
Robust and Accurate Generic Visual Object Tracking Using Deep Neural
Networks in Unconstrained Environments

by

Javad Khaghani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Signal and Image Processing

Department of Electrical and Computer Engineering
University of Alberta

© Javad Khaghani, 2021



Abstract

The availability of affordable cameras and video-sharing platforms have provided a

massive amount of low-cost videos. Automatic tracking of objects of interest in these

videos is the essential step for complex visual analyses. As a fundamental computer

vision task, Visual Object Tracking aims at accurately (and efficiently) locating a

target in an arbitrary video, given an initial bounding box in the first frame. While

the state-of-the-art deep trackers provide promising results, they still suffer from

performance degradation in challenging scenarios including small targets, occlusion,

and viewpoint change. Also, estimating the axis-aligned bounding box enclosing the

target cannot provide the full details about its boundaries. Moreover, the performance

of tracker relies on its well-crafted modules, typically consisting of manually-designed

network architectures to boost the performance. In this thesis, first, a context-aware

IoU-guided tracker is proposed that exploits a multitask two-stream network and an

offline reference proposal generation strategy to improve the accuracy for tracking

class-agnostic small objects from aerial videos of medium to high altitudes. Then, a

two-stage segmentation tracker to provide better semantically interpretation of target

in videos is developed. Finally, a novel cell-level differentiable architecture search with

early stopping is introduced into Siamese tracking framework to automate the network

design of the tracking module, aiming to adapt backbone features to the objective of

network. Extensive experimental evaluations on widely used generic and aerial visual

tracking benchmarks demonstrate the effectiveness of the proposed methods.
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Preface

The research conducted towards this thesis is a collaboration between Javad Khaghani
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versity of Alberta.

Chapter 3 of this thesis is written based on the paper published as Seyed Mojtaba

Marvasti-Zadeh, Javad Khaghani, Hossein Ghanei-Yakhdan, Shohreh Kasaei and Li

Cheng “COMET: Context-Aware IoU-Guided Network for Small Object Tracking.”

ACCV (2020) where the first two authors contributed equally to the work as stated

in the original paper.

Chapter 5 is provided based on the manuscript which will be published as Seyed

Mojtaba Marvasti-Zadeh, Javad Khaghani, Li Cheng, Hossein Ghanei-Yakhdan, and

Shohreh Kasaei “CHASE: Robust Visual Tracking via Cell-Level Differentiable Neural

Architecture Search.” BMVC (2021), and the first two authors have equal contribu-
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these trackers are developed in collaborative projects between Javad and Mojtaba.
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Chapter 1

Introduction

Visual Object Tracking is a fundamental computer vision task with the goal of pre-

dicting the state of a target in video frames, given the initial bounding box in the

first frame. This problem has many applications in real world scenarios including

intelligent vehicles, robotics, behavior analysis, human-computer interaction, and au-

tomatic surveillance [1, 2]. Over the years, Visual Object Tracking community tried

to obtain robust & accurate predictions for the state of class-agnostic targets using

efficient methods (i.e., ideally the trackers run beyond real-time). However, as shown

in Fig. 1.1, tracking arbitrary objects in the wild contains several challenges includ-

ing occlusion, small objects, and out-of-view just to name a few [3, 4]. On the other

hand, the recent success of deep neural networks in different computer vision tasks

including object classification [5], detection [6], and semantic segmentation [7] proves

that these methods can achieve state-of-the-art performance in a wide range of appli-

cations, outperforming traditional computer vision methods with a large margin of

performance gain.

Motivated by that, this thesis studies Visual Object Tracking using deep neural

networks with a focus on developing robust & accurate trackers for unconstrained

environments. The target is considered in generic and model-free settings. In other

words, at the inference time, no prior knowledge about the class-agnostic target is

available, except the bounding box fitted on that in the first frame of test video. Also,
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Figure 1.1: Example sequences from LaSOT [8], TrackingNet [9], and VisDrone-SOT2019
[10, 11] tracking benchmarks. With the bounding box of target in the first frame, the goal of
visual tracking is to predict the box fitted on the object in the subsequent frames to the end.
Considering the widely used One-Pass Evaluation (OPE) protocol, we do not re-initialize
tracker after failure. For each frame, the red box and blue text show the ground truth box
and frame number, respectively. The first (last) column shows the first (last) frame for
each sequence, and the intermediate frames contain several tracking challenges including
occlusion, fast motion, out-of-view, similar objects, small object, and camera motion. Note
that the ground truth bounding box for frames with out-of-view challenge is not shown. For
better visualization of the last sequence, the magnified window around the target is shown
inside a yellow box. Best-viewed in zooming-in.

tracking is done in a casual manner, i.e., the tracker does not have access to future

frames of video. Moreover, the focus of this research is on single object tracking in

videos captured by single RGB camera.

Considering these assumptions, a family of the existing trackers learn an online classi-

fier using the ground truth information at the first frame of video. Then, this classifier

discriminates the target from background and other objects in next frames and they

update the classifier through the video. Another category of methods use an offline

trained Siamese deep neural network to localize the target at the test frames by mea-

suring the similarity between the reference template and test patches. To have an

unbiased evaluation of trackers as well as providing large-scale data for training deep
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trackers, several standard datasets and benchmarks (e.g., LaSOT [8], GOT-10k [12],

and TrackingNet [9]) have been introduced. Accordingly, a comprehensive general

background on widely used methods and benchmarks for Visual Object Tracking has

been provided in chapter 2 of this thesis. Also, the literature exclusively related to

each of the proposed methods has been only discussed in the corresponding chapter.

While the recent trackers (see Sec. 2.1) have achieved high-quality results, their ac-

curacy & robustness, notably for the challenging scenarios including small objects,

low resolution, and similar objects, can be enhanced. Accordingly, to propose the

COMET & LTCOMET (see chapter 3), DESTINE (see chapter 4), and CHASE (see

chapter 5) trackers, Visual Object Tracking from the following aspects is studied:

1) Size of target: The size of objects can be medium/large or small. For small

objects, latent representations extracted from deep layers of neural networks cannot

provide enough information for appearance modeling. As a result, we should consider

dedicated strategies to obtain robust & accurate model of small targets. Moreover,

small object scenarios usually happen in aerial videos, i.e., videos mainly captured

by UAVs, which introduce other challenges including frequent viewpoint change &

extreme camera motions to the tracking problem. Following that, the COMET:

Context-Aware IoU-Guided Network for Small Object Tracking tracker published in

ACCV 2020 is proposed which mainly benefits from the multitask two-stream network

and the offline reference proposal generation strategy. Also, a modified version of this

tracker, named LTCOMET, has been developed to participate in VisDrone-SOT2020

challenge. These trackers are discussed in more details in chapter 3 of this thesis.

2) The predicted state of target: In Visual Object Tracking, predicting the axis-

aligned bounding box enclosing the target is popular. However, this bounding box

does not precisely represent the boundaries of object, notably for deformable ones with

elongated parts (e.g., cats with long tail). Hence, Visual Object Tracking researchers

seek to predict more accurate states of target, e.g., binary mask or rotated box instead

of axis aliened box. Predicting the mask of targets in frames of video, given the mask
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for the first frame is studied in another computer vision task, called semi-supervised

Video Object Segmentation (VOS). Following this trend in tracking community, the

two-stage Adaptive Visual Tracking and Instance Segmentation (DESTINE) tracker

is developed to participate in the famous VOT-ST2020 challenge. This segmentation

tracker is explained in chapter 4.

3) Procedure for designing the neural network: Visual tracking community at-

tempts to obtain robust target representations using manually designed neural net-

works. However, the ability of deep neural networks to automatically learn robust

feature extraction in an end-to-end manner is highly affected by the architecture of

the network. Accordingly, obtaining well-performing deep trackers using manual ar-

chitecture search is time consuming and depends on prior experience. As a result,

automatic design of the best network architectures for visual trackers, considering the

recent advances in AutoML and Neural Architecture Search (NAS) [13–15] is a promis-

ing research to explore. Motivated by this, the CHASE: Robust Visual Tracking via

Cell-Level Differentiable Neural Architecture Search tracker is introduced which is

accepted to BMVC 2021. This tracker incorporates the proposed cell-level differen-

tiable architecture search mechanism with early stopping to adapt backbone features

to the objective of Siamese tracking networks. A detailed explanation on CHASE is

included in chapter 5.

Finally, a summary of the proposed trackers and future directions is provided in chap-

ter 6. As one of the main future works, we have done unpublished studies on animal

tracking and applications of computer vision for animal studies. As a result of this

research, a zebrafish larvae segmentation tracking dataset with zebrafish-specific vi-

sual attributes will be provided, in collaboration with Guan Zhen from the Institute

of Molecular and Cell Biology (IMCB), A*STAR. Also, a comprehensive literature

review on computer vision tools for animals will be submitted. Please refer to sec-

tion 6.2 for more information on these projects.
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Chapter 2

Background

In this chapter, a general background on the existing literature for Visual Object

Tracking using deep neural networks is provided. However, the dedicated related

literature for each proposed tracker has been exclusively reviewed in the corresponding

chapter. This chapter is structured as follows. First, in Sec. 2.1, the existing methods

for generic single object tracking in RGB videos using online classification-based and

Siamese-based networks are discussed. Then, an overview of the existing tracking

datasets and evaluation metrics is provided in Sec. 2.2.

2.1 Visual Tracking Methods

Online classifier-based and Siamese network-based trackers are the main two ap-

proaches for single object visual tracking using deep convolutional neural networks.

2.1.1 Online Classifier-Based Trackers

Some of the well-performing trackers efficiently learn an online classifier based on

the information of target provided in the first frame of test video (i.e., no offline

training required) to discriminate the target from background and distractors in the

next frames. Through the video, the classifier is refined based on the prediction

of previous frames [16]. MDNet [17] consists of a shared sub-network with sequence

specific classifier branches. During offline training, the shared sub-network along with
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sequence specific branches are trained using video sequences. In online tracking, they

train the new classifier branch which receives input from the pre-trained shared part

using the test video. SANet [18] uses Recurrent Neural Networks (RNNs) to integrate

the structural information of target into the MDNet pipeline. ATOM [19] considers an

online classification network & a two stream network for robustly localizing the target

& accurately estimating its scale, respectively. The classification network consists of

two convolutional layers which receive backbone features from Block4 of ResNet-18

[20]. The convolutional layers are trained efficiently by integrating conjugate gradient

computing into PyTorch’s autograd tools to predict a response map by solving Gauss-

Newton problem in online tracking phase. They also incorporate pre-existing practical

techniques (e.g., hard negative sampling for handling distractors) to robustly track

the target. To estimate the scale of target, they generate object proposals based on

dimension of target in the previous frame and prediction of online classifier at the

current frame. Then, they refine the proposals using an integration of IoU-Net [21]

into a Y-shape network; leveraging the proposed IoU modulation vector to encode

target related information of reference frame into test branch. The incorporated two

stream IoU-Net network is trained on large-scale datasets in offline phase, while the

classification network will be learned in online tracking phase using the test video.

As a major subset of online classifier-based trackers, Discriminative Correlation Filter

(DCF)-based trackers [22] learn a template model in online manner using a non-linear

ridge regression problem which is solved using circular correlation. Despite their

robustness & efficiency, they suffer from accuracy limitations as they usually use a

simple and rapid multi-scale search to estimate the scale of target.

2.1.2 Siamese Network-Based Trackers

Siamese networks are Y-shape networks which learn to measure the similarity between

a reference image (i.e., exemplar image) with the candidate target regions in the test

frame (i.e., search regions), resulting in a dense response map for target localization.
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These networks provide a good trade-off between performance and computational

complexity. First, they extract target-specific features for tracking by transferring

powerful backbone features to the objective of tracking using lightweight modules.

To limit the number of parameters, the parameters of lightweight modules are shared

between the reference & test branches. Then, to measure the similarity between

template & search features, regular or depthwise cross-correlation between the latent

representations of exemplar and search regions are widely used [23–25]. The response

map can only classify the target from background and similar instances, not providing

enough information about the dimensions of object. As a result, we also need an scale

estimation part which usually considers smooth scale variations in adjacent frames.

For instance, the previous works incorporate bounding box regression using Region

Proposal Networks (RPN) [23, 24], refining the bounding box from previous frame

[21, 26], or a simple multi-scale search [27]. Siamese-based trackers are trained offline

on pairs of samples, benefiting from large-scale image [28–30] & video-based (see

Sec. 2.2) datasets. However, during online tracking phase, they usually consider a

static template model based on the first frame and localize the target at the current

frame without any online fine-tuning. Accordingly, these networks are usually good

at accurately estimating the scale of target, while they suffer from robustness issues

in presence of challenging scenarios including distractors & similar objects and novel

object classes due to the lack of online adaptation for most of them.

As one of the first Y-Shaped networks, Generic object Tracking using regression

networks (GoTurn) [31] directly regresses the whole box of target for the test frame.

Fully Convolutional Siamese networks (SiamFC) [27] introduces tracking as similar-

ity learning between the reference and test branches to obtain the position of target.

Later, CFNet [32] introduced a closed-form solution to train a convolutional filter

in an end-to-end manner, exploiting both correlation filters and Siamese advantages.

Following the efforts in improving the performance of Siamese trackers, Siamese Re-

gion Proposal Network (SiamRPN) [23] formulates tracking as local one-shot learning
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by integrating RPN [33] into two-stream networks for bounding box refinement, re-

sulting in better target estimation. Many later Siamese trackers consider this method

as their baseline and introduced new modules and strategies for enhancing the per-

formance [24, 25, 34–36]. DaSiamRPN [34] exploits semantic backgrounds, distractor

suppression, and local-to-global search window towards learning robust features, on-

line adaptation, and handling long-term scenarios. SiamDW [35] designs deeper and

wider networks by considering various units and backbone networks to benefit from

state-of-the-art network architectures. Siamese Cascaded RPN (CRPN) [36] con-

sists of multiple RPNs that perform stage-by-stage classification and localization.

SiamRPN++ [25] proposes a ResNet-based Siamese tracker that exploits layer-wise

& depthwise aggregations and uses spatial-aware sampling strategy to train a deeper

network. SiamMask [24] tracker develops a two-stage segmentation tracker by inte-

grating class agnostic binary segmentation to Siamese architecture.

Recently, researchers have started to introduce online learning into Siamese frame-

work to increase the robustness of tracking novel targets against distractors. DaSi-

amRPN[34] incorporates incremental learning using a distractor-aware module for

inference time. DSiam [37] utilizes a fast transformation learning module for learning

the target appearance & suppressing the background in online phase. UpdateNet [38]

learns to update the template model for Siamese trackers based on a combination

of the template model from first frame, current frame, and accumulated template.

GradNet [39] uses the discriminative information in gradient to update the template

model.

DiMP [26] tracker introduces a model predictor, consisting of filter initializer & op-

timizer into the Siamese framework for target classification. First, they use a single

3 × 3 convolutional block to transfer the appearance features extracted from ResNet

[20] backbone for tracking purpose for both reference and test branches. Then, they

use a 4 × 4 PrROI pooling [21] layer over the latent representation from reference

branch to obtain an initialization of the template model. After that, they introduce a
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filter optimization step to adapt this initial template model to the appearance of new

targets in a few-shot settings using a learned discriminative loss. They measure the

similarity between the obtained template model and features from test branch using

cross-correlation, resulting in a score map. DiMP uses the same IoU-Net [21]-based

network as ATOM [19] for target estimation. Finally, they train the whole network

consisting of Y-shape classification and target estimation networks in an end-to-end

manner using a multi-task discriminative loss function. Hence, we can consider DiMP

as a deep Siamese- & DCF-based method. During online tracking, they use the filter

optimization step considering previous online learning strategies in tracking literature

(e.g., hard negative sampling). In this way, they can use the information available in

large-scale datasets in offline phase and adapt the model to the appearance of new

target for tracking in a few-shot manner. Moreover, the ground truth boxes in large-

scale tracking datasets might contain noisy samples, e.g., datasets consider different

strategies for annotating deformable objects with elongated parts (e.g., animals with

long tails). Pr-DiMP [40] introduces probabilistic regression into DiMP [26] pipeline

to predict the conditional probability of target box and handle the noisy ground truth

boxes in tracking benchmarks. They also introduce Super-DiMP tracker which com-

bines the strength of DiMP [26], PrDiMP [40], and engineering techniques to increase

the performance.

Object-aware anchor-free networks (Ocean) [41] tracker, proposed by Microsoft re-

search group, is the first tracking method to leverage anchor-free approach for Visual

Object Tracking. Anchor-based methods are trained using positive samples with high

Intersection over Union (IoU) with the ground truth box in offline phase which re-

sults in drifting the tracker by error accumulation in online tracking. By leveraging

the anchor-free idea, inspired from FCOS [42] detection method, Ocean can regress

the full state of target in a single network and rectify weak predictions resulting in

robust & accurate tracking. To further improve the robustness using online learning,

they integrate the model prediction approach of DiMP [26] into their method, and
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introduce Ocean-Online tracker.

The idea of using spatial & channel attention mechanisms [43] to enhance the per-

formance of trackers is previously used in a few works including our COMET [44].

SiamAttn [45] proposes Deformable Siamese Attention (DSA) module which leverages

the cross-attention mechanism to learn the mutual information from both branches as

well as the self-attention to highlight the target-related spatial & channel information.

However, they require the depthwise cross-correlation to combine the information

of reference and test branches. Very recently, researchers have started to integrate

transformers into Siamese-like networks for Visual Object Tracking. Transformer

Meets Tracker [46] introduces modified transformers (i.e., without fully-connected

feed-forward layers) into Super-DiMP and SiamFC architectures, achieving promis-

ing performance gain while training for 50 epochs. They integrate the separated

encoder & decoder of the modified transformer into the reference & test branches to

reinforce the target-related features and consider pixel-wise temporal correspondence

between branches. However, they still use cross-correlation to measure the similarity

of reference and test branches. Transformer Tracking (TransT) [47] claims that the

local linear matching nature of cross-correlation results in falling into local optimum

and neglecting semantic information while those information is required for precise

scale estimation. To address this issue, they integrate transformers into Siamese

framework to fuse the latent representations of reference & test branches using at-

tention mechanism, and predict the full state of target (i.e., position & scale) using

a single network. While they obtain state-of-the-art performance, their method is

trained for 1,000 epochs.

2.2 Visual Tracking Datasets

Providing standard benchmarks to fairly compare different visual trackers has a long

history in literature of tracking [48–52]. By emerging the deep convolutional neural

networks in tracking community [4], researchers started to release large-scale anno-
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tated video-based datasets for offline training of high-performance deep trackers. In

this section, we will review the generic and aerial bounding box tracking datasets

and benchmarks which are used for training and evaluation of the proposed methods

of this thesis. Note that the datasets for segmentation tracking and Video Object

Segmentation are discussed in related chapter (see Sec. 4.2). There is also a brief

discussion on long-term tracking datasets in Sec. 3.2.3.

The utilized datasets in this thesis consist of GOT-10k [12], LaSOT [8], TrackingNet

[9], NfS [52], UAV-123 [53], UAVDT [54, 55], VisDrone-SOT2019 [10, 11], and Small-

90 [56]. For inference, all of them use the One-Pass Evaluation (OPE) protocol,

i.e., the trackers is initialized with the bounding box of first frame and is run to the

end of sequence without resetting after losing the target. The incorporated evalua-

tion metrics for the performance are mainly precision & success, i.e., ratio of frames

with Center Location Error (CLE) & Intersection over Union (IoU) between predic-

tions and ground truths thresholded at predefined values (e.g., less than 20 pixels

for precision & higher than 0.5 or 0.75 for IoU). Some benchmarks utilize normalized

precision to address the dependency of regular precision metric on the scale of target

and resolution of frame [8, 9]. The Area Under Curve (AUC) metric for success plot

which is equivalent to computing the Average Overlap (AO) is also widely used. For

evaluating the efficiency, Frame Per Second (FPS) is dominant.

GOT-10k [12]: This is a high-diversity large-scale short-term tracking benchmark

with 10K videos and 1.5 million bounding boxes. On average, the length of each

clip is 15 seconds. The training and test object classes have zero overlap (except for

the person class) to evaluate the generalization of methods. To avoid human bias,

563 object classes and 87 motion forms based on the semantic hierarchy of WordNet

have been used. They also provide motion classes, object visible ratios and absence

indicators labels. To handle the class imbalance issues in evaluation, they consider

the mean Average Overlap (mAO) and mean Success Rate (mSR) instead of original

AO and SR metrics. The ground truth for the test set is private (except the first
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frame) and evaluation is done on 180 sequences.

LaSOT [8]: This is a challenging large-scale tracking benchmark with 1.4K long

videos and 3.5 million frames which are manually annotated. The data is divided

into the same number of sequences for each of 70 classes. On average, each video

contains 2.5K frames with target disappearance/ reappearance (i.e., long-term) sce-

narios. In this thesis, we have used the official protocol II for splitting data into the

training and test sets. Accordingly, the training set contains 1.12K videos with 2.83

million frames, and the test set consists of 280 sequences with 690k frames. Pre-

cision, success, and normalized precision are used as the evaluation metrics. They

also annotate 14 visual attributes including Illumination Variation (IV), Full Occlu-

sion (FOC), Partial Occlusion (POC), Deformation (DEF), Motion Blur (MB), Fast

Motion (FM), Scale Variation (SV), Camera Motion (CM), Rotation (ROT), Back-

ground Clutter (BC), Low Resolution (LR), Viewpoint Change (VC), Out-of-View

(OV) and Aspect Ratio Change (ARC).

TrackingNet [9]: This in-the-wild large-scale benchmark contains more than 30K

videos and 14.4 million frames of 27 target classes which are gathered from YouTube-

BB [29] and annotated automatically using tracker. They also provide 15 visual

attributes. The test set includes 511 videos with private ground truth boxes (except

for the first frame) and the same distributions of classes for training & test sets. They

use precision, success, and normalized precision for evaluation.

NfS [52]: This dataset provides 100 annotated sequences with a high framerate of

240 FPS.

UAV-123 [53]: This is a challenging aerial view tracking dataset consisting of 123

videos, 113K frames, and 9 classes of targets captured from a low-altitude perspective.

They have annotated bounding boxes as well as 12 visual attributes of Background

Clutter (BC), Fast Motion (FM), Aspect Ratio Change (ARC), Illumination Varia-

tion (IV), Camera Motion (CM), Out-of-View (OV), Partial Occlusion (POC), Full

Occlusion (FOC), Scale Variation (SV), Low Resolution (LR), Similar Object (SOB),
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Viewpoint Change (VC).

UAVDT [54, 55]: This UAV dataset contains 100 videos for object detection, single

object tracking, and multiple object tracking. They annotate this data with 840K

bounding boxes which are provided manually. For single object tracking, they provide

a testing set containing 50 UAV sequences, without any training data. Success and

precision are used as evaluating metrics. 10 visual attributes consisting of Background

Clutter (BC), Camera Rotation (CR), Object Rotation (OR), Small Object (SO), Il-

lumination Variation (IV), Object Blur (OB), Scale Variation (SV), Large Occlusion

(LO), Viewpoint Change (VC), and Fast Motion (FM), 3 scene condition attributes

(i.e., Weather Condition, Flying Altitude, and Camera View) , and a sequence dura-

tion attribute are also provided.

VisDrone-SOT2019 [10]: This dataset contains 167 videos with 189K frames &

manually labeled bounding boxes, splitting into training (86 sequences), validation

(11 sequences), and testing sets. Then the testing data is divided into two overlap-

ping sets of test-dev (35 sequences) with released ground truth for development, and

test-challenge (60 sequences including 25 long-term scenarios) with private boxes for

the corresponding competition. The data is captured using various drone models

under different weather and lighting conditions. Success and precision metrics are

used for evaluating the performance. They have also annotated 12 visual attributes

consisting of Full Occlusion (FOC), Partial Occlusion (POC), Aspect Ratio Change

(ARC), Background Clutter (BC), Fast Motion (FM), Camera Motion (CM), Illu-

mination Variation (IV), Scale Variation (SV), Low Resolution (LR), Out-of-View

(OV), Small Object (SO), and Viewpoint Change (VC).

Small-90 [56]: Small-90 has incorporated small object sequences of various existing

datasets including UAV-123 [53], OTB [48], and TC-128 [51].
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Chapter 3

COMET

In this chapter, first, the challenges and motivations of tracking small objects from

aerial videos are introduced. Then, the related works including small object detection,

small object tracking, and long-term tracking are discussed. After that, the COMET:

Context-Aware IoU-Guided Network for Small Object Tracking [44] method published

in Asian Conference on Computer Vision (ACCV) 2020 is reviewed. Also, the ex-

tended version of the tracker, named LTCOMET [11], participated in Vision Meets

Drone- Single Object Tracking (VisDrone-SOT) 2020 challenge [11] is introduced.

Accordingly, some parts of this chapter are written based on the published COMET

paper [44].

3.1 Introduction

Aerial Visual Object Tracking can be considered in two different scenarios: 1) Videos

captured in low-altitudes to track medium or large objects in surveillance videos with

limited viewing angle, and 2) Videos captured in medium- (30∼70 meters) and high-

altitudes (>70 meters) to consider tiny objects in videos mostly captured by UAV.

As you see in Fig. 3.1, most objects in the first category (captured from low-altitude

aerial views (10∼30 meters)) are medium/large-sized and provide sufficient informa-

tion for appearance modeling. However, the second one aims to track targets with

low resolution involving complicated scenarios including tiny targets, drastic cam-
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Figure 3.1: Examples to compare low-altitudes and medium/high-altitudes aerial tracking.
The first row represents the size of most targets in UAV-123 [53] dataset, which captured
from 10∼30 meters. However, some examples of small object tracking scenarios in UAVDT
[54], VisDrone-2019 [10], and Small-90 [56] datasets are shown in last two rows.

era viewpoint changes & rotations, wide aerial view, and severe camera & objection

movements. In most cases, it is arduous even for humans to track tiny objects in the

presence of complex background as a consequence of limited pixels of objects.

The existing state-of-the-art generic visual trackers have satisfactory performance in

the first scenario, while their results are not convincing for the later settings. More-

over, to the best of our knowledge at the time of our paper submission, there were

no existing tracking research with convincing performance on recently released tiny

object tracking benchmarks (i.e., VisDrone [10, 57], UAVDT [54, 55], and Small-90

[56]). Only a few DCF-based aerial trackers (discussed in the 3.2.2) exist which con-

sider efficiency as the main objective by sacrificing the performance.

Motivated by this, we studied the problem of tracking a class-agnostic small target

from aerial videos of medium to high altitudes. We attributed the performance degra-

dation of state-of-the-art trackers on these videos to neglecting any special strategies

to handle their novel challenges. Then, considering ATOM [19] tracker as the baseline

method, we introduce our contributions into the scale-estimation network of ATOM

[19] to narrow the gap between the state-of-the-art generic trackers & aerial ones.
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Our COMET benefits from a two stream network architecture trained using multi-

task loss function and an offline proposal generation strategy. The main performance

gain of our approach results from multi-scale feature learning and attention mod-

ules to enhance target related information. Moreover, the offline proposal generation

strategy from reference frame aims at helping network with providing context to gen-

eralize on object and its part during offline training. Finally, the multi-task loss helps

the network to consider both accuracy & robustness during offline training.

The contributions of the paper are summarized as the following two folds.

1) Offline Proposal Generation Strategy: In offline training, the proposed

method generates limited high-quality proposals from the reference frame. The pro-

posed strategy provides context information and helps the network to learn target

and its parts. Therefore, it successfully handles occlusions and viewpoint changes in

challenging aerial scenarios. Furthermore, it is just used in offline training to impose

no extra computational complexity for online tracking.

2) Multitask Two-Stream Network: COMET utilizes a multitask two-stream

network to deal with challenges in small object tracking. First, the network fuses

aggregated multi-scale spatial features with semantic ones to provide rich features.

Second, it utilizes lightweight spatial and channel attention modules to focus on more

relevant information for small object tracking. Third, the network optimizes a pro-

posed multitask loss function to consider both accuracy and robustness.

Extensive experimental analysis are performed to compare the proposed tracker with

state-of-the-art methods on the well-known small object benchmarks, namely UAVDT

[54, 55], VisDrone-2019 [10, 11], and Small-90 [56]. The results demonstrate the effec-

tiveness of COMET [44] for small object tracking. We also show that while the main

focus of this research is on small objects, the proposed strategies can enhance the per-

formance of baseline tracker on ground-view generic object tracking benchmarks [8,

12]. Moreover, we have extended our tracker to LTCOMET [11] by integrating strate-

gies for long-term tracking & light enhancement and providing more augmentations
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into its pipeline to enhance the performance on the VisDrone-2019-test-challenge set.

3.2 Related Works

In this section, we will review the literature exclusively related to COMET by sum-

marizing the existing efforts on small object detection, small object tracking, and

long-term tracking. Please refer to the chapter 2 for general background information

on Visual Object Tracking.

3.2.1 Small Object Detection

The literature for object detection introduces some strategies for enhancing the per-

formance for small objects. Single Shot multi-box Detector (SSD) [58] uses different

levels of backbone features depending on the size of the target. Discriminative Single

Shot Detector (DSSD) [59] uses deconvolution layers to enhance the spatial resolution

of deep features considering context information for small object detection. Multi-

scale Deconvolutional Single Shot Detector (MDSSD) [60] enhances the performance

of small object detection using multi-scale deconvolution fusion modules. Also, [61]

utilizes multi-scale feature concatenation and attention mechanisms to enhance small

object detection using context information. SCRDet [62] uses SF-Net and MDA-Net

as feature fusion and attention module, respectively. Furthermore, other well-known

detectors (e.g., YOLO-v3 [63]) exploit the same ideas, such as multi-scale feature

pyramid networks, to alleviate their poor accuracy for small objects.

3.2.2 Small Object Tracking

Developing specific methods for small object tracking from aerial view is still in

progress, and there are limited algorithms for solving existing challenges. Indeed,

most of the existing trackers prioritize efficiency to performance by developing Dis-

criminative Correlation Filters (DCF)-based trackers. To restrict the alternation rate

of response map, Aberrance Repressed Correlation Filter (ARCF) [64] uses a cropping
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matrix and regularization term. Boundary Effect aware Visual Tracker (BEVT) [65]

addresses the boundary effect issue of correlation filters to achieve a robust aerial

tracker. They introduce a background learning strategy, learning the response map

by comparing the scores of adjacent frames, and using multi-layer backbone features.

Keyfilter-aware [66] tracker utilizes key-filters to prevent filter corruption and learn

context information. To improve the quality of training set, Time Slot-based Dis-

tillation [67] (TSD) algorithm adaptively scores historical samples by a cooperative

energy minimization function. It also accelerates this process by discarding low-score

samples. AutoTrack [68] adaptively learns a spatio-temporal regularization term to

avoid using the predefined parameters which is popular in correlation filters. The

local spatial and global temporal terms help the tracker to focus on important object

parts and update the learning rate, respectively. The performance of these DCF-

based trackers are lower than the state-of-the-art trackers as they have focused on

efficiency for deploying the trackers on UAVs.

3.2.3 Long-Term Tracking

In real-world scenarios, objects can have disappearance & reappearance in the scene

through long videos. In short-term single object tracking, researchers usually consider

a local window around the prediction of previous frame, and search this windows to

find the target in the current frame. This assumption can be invalidated when object

has very fast movements, full occlusion, out-of-view, or camera is moving. Compared

with ground-view videos, these scenarios more frequently happen in videos captured

by UAVs. Consequently, we need a global re-detection strategy when these scenarios

happen.

DaSiamRPN [34] introduces an iterative local-to-global search by enlarging the search

window with a constant step size once the predicted target score is low. This simple

strategy helps DaSiamRPN to run at 110 FPS on long-term videos. SPLT [69] in-

troduces a real-time long-term tracker using perusal and skimming modules for local
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tracking and global re-detection, respectively. Perusal consists of a SiamRPN [23] to

generate local proposals and a verifier to measure the cosine similarity between the

feature embeddings of target instance and generated proposals. They switch to global

search if the highest measured similarity is lower than a threshold. Then, skimming

module is responsible for rapidly selecting the best global proposals from a large set of

sliding windows. Short-term trackers consider strong priors on smoothness of changes

in position & scale of target in nearby frames. To have a multi-scale target search

over the whole frame without such strong priors, GlobalTrack [70] uses a two-stage

object detector guided by the target instance. Siam R-CNN [71] integrates faster

R-CNN into Siamese framework to develop a tracking by re-detection method. Also,

they propose a Tracklet Dynamic Programming Algorithm (TDPA) which leverages

the initial template and target box in previous frame for obtaining a robust long-term

tracker. Besides, they introduce a hard example mining strategy to obtain negative

samples conditioned on reference target from other videos. Long-term trackers are

mainly developed by integrating global re-detection into existing short-term trackers.

Short-term trackers use the discriminative cues obtained from confidence map to de-

cide when and how to update the tracker in online phase. However, the experiments

show that the predicted response map is not always reliable. Due to the high uncer-

tainty in long-term videos, researchers prefer to build their long-term trackers based

on short-term ones that do not consider any online learning. To address this issue,

[72] introduces a meta-updater implemented using cascaded LSTM to combine the

sequence of geometric & appearance cues with the widely used discriminative ones

to make decisions for online updating of short-term trackers. Moreover, they intro-

duce a complete long-term tracking pipeline consisting of local tracker (ATOM [19]

and SiamMask [24]), proposed meta-updater, global detection (faster R-CNN [33]),

proposal generation (SiamRPN [23]), and verifier (RTMDNet [73]) methods.

Researchers use the famous Visual Object Tracking- Long-term Tracking (VOT-LT)

[3, 74, 75] challenge to introduce & evaluate their developed long-term trackers before
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publishing them as regular papers. Moreover, some standard datasets including Ox-

UvA [76] and TLP [77] for long-term tracking are introduced. Besides, the LaSOT [8]

dataset contains long videos which are widely used to evaluate the robustness of short-

term trackers in challenging scenarios. On the other hand, due to the importance of

long-term scenarios in aerial tracking, previous works have introduced UAV20L [53] &

VisDrone-test-challenge [10, 11] datasets for this task. While UAV20L is a subset of

UAV123 [53] with publicly available ground truth boxes, the VisDrone-test-challenge

[10, 11] set with private ground truth boxes has been used to evaluate the state-of-the-

art aerial trackers in VisDrone competition. Later in this chapter (see Sec. 3.4.4), we

will introduce the long-term extension of COMET participated in VisDrone-SOT2020

[11], and compare its performance to the other participants.

3.3 Method

A key motivation of COMET is to solve the issues discussed in Sec. 3.1 by adapting

small object detection schemes into the network architecture for tracking purposes.

The graphical abstract of proposed offline training and online tracking is shown in

Fig. 3.2. The proposed framework mainly consists of an offline proposal generation

strategy and a two-stream multitask network, which consists of lightweight individual

modules for small object tracking. Also, the proposed proposal generation strategy

helps the network to learn a generalized target model, handle occlusion, and viewpoint

change with the aid of context information. This strategy is just applied to offline

training of the network to avoid extra computational burden in online tracking.

3.3.1 Offline Proposal Generation Strategy

The eventual goal of proposal generation strategies is to provide a set of candidate

detection regions, which are possible locations of objects. There are various category-

dependent strategies for proposal generation [21, 58, 78]. For instance, IoU-Net [21]

augments the ground truth instead of using Region Proposal Networks (RPNs) to
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Figure 3.2: Overview of the proposed method (COMET) in offline training and online
tracking phases.

provide better performance and robustness to the network. Also, ATOM [19] uses

a proposal generation strategy similar to [21] with a modulation vector to integrate

target-specific information into its network.

Motivated by IoU-Net [21] and ATOM [19], an offline proposal generation strategy

is proposed to extract the context information of target from the reference frame. The

ATOM tracker generates N target proposals from the test frame (Pt+ζ), given the

target location in that frame (Gt+ζ). Jittered ground truth locations in offline training

produce the target proposals. But, the estimated locations achieved by a simple two-

layer classification network will be jittered in online tracking. The test proposals are

generated according to IoUGt+ζ ≜ IoU(Gt+ζ ,Pt+ζ) ⩾ T1. Then, a network is trained

to predict IoU values (IoUpred) between Pt+ζ and object, given the bounding box

of the target in the reference frame (Gt). Finally, the designed network in ATOM

minimizes the mean squared error of IoUGt+ζ
and IoUpred.

In this work, the proposed strategy also provides target patches with background

supporters from the reference frame (denoted as Pt) to solve the challenging problems

of small object tracking. Besides Gt, the proposed method exploits Pt just in offline

training. Using context features and target parts will assist the proposed network in

handling occlusion and viewpoint change problems for small objects. For simplicity,
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we will describe the proposed offline proposal generation strategy with the process

of IoU-prediction. However, the proposed network predicts both IoU and Center

Location Error (CLE) of test proposals with target, simultaneously.

An overview of the process of offline proposal generation for IoU-prediction is shown

in Algorithm 1. The proposed strategy generates (N/2) − 1 target proposals from

the reference frame, which are generated as IoUGt ≜ IoU(Gt,Pt) ⩾ T2. Note that it

considers T2 > T1 to prevent drift toward visual distractors. The proposed tracker

exploits this information (especially in challenging scenarios involving occlusion and

viewpoint change) to avoid confusion during target tracking. The Pt and Gt are passed

through the reference branch of the proposed network, simultaneously. In this work,

an extended modulation vector has been introduced to provide the representations

of the target and its parts into the network. That is a set of modulation vectors

that each vector encoded the information of one reference proposal. To compute IoU-

prediction, the features of the test patch should be modulated by the features of the

target and its parts. It means that the IoU-prediction of N test proposals is computed

per each reference proposal. Thus, there will be N2/2 IoU predictions. Instead of

computing N/2 times of N IoU-predictions, the extended modulation vector allows

the computation of N/2 groups of N IoU-predictions at once. Therefore, the network

predicts N/2 groups of IoU-predictions by minimizing the mean squared error of each

group compared to IoUGt+ζ . During online tracking, COMET does not generate

Pt and just uses the Gt to predict one group of IoU-predictions for generated Pt+ζ .

Therefore, the proposed strategy will not impose extra computational complexity in

online tracking.

3.3.2 Multitask Two-Stream Network

Tracking small objects from aerial view involves extra difficulties such as clarity of

target appearance, fast viewpoint change, or drastic rotations besides existing track-

ing challenges. This part aims to design an architecture that handles the problems
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Algorithm 1 : Offline Proposal Generation
Notations: Bounding box B (Gt+ζ for a test frame or Gt for a reference frame), IoU threshold T (T1 for a test
frame or T2 for a reference frame), Number of proposals N (N for a test frame or (N/2) − 1 for a reference frame),
Iteration number (ii), Maximum iteration (maxii), A Gaussian distribution with zero-mean (µ = 0) and randomly
selected variance Σr (N), Bounding box proposals generated by a Gaussian jittering P (Pt+ζ for a test frame or Pt

for a reference frame)
Input: B, T, N, Σr, maxii

Output: P

for i = 1 : N do
ii = 0,
do

P[i] = B+ N(µ,Σr),
ii = ii+ 1,

while (IoU(B,P[i]) < T) and (ii < maxii);

end
return P

of small object tracking by considering recent advances in small object detection. In-

spired by [19, 21, 43, 62, 79], a two-stream network is proposed (see Fig. 3.3), which

consists of multi-scale processing and aggregation of features, the fusion of hierarchi-

cal information, spatial attention module, and channel attention module. Also, the

proposed network seeks to maximize the IoU between estimated bounding boxes and

the object while it minimizes their location distance. Hence, it exploits a multitask

loss function, which is optimized to consider both the accuracy and robustness of the

estimated bounding boxes. In the following, the proposed architecture and the role

of the main components are described.

The proposed network has adopted ResNet-50 [20] to provide backbone features

for reference and test branches. Following small object detection methods, features

from Block3 and Block4 of ResNet-50 are just extracted to exploit both spatial and

semantic features while controlling the number of parameters [62, 80]. Then, the

proposed network employs a Multi-Scale Aggregation and Fusion (MSAF) module. It

processes spatial information via the InceptionV3 module [81] to perform factorized

asymmetric convolutions on target regions. This low-cost multi-scale processing helps

the network to approximate optimal filters that are proper for small object tracking.

Also, semantic features are passed through the convolution and deconvolution layers

to be refined and resized for feature fusion. The resulted hierarchical information is

fused by an element-wise addition of the spatial and semantic feature maps. After

feature fusion, the number of channels is reduced by 1×1 convolution layers to limit
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Figure 3.3: Overview of the proposed two-stream network. MSAF denotes multi-scale
aggregation and fusion module, which utilizes the InceptionV3 module in its top branch.
For deconvolution block, a 3×3 kernel with a stride of 2, input padding of 1, dilation value
of 1, and output padding of 1 is used. After each convolution/fully-connected block, batch
normalization and leaky ReLU are applied. Extended modulation vector allows COMET
to learn targets and their parts in offline training. Also, the fully-connected block, global
average pooling, and linear layer are denoted as the FC, GAP, and linear, respectively.

the network parameters. Exploring multi-scale features helps the COMET for small

objects that may contain less than 0.01% pixels of a frame.

Next, the proposed network utilizes the Bottleneck Attention Module (BAM) [43],

which has a lightweight and simple architecture. It emphasizes target-related spa-

tial and channel information and suppresses distractors and redundant information,

which are common in aerial images [62]. The BAM includes channel attention, spatial

attention, and identity shortcut connection branches. In this work, the SENet [82] is

employed as the channel attention branch, which uses Global Average Pooling (GAP)

and a multi-layer perceptron to find the optimal combination of channels. The spatial

attention module utilizes dilated convolutions to increase the receptive field. Lastly,

the identity shortcut connection helps for better gradient flow.

After that, the proposed method generates proposals from the test frame. Also, it

uses the proposed proposal generation strategy to extract the bounding boxes from

the target and its parts from the reference frame in offline training. These generated

bounding boxes are applied to the resulted feature maps and fed into a Precise Re-
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gion of Interest (PrRoI) Pooling layer [21], which is differentiable w.r.t. bounding

box coordinates. The network uses a convolutional layer with a 3×3 kernel to convert

the PrRoI output to target appearance coefficients. Target coefficients are expanded

and multiplied with the features of test patch to merge the information of the target

and its parts into the test branch. That is, applying target-specific information into

the test branch by the extended modulation vector. Then, the test proposals (Pt+ζ)

are applied to the features of the test branch and fed to a 5×5 PrRoI pooling. Fi-

nally, the proposed network simultaneously predicts IoU and CLE of test proposals

by optimizing a multitask loss function as LNet = LIoU + λLCLE, where the LIoU ,

LCLE, and λ represent the loss function for IoU-prediction head, loss function for

the CLE-prediction head, and balancing hyper-parameter for loss functions, respec-

tively. By denoting i-th IoU- and CLE-prediction values as IoU (i) and CLE(i), the

loss functions are defined as

LIoU =
1

N

N∑︂
i=1

(IoU
(i)
Gt+ζ

− IoU
(i)
pred)

2, (3.1)

LCLE =

⎧⎨⎩ 1
N

∑︁N
i=1

1
2(CLE

(i)
Gt+ζ

− CLE
(i)
pred)

2
|(CLE

(i)
Gt+ζ

− CLE
(i)
pred| < 1

1
N

∑︁N
i=1 |(CLE

(i)
Gt+ζ

− CLE
(i)
pred)| −

1
2 otherwise

, (3.2)

where the CLEGt+ζ
= (∆xGt+ζ

/widthGt+ζ
,∆yGt+ζ

/heightGt+ζ
) is the normalized dis-

tance between the center location of Pt+ζ and Gt+ζ . For example, ∆xGt+ζ
is calculated

as xGt+ζ
−xPt+ζ

. Also, the CLEpred (and IoUpred) represents the predicted CLE (and

the predicted IoU) between bounding box estimations (Gt+ζ) and target, given an

initial bounding box in the reference frame. In offline training, the proposed network

optimizes the loss function to learn how to predict the target bounding box from the

pattern of proposals generation.

In online tracking, the target bounding box from the first frame (similar to [19,

23–25]) and also target proposals in the test frame are passed through the network.

As a result, there is just one group of CLE-prediction as well as IoU-prediction to

avoid more computational complexity. In this phase, the aim is to maximize the IoU-
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Algorithm 2 : Online Tracking
Notations: Input sequence (S), Sequence length (T ), Current frame (t), Rough estimation of bounding box (Be

t ),

Generated test proposals (Bp
t ), Concatenated bounding boxes (Bc

t ), Bounding box prediction (Bpred
t ), Step size (β),

Number of refinements (n), Online classification network (NetATOM
online ), Scale and center jittering (Jitt) with random

factors, Network predictions (IoU and CLE)
Input: S = {I0, I1, ..., IT }, B0 = {x0, y0, w0, h0}
Output: B

pred
t , t ∈ {1, ..., T}

for t = 1 : T do
Be

t = Net
ATOM
online (It)

B
p
t = Jitt(Be

t )
Bc

t = Concat(Be
t , B

p
t )

for i = 1 : n do
IoU , CLE = FeedForward(I0, It, B0, Bc

t )

gradIoU
Bc

t
= [ ∂IoU

∂x
, ∂IoU

∂y
, ∂IoU

∂w
, ∂IoU

∂h
]

Bc
t ← Bc

t + β × [ ∂IoU
∂x

.w, ∂IoU
∂y

.h, ∂IoU
∂w

.w, ∂IoU
∂h

.h]

gradCLE
Bc

t
= [ ∂CLE

∂x
, ∂CLE

∂y
, ∂CLE

∂w
, ∂CLE

∂h
]

Bc
t ← Bc

t − β × [ ∂CLE
∂x

.w, ∂CLE
∂y

.h, ∂CLE
∂w

, ∂CLE
∂h

]

end

BK×4
t ← Select K best Bc

t w.r.t. IoU-scores

B
pred
t = Avg(BK×4

t )

end

return B
pred
t

prediction of test proposals using the gradient ascent algorithm and also to minimize

its CLE-prediction using the gradient descent algorithm. Algorithm 2 describes the

process of online tracking in detail. This algorithm shows how the inputs are passed

through the network, and bounding box coordinates are updated based on scaled

back-propagated gradients. While the IoU-gradients are scaled up with bounding

box sizes to optimize in a log-scaled domain, just x and y coordinates of test bound-

ing boxes are scaled up for CLE-gradients. It experimentally achieved better results

compared with the scaling process for IoU-gradients. The intuitive reason is that

the network has learned the normalized location differences between bounding box

estimations and target bounding box. That is, the CLE-prediction is responsible for

accurate localization, whereas the IoU-prediction determines the bounding box aspect

ratio. After refining the test proposals (N = 10 for online phase) for n = 5 times,

the proposed method selects the K = 3 best bounding boxes and uses the average of

these predictions based on IoU-scores as the final target bounding box.
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3.4 Empirical Evaluation

In this section, first, the proposed method is compared with the baseline ATOM

[19] on the test sets of large-scale LaSOT [8] and GOT-10k [12] datasets. Then, as

the main aim, the proposed tracker is evaluated on state-of-the-art benchmarks for

small object tracking from aerial view: VisDrone-2019-test-dev [10], UAVDT [54],

and Small-90 [56]. Although the Small-90 dataset includes the challenging videos of

the UAV-123 dataset with small objects, the experimental results on the UAV-123

[53] dataset (low-altitude UAV dataset (10∼30 meters)) are also presented. However,

the UAV-123 dataset lacks varieties in small objects, camera motions, and real scenes

[55]. Moreover, traditional tracking datasets do not consist of challenges such as tiny

objects, significant viewpoint changes, camera motion, and high density from aerial

views. For these reasons and our focus on tracking small objects on videos captured

from medium- & high-altitudes, the proposed tracker (COMET) is evaluated on re-

lated benchmarks to demonstrate the motivation and major effectiveness for small

object tracking.

Experiments have been conducted three times, and the average results are re-

ported. The details about employed visual attributes is provided in Sec. 2.2. The

trackers are compared in terms of precision [48], success (or Success Rate (SR)) [12,

48], normalized Area-Under-Curve (AUC), and Average Overlap (AO) [12] metrics

by standard benchmarks with default thresholds. In the following, implementation

details, ablation analysis, and state-of-the-art comparisons of COMET are presented.

3.4.1 Implementation Details

For offline proposal generation, hyper-parameters are set to N = 16 (test proposals

number, (N/2) = 8 (seven reference proposal numbers plus reference ground truth)),

T1 = 0.1, T2 = 0.8, λ = 4, and image sample pairs randomly selected from videos with

a maximum gap of 50 frames (ζ = 50). Flipping and color jittering are used for data
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Table 3.1: Ablation analysis of COMET considering different components and feature
fusion operations on UAVDT dataset.

Metric COMET A1 A2 A3 A4 A5

Precision 88.7 87.2 85.2 83.6 88 85.3

Success 81 78 76.9 73.5 80.4 77.2

augmentation of the reference patch. The values for IoU and CLE are normalized to

the range of [−1, 1].

The maximum iteration number maxii for proposal generation is 200 for reference

proposals and 20 for test proposals. The weights of the backbone network are frozen,

and other weights are initialized using [83]. The training splits are extracted from the

official training set (protocol II) of LaSOT [8], training set of GOT-10K [12], NfS [52],

and training set of VisDrone-2019 [10] datasets. Moreover, the validation splits of

VisDrone-2019 and GOT-10K datasets have been used in the training phase. To train

in an end-to-end fashion, the ADAM optimizer [84] is used with an initial learning

rate of 10−4, weight decay of 10−5, and decay factor 0.2 per 15 epochs. The proposed

network trained for 60 epochs with a batch size of 64 and 64000 sampled videos per

epoch. Also, the proposed tracker has been implemented using PyTorch, and the

evaluations performed on an Nvidia Tesla V100 GPU with 16 GB RAM. Finally, the

parameters of the online classification network are set as the ATOM [19].

3.4.2 Ablation Analysis of COMET

A systematic ablation study on individual components of the proposed tracker has

been conducted on the UAVDT dataset [55] (see Table 3.1). It includes three different

versions of the proposed network consisting of the networks without 1) “CLE-head”,

2) “CLE-head and reference proposals generation”, and 3) “CLE-head, reference pro-

Table 3.2: Overall & attribute-based evaluations of COMET on the test sets of LaSOT &
GOT-10k.

Tracker
LaSOT (AUC metric) GOT-10k

Overall IV POC DEF MB CM ROT BC V C SV FOC FM OV LR ARC AO SR0.5 SR0.75

COMET 54.2 57.8 50 56.2 53.2 57.5 53.5 48.7 51.1 53.9 46.3 44.2 46.2 46.8 52.2 59.6 70.6 44.9

ATOM 51.8 56.1 48.3 51.4 49.7 56.4 48.9 45.1 47.4 51.5 42.8 43.3 44.2 44.7 50.5 55.6 63.4 40.2
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posals generation, and attention module”, referred to as A1, A2, and A3, respec-

tively. Moreover, two other different feature fusion operations have been investigated,

namely features multiplication (A4) and features concatenation (A5), compared to

the element-wise addition of feature maps in the MSAF module (see Fig 3.3).

These experiments demonstrate the effectiveness of each component on tracking

performance results, while the proposed method has achieved 88.7% and 81% in

terms of precision and success rates, respectively. According to these results, the at-

tention module, reference proposal generation strategy, and CLE-head have improved

the average of success and precision rates up to 2.5%, 1.55%, and 2.25%, respectively.

Besides, comparing results of feature fusion operations demonstrate that the element-

wise addition has provided the average of precision and success rates up to 0.65% and

3.6% compared to A4 and A5, respectively. Also, the benefit of feature addition pre-

viously has been proved in other methods such as [19]. Finally, the proposed tracker

is compared with the baseline tracker [19] on the test sets of two large-scale generic

object tracking benchmarks, namely LaSOT [8] and GOT-10k [12]. Table 3.2 demon-

strates that the COMET also considerably improves the performance of the ATOM

[19] on traditional visual tracking datasets.

3.4.3 State-of-the-art Comparison of COMET

For quantitative comparison, COMET is compared with state-of-the-art visual track-

ers including AutoTrack [68], ATOM [19], DiMP-50 [26], PrDiMP-50 [40], Ocean-

online [41], SiamRPN++ [25], SiamMask [24], DaSiamRPN [34], SiamDW [35], CREST

[85], MDNet [17], PTAV [86], ECO [87], and MCPF [88] on aerial tracking datasets.

Fig. 3.4 shows the achieved results in terms of precision and success plots [48]. Ac-

cording to these results, COMET outperforms top-performing visual trackers on three

available challenging small object tracking datasets (i.e., UAVDT, VisDrone-2019-

test-dev and Small-90) as well as the UAV-123 dataset. For instance, COMET has

outperformed the SiamRPN++ and DiMP-50 trackers by 4.4% and 3.2% in terms
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of average precision metric, and 3.3% and 3% in terms of average success metric on

all datasets, respectively. Besides, it outperforms the PrDiMP and Ocean-online up

to 3.3% and 5.4% in average precision metric, and 3.6% and 5.3% in average suc-

cess metric on the small object tracking datasets. Compared to the baseline ATOM

tracker, COMET has improved the average precision rate up to 10.6%, 7.2% and

0.8%, while it increased the average success rate up to 11.2%, 7.1% and 2.9% on

the UAVDT, VisDrone-2019-test-dev and Small-90 datasets, respectively. Although

COMET slightly outperforms ATOM on the UAV-123 (see Fig. 3.1), it achieved up to

6.2% and 7% improvements compared to it in terms of average precision and success

metrics on small object tracking datasets.

These results are mainly owed to the proposed proposal generation strategy and

effective modules, which makes the network focus on relevant target (and its parts)

information and context information. Furthermore, COMET runs at 24 FPS, while

the average speeds of other trackers on the referred machine are indicated in Table 3.3.

This satisfactory speed has been originated from considering different proposal gen-

eration strategies for offline & online procedures and employing lightweight modules

in the proposed architecture. The COMET has been evaluated according to various

attributes of small object tracking scenarios to investigate its strengths and weak-

nesses. Table 3.4 and Table 3.5 present the attribute-based comparison of visual

trackers. These tables demonstrate that the COMET can successfully handle chal-

lenging scenarios for small object tracking purposes. For instance, compared with

the DiMP-50, SiamRPN++, SiamMask, PrDiMP & Ocean-online, COMET achieves

improvements up to 9.5%, 7.4%, 4.5%, 1.8% & 7.7% for small object attribute, and

4.4%, 2.6%, 5.3%, 3.6% & 5.1% for viewpoint change attribute, respectively. While

Table 3.3: Average speed (FPS ) of COMET compared with the state-of-the-art trackers
on UAVDT dataset.

COMET ATOM SiamRPN++ DiMP-50 SiamMask ECO PrDiMP-50

Speed 24 30 32 33 42 35 22
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Figure 3.4: Overall precision and success comparisons of the proposed method (COMET)
with state-of-the-art tracking methods on UAVDT, VisDrone-2019-test-dev, Small-90, and
UAV-123 datasets. 31



Table 3.4: Attribute-based results of COMET compared with the state-of-the-art trackers
in terms of accuracy metric on UAVDT dataset [ First , second , and third methods are
shown in color].

Tracker BC CM OM SO IV OB SV LO LT

COMET 83.8 86.1 90.6 90.9 88.5 87.7 90.2 79.6 96

ATOM 70.1 77.2 73.4 80.6 80.8 74.9 73 66 91.7

SiamRPN++ 74.9 75.9 80.4 83.5 89.7 89.4 80.1 66.6 84.9

SiamMask 71.6 76.7 77.8 86.7 86.4 86 77.3 60.1 93.8

DiMP-50 71.1 80.3 75.8 81.4 84.3 79 76.1 68.6 100

PrDiMP-50 74.4 79.7 82.7 84.1 83.8 83.1 84.7 98.6 73.2

Ocean-online 69.7 72.3 76.2 83.2 87.8 85.6 74.5 83.3 62.5

Table 3.5: Attribute-based results of COMET compared with the state-of-the-art trackers
in terms of AUC metric on VisDrone-2019-test-dev dataset [ First , second , and third
methods are shown in color].

Tracker Overall ARC BC CM FM FOC IV LR OV POC SOB SV VC

COMET 64.5 64.2 43.4 62.6 64.9 56.7 65.5 41.8 75.9 62.1 42.8 65.8 70.4

ATOM 57.1 52.3 36.7 56.4 52.3 48.8 63.3 31.2 63 51.9 35.6 55.4 61.3

SiamRPN++ 59.9 58.9 41.2 58.7 61.8 55.1 63.5 36.4 69.3 58.8 39.6 59.9 67.8

DiMP-50 60.8 54.5 40.6 60.6 62 55.8 63.6 32.7 62.4 56.8 39.8 59.7 66

SiamMask 58.1 57.8 38.5 57.2 60.8 49 56.6 46.5 67.5 52.9 37 59.4 65.1

PrDiMP-50 59.8 58.6 41.1 58 57.5 57 64.2 31.8 67.7 61.2 37.4 58.3 66.8

Ocean-online 59.4 61.1 46.3 59.2 55.3 53 56.6 47.7 66.8 53.4 45.8 62.1 65.3

the performance still can be improved based on IV, OB, LR, LO, and LT attributes,

COMET outperforms ATOM by a margin up to 7.7%, 12.8%, 10.6%, 13.6%, and

4.3% on these attributes, respectively.

The qualitative comparisons of visual trackers on UAVDT [54, 55] are shown in

Fig. 3.5, in which the videos have been selected for more clarity. According to the

first row of Fig. 3.5, COMET successfully models small objects on-the-fly consider-

ing complicated aerial view scenarios. Also, it provides promising results when the

aspect ratio of target significantly changes. Examples of occurring out-of-view and

occlusion are shown in the next rows of Fig. 3.5. By considering target parts and

context information, COMET properly handles these problems existing potential dis-

tractors. More qualitative results on arbitrary YouTube videos are shown in Fig. 3.6.

Please refer to the supplementary material of our COMET paper [44] for the video
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Figure 3.5: Qualitative comparison of the proposed COMET tracker with state-of-the-art
tracking methods on S1202, S0602, and S0801 video sequences from UAVDT dataset (top
to bottom row, respectively). Best viewed in color.

containing more examples.

3.4.4 Extending COMET to LTCOMET

Short-term trackers search the local window around the previous position of target to

localize it in the current frame. However, this assumption is not valid for the videos

with object disappearance (e.g., full occlusion & out-of-view) and videos with frames

for which local window searching is insufficient (e.g., drastic camera motions or fast

object movement especially for small targets). These scenarios frequently happen

in aerial videos. Accordingly, the VisDrone-SOT challenge have included long-term

sequences in the competition testing set (i.e., VisDrone-test-challenge), starting from

2019 [10, 11]. Motivated by this, we are interested in extending our COMET to

globally search the test frame once one of long-term scenarios happen. In doing so,

the local tracker (i.e. COMET) should find out that the target is not inside the local

window. Then, switch to global search and identify potential targets. Finally, verify

which instance is our target and restart the tracker from that instance.

The architecture of our new tracker, called Long-Term COMET (LTCOMET),

which participated in VisDrone-SOT2020 challenge, is the same as COMET [44] with-
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ECO                                SiamMask ATOM                            DiMP-50                        SiamRPN++                  COMET  

Figure 3.6: Qualitative evaluation of the proposed COMET tracker compared with state-
of-the-art visual tracking methods on three YouTube videos. For better visualisation, the
magnified target is shown inside a yellow box. Best viewed in color.

Figure 3.7: The precision and success results of participant trackers including LTCOMET
in VisDrone-SOT2020 challenge [11]. Evaluation is done on VisDrone-test-challenge set
which includes both short-term and long-term tracking sequences. From left to right, pre-
cision and success results on all, short-term, and long-term sequences, respectively.

out using channel reduction after the Multi-Scale Aggregation and Fusion (MSAFs)

modules. The disappearance of target from local window has been guessed using

thresholding the confidence score. For global search, we utilize a sliding window

search. Finally, we use the online network of our local tracker (i.e. COMET) which
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is not updated during disappearance as the verifier. In doing so, the obtained global

windows are compared to the template model of target before disappearance, and

the tracker is restarted from the potential target with confidence score higher than a

predefined threshold (i.e. 0.9). However, the tracker might drift towards distractors/

similar objects after restarting from global detection. Moreover, the appearance of

target might be different after returning back to the scene. Hence, the model obtained

before disappearance might not be reliable.
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Precision plots of OPE - all - Partial Occlusion (37)
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Precision plots of OPE - all - Scale Variation (33)
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Precision plots of OPE - all - Viewpoint Change (36)
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Figure 3.8: The precision results of participant trackers including LTCOMET in VisDrone-
SOT2020 challenge [11] based on different visual attributes on VisDrone-test-challenge set.
The number of sequences for each attribute is shown in the title of the plot. Best-viewed
in color and zooming-in.

The competition test set for VisDrone challenge contains other challenges includ-
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Success plots of OPE - all - Aspect Ratio Change (19)
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Success plots of OPE - all - Background Clutter (26)
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Success plots of OPE - all - Camera Motion (44)
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Success plots of OPE - all - Fast Motion (14)
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Success plots of OPE - all - Full Occlusion (18)
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Success plots of OPE - all - Illumination Variation (22)
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Success plots of OPE - all - Low Resolution (32)
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Success plots of OPE - all - Out-of-View (7)
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Success plots of OPE - all - Partial Occlusion (37)
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Success plots of OPE - all - Scale Variation (33)
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Success plots of OPE - all - Similar Object (29)
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Success plots of OPE - all - Viewpoint Change (36)
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Figure 3.9: The success results of participant trackers including LTCOMET in VisDrone-
SOT2020 challenge [11] based on different visual attributes on VisDrone-test-challenge set.
The number of sequences for each attribute is shown in the title of the plot. Best-viewed
in color and zooming-in.

ing illumination variation, low-resolution, distortion, different weather conditions,

and videos captured at night. Hence, we preprocess the input test frames using

the Kindling the Darkness (KinD) [89] and Photo-realistic Cascading Residual Net-

work (PCARN) [90] for light adjustment & degradation removal and obtaining high-

resolution patches, respectively. Also, more data augmentations (including photo-

metric and geometric distortions) over the first frame of video are used to provide a

diverse initial set for training the online network of COMET [44] at the start of each

sequence.

The evaluation results of the participant trackers in VisDrone-SOT2020 [11] are shown

in Fig. 3.7. Our LTCOMET tracker is the third top performer tracker on short-term
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sequences in terms of precision & success, while we ranked sixth for long-term se-

quences. The main reason is that the other top performer methods use ensemble

of state-of-the-art short-term trackers (e.g., PrDimP [40], DiMP [26], SiamRPN++

[25]), long-term & multi-object trackers and detection modules (e.g., Siam R-CNN

[71], SORT MOT [91], and faster R-CNN [33]), and auxiliary inputs (e.g., estimated

optical flow) to enhance the performance while we have integrated a simple global

search strategy into our COMET short-term tracker. On all the sequences, we ranked

fourth & sixth in terms of precision & success, respectively. The results based on dif-

ferent visual attributes can be found in Fig. 3.8 and Fig. 3.9 in terms of precision and

success, respectively.

3.5 Summary

A context-aware IoU-guided tracker proposed that includes an offline reference pro-

posal generation strategy and a two-stream multitask network. It aims to track small

objects in videos captured from medium- and high-altitude aerial views. First, an in-

troduced proposal generation strategy provides context information for the proposed

network to learn the target and its parts. This strategy effectively helps the network to

handle occlusion and viewpoint change in high-density videos with a broad view angle

in which only some parts of the target are visible. Moreover, the proposed network

exploits multi-scale feature aggregation and attention modules to learn multi-scale

features and prevent visual distractors. Finally, the proposed multitask loss function

accurately estimates the target region by maximizing IoU and minimizing CLE be-

tween the predicted box and object. Experimental results on four state-of-the-art

aerial view tracking datasets and remarkable performance of the proposed tracker

demonstrate the motivation and effectiveness of proposed components for small ob-

ject tracking purposes. An extended version of the proposed tracker is developed for

enhancing the robustness in long-term scenarios.
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Chapter 4

DESTINE

In this chapter, first, segmentation tracking and Video Object Segmentation (VOS)

computer vision tasks are introduced. Then, the existing methods and benchmarks

for these two tasks are reviewed. Finally, the Adaptive Visual Tracking and Instance

Segmentation (DESTINE) tracker, participated in the famous Visual Object Tracking

(VOT) 2020 challenge [3] is presented.

4.1 Introduction

The goal of segmentation tracking is to predict the binary mask of the target in each

frame of video with having its ground truth box in the first frame as input. Com-

pared with regular bounding box tracking, predicting this pixel-level representation

provides better understanding of detailed object state through the video at the cost

of sacrificing the computational resource.

Segmentation tracking is related to another computer vision task, called Video Object

Segmentation (VOS) which is studied in both unsupervised and semi-supervised set-

tings in literature. The former aims at predicting the binary mask of class-agnostic

salient objects in all frames of video, while the later takes the mask of targets in

the first frame as input to predict accurate targets’ mask at the subsequent frames.

The use of other levels of supervision for VOS resulted in interactive and weakly-
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supervised VOS methods [92].

VOS in semi-supervised settings is highly related to segmentation tracking, however

the minor differences between these two tasks are 1) For VOS, the benchmark datasets

[93–95] contain targets with complex shapes/edges, but the videos are less challenging

compared with tracking benchmark videos. For instance, VOS considers very short

videos containing fewer distractors & the primary target objects usually occupy ma-

jority pixels of image, 2) VOS is usually considered in multi-object settings, 3) Most

of the existing VOS methods are really slow while efficiency is an important criteria

for Visual Object Tracking community, and 4) In tracking community, even for seg-

mentation trackers, the supervision for first frame is usually considered as bounding

box of target. However, in semi-supervised VOS, the mask of targets are provided.

Accordingly, VOS methods are usually slow, not fulfilling the real-time requirement

for tracking community. However, for scenarios that bounding box tracking is not suf-

ficient (e.g., highly deformable & articulated objects), the need to obtain the precise

mask of target is more pronounced. Considering the recent interest of Visual Object

Tracking (VOT) community in VOS task, we can expect the rapid merging of these

two problems which will result in more accurate trackers & more robust real-time

VOS methods in the next few years. Following this, we are interested in developing a

segmentation tracker using the existing efforts in VOT & VOS literature. In Sec. 4.2,

we will review the existing notable methods and datasets for VOS & segmentation

tracking. Then, we will introduce our proposed DESTINE tracker, and will review

the results of VOT-ST2020 challenge in Sec. 4.3.
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4.2 Semi-Supervised VOS/ Segmentation Track-

ing

4.2.1 Existing Methods

Semi-supervised VOS methods [92] can be classified into three main groups. Propagation-

based [96, 97] methods utilize the spatio-temporal consistency in adjacent frames to

propagate the initial ground truth mask of targets in the first frame to the other

frames of video. However, these methods have difficulties with handling temporal

discontinuities. Fine-tuning-based [98–100] methods fine-tune a pre-trained segmen-

tation network on the appearance of the targets and their augmentations in the first

frame of test video. Then, they predict the segmentation mask of targets in the

subsequent frames using the new weights without any temporal information. This

approach is computationally expensive and suffers from over-fitting to the appear-

ance of targets in the first frame. Also, due to the difference between the distribution

of training samples for pre-training and training at inference time, online learning

does not work as expected. Utilizing meta-learning to address these issues have been

explored in some of the recent works [101, 102]. Finally, matching-based methods

use the ground truth mask for the first frame as well as the predicted masks from

previous frames to obtain the mask for the current frame. Siamese architecture [103],

memory networks [104–106], and distance maps [107] have been used by matching-

based methods to provide promising results & quite efficiency. Note that some of the

existing methods combine different ideas or extend online learning to other frames to

increase the performance.

MaskTrack [108] combines the propagation-based & fine-tuning-based VOS approaches

by training a network from scratch in inference phase which uses the predicted mask

of previous frame & optical flow as auxiliary inputs. DIPNet [109] introduces a two-

stage method where they obtain a coarse mask using Dynamic Identity Propagation

in the first stage. Then, in the second stage, they utilize a Spatial Instance Segmenta-
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tion which is fine-tuned on the first frame of test video at inference time to obtain the

detailed mask guided by the mask obtained in the previous stage. To learn to update

the segmentation model for matching-based VOS, [106] proposes an episodic graph

memory network with fixed memory size and learnable read & write controllers.

Incorporating the recent advances of Visual Object Tracking (e.g., Siamese networks,

online classification networks, and discriminative loss functions) to develop a new

group of robust, accurate, and fast VOS/segmentation trackers is also studied in re-

cent works [102, 103]. This effort got accelerated by substituting the ground truth

bounding box of targets with binary masks for the famous Visual Object Tracking

(VOT) challenge, starting from 2020 [3]. A simple approach to develop a two-stage

segmentation tracker is to utilize a weakly supervised segmentation method which

receives bounding box prediction from a regular tracker as the input. Following that,

SiamMask [24] is one of the celebrated efforts in tracking community which tries to

solve both bounding box & segmentation tracking using a unified two-stage network.

Very recently, [110] considers spatio-temporal consistencies in weakly supervised seg-

mentation to provide promising results. On the other hand, the Discriminative Single

Shot Tracker (D3S) [111] aims at developing a one-stage segmentation tracker which

is trained on VOS datasets. Then, they obtain the bounding box representation from

the predicted masks. Interestingly, they achieve state-of-the-art or competitive per-

formance on tracking benchmarks, while they only use VOS training datasets which

are less challenging compared with tracking benchmarks. Their method consists of re-

fining [112] a rough mask obtained from concatenation of Geometrically Constrained

Euclidean Model (GEM) and Geometrically Invariant Model (GIM) which are ob-

tained from ATOM [19] tracker and Video Match [103] method, respectively. Also,

the refinement is done following the Sharp Mask [112] method to combine feature

maps from different layers of ResNet backbone with the coarse mask to obtain the

final detailed mask. Inspired by the recent discriminative visual trackers [19], FRTM-

VOS [102] introduces a novel two-stage VOS method which the first stage is a shallow
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network consisting of two convolutional layers trained in an online manner using dis-

crimnative loss to predict a coarse mask of targets. Then, they use a segmentation

refinement network which is trained only in offline phase to convert the prediction

of previous stage to accurate mask. However, our experiments show that while the

shallow network of FRTM-VOS [102] uses the discriminative loss & online learning, it

suffers from robustness issues compared with the state-of-the-art discriminative visual

object trackers.

4.2.2 Datasets

YouTube-VOS [93]: This large-scale dataset contains 4.453K YouTube videos of

3 ∼ 6 seconds long, splitting into 3.471K, 474, and 508 clips for training, validation,

and test sets. While the ground truth masks for the first two sets are publicly available

for all the frames, the test set with released first frame’s ground truth mask has been

used for evaluating the participant VOS methods in corresponding competition. This

dataset covers 94 different categories including humans, animals, vehicles, common

objects, and accessories. The samples are collected from the YouTube-8M video

classification dataset.

DAVIS 2017 [94, 95]: Densely-Annotated Video Segmentation 2017 provides 150

sequences splitting into 60, 30, 30, and 30 clips for training, validation, test-dev, and

test-challenge sets with multiple foreground objects in the video. The ground truth

masks for all the frames of the first two sets are released, but the second two sets with

released first frame’s ground truth are used for the competition. A preliminary version

of this dataset with 50 videos and single foreground object per video was presented

in DAVIS 2016. [113]. For evaluating vos methods, region similarity (IoU/Jaccard

index) & contour accuracy (F measure) between the prediction and ground truth are

used. [113]

VOT-ST 2020 [3]: The VOT-ST2020 introduces the first segmentation tracking
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dataset which contains 60 challenging sequences with released first frame’s ground

truth mask, and the evaluation is done using the official Python toolkit. Compared

with the previous year’s competitions [74, 75], ground truth masks are used instead

of (rotated) bounding boxes, and the Matlab toolkit is replaced by the new Python

toolkit. This toolkit implements the new evaluation protocol, i.e., instead of resetting

the tracker after failure which results in unfair evaluation, they divide each sequence

to anchors. Then, they redefine robustness, accuracy, and Expected Average Overlap

(EAO) for this protocol.

4.3 Method and Results

Motivated by the recent advances in VOT & VOS community [3, 19, 24, 26, 102], we

are interested in developing a robust and accurate segmentation tracker to partici-

pate in VOT-ST2020 challenge. We utilize the robustness of visual object trackers and

accuracy of VOS methods to develop a single object segmentation tracker. Accord-

ingly, our proposed DESTINE tracker is a two-stage method consisting of axis-aligned

bounding box estimation and mask prediction, respectively.

For the first-stage we combine the predictions of two state-of-the-art trackers, running

in parallel at inference time, which the main robust tracker switches to the auxiliary

accurate tracker when the Intersection over Union (IoU) & normalized L1-Distance

(nL1D) between the prediction of two trackers meets the predefined thresholds (e.g.

IoU > 0.8 & nL1D < 0.2). In this way, we prioritize robustness to accuracy and

switch to more accurate tracker in simple frames. Intuitively, we used DiMP-50 [26]

as the main tracker and SiamRPN++ [25] as the auxiliary one, but decided to change

the auxiliary tracker to ATOM [19] as this modification resulted in better performance

on validation data.

For the second stage, we use the modified SiamMask [24] to provide a coarse bi-

nary mask of the predicted box in previous stage. Then, the refinement network of

FRTM-VOS [102] runs over the predictions of SiamMask. We observed that while
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Figure 4.1: Results of participant trackers including DESTINE in VOT-ST2020 challenge
[3] in terms of Expected Average Overlap (EAO).

the refinement network provides very accurate masks for normal targets, it misses the

boundary pixels of small & fast moving targets. Accordingly, if the ratio of foreground

pixels between the two masks is lower than a predefined threshold (e.g., ratio < 0.43),

we use the output of SiamMask as the final prediction.

Visual Object Tracking- Short-term Tracking (VOT-ST) challenge has started to use

the segmentation mask annotation instead of bounding box, starting from 2020 [3].

They also introduce a new evaluation metric and integrate this new metric into a

newly proposed Python evaluation toolkit. Each participant should run the tracker

over the publicly available datasets using the official toolkit and share the packed

results with the VOT challenge organizers. The VOT organizers evaluated the top-

5 trackers on a sequestered dataset to avoid over-fitting. Following these steps, as

shown in Fig. 4.1, our DESTINE ranked 11th among 37 participant trackers in VOT-

ST2020 baseline in terms of Expected Average Overlap (EAO). The RPT ranked as

the first tracker by combining ATOM [19], RepPoints [114], and D3S [111] methods.

Also, three different versions of Ocean [41] tracker, i.e., OceanPlus, fastOcean, and

Ocean ranked 2nd, 6th, and 9th, respectively.
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4.4 Summary

A two-stage segmentation tracker consisting of an axis-aligned bounding box esti-

mation and mask prediction is developed. First, DiMP-50 [26] is used as the main

tracker switching to ATOM [19] when IoU and normalized L1-Distance between the

predictions meet the predefined thresholds. Then, SiamMask [24] segments the pre-

dicted box of previous stage and the refinement network of FRTM-VOS [102] is run

over that. Finally, DESTINE selects the best target mask according to the ratio of

foreground pixels for two mask predictions.
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Chapter 5

CHASE

In this chapter, first, the motivations of automatic architecture search for obtain-

ing a well-performing visual object tracker are discussed. Then, the literature of

Neural Architecture Search (NAS), with a focus on differentiable NAS has been re-

viewed. Finally, the CHASE: Robust Visual Tracking via Cell-Level Differentiable

Neural Architecture Search [115] method; accepted in British Machine Vision Confer-

ence (BMVC) 2021 has been presented. Accordingly, this chapter is mainly based on

the CHASE paper [115].

5.1 Introduction

Many efforts have been done to find the well-performing Siamese networks for Visual

Object Tracking [4, 116, 117]. These network architectures are manually designed by

extensive trial & errors of computer vision experts. However, this approach is time-

consuming, depends on prior knowledge, and some good luck. Moreover, it is biased

towards human priors with no guarantees achieving the highest effectiveness. Ac-

cordingly, automatically searching the best modules for Siamese networks becomes a

promising research problem to explore. Following the recent advances of AutoML [13]

in machine learning & computer vision applications, researchers have shown a great

interest in automatic design of neural architectures, i.e., Neural Architecture Search

(NAS). Within the computer vision community, prior works have well-explored NAS
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for classification task [14, 15]. There are also a handful of research works exploring

the potential of NAS for other applications including object detection [118, 119], se-

mantic segmentation [120, 121], image super-resolution [122], and cell segmentation

[123]. However, to the best of our knowledge, the potential of NAS has not been

explored for Visual Object Tracking, yet. Very recently, the LightTrack [124] uses

evolutionary search to obtain lightweight architectures for resource-limited hardware

platforms. Also, it uses single-path uniform sampling and lightweight building blocks

to achieve more compact architectures and reduce the computational costs. However,

single-path sampling decouples the optimizations of the weights and architecture pa-

rameters of the super-net, leading to large-variance to the optimization process and

tendency to a non-complex structure [119]. The LightTrack [124] has inherited the

limitations of evolutionary algorithms as well as single-pass search approaches. Fur-

thermore, it searches within a limited search space and stacks the basic blocks to

construct the final architecture.

In contrast, the aim of this work is to automatically discover the best architecture

block (or cell) that adapts large-scale trained backbone features to the objectives

of Siamese tracking networks. It modifies DARTS [125] that provides interesting

advantages such as weight-sharing, gradient-based search, efficiency, and simplicity

to have better generalization. However, the primary differences include (i) cell-level

NAS instead of searching stacked cells together, (ii) integrating cell-level NAS into

Siamese framework especially beneficial for visual tracking, (iii) employing operation-

level Dropout without hand-crafted constraints in [126, 127], and (iv) proposing an

early-stopping strategy for searching procedure to address the over-fitting problem

and multiple retraining from scratch to select the best cell.

The proposed approach (CHASE) takes advantage of the 2nd-order DARTS by

learning a cell into Siamese tracking networks. This is contrary to prior works such

as [125–131] searching for multiple stacked cells in CNN/RNN architectures using

the simple 1st-order DARTS with lower performance. The CHASE provides a sim-
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ple, efficient, and generalizable approach considering visual tracking purposes, i.e.,

high performance and speed. Besides, DARTS-based methods require searching on a

small proxy dataset and transferring the architecture blocks to the large-scale target

task to address the high GPU memory consumption issues. However, the CHASE

performs a cell-level architecture search, which allows directly utilizing a large-scale

tracking dataset. Last but not least, this work does not apply any post-processing

after the network search to restrict the number of skip-connections in contrast to [126,

127]. In fact, it removes prior heuristics since the proposed early-stopping provides

a performance-aware cell derivation strategy during the searching phase. It exploits

a hold-out sample set for validating the generalization of the best cell. Thus, it finds

the saturated searching point to address the over-fitting problem and the performance

gap between the search and evaluation phases [127], and then it can select the best

cell without requiring multiple retraining from scratch. Finally, the effectiveness of

NAS exploitation and its generalization is validated by employing three versions of

DARTS [125, 130] and integrating the proposed approach into two visual trackers [26,

40]. In summary, the main contributions are as follows:

• A novel cell-level differentiable architecture search mechanism is proposed to

automate the network design of the tracking module during offline training. It

is effectively integrated into Siamese tracking network architectures to directly

optimize a cell on a large-scale tracking dataset. Our approach is simple, effi-

cient, and easy to be incorporated into existing Siamese trackers for improving

performance. This idea can also be used in other computer vision tasks.

• An early-stopping strategy is proposed to improve the generalization perfor-

mance of selected cell architecture. This simple yet effective performance-aware

cell derivation strategy finds the best cell during the searching phase without

requiring inefficient multiple re-training from scratch.

• Extensive experimental evaluations on five widely used visual tracking bench-
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marks demonstrate the superior performance of the proposed approach. More-

over, it is practically shown to boost the overall performance when applied to

existing baselines.

5.2 Neural Architecture Search

The design of the deep neural network regulates its ability to automatically learn

feature extraction. Accordingly, many researchers in the computer vision community

have focused on the architecture engineering of networks [132]. However, the man-

ual design of networks cannot guarantee to suggest the optimal architectures on the

target datasets. Motivated by that, the computer vision community has indicated

an increasing interest in Neural Architecture Search (NAS) to automate the design of

neural networks. The search space, search strategy, and performance evaluation strat-

egy are the main components of NAS where the search strategy aims at picking the

best candidate architecture from the search space based on the estimated performance

of candidates [14, 15]. The search space plays the prominent role in determining the

final architecture selected by the NAS methods. By designing an appropriate search

space for the target application, even the random search strategy can provide sat-

isfactory results. However, developing more complex and effective search strategies

is required. Generally, based on the diversified search strategies, NAS methods can

be divided into four major groups of evolutionary algorithm (EA)-based, Reinforce-

ment Learning (RL)-based, Bayesian Optimization (BO)-based, and gradient-based

algorithms [14, 15]. While the EA-based algorithms were introduced many years ago

[133], the majority of practical techniques to obtain the best deep neural networks

using NAS has been developed under RL-based paradigm. However, the required

computational resource for most of RL-based methods is not accessible for ordinary

users. Recently, gradient-based methods introduced efficiency into NAS, while they

achieve competitive performance to the state-of-the-art RL-based NAS methods.

More specifically, the celebrated Differentiable Architecture Search (DARTS) method
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introduces a continuous relaxation of discrete architecture representation. To search

the best architecture, they consider a stack of candidate normal & reduction cells and

each cell is represented as a Directed Acyclic Graph (DAG). Each edge is a mixture of

all the candidate operations, and connects the intermediate nodes to all the previous

nodes; forming a complete DAG in forward direction. By doing so, they share the

parameters between all the candidate architectures, and use the Softmax of mixing

parameters of operations as the continuous representation of architecture. Then, they

optimize mixing parameters of operations & weight parameters of network using a bi-

level optimization approach, by considering the 1st- & 2nd-order approximation-based

approaches according to the calculation of architecture gradient where the 2nd-order

one leads to better performance but lower search speed. Finally, to obtain the best

subgraph (i.e., the preferable or ideally optimal network), they use hard pruning over

values of mixture weights.

DARTS increases the efficiency at the cost of tremendous memory usage, leading to

impractical settings for very large search spaces. Due to the high memory usage, they

cannot search directly on the large-scale datasets, which make them use limited data

as the proxy dataset for searching phase. This causes performance gap as we use

a stack of the best normal and reduction cells in final training phase on large-scale

target datasets. Consequently, DARTS suffers from (i) the performance gap between

the search & evaluation phases [126, 127], (ii) repeating blocks restriction [134], (iii)

performance collapse [128, 129, 131] due to the model over-fitting, (iv) degenerate

architectures [131], (v) aggregation of skip connections [126, 127, 130], and (vi) re-

quiring multiple re-training from scratch.

Since ICLR 2019 that DARTS method is published, many methods have been intro-

duced to address its issues. The Progressive DARTS (PDARTS) [126] gradually in-

creases the network depth assisted by the search space approximation and regulariza-

tion. The ProxylessNAS [134] proposes learning architectures on large-scale datasets,

path-level pruning, and latency regularization loss to address repeating blocks re-
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striction, GPU memory consumption, and hardware limitations. The DARTS+ [128]

proposes an early stopping paradigm with hand-crafted constraints to avoid the per-

formance collapse of DARTS due to the model over-fitting in the search phase. To im-

prove the robustness, the RobustDARTS [131] investigates the failure cases of DARTS

causing degenerate architectures with inferior performance. It introduces an adaptive

regularization and early stopping criterion with the dominant Hessian eigenvalue of

validation loss. The DARTS- [129] proposes an indicator-free approach to handle

the performance collapse & search instability of DARTS. It distinguishes two roles of

skip connections (i.e., stabilization of super-net training & candidate operation) by

an auxiliary skip connection between every two nodes. Finally, the Fair-DARTS [130]

proposes the collaborative competition approach and auxiliary loss to address the

aggregation of skip connections & discretization discrepancy problems, respectively.

Most DARTS-based methods (e.g., [126–131]) employ the 1st-order DARTS to reduce

computational complexity, allowing the search procedure on some stacked cells. The

2st-order DARTS fully exploits training and validation information and converges to

a better local optimum. This work integrates a modified cell-level 2nd-order DARTS

into the Siamese framework to track visual targets. The proposed early-stopping

strategy and operation-level Dropout [126, 127] without any constraints are exploited

to address the over-fitting problem, test-validation performance gap, and the best cell

architecture selection.

5.3 Proposed Approach: CHASE

The primary motivation is to automatically adapt the robust features extracted from

the backbone to the tracking objective by a computational cell (see Fig. 5.1). Hence,

this work exploits a modified version of DARTS [125] that forms an ordered Directed

Acyclic Graph (DAG) with N nodes as its computational cell, which is learned through

architecture search procedure. The CHASE learns a cell integrated into a Siamese

tracking architecture to avoid dramatically affecting the computational complexity

51



Backbone

Model 
Predictor

Conv

Block 3

Block 4

Target 
Center 

Regression

Training Frames

Test Frame

0

1

2 3 Out

B3

B4

Backbone

Block 3

Block 4

0

1

2 3 Out

B3

B4

Directed Acyclic Graph (Computational Cell)

0
1

2 3

Concat.

B3

B4

Skip

0B4
Dil-Conv-5x5

Max-Pool-3x3

Figure 5.1: An overview of the proposed CHASE tracker. Cell-level NAS is integrated into
the TCR network (with Siamese structure) of the baseline tracker [40] to adapt backbone
features extracted from Block3 and Block4 to the network’s objective. First, a computa-
tional cell is formed in searching phase in which each edge (dashed line) is a mixture of
candidate operations (shown as a blue box for one edge), each intermediate node is con-
nected to all the previous nodes, and the output node is the concatenation of intermediate
nodes (shown by brown solid lines). The objective of this phase is to find the optimal
sub-graph (i.e., the best cell shown at the bottom-right) by jointly optimizing the weights
and architecture parameters of the cell. Then, in training phase, the computational cell
is replaced by the best cell, and the whole pipeline is trained from scratch. Finally, the
network is used in evaluating phase for visual tracking.

and tracking speed. PrDiMP [40] is used as the baseline to demonstrate the effec-

tiveness of the proposed approach for visual tracking. It includes the Target Center

Regression (TCR) & Bounding Box Regression (BBR) networks, while it predicts the

conditional probability density to minimize the Kullback-Leiber (KL) divergence be-

tween the predictions and label distribution (see [40] for more details). The CHASE

tracker replaces additional convolutional blocks after the backbone with a DAG to

find the best operations and node connections.

5.3.1 Cell-Level NAS for Visual Tracking

In this section, DARTS is adapted to a Siamese tracking network to move toward

our objectives and critical aspects of visual tracking. In proposed approach, the com-
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putational cell has two input nodes and four intermediate nodes. The CHASE fuses

multi-level deep features extracted from Block3 & Block4 of ResNet-50 [20] in design-

ing the cell, according to their importance for visual tracking [4, 116]. Given a feature

map X(i) at node i, the corresponding latent representation at intermediate node j

is computed as X(j) =
∑︁

i<j p
(i,j)(X(i)), where p(i,j) stands for candidate operations

(from a predefined set P = {p(i,j)1 , p
(i,j)
2 , ..., p

(i,j)
M } in the search space) on edge ζ(i,j).

Since the DARTS tends to aggregate skip connections due to the rapid error decay

during its optimization [128, 130], the CHASE employs the operation-level Dropout

without constraints in [126, 127] with an initial rate τ , which gradually decays during

the search procedure. The CHASE does not control the number of skip connections to

preserve flexibility in cell design and improve training stability. To relax the problem

into a continuous search space, the mixed output for ζ(i,j) is calculated by

p̄(i,j)(X) =
∑︂
p∈P

exp(α
(i,j)
p )∑︁

p̂∈P exp(α
(i,j)

p̂
)
p(X), (5.1)

in which α
(i,j)
p is the operation mixing weight associated with the operation p between

nodes i and j. By doing so, the cell architecture search converts into the learning of

parameters α = {α(i,j)
1 , α

(i,j)
2 , ..., α

(i,j)
M }. To jointly learn network parameters (W) and

architecture parameters (α), the gradient descent (GD) algorithm is used to minimize

the training (Ltr) and validation losses (Lval) by performing the bi-level optimization

problem

min
α

Lval(W
∗(α), α) (5.2)

s.t. W∗(α) = arg min
W

Ltr(W, α). (5.3)

To avoid expensive inner optimization, the DARTS reduces the evaluation of archi-

tecture gradient by applying the finite difference approximation as

∇αLval(W
∗(α), α) (5.4)

≈ ∇αLval(W
′, α) − η

∇αLtr(W
+, α) −∇αLtr(W

−, α)

2ϵ
(5.5)
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where W′ = W − η∇WLtr(W, α), W± = W ± ϵ∇W′Lval(W
′, α). Also η and ϵ are

the learning rate for a step of inner optimization and a small scalar, respectively.

Accordingly, the 2nd-order approximation of DARTS requires two forward passes for

W and two backward passes for α, contrary to the 1st-order DARTS requiring one

forward pass for each one.

The 1st-order DARTS provides the ability to search an architecture by stacking

multiple cells according to its simplicity and low complexity, e.g., [126–131]. Although

differentiable NAS aims at minimizing the validation loss to find optimal architec-

tures, the 1st-order DARTS cannot guarantee that the validation loss is sufficiently

small due to ignoring the optimization on fully-trained weights W∗(α). The 2nd-

order DARTS embeds the training loss in updating architecture parameters. Hence,

it achieves more stability and higher performance than the 1st-order DARTS by

fully exploiting training & validation information and converging to a better local

optimum. However, it increases the computational complexity not efficient for opti-

mizing stacked cells. The CHASE enjoys the modified 2nd-order DARTS according

to learning one cell that adapts large-scale trained backbone features to the track-

ing objectives. Moreover, the DARTS [125] suffers from some problems including i)

deriving the best discrete architecture with the best validation performance by re-

training top-k architectures (k = 4) from scratch, and ii) the performance collapse

and over-fitting problems on the validation set, resulting in poor generalization on

test datasets. To address these challenges, the proposed CHASE focuses on cell-level

search and proposes an early stopping strategy to address the over-fitting problem

and multiple re-training from scratch.

5.3.2 Early Stopping

To alleviate the test-validation gap of DARTS, prior works (e.g., [128, 131]) impose

strong early stopping priors or extra computing costs. However, these methods run

several times and re-train each best architecture from scratch to select the final one.
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This work performs a performance-aware cell derivation by the proposed early stop-

ping strategy to address these limitations simultaneously. In particular, generic visual

tracking seeks to learn target models generalizable to various appearance changes and

real-world challenging scenarios. Hence, the proposed strategy introduces a hold-out

sample set represented for generalization validation. Note that the CHASE never

uses test sets for this purpose. While the CHASE respectively optimizes W and α

on the training and validation sets, it calculates the hold-out loss (Lho) of mixture

operations. Then, it derives the best cell architecture at the minimum hold-out loss

on the hold-out set by p
(i,j)
o = arg maxp∈P α

(i,j)
p . This search-stage cell selection orig-

inates from the reduced discrepancies between the continuous cell encoding and the

derived discrete cell due to the searching one cell using the proposed modified 2nd-

order DARTS, resulting in no several re-training requirements from scratch. That is,

the CHASE finds the best cell during the searching phase and then trains it from

scratch once.

5.4 Empirical Experiments

Herein, the implementation details of the proposed approach, ablation analysis, and

tracking results of the best cell architecture on benchmark datasets are reported.

5.4.1 Implementation Details

The backbone consists of ResNet-50 architecture [20] initialized with the pre-trained

Image-Net [28] weights. The offline experiments comprise the searching and training

phases. The proposed CHASE tracker is implemented in PyTorch and runs 23 FPS

on a single Nvidia Tesla V100 GPU with 16GB RAM. Except for the following details,

the rest of the hyper-parameters are set to the ones in [40]. The test sets are never

utilized in searching or training phases.
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Searching Phase

In this phase, the cell architecture is searched by the modified 2nd-order DARTS.

The cell includes 14 edges and 7 nodes (2 input, 4 intermediate, and 1 output), which

the output node is obtained by depthwise concatenation of intermediate nodes. The

standard DARTS search space is employed to exploit the maximum number of nodes

& edges allowing in a cell, which provides the highest flexibility in cell design. The

candidate operations include 3×3 & 5×5 separable convolutions, 3×3 & 5×5 dilated

convolutions, 3×3 max pooling, 3×3 average pooling, zero (no connection), and skip

connection (i.e., M = 8). The CHASE applies operation-level Dropout, which its

rate starts from τ = 0.6 and gradually decayed to the last epoch. In contrast to

[126, 127], the CHASE fairly explores all operations, considering the importance of

skip-connections on the evaluation accuracy and architecture stability.

The training set of the TrackingNet dataset [9] is divided into two subsets for

optimizing the weights of network (W) & encoding weights of architecture (α) on

the training (Ltr) & validation (Lval) sets, respectively. Besides, the training sets of

GOT-10k [12] and LaSOT [8] datasets are used as the hold-out set (Lho) to spec-

ify the best architecture among three runs (with different random seeds) and select

the final cell architecture based on their performance. Based on the training tricks

of NAS in [135], the backbone and BBR parameters are frozen during architecture

search, while the architecture parameters are started to optimize after 10 epochs. It

is more critical for the proposed approach to calculate reliable 2nd-order gradients

of architecture parameters built on 1st-order ones of network weights. The proposed

CHASE provides better initialization of candidate operations directly impacting the

optimization procedure of architecture parameters. Thus, it provides fair competition

between weight-free operations with other ones and helps effective learning of archi-

tecture parameters, leading to performance improvement, acceleration, and avoiding

getting stuck into bad local optima. The network is trained for at most 70 epochs
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with a batch size of 10, similar to the baseline [40]. However, the proposed approach

stops the training procedure based on the proposed early-stopping strategy (epoch

41 for CHASE). The Adam optimizer [84] is used to learn network and architec-

ture parameters. The initial learning rate is 0.001 for optimizing W with the cosine

annealing scheduler. The maximum iteration numbers are 15K, 15K, and 5K for

training, validation, and early-stopping procedures. The search phase takes about 41

(18) hours for the second (first) order DARTS method using the TrackingNet dataset

on a Nvidia Tesla V100 GPU with 16GB RAM.

Training Phase

In contrast to prior works (e.g., [125–129, 131]), the CHASE just trains the best

model selected in searching phase from scratch. In this phase, computational cell is

replaced by the best cell architecture, and the whole network (including backbone,

TCR, and BBR) is jointly trained from scratch for 70 epochs. The TCR and BBR

layers are initialized with random weights ignoring the weights during the searching

phase. For the training phase, the training sets of LaSOT [8], TrackingNet [9], GOT-

10k [12], and COCO [30] datasets are used, similar to the baseline [40]. Also, other

hyper-parameters are set as in the baseline tracker [40].

Evaluating Phase

After offline training phases, the proposed CHASE tracker is evaluated on test splits

of generic and aerial visual tracking datasets, namely GOT-10k [12], TrackingNet [9],

LaSOT [8], UAV-123 [53], and VisDrone-2019-test-dev [10]. In the online phase, all

procedures and settings are the same as [40].

5.4.2 Ablation Analysis of CHASE

In this section, a systematic ablation analysis on the GOT-10k dataset [12] is con-

ducted to validate the effectiveness of various search spaces and methods. It includes

the cells derived by the 1) 1st-order DARTS (CHASE-D1), 2) Fair-DARTS [130]
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(CHASE-FD), and 3) proposed approach (CHASE-PrDiMP or CHASE). Besides,

the CHASE is integrated into the DiMP tracker [26] (CHASE-DiMP), demonstrating

the generalization of the proposed approach for visual tracking. Furthermore, three

versions of the proposed approach are investigated, including the CHASE with 1) fully

segregated datasets in searching & training phases (CHASE-S/T), 2) a search space

consisting of two intermediate nodes (CHASE-2N), and 3) a search space without

weightless candidate operations (CHASE-WO). The comparison results are reported

in Table 5.1 regarding the derived cells shown in Fig. 5.2.

Accordingly, the CHASE-D1 derives a cell dominated by weight-free operations

(i.e., skip and pooling operations), and there is no connection between intermediate

nodes resulting in a shallow architecture. The CHASE-FD employs the Fair-DARTS

[130], which utilizes the Sigmoid activation function and an auxiliary loss to address

exclusive competition of skip-connections and discretization discrepancy. Nonethe-

less, the CHASE outperforms the CHASE-D1 & CHASE-FD up to 3.6% and 2.1%

in terms of Average Overlap (AO) metric, respectively. Conventional DARTS-based

methods (with stacked cell networks for image classification) search a network archi-
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Figure 5.2: Best cell architectures derived by CHASE-DiMP (modified 2nd-order
DARTS), CHASE-D1 (1st-order DARTS), CHASE-FD (Fair-DARTS), CHASE-PrDiMP
(modified 2nd-order DARTS), CHASE-WO (modified 2nd-order DARTS without weight-
less operations), and CHASE-2N (modified 2nd-order DARTS with two intermediate nodes).
B3 and B4 are the input latent representations (from Block3 & Block4 of Resnet50 [20],
respectively). Also, 0 , 1 , 2 , 3 are the intermediate nodes, and the output is the
depthwise concatenation of intermediate nodes.
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Table 5.1: Ablation analysis of CHASE on GOT-10k dataset [12].

Metric DiMP [26] CHASE-DiMP PrDiMP [40] CHASE-D1 CHASE-FD CHASE CHASE-2N CHASE-WO CHASE-S/T

SR0.75 (↑) 49.2 51.1 54.3 54.8 56.1 56.5 51.4 45.9 56.1

SR0.5 (↑) 71.7 75.3 73.8 76.7 76.8 78.8 76.5 71.5 76.3

AO (↑) 61.1 63.6 63.4 64.9 65.6 67.0 64.2 60.7 65.6

tecture on a small proxy dataset (e.g., CIFAR-10) and then transfer it to a large-scale

target dataset (e.g., ImageNet) to alleviate high memory consumption [134]. However,

the proposed approach can enjoy searching on the large-scale TrackingNet dataset by

its cell-level search. Hence, the CHASE uses the large-scale TrackingNet dataset in

both searching & training phases outperforming the CHASE-S/T up to 1.4% in terms

of AO metric. Except for CHASE-S/T, all CHASE-versions have been searched and

trained on similar datasets.

While the CHASE employs the standard DARTS search space to have more

design flexibility via the maximum number of nodes & edges allowing in a cell, the

CHASE-2N and CHASE-WO represent search spaces with limited node numbers (i.e.,

two intermediate nodes) and removed weightless candidate operations (i.e., pooling,

zero, & skip connect), respectively. According to the results, the CHASE has im-

proved the performance of CHASE-2N & CHASE-WO up to 2.8% & 6.3% in terms

of AO metric, respectively. These results demonstrate prior heuristics and limited

search space dramatically affect architecture design and tracking performance. For

instance, the intuitive reason in the case of CHASE-WO is that removing weightless

operations (particularly skip-connections) has been led to instability in cell design and

accuracy degradation. Besides, the node restriction results in shallow cell architec-

ture and limited performance improvement. The computational cells derived by the

CHASE-PrDiMP confirm selecting various operations regarding objective function,

increasing the depth as necessary, and preventing over-fitting and performance col-

lapse problems. Finally, the proposed approach is integrated into the DiMP tracker

[26] minimizing an L2-based discriminative learning loss to train its network to in-

vestigate the generalization to different objective functions. The proposed approach
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Table 5.2: State-of-the-art comparison results of CHASE on GOT-10k [12], LaSOT [8],
TrackingNet [9], UAV-123 [53], VisDrone-2019-test-dev [10] datasets.

Trackers
GOT-10k LaSOT TrackingNet UAV-123 VisDrone-2019-test-dev

AO (↑) SR0.5 (↑) SR0.75 (↑) AUC (↑) Norm. Prec. (↑) Prec. (↑) AUC (↑) Norm. Prec. (↑) Prec. (↑) SR0.5 (↑) Prec. (↑) AUC (↑) Prec. (↑)

CHASE 67.0 78.8 56.5 61.7 71.1 62.9 76.8 82.5 71.8 83.9 88.2 61.7 82.0

LightTrack [124] 62.3 72.6 - - - 56.1 73.3 78.9 70.8 - - - -

PrDiMP-50 [40] 63.4 73.8 54.3 59.8 68.8 60.8 75.8 81.6 70.4 82.7 87.4 59.8 79.7

Ocean [41] 61.1 72.1 47.3 56.0 65.1 56.6 - - - - - 59.4 82.3

D3S [111] 59.7 67.6 46.2 - - - 72.8 76.8 66.4 - - - -

ROAM++ [140] 46.5 53.2 23.6 44.7 - 44.5 67.0 75.4 62.3 - - - -

SiamAttn [45] - - - 56.0 64.8 - 75.2 81.7 - 79.4 84.5 - -

KYS [138] 63.6 75.1 51.5 55.4 63.3 - 74.0 80.0 68.8 - - - -

DiMP-50 [26] 61.1 71.7 49.2 56.9 65.0 56.7 74.0 80.1 68.7 80.4 85.5 60.8 80.5

SiamCAR [141] 56.9 67.0 41.5 50.7 60.0 51.0 - - - 77.3 81.3 - -

SiamBAN [142] - - - 51.4 59.8 52.1 - - - 77.4 83.3 - -

MAML [143] - - - 52.3 - - 75.7 82.2 72.5 - - - -

ATOM [19] 55.6 63.4 40.2 51.5 57.6 50.5 70.3 77.1 64.8 78.9 85.6 57.1 76.7

SiamRPN++ [25] 51.8 61.8 32.5 49.6 56.9 - 73.3 80.0 69.4 78.8 84.0 59.9 79.1

DCFST [136] 63.8 75.3 49.8 - - - 75.2 80.9 70.0 - - - -

COMET [44] 59.6 70.6 44.9 54.2 - - - - - 79.4 86.1 64.5 83.9

SiamFC++ [137] 59.5 69.5 47.9 54.4 62.3 54.7 75.4 80.0 70.5 - - - -

SiamMask [24] 51.4 58.7 36.6 - - - 72.5 77.8 66.4 - - 58.1 79.4

DaSiamRPN [34] - - - - - - 63.8 73.3 - 72.6 78.1 - -

ECO [87] 31.6 30.9 11.1 32.4 33.8 30.1 55.4 61.8 49.2 63.1 74.1 55.9 82.6

outperforms the DiMP tracker [26] up to 2.5% in terms of the AO and up to 3.6%

in terms of Success Rate (SR) at the overlap threshold of 0.5. At last, the best-

performing tracker, CHASE, is selected to be compared with recent trackers in the

next section.

5.4.3 State-of-the-art Comparison of CHASE

In this section, the state-of-the-art evaluations are performed on five large-scale vi-

sual tracking benchmarks and the proposed CHASE tracker is compared with various

state-of-the-art visual trackers, namely ECO [87], SiamMask [24], DaSiamRPN [34],

SiamRPN++ [25], ATOM [19], DCFST [136], COMET [44], SiamFC++ [137], DiMP-

50 [26], PrDiMP-50 [40], KYS [138], SiamAttn [45], MAML [139], ROAM++ [140],

SiamCAR [141], SiamBAN [142], D3S [111], Ocean [41], and LightTrack [124].

GOT-10k [12]: As noted in Sec. 2.2, the object classes of evaluation and training

set of GOT-10K has no overlap. Hence, this dataset is usually used for studying the

transferability of proposed approaches for tracking unseen targets. Therefore, the

proposed CHASE uses its training set as one of the hold-out sets to early-stop the

cell searching phase. The comparison results presented in Table 5.2 show that the
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Figure 5.3: Attribute-based comparisons of the proposed method (CHASE) on UAV-123
dataset [53] in terms of AUC metric.

CHASE outperforms the baseline up to 3.6%, 5%, and 2.2% in terms of AO and SR

at overlap thresholds of 0.5 and 0.75, respectively. Besides, the CHASE has achieved

better results (4.7% in AO, 6.2% in SR0.5) compared with the LightTrack [124].

LaSOT [8]: This datasets contains long-term tracking scenarios (see Sec. 2.2 for more

details). Therefore, it appropriately indicates the robustness of short-term trackers

in real-world situations. For this reason, the proposed tracker uses its training set as

the second dataset of hold-out set in the searching phase. As shown in Table 5.2, the

CHASE improves the baseline results [40] by a margin of 1.9%, 2.3%, and 2.1% in

terms of Area Under Curve (AUC), normalized precision, and precision, respectively.

TrackingNet [9]: From Table 5.2, the MAML tracker [143] has close results (better

in precision metric) compared with the proposed tracker since it employs a modern

object detector (i.e., FCOS [42]) and online domain adaptation to enhance discrim-

inating target from non-target regions. However, the proposed CHASE tracker has
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achieved better results in terms of AUC and normalized precision, and it has im-

proved the baseline results by a margin of 1% in AUC and 1.4% in precision metric.

UAV-123 [53]: According to the results in Table 5.2, the proposed CHASE tracker

outperforms the state-of-the-art visual trackers but also the baseline tracker [40] up

to 1.2% and 0.8% in terms of success and precision rate metrics.

VisDrone-2019-test-dev [10]: This aerial view testing data contains challenging

scenarios such as abrupt camera motion, tiny targets, fast view-point change, and

day/night conditions. Compared with the baseline [40], the results of the CHASE

tracker have improved up to 1.9% in AUC and 2.3% in precision rate. The COMET

[44] has obtained the best results employing the training set of VisDrone for its offline

training and accurately designed modules for small object tracking.

To provide a detailed evaluation in challenging scenarios, additional attribute-based

results are presented in Fig. 5.3. Accordingly, the proposed CHASE tracker outper-

forms all the recent trackers based on the AUC metric on the aerial tracking dataset

of UAV-123 [53].

5.5 Summary

A novel cell-level differentiable architecture search mechanism is proposed. To address

the inherent limitations of differentiable architecture search, the modified second-

order DARTS by early stopping to mitigate the over-fitting and performance collapse

issues and operation-level dropout without any post-processing is introduced. The

approach is simple, efficient, and easy to be integrated into existing visual trackers.

Extensive experiments demonstrate the effectiveness of the proposed approach, as

well as noticeable performance improvement when working with different existing

trackers.
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Chapter 6

Conclusions & Future Works

6.1 Conclusions

In this thesis, Visual Object Tracking using deep neural networks in unconstrained

environments is studied. While the state-of-the-art object trackers provide fascinating

performance over most of the publicly available videos with generic targets [4, 116,

117], they still have issues with handling challenging scenarios including small objects,

camera motion, deformable objects, and object blur just to name a few. Moreover, the

network architecture for the state-of-the-art trackers which benefit from deep neural

networks is obtained manually using many trial and errors. Motivated by these, three

research projects on small object tracking, segmentation tracking, and automatic de-

signing of deep tracking networks are conducted.

To enhance the accuracy of existing trackers for small objects in videos captured by

UAVs from medium to high altitudes, an offline proposal generation strategy and a

Y-shape multi-task network are introduced. The proposal generation strategy aims at

helping the network to learn target estimation using context information by providing

target & its parts as the template model during offline training. The importance of

this strategy is more pronounced in scenarios which only parts of objects are visible

(e.g., occlusion and viewpoint change). Besides, the multi-task network employs the

MSAF and attention modules to aggregate the refined & resized multi-scale features

and highlight target-related information considering robustness and accuracy of pre-
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dictions. Extensive experimental evaluations on object tracking benchmarks show

the effectiveness of proposed strategies, maintaining state-of-the-art performance on

all the existing aerial small/tiny object tracking benchmarks. Finally, a simple global

search strategy is considered to enhance the robustness of our tracker in long-term

scenarios.

Moreover, by developing a two-stage method consisting of bounding box tracking and

segmentation steps, segmentation tracking is studied. The first part takes advantage

of fusing the prediction of two trackers running in parallel to obtain the axis-aligned

box fitted on the target. Then, the segmentation step obtains a coarse binary mask

of the target from the predicted box and refines it to obtain the final mask.

Finally, a novel cell-level differentiable Neural Architecture Search (NAS) method to

adapt the pre-trained backbone features to the objective of visual tracking for Siamese

neural networks is proposed. The introduced cell-level NAS benefits from modified

second-order DARTS and a proposed early-stopping strategy using a hold-out set to

address the over-fitting, performance collapse, and requiring multiple retraining from

scratch issues of differentiable NAS methods. Extensive experimental evaluations by

integrating various differentiable NAS methods into Siamese framework for different

tracking objectives demonstrate the noticeable performance improvement, and gen-

eralization of the proposed method.

6.2 Future Works

At the end of this study, we believe that the following areas in Visual Object Tracking

and computer vision should be explored in the next few years.

Transformers were originally introduced for natural language processing using atten-

tion concept [144]. Recently, researchers have started to introduce transformers for

different computer vision applications [145, 146] including object classification [147,

148], detection [149–151], semantic segmentation [152, 153], action recognition [154],
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and object tracking [46, 47]. Specifically for tracking, transformers can be used to

provide pixel-level correspondence in temporal domain. For instance, they are already

used to combine pixel-level information in the template model with search patch in-

stead of widely used cross-correlation operation [47]. However, the convergence of

original transformers is slow (e.g., TransT [47] tracker is trained for 1,000 epochs).

Considering the recent advances of NAS methods, an interesting research direction

to explore is using NAS to obtain modified lightweight transformer architectures for

different computer vision tasks including Visual Object Tracking. However, we should

find a solution for addressing memory limitation issues.

Also, the Visual Object Tracking community is showing interest in tracking the bi-

nary mask of target instead of the regular axis-aligned bounding box. To move a

step forward, the goal will be tracking the 3D reconstruction of targets in publicly

available videos. At this moment, there are a few published researches on 3D tracking

of specific classes of targets including humans [155–157] and four-legged animals [158]

by leveraging the prior knowledge. However, solving this problem in class-agnostic

manner is highly challenging due to the importance of prior knowledge for 3D recon-

struction. Using the idea of structure-from-motion [159] can be another solution, but

3D tracking should be solved in real-time to meet the expectations of tracking com-

munity. While assuming rigid-body transformations, the Track to Reconstruct and

Reconstruct to Track [160] method is an inspiring research to solve this problem for

autonomous driving applications. We believe that combining segmentation trackers

with self-supervised monocular depth estimation [161, 162] can be potential solution

to this problem.

Finally, we believe that computer vision tools will be widely used towards low-cost au-

tomated analysis of animals in the next few years. Accordingly, we are collaborating

with Guan Zhen from Institute of Molecular and Cell Biology (IMCB), A*STAR to

provide a zebrafish larvae segmentation tracking dataset with zebrafish-specific visual

attributes (e.g., food, low resolution). Our DESTINE [3] tracker has been used to

65



provide the initial coarse masks. Due to the fast movements of transparent zebrafish

larvae, annotating the precise binary mask of zebrafish for the boundaries & tail is

impossible. Accordingly, a human annotator is asked to refine the obtained coarse

mask in order to provide the tri-mask ground truth which will be validated by ze-

brafish experts. Providing the ground truth for more than half of the total 18K frames

has been already done. Also, we are providing a comprehensive literature review on

applications of computer vision in animal studies. In this work, we have studied ex-

isting computer vision researches/tools for animal detection, tracking, segmentation,

and pose- & shape-estimation with various real world applications including but not

limited to using camera traps & UAVs for wildlife monitoring [163, 164], tracking

& locomotion analysis of animals towards behavior & health monitoring [165, 166],

concealed/ camouflaged object detection [167–169], transferring human keypoints to

animals using limited annotated samples [170, 171], developing parametric shape

models for animals [172–174], and obtaining species-specific shapes from fine-grained

image collections [175, 176].
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