [
∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt]× 1 =

l′∑
t=1

∑
ŷ1,...,ŷt

πθ(ŷ1, ..., ŷt|X)× [
∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt]×

∑
ŷt+1,...,ŷl′

πθ(ŷt+1, ..., ŷl′ |ŷ1, ..., ŷt, X) =

l′∑
t=1

∑
ŷ1,...,ŷt

∑
ŷt+1,...,ŷl′

πθ(ŷt+1, ..., ŷl′ |ŷ1, ..., ŷt, X)× πθ(ŷ1, ..., ŷt|X)× [
∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt] =

l′∑
t=1

∑
ŷ1,...,ŷl′

πθ(ŷ1, ..., ŷl′ |X)× [
∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt] =

l′∑
t=1

Eŷ1,...,ŷl′∼πθ [
∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt] =

Eŷ1,...,ŷl′∼πθ [
∂log(πθ(ŷ1|X))

∂θ
r1] + ...+ Eŷ1,...,ŷl′∼πθ [

∂log(πθ(ŷ1, ..., ŷl′ |X))

∂θ
rl′ ] =

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

∂log(πθ(ŷ1, ..., ŷt|X))

∂θ
rt] =

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

rt

t∑
t′=1

∂log(πθ(ŷt′ |ŷ1, ..., ŷt′−1, X))

∂θ
] =

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

t∑
t′=1

∂log(πθ(ŷt′ |ŷ1, ..., ŷt′−1, X))

∂θ
rt] =

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

∂log(πθ(ŷt|ŷ1, ..., ŷt−1, X))

∂θ

l′∑
t′=t

rt′ ] =

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

∂log(πθ(ŷt|ŷ1, ..., ŷt−1, X))

∂θ
(Gt)]
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Theorem A.1.3. In the SP-MDP with the input sequence X, the output se-

quence of length l′, and the policy πθ(ŷt|St), for any function bθ′(St) which

depends only on X, and the previously selected actions ŷ1, ..., ŷt−1, we have

Eŷ1,...,ŷl′∼πθ [
∑l′

t=1
∂log(πθ(ŷt|ŷ1,...,ŷt−1,X))

∂θ
(bθ′(St))] = 0.

Proof.

Eŷ1,...,ŷl′∼πθ [
l′∑
t=1

∂log(πθ(ŷt|ŷ1, ..., ŷt−1, X))

∂θ
(bθ′(ŷ1, ..., ŷt−1, X))] =

l′∑
t=1

Eŷ1,...,ŷl′∼πθ [
∂log(πθ(ŷt|ŷ1, ..., ŷt−1, X))

∂θ
(bθ′(ŷ1, ..., ŷt−1, X))] =

l′∑
t=1

∑
ŷ1,...,ŷl′

πθ(ŷ1, ..., ŷl′ |X)× [
∂log(πθ(ŷt|ŷ1, ..., ŷt−1, X))

∂θ
(bθ′(ŷ1, ..., ŷt−1, X))] =

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)×
∑

ŷt,...,ŷl′

πθ(ŷt, ..., ŷl′ |St)×
∂log(πθ(ŷt|St))

∂θ
=

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)×
∑
ŷt

πθ(ŷt|St)×
∂log(πθ(ŷt|St))

∂θ
×

∑
ŷt+1,...,ŷl′

πθ(ŷt+1, ..., ŷl′ |St+1) =

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)×
∑
ŷt

∂πθ(ŷt|St)
∂θ

× 1 =

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)× ∂Eŷt∼πθ [1]

∂θ
=

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)× ∂1

∂θ
=

l′∑
t=1

∑
ŷ1,...,ŷt−1

bθ′(St)πθ(ŷ1, ..., ŷt−1|X)× 0 = 0
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