Search
Skip to Search Results
Rates of convergence in a central limit theorem for stochastic processes defined by differential equations with a small parameter
Download1992
Kouritzin, Michael, Heunis, A.J.
Let μ be a positive finite Borel measure on the real line R. For t ≥ 0 let et · E1 and E2 denote, respectively, the linear spans in L2(R, μ) of {eisx, s > t} and {eisx, s < 0}. Let θ: R → C such that ∥θ∥ = 1, denote by αt(θ, μ) the angle between θ · et · E1 and E2. The problems considered here...

A law of the iterated logarithm for stochastic processes defined by differential equations with a small parameter
Download1994
Heunis, A.J., Kouritzin, Michael
Consider the following random ordinary differential equation: X˙ϵ(τ)=F(Xϵ(τ),τ/ϵ,ω)subject toXϵ(0)=x0, where {F(x,t,ω),t≥0} are stochastic processes indexed by x in Rd, and the dependence on x is sufficiently regular to ensure that the equation has a unique solution Xϵ(τ,ω) over the interval...

1994
Heunis, A. J., Kouritzin, Michael
In this note we consider the almost sure convergence (as ϵ→0) of solution Xϵ(·), defined over the interval 0 ≤ τ ≤ 1, of the random ordinary differential equation View the MathML source Here {F(x, t, ω), t ≥ 0} is a strong mixing process for each x and (x, t) → F(x, t, ω) is subject to regularity...

1995
Suppose {εk, −∞ < k < ∞} is an independent, not necessarily identically distributed sequence of random variables, and {cj}∞j=0, {dj}∞j=0 are sequences of real numbers such that Σjc2j < ∞, Σjd2j < ∞. Then, under appropriate moment conditions on {εk, −∞ < k < ∞}, View the MathML source, View the...

1997
Kouritzin, Michael, Dawson, Donald
A general Hilbertspacebased stochastic averaging theory is brought forth herein for arbitraryorder parabolic equations with (possibly long range dependent) random coefficients. We use regularity conditions onView the MathML sourcewhich are slightly stronger than those required to prove...

1997
Herein, an averaging theory for the solutions to Cauchy initial value problems of arbitrary order,εdependent parabolic partial differential equations is developed. Indeed, by directly developing bounds between the derivatives of the fundamental solution to such an equation and derivatives of the...

2000
Ballantyne, David, Chan, Hubert, Kouritzin, Michael
Particle approximations are used to track a maneuvering signal given only a noisy, corrupted sequence of observations, as are encountered in target tracking and surveillance. The signal exhibits nonlinearities that preclude the optimal use of a Kalman filter. It obeys a stochastic differential...

2001
Ballantyne, David, Hoffman, John, Kouritzin, Michael
Particlebased nonlinear filters provide a mathematically optimal (in the limit) and sound method for solving a number of difficult filtering problems. However, there are a number of practical difficulties that can occur when applying particlebased filtering techniques to real world problems....

2001
Chan, Hubert, Kouritzin, Michael
Filtering is a method of estimating the conditional probability distribution of a signal based upon a noisy, partial, corrupted sequence of observations of the signal. Particle filters are a method of filtering in which the conditional distribution of the signal state is approximated by the...

2002
In the context of simulating the transport of a chemical or bacterial contaminant through a moving sheet of water, we extend a wellestablished method of approximating reactiondiffusion equations with Markov chains by allowing convection, certain Poisson measure driving sources and a larger...