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Abstract

The objective of signal decomposition is to extract and separate distinct signal com-

ponents from a composite signal. Signal decomposition has been studied in many

applications, such as image, video, audio, and speech signals. This thesis focuses on

the category of signal decomposition on Interferometric Synthetic Aperture Radar

(InSAR), a remote sensing technology that can monitor the earth from space. It

provides measurements for thousands of square kilometres of ground, with a spatial

resolution of around 10 m per pixel and a 1 mm precision on ground deformation

estimation over time.

For wide-area monitoring, algorithms must handle tens of thousands of radar

satellite images annually to measure ground stability over time. This thesis’ primary

focus is to combine traditional signal/image processing techniques with recent deep

learning approaches to improve the InSAR processing pipeline to deliver faster and

better results. The task is very challenging because ground surface displacement or

deformation signals are encoded in observed InSAR phase measurements with other

contaminant signals (e.g., atmospheric distortion, orbital error, and digital elevation

model [DEM] error and noise). Each type of signal could be spatially correlated,

temporally correlated, or both. It is also possible for the signals to be neither spatially

nor temporally correlated. The phase values are wrapped by 2π, which causes a non-

continuous processing domain. Moreover, there is no real-world ground truth to

reference in the training or validation stages. This thesis explores and addresses the

deformation signal extraction problem using different strategies.

We start by focusing on the image filtering problem of removing spatially inde-
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pendent noise components. We demonstrate a novel deep learning model for Gaussian

denoising in natural images and then adapt it to data from the InSAR modality. We

designed a teacher-student paradigm for supervised training in the absence

of real-world ground truth data. The framework uses a standard stack-based filtering

method as the ”teacher” (requiring more than 30 observations) and a deep differen-

tiable model to learn the behaviour of the teacher method. After training, the student

model can produce results comparable to, or even better than, those produced by its

teacher method. Moreover, the student model relies on just a single pair of obser-

vations. Additionally, the proposed model is designed to provide a coherence map,

which indicates the signal quality at the pixel level. Furthermore, we present

an extension in the form of a novel self-supervised framework. This framework

can be used to remove noise signals and estimate pixel-level quality using only noisy

observations for training and inference.

In addition to the previous outcome, we investigate how to separate deforma-

tion and DEM error signals using a 2D optimization problem for each spatial

location in a time series. In general, current approaches suffer from a non-continuous

solution space. They are limited to small-scale displacement use cases, making them

unsuitable for high-velocity scenarios such as mining, construction, and earthquakes.

We propose a two-stage optimization strategy that effectively locates global op-

tima by combining an iterative global coarse search with a stochastic derivative-free

local fine search.

Almost all of the research on InSAR deforming signal estimation is based solely

on temporal analysis and requires pre-removal of the atmospheric phase. We further

investigate the possibility of spatial-temporal cross-domain optimization by

developing an adaptive kernel that performs convolutional optimization on the entire

3D InSAR stack, resulting in accurate and robust deformation and DEM error signal

extraction. The approach should be capable of processing wrapped phases directly

and even working on phases that have not had their atmospheric component removed.
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Despite these signal decomposition processes, accurately validating and optimizing

the developed algorithms remains a challenge due to the lack of relevant ground truth

data in a real-world environment. We developed a stochastic InSAR simulator

to address this problem. The simulator provides a highly flexible modeling frame-

work for generating various phase fringes and coherence distributions. This simulator

is suitable for conducting thorough quantitative evaluations of various filtering and

coherence estimation algorithms. The simulator features 2D and 3D modes that sup-

port stack and non-stack analysis. The 3D version is expected to simulate time-series

deformation signals to evaluate signal separation methods. Additionally, to mimic re-

alistic signals, we also study the intelligent generative InSAR simulator with

adversarial training to learn the real-world deformation signal’s distribution and its

correlations to the DEM error.

The main contributions of this thesis include the following:

1. Proposing novel signal decomposition and quality assessment approaches to ar-

gument, automate, and accelerate the InSAR processing pipeline for wide-area mon-

itoring.

2. Introducing a stochastic InSAR data simulator for creating synthetic bench-

mark datasets to aid researchers in comparing the strengths and weaknesses of various

algorithms and guiding future research.

3. Providing our industrial partner with the ability to use the established models

and algorithms in their operations, rather than just theorizing about them.
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Preface

The majority of this thesis’ content has been published in peer-reviewed publica-

tions and conferences or is under review. A dual-stage framework for natural picture

denoising based on adversarial training and feature matching was published at the

International Conference on Smart Multimedia and is discussed in Chapter 3. In

Chapter 4, two frameworks for restoring the phase and estimating the coherence

of a SAR interferometric signal are discussed: 1) DeepInSAR, the first deep learning

study, was published in Remote Sensing, and its commercial implementation has been

deployed in the industry since 2019 and; 2) SRDInSAR, which is currently under re-

view in IEEE Geoscience and Remote Sensing Letters, is a self-supervised residual

distribution learning model that builds on our previous study, GenInSAR, which was

also published in IEEE Geoscience and Remote Sensing Letters. Chapter 5 addresses

two methods for extracting the deformation and DEM error signals from the InSAR

time series: 1) The IGS-CMAES technique is a two-stage black-box optimization

technique published in Remote Sensing. This technique is utilized exclusively for

temporal analysis; 2) ConvArcFit is the first spatial-temporal analysis framework

for dense signal estimations and has been partially deployed in the industry. Chap-

ter 6 describes our stochastic InSAR simulator, which was recently published in the

Proceedings of the Springer Conference of the Arabian Journal of Geosciences. Ad-

ditionally, we illustrate a possible route for mimicking InSAR signals through recent

intelligent generative modeling techniques. I lead a team pursuing this topic further,

and our most recent results are being reviewed by Remote Sensing.

As a technical lead, I have assisted my supervisors in coordinating the remote
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sensing research team since 2020. Beyond my thesis topics, I mentor and collabo-

rate with team members on various wide-area monitoring research tasks, including

learning-based non-stack phase unwrapping and water body detection using SAR

images. I have chosen to use the plural first-person throughout this thesis to ac-

knowledge the contributions of my supervisors and colleagues. The following section

is a comprehensive list of contributions we made during my Ph.D. studies.
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“It is better to fail in originality than to succeed in imitation.”
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Chapter 1

Introduction

Signal decomposition deals with extracting signals of interest from a composite obser-

vation. It is a fundamental procedure that applies to various applications and research

areas. Depending on the application and acquisition technique, the objectives may

include eliminating noise signals or extracting the target signals from images, videos,

and audio files. The purpose of this thesis is to investigate the signal modality of

interferometric synthetic aperture radar (InSAR). This remote sensing technique has

attracted considerable interest in monitoring the earth from space. This technique

can reconstruct the surface topography of the earth and measure ground displacement

across wide areas. In recent decades InSAR has emerged as a promising technology

for monitoring earth subsidence and uplift caused by human activities (e.g., urban

infrastructure development, mining, oil and gas extraction) and natural phenomena

(e.g., earthquakes, volcanic eruptions, and permafrost thawing). Numerous existing

sophisticated SAR satellites, including Canadian Radar Sat-1/2, European ERS-1/2,

ENVISAT, Sentinel-1A/1B, and Japanese ALOS, cover the entire globe. Depending

on the satellite, InSAR can measure thousands of square kilometres of the ground

area with a spatial resolution of around 10 meters per pixel and a precision of up

to a millimetre for ground deformation assessment. There has been growing demand

for robust, precise, and efficient algorithms to process such vast amounts of data and

produce reliable earth monitoring analysis.

1.1 Motivation

SAR satellites transmit radar signals toward the globe and record their echoes to

produce a 2D radar image. Each pixel represents a grid area on the earth’s surface.

The 2D signal is represented as a single-look complex (SLC) image, each pixel of

which represents the phase and amplitude of the returning radar echo from each
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resolution cell on the ground. An interferogram, also known as an InSAR image,

is formed by combining two distinct SLC images via the point-wise product of one

SLC with the complex conjugate of the other. Both SLCs were acquired over a

prolonged period in the same region of interest. Their interferogram is also a complex

number, with a phase value representing the phase difference between two temporally

separated SLC pictures. However, phase values in InSAR images encode surface

displacement signals and various other contaminant signals, including atmospheric

distortion, orbital error, elevation model error, and noise. Each of these may be

spatially correlated, temporally correlated, or both. It is also possible for the signals

to be neither temporally nor spatially correlated. Therefore, signal decomposition

plays a crucial role in the existing InSAR processing pipeline.

1.2 Challenges

A single InSAR image can have up to 100 million level pixels for wide-area monitoring

and even more when the temporal analysis is performed on a stack of images. This

raises an even greater challenge since the method must be highly parallelizable to

process tens of thousands of radar images each year to determine ground displace-

ment over time. A traditional InSAR processing pipeline typically requires additional

observations (SLCs tokens at different times) or professional operators to manually

review and tweak algorithm parameters as necessary to obtain a satisfactory final out-

put. This is mostly because existing algorithms rely heavily on run-time optimization

and are incapable of generalizing various use cases using the same setup.

Each observed phase pixel in an interferometric SAR image encodes a different

type of signal [1] and can be represented by the following equation:

ϕ = ϕdef +∆ϕtopo +∆ϕatmo +∆ϕorbit + ϕnoise (1.1)

where ϕdef represents phase components related to ground deformation motion, ϕtopo

represents topographic (DEM) error, ϕatmo refers to the difference in atmospheric

distortion between two SLCs, ϕorbit refers to in-precise satellite orbits data when

transforming the contributions of earth’s ellipsoidal surface, and ϕnoise denotes de-

correlation noise.

It is well-known that the most valuable signal is ground deformation. In this

thesis, we propose to approach ground deformation signal separation as a series of

sub-tasks involving modeling and filtering various types of sub-signals. Moreover,

we investigate traditional signal processing techniques with modern machine learning

approaches to obtain a robust, effective ground deformation measurement. Our focus
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is to enhance the performance of an existing InSAR processing pipeline by 1) reducing

the number of observations, 2) accelerating the processing time, and 3) automating the

analytic operations. Finally, obtaining ground truth information for real-world signals

is always impossible. Synthetic data is frequently employed to conduct objective

evaluations of various processing methods. Consequently, we study the potential of

creating a comprehensive InSAR data simulator capable of producing realistic signals

to avoid evaluation bias.

1.3 Contribution Summary

The signal decomposition work on InSAR signal data is divided into three sub-tasks

in this thesis: 1) filtering the noise signal, 2) extracting the deformation signals

and DEM height error signals, and 3) proper validation using the proposed InSAR

simulator. Each work in this thesis is unique and demonstrates for the first time

how modern computer vision and machine learning methodologies benefit the field of

InSAR research. My contribution to this dissertation is mostly concentrated on the

signal decomposition of observed ϕ signals utilizing different sub-modules:

1.3.1 Removing the noise term and estimating the signal
quality

1. We demonstrate how to remove Gaussian noise from natural images using a

two-stage adversarial learning architecture.

2. We develop a method for efficiently filtering and estimating the coherence of

InSAR images in a supervised training setup.

3. We create a self-supervised learning model capable of removing phase noise and

estimating coherence using only noisy observations.

4. We evaluate all suggested methods using qualitative analysis (expert feedback

on real-world images) and quantitative analysis (numerical errors on simulated

images).

1.3.2 Extracting deformation and DEM error terms

1. We employ a temporal-only analysis to decompose the deformation and DEM

error signals for each pixel location according to the conventional processing

literature.
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2. We provide an optimization approach that combines spatial and temporal mod-

eling to effectively extract dense signals of interest from a 3D signal stack.

1.3.3 InSAR data simulator

1. We develop a stochastic spatial-only 2D simulator capable of randomly generat-

ing synthetic interferometric phase and noise to analyze filtering and coherence

estimation performance.

2. We extend the 2D simulator by injecting spatial and temporal baseline param-

eters to generate synthetic stack data to analyze time-series deformation and

DEM error estimation capabilities.

3. We propose an intelligent generative model to discover the real-world signal dis-

tribution. Following training, the model can generate synthetic signals similar

to the distribution of real-world data.

1.4 Thesis Structure

The remainder of the thesis is organized as follows: Chapter 2 discusses background

research and related works for each of our focused sub-tasks. Chapter 3 presents our

investigation of natural image restoration. Chapter 4 covers our two learning-based

methods for interferometric phase restoration and coherence estimation, using super-

vised and unsupervised learning. Chapter 5 demonstrates how to extract deformation

and DEM error using two-stage temporal and single-stage spatial-temporal optimiza-

tion. Chapter 6 discusses our proposed 2D and 3D InSAR simulators, which we used

to evaluate our experiments and illustrate the viability of simulating InSAR signals

using an intelligent generation model. Finally, Chapter 7 summarizes our findings

and indicates directions for future research.
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Chapter 2

Background and Related Works

2.1 Natural Image Denoising

Images and videos can be contaminated with noises at various stages along the pro-

cessing pipeline (e.g., acquisition, compression, and transmission). Noise can affect

the quality of subsequent processing and user visualization. Thus, image denois-

ing [2] is a necessary step for many applications. Although noise patterns vary, an

additive white Gaussian noise (AWGN) is commonly discussed in the literature. Fur-

thermore related denoising approaches have been exploited extensively by modeling

image priors and optimization problems solving (e.g., non-local self-similarity (NSS)

models [3] [4], sparse representations models [5] [6] and gradient-based models [7]

[8]). These conventional methods target mainly low to medium noise levels, involve

time-consuming optimization processes, and require handcrafted image priors. In

general, conventional approaches are insufficient for denoising complex and diverse

scene content with fine detail. Recently, deep neural networks (DNNs), especially

deep convolutional neural networks (CNNs), have shown promising performance in

image denoising. These deep CNNs use a discriminative denoising model (e.g., MLP

[9], RED-Net [2] and DnCNN [10]). Their success is mainly attributed to CNNs’ mod-

eling capability and deep network training. These deep-learning-based discriminative

methods perform better than conventional model-based methods. However, these

discriminative learning approaches are insufficient when an image is distorted with

high noise. Image denoising is a popular research topic in the literature [4] [5] [7] [11].

In general, these techniques follow image prior modeling to solve optimization prob-

lems. They remove noises but tend to over-filter the content, especially fine details.

As deep learning methodology emerges, neural network-based discriminative denois-

ing methods show better performance than conventional model-based techniques in

many applications. One advantage of using neural networks, particularly CNN-based
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models, is that the network parameters for image denoising can be learned from the

training data based on pairs of clean and corrupted images rather than pre-defined

handcrafted image priors. This powerful learning capability makes DNNs attractive.

Asymmetrically encoder-decoder skip-layer connection was introduced [2] to take full

advantage of deep learning while avoiding the computational cost of training too

deep. This model shows faster training and better denoising performance. Residual

network (ResNet) [12] has been designed for a similar purpose but trains an extremely

deep CNN. As an alternative, DnCNN [10] adopts the residual learning formulation.

It deploys identity shortcuts and a single residual unit to generate a residual image

instead of directly outputting the latent clean image. A fixed-size kernel is used at

each layer in a classical CNN architecture. All necessary features characterized by

different kernel sizes can only be extracted by exploring multiple layers. In order to

extract multi-scale features at the same layer, GoogLeNet [13] applies multiple sets of

convolutional filters to the image. The resulting activations are then stacked together

and passed to subsequent layers.

2.2 InSAR Filtering and Coherence Estimation

Numerous filtering methods have been proposed for interferometric phase filtering

in recent decades. BoxCar is a well-known method because it is straightforward. It

simply performs a moving average to estimate the variation of local pixel patterns.

Authors have shown that this average process is a maximum-likelihood (ML) estima-

tor for interferometric phase and coherence when all involved processes are stationary

citeseymour1994maximum. However, InSAR images are inherently non-stationary

because of changing topography and ground displacement. While a BoxCar filter can

be useful in a flat area, it is not suitable for areas with high slopes. In addition,

BoxCar outputs are unsatisfactory due to its strong smoothing behaviour caused by

simple averaging. BoxCar is vulnerable to loss of both spatial resolution and fine de-

tails. It is also vulnerable to significant phase and coherence estimation error. Other

classic filters, such as median filter, 2D Gaussian filter, and multi-look processing,

have similar limitations. Consequently, researchers started addressing the problem

of non-stationary filtering for the interferometric phase. Generally speaking, the re-

searchers’ methods can be categorized into two groups depending on whether the

filtering is done with or without domain transformation.

Lee filter [15] is a classic method that works in the original spatial domain. It adopts

local fringe morphology modeling with anisotropic filtering, reducing the noise via lo-

cal statistics and an adaptive window. Researchers have introduced an extension of
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Lee’s method by using a minimum mean squared error estimator to exclude singular

pixels within a selected direction [16]. Another statistical optimization framework

has been proposed applying applies Bayesian estimation in the filtering process [17].

Some adaptive methods have also been proposed [18, 19]. For example, Vasile et al.

designed an intensity-driven adaptive-neighborhood method for denoising interfero-

metric phase images [18]. Yu et al. used a low-pass filter along with local fringe

orientation with an adaptive contoured window [19]. Wang et al. indicated that

phase fringe and noise frequency distribution are different, and hence noise can be

detected without destroying the fringe signal [20]. Some works estimate the maxi-

mum posterior probability, as a filtered phase image can be obtained by modeling the

image prior as a markov random field (MRF)[17, 21]. However, choosing appropriate

properties as image prior remains an unsolved problem.

Goldstein filter [22] is the first frequency-domain method with Fourier transfor-

mation. One of its extensions [23] proposed a technique to preserve the signal in

low noise (high coherence) areas by estimating the dominant component from the

signal’s local power spectrum, which also adapts to the local direction of fringes.

Researchers proposed other improvements to the Goldstein and Baran filters. For

example, researchers tried to obtain a more accurate coherence estimation and over-

come the original method’s under-filtering issue in low coherent regions [24] [25]. A

joint method, using a modified Goldstein and simplified Lee filter, was invented [26].

This filter focuses on interferometric phase denoising under high-density fringes and

a low coherent situation. Researchers showed that filtering with an adaptive multi-

resolution technique is also necessary because of the different sizes and shapes of

the interferogram [27]. This technique improves the filtering quality on the fringes

via better frequency estimation and invalid estimation correction. In [28], authors

first proposed a wavelet domain filter in complex domain (WInPF) based on a com-

plex phase noise model. They proved that phase information and noise could be

more easily separated in the wavelet domain. The success of WInPF was significant

for the bulk of subsequent work. Other researchers applied a wavelet packet-based

Wiener filter to further separate phase information in the wavelet packet domain [29].

This method achieves superior performance compared to the WInPF filter. Bian and

Mercer proposed undecimated wavelet transform by treating image filtering as an

estimation problem [30]. Overall, wavelet-domain filters preserve an adequate spatial

resolution better than other methods and have high computational efficiency. Xu

et al. [31] introduced a joint denoising filter via simultaneous regularization in the

wavelet domain. Phase discontinuities are well preserved through this joint sparse

constraint and its iterations.
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The idea of non-local filtering is to explore more information from the data itself.

In general, images contain repetitive structures such as corners and lines. Those re-

dundant patterns in an image could be analyzed and explored to improve filtering

performance. Recently, many studies deployed non-local techniques for SAR data

filtering, from amplitude image despeckling [32–34] to interferometric phase denois-

ing [35–39] and InSAR stack multi-temporal processing [40, 41]. Compared to the

methods already mentioned, non-local-based methods always achieve state-of-the-art

results. Non-local filtering, like previous approaches, adapts estimation to the local

signal behaviour to deal with non-stationary images. Still, it also considers the entire

image according to the image self-similarity property. The first non-local method

applied to interferometric phase filtering was proposed by Deledalle et al. [32]. Im-

age intensities and interferometric phase information are used to build a non-local

means model with a probability criterion for estimating pixels. NL-InSAR [35] is

the first InSAR application to use a non-local approach for the joint estimation of

the reflectivity, interferometric phase and coherence map from an interferogram. In

[36] and [42], researchers achieved better results on textural fine detail preservation by

combining non-local filtering with pyramidal representation and singular value decom-

position. A unified framework (NL-SAR) has been proposed in [39] as an extension

of NL-InSAR, where an adaptive procedure is carried out to handle extremely high-

resolution images. It is able to obtain the best non-local estimation with good quality

on radar structures and discontinuities reconstruction. Recently, works on extending

and modifying existing image restoration algorithms to suit interferometric phase do-

main achieved promising performance. In [20], a modified patch-based locally optimal

Wiener (PLOW) method is proposed for interferometric phase filtering that achieves

on par and better results than non-local means. Another famous algorithm, non-local

block-matching 3D (BM3D) also inspired researchers to propose InSAR-BM3D [38],

which delivered state-of-the-art results for InSAR phase filtering. The method is not

proposed to do coherence estimation specifically. Instead, InSAR-BM3D computes

the maximum likelihood estimates of coherence via stack-wise averages. Then the

estimated coherence is used to determine the threshold at the collaborative filtering

step. Hence, the accuracy of the coherence estimation likely affects the performance,

which is highly dependent on how stationary the whole stack is.

Milestone works using CNNs have shown their ability to outperform almost all

conventional algorithms on different visual-related tasks, including image restoration.

Some recent SAR-based studies benefit from CNN, including the Fuzzy superpix-

els based Semi-supervised Similarity-constrained CNN (FS-SCNN) model [43], which

uses an ensemble learning technique to achieve superior prediction on PolSAR image
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classification tasks. Ma et al. [44] proposed an attention-based graph CNN to im-

prove the SAR segmentation results. In [45], DeepLabv3+ [46], a well-known image

semantic segmentation CNN model, was adopted for oil spill identification on SAR

images. A direct automatic target recognition (D-ATR) deep CNN-based model out-

performed all other conventional methods, it was proposed to obtain high accuracy,

and fast processing for target recognition [47]. These works benefit from CNNs as

superior feature extractors on SAR images. Anantrasirichai et al. [48] employed

CNNs for the InSAR phase to volcano deformation monitoring via transfer learning

from optical images. In this work, we propose our DeepInSAR architecture, a new

deep learning-based model for SAR interferometric phase restoration and coherence

estimation. The model is empowered by state-of-the-art deep learning techniques,

relying on suitable phase-oriented solutions. We aim to design a more effective joint

phase filter and coherence estimator by learning from the pre-generated training data.

We pre-processed InSAR data into a single tensor to perform a multi-modal fusion

analysis of both phase and amplitude information. A densely connected feature ex-

tractor is used to achieve multi-scale feature extraction and fusion. Two subsequent

fully connected CNN perform phase filtering and coherence estimation from extracted

features respectively. InSAR phase noise can be considered zero-mean additive noise.

Therefore, we adopted the residual learning strategy, which has been proven effective

for removing such types of noise [10]. Meanwhile, pre-activation and bottleneck [49],

and batch normalization techniques [50], were used to enhance training efficiency and

boost the model’s performance.

2.3 Time Series InSAR Deformation Estimation

Apart from filtering noisy InSAR observations, our primary focus was measuring

ground deformation signals accurately. Previous research describes ground deforma-

tion as the phase difference between two radar observations. Until the 2000s, most

algorithms focused on analyzing single interferograms derived from one pair of SAR

images [51, 52]. Later, researchers noted that some radar targets’ back-scattering

characteristics could maintain stability for a long time [51]. Then, researchers discov-

ered that analysis of multiple acquisitions in time could overcome the conventional

InSAR limitations, namely, temporal and geometric decorrelation and atmospheric

disturbances. Using time-series InSAR (TSInSAR) techniques has emerged as a pow-

erful strategy to monitor slow and subtle terrain displacements[53].

In general, the TSInSAR techniques use SAR images acquired on the same ground

area but on different dates to construct a stack of N interferograms. The signal
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phase of each interferometric resolution cell on the ground is a function of multiple-

phase contributors. (e.g, uncompensated topographic component, deformation rate,

and atmospheric bias) [54][51][55]. Hence the ground deformation can be estimated

from the same resolution cell taken at different times [56]. However, each cell is

represented as a wrapped phase, and the estimation with phase cycle ambiguities

makes this task challenging. Extensive research has shown that, inevitably, there are

many calculations, especially when processing wide-area regions [57]. Moreover, a

range of processing methods requires manual inspection and expert interpretation[58]

and could limit the timely dissemination of monitoring. Hence, it is crucial to have

an accurate, efficient and robust algorithm.

One concern is that although the deformation estimation is applied after filtering,

some locations are incoherent and impossible to derive any useful information from

due to the temporal decorrelation. One solution is to only study the temporally

coherent targets on the ground. Ferretti et al. [59, 60] proposed permanent scat-

ter interferometry (PSI) in the early 2000s. This method estimates the deformation

parameters lie on the identified permanent scatters that are coherent over the tem-

poral stack. Werner et al. [61] applied interferometric point target analysis within

PSI’s scope using a 2D regression algorithm to model the relationship between the

perpendicular baseline and the temporal baseline. This algorithm estimates the ter-

rain height and deformation using linear regression analysis. Another Integer Least

Squares based technique - Spatio-Temporal Unwrapping Network (STUN) [62] is pro-

posed to solve the phase ambiguities problem via Least-squares Ambiguity Decorre-

lation Adjustment (LAMBDA) method followed by a sequential least-squares search.

Both approaches require extensive search or complex transform computation to elimi-

nate the wrapped phase ambiguities. Persistent Scatterer Pairs InSAR (PSP)[63] and

Quasi-Persistent Scatterer (QPS) [64] avoided the complex parameter modeling by

directly searching the parameters in the solution space. Although these algorithms

are simple and flexible, they have a trade-off for accuracy and efficiency. Especially

for the large and complex deformation scenarios, PSP and QPS’s estimated results

may be stuck in the local optimization. Hence, it is crucial to have an accurate,

effective and robust deformation estimation algorithm. Another strategy is based on

the small baseline subset (SBAS) algorithm that was first introduced by Beradion et

al. [65], which only works on data pairs characterized by a small orbital separation

(baseline) to suppress spatial decorrelation phenomena. It should be noted that SBAS

based methods usually obtain deformation parameters using least squares (LS) opti-

mization from the unwrapped phase [54, 66], where PSI-based methods [57, 67, 68]

can deal with both the wrapped and unwrapped phases. Later, PS-SBAS-combined
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methods [53, 69, 70] were proposed and replied on the unwrapped phase, assuming

the small enough baselines and arcs to avoid the phase ambiguities of the phase gra-

dient between two permanent scatters. The main limitation of SBAS based methods

is their dependency on phase unwrapping. Phase unwrapping is time-consuming and

requires a prior known displacement pixel as a reference, but that reference may in-

troduce errors for subsequent parameter estimation [54]. PS-InSAR is a standard

solution for deformation and DEM error signals separation. However, the sparsity of

measurements becomes the main limitation, leaving it open to further research. This

thesis first explores the PS-InSAR-based temporal-only signals estimation on each

pixel location using the wrapped phase directly. Furthermore, we propose a more

advanced solution that considers spatial information and gives dense per pixel signal

measurements.

2.4 InSAR Data Simulator

One remaining challenge concerns how to precisely validate and eventually optimize

the developed algorithms, as no ground truth data with a controlled environment is

available. To date, the most commonly adopted evaluation strategy uses a couple

of synthetic interferometric phases with simple geometric shape fringes [38] [37] or

simulates the radar signals according to the pre-given DEM [20]. For filtering, coher-

ence estimation tasks, non-InSAR data was also used for validation purposes in the

early works [39][35]. The TS-InSAR deformation signal estimation task commonly

adopts insufficient GPS data [54][58] or non-InSAR numerical optimization problems

[57] as well for quantitative evaluation. A good InSAR simulator is important for

objective evaluation and useful for developing a balanced training dataset for recent

machine learning algorithms. Large-scale data is essential, especially if an applica-

tion wants to take advantage of the recent learning-based approaches. It is known

that the robustness of a trainable model’s learning capacity depends on diversity in

datasets for sufficient training and testing in terms of the types of signal features

and noise characteristics. Otherwise, a model could easily suffer from over-fitting,

which biases the evaluation results. This field of research lacks large-scale datasets

and benchmarks. In this thesis, we pursue designing an InSAR simulator that can

generate large amounts of synthetic InSAR data, which is as realistic as possible.
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Chapter 3

Adversarial training for
DUAL-STAGE natural image
denoising enhanced with feature
matching

3.1 Introduction

Recently, deep neural networks (DNNs), especially deep convolutional neural net-

works (CNNs), have shown promising performance in image denoising. These deep-

learning based discriminative methods show better performance than conventional

model-based methods. However, when an image is distorted with high noise, these

discriminative learning approaches are insufficient. In this thesis, we propose a dual-

stage convolutional neural network, augmented with adversarial training, to address

the shortcoming of current convolutional neural networks in image denoising. Our

dual-stage approach - Adversarial Augmented Dual-stage neural Network (AADNet)

includes two stages of discriminative denoising process: 1) a residual learning denoiser

is used to generate a residual image from a noisy input image and construct a refer-

ence image, and 2) a full CNN model is designed to output the final denoised image

by using the preliminary reference and noisy image pair. To improve the dual-stage

denoising, we introduce an adversarial training framework. Adversarial training is

first described in Generative Adversarial Nets (GANs) [71] and have become a popu-

lar approach. GANs are based on a two-player min-max game between two models.

They aim to generate realistic synthetic images. Ideally, network discriminator is

expected to learn distinct features from real data, which the generator can imitate.

To achieve this, an optimal point should be reached when real data and synthesized

data are indistinguishable. However, in practice, it is hard to train GANs as desired;
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it is challenging to balance the relative capacities of the two models in an adversarial

network. This is due to the lack of an unambiguous and computable convergence

criterion. A solution is to add an augmented training process to GANs by directing

the generator network towards a probable configuration of abstract discriminative

features [72]. Different from current GANs, which aim to achieve generative tasks,

our adversarial training is augmented with feature matching [72] and classification ca-

pability for image denoising, which enables our adversarial training to cover a diverse

collection of image content. Our goal is to recover the latent clean image from its

corrupted observation. The dual-stage denoising process uses trained data from the

discriminator, while the discriminator receives input from the dual-stage denoisers for

training and generates feedback. Our contribution lies in:

• Introducing a dual-stage net for image denoising, to address the shortcoming of

single denoiser design deployed by existing CNN-based networks.

• Proposing adversarial training to provide feedback for the dual-stage image

denoising. While current nets are trained for specific objects, our adversarial

training framework can achieve better results with its feature matching and

classification capability to cover a diverse collection of complex content with

fine detail.

In our work, we propose an image denoising framework AADNet, which not only has

the merits of existing methods, but also introduces a new dual-stage denoising net,

augmented by adversarial training with embedded feature matching and classification.

3.2 Methods and Procedure

Figure 3.1: Architecture of proposed AADNet with corresponding kernel size (k),
number of feature maps (n) and stride (s) indicated for each convolutional layer.
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There are three major components in our AADNet: 1) A residual learning based de-

noiser (Fig.3.1 Top-left), 2) a full image reconstruction denoiser with skip-connections

and ResNet blocks (Fig.3.1 Bottom-left), and 3) a discriminator for distinguishing de-

noised images from clean images (Fig.3.1 Right). All three components interact in an

adversarial training environment. In a classical image degradation model y = x+ v

[10], the denoiser is trained to estimate the difference between the input noisy image

y and a clean image x. At our first stage, a residual image v̂ is obtained from a noisy

input image ŷ. The preliminary output (reference) is denoted by x̂s1 = ŷ− v̂. At the
second stage, a full CNN model obtains a denoised image by inputting the reference

& noisy image pair tensor (concatenating ŷ and x̂s1 along the last dimension). The

final denoised output is denoted by x̂s2.

3.2.1 1st Stage: Residual Learning Denoiser Ds1

Ds1 is trained to learn the mapping function Ds1(y) = v. The clean image can be

predicted as Ds1’s output x̂s1 = y − Ds1(y). The parameter in Ds1 is trained by

computing the mean square error (MSE) or L2 loss (Eq.3.1), between the residual

and the model predication.

LDs1
L2 (x,y,Ds1) = ||Ds1(y)− (y − x)||2 (3.1)

Ds1 is used for estimating the noise rather than reconstructing the de-noised image.

Residual learning can be used for image denoising, but it usually over-filters and is

not effective in recovering complex structure [10]. To resolve this issue, we introduce

dual-stage denoising.

3.2.2 2nd Stage: Full Image Reconstruction Denoiser Ds2

Existing end-to-end CNN based denoising methods use a noisy and clean image pair

to train the model for full image reconstruction. In our AADNet, we have an output

of Ds1 from the first stage as a preliminary denoised reference, which already has the

Gaussian Noises partly or mostly removed. We concatenate the original noisy image

and x̂s1 to form a reference-noisy pair tensor as input to the (second stage) full image

reconstruction denoiser Ds2. The output is the final denoised image x̂s2. Batch-

normalization [73] and Res-Net[12] blocks, as well as Skip-connections [2], are used

for improving training efficiency and stability. More detail about these techniques

can be found in [12]. Note that, for an image denoising task, we want to avoid noisy

information affecting subsequent layers during training. Therefore, different from

other methods, which pass feature maps generated from the entire input, we select
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feature maps generated from the preliminary denoised reference image only. These

feature maps are passed to the end layer via skip-connection as illustrated in Fig.3.1

(bottom-left). The parameter in Ds2 is trained by minimizing the L2 loss (Eq.3.2)

between the desired clean image and the model’s reconstruction.

LDs2
L2 (x̂s1,y,Ds2) = ||Ds2(x̂s1)− x||2 (3.2)

3.2.3 Adversarial Training with Feature Matching

AADnet is trained to recover the fine detail visually masked under noise degradation.

We apply adversarial training using a discriminator D to learn whether the input

image is a clean image or an image reconstructed after denoising. We split D into

two components based on the denoising feature matching technique [72]. D takes x,

x̂s1 and x̂s2 as input. A feature extractor then extracts a feature vector of length

1024 and then pass it to a classifier generating a logits for classification. The loss

function for D is given in Eq. 3.3:

LD(x̂s1, x̂s2,x,D) = −E [logD(x)]−
1

2
(E [log(1−D(x̂s1))] + E [log(1−D(x̂s2))]) (3.3)

In order to maximize clean image content, we impose optimization adv loss LDs1
adv

and LDs2
adv on each denoiser as shown in Eq. 3.4 & 3.5

LDs1
adv (x̂s1,D) = E [log(1−D(x̂s1))] (3.4)

LDs2
adv (x̂s2,D) = E [log(1−D(x̂s2))] (3.5)

As mentioned before, feature matching is necessary because current GANs are

content or object specific [72], which is ineffective for real-world content covering a

diverse collection of objects. A robust denoising net should target not only a narrow

class of content, but also a wide collection of complex scenes. To address this issue, we

embed a feature denoiser trained using extracted features from a feature extractor.

Let Fclean denote a clean image feature vector. Feature matching denoiser FD is

trained to reconstruct the clean image feature vector from its corrupted version FC
clean

by minimizing the MSE loss function (Eq.3.6), where FC
clean is generated by adding

Gaussian noise to Fclean.

LFD(Fclean, F
C
clean,FD) = ||Fclean − FD(FC

clean)||2 (3.6)
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FDs1 and FDs2 denote feature vectors extracted from the dual-stage denoised out-

put. When FD performs the inference process directly on FDs1 and FDs2 , the differ-

ence between FD’s input feature vector and its output reconstructed feature vector is

an additional cost to the two denoisers. Once FD is well trained with clean image fea-

tures, minimizing the difference between denoised image features and its FD output

will push the denoised image towards higher probability configuration following the

clean data distribution in the feature space [72]. The two denoisers’ feature matching

loss functions are defined by Eq.3.7 & Eq.3.8 respectively.

LDs1
FD (FDs1 ,FD) = ||FDs1 − FD(FDs1)||2 (3.7)

LDs2
FD (FDs2 ,FD) = ||FDs2 − FD(FDs2)||2 (3.8)

Now the final loss functions LDs1 and LDs1 for the two denoisers have all the

components as shown in Eq.3.9 & Eq.3.10. α, β and γ are heyperparameters. In the

current implementation, we set them as 1, 10−3 and 10−3 respectively. All components

described above can be trained in synchronization to form an end-to-end framework.

LDs1 = αLDs1
L2 + βLDs1

adv + γLDs1
FD (3.9)

LDs2 = αLDs2
L2 + βLDs2

adv + γLDs2
FD (3.10)

3.2.4 Learning Configuration

The parameters of all convoluntional layers and fully connected layers are initialized

using Xavier method [74]. Residual learning denoiser and Full image reconstruction

denoiser are trained using Adam optimizer [75] with β1 = 0.9, β2 = 0.999, ϵ =

10−8. Learning rate was set from 10−2 to 10−4. The feature matching denoiser

was also trained by Adam optimizer with the same configuration but learning rate

was set from 10−5 to 10−6. The discriminator was trained using stochastic gradient

descent (SGD) with momentum 0.9. The reason why not use Adam optimizer for

training discriminator is for improving the stability of the adversarial training. This

is suggested by recent empirically studies related to GAN [76][77]. The learning rate

was set from 10−1 to 10−4. The network was trained using 40 epochs with min-batch

size of 64.

3.3 Results and Discussion

We evaluate our AADNet using two well-known public benchmark datasets: 14 widely

used images (Fig.3.2) and the BSD200 dataset [2]. The network was implemented us-

ing TensorFlow-1.4 [78] GPU version. All experiments were run on Compute Canada

16



Cedar GPU instance with NVIDIA P100 Pascal graphic processor and Intel Xeon

E5-2650 v4 CPU. The network took about two days for training 40 epochs.

Figure 3.2: The 14 widely used test images

Table 3.1: Average PSNR and SSIM results of σ 30, 50, 70 for 14 widely used images.

σ BM3D EPLL NCSR PCLR PGPD WNNM RED30 DnCNN-S AADNet

PSNR

30 28.49 28.35 28.44 28.68 28.55 28.74 29.17 29.20 29.30

50 26.08 25.97 25.93 26.29 26.19 26.32 26.81 26.81 27.11

70 24.65 24.47 24.36 24.79 24.71 24.80 25.31 25.32 25.58

SSIM

30 0.8204 0.8200 0.8203 0.8263 0.8199 0.8273 0.8423 0.8377 0.8420

50 0.7427 0.7534 0.7415 0.7538 0.7442 0.7517 0.7733 0.7669 0.7830

70 0.6882 0.6717 0.6871 0.6997 0.6913 0.6975 0.7206 0.7206 0.7318

3.3.1 Training and Testing

Similar to related work in the literature, we used gray-scale images. We applied

three noise levels, i.e., σ = 30, 50 and 70, to train AADNet with additive white

Gaussian noises (AWGN). 300 images from the Berkeley Segmentation Dataset were

used. Preprocessing was done by cropping each image to 40x40 patches with stride

of 10. The output was then randomly scaled, flipped and rotated to produce a

larger training set (about 0.45M). For each noise level, we used extracted patches as

ground truth and added AWGN to get noisy samples for training. All the patches

were scaled to [0,1]. The reason to choose AWGN is because 1) there is no specific

prior information on noise score, and 2) real-world noise can easily be approximated
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Table 3.2: Average PSNR and SSIM results of σ 30, 50, 70 for BSD200 images.

σ BM3D EPLL NCSR PCLR PGPD WNNM RED30 DnCNN-S AADNet

PSNR

30 27.31 27.38 27.23 27.54 27.33 27.48 27.95 28.55 28.61

50 25.06 25.17 24.95 25.30 25.18 25.26 25.75 26.30 26.43

70 23.82 23.81 23.58 23.94 23.89 23.95 24.37 24.94 25.08

SSIM

30 0.7755 0.7825 0.7738 0.7827 0.7717 0.7807 0.7993 0.8152 0.8195

50 0.6831 0.6870 0.6777 0.6947 0.6841 0.6928 0.7167 0.7323 0.7451

70 0.6240 0.6168 0.6166 0.6336 0.6245 0.6346 0.6551 0.6785 0.6913

locally as AWGN [2]. During testing, there is no need to perform the feed-forward

computation on our discriminator. The final denoised output is obtained by running

inference on the dual-stage denoisers. Although the model is trained on local patches,

there is no fully connected layer in our denoiser net. Note that AADNet can perform

denoising on arbitrary image size.

3.3.2 Evaluation

To objectively assess the performance of AADNet, we use Peak Signal-to-Noise Ra-

tio (PSNR) and Structural SIMilarity (SSIM) to measure dissimilarity between the

original noise-free and denoised images. BM3D [4], EPLL [79], NCSR [80], PCLR

[81], PGPD [82], WMMN [83], RED30 [2], and DnCNN-S [10] are compared with

our AADNet. We used the publicly available source code of DnCNN-S to generate

its scores. Scores of other methods are taken from [2]. Table 3.1 & 3.2 reports the

PSNR and SSIM results of σ = 30, 50, and 70 on the 14 commonly tested images

and BSD200 images. Some visual examples are shown in Fig.3.3. The zoom-in view

at the bottom right of each image demonstrates that AADNet preserves fine detail

better.

3.4 Conclusions

Quantitative (PSNR, SSIM) and qualitative (visual) comparisons show that our AAD-

Net achieves better results at all test noise levels in the BSD200 dataset and the 14

images widely used in the literature. There are only a few methods outperforming

BM3D by more than 0.3dB [84], but AADNet has a higher PSNR (almost 1.0dB) com-
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Noisy
12.37dB/0.1451

AADNet
24.94dB/0.7280

DnCNN-S
24.26dB/0.6915

Noisy
12.30dB/0.2154

AADNet
21.53dB/0.5235

DnCNN-S
21.36dB/0.5040

Figure 3.3: Visual comparison examples - (Left to right): noisy image (σ = 70),
denoised by AADNet and denoised by DnCNN-S. The zoom-in view shown at the
bottom right of each image demonstrates that AADNet preserves fine detail better.

pared with BM3D. When comparing to a pure residual learning network DnCNN-S,

AADNet also outperforms at all noise levels. SSIM results indicate that AADNet

surpasses other methods by a large margin, especially under high level noise condi-

tions. Visual comparisons in Fig.3.3 show that AADNet can preserve sharp edges and

fine structural details better than the original DnCNN-S on high noise level (σ = 70).

Therefore, we conclude that AADNet is more robust than other methods in recovering

image detail. AADNet’s better performance is attributed to our dual-stage denoising

and adversarial training strategy.

In this work, we propose a novel adversarial augmented dual-stage denoising net-

work, which outperforms existing state-of-the-art conventional and learning based

approaches. The dual-stage is composed of residual learning for preliminary noise re-

moval, and full image reconstruction for recovering fine detail. Dual-stage denoising

19



is complemented by adversarial training, with embedded feature matching and clas-

sification to augment learning. Experimental results confirm that our method gives

better results at all test noise levels. AADNet is expected to perform well on image

restoration tasks in general.
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Chapter 4

SAR Interferometric Phase
Restoration and Coherence
Estimation

4.1 Introduction

Synthetic Aperture Radar (SAR) is a remote sensing technology that uses active mi-

crowaves to capture ground surface characteristics. An Interferometric SAR (InSAR)

image or interferogram is created from two temporally separated single look complex

(SLC) SAR images via the point-wise product of one SLC image with the complex

conjugate of the other SLC image. Thus, each pixel in an interferogram indicates a

phase difference between two coregistered SLC images. The phase difference encodes

useful information, including deformation of the earth’s surface and topographical

signals, and has been successfully used to obtain the digital elevation model (DEM).

InSAR final products have various purposes, such as civil engineering, topography

mapping, infrastructure, oil/gas mining, natural hazards monitoring, and elevation

change detection. In any SAR system, as the satellite circumnavigates the earth,

the SAR sensor launches millions of radar signals toward the earth in the form of

microwaves. The SAR image is represented as an SLC image generated from radar

information echoed back from the ground. However, different ground surface com-

positions impact these radar signals in various ways. Some are reflected away from

the satellite, some are absorbed by non-reflective materials, and some are reflected

back to the satellite. Signal reflections can be noisy, resulting in SAR images with

strong speckle noise. Furthermore, temporal and spatial variations between two SLC

acquisitions cause decorrelation, affecting the interferometric phase [85]. Noisy SAR

images make the interferometric phase filtering step on their output InSAR image

more challenging. It is important to point out that the quality of the estimated inter-
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ferogram directly affects to the whole processing pipeline. The phase noise affects all

subsequent stages, from the phase-unwrapping operation to the motion signal model-

ing [29]. Therefore, restoration of interferometric phase image becomes a fundamental

and crucial step to ensure measurement accuracy in remote sensing. In this regard,

the coherence map of the interferogram is a crucial indicator showing the reliability

of the interferometric phase [35]. Thus, interferometric phase filtering and coherence

estimation are the main focuses of this thesis.

4.1.1 Phase Noise Model

Similar to the classic additive degradation mode in natural image restoration problem,

an interferometric phase can also be characterized by the following equation:

θy = θx + v, (4.1)

which has been validated in [15]. θy denotes the noisy observation, θx is clean

phase component and v is the noise with zero mean and σ standard deviation, θx and

σ are independent of each other. It follows a similar definition in the natural image

analysis that clean signals are independent from noise signals. Unfortunately, it is

not feasible to use natural image processing algorithms directly in the interferometric

phase domain, because of branch cuts. According to the SAR interferometric phase

calculation, the range of interferometric phase is within [−π, π), which means that

wrapped phase value could jump from negative to positive or positive to negative π,

and they could represent high-frequency motion signals that should be well preserved.

Therefore, we process the interferometric phase in the complex domain [20, 28] in

this thesis. In other words, the phase noise model could be represented by real and

imaginary channels, which are continuous values:

yReal = cos(θy) = Qcos(θx) + vr = QxReal + vr

yImag = sin(θy) = Qsin(θx) + vi = QxImag + vi.
(4.2)

The noisy phase observation θy is decomposed into two components yReal and yImag.

vr and vi are zero-mean additive noise in the real and imaginary parts, and they are

independent of the underlying clean phase signals θx. Q is a quality indicator that

monotonically changes with coherence level [20]. We designed our filtering network

based on the above complex phase model. During training, the network learns to

filter both real and imaginary parts, and then the estimated clean phase θ̃x can be

reconstructed from filtered x̃Real and x̃Imag as follows:
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θ̃x = arctan

(︃
x̃Imag

x̃Real

)︃
. (4.3)

4.2 DeepInSAR—A Deep Learning Framework for

SAR Interferometric Phase Restoration and

Coherence Estimation

4.2.1 Method and Procedure

In this section, we describe our proposed DeepInSAR in detail. The main goal is to es-

tablish and validate the idea of using deep learning method to automate and accelerate

both interferometric phase filtering and coherence estimation, which are conducted

separately in most of existing approaches. Recently, deep learning studies especially

CNNs have been dominating various fields of vision-related tasks. Generally, their

excellent performance can be attributed to their powerful feature classification and

ability to learn image priors during the training stage. The reasons why we choose

to use CNN for InSAR filtering and coherence estimation are (1) CNN is effective

for capturing spatial feature characterization with a lot of trained parameters, (2)

many achievements in deep learning can be borrowed to benefit better training and

generalization, as well as to speed up and improve the output data quality, and (3)

powerful GPUs could speed up CNN training and runtime inference. Deep CNN

is well suited to be deployed on modern GPUs for parallel computation. All these

advantages make deep learning techniques promising for InSAR phase filtering and

coherence estimation, where real-time processing and high-quality outcome of large

resolution radar images are required.

Figure 4.1 illustrates the architecture of the proposed DeepInSAR network. At a

high-level, our deep model includes multiple modules for handling different sub-tasks.

The amplitudes and their interferometric phases of two SLC SAR images are com-

bined by concatenating into a single tensor during a preprocessing step. The output

is subsequently fed into a densely connected feature extractor. Dense connectivity

helps extract useful features under different scales and composite multi-scale fea-

tures are suitable for different end tasks [86]. Two feature to image transformations

are achieved by sub-networks performing—(1) phase filtering using residual learning

strategy [10] and (2) coherence estimation. The model is expected to learn optimal

discriminative functions, mapping from noisy observations to both latent clean phase

signals and coherence, by a feed-forward neural network.
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Figure 4.1: The architecture of the proposed Deep Interferometric Synthetic Aperture
Radar (DeepInSAR) network with corresponding kernel size (k), number of feature
maps (n) and stride (s) indicated for each Convolutional Neural Network (CNN) layer

Prepossessing of Radar Data

Referring to our noise model in Equation (4.2), we propose to fully utilize all the

information from two SLCs rather than only analyzing interferometric phase. As

shown in the Preprocessing Module in Figure 4.1, the raw input contains two noisy

co-registered SLC SAR images S1 and S2. Interferometric phase image I is calculated

as:

I = (AS1 ⊙ AS2)e
j(φS2−φS1) = AIe

j∆φ, (4.4)

where A is amplitude and φ is phase. In fact, the phases in SLC images look like

random noise from one pixel to another because each pixel is a complicated func-

tion of scattering features located on the ground surface. However, interferometric

phase ∆φ represents phase-difference fringes illustrating changes in distance between

ground and satellite antenna, which are valuable information needed for InSAR re-

lated applications, but they are often contaminated by noise. Intuitively, we want

to incorporate amplitude images, because they usually show recognizable patterns

like buildings, mountains, and valleys, which are useful spatial characterizations and

hence informative for denoising and coherence estimation. For phase filtering, our

proposed DeepInSAR aims to learn a mapping function Foc : observation ↦→ clean.

As shown in Equation (4.2), Foc can include noisy yRea1, yImag and Q as observations.

In this work, we further use two SLC’s amplitude value to replace the Q in the ob-

servations, because we learn from Reference [87] that coherence magnitude |γ| can be

approximated based on two SLC’s amplitude:
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|γ| = |
∑︁M

m=1

∑︁N
n=1AS1(m,n)AS2(m,n)|√︂∑︁M

m=1

∑︁N
n=1 |AS1(m,n)|2

∑︁M
m=1

∑︁N
n=1 |AS2(m,n)|2

, (4.5)

where M,N represent estimator window size. This widely used coherence estima-

tor shows a potential mapping (AS1, AS2) ↦→ |γ|. Moreover, As mentioned in Sec-

tion 4.1.1, Q is related to |γ|. Here we hypothesize that there is a mapping chain

(AS1, AS2) ↦→ |γ| ↦→ Q. Hence, instead of using any handcrafted sampling estima-

tor to estimate Q. We proposed to use a deep model to approximate the mapping

function Foc, in a simplified end-to-end manner by treating both SLC amplitudes to-

gether with interferometric phase as input observation to the network. Theoretically,

sufficient and well-reasoned input would help the model learn a proper mapping func-

tion to estimate latent clean signals more precisely. The same should also support

estimating the quality of signals (coherence).

Unfortunately, in real-world SAR image, the range of amplitude values could be

extremely broad, that is, from 0 to 1 × 106, and the scale of the values also varies

across different target sites and types of radar sensor. This is one of the reasons why

learning-based studies are not pursued for SAR analysis because using uncontrolled

amplitude values to train a deep discriminative model is not effective. In general, the

learning-based method requires each input dimension to have a similar distribution

with low and controlled variance, which has been suggested by many deep learning

studies [10, 74]. Unnormalized input data can lead to an awkward loss function

topology and place more emphasis on certain parameter gradients resulting in a poor

training. Hence, for a CNN layer, all the input pixels should be in the same scale.

The amplitude values in raw SAR images are not suitable as input data for a deep

model. In this work, we introduce an adaptive method to normalize all amplitude

values to lie between 0 to 1. The model saturates potential outliers as well as keeps

most dynamic changes in the original image without destroying or cutting off any

essential ground characteristics.

Knowing that if data roughly follows a normal distribution, the standard Z score

of each data point can be calculated as the position of a raw score in terms of its

distance from the mean, when measured in standard deviation units [88]. However,

SAR amplitude values follow Rayleigh distribution [89] with potential extremes in

the distribution tail. Hence, the mean is not statistically robust in our case, and it

is easily influenced by outliers. In this study, we apply a modified Z score [90] which

estimates Z score based on Median Absolute Deviation (MAD). The MAD value of

SLC amplitude A is calculated as:
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MAD = median(|Ai − Ã|), (4.6)

where Ã is the median of the data. Next, we transform the data into the modified Z

score domain:

Amz
i =

0.6745 ∗ (Ai − Ã)
MAD

. (4.7)

Amz represents each pixel’s modified Z score and 0.6745 is the 0.75th quartile of

the standard normal distribution, to which the MAD converges. For outlier detection,

researchers commonly use absolute values of modified Z scores to threshold the data,

where data points with |Z| score greater than 3.5 are potential outliers and are ignored

[90]. In Figure 4.2, there are 6 SLC amplitude images selected from three real-world

datasets captured by TerraSAR-X in StripMap mode [91], with 2 SLCs taken at

different time for each stack. By observing their raw amplitude values and histograms

as shown in the 1st and 2nd rows of Figure 4.2, data points are close to Rayleigh

distribution as mentioned above. So simply cutting off according to the modified Z

score might cause loss of information located on the right tail of high amplitude values.

Although logarithm transformation could help us visualize the images better, there is

no fixed base number for all images because they might differ by order of magnitude.

In our proposed normalization method, we adopt modified Z score as a transformation

function to force all values to be close to 0 first and then all potential outliers will

be far from 0 and greater than 3.5. To give a standard input data distribution for

training the neural network, we apply a hyperbolic tangent tanh non-linear function

as:

Â =
1

2
(tanh(

Amz

7
) + 1) (4.8)

to bind all input amplitudes with a controlled variance. A good property of hyperbolic

tangent tanh(x) function is that the input value between −1 to 1 will be enhanced and

others will be saturated. In our case, we divide Amz by 7 (two times of 3.5) to make

the majority of data points lie between −1 to 1. Then ground characteristics could be

potentially enhanced after tanh operations. Secondly, data points with relatively high

amplitude are still kept on the right tail, and for those extremely high values, likely

outliers, are saturated close to 1. Note that, we further normalize the transformed

data to the range [0 ,1], because we use a Rectified Linear Unit (ReLU) activation for

introducing nonlinearity in the CNN to learn complex features. Non-negative input is

recommended to avoid saturated neuron at an early training stage when using ReLU

activation in the early layers [92]. As shown in the 3rd row in Figure 4.2, after our
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proposed data normalization, all amplitude values lie in the range 0 to 1 are properly

delivered without losing and breaking essential details. One can also observe this in

the 4th row of Figure 4.2. The final observation o is a tensor [yreal, yimag, ÂS1, ÂS2],

and is the input to the proposed DeepInSAR.

Filtering with Residual Learning

Residual learning is designed for solving performance degradation problem on very

deep neural networks [93]. In our interferometric phase filtering, we apply a similar

idea but without using too many skip-connections within the network. We only create

identity shortcuts for predicting the residuals of both real and imaginary channels.

Instead of directly outputting the estimated clean components, the proposed model is

trained to predict residuals. The model implicitly filters the latent clean signals with

hidden operations within the deep neural network. For each of the real and imaginary

channels, we have the loss function below:

L(Wfe,Wreal) =
1

2
||Rreal(o;Wfe,Wreal)

− (yreal − xreal)||2F

L(Wfe,Wimag) =
1

2
||Rimag(o;Wfe,Wimag)

− (yimag − ximag)||2F ,

(4.9)

where Wfe , Wreal and Wimag are the trainable parameters in the model correspond-

ing to feature extractor, real and imaginary channels respectively. For both real and

imaginary channels filtering, during the training iterations, our model aims to learn

a residual mapping R(o) ≈ y − y−v
Q

according to our noise model (Equation (4.1)).

Then the clean components can simply be reversed by x = y − R(o). (y, x) repre-

sents noise-free training sample (patch) pairs. Residual mapping is much easier to

learn than the original unreferenced mapping. It has been shown to output excellent

results in many low-level vision image inverse restoration problems such as image

super-resolution [94] and image denoising [10]. To the best of our knowledge, we are

the first to use residual learning and CNN to do InSAR phase filtering. The model

now learns a residual mapping R : observations ↦→ residuals on real and imaginary

channels respectively. Furthermore, it is known that phase noise variance σ2
θ could

be approximated by coherence magnitude |γ| [87]:

σ2
θ =

π2

3
− πarcsin(|γ|) + arcsin2(|γ|)− Li2(|γ|2)

2
, (4.10)
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where Li2 is Euler’s dilogarithm. Our input tensor for phase filtering includes two

SLCs’ amplitudes, which correlated to coherence magnitude. Hence, our designed

observation input is well-reasoned for predicting phase residuals.

Figure 4.2: Before and after preprocessing: amplitude images selected from three
real-world site datasets. From left to right, it shows Site-A (1st and 2nd columns),
Site-B (3rd and 4th columns), Site-C (5th and 6th columns) with two samples for
each dataset. (1st row) Raw amplitude images after log transformation for better
visualization, (2nd row) their corresponding histograms in log, (3rd row) histograms
after proposed normalization and (4th row) corresponding normalized images.

Coherence Estimation

Coherence map is estimated from two co-registered SAR images and is usually used

as an indicator of phase quality. Demarcation of image regions based on the degree

of contamination (“coherence”) is an important component of the InSAR processing

pipeline. 0 coherence denotes complete decorrelation. On the other hand, successful

and accurate deformation is measurable with high coherence. Lower quality of in-

terferometry corresponds to decreasing coherence level and increasing level of noise

on the phase. Interferometric fringes can only be observed where image coherence

prevails. Filtered output is usually combined with coherence map for further pro-

cessing, because coherence map could tell how much useful signals are potentially

within this area. Some of the filtering studies also require coherence map in the
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filtering process. However, most of them use Maximum Likelihood (ML) estimator

(Equation (4.5)) or its extensions, which are usually significantly biased when using

small window sizes. These methods can lose resolution and increase computational

cost with large window sizes. Generally speaking, an area on the ground is treated as

coherent, when it appears to have similar surface characterization within all images

under analysis. However, between two SAR acquisitions, subareas will decorrelate if

the land surface is disturbed. Therefore, CNN is a very good candidate to handle

this spatial and non-local based analysis, especially on our input o, where almost all

necessary information is available for learning the features and capturing mapping

functions. During training, the model can learn to capture prior knowledge on all

training samples and represent the knowledge as network weights. Intuitively, our

method takes a more reliable and robust non-local analysis compared to conventional

non-stack based work, which only considers one interferogram. It is also more time

efficient than stack-based method because there is no requirement for doing heavy

runtime analysis after training is done. In our model, we have a separate module

in the proposed DeepInSAR for coherence estimation by using the same features ex-

tracted from observations o as shown in Figure 4.3. Because coherence lies in the

range [0,1], we calculate sigmoid cross entropy loss, given logits obtained from last

convolution layer’s output c = Foh(o;Wfe,Wcoh):

L(Wfe,Wcoh) = z ∗ −log(σ(c)) + (1− z) ∗ −log(1− σ(c))

where σ(c) =
ec

ec + 1
.

(4.11)

z is the reference coherence map that can be pre-calculated by any existing coher-

ence estimator in order to generate training dataset for real images.

Shared Feature Extractor with Dense Connectivity

Natural images exhibit repetitive patterns, such as geometric and photometric sim-

ilarities, which provide cues to improve the filtering performance. This concept is

also valid for InSAR interferometric phase and SAR amplitude images. However, it

should be noted that though, CNNs perform well for visual related tasks, it is known

that as CNNs become increasingly deep, both input and gradient information can

vanish and “wash out.” Recent work ResNet [93, 95] have addressed this problem

by building shorter connections between layers close to the input and those close to

the output. By doing this, CNNs can be substantially deep but still have accurate

performance as well as efficient training. We adopt a dense connected CNN intro-

duced in Reference [86] as a shared feature extractor before the real-imaginary filter
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and coherence estimator. In the single-look interferometric phase, the latent noise

level is related to the coherence magnitude [87]. A shared feature extractor for both

phase filter and coherence estimation modules is expected to capture this relation-

ship in latent space because weights in the feature extractor Wfe are updated based

on the gradient feedback back-propagated from both phase residual prediction and

coherence estimation as shown in Figure 4.3. During training, the model can encode

non-local image prior by updating network parameters according to both phase filter

and coherence estimator loss. After training, the model can directly produce filtering

and coherence output with a learned discriminative network function without any

runtime non-local analysis.

Furthermore, because of the dense connectivity, our feature extractor follows multi-

supervision that learns to extract common feature parameters for all related subse-

quent tasks [50]. In case of dense connectivity, each layer in the feature extractor

is connected to every other layer in a feed-forward manner. During gradient back-

propagation, each layer’s weight is updated based on all subsequent layers’ gradients

[86]. As shown in Figure 4.1, features extracted by each layer in the feature extractor

module of DeepInSAR are based on all preceding layers’ output. At the same time,

its own output is passed to all subsequent layers as input. In our network, all feature

maps extracted at different depth levels are passed to both phase filter and coherence

estimator as a single concatenated tensor. Note that, as per deep CNNs’ working

mechanism, early layers extract most detailed and low complexity features with a

small perceptual field. With increasing depth, later layers in the feature extractor

start extracting high level and complex features with a larger perceptual field. There-

fore, a densely connected CNN feature extractor allows each sub-module to perform

its own task with multi-scale and multi-complexity features. The proposed DeepIn-

SAR also achieves a deep supervision by allowing each layer in the feature extractor

to have direct access to the gradients from both sub-modules. Dense connectivity

guarantees the model to get better feature propagation and enables feature reuse and

fusion, which is really important for InSAR phase filtering and coherence estimation.

In real-world images, ground data sites contain very different scale level characteris-

tics. That is why most existing methods require user-defined window sizes to extract

image characteristics. Therefore, all these methods suffer from the inability to choose

a generic optimal window size, and fail to automatically generalize to different data

sites. In our case, we use a dense CNN based feature extractor to intelligently select

the best multi-level features for subsequent modules. The experiments in Section

4.2.3 show that our model is capable of generalizing on phase filtering and coherence

estimation for different scale features in one image, as well as performing effectively
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on new site images.

Figure 4.3: Information and Gradient flow between modules.

Teacher-Student Framework

Based on our findings, the main reason why deep learning techniques have not been

pursued widely in InSAR filtering and coherence estimation so far is the lack of ground

truth image data (reference without noise) for training such models. For training our

proposed DeepInSAR model, we need image pairs as described in Section 4.2.1. How-

ever, there is no ground truth for real-world InSAR images. Therefore we introduce

a teacher-student framework to make it feasible to train DeepInSAR for real-world

images. From the literature, stack-based methods, like PtSel [96], always give reliable

results. PtSel is an industry level algorithm for coherence estimation and interfero-

metric phase filtering, which searches similar pixels across a stack of interferograms

in both spatial and temporal domains. There are three key steps of PtSel algorithm

(Figure 4.4) to generate the coherence map for a stack of interferograms. Next, the

filtering process is replacing each interferograms’ pixel data by the weighted mean of

the phase values of its neighboring pixels, where the weight is the PtSel generated

coherence value. Despite the accuracy of stack-based methods, it requires historic

SLCs and intensive online parallel searching using a high-end GPU farm, which limits

its ability to be integrated into a time-critical InSAR processing chain. The stack-

based methods have to wait for several months to collect sufficient data before it can

start processing a new site. Although existing stack or non-stack based methods are

powerful, most of them require human expert to ensure intermediate output qual-

ity because they are incapable of automatically detecting and removing all possible

real-world noise patterns from InSAR data.

We introduce a deep neural network to replace the manual pre-processing, that

is, feature extraction; and post-processing, that is, quality inspection, with a single

intelligent trainable model. Similar to training an object classification neural network
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Figure 4.4: Illustration of the PtSel method describing the three key steps in order
[96].

model, a large human labeled dataset is required in our approach. Human thus acts

as a teacher to teach the model how to classify objects by providing human labeled

data. For InSAR phase restoration and coherence estimation, we adopt the PtSel

method to create filtered phase images for reference, coherence maps with human

tuning and full stack processing to make sure the results are sufficiently reliable. The

detail of the PtSel algorithm and its GPU implementation can be found at References

[96, 97]. In our approach, PtSel with expert supervision becomes the teacher of the

proposed DeepInSAR model, which is a student. We are able to demonstrate that,

after training, (1) the student DeepInSAR can generate on par or even better results

than its teacher method—PtSel, using the same test data sets, (2) our model only

requires feed-forward inference on a single pair of SLCs, while PtSel requires more

than thirty SLCs; and (3) our model can output filtering and coherence results after

a one pass computation, while PtSel requires back and forward tuning processes and

needs the phase unwrapping step, which is time consuming.

4.2.2 Experimental Setup

We compared our method with a number of other non-stack based methods, which

can also perform both phase filtering and coherence estimation. They are (1) BoxCar

filter, (2) NL-SAR [39] and (3) NL-InSAR [35]. We used publicly available imple-

mentations of these methods found in https://github.com/gbaier/despeckCL. Note

that all parameters were set, when applicable, as suggested by the authors of the

original papers, or else chosen to optimize the performance. We implemented the

proposed DeepInSAR using Tensroflow-GPU 1.10; the code is available at: https:

//github.com/Lucklyric/DeepInSAR. In order to maximize the randomness of the
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training patch samples, for a given training dataset, the model was trained on ran-

domly extracted image patches with a size of 128 × 128 on the fly [98]. Network

parameters were updated using Adam optimizer with a batch size of 64 and 0.001

initial learning rate. The model was trained on two NVIDIA 1080 GPUs for 6 hours

with 1.6× 105 iterations. To fairly compare the computational time, we executed all

methods on the same GPU with an i7-8700K processor and 32GB RAM. It is worth

noting that we built and trained our model using common hyper-parameter settings

in our experimental setup because the work presented in this thesis is mainly for val-

idating the feasibility of using deep learning techniques to do InSAR phase filtering

and coherence estimation. It is expected that more extensive hyper-parameter tun-

ing will further improve the performance of our proposed deep model based on the

findings in References [86, 94]. We conducted our experiments using both simulated

and real-world data to assess the effectiveness and robustness of the proposed model.

In this section, we also discuss learning capacity and generalization ability, which are

essential criteria for evaluating a learning model.

4.2.3 Results
Results on Simulation Data

In this section, we present quantitative results using simulated data. Simulated data

allows us to evaluate the filtered quality in a controlled environment by comparing

with the simulated ground truth. Ground truth is treated as an optimal teacher for

training our proposed DeepInSAR; we can objectively demonstrate our model’s ca-

pability to learn proper phase filtering and coherence estimation for new simulated

testing images, with ground truth available. The simulation strategy is similar to the

work for generating the interferometric phase in Reference [38]. Instead of synthesiz-

ing a limited known patterns, the additional advantage is to extend the simulation

for randomly generated irregular motion signals, ground reflective phenomena, as

well as non-stationary noisy conditions. We designed a synthetic InSAR generator to

randomly simulate a pair of SLC SAR images with the following procedure:

• Generate first SLC image S1 with 0 phase value. The amplitude value grows

from 0.1 to 1 from the left-most column in the image to the right column

following a Rayleigh distribution. This leads to a linearly growing of coherence

from left to right.

• Generate second SLC image S2 by adding random Gaussian bubbles as synthetic

motion signals to the phase. The amplitude value is equal to S1’s amplitude

value.
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• Add random low-value amplitude bands (less than 0.3) on S1 and S2 to simulate

stripe-like low amplitude incoherence areas.

• Generate noisy SLCs Snoisy
1 and Snoisy

2 by adding independent additive Gaussian

noise v to both real and imaginary channels of S1 and S2.

• Calculate clean and noisy interferometric phase I and Inoisy.

• Calculate ground truth coherence using clean amplitude, phase, and the stan-

dard deviation of base noise v.

Our simulated image generator includes a set of parameters for controlling the

complexity of the interferometric phase at different distortion levels. We generated

18 different configurations, by combining (1) three base Additive White Gaussian

Noise (AWGN) levels of v (S1, S2, S3), (2) three fringe frequency levels of phase

fringes (F1, F2, F3), and (3) with or without low amplitude strips (S, NS). For ex-

ample, the dataset, which has a relatively high level of base noise, and low fringe

frequency with low amplitude stripes, is denoted by S3-F1-S. Sample images are

shown in the first column of Figure 4.5. We generated 100 samples with 1000 × 1000

image resolution under each configuration. Half of them were used for training and

the rest were for testing. In this experiment, in order to assess the learning capacity

and generalization ability of our proposed DeepInSAR model, a single model was

trained on all 18 datasets with the noise-free ground truth images (teacher). Because

all amplitude stripes and motion signals are randomly generated, all images between

training and testing datasets were distinct. Figure 4.5 shows randomly selected sam-

ples from our simulation dataset. Our data generator is inspired by the noise sim-

ulation strategy described in Reference [99]. Basically, we simulate speckle noise by

adding uncorrelated zero-mean Gaussian random variables to the real and imaginary

parts of both synthetic SLCs before multiplying them for interferogram generation.

To get the ground truth coherence for the simulated interferogram, we make an em-

pirical mapping to it from the standard deviation of those random variables and the

ground truth amplitude. This is because increasing the noise will decrease the co-

herence, and decreasing the amplitude will also decrease the coherence. In this case,

each pixel in the generated interferogram is composed of 4 zero-mean Gaussian ran-

dom variables with identical standard deviation. The source code of our simulator

and full resolution simulated samples used in the experiments are available online at

https://github.com/Lucklyric/InSAR-Simulator.

Visual comparisons with BoxCar, NL-InSAR, NL-SAR, and our proposed DeepIn-

SAR methods are presented in Figure 4.6. Each two rows show the phase filtering
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Figure 4.5: We use S#-F#-S or S#-F#-NS to name simulation datasets generated
using different distortion scenarios: S# denotes Gaussian level of base noise S; F#
denotes frequency level of phase fringes F; S and NS mean with or without low am-
plitude strips respectively. (From left to right) A set of simulated images are selected
from S1-F3-NS, S2-F2-NS, and S3-F1-S datasets. First row shows simulated ground
truth with clean interferometric phase [−π,π), second row is the noisy interferometric
phase [−π,π)—(Blue: −π; Red: +π), and third row is coherence (Black: 0; White:
1).
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and coherence estimation of the three images in Figure 4.5 respectively, where (a–d)

are filtering outputs and (e–h) are coherence estimations of S1-F3-NS, (i–l) are filter-

ing outputs and (m–p) are coherence estimations of S2-F2-NS, and (q–t) are filtering

outputs and (u–x) are coherence estimations of S3-F1-NS. Visual inspection on the

filtered outputs compared to ground truth clean phase images in Figure 4.5 shows

that our model can preserve phase structural details better than other methods for

increasing base noise levels (Figure 4.6q–t) and frequency of fringes (Figure 4.6a–d).

As we can observe, all methods work fairly well on low-level noise (S1) and low-

level fringe frequency (F1) cases. However, with increasing distortion level, all other

methods perform rather poorly. The BoxCar filter loses resolution and produces no-

ticeably squiggly artifacts (Figure 4.6j,r). In particular, when distortion is with high

base noise (S3) and high fringe frequency (F3), our model only loses insignificant de-

tail especially in relatively low coherent regions on the left (Figure 4.6a,q). Although

NL-InSAR can guarantee strong noise suppression with detail preservation on high

frequency fringes (Figure 4.6c), it over-smooths the image when phase distortion level

keeps increasing (2nd row of Figure 4.5); fringe structures are washed out when both

distortion level and fringe frequency are high (Figure 4.6k). For coherence estima-

tion, our proposed DeepInSAR is most matched to ground truth (Coherence row in

Figure 4.5). BoxCar and NL-SAR tend to output low coherence on fast moving areas

(Figure 4.6f,h). NL-InSAR and NL-SAR fail to compute correct coherence around

low amplitude strips (Figure 4.6w,x). NL-InSAR also shows inaccurate coherence

estimation between the phase jumps (Figure 4.6h,p).

We also use objective assessment to evaluate the performance of our method. Our

test datasets include 18 × 50 = 900 simulated images with noisy and ground truth

phase images, as well as corresponding coherence indices. The results obtained from

BoxCar, NL-InSAR, NL-SAR and our proposed DeepInSAR are compared. We com-

puted both Root Mean Square Error (RMSE) in radians (Table 4.1), and mean

Structural Similarity Map (SSIM) between the filtered phase image and noise-free

ground truth to quantitatively evaluate the filtering performance (Table 4.2). RMSE

and mean SSIM are also used to assess coherence estimation (Tables 4.3 and 4.4).

Numerical results further confirm our observations that the proposed DeepInSAR sig-

nificantly outperforms all other methods on most of the 18 different distortion levels.

From the simplest (S1-F1-NS) to the most challenging (S3-F3-S) simulation task, all

methods have decreasing the performance on both phase filtering and coherence es-

timation. However, the proposed DeepInSAR has the lest performance degradation

and consistently gives better results than the other methods with a total mean of

RMSE (radians) 0.8536 and mean SSIM score 0.8666 for phase filtering. The statis-
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Figure 4.6: Examples of filtering and coherence estimation results on sample simula-
tion images shown in Figure 4.5. (a–d) are filtering outputs and (e–h) are coherence
estimations of S1-F3-NS, (i–l) are filtering outputs and (m–p) are coherence estima-
tions of S2-F2-NS, and (q–t) are filtering outputs and (u–x) are coherence estimations
of S3-F1-NS. Visual inspection on filtered outputs from different methods compared
to ground truth phase images are given in Figure 4.5, 1st row. It can be seen that our
model can preserve structural details better than others for increasing base noise lev-
els and frequency of fringes (5th row). Our proposed method’s coherence estimation
is most matched to ground truth (Figure 4.5, 3rd row), while other methods tend to
predict inaccurate results on areas with highly dense fringes or low amplitude stripes.
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tical analysis proves that our proposed model can effectively remove the noise and at

the same time maintain the structural information effectively. The accuracy of our

coherence measurement also shows superior performance with a total mean of phase

RMSE 0.2167 and mean SSIM score 0.7984. Coherence computations in all other

methods are biased as the data complexity increases, especially when they deal with

dense phase fringes (F3) and low amplitudes strips (S).

Results on Real Data

Real complex features and noise patterns cannot be fully replicated by simulation

data. However, we can conclude from simulation data experiments that if we can

give the model close to clean reference data for teaching DeepInSAR, the model can

learn latent mapping from training samples. As mentioned in Section 2.2.5, we use

PtSel with expert supervision to generate clean reference phases and coherence maps

for three real-world datasets captured by TerraSAR-X in StripMap mode [91]: (1)

Site-A—27 SLCs, (2) Site-B—37 SLCs, and (3) Site-C—103 SLCs. We used a cropped

version of these datasets with size 1000 × 1000 pixels. For coherence estimation, be-

cause the window-based PtSel coherence estimator is biased [96], we applied binary

threshold 0.5 on PtSel’s coherence output to transform the original regression prob-

lem into a classification task. During the inference step, we use coherence estimator’s

sigmoid output as the confidence level to represent final coherence magnitude. To

demonstrate the generalization ability of the proposed DeepInSAR on real word In-

SAR data, we trained the model using images from two sites and tested its robustness

on the third site. Three representative interferograms selected from each of the three

real datasets are shown in Figure 4.7.

Site_A Site_B Site_C

Figure 4.7: Three representative noisy interferograms (Phase) selected from each of
the three real datasets; Blue: −π; Red: +π.
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Table 4.1: Phase Root Mean Square Error (RMSE) (radians) on 18 different types of
Simulation dataset. S denotes Gaussian level of base noise and F represents phase
fringes frequency. S and NS mean with and without low amplitude strips respectively.
Values with bold fonts indicate the best performance.

Phase RMSE (Radians)

Sim Configuration
Methods

BoxCar NL-SAR NL-InSAR Proposed

S1

S

F1 0.7469 0.8401 0.8373 0.6939

F2 1.0697 1.2012 0.9572 0.7422

F3 1.0699 1.2054 1.0354 0.7890

NS

F1 0.6675 0.7751 0.7088 0.6570

F2 0.9906 1.1015 0.8284 0.6938

F3 0.9623 1.1348 0.9138 0.7261

S2

S

F1 0.8409 0.8782 0.9105 0.8091

F2 1.1252 1.2319 1.0859 0.8854

F3 1.2096 1.2801 1.1890 0.9593

NS

F1 0.7863 0.8199 0.8256 0.7715

F2 1.0567 1.1687 0.9854 0.8297

F3 1.1251 1.2186 1.0855 0.8785

S3

S

F1 0.9542 0.9332 0.9648 0.9370

F2 1.1920 1.2657 1.1883 1.0239

F3 1.3080 1.3430 1.2940 1.1156

NS

F1 0.8886 0.8672 0.8976 0.8709

F2 1.1307 1.2203 1.1159 0.9555

F3 1.2398 1.2927 1.2120 1.0259

Average 1.0202 1.0988 1.0020 0.8536

Filtered phases and estimated coherence obtained using BoxCar, NL-InSAR, NL-

SAR, PtSel, and our trained DeepInSAR are shown in Figures 4.8–4.10, which are

the outputs of three real sites given in Figure 4.7. We use qualitative comparison

because we do not have noise-free real images for quantity evaluation. The Box-

Car filter tends to blur fringe edges in all the visual samples, mainly because of its
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Table 4.2: Phase mean Structural Similarity Map (SSIM) on 18 different types of
Simulation dataset. S denotes Gaussian level of base noise and F represents phase
fringes frequency. S and NS mean with and without low amplitude strips respectively.
Values with bold fonts indicate the best performance.

Phase SSIM

Sim Configuration
Methods

BoxCar NL-SAR NL-InSAR Proposed

S1

S

F1 0.9424 0.8897 0.8566 0.9511

F2 0.7372 0.6266 0.7723 0.9333

F3 0.6937 0.5989 0.6888 0.9015

NS

F1 0.9665 0.8923 0.9505 0.9585

F2 0.8075 0.7413 0.8887 0.9493

F3 0.7999 0.7074 0.8117 0.9303

S2

S

F1 0.8898 0.8590 0.8358 0.9122

F2 0.6624 0.5681 0.6746 0.8647

F3 0.5150 0.4684 0.5202 0.7976

NS

F1 0.9221 0.8902 0.9023 0.9312

F2 0.7357 0.6577 0.7825 0.8966

F3 0.6152 0.5647 0.6398 0.8527

S3

S

F1 0.8026 0.8168 0.7939 0.8349

F2 0.5717 0.4989 0.5748 0.7670

F3 0.3747 0.3555 0.3919 0.6675

NS

F1 0.8570 0.8722 0.8508 0.8824

F2 0.6463 0.5736 0.6621 0.8211

F3 0.4612 0.4375 0.4938 0.7463

Average 0.7223 0.6677 0.7273 0.8666

low-pass behaviour and it under-filters near incoherent areas, which can be easily ob-

served when zooming in. In Figure 4.8, there appears minor loss of resolution in thin

strips (when zoomed in) for the proposed compared to PtSel (stack-based) but is still

much better than all other methods that use a single interferogram. NL-InSAR has

more stripping artifacts that cause streaks in the phase along incoherence boundaries,
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Table 4.3: Coherence RMSE on 18 different types of Simulation dataset. S denotes
Gaussian level of base noise and F represents phase fringes frequency. S and NS mean
with and without low amplitude strips respectively. Values with bold fonts indicate
the best performance. Values with bold fonts indicate the best performance.

Coherence RMSE

Sim Configuration
Methods

BoxCar NL-SAR NL-InSAR Proposed

S1

S

F1 0.4360 0.4532 0.3827 0.2125

F2 0.5418 0.6356 0.3526 0.1838

F3 0.5321 0.6251 0.3639 0.1850

NS

F1 0.2119 0.3472 0.1436 0.2045

F2 0.5458 0.6515 0.1907 0.1633

F3 0.5444 0.6494 0.2565 0.1564

S2

S

F1 0.4284 0.4522 0.4136 0.2688

F2 0.4887 0.5564 0.3802 0.2699

F3 0.4784 0.5463 0.3869 0.2774

NS

F1 0.2052 0.3303 0.1878 0.2011

F2 0.4768 0.5664 0.2749 0.2038

F3 0.4766 0.5600 0.3175 0.2166

S3

S

F1 0.3780 0.3988 0.3834 0.2549

F2 0.4251 0.4836 0.3726 0.2553

F3 0.4244 0.4678 0.3805 0.2591

NS

F1 0.2052 0.2522 0.2086 0.1920

F2 0.4117 0.4904 0.3116 0.1955

F3 0.4207 0.4817 0.3419 0.1998

Average 0.4240 0.4971 0.3139 0.2167

which also shown up in its coherence output (Figure 4.9). It also results in artifacts

that follow the benches rather than the fringe lines (Figure 4.10). NL-SAR can sig-

nificantly remove the noise, but it also yields over-filtering that breaks some fringes

and also merges small scale signals with neighboring fringes (Figure 4.8). Overall,

though non-local based NL-SAR and NL-InSAR can provide as sharp and visually
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Table 4.4: Coherence mean SSIM on 18 different types of Simulation dataset. S
denotes Gaussian level of base noise and F represents phase fringes frequency. S and
NS mean with and without low amplitude strips respectively. Values with bold fonts
indicate the best performance.

Coherence SSIM

Sim Configuration
Methods

BoxCar NL-SAR NL-InSAR Proposed

S1

S

F1 0.5598 0.5444 0.7150 0.9056

F2 0.4580 0.2859 0.5979 0.9007

F3 0.3180 0.1280 0.4455 0.9104

NS

F1 0.6695 0.7234 0.9497 0.9069

F2 0.5134 0.4225 0.6767 0.9040

F3 0.3524 0.2859 0.4318 0.8977

S2

S

F1 0.3621 0.5057 0.6257 0.7349

F2 0.3100 0.2860 0.4596 0.7649

F3 0.2340 0.1967 0.2930 0.7508

NS

F1 0.3061 0.7688 0.8752 0.7864

F2 0.2422 0.3986 0.4855 0.7584

F3 0.1756 0.1931 0.1853 0.7994

S3

S

F1 0.2555 0.5082 0.5734 0.6908

F2 0.2311 0.2952 0.4029 0.7323

F3 0.1840 0.1728 0.2275 0.7072

NS

F1 0.1782 0.8209 0.8195 0.7475

F2 0.1524 0.3910 0.4391 0.7119

F3 0.1246 0.1552 0.1416 0.7617

Average 0.3126 0.3935 0.5192 0.7984

appealing filtered phase as DeepInSAR on high coherence areas, in medium and low

coherence areas, they tend to flatten the phase and create artifacts in highly noisy

areas (Figure 4.8). Both methods have lower overall variance and less blurring than

the BoxCar filter, though NL-InSAR has high variance in the estimates between the

coherence/amplitude boundaries with streaky artifacts. Our proposed DeepInSAR
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Table 4.5: Running time T (in seconds) of different methods with image size 1000 ×
1000.

BoxCar NL-SAR NL-InSAR Proposed

T (s) 1.16 12.77 19.36 0.46

shows a good balance between noise removal and structural preservation. Regarding

to coherence estimation, the proposed DeepInSAR consistently gives better contrast

and less spurious high coherence points within the low coherence areas in all the vi-

sual samples. It would be easier to be used as the weighting mask for the subsequent

InSAR processing e.t. phase unwrapping, compared to other methods. In NL-SAR’s

and NL-InSAR’s coherence outputs, there are also artifacts showing high coherence

dots in low coherent areas. The limitation is caused by NL-InSAR’s numerical insta-

bility algorithm and preferential treatment of amplitude, when the amplitude simi-

larities disagree with the phase similarities. Explanation of NL-InSAR’s weakness is

also discussed in Reference [100, 101]. Comparing to these non-stack based methods,

our DeepInSAR offers both strong noise suppression and detail preservation as well

as gives clear high contrast coherence estimation. It performs on par and even better

than its stack-based teacher method—PtSel. PtSel’s coherence estimation is biased

toward low coherence in the dynamic areas (Figures 4.8 and 4.10), because it requires

the target remaining stable over a long period of time [96].

The High-level fringe frequency indicates fast-moving areas on the ground. These

areas usually introduce many phase jumps (−π to +π) in the wrapped interferogram.

As aforementioned, structural information is one of the most important information

that any phase filtering method should preserve. This is because the performance

of subsequent InSAR processing, for example, phase unwrapping, is heavily affected

by the distorted fringe structure. Many gradient-based phase-unwrapping methods

reply on the phase gradients and derivatives, which are types of structural information

[20]. As an effective InSAR phase filter, it should preserve the structural details as

much as possible [26], and our proposed method demonstrates this capability. For

such evaluation, SSIM is a better metric comparing to RMSE for assessing how much

structure information has been preserved after filtering. The mean SSIM score (Table

4.2) indicates that our method preserves excellent details even on highly dense fringes

(F3), where all reference methods show decreasing performance as the fringe density

increases. Our model shows more noticeable improvement under the SSIM metric

than the RMSE metric. It is because RMSE estimates absolute errors and the SSIM
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Figure 4.8: Filtered images and coherence maps generated by the reference methods
and proposed DeepInSAR trained model for a Site-A image.

provides scores, which focus on the structural similarity. If a filter is over-filtering or

breaking the boundary between phase jumps, it may only show insignificant RMSE

changes, but will introduce a significant SSIM degradation. Furthermore, if a filter

fails to fully suppress the noise signals, the residual noise in the output image will

also be reflected more sensitively by SSIM score as in the natural image [102]. This is

also the main reason why we use the SSIM metric in the comparisons. Note that, the

structural information of coherence is not as important as the filtered phase, because

the coherence values are mostly used as a threshold or weighting metric for subsequent

processing. However, we still added SSIM metric for coherence estimation to enrich

the experimental analysis. Table 4.4 shows that the proposed DeepInSAR can predict

coherence map most matched to the ground truth. It demonstrates why our method

can give high contrast and clear boundaries between extremely low and high coherence

areas in both simulation and real site outputs. We believe that a method which can

precisely recover the structural information in coherence map must also benefit the

subsequent processing with a more detailed and precise coherence indication.

Moreover, in Figure 4.7, we used three very different real site interferogram exam-

ples. Similarly, all test simulation data were generated randomly. Both quantitative
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Figure 4.9: Filtered images and coherence maps generated by the reference methods
and proposed DeepInSAR trained model for a Site-B image.

and qualitative results confirm that our trained DeepInSAR model generalizes well to

new InSAR data without any human supervision or parameter adjustment, which is

required by other methods. As an example, when we adjusted the searching window

size to a smaller size, NL-SAR and NL-InSAR were able to filter well on those highly

dense fringes, but facing under-filtering problem on slow motion areas. During the

experiments, we had to manually tune the set of parameters for the reference meth-

ods in order to get reasonable results. Their coherence estimators also have similar

limitations. In comparison, our proposed model’s coherence output is closest to the

ground truth in all different distortion cases. For instance, all three referenced meth-

ods tend to give better results when using (1) a small window size on highly dense

fringe areas but (2) need a large window size on low frequency motion. There is no

fixed size, which works for all 18 simulated distortion levels. However, we show that

our learning based DeepInSAR works well for all 18 simulated datasets with a single

trained model. It has successfully learned the mapping from noisy observations (18

different distortions) to latent clean signals and coherence magnitudes, when we give

it proper training samples to explore. Using densely connected feature extractor gives

DeepInSAR the ability to intelligently handle multi-scale signal characteristics with
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Figure 4.10: Filtered images and coherence maps generated by the reference methods
and proposed DeepInSAR trained model for a Site-C image.

a single model. Since the simulated signal patterns are random, therefore simulated

motion patterns, noise conditions and low reflective strips, are irregular among all

training and testing images. The evaluation output from the test dataset shows that

our trained model does not suffer from the over-fitting issue and only shows a small

generalization error, which however has not affected its better performance. It learns

well from the teacher and the model can be generalized to new InSAR data. From the

operational point of view, NL-InSAR has large amount of artifacts that it produces

in the phase and coherence. There are many instances where it does a good job, but

in an industrial setting reliability is more important. NL-SAR is better in terms of

reliability, but much worse in terms of resolution and is therefore also not an effi-

cient option. The proposed DeepInSAR balances well on noise reduction and fringe

preservation. At the same time, it gives a high level of bi-modality in the coherence

estimates between the incoherence and coherent pixels.

Furthermore, besides the superior performance compared to other non-stack meth-

ods, under a teacher-student framework, DeepInSAR can achieve results comparable

to or better than its teacher method with a learned discriminating neural network.

The PtSel algorithm (teacher) has several limitations—(1) It relies on temporal in-
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formation, which means that non-local linear motion can make it hard to pick a

neighbourhood suitable for all interferograms, causing under-filtering in these areas.

As a result, the algorithm has to wait for many more days of sufficient data before

starting the process; (2) It has bias toward filtering results—PtSel looks for similar

nearby pixels to perform filtering. If it does not find enough of such pixels, then the

filtering is toward averaging, giving worse result compared to another pixel which can

find lot of similar neighbors. PtSel’s filtering and coherence output is regarded as

state-of-the-art in the literature, but it fails to give optimal output across the test

input image because of its biased adaptive kernel estimation. On the other hand,

the proposed DeepInSAR successfully distills the knowledge from training samples

and generalizes the model to new unseen InSAR images with a simple feed-forward

inference, without any human expert supervision, or intensive online searching on a

stack of interferograms as required by PtSel. Our proposed DeepInSAR model cap-

tures coherence in the fast-moving areas even better than PtSel and produces excellent

delineation in the coherence with better contrast, which helps subsequent stages in

the InSAR processing pipeline, that is, when threshold and weighting are required on

the estimated coherence in the phase unwrapping stage. With respect to the average

running time (T) in seconds, as seen from Table 4.5, the proposed method requires

significant less running time than other non-stack methods because only feed-forward

computation is needed after training. After testing different parameter settings (e.g.,

number of iterations and patch size), reference methods sometimes get better results

after running for a longer time. However, it is not always the case, which means that

these methods have limited potential of full automation without human intervention.

The proposed method shows better results with much faster processing time. It is

worth mentioning that PtSel outputs used for training and visual comparison are gen-

erated using a Titan XP GPU farm. This is because PtSel requires high-end GPUs

for intensive parallel searching on a stack of SLCs (>30). In comparison, our method

can run on a consumer level system, and perform filtering and coherence estimation

using only two SLCs. Taking filtering, coherence performance and flexibility into con-

sideration, the proposed DeepInSAR is very competitive and suitable for real-world

InSAR applications.

Lastly, it is worth mentioning that, in this work, our InSAR simulator is mainly

designed for quantitative evaluation and analysis, because there is no ground truth

data for real-world images. The proposed simulator can generate randomly compos-

ite irregular motion signals, ground reflective phenomena, as well as non-stationary

noise conditions with different controlled configurations. It is an ideal scenario for

objectively assess our proposed DeepInSAR’s learning capacity and ability of gener-
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alization. However, as a data-driven technique, when we want to apply the proposed

DeepInSAR framework on real-world InSAR data, we need to make sure the training

data distribution is similar to real-world scenarios. Existing simulator is designed

to give controlled experimental environments for quantitative analysis, but it is still

not able to fully replicate the real-world complex features and noise patterns. That

is also the reason why we propose the teacher-student framework, which has been

validated to be useful for adapting the proposed DeepInSAR to a real-world phase

filtering and coherence estimation pipeline. This is also one of the contributions we

would like to highlight. We show the potential benefits in the InSAR industry that

the proposed DeepInSAR framework has the ability to transform conventional meth-

ods, which might require higher computational resources, more input observations,

and human supervision, into a differentiable deep neural network model by learning

from their outputs. In future work, we plan to investigate a Generative Adversarial

Network (GAN) [71] based InSAR simulator for generating more realistic synthetic

data. We believe that it will certainly confirm the operationalization aspect of the

proposed DeepInSAR.

4.2.4 Conclusions

In this work, we propose a learning-based DeepInSAR framework to address two

important research issues: InSAR phase filtering and coherence estimation, in a sin-

gle process. Our model works well when using either simulated or real data, under

different synthetic distortion and real noisy pattern levels. To quantitatively assess

the proposed method, we designed an InSAR simulator, which can generate motions

and noise patterns randomly. The proposed DeepInSAR outperforms existing non-

stack based methods for both tasks by giving the most matched filtered phase and

coherence map comparing to the ground truth data. SSIM scores (0.8666 for phase

filtering and 0.7986 for coherence estimation) also show superior DeepInSAR perfor-

mance that can preserve well the phase fringe structure after filtering, and at the same

time gives sharp and clear coherence map. Numerical results show that the proposed

DeepInSAR can generalize well on new unseen images once it has been trained, and

thus can be applied in various real-world InSAR applications. We also presented a

teacher-student training strategy, which allows the proposed DeepInSAR to augment,

automate and accelerate existing un-differentiable methods using a differentiable deep

neural network. Our trained model can obtain the same or better filtering and coher-

ence estimation results only on a single pair of SLC images compared to its teacher

algorithm, which requires a stack of SLCs(>30), achieving significantly higher com-
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putational efficiency. Comparing to other non-stack based methods, our model gives

most robust results on both filtering and coherence estimation (1) without any human

supervision and (2) with real-time performance. In addition, the proposed DeepIn-

SAR gives a high level of bi-modality coherence estimation that nicely distinguishes

the incoherence and coherent pixels, which benefits the subsequent phase unwrapping.

To the best of our knowledge, the proposed DeepInSAR is the first work that uses

deep neural network to perform InSAR filtering and coherence estimation jointly us-

ing both amplitude and phase information of only two co-registered SLC SAR images.

In future work, we will investigate how well the proposed DeepInSAR framework can

benefit subsequent InSAR analytic stages along the processing pipeline.

4.3 Self-supervised Residual Distribution Learn-

ing for SAR Interferometric Phase Restoration

and Coherence Estimation - SRDInSAR

4.3.1 Introduction

To the best of our knowledge, DeepInSAR [103] is the first successful deep learn-

ing framework for jointly performing phase filtering and coherence estimation on

SAR interferometric images. Afterward, numerous learning-based models (e.g, [104]

[105] and [106]) have referenced the DeepInSAR and continue to explore this topic

by incorporating state-of-the-art model architecture or integrating pre- and post-

processing procedures to enhance results. We believe that DeepInSAR demonstrates

the advancements associated with using a differentiable neural network to mimic both

expert human decision-making behaviour and the performance of a sophisticated in-

differentiable algorithm. Apart from the advancement in the application of a deep

learning model to the problem of InSAR signal restoration and estimation of coher-

ence. All prior studies, including DeepInSAR, have relied on supervised learning.

A downside of the supervised setting is the restricted accessibility of the training

dataset. Possibly, the quality of ground truth training labels poses a performance

barrier. Additionally, developing a large-scale training dataset is a time-consuming

and costly process. No known InSAR simulator model can fully replicate clean and

noisy real-world signals for training and then apply a model to real-world data. In-

deed, the benefits of learning approaches have not been fully explored because most

of the present work is focused only on maximizing a mapping function between input

and output signals. Rather than using corrupted images as inputs and clean images as

targets in typical supervised learning, researchers [107] invented Noise2Noise training,

49



which employs pairs of corrupted images as training data and does not require clean

references. However, each training image requires at least two distinct realizations of

the corruption, which is still unfeasible in real-world cases, particularly ones involving

InSAR data. Afterward, the Noise2Void [108] training method improved the self-

supervised denoising algorithm by eliminating the requirement for image pairs and

focusing the training only on individual noisy images, assuming that the corruption

is zero-mean and independent between pixels. The researchers defined a blind-spot

technique in which the receptive field of the network excludes the central pixel. As a

result, the model is forced to recover the noisy version of the center pixel value using

only the surrounding context and not a separate reference image. Noise2Void is the

first truly self-supervised work that trains directly on the body of data to be denoised.

It can be used in situations where other approaches are impractical. Its most notable

use is in the InSAR field, where it is typically not easy to acquire training samples,

whether clean or noisy pairs.

We take inspiration from the recent Noise2Void training but adapt it for phase

filtering in InSAR. Due to the extra problem of estimating coherence, our research

group published GenInSAR [109], a generative model that predicts a value distribu-

tion rather than the target value directly using mixture density networks (MDNs)

[110]. GenInSAR introduces the process of learning the InSAR phase value distri-

bution and can be used to approximate the parameters - mean and standard devia-

tion - of a bivariate (Real, Imaginary) Gaussian distribution of each pixel location.

GenInSAR is built as a proof of concept for using self-supervised training to solve

InSAR filtering and coherence estimation challenges. However, some issues related

to Noise2Void and GenInSAR remain unsolved: 1) The model is trained on patches

with center pixel masking, resulting in a limited model architecture that constrains

the output dimension to 1x1. Additionally, only a few output pixels can contribute

to the loss function, restricting training efficiency dramatically. 2) GenInSAR im-

plements the Noise2Void concept by masking the center pixels to prevent the model

from learning similar outputs; however, this approach results in a trained model

that ignores the center pixel information, which has been addressed in the original

Noise2Void study [108]. This is especially detrimental in InSAR tasks, as each pixel

can represent hundreds of square meters of the ground area regarding the data’s res-

olution; thus, each pixel’s information should be considered in conjunction with its

surrounding context. 3) The final notable drawback of GenInSAR is its unsatisfac-

tory estimation of coherence, which our previous study recognized as a high priority

for future development. GenInSAR’s coherence formula is based on a handcrafted

derivation that makes numerous assumptions and is not rigorously constrained inside
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the range [0, 1], theoretically violating the coherence definition.

4.3.2 Method and Procedure

This thesis proposes Self-supervised Residual Distribution (SRD) InSAR filtering and

coherence estimation to address each of GenInSAR’s limitations. A high-level archi-

tecture of the proposed SRDInSAR framework is illustrated in Figure 4.11. Our

improvements to GenInSAR can be summarized as follows: 1) We propose a random

masking mechanism rather than using the center pixel masking approach adopted

by GenInSAR and Noise2Void. This approach allows a greater number of pixels to

contribute to the loss function and ensures that the training is compatible with any

modern fully convolutional image to image architecture (e.g., UNet [111], DenseNet

[112], ResNet [12]) to offer effective and adaptable training. 2) We propose training

the model to estimate the residual distributions of both real and imaginary channels,

drawing inspiration from residual learning in natural image restoration and distribu-

tion learning in GenInSAR. This prevents the model from ignoring the target pixel

value throughout the training and inference stages. 3) Following GenInSAR’s ap-

proach of estimating the distribution of each pixel location using the MDN layer,

we take it a step further by directly approximating pixel coherence using Monte

Carlo sampling from the estimated pixel distribution [113]. Compared to GenIn-

SAR’s handcrafted formula, our approach strictly follows the theoretical model of

InSAR coherence and produces flawless [0, 1] value outputs. The next sections detail

each of the advancements.
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Figure 4.11: Illustration of proposed SRDInSAR framework.

Random Masking

GenInSAR begins by transforming the noisy interferometric phase θnoisy into rnoisy

and inoisy real and imaginary channels as introduced in Section 4.1. Masking the

center pixel value in all training patches, adheres to Noise2Void’s fundamental notion

of blind-spot training. GenInSAR can then be trained to estimate the central pixel’s

value distribution using the MDN output layer. The model’s architecture must be

perfectly output in 1 x 1 dimensions to enable parallelism inference after training.

This means that GenInSAR can only use restricted network architectures with a

certain model depth and a certain number of down-sample steps depending on the

size of the training patch. Additionally, regardless of the size of the input patch,

this architecture results in only a few pixels contributing to the loss function, as it

is unable to apply a fully convolutional neural network (CNN) for effective image-

to-image training. Modern image-related deep learning research exclusively focuses

on image-to-image correspondences, creating an incompatibility with GenInSAR’s

ability to benefit from recent advancements in network architecture research. In
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the proposed SRDInSAR, we perform random masking for each training patch, as

illustrated in Figure 4.11. As a result, each pixel location has a probability of ω being

selected as a masked pixel as a preprocessing step in the training stage. Then, just

these pixel regions are considered while calculating loss. Compared to the GenInSAR,

this approach performs more stochastically as a data argument since it masks off

more than just the center pixel information. Moreover, because there are no hard

constraints on the output dimensions during training, this configuration easily fits

any image-to-image architecture. As seen in the high-level design, we can select the

backbone module for feature extraction only prior to the MDN layer, which provides

better adaptability and flexibility than GenInSAR. On the other hand, additional

pixels contribute to the loss function during the training stage to further improve

training efficiency.

Residual Distribution

The random masking method can still not resolve the issue of the model disregarding

target pixel information during training or inference due to the fact that a 0 value

is used as the input of masked pixels. Thus, rather than predicting the clean signal

component, we propose using residual learning to estimate the residual components

directly, as demonstrated in many natural image restoration works. Residual learning

was also employed in our previous works, ADDNet [114] and DeepInSAR [103], and

shows exceptional performance in terms of restoration quality and training efficiency.

This work develops a residual distribution learning algorithm by utilizing MDN. In

our GenInSAR work, we employ the MDN layer to produce the parameters (µ, σ) of

a bi-variate (real and imaginary) Gaussian distribution of the center masked pixel.

Following training, the estimated means of distribution are used to recover the filtered

pixel phase value as θfiltered = arctan(
µImag

µReal

). To incorporate residual learning, we

first substituted random phase values (represented as two channels- εnReal and ε
n
Imag)

for each selected masked location, whose original noisy observations are (αReal, αImag).

During the training, we force the model to parameterize a distribution (µω, σω) by

maximizing the Gaussian density that best encompasses the residual value ω = ε−α
for both channels in all training samples. To this end, our filtered phase during

inference can be derived as θfiltered = arctan(
αImag − µω

Imag

αReal − µω
Real

). This strategy forces the

model to consider the input value of all selected pixel locations. This is particularly

true for wrapped interferograms, because 0 is a valid signal value in both real and

imaginary channels. It is illogical to hardcode 0 values for all masked center pixels

in InSAR data, and we can avoid this in SRDInSAR versus GenInSAR by applying
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a residual learning strategy.

Monte Carlo Coherence Inference

Coherence is defined as an ensemble average derived for each pixel using a collection

of observations. This requires the simultaneous acquisition of a large number of in-

terferograms under identical conditions, which is impossible in the real world. The

most frequently used technique for assessing coherence is to employ a small window to

form a maximum likelihood estimator (MLE) [115]. It is predicated on the premise

that observations within a small region stay stationary, which is not true in most

real-world scenarios. Furthermore, a well-known limitation of MLE algorithms is the

loss of resolution when large window sizes are used, and the estimation bias when

small window sizes are used. It is an inevitable trade-off when exchanging ensemble

averages with spatial averages. Later, our industrial partner 3vGeomatrics developed

the temporal analysis technique PtSel [96], which chooses temporal persistent scat-

ter as stationary observations through the stack in order to achieve high-resolution

estimations. We employ residual distribution learning to estimate the phase value

distribution of each pixel location, which is modeled by the output of MDN layers.

To mimic the behaviour of repeated captures of the same location under the same

situation, we chose the Monte Carlo strategy to draw a number of phase samples from

the anticipated distribution. The coherence index can then be determined as follows

by utilizing the sampled interferometric phase:

γ =
1

N

⃓⃓⃓⃓
⃓

N∑︂
k=1

expj(θk)

⃓⃓⃓⃓
⃓

where,

θk = arctan(
αImag − ωk

Imag

αReal − ωk
Real

)

ωk
Real ∼ N(µReal, σReal)

ωk
Imag ∼ N(µImag, σImag)

(4.12)

Although N signals must be sampled for each location, it is worth noting that

the calculation can be executed entirely on GPUs without considerably increasing

processing time. GenInSAR produces coherence through the use of a handcrafted

formula based on assumptions. Furthermore, its output value is not mathematically

restricted between 0 and 1. In contrast, Monte Carlo inference extensively uses the

estimated distribution to approximate ensemble averaging, as defined by the InSAR

definition of coherence.
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4.3.3 Experimental Setup

GenInSAR’s experimental setup [109] is replicated here. Likewise, we compare our

strategy to a range of different non-stack-based approaches, including the classic algo-

rithms: BoxCar, Goldstein [116], NLInSAR [35], and NLSAR [39]. These approaches

provide open-source OpenCL 1.2 implementations, as specified in previous research

[103]. Additionally, we compare our SRDInSAR to two unsupervised works (CNN-

InSAR [117] and GenInSAR) to ensure a direct and fair comparison. Our SRDInSAR

is built on PyTorch-1.81 and CUDA 10.2. To maximize the randomness of the train-

ing patch samples, we train our SRDInSAR on randomly extracted image patches

having dimensions of 128x128, following the strategy described in [114][103]. As pre-

viously stated, our SRDInSAR could use any image-to-image backbone network. For

demonstration purposes, we adopt a classic UNet [111] architecture in our study. At

each training step, each pixel in the training patch has a 20%-30% chance of being

chosen as a masked location and replaced by random noise to form residual learning.

Finally, it is worth mentioning that we construct and train our models using stan-

dard hyper-parameter settings in our experiments. All algorithms are trained and

evaluated on the same machine, which is equipped with an NVIDIA 1080 GPU, an

Intel i7-8700K processor, and 32 GB of RAM. We conduct experiments using both

simulated and real-world data to determine the applicability and robustness of the

proposed model.

4.3.4 Results

Using Simulated InSAR Data

We employed the same InSAR simulator as in our previous publications [109] [103];

this simulator can simulate ground truth interferograms with Gaussian bubbles, roads,

and buildings. We introduced Gaussian noise to simulated noise-free images using

input patches from the noisy versions to establish self-supervised training. To ob-

jectively compare SRDInSAR to other recent methods, we split the dataset in the

same way for all learning-based models. We assessed all approaches using the same

testing dataset, which consisted of 60 noisy simulated images having a resolution of

1000x1000.
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Figure 4.12: Filtered phase simulated InSAR images from SRDInSAR and five exist-
ing methods. Phase is colored between –π (blue) to +π (red)

Figure 4.12 depicts a visual examination of a cropped area from test images.

According to the phase filtering results, SRDInSAR suppressed noisy signals well

while avoiding the breaking of original fringes. SRDInSAR’s results are the most

accurate, even for extremely low coherent areas, compared to all other approaches.

Conventional techniques produce mostly artifacts and flush out phase fringes in ex-

cessively noisy regions. GenInSAR is able to reduce the noise; however, there was

significant over-filtering around the sharp fringe edges. Compared to other methods,

SRDInSAR’s filtering results in the best preservation of fine features and the least

degree of over-smoothing near branch cuts.
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Figure 4.13: Coherence estimation of simulated InSAR images from SRDInSAR and
five existing methods. Coherence is colored between 0 (black) to 1 (white)

As seen in Figure 4.13, our proposed SRDInSAR’s coherence estimation has the

best match to ground truth. The other two unsupervised models (CNN-InSAR and

GenInSAR) show considerable contrast and resolution loss. Moreover, BoxCar and

NL-SAR exhibit low coherence in high-speed areas and perform poorly in strip noise

zones. Additionally, NL-InSAR produces an imprecise estimation around the region

of phase jumps.
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Table 4.6: Quantitative Evaluation of SRDInSAR and existing methods

Method Name Phase RMSE Coherence RMSE Cosine Error

BoxCar 1.025 0.143 0.025

Goldstein 1.260 N/A 0.048

NLSAR 1.537 0.301 0.132

NLInSAR 0.850 0.159 0.014

CNN-InSAR 1.392 0.200 0.073

GenInSAR 0.687 0.138 0.005

Proposed

(SRDInSAR)
0.557 0.025 0.003

The quantitative evaluations are summarized in Table 4.6. The root mean square

error (RMSE) of the InSAR phase and coherence, and the phase cosine error, are

used as metrics. These are frequently used measurements in the literature for ob-

jectively assessing the performance of phase filtering and coherence estimation [109]

[117].In terms of filtering quality and coherence estimation, our SRDInSAR tech-

nique outperformed unsupervised methods GenInSAR and CNNInSAR. SRDInSAR

also surpasses other established techniques, as evidenced by visual examination and

numerical results.
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(a) Noisy Phase (b) Goldstein Phase

(c) Proposed (SRDInSAR) Phase (d) Proposed (SRDInSAR) Coherence

(e) GenInSAR Phase (f) GenInSAR Coherence
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(g) CNN-InSAR Phase (h) CNN-InSAR Coherence

(i) Boxcar Phase (j) Boxcar Coherence

(k) NLSAR Phase (l) NLSAR Coherence
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(m) NLInSAR Phase (n) NLInSAR Coherence

Figure 4.14: Filtered phase and coherence outputs for satellite InSAR images from
SRDInSAR and six existing methods. Phase and coherence are colored from -π (blue)
to +π (red), and 0 (black: low) to 1 (white: high), respectively

Using Real-World Satellite InSAR Data

We use 300 interferograms with varied resolutions to conduct real-world data exper-

iments [109]. All trainable models were tested using interferograms of a mining site

with a resolution of 1000x1000 pixels. A qualitative investigation of real-world data,

as represented in Figure 4.14, confirmed our findings from simulated data experi-

ments. For phase filtering, the proposed SRDInSAR outperformed the conventional

methods in terms of noise reduction and resolution preservation. BoxCar’s low-pass

behaviour caused fringe edges to be blurred in all visual samples. NL-InSAR and

NL-SAR resulted in over-filtering and artifacts in places with significant noise. CNN-

InSAR showed under-filtering and was comparable in coherence estimation to BoxCar,

both suffered from a significant loss of resolution in their coherence estimate. While

GenInSAR could produce a filtered phase similar to that of SRDInSR in areas of high

coherence. GenInSAR’s estimation was less contrasted than that of SRDInSAR. Our

method indicated an obvious distinction between coherent and incoherent areas.

4.3.5 Conclusions

This study presents the SRDInSAR as a self-supervised framework for InSAR phase

filtering and coherence estimation. We employ random masking residual distribution

learning and Monte Carlo sampling to improve the training efficiency, model flexi-

bility, and inference performance of the baseline GenInSAR method. SRDInSAR is
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evaluated quantitatively and qualitatively to demonstrate that it is a state-of-the-art

unsupervised approach suitable for industrial deployment. Currently, we only exam-

ine the interferometric phase, but this will be expanded in the future to incorporate

paired SAR images with amplitude information.
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Chapter 5

Deformation and DEM Error
Signals Separation in InSAR Time
Series

5.1 Introduction

Over the years, there has been an increasing interest in interferometric synthetic

aperture radar (InSAR) techniques. An InSAR interferogram represents the phase

difference between two SAR images, taken at different temporal times looking at the

same ground location on Earth. It has provided significant advances in measuring the

Earth’s surface deformation and creating precise digital elevation models (DEM). In

early studies, most InSAR applications focused on analyzing a single interferogram

derived from a pair of SAR images [51, 52]. Later, researchers noted that some radar

targets’ backscattering characteristics could maintain stability for a long period [51].

Hence, involving the analysis of multiple acquisitions in time could reduce the ef-

fects of temporal and geometric decorrelation and atmospheric disturbances. Since

then, time-series InSAR (TSInSAR) techniques have emerged as powerful strategies

to monitor slow and subtle terrain displacements [53]. Several studies [56, 59, 67,

118] have investigated the signal model of interferometric phase and have shown that

observed interferometric phases are affected by different factors: imaging geometry,

topography, atmospheric delay and ground deformation. Among these factors, the

deformation and topography components are valuable contributors because they con-

tain information for monitoring the ground movement and describing surface height.

When an external DEM is adopted to remove the phase created at the earth’s cur-

vature step, DEM error should be estimated to revise the external DEM model and

thus reduce the topography effects. However, deformation and DEM error are also

known to be more challenging to be estimated than other types of signals [119]. In
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general, TSInSAR techniques use SAR images acquired for the same ground area

on different dates to construct a stack of N interferograms. The signal phase of

single-referenced (i.e., master) images’ resolution cell on the ground is a function of

multiple-phase contributors; and the signals of interest can be estimated from the

same resolution cell, taken at separate times [56]. However, each cell is represented

as a wrapped phase, and the ambiguities regarding estimation with the phase cycle

make this task challenging. There are inevitably heavy calculations, especially when

processing wide-area regions [57]. Moreover, a range of processing methods requires

manual inspection and specialist interpretation [58] to achieve quality control and

could limit the timely dissemination of monitoring. Therefore, it is crucial to have an

accurate, efficient and robust algorithm.

Estimating ground deformation and DEM error are usually defined as an ill-posed

optimization problem by its very nature. One commonly cited difficulty is that tem-

poral signals may be incoherent and impossible to derive any useful information due

to the temporal decorrelation in a real-world scenario. One way of resolving this

issue is to estimate temporal coherence and then only study the temporally coherent

targets on the ground. Ferretti et al. [59, 60] proposed permanent scatterer interfer-

ometry (PSI) in the early 2000s; it estimates the deformation parameters lying on the

identified permanent scatters that are coherent over the temporal stack. Under PSI’s

scope, Werner et al. [61] applied interferometric point target analysis (IPTA) with a

2D regression algorithm to model the relations between the perpendicular baseline

and temporal baseline. It estimates the terrain height and deformation using linear

regression analysis. Another integer least squares-based technique—Spatio-Temporal

Unwrapping Network (STUN) [62]—was proposed to solve the phase ambiguity prob-

lem via the least-squares ambiguity decorrelation adjustment (LAMBDA) method

followed by a sequential least-squares search. However, both approaches require ex-

tensive search or complex transform computation to resolve the phase ambiguities.

Persistent scatterer pairs (PSP) InSAR [63] and quasi-persistent scatterer (QPS) [64]

avoided the complex parameter modeling by directly searching the parameters in the

solution space. Although these algorithms are simple and flexible, they have a trade-

off on accuracy. Especially for the large and complex deformation scenarios, their

estimates are prone to be trapped in a local optimal solution [57].

Berardino et al. [65] introduced a small baseline subset (SBAS) algorithm to pro-

duce a mean deformation map of multilooked coherent pixels. However, it obtains

deformation parameters using least square (LS) optimization from the unwrapped

phase [54, 66], while PSI-based methods [57, 67, 68] can process both the wrapped

and unwrapped phases. Although integrated PS-SBAS methods [53, 69, 70] have
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been proposed, they rely on the unwrapped phase and assume that the baselines and

arcs are small enough to avoid phase ambiguity of the phase gradient between two

permanent scatterers. The main limitation of SBAS-based methods is their depen-

dency on phase unwrapping, which is very time-consuming and requires a previously

known displacement pixel as a reference, which may introduce errors for subsequent

parameter estimation [54]. It is worth mentioning that the wrapped phase can cause

a non-continuous searching space. Hence, retrieval of each absolute phase contri-

bution from wrapped measures that are ambiguous by integer-multiples of 2π is a

very challenging task [120]. Searching for the solution in the unwrapped phase is

more straightforward than in the wrapped phase. However, phase unwrapping it-

self is a computation-consuming step that ideally should be avoided in time-sensitive

applications. Moreover, those methods are just doing a 2D phase unwrapping with-

out considering any temporal information. Hence, those methods can be error-prone

and lead to significant unwrapping errors and an inability to measure fast motion in

subsequent processing.

5.2 IGS-CMAES: A Two-Stage Optimization for

Ground Deformation and DEM Error Estima-

tion in Time Series InSAR Data

5.2.1 Introduction

A new direction has recently emerged in this topic. In [57], the authors tried to tackle

parameter estimation by a stochastic optimizer—simulated annealing (SA). SA is a

random search-based black-box optimizer that works on a given acceptance criterion

(object function) to guide the search direction in a solution space. Following the

traditional direct search methods, it avoids complex signal modeling and, at the same

time, borrows the advantages of SA to reduce the local extrema effects when dealing

with the wrapped phase. This work shows promising and better results compared to

conventional gradient-based or direct grid searching algorithms by deploying a novel

gradient-free optimization technique. However, SA is still a local optimizer, similar

to many other stochastic optimizers, that is not guaranteed for global convergence.

Note that, in real scenarios, the value range of estimated signals can be broad, e.g.,

mining sites and urban infrastructure, which can easily generate hundreds of meters

DEM error due to open-pit mining. It also holds for the deformation rate because

the ground is continuously disturbed, and pit walls tend to sag. To the best of

our knowledge, most previous works have not considered such a large range of values.
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Hence, when target areas have large-scale deformation and DEM error, those methods

could become inefficient and not robust to precisely estimate the results because of

the increasing searching space.

Investigations in [57] have demonstrated that it is feasible to use gradient-free op-

timization for deformation rate and DEM error estimation on a set of PS locations

in TSInSAR. Their work’s main objective is to explore further the potential of us-

ing another advanced stochastic optimizer—covariance matrix adaptation evolution

strategy (CMAES)—for this task. Moreover, we also demonstrate a global optimiza-

tion strategy to enable a broad range of possible deformation rates and DEM error

estimation. Our main contributions are: (1) We reformat the task as a two-stage

2D black-box optimization task. At the first exploration stage, an iterative grid

search (IGS) policy is proposed to obtain coarse candidate solutions, which have a

high chance to be close to global optima. Next, we employ CMAES for a fast local

optimization at the second exploitation stage. (2) We present a hybrid benchmark

simulation dataset that combines synthetic motion signals and DEM errors to real-

world baseline parameters. Our proposed IGS-CMAES method has been assessed

on both simulated data and real-world satellite data. We also compared our IGS-

CMAES with various local and global optimization methods. The comparison results

demonstrate the effectiveness and robustness of our method.

In this work, we first briefly review the mathematical phase model and definition

of our optimization problem. Then, the CMAES algorithm is introduced, followed by

a detailed explanation of the proposed IGS-CMAES method. Lastly, experimental

results and discussion are presented before the conclusion.

5.2.2 Mathematical Modeling for InSAR Phase

Interferometric phase modeling has been investigated in the literature [56, 59, 67,

118]. Interferometric phase measurements are affected by various factors—imaging

geometry, topography, atmospheric delay and ground deformation. For a given pixel

location l in TSInSAR, interferometric phase can be represented in a differential

interferogram [1] as follows:

ϕl = ϕdef,l +∆ϕtopo,l +∆ϕatmo,l +∆ϕorbit,l + ϕnoise,l

ϕl̂ = arctan2(sin(ϕl), cos(ϕl))
(5.1)

where ϕdef represents phase components related to ground deformation motion, ϕtopo

is the topographic phase contribution (DEM error when applied external DEM), ϕatmo

refers to the differences of atmospheric distortion between two single-look-complex

(SLC) scenes, ϕorbit denotes imprecise satellite orbit data when forward modeling
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the contributions of the Earth’s ellipsoidal surface, and ϕnoise describes decorrelation

noise. The observed phase is also wrapped as ϕl̂. A general PSI processing chain

eventually removes the flat-earth phase using satellite orbit data, and a collection of

spatial and temporal filtering routines are adopted to reduce noise and remove other

contaminant signals that are not deformation or DEM error [38, 39, 103]. Several

established techniques are also described to mitigate the atmospheric phase contribu-

tion by deploying the toolbox for reducing atmospheric InSAR noise (TRAIN) [121,

122]. It is known that both ϕorbit and ϕatmo could create long-scale correlated signals

in the spatial domain. Hence, those phase contributions can be further reduced by

giving double difference phase between two neighbourhood PS pixels [57] as follows:

∆ϕk
i,j = ∆ϕk

topo,(i,j) +∆ϕk
def,(i,j) k = 1, ..., N (5.2)

It describes the arc’s double difference phase constructed by a pair of PS pixels i, j

in interferogram k from a time-series stack with a length of N . In interferogram k,

∆ϕk
topo,(i,j) is the relative height between pixel i and j, and ∆ϕk

def,(i,j) is the relative

deformation, respectively.

Furthermore, for each PS pixel, its topographic phase component can be modeled as

a linear function of the spatial perpendicular baseline (B⊥) according to the geometry

relation of InSAR for each interferogram as:

ϕk
topo = −

4π

λ

Bk
⊥

R · sinθ
· h = convtopo · Bk

⊥ · h (5.3)

where λ is the transmitted radar wavelength, R is slant range distance, θ denotes

satellite incidence angle. Here, h is the orthometric height between two SLCs. We

use convtopo to denote the unit conversion factor for a given stack. Similar to average

ground deformation rate (mr), which is used for the modeling deformation phase as

follows:

ϕk
def = −4π

λ
(dfirst − dsecond)k ·mr

= −4π

λ
∆daysk ·mr

= convdef ·∆daysk ·mr

(5.4)

where ∆days is the temporal baseline between two acquisitions on distinct days

(dfirst, dsecond) used to form the interferogram, and convdef is unit conversion fac-

tor. We can substitute Equations (5.3) and (5.4) into Equation (5.2), and then add

an extra integer variable w to handle phase ambiguity between pixel i and j because
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of phase wrapping:

∆ϕk
i,j = convdef ·∆daysk ·∆mk

r(i,j) + convtopo · Bk
⊥ ·∆hk(i,j) + 2π · wk

i,j k = 1, ..., N

(5.5)

Due to the nature of microwave, the observed phase is wrapped as in Equation (5.1),

there is an extra integer variable w that refers to phase ambiguity. It leads to N

equations with more than N parameters that have to be resolved. That is why

Equation (5.5) cannot be solved efficiently by a simple matrix inversion. As afore-

mentioned, conventional PSI techniques consider this parameter fitting task as a 2D

regression problem or an integer optimization problem. Those methods try to map the

integer least square (ILS) and 2D solution search to the wrapped phase domain [63,

64, 123]. However, algorithms based on direct search are straightforward and do

not require any complex modeling. They suffer from inefficient computation and are

easily affected by local optima when dealing with complex baseline situation.

5.2.3 Proposed Method

Definition of Optimization Problem

In PSI frameworks such as DePSI (Delft PSI processing package) and StaMPS (Stan-

ford method for persistent scatterers) [124, 125], signal separation is one of the es-

sential steps in the whole processing pipeline. Parameters estimation is applied in an

iterative manner combined with a collection of spatial and temporal filtering routines

to obtain a precise final estimate. A more efficient and accurate parameter estima-

tion algorithm could accelerate the whole processing pipeline by reducing iterates.

Detailed descriptions of PSI methodologies can be found in [1, 51]. Our main focus

is studying parameter estimation of linear deformation rate and DEM error upon PS

time series, for the following reasons. (1) There are many state-of-the-art methods for

filtering random noise and suppressing atmosphere components from a stack of inter-

ferograms [103–105, 109, 121]. (2) Recently, satellite facilities can provide accurate

enough orbits for practical usage [126–128]. (3) It is very common to divide a compli-

cated optimization problem into sub-problems, which are easier to be solved than the

original problem [129, 130]. (4) Arc-based methods have to apply prior knowledge

to pick reference points and then resolve each coherent pair’s parameters [54]. The

main limitation of these methods is that it only gives the relative signal estimation

between two PS points, which requires prior known deformation information of at

least one PS point to derive the final estimations. It might not be feasible in real

scenarios, where there is no information about the monitoring area. Moreover, it may

potentially introduce accumulated error when a poor reference point is selected.
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Our preprocessed observed phase is already filtered, and the atmospheric phase and

orbit phase have been removed using 3vGeomatics’s preprocessing chain described

in [131]. The pre-removal of these two large spatial correlated signals allows us to

work on each PS signal directly instead of using arcs. To this end, our phase model

becomes:

ϕk = convdef ·∆daysk ·mr + convtopo · Bk
⊥ · he k = 1, · · · , N (5.6)

Note that, we replace the h (height) with he (DEM error), because we adopt exter-

nal DEM to pre-remove the topographic phases. The outcome he will be used to refine

external DEM as DEMrefined = DEM − he. We define the average deformation rate

and DEM error estimation problem as a two variables optimization task that con-

sists of an objective function. Please note that DEM studied in this work is in range

Doppler coordinates (RDC), which can be transformed to geographic coordinates by

the geocoding step.

The objective of our optimization task is to minimize the residuals between ob-

served target phase ϕt and reconstructed phase ϕr, where ϕr is calculated using Equa-

tion (5.6) with estimated mr and he. The typical objective functions for evaluating

value difference in the continuous domain are mean absolute error (MAE) and mean

square error (MSE). However, these Euclidean-based metrics are not suitable in the

interferometric phase domain because of branch cuts. The value range of the wrapped

phase is bounded by [−π,+π), which results in interferometric phase value jumping

from negative to positive or positive to negative π. In this work, we consider the

wrapped phase difference with real and imaginary MSE (RI-MSE) (Equation (5.7)).

Jβ =
1

2N

N∑︂
k=1

((sin(ϕk
o)− sin(ϕk

r)
2 + (cos(ϕk

o)− cos(ϕk
r)

2) k = 1, · · · , N (5.7)

As shown in Figure 5.1, there are two phasors (ϕt Green, and ϕr Orange) plotted

in a polar coordinate system. If we treat ϕr as the reconstructed phasor and ϕt as the

target phasor, a Euclidean-based metric such as MSE would increase linearly with an-

gle value difference. In terms of phase, the MSE objective function tends to guide the

optimizer to move ϕr anticlockwise as shown in Figure 5.1 (MSE guidance direction),

especially when their difference is close to π. RI-MSE can be interpreted as the dis-

tance between two phasors on the unit polar coordinate circle. During optimization,

the optimizer adjusts variables in order to force the reconstructed phasor close to the

target phasor based on the perspective of projections on two axes. This approach has

been commonly deployed as a good indication of wrapped phase distances in recent

InSAR phase filtering studies [38, 103, 132].
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Figure 5.1: Illustration of phase jump and compassion real and imaginary MSE (RI-
MSE) and mean square error (MSE) objective functions.

At this point, our signal separation task is formulated as a parameter fitting prob-

lem by optimizing an objective function. As aforementioned, there are still N equa-

tions with more than N interferograms to be estimated for each pixel pair because of

the wrapped phase. That is why Equation (5.5) cannot be solved efficiently by con-

ventional methods. Previous studies [63, 64, 123] point out that although the direct

search-based algorithms are simple without using complicated modeling, they suffer

from local optima when dealing with complex baselines and large solution space.

We propose a two-stage algorithm that combines a global coarse searching followed

by a fine local optimization. As shown in Figure 5.2, we first adopt an IGS policy

to obtain a set of coarse candidate solutions, which are expected to approximate the

global optima. We then apply CMAES for a fast fine local optimization starting with

each candidate solution. Lastly, the best result with the minimal objective function

value is picked as the final estimate.
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Figure 5.2: Illustration of proposed two-stage iterative grid search with covariance
matrix adaptation evolution strategy (IGS-CMAES) method.

CMAES

In [57], researchers tried to adopt a black-box optimizer—SA algorithm, to solve

the deformation fitting optimization problem. Inspired by it, we propose to use

CMAES [133] to take advantage of using gradient-free optimization for our task.

CMAES is an evolutionary-based stochastic optimization algorithm, which has shown

state-of-the-art performance in derivative-free optimization and performed best among

more than 100 classic and modern optimizers on a wide range of black-box func-

tions [134, 135]. According to our phase model Equation (5.6), it can been seen that

different temporal baselines (convdef ) and spatial baselines (convtopo) result in very

different objective functions. Its robust performance on optimizing unknown func-

tions of CMAES is the major reason we choose it in our approach. When dealing with

a few objective variables (two in our case), CMAES also obtains better speed than

other methods [133, 136, 137]. A brief workflow of CMAES optimization is described

as follows:

CMAES is an iterative algorithm, and there are three main steps in each itera-

tion (t): (1) sample n candidate solutions from a multivariate normal distribution

N(mt, σ
2
tCt); (2) calculate function values for each sampling solution, (3) update the

distribution parameters (mt, σt, Ct) accordingly. In this work, we use CMAES to min-
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imize our loss function Jβ (Equation (5.7)) with two objective variables v̂ = [mr, he]

as shown below:

v̂ = argmin
v
Jβ (5.8)

We first give CMAES an initial solution point as a start searching location v0 =[︁
mr(0), he(0),

]︁
with an initial sampling distribution N0(m0, σ

2
0C0), where m0 = v0,

C0 = I ∈ R2 and σ0 denotes the initial step size, which is set to 0.01 in our study.

Then, at each iteration t we generate S candidate solutions vk sampled from Nt as:

vk = mt + σtyk, yk ∼ N(0, Ct) (5.9)

where k is the index of the randomly sampled candidate solutions with a total number

of S. Here, each yk ∈ R2 can be treated as a searching direction. Next, calculate all

candidate solutions’ objective function values J (vk) and sort them as:

J (v1:S) ≤ J (v2:S) ≤ · · · ≤ J (vS:S) (5.10)

The subscript indicates the rank of those samples out of S. The optimizer will

stop if the best solution reaches the termination criteria J (v1:S) < τ , where τ is

a threshold, which is set with a small value 10−11. Otherwise, it uses the top µ

(µ < S) solutions to update the distribution parameters. Note that the rank order is

only based on comparing the objective function itself, known as objective value-free

ranking. In this work, we select top µ = ⌊S
4
⌋ solutions with the lowest objective

functions to update distribution parameters mt and Ct, where the mean of the new

distribution mt+1 is updated as

mt+1 =

µ∑︂
k=1

wkvk:S = mt +

µ∑︂
k=1

wk(vk:S −mt) (5.11)

If we set wk =
1

µ
for all candidate solutions, then the updates are treated as the

maximum-likelihood estimation of all selected solutions. In this work, we want to

emphasize the solutions with the lowest objective function and defined the function

below as our weighting function:

wi = 1− J (vk:S)∑︁µ
k=1 J (vk:S)

(5.12)

In this case, the updates in Equation (5.11) can be treated as a stochastic approxi-

mation of the natural gradient of m, which is recently used for optimizing deep neural

networks on a reinforcement learning task [138]. The covariance matrix C is updated

using:

pt+1 = (1− c)pt +
√︁
c(2− c)√µw

mt+1 −mt

σt
(5.13)
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Ct+1 = (1− c1 − cµ)Ct + c1pt+1p
⊺
t+1 + cµ

µ∑︂
k=1

wkyi:Sy
⊺
k:S (5.14)

where p can be treated as the evolution path, which is 0 at the beginning and ⊺ is the

symbol for vector transpose. It is similar to a mutation used for updating covariance

matrix, and c is the learning rate for updating p. We set c = 0.5, which is the number

of variables divided by 4 as recommended in [139]. µw is equal to
1∑︁µ

i=1w
2
i

, which is

used for weighting intermediate recombination to force the second term as a random

vector selected from N(0, Ct). c1 and cµ are two other learning rates which are set

to be
2

n2
= 0.5 and

µw

n2
, respectively. To update step size σ, we adopt CMEAES’s

default cumulative step size adaption (CSA):

st+1 = (1− cσ)st +
√︁
cσ(2− cσ)

√
µwC

−
1

2
mt+1 −mt

σt
(5.15)

σt+1 = σtexp(
cσ
dσ

(
∥st+1∥

E∥N(0, I)∥
− 1)) (5.16)

where s is another conjugate evolution path that is similar to p but ignoring the scale

fact. cσ and dσ are two parameters for controlling the changing magnitude of σ are set

to
2

n2
= 0.5 and 1 +

√︃
µw

n2
, respectively. We adopt the default configuration defined

in the literature [140] for this study, and the key parameters of the CMAES algorithm

are listed in Table 5.1.

Once the distribution parameters are updated, the optimizer will start another new

iteration until it reaches the termination condition. The main advantage of CMAES

over classical ES is the use of correlated mutations instead of axis-parallel ones. It can

learn appropriate mutation distribution steadily and has a high probability of reaching

optima by using adapted covariance matrix C to adjust searching direction [136].

However, CMAES is still a local search optimizer similar to SA and many other

stochastic optimizers. They may get stuck in local optima, and the convergence to

global optima is not guaranteed [135, 139]. Many works have pointed out that the

initial search position is essential for stochastic optimization. Restart-based methods

are very classical but useful in many optimization frameworks and show benefits

in finding the global optima. There are also many CMAES extensions [134] using

restart strategies to prevent premature convergence on complicated tasks. The main

limitation of those approaches is that they need extra search in the hyper-parameter

space of the population size, and the initial step-size seems inefficient. Moreover,

the subsequent restarted search usually relies on previous search results, making the

whole optimization process hard to be parallelized. However, there is evidence to
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support the fundamental idea behind restarts; the initial search location is essential

for finding the global optima and saving the computations. To address these issues,

we propose a pre-stage exploration search for picking a set of potential candidate

solutions for CMAES. Then, CMAES will use those initial solutions for fine local

optimization as the second exploitation stage.

Table 5.1: The key parameters of covariance matrix adaptation evolution strategy
(CMAES) used in this work.

Parameter Definition Value

S Number of candidate solutions at each iteration 30

σ0 Initial step size 0.01

µ Number of selected top ranked solutions 7

τ Threshold value to terminate the optimization 10−11

c Learning rate for updating evolution path 0.5

c1 Learning rate for updating covariance matrix 0.5

cσ Learning rate for updating step size 0.5

Iterative Grid Search (IGS)

To find good candidate solutions for fine local optimization, we introduce an IGS

strategy in this work. In Figure 5.3, we examine the loss landscapes computed using

Equation (5.7). We inject 0 deformation and 0 DEM error as ground truth with

two site baseline parameters (convdef , convtopo,∆days,B⊥) for generating simulated

wrapped interferogram using Equation (5.6). We then oversample both deformation

rate (1000 samples) and DEM error (1000 samples) to better illustrate the surface of

the corresponding loss value landscape (1e6 evaluated solutions). By observing Figure

5.3, it can be seen that both landscapes are non-convex, rugged and contain many

local optima. This is the reason why a simple gradient-based optimizer is hard to

find global optima. The desired algorithm is expected to converge to global optima

effectively and avoid brute force grid search because näıve sampling is impractical

when high precision estimation and real-time performance are required. Comparing

landscapes of the two sites also shows that different real-world baselines could result

in very distinct objective functions. Some site baseline parameters may produce much
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more challenging objective functions than others.

In fact, a straightforward grid search is commonly used in industry processing

pipelines. For a ±26 cm/year linear deformation rate and ±200 m DEM error study

case, a typical grid search is applied as Ss with 0.5 cm and 2 m step size (respective

to deformation rate and DEM error) in order to pick the best solution. It gener-

ates (2 × 200/2) + (2 × 26)/0.5 = 20,800 number of objective function evaluations

in total for each PS location and has a limited precision bottleneck regarding the

step size. Increasing the step size can reduce the computations but also decrease the

precision. Furthermore, a large step will result in poor estimation for complicated

baselines because of the objective function’s ruggedness. We treat κSs as sampling

step size for deformation rate and DEM error, where a scaling factor κ is used to

control the density of grid search. In an optimization task, the number of objective

function evaluations (search cost) is an essential metric for assessing a stochastic op-

timizer’s performance. Especially when higher precision is required, dense grid search

is extremely insufficient. Moreover, from an optimization point of view, determining

whether the true global optima reached is a fundamental challenge as a stochastic

optimization algorithm. As a consistency check, the algorithm can be run from sev-

eral different random starting points to ensure the result of each run converges to the

global optimal. Rather than using randomly selected starting points, in this work, we

hypothesize that using a low-precision grid search can select a set of initial candidate

solutions that are potentially close to the global optima. To support our assumption,

we plot the loss landscapes with different sampling steps sizes by setting κ = [1, 3, 5, 8]

as shown in Figure 5.4.
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Figure 5.3: Loss landscape of objective function RI-MSE (Equation (5.7))) with two
different real-world spatial and temporal baselines. Site (A) and Site (B) are two
different real-world sites.
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Figure 5.4: The landscape of loss function. Each row represents the loss landscapes
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error, and each column shows the results under different step sizes of grid sampling.
The linear deformation rate x–axis and DEM error y–axis form a 2D solution space
for an InSAR pixel location. The value is calculated by Equation (5.7) with selected
real-world baselines.
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By observing the resulting loss landscapes at different sampling scales, we notice

that global optima can be roughly located with a less dense grid sampling. As seen

in Site-A and Site-B from Figure 5.4, κ = 5 or 8 is sufficient to estimate the location

of global optima. However, when dealing with complicated baselines such as Site-

C and Site-D, it is necessary to require κ = 1 or 3 in order to roughly locate the

optimal solution. A large sampling step size (large κ) leads to low precision, but a

small sampling rate (small κ) brings massive computations. Figure 5.4 shows that

there is no fixed optimal sampling scale κ for different baselines. Hence, in this work,

we propose an iterative strategy by performing grid sampling from large κ to small

units until N acceptableinitial solutions have been picked. We define a threshold ω

for accepting sampled estimates, whose values are less than ω as acceptable initial

solutions.

IGS performs grid sampling with different κ iteratively, and the key steps at each

iteration are: (1) sort all sampled estimates based on their loss values (Equation (5.7));

(2) if the smallest one is greater than ω, the algorithm will iterate to the next grid

search level. Otherwise, it pushes the estimate to candidate solution list one by one

until the length of N or no solution loss is less than ω. Moreover, solutions close to

global or local optima might have similar loss values, as shown in Figure 5.5 (Estimate

C, 2, 3). To avoid selecting solutions from the same local area in the landscape, we

define a CheckDistance procedure to skip solutions that are too close to any existing

accepted solutions. A threshold value ψ is adopted to determine if two solutions are

too close to each other by assessing two estimates L2 distances in the solution space.

As shown in Figure 5.5, if point C is already labeled as a candidate solution, points

2 and 3 will not be considered. Instead, the algorithm will consider points 4 and 5

because they are not close to any existing candidate solution.
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Figure 5.5: A simple illustration of selecting candidate solutions by skipping the
estimates (Estimate 2, 3) that are too close to any picked candidate solution (Estimate
C).

IGS-CMAES

Once we get a certain number of acceptable initial solutions, CMAES is then applied

for local fine optimization. In fact, there are existing CMAES extension works that

are proposed based on a repeat mechanism. The key concept of those methods is

repeating CMAES process by adjusting the initial point and population size accord-

ing to the results from previous runs. They offer better performance but increase

the computation time because the adjustments are not parallelizable. In our work,

CMAES runs only once for each candidate solution as a starting location. Hence, the

local search can be performed in parallel to save overall execution time compared to

repeat-based algorithms. Our complete IGS-CMAES optimization procedure is given

in Algorithm 1.
To summarize, we propose to use IGS to globally select acceptable initial solutions,

which are with high possibility of close to the global optima. We then apply CMAES,

started from each selected initial solution, to perform the local refine search. Lastly,

the final result is the best estimate among all local solutions. Overall, IGS-CMAES

can save unnecessary function evaluations compared to dense grid search but still

cover the global optimal space. At the same time, it also preserves the benefits of

accuracy and efficiency from the local search.
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Algorithm 1: IGS-CMAES for deformation rate and DEM error estimation.

input : ϕo ∈ Rk, convdef , convtopo,∆days ∈ Rk, B⊥ ∈ Rk, ω = 0.3, Nc = 5

// First Exploration Stage: select candidate initial solutions

Vinit = {};
for κ← [8, 7, 6, 5, 4, 3, 2] do

S ← GridSampling(κ);
L(i, j)← J (S(i, j));
for vc ← Lmin to Lmax do

if vc < ω && DistanceCheck(vc, Vinit) is True then
push (vc) into vinit;;
if size(Vinit > Nc) then

Break; // End for Initial Solutions Selections

else
if size(Vinit <= Nc) then

Continue; // Next Grid Sampling with smaller κ

// Second Exploitation Stage: perform Local CMAES search

Vfinal = {};
for v ← Vinit do

Run CMAES local starting from v;
Push final solution vs into Vfinal;

output: vs with lowest J in Vfinal
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5.2.4 Results

Experimental Setup

This section empirically demonstrates the effectiveness and robustness of the pro-

posed IGS-CMAES using both simulated and real-world TSInSAR data. All our

experiments are based on seven real-world stacks R (R1–R7), captured by TerraSAR-

X in StripMap mode [91]. Each stack represents a different ground site and con-

tains 31 SLCs except R7, which has 17 SLCs. We designed a simulator that gen-

erates TSInSAR signals by injecting synthetic deformation rate and DEM error

with real-world baseline parameters. Moreover, we apply an industry 3vGeomat-

ics’s industry-standard InSAR processing pipeline [131, 141] to perform data pre-

processing as well as generate the reference results to assess the performance of the

proposed IGS-CMAES method on real data. The experiments were designed to es-

timate two important parameters: optimization cost and accuracy. Optimization

cost is defined as the number of objective function evaluations. Accuracy is as-

sessed directly by comparing with synthetic deformation rate and DEM error values

in the simulation setup. Because there is no ground truth in the real-world sce-

nario, we adopt mean phase residual (MPR) between the wrapped reconstructed

and input interferograms to evaluate performance. The details of both experiments

and results are presented in the following sub-sections, and the code is available

at: https://github.com/Lucklyric/TSInSAR-PF-IGS CMAES (accessed on 23 June,

2021).

Simulation Data

Our simulator generates interferometric phase by injecting synthetic deformation rate

and DEM error into seven real-world temporal and spatial baselines R1–R7. For

each dataset, in order to assess the robustness of different optimizers, we sample 30

deformation rates and 60 DEM errors from two uniform distributions - U(−26, 26)
cm/year and U(−200, 200) m. It gives a total of 1800 possible signal pairs for each

of the seven baselines, which are further used to generate synthetic interferometric

pixel stacks using Equation (5.6), where convdef , ∆days, convtopo and B⊥ are real-

world baselines from the R1–R7 stacks. In order to objectively evaluate different

methods, we use (1) root-mean-square error (RMSE) between the simulated (ground

truth) and the estimated deformation rate (cm/year) and DEM error (m), (2) L1

unwrapped phase difference (L1-UPD) between the simulated (unwrapped ground

truth) and the reconstructed phase calculated based on the estimated deformation

rate and DEM error, (3) the accuracy (ACC%) of reducing rate that counts the
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percentage of how many test cases that the method’s unwrapped L1 phase error

is less than π. We performed our experiments from three perspectives: (1) apply

four widely used local optimizers—(a) least square (LS), (b) Nelder–Mead [142], (c)

conjugate gradient (CG) [143] and d) Broyden–Fletcher–Goldfarb–Shanno (BFGS)

[144], to show how challenging our task is when applying conventional local optimizers;

(2) adopt the IGS strategy into all local optimizers used in the first experiment

to showcase the improvements in comparison with our coarse search strategy; (3)

compare to the other two global optimization methods—direct gird search (baseline

method) and dual simulated annealing (Dual-SA) [145]—to investigate the novelty of

our IGS-CMAES algorithm.

Table 5.2: Quantitative assessment for simulated data with several widely-used local
optimizers and their IGS-extended version

Baseline Categories LS
IGS-

LS

Nelder-

Mead

IGS-

Nelder-

Mead

CG
IGS-

CG
BFGS

BFGS-

LS

R1
mr-RMSE (cm/year) 12.2382 2.9481 12.4695 2.0734 12.5197 1.3484 12.4414 1.2893

he-RMSE (m) 107.0381 0.0011 105.6981 0.0001 107.6607 0.0000 106.5213 0.0000

R2
mr-RMSE (cm/year) 13.2260 2.3247 13.3805 2.5936 13.6642 1.3439 13.6011 1.3143

he-RMSE (m) 107.2283 0.0016 106.3737 0.0002 107.4976 0.0000 107.5918 0.0000

R3
mr-RMSE (cm/year) 13.0308 1.9413 13.1002 1.6877 13.3366 1.4307 13.2444 1.0897

he-RMSE (m) 107.8291 0.0016 106.5126 0.0002 108.3554 0.0000 108.7696 0.0000

R4
mr-RMSE (cm) 12.7119 1.9372 13.1455 2.2679 13.1560 0.8951 13.2614 2.0387

he-RMSE (m) 107.5101 0.0032 106.5326 0.0002 108.2290 0.0000 108.4366 0.0000

R5
mr-RMSE (cm/year) 12.6042 2.1055 12.6375 1.9330 12.8295 0.8136 12.8457 1.5362

he-RMSE (m) 106.7188 0.0022 105.9384 0.0002 109.1707 0.0000 107.6000 0.0000

R6
mr-RMSE (cm/year) 12.4571 1.9549 12.5720 1.7121 12.5872 0.6817 12.6906 0.7807

he-RMSE (m) 105.3393 0.0062 106.0447 0.0003 108.2960 0.0000 109.1020 0.0000

R7
mr-RMSE (cm/year) 12.5991 14.9993 12.6070 14.1472 12.7588 6.7126 12.6561 3.2887

he-RMSE (m) 106.6014 0.0006 106.0582 0.0001 108.0011 0.0000 12.6561 0.0000

From Table 5.2, it is obvious that none of the local optimizes works for any stack.

They show significant errors on both types of signal estimation. During the ex-

periments, all local optimizers prone to converge to local optima around the initial

solution. However, comparing to IGS-extended versions, which run each local opti-

mization following IGS policy, there is a consistent agreement to reduce the errors in

deformation and DEM error estimations. As shown in Figures 5.6 and 5.7, a signifi-

cant decrease in L1-UPD and improvement in ACC is observed, when IGS is adopted.
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The proposed IGS policy effectively improves all local optimizer performance in the

unwrapped phase domain, except R7, which is a special case with fewer SLCs. Never-

theless, all IGS-optimizers produce acceptable results. However, due to the limitation

of those local optimizers themselves, the results are still not satisfactory.
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Figure 5.6: Unwrapped phase L1 difference.
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Figure 5.7: Reducing rates (ACC%) of unwrapped phase L1 difference less than π.

In this work, we also provide comparison between the proposed IGS-CMAES and

other two global algorithms—grid search and Dual-SA with an extra metric—the

mean number of objective function evaluation (NFev). Both methods are designed for

global optimization. The comparisons reported in Table 5.3 show that all three meth-

ods have an on-par accuracy on deformation estimation when using R1-R6. However,

Dual-SA fails to give proper estimates of DEM error except for R6. The error of grid
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search is mainly due to its limited sampling precision and it fails to provide proper

deformation estimation when working on limited temporal information R7, which

also troubles Dual-SA. In contrast, our IGS-CMAES consistently offers robust and

accurate results, and achieves better generalization ability than other two methods.

Furthermore, IGS-CMAES has demonstrated a significant improvement in NFev by

saving more than 85% objective function computation costs compared to grid search,

while maintaining similar and even better results. Our method surpasses Dual-SA on

all baselines with substantial improvement in both accuracy and efficiency.

Real-World Data

In this section, we present results obtained when applying IGS-CMAES to real in-

terferometric SAR acquisitions. All input interferograms from the R1–R7 have been

preprocessed by the 3vGeomatics processing pipeline [131] with proper filtering, earth

flattening and atmospheric phase removal as discussed in Section 5.2.3. There are 2000

PS pixels selected from each stack, which results in 14,000 test data points. Because

there is no ground-truth data for real-world data, we adopt the final results from the

processing pipeline as reference output. Such pipeline involves a phase unwrapping

step and then uses least-square optimization to approximate the linear deformation

rate and DEM error on the unwrapped phase directly. Phase unwrapping is known

to be very time-consuming, but we can treat those outputs as reference results. It is

worth mentioning that our proposed IGS-CMAES is designed to work on the wrapped

phase directly in order to save the computations in unwrapping.

We estimate the linear deformation rate end DEM error using the proposed model

on selected PS locations. Visual outputs and comparison to the reference results can

be found in Figure 5.8. It is shown that the estimates of IGS-CMAES match the

reference output pretty well in R1-R6. There are a few apparent disagreements on

deformation rate in R(7), where reference results indicate small movements, but IGS-

CMAES predicts high positive displacements (red dots). After careful examination,

we present our numerical analysis in Table 5.4. We calculate mr-RMSE and he-

RMSE to quantify the difference between the IGS-CMAES and reference results. The

only significant mismatch is the deformation rate in R7 (0.190598), which correlates

with the observation in Figure 5.8. All other categories stay commensurate with a

little disparity. We further investigate the wrapped phase residuals (WPR) between

the wrapped reconstructed phase and input interferogram, and our method shows

lower residuals than the reference output. This finding can also be confirmed by

checking RI-MSE (Equation (5.7)), which is presented to show the phase distance

in the polar coordinate system (Figure 5.1). Experimental results reveal that our
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IGS-CMAES offers more performance advantages on global convergency than the

reference output. Moreover, our method can be applied to wrapped interferograms

directly while achieving equal performance compared to the reference method, which

requires phase unwrapping. Lastly, the algorithm continuously performs around 3800

NFev for each baseline. Therefore, we are confident that IGS-CMAES can serve as

an efficient optimizer and provide accurate global fitting.
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Figure 5.8: Visualization of estimated linear deformation rate and DEM on R1–
R7 real-world stack’s PS pixels. IGS-CMAES is applied on wrapped interferogram
directly. Reference results are generated using 3vGeomatics processing pipeline with
unwrapped phase.
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Table 5.3: Quantitative comparison for simulated data using IGS-CMAES with two
other Global Optimizers

Baseline Categorie IGS-CMAES Grid-Search Dual-SA

R1

mr-RMSE 0.0284 0.0967 0.6336

he-RMSE 0.0000 0.5611 31.7574

L1-UWPD 0.0424 0.1191 1.3113

ACC 99.94% 100% 96.88%

NFev 2725.03 20800 4109.38

R2

mr-RMSE 0.1137 0.0967 0.1792

he-RMSE 0.0000 0.5610 6.7533

L1-UWPD 0.0424 0.1051 0.1279

ACC 99.94% 100% 99.35%

NFev 2585.18 20800 4103.06

R3

mr-RMSE 0.1991 0.0967 0.4899

he-RMSE 0.0000 0.5613 15.5361

L1-UWPD 0.0791 0.1180 0.7239

ACC 99.61% 100% 96.33%

NFev 2687.90 20800 4112.38

R4

mr-RMSE 0.2276 0.0967 0.0588

he-RMSE 0.0000 0.5617 7.5336

L1-UWPD 0.0848 0.0806 0.0534

ACC 99.56% 100% 99.69%

NFev 2500.69 20800 4089.58

R5

mr-RMSE 0.2844 0.0967 0.1556

he-RMSE 0.0000 0.5617 5.8893

L1-UWPD 0.1065 0.0864 0.0853

ACC 99.44% 100% 99.52%

NFev 2520.12 20800 4093.36

R6

mr-RMSE 0.0000 0.0967 0.0000

he-RMSE 0.0000 0.5617 0.0000

L1-UWPD 0.0000 0.0591 0.0000

ACC 100% 100% 100.00%

NFev 2381.48 20,800 4070.47

R7

mr-RMSE 1.6145 7.7633 13.9020

he-RMSE 0.0000 0.5609 104.14

L1-UWPD 1.1259 5.5327 27.8864

ACC 94.88% 70% 39.03%

NFev 3576.92 20800 4121.54

91



Table 5.4: Quantitative assessment of IGS-CMAES’s outputs with reference results

Baseline NFev

RI-MAE

IGS-CMAES

(rad)

RI-MAE

Reference

(rad)

WPR

IGS-CMAES

(rad)

WPR

Reference

(rad)

mr-RMSE

(cm)

he-RMSE

(m)

R1 4023.67 0.305124 0.307999 0.431716 0.435595 0.114381 0.061021

R2 3960.59 0.306338 0.307771 0.438660 0.439584 0.080547 0.053405

R3 3872.19 0.238092 0.242657 0.371183 0.374736 0.109501 0.052438

R4 3510.90 0.120080 0.119850 0.238335 0.238453 0.034719 0.048583

R5 3563.92 0.120687 0.122859 0.249803 0.250186 0.059676 0.122966

R6 3496.90 0.161789 0.161793 0.321250 0.321475 0.025550 0.102940

R7 3817.64 0.191073 0.210659 0.326159 0.352141 0.190598 0.061347

5.2.5 Discussion

Average ground deformation rate and DEM error estimation concurrently using TSIn-

SAR stack can naturally be treated as a 2D optimization task. However, due to the

wrapped phase, the resulted objective function could contain many local optima that

results in a pure local optimizer easily stuck to semi-optimal solutions. Moreover,

varying spatial and temporal baseline parameters (convdef , ∆days, convtopo and B⊥)

also lead to different objective functions to be resolved. Hence, both global conver-

gence and generalization ability are considered in our method. The proposed IGS

policy tackles this optimization problem by iteratively sampling to select candidate

solutions at a coarse level. It avoids inefficient näıve grid search but also retains a

global exploration. Our simulation experiments confirm the benefits of the proposed

IGS policy in Table 5.2 and Figures 5.6 and 5.7. The failing local optimizers tend to

exhibit significant improved results after IGS boosting. However, due to the bottle-

necks of local optimizers, their results can only be as good as dense grid search and

Dual-SA (Table 5.3).

Under the scope of global optimization, the performance of naive dense grid search

highly relies on the sampling step size. An inevitable trade-off between precision

and computation efficiency limits its usage when millimetric accuracy is required.

SA algorithm is demonstrated in a recent study [57] on small-scale motion detection,

which inspires us to adopt a stochastic gradient-free optimizer in this work. Its global

extension Dual-SA combining Classical SA, and Fast SA has shown better results

than other conventional optimizers. However, SA-based methods highly depend on

randomness, and Dual-SA’s global search policy relies on hyperparameter tunning to

generalize to different objective functions [134, 145]. It can be observed from Table
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5.3, that Dual-SA results show unstable performance when dealing with different

baselines. In contrast, CMAES leads to fast local convergence with adaptive searching

direction using the covariance matrix and has shown superior performance on many

local optimization benchmarks. In addition, we can achieve fast convergence with

CMAES by setting a small population size and step size because we have conducted

sufficient exploration during the first IGS stage. At the second stage of optimization,

CMAES can directly focus on local optimization for exclusive exploitation.

In our real data experiments, reference results are generated by 3vGeomatics’s

industry level processing pipeline. The pipeline has served industry customers for

years, and it is reasonable to treat its outputs as empirically validated references.

Besides its robustness, this pipeline requires phase unwrapping to eliminate phase

ambiguities before signal estimation. As aforementioned, phase unwrapping itself is

an expensive step and has a dependency on prior known displacement pixel as the

reference [54]. Due to our data nature, where no ground truth is available, it does not

allow us to perfectly assess IGS-CMAES’s estimates. Hence, we use reference results

that are based on wrapped phase. The proposed IGS-CMAES achieves a comparable

output but on wrapped phase directly. It substantially improves existing work by

skipping the complicated unwrapping step and preserve a robust estimation.

Lastly, we want to discuss the disagreement in the R7 stack, which shows a few

miss-matched estimations between IGS-CMAES and the reference output. This is

an interesting finding, as the statistics in Table 5.4 suggest that IGS-CMAES has

very similar results as the reference one on all other stacks. Though significant differ-

ences happen in R7, IGS-CMAES shows consistent lower phase residuals between the

wrapped and input phases. To this end, we can only conclude that the proposed IGS-

CMAES provides robust convergence from an optimization point of view. However,

our optimization tasks and objective function are defined following the literature of

the linear deformation model. It is worth mentioning that R7 is the only stack with

just 17 SLC acquisitions comparing to all other stacks (31 SLC). A limited number of

terms in Equation (5.7) results in a potential situation that the objective function’s

optimal solution might not cover all the latent truth estimates. The hyperthesis

might not hold due to insufficient temporal information resulting in overfitting of the

data, but the unwrapping used for generating the reference phase provides a spatial

regularization that reduces the amount of overfitting. Fortunately, enough number

of SLC acquisitions results in more formatted interferograms—which is commonplace

nowadays to obtain sufficient SLCs for one site. Reference results are based on the

unwrapped phase, and phase unwrapping is a step that incorporates spatial analysis,

which is not the scope of this work. However, considering spatial analysis can reduce
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the effect on limited temporal access. This understanding guides us to incorporate

both spatial and temporal analysis for deformation and DEM error estimation in fu-

ture work. Overall, based only on temporal analysis, IGS-CMAES delivers robust

results on stacks with sufficient temporal observations. Its effectiveness in solving

optimization tasks is well validated in our method by using both simulation and real

data experiments.

5.2.6 Conclusions

Estimating ground deformation and DEM error with TSInSAR data is an ill-posed

problem. In this work, we provided two main contributions: (1) designing a two-

stage architecture suitable for interferometric phase processing and (2) introducing

a benchmark hybrid simulation dataset by combing real-world baseline parameters

and synthetic ground truth signals for an effective evaluation. It is known that, when

the availability of exclusive time series data increases, it is necessary to design more

efficient and effective algorithms. Typically, research in these fields is conducted by

solving complex optimization problems, which are extremely computationally inten-

sive and time-demanding. By considering parameter estimation as an optimization

problem, we presented an exploration process to acquire sufficient global information

that will guide us to the optimal solution using IGS coarse search. After that, a

group of candidate solutions is passed to the second exploitation step, where the best

estimation is obtained using an effective local CMAES refined search. The combined

two-stage optimization delivers a high degree of accuracy and efficiency without be-

ing influenced by local extrema. Our method was evaluated using simulated and

real data, and the result outperforms traditional local and global optimizers. Fur-

thermore, IGS-CMAES offers the advantage of avoiding phase unwrapping, which is

often time-consuming and prone to error. It also generalizes well to different real

site baselines without retuning the model configurations. In conclusion, this study

demonstrates that our proposed two-stage black-box optimization framework IGS-

CMAES successfully addresses two research tasks concurrently: linear deformation

estimation and DEM error correction with TSInSAR data. When sufficient temporal

information is provided, investigations on real data demonstrate that IGS-CMAES

achieves comparable performance to an industry-standard processing pipeline, which

requires a phase unwrapping process. Further developments of this work will focus

on the improvements by considering spatial information when dealing with limited

temporal data.
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5.3 ConvArcFit: Spatial-Temporal Optimization

for Ground Deformation and DEM Error

5.3.1 Introduction

Our previous IGS-CMAES aligns with established literature by analyzing just tem-

poral information and processing each pixel location independently. However, it is

known to have some limitations: 1) Accuracy is primarily determined by temporal

coherence. As a result, those techniques are often limited to persistent scatters (PS),

which are time-coherent targets contained within a stack of N interferograms. They

impose limitations on the ability to produce dense motion maps, which include more

information than sparse estimation. 2) For other spatially correlated signals, such as

atmospheric signals, the techniques must either use the double differences strategy on

arcs or remove the atmospheric signal entirely as a preprocessing step. Each option

involves additional computations and could introduce accumulated method errors, af-

fecting the final deformation signal estimation’s accuracy. In this study, to address the

constraints of temporal-only analysis, we present ConvArcFit, a new spatial-temporal

optimization approach. It is a 3D convolutional optimization technique involving the

use of a stack of 2D interferograms rather than PS points. Figure 5.9 summarizes the

architecture of ConvArcFit. It is designed to estimate wrapped interfergrams’ motion

rates and DEM errors.

5.3.2 Definition of Optimization Problem

We consider an optimization problem on a 3D wrapped phase (stack of interferograms)

in this work. We use ϕ with shape (H,W,N) to denote the wrapped input phase with

spatial resolution H ×W and N as the depth of the stack. Our target solutions are

two signal maps - linear motion rate mr and DEM error he with same size as H ×W
for dense estimates at each ground location. The optimization is performed by finding

the solutions that maximize the spatial coherence of phase residuals and temporal co-

herence of phase arc residuals. For each ground location (x, y) in interferogram k, we

have input phase ϕt(x, y, k) and reconstruct phase ϕr(x, y, k) that can be calculated

using estimated mr and he by Equation 5.6. Phase residual ϕδ(x, y, k) is point dif-

ference between reconstruct phase and input phase as ϕr(x, y, k) - ϕt(x, y, k). At the

same time, arc ϕArc(x, y, k) is the phase difference to a neighbourhood location (x̂, ŷ)

as ϕ(x, y, k)− ϕ(x̂, ŷ, k). Then, arc residual ϕδ,Arc(x, y, k) are double difference phase

arcs between input phase arc ϕt,Arc(x, y, k) and reconstruct phase arc ϕr,Arc(x, y, k).

For an arbitrary discrete 3D patch with shape (P, P,N ) (P is patch size and N is
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Figure 5.9: Proposed ConvArcFit optimization workflow.

stack depth), we have an objective function J for minimizing optimization:

J (x, y) = Jspatial(x, y) + Jtemporal(x, y) (5.17)

where, the spatial loss is the negative mean BoxCar coherent coefficient through

the stack:

Jspatial(x, y) = −
1

N

N∑︂
k=1

(
1

P 2
|

P∑︂
x́=1

P∑︂
ý=1

ej(ϕδ(x́,ý,k))|) (5.18)

and, temporal loss is negative residual phase arc temporal coherent coefficient:

Jtemporal(x, y) = −
1

N
|

N∑︂
k=1

ej(ϕδ,Arc(x,y,k))| (5.19)

Its contribution to spatial coherence can be considered to be one [20] due to the

atmosphere’s spatial smoothness. On the other hand, the atmospheric phase can

also be eliminated using temporal coherence arc formulation [57]. As a result, the
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estimated motion rate and DEM error approach the correct value, increasing spatial

and temporal coherence. This property enables us to assess how well the estimations

match the data without considering the effect of the atmosphere.

Design of Convolution Kernels

As shown in Figure 5.9, we define two convolution kernels - a spatial kernel and a

temporal kernel to efficiently accomplish our proposed optimization task. The spatial

kernel is a standard sum aggregation kernel that sums all the values in a window.

The temporal kernel is a special dynamic kernel given that it only sets the center

pixel at one and others at zero. For every iteration, one of the surrounding pixels is

chosen at random to be -1. Both spatial and temporal kernels are used as separate

convolutions to make a depth-wise computation. We obtain the spatial coherence

tensor ([H ×W × N ]) by applying the spatial kernel to the phase residual ϕδ stack

and simply calculating the mean of the entire stack (Equation 5.18). The temporal

kernel is applied to obtain the arcs map ([H × W × N ]) for both the input and

(ϕr,Arc) reconstruct phases (ϕr,Arc). Two arcs stacks can be subtracted to obtain a

double difference arcs stack (ϕδ,Arc), which can measure mean temporal coherence

(Equation 5.19). These convolutional computations can take advantage of new deep

learning frameworks to process our kernels convolutionally on GPUs.

Focal Regularization

It is well established that our solution space is discontinuous as a result of the wrap-

ping phase. Additionally, as mentioned in Section 4.1.1, incoherent areas can retain

noise signals even after filtering. As a result, simply optimizing J still leaves the

possibility of becoming stuck in local optima or shifting to other global optimas be-

cause of 2π phase jumps. Two regularization terms are proposed to overcome the

issue. The first one is the total variation of the predicted 2D signal maps for both

mr and he in order to minimize the image gradients’ L1 norm:

Rtv(y) =
∑︂
i,j

(|yi+1,j − yi,j|+ |yi,j+1 − yi,j|) (5.20)

It smooths the estimated signals (ymr,yhe) and helps make the loss function more

convex, making it easier to locate the solution when it is far away. Apart from that,

both types of signals are also penalized by L1 norm regularization:

RL1(y) =
∑︂
i,j

|yi,j| (5.21)
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This term is primarily used to avoid a global phase shift. Because all phases are

wrapped by 2π, shifting the global results by the multiplier of 2π results in the same

value J . The L1 term is applied to penalize the estimations based on their absolute

distance from zero. Here, our updated objective function is as follows:

J = Jspatial + Jtemporal + σ(Rtv(mr) +Rtv(he)) + γ(RL1(mr) +RL1(he)) (5.22)

where σ and γ are the regularization weights, which serve as the hyper-parameters for

balancing the penalty algorithm. Properly setting the weights of σ and γ is critical

because they affect the final outcome. A low weight results in negligible benefits when

dealing with large-scale signals, while a high weight may result in biased estimation.

In this study, we further examine an adaptive method inspired by the innovative

focal loss [146] that has been widely employed in image classification tasks. Instead

of altering the cross-entropy loss, we propose employing a focal modulating term to

dynamically scale our regularizations in run time. We define two adaptive functions

for automatically adjusting the regularization weights at the pixel level.

FLtv = αmax
tv (1 + Jspatial)

βtv + αmin
tv (5.23)

FLL1 = αmax
L1 (−Jtemporal)

βL1 + αmin
L1 (5.24)

where for both regularization terms, β is the tunable focusing parameter as explained

in [146]. The idea is that when the estimated outputs result in low spatial coherence

for a given pixel location, FLtv gradually increases the weight of the regularization

term for total variation. This process assists the model in gaining more attention from

neighbourhood estimates. Simultaneously, it lowers regularization effects to avoid bi-

ased estimates when spatial coherence is large. In the presence of an L1 regularization

factor, the same manner is followed for temporal arc coherence. When the temporal

arc is relatively coherent, a heavier weighted L1 regularization will be used to prevent

the issue of global phase shifting. When the temporal arc is incoherent, FLL1 reduces

L1 regularization to prevent unexpected penalties for large magnitude estimations.

Since both Jspatial and Jtemporal have the same spatial resolution as the original input,

regularization is conducted adaptively at the pixel level based on how well the present

results fit the input. Furthermore, two global minimum (αmin) and maximum (αmax)

parameters are defined for each type of regularization to restrict the scaling factor’s

border. To this end, our final objective function is the following:

J = Jspatial+Jtemporal+FLtv(Rtv(mr)+Rtv(he))+FLL1(RL1(mr)+RL1(he)) (5.25)

98



5.3.3 Results and Future Work

We adopted a straightforward demonstration by running ConvArcFit on a single stack

at two stages - before and after atmospheric removal. Results in Figure 5.10 demon-

strate that the model is capable of producing consistent results in both scenarios.

The model can differentiate linear motion rate and DEM error signal even when the

atmospheric signals are spatially presented, because the designed objective function

is insensitive to any spatially smooth signals.

Figure 5.10: Results on a real world stack; the model shows consistent results with
input data with and without atmospheric removal.

This approach has been operationalized in the industry since 2019 and has become a

standard module in the company’s processing pipeline. Our technical reports contain

extensive experimental details.
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Chapter 6

InSAR Simulator

6.1 Introduction

Despite decades of InSAR-related research, including InSAR phase filtering, coherence

estimation, the deformation and DEM error signal extraction. There is a remaining

challenge to precisely validate and eventually optimize the developed algorithms with

no ground truth data, and a controlled environment is available [16]. To date, the

most commonly adopted evaluation strategy is using a couple of synthetic interfer-

ometric phases with simple geometric shape fringes or simulating the radar signals

according to the pre-given digital evaluation model (DEM) [38] [41]. Note that there

is a lack of large-scale datasets and benchmarks for this research field. Large-scale

data is important, especially if an application wants to take advantage of the recent

learning-based approaches. It is known that the robustness of a trainable model’s

learning capacity requires diversity in datasets for sufficient training and testing in

terms of the types of signal features and noise characteristics [93]. We address this

problem by introducing an ultimate InSAR simulator toolbox that provides highly

configurable simulation strategies to generate a wide variety of phase fringes and

coherence distributions. It allows researchers to customize the key configuration pa-

rameters and then adopt a mechanism to randomly generate In-SAR data with a

collection of distinct synthetic features. We will first discuss a spatial only 2D sim-

ulator that generates random clean and noisy pairs used for evaluating non-stack

InSAR filters and coherence estimators. It is worth mentioning that our 2D simu-

lator has been adopted by state-of-the-art methods for extensive analysis of several

conventional and deep-learning approaches. Next, we extend it to generate random

motion and DEM error signals as well as spatial and temporal baselines to produce

a stack of interferograms for time-series InSAR research. In the end, we also present

the potential to use recent intelligent generative models to learn the real signal dis-
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tribution by training it with the full processing pipelines’ outputs. Furthermore, an

adversarial training framework is introduced to let the generator be able to create

synthetic signals as realistic as possible. To this end, we hope our proposed simulator

toolbox can help researchers validate and compare the strengths and weaknesses of

different algorithms in a low-bias assessment environment and guide future studies.

6.2 Methods and Procedure

6.2.1 2D InSAR Simulator

SAR satellites produce single-look complex (SLC) images. The returning radar echo

from the ground is represented as a complex number in each SLC pixel. The signal

model and its degradation version can be characterized:

SLCclean = Acos(θ) + jAsin(θ), SLCnoisy = Acos(θ) + vr + j(Asin(θ) + vi) (6.1)

where A is clean amplitude and θ is clean phase. Noise components vr and vi are

additive white Gaussian noise (AWGN) in real and imaginary channels respectively

2. The corresponding clean interferogram is calculated as:

I = (ASLC1 ⊙ ASLC2)e
j(θSLC2

−θSLC1
) (6.2)

As illustrated in Eq. 6.2, interferometric phase is the wrapped phase difference

between two SLCs. Hence, we set one of SLC’s phase component to 0 and only

generate synthetic signals on the other one. The key steps of our simulator are: 1)

Generate SLC1 as a H×W 2D complex image with 0 phase value and with amplitude

value growing from rmin to rmax moving from the left-most column to the right-most

side following a Rayleigh distribution. 2) Generate SLC2 with the same resolution

and amplitude value as SLC1, then add a set of signals ”S” to the phase. 3) Add

independent additive white Gaussian noise v with standard deviation σ to the real

and imaginary channels of both SLC1 and SLC2. 4) Generate ground truth clean

and noisy interferogram as defined by Eq. 6.2. In the proposed simulator we provide

the following types of signals with their fully configurable parameters: 1) Gaussian

bubble: range of spatial scale and range of Gaussian amplitudes. 2) Ellipse: range

of heights and range of radii for both ellipse’s first and second axis. 3) Polygon:

range of heights and range of radii for the edges and the range of number of polygon

edges. 4) Buildings: range of height, width and depth factors which are used to

simulate the height of a building. 5) Amplitude stripes: the approximate thickness

of the amplitude that is altered in a band region of the SLC. 6) Phase stripes: the
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approximate thickness of the phase band in the interferometric phase. Furthermore,

the simulator is designed to add signals in random locations, and there is an extra

parameter n defining the number of such type of signals added to the SLC. Lastly, the

ground truth coherence is calculated with Monto Carlo approximation by maximum-

likelihood coherence metric: ∑︁N
i z

(i)
1 z

∗(i)
2√︂∑︁N

i |z
(i)
1 |2

∑︁N
i |z

(i)
2 |2

(6.3)

where, z is sampled with amount of N (set to a large number to reduce bias) for

each location (r, c) in the synthetic interferogram.

z = Ar,c
slce

j + vr + jvi, where(vr, vi) ∼ N(0, σ2) (6.4)

We adopt an empirical relationship between amplitude and coherence for a specific

noise σ to convert the amplitude to coherence for each point.

Results

After fixing the random seed as well as the configuration, we generated 1800 samples

with 1000x1000 resolution as a benchmark dataset. Visualization of selected patches’

simulated phase (under different configurations) of clean and noisy interferograms as

well as the coherence are shown in Figure 6.1

Figure 6.1: Column A: low base noise, sparse fringes; B: median base noise, dense
fringes; C: ellipse signals; D: polygon signals; E: phase bands; F: low amplitude bands;
G: plenty of amplitude bands with building blocks.

Our proposed benchmark dataset has been adopted to evaluate widely used by our

own and other researchers [103–105, 109, 117].
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6.2.2 3D InSAR Simulator

To address time-series (TS)InSAR research, we further developed a 3D extension of

our previous 2D simulator. Adapting the 2D simulator for temporal simulation re-

quires taking into account InSAR temporal baselines. Thus, rather than generating

noise-free synthetic signals, we propose directly generating synthetic linear motion

rate and DEM height error signals. In this section, we consider only the phase com-

ponents that are used in TSInSAR techniques. We propose to use the same simulation

strategy to generate 2D signals representing synthetic motion and DEM errors (mr

and he). Furthermore, we designed it to generate handcrafted Gaussian Pyramids for

improved objective evaluation. As shown in the first row of Figure 6.2. This is for the

purpose of validating and comparing different algorithms in a controlled environment,

as well as determining how well the model can handle a variety of signal scales and

possible combinations of two signal types. In the example image, motion rates are

sampled from [−26,+26] cm/year, and height errors are sampled from [−120,+120]

m. Both types of signals were generated on different spatial scales from top to bot-

tom, with the highest amplitude value in the center. Because the values of the motion

rate and height error Gaussian bubble signals are sampled in the opposite direction

from the center to the outer (from low to high or from high to low), a comprehensive

combination of the two signals is presented. Following that, we generate synthetic

interferograms using the Equation 6.5.

ϕ = convm ·∆days ·mr + convh · B⊥ · he (6.5)
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Figure 6.2: Sample outputs from 3D Simulator by creating Gaussian Pyramids signals
pairs.

where, mr and he are 2D signal maps with size H × W , and ∆days and B⊥

are 1D vector whose length equals the depth of the stack N , convm and convh are

two constant values (recall Equations 5.3 and 5.4). Because these baseline values are

satellite parameters that can be randomly sampled according to their real distribution

or use real-world satellite baseline parameters. The simulation outputs are a stack of

interferograms with a shape of H ×W and a depth of N . For a quick demonstration,

we chose one real site baseline parameter and generated a full stack of synthetic
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interferograms, as shown in the second row of Figure 6.5. This can easily be improved

to: 1) generate additional signal shapes and stochastic signals as our 2D simulator to

augment the synthetic features; and 2) generate a simulation benchmark dataset to

evaluate our signal decomposition algorithm and make quantitative comparisons to

other methods.

6.2.3 Intelligent InSAR Simulator - Learning from real world
signals

To generate realistic signal patterns, we continue to study the possibility of developing

an intelligent generative model similar to the one we investigated in our natural image

denoising work. We have obtained many fully processed deformation and DEM error

signals from the industry in the past. These delivered outputs can be considered an

adequate assessment of the real-world signals’ ground truth. Numerous works based

on Generative Adversarial Networks (GANs) have demonstrated promising outcomes

in the generation of synthetic natural images [147][71][77]. This work demonstrates

how to learn from real-world InSAR data using a baseline GAN built of a ResNet-

based Generator and a Patch Discriminator. Figure 6.3 provides an overview of our

baseline model.

Figure 6.3: The proposed baseline GAN architecture. The generator’s input is the
noise map. Its outputs are a two-channel signal map (concatenation of synthetic
linear deformation rate and DEM error signals) with the same spatial resolution. The
discriminator is learned to tell if given two-channel signals from real distribution.

In our baseline model, our generator is a nine-layer ResNet [148] that takes noise

input with shape [H,W, 1] and generates synthetic 2D signal pairs of motion rate and

DEM error as a two-channel tensor with shape [H,W, 2]. Additionally, we utilize the

patch discriminator, which was introduced by PatchGAN [149]. It penalizes structure
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only at the scale of local image patches. Instead of classifying the entire image, the

PatchGAN discriminator attempts to classify whether each N ×H patch in an image

is real or fake. It scans the image constitutionally and averages all predictions to

get the final discrimination result. Assuming pixels are independent when separated

by more than a patch area effectively represents the image as a Markov random

field [149]. The key reason for employing Patch Discriminator is that we believe

the spatial feature qualities are also essential for the signal’s structure information.

Because the contours of the motion and height error signals may change depending

on the topography, the textures of the signal maps often provide more value.

Results

We train the model using randomly extracted 256x256 image patches from night pairs

of the real-world signal map with a deformation rate of 1000x1000 and a DEM height

error of 1000x1000. Each training iteration includes 18 256x256 patches as real data

training samples and the corresponding noise samples from a uniform distribution

ranging from -1 to 1. The generator learns to map random noise to synthetic motion

rate and DEM error signal pairs by using adversarial training. A discriminator can

be trained to determine whether or not a particular signal sample is real. Following

training, the generator should generate synthetic signals that are indistinguishable

from real signals. Figure 6.5 shows a real training pair sample of deformation and

DEM height error signals. After 1e6 training iterations, the sample output of gen-

erator is shown in Figure 6.4. Our baseline model produces signals that are visually

similar to those observed in real-world data.

Figure 6.4: Sample outputs of baseline GAN.
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Figure 6.5: Sample pair of real world motion rate and DEM height error signal maps
processed by full processing pipeline.

6.2.4 Conclusion

Our stochastic InSAR simulator is capable of generating distinctive kinds of signals

based on specified configurations and combining them to produce an almost infinite

number of combinations. It results in various irregular fringes in the interferometric

phase and offers a number of controls for controlling the complexity of the generated

phase as well as different levels of distortion. To the best of our knowledge, this InSAR

simulator is the first study that represents the large-scale performance evaluation

benchmark for InSAR filtering and coherence estimation. The source code for the

InSAR-Simulator is available at https://github.com/Lucklyric/InSAR-Simulator. By

introducing our simulator and benchmark, we hope to assist researchers in comparing

the strengths and shortcomings of existing or new algorithms and provide guidance

for developing InSAR phase filtering and coherence estimation. Additionally, we

demonstrate the concept of employing a recent intelligent deep generative model to

learn the real signal distribution for deep modeling synthetic signals. I am now

leading the team that continues to work in this direction; our technical report and

[150] include the most recent quantitative and qualitative analysis contributions.
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Chapter 7

Conclusion and Future Directions

In this thesis, we present numerous methods for decomposing observed InSAR data

into distinct types of signals.

7.1 Summary

We begin by addressing the topic of spatially independent noise components in natural

images. We present a novel deep learning model based on Gaussian denoising of

natural images and adapt it for use with the InSAR modality technique. In the

absence of ground truth data for a real-world scenario, we established a teacher-

student framework - DeepInSAR, for supervised training. The design allows the

use of a conventional stack-based filtering approach as the teacher (which requires

over 30 observations) and a deep differentiable model to acknowledge the behaviour

of teacher method. Following training, the student model can produce results that

are equivalent to or better than those provided by the teacher method when only

one pair of observations is used. Additionally, the proposed model is designed to

provide a coherence map which reflects the pixel-level signal quality in conjunction

with filtering.

To circumvent the requirement for clean reference data in DeepInSAR, we pre-

sented GenInSAR, a self-supervised method for training the model to predict the

pixel distribution using information about surrounding pixels. While preliminary

findings seem positive, they are subject to some significant limitations: 1) Because

the model is trained on center-masked patches, it ignores information about the cen-

ter pixel during training, and 2) GenInSAR’s coherence estimate lacks appropriate

resolution and contrast. As a result, we created SRDInSAR, which overcomes each of

GenInSAR’s shortcomings and provides a more flexible framework for modeling and

inference efficiency. In addition, SRDInSAR surpasses GenInSAR and other men-
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tioned techniques in simulation and real-world data experiments, proving its readiness

for industrial deployment.

It is widely established that time-series InSAR (TSInSAR) data can be used to es-

timate slow and subtle terrain displacements after noise suppression. However, when

exclusive time series data availability increase, it is necessary to develop more effi-

cient and effective algorithms. Typically, research in these fields is conducted through

challenging optimization problems, which require a significant amount of processing

power and time.We present a two-stage black-box optimization approach for pre-

dicting the average ground deformation rate and the terrain digital elevation model

(DEM) error simultaneously. The approach begins with an iterative grid search (IGS)

to generate coarse candidate solutions, refined using a covariance matrix adaptive evo-

lution strategy (CMAES). Comparing our work quantitatively and qualitatively with

a range of optimizers demonstrates our work’s stability and effectiveness. The sug-

gested IGS-CMAES method outperforms previously published algorithms in terms

of accuracy while requiring much fewer objective function evaluations. It provides

broad-area surveillance in scenarios that need high precision and real-time process-

ing. To strengthen usability and performance, ConvArcFit, a novel spatial-temporal

optimization technique, is then presented to overcome the constraints of temporal-

only processing. This technique optimizes 3D convolutional signals in which a stack

of 2D interferograms replaces the PS points. ConvArcFit’s results reveal that it can

effectively extract dense deformation and DEM error signals on the wrapped phase.

Additionally, it operates on signals that do not require atmospheric phase reduction,

saving processing time.

Despite these signal decomposition procedures, accurately evaluating and ulti-

mately enhancing the resulting algorithms remains a challenge due to a lack of suf-

ficient ground truth data in real-world scenarios. To address this issue, we provide

a stochastic InSAR simulator that enables the production of a wide variety of phase

fringes and coherence distributions through a highly flexible simulation framework.

This simulator is well-suited for conducting exhaustive quantitative studies of various

filtering and coherence estimation algorithms. In 2D and 3D modes, the simulator

enables both stack and non-stack analysis. The 3D version assesses signal separation

methods by simulating time-series deformation signals. Additionally, we evaluate a

newly built adversarial generative model for learning the distribution of real-world

deformation signals and their correlations to the DEM error to reproduce realistic

signals.
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7.2 Knowledge Translation and Commercialization

Apart from academic research, our ultimate goal is to apply our results to a real-world

InSAR processing pipeline in order to tackle real-world challenges.

By collaborating with the Research and Development (R & D) group at 3vGeo-

matics, we set up a solid procedure for algorithm validation and operationalization.

The amount of data generated by real-world InSAR can exceed ten gigabytes per site,

depending on the type of radar and its resolution. We always begin with a subset of

data to conduct proof-of-concept and validate our methods. Later, we must adapt

the proposed algorithms to integrate with 3vGeomatics’ distributed map-reduce pro-

cessing architecture in order to handle massive special scale stacks with resolutions

greater than 10K x 10K. DeepInSAR has been developed into an in-house processing

module after months of training on all accessible data at the company. Its outputs

are verified and evaluated by InSAR operators before becoming a standard processing

module for their clients. ConvArcFit has also been operationalized in 3vGeomatics

in a simplified version for deformation and DEM error signal separation, ConvFit,

does not leverage Arc coherence to save computations and already provides industry-

leading results.

The commercialized versions of DeepInSAR and ConvArcFit have been opera-

tionalized to process PB-level data annually to speed up wide-area monitoring appli-

cations worldwide. Additionally, our current InSAR data simulator has been adopted

and cited by many researchers and publications to benefit them in properly evaluating

their algorithms.

7.3 Limitations and Future Work

My entire thesis is devoted to various proposed methods and their improved versions

for continually overcoming limitations. We believe that there are always research

gaps that can be explored to improve the methodology.

Due to the supervised training setup used in our DeepInSAR work, the output of

the teacher technique is critical. While DeepInSAR has been proven and deployed

in a real-world InSAR processing chain, it may be of limited benefit to academics

or organizations that lack the resources to collect reference data. To this end, we

proposed SRDInSAR as a follow-up to GenInSAR. SRDInSAR requires only a noisy

version for self-supervised model training. The current SRDInSAR is undergoing an

industry migration process for large-scale validation. The findings from DeepInSAR

also show a potential direction for future work by expanding the SRDInSAR to incor-
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porate amplitude information from paired SAR images, not just the interferometric

phase.

By examining just temporal data and processing each pixel location independently,

our suggested IGS-CMAES aligns with the existing literature. It is well-known to

have various downsides, including the following: 1) Accuracy is heavily influenced by

temporal coherence, and it is only effective for sparse results. 2) Stacks containing

additional spatially correlated signals, such as atmospheric signals, are not supported.

ConvArcFit is then presented to address these issues by integrating spatial and

temporal analyses. However, ConvArcFit requires considerable computations due

to the online convolutional optimization, which is why its simplified form, ConvFit,

is used for operations first. Additionally, our current research focuses exclusively on

linear deformation modeling, which is not always applicable to areas with non-linear

motions. Further investigation may be necessary to determine whether a distribution

model can be utilized to approximate the non-linear motion rate.

Our stochastic InSAR simulator can be utilized to simulate a wide variety of phase

fringes and coherence using a highly customizable simulation framework with hand-

crafted features. To mimic real-world signals, we proposed a path employing an intel-

ligent deep generative model to learn the distributions of real-world signals. However,

our current training data is derived from the company’s whole processing pipeline out-

puts, which are not perfect due to missing data, noise, and method flaws. However,

building a learning-based generative model with distorted data distribution remains

an open research question to advance our intelligent InSAR simulator even more.

This direction is an active, ongoing topic that our research group is pursuing.
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