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ABSTRACT

Filtering is a method of estimating the conditional probability distribution of a signal based upon a noisy, partial,
corrupted sequence of observations of the signal. Particle �lters are a method of �ltering in which the conditional
distribution of the signal state is approximated by the empirical measure of a large collection of particles, each
evolving in the same probabilistic manner as the signal itself.

In �ltering, it is often assumed that we have a �xed model for the signal process. In this paper, we allow unknown
parameters to appear in the signal model, and present an algorithm to estimate simultaneously both the parameters
and the conditional distribution for the signal state using particle �lters. This method is applicable to general
nonlinear discrete-time stochastic systems and can be used with various types of particle �lters. It is believed to
produce asymptotically optimal estimates of the state and the true parameter values, provided reasonable initial
parameter estimates are given and further estimates are constrained to be in the vicinity of the true parameters.

We demonstrate this method in the context of search and rescue problem using two di�erent particle �lters and
compare the e�ectiveness of the two �lters to each other.
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1. INTRODUCTION

We consider a single-target tracking problem in which the signal, Xt, which we wish to track moves according to the
discrete-time stochastic equation

Xt+1 = f(�1; Xt) + g(�2; Xt)wt+1; (1)

where Xt is an n-dimensional vector representing the signal's state, �1 and �2 are d1- and d2-dimensional unknown
parameter vectors, f(�; �) and g(�; �) are, respectively, n � 1 and n � s matrices, and wt is an s-dimensional noise
vector with mean 0. We de�ne � to be the d $ d1 + d2-dimensional vector formed by combining �1 and �2, namely
�T = (�T1 ; �

T
2 ) where �

T means the transpose of �. Our observations of the signal, Yt, are described by the equation

Yt = h(Xt) + vt; (2)

where Yt, h(Xt) and vt are m-dimensional vectors, vt is the observation noise, with mean zero independent compo-
nents. Moreover, fvtg

1
t=1 is an independent and identically distributed sequence of second order random variables.

h(Xt) is often nonlinear and partial in the sense that its value is based only on some of the components of Xt. In
our example, we will take vt and wt to be Gaussian, although in general, this is not required.
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1.1. Particle Filters

Particle �lters approximate the conditional distribution of the signal, given the observations, by a �nite sum of Dirac
measures. They can be applied to any problem for which the signal model can be simulated, hence are useful for
problems in which other �ltering techniques cannot be applied due to, for example, a high dimensional signal state or
non-linear dynamic model. They can be constructed to be asymptotically optimal, often making them a better choice
than inherently sub-optimal methods such as the extended Kalman �lter, or Interacting Multiple Model methods.

Particle �ltering algorithms can be divided into three steps: initializing the particles according to the assumed
initial distribution for the signal, evolving each particle independently according to the signal model, and selecting
or weighting particles according to their likelihood given the observation, repeating the second and thirds steps at
each observation time. The algorithm presented in this paper adds a fourth step to estimate the parameter vectors,
using a least-squares method.

2. COMBINED STATE AND PARAMETER ESTIMATION

2.1. Objective

The problem is to simultaneously estimate the conditional distribution for the signal state given the observations,
that is, to estimate

P (Xt 2 dxjYt); (3)

where Yt $ �fY0; : : : ; Ytg, and to �nd �̂t such that

�̂t = argmin
�

 
1

t

t�1X
i=0

kYi+1 �E�(Yi+1jYi)k
2

!
; (4)

where k�k is the Euclidean norm, and E� denotes the fact that we take the expectation under the assumption that
� is the true parameter value.

However, since we cannot calculate P (Xt 2 dxjYt) nor argmin�

�
1
t

Pt�1
i=0kYi+1 �E�(Yi+1jYi)k

2
�
exactly, we

compare our estimates for E(XtjYt) against the signal's actual state, and our estimate for �̂ against the known
parameters, in order to measure the algorithm's e�ectiveness.

Particle �ltering techniques are asymptotically optimal as the number of particles approaches in�nity if the model
for the signal is completely known. However, there is currently no known particle method which has been proved to
be optimal in estimating both the signal's state and model parameters.

2.2. Particle �lters

We consider two particle methods: a weighted particle method used in the analytic work of Kurtz and Xiong,1 and
a branching particle method introduced by Kouritzin and analysed by Blount and Kouritzin.2

Particle �ltering algorithms consist of three steps: initializing the particles, evolving the particles, and selecting
or weighting the particles. The last two steps are repeated after each observation time.

We will denote the set of particles as f�itg
Nt

i=1, where Nt is the number of particles at time t. If the number of
particles is constant, we write N in place of Nt.

Initialization: In the intialization stage, each particle's state is independently initialized according to the assumed
initial distribution of the signal.

Evolution: Each particle is evolved according to the signal model, for example, as described in section 3.1. We
denote the resulting set of particles f�i

t+1�g
Nt

i=1. Hence,

�it+1� = f(�1; �
i
t) + g(�2; �

i
t)w

i
t+1; (5)

where fwi
t+1g

Nt

i=1 are independent random variables with the same distribution as wt+1.
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Selection: Particles are branched or weighted based on their likelihood given the current observation. Particle

methods di�er in this step. We denote the resulting set of particles f�it+1g
Nt+1

i=1 .

For the branching method, each particle, �it , is assigned a �it value between �1 and 1. If this value is greater
than 0, the particle is branched into two independent particles with probability �it , and if it is less than 0, the
particles is killed with probability ��it .

In the weighted method, each particle is assigned a weight, M i
t . The weights are governed by the stochastic

equation

M i
t =M i

0 +

tX
s=0

�tM
i
s

Z
U

h(�it ; u)Y (du); (6)

where U is the observation space. This is the discrete-time version of the system analysed in Kurtz and Xiong.1

State estimation is given by a �nite sum of Dirac measures. In the case of the branching particle system, we
have, by the analysis in Blount and Kouritzin,2 for a Borel measurable subset A of the signal's state space,

1

Nt

NtX
j=1

Æ
�
j
t
(A)

N0!1�! P (Xt 2 AjYt): (7)

In the case of the weighted particle system, we have, by the law of large numbers and conditional independence,

1PN
j=1M

j
t

NX
j=1

M j
t Æ�jt

(A)
N!1
�! P (Xt 2 AjYt): (8)

2.3. Parameter estimation

To perform parameter estimation, we perform some extra initialization and add an extra step after the particle
evolution step. We initialize our guess, �̂0, at the parameter vector, �, to some good guess, and we set the d� d (in
our case, 3 � 3) matrix P0 to some large value. In most practical problems, it is set to KId, where Id is the d � d
identity matrix, and K > 0 is a large constant. The intent is that P�1

0 � 0.

In the new parameter estimation step of the algorithm, we update our guess at � as follows. We de�ne

Ŷt+1 = E� [h(Xt+1)jYt]j�=�t ; (9)

and approximate as

Ŷt+1 �
1

Nt

Nt+1X
i=1

h(�it+1�): (10)

Next, we de�ne the d�m matrix 't as

't = E

2
4
0
@ @fT (�̂1t ;Xt)

@�1Ps
j=1

@[gj (�
2;Xt)w

j

t+1
]T

@�2

1
A dhT (Xt+1)

dX

�����Yt
3
5 ; (11)

which we approximate as

't �
1

Nt

NtX
i=1

2
4
0
@ @fT (�̂1t ;�

i
t)

@�1Ps
j=1

@[gj(�
2;�it)w

i;j

t+1
]T

@�2

1
A dhT (�i

t+1�)

dX

3
5 : (12)

We de�ne

Pt+1 $

 
tX

i=0

't'
T
t

!�1

; (13)

then update Pt by
P�1
t+1 = P�1

t + 't'
T
t ; (14)
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which, by the matrix inverse lemma, can be calculated by

Pt+1 = Pt � Pt'tAt'
T
t Pt; (15)

where
At = (Im + 'Tt Pt't)

�1: (16)

Finally, we update our guess at the parameter vector using

�̂t+1 = �̂t + Pt'tAt[Yt+1 � Ŷt+1]: (17)

2.4. Combined algorithm

The resulting algorithm for combined state and parameter estimation is summarized as follows.

Initialization: Each particle's state is independently initialized according to the assumed initial distribution of the
signal. �0 is initialized to some good guess of the parameters, and P0 is initialized to KId.

Evolution: Each particle is evolved according to the signal model. We use our current guess at the parameters in
the signal model:

�it+1� = f(�̂1
t ; �

i
t) + g(�̂2

t ; �
i
t)wt+1: (18)

Parameter Estimation: Our guess at the parameter vector is updated using

�̂t+1 = �̂t + Pt'tAt[Yt+1 � Ŷt+1]; (19)

where Ŷt+1; At; Pt; and 't are calculated via equations 10, 12, 15, and 16.

Selection: Particles are branched or weighted based on their likelihood given the current observation.

The evolution, parameter estimation, and selection steps are repeated at each observation time.

The algorithm is derived in detail in Chan et al.4

3. SEARCH AND RESCUE EXAMPLE

In this paper, we use the problem of a dinghy lost at sea, which we observe from above the ocean surface with, for
example, a helicopter using an infra-red camera, similar to the problem used by Ballantyne et al.3

We assume that the signal's initial location is uniform over the observed ocean surface, and the selection stage is
described in further detail for a similar observation function in Ballantyne et al.

3.1. Signal Model

The dinghy has six state components: xt; yt; �t; _xt; _yt; and _�t. The variables xt and yt represent the x- and y-
coordinates of the dinghy's location, and �t represents the orientation. _xt; _yt and _�t represent the change in x- and
y-coordinates, and change in orientation.

We assume that the dinghy only drifts, being pushed around randomly by the waves. We model this by letting
the _xt; _yt; and _�t components be sums of independent zero mean Gaussian random variables. We also add friction
terms to the velocities in order to make the model more realistic.

The unknown parameter vectors represent the fact that we do not know the average force of the waves. We model
this by de�ning _xt; _yt and _�t as the nominal change, rather than the actual change, in x, y, and �. In other words,
_xt, multiplied by the unknown parameter, is the actual change in x, and likewise for _yt and _�t.

For our problem, then, we let �1 = [�1
1 ; �

2
1 ; �

3
1 ] be a 3-dimensional vector where �1

1 is the multiplier for _x, �2
1 is

the multiplier for _y, and �3
1 is the multiplier for _�. We let �2 be null.
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We de�ne the functions f and g used in the model by

f(X) = X +

0
BBBBBB@

X _x�1
1�t

X _y�2
1�t

X
_��3

1�t

F _x(X)�t

F _y(X)�t

F
_�(X)�t

1
CCCCCCA
; (20)

where �t is the time step between observations and F represents friction, and

g(X) =

0
BBBBBB@

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

1
CCCCCCA
: (21)

Friction is modelled as

F _x(X) = �f`X
_x
q
D(X _x; X _y; X�); (22)

F _y(X) = �f`X
_y
q
D(X _x; X _y; X�); (23)

F
_�(X) = �f�X

_�; (24)

where

D( _x; _y; �) =

(
_x2+ _y2

( _x cos �+ _y sin �)2+ 1
4
( _y cos �+ _x sin �)2

if _x 6= 0 or _y 6= 0

0 if _x = _y = 0
; (25)

and f` and f� are known constants. The result of de�ning friction in this manner is that friction is increased if the
direction of the dinghy's motion is perpendicular do its orientation, and decreased if the direction of the dinghy's
motion is parallel to its orientation.

3.2. Target Observations

The observations consist of a sequence of images representing an overhead view of the ocean surface. The images
have a higher mean value for pixels which coincide with the polygon representation of the dinghy. The polygon
representation of the dinghy, with size parameter s, is constructed as follows:

� Place a square with sides of length 2s perpendicular to the raster grid and centred at the point (x; y).

� Add a triangle of height s to the right side of the box so that the base of the triangle is the side of the box.

� Rotate about (x; y) the resulting polygon by the angle �.

Let SX be the set of points in the polygon representation of the signal X . Now we de�ne the function h0(`;m)(X),

where (`;m) describes the location of a pixel in the image, and X is the signal's state, as

h0(`;m)(X) =

(
0 if (`;m) =2 SX

�t if (`;m) 2 SX
: (26)

We then convolve h0 with the Friedrich molli�er to get a function which is di�erentiable. In particular, we de�ne
�1(X) as

�1(X) $

(
c exp

�
� 1

1�kXk2

�
if kXk2 < 1

0 otherwise
; (27)
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where c is a constant chosen such that
R1
�1

�1(X)dX = 1, kXk is the Euclidean norm in 3-space: kXk =p
(Xx)2 + (Xy)2 + (X�)2, and let ��(X) $ ��3�1(

X
�
) where � is a �xed value. Finally, our observation function

h(X) is de�ned as

h(`;m)(X) $ (h0(`;m) � ��)(X)

=

Z
�(X �X )h0(`;m)(X )dX :

(28)

3.3. Parameter Estimation

From our de�nition of f (equation 20),

@fT (�̂1
t ; Xt)

@�1
=

0
@X

_x
t �t 0 0 0 0 0

0 X _y
t �t 0 0 0 0

0 0 X
_�
t�t 0 0 0

1
A ; (29)

and since �2 is void, so is
Ps

j=1

@[gj (�
2; �Xd

t )w
i;j

t+1
]T

@�2
. So our estimation of 't, from equation 12, becomes

't �
1

N

NX
i=1

2
64
0
B@�

i; _x
t �t 0 0 0 0 0

0 �i; _yt �t 0 0 0 0

0 0 �i;
_�

t �t 0 0 0

1
CA dhT (�it+1)

dX

3
75 : (30)

By our de�nition of h (equation 28), its derivative is

dhT(`;m)

dX
(X) =

�
h0(`;m)(X)

�T
�
d�(X)

dX

=

Z
d�

dX
(X �X )

�
h0(`;m)(X )

�T
dX ;

(31)

where

d�

dX
(X) =

8>>>>>>>>>><
>>>>>>>>>>:

� 2c
(1�kXk2)2 exp(�

1
1�kXk2 )

0
BBBBBBBB@

Xx

Xy

X�

0

0

0

1
CCCCCCCCA

if kXk2 < 1

0 otherwise

: (32)

4. FILTER COMPARISONS

In our comparison test, we take the dinghy size parameter to be s = 2, which means that the dinghy area is 20
pixels. The observation area is a 20 � 20 image. We take the observation noise to be �3:0103dB. We set � to be
[0:5 0:5 0:2], and our initial guess �0 to be [0:45 0:45 0:18].

A graph showing the mean-squared error in position estimate of the two �lters is provided in �gure 1, as well as
graphs showing the RMS error in the estimates of each of the three parameters in �gures 2 { 4. The graphs show
the results of only one run.

5. CONCLUSIONS

The algorithm was able to estimate the signal state extremely well, and we were able to show convergence towards
the correct parameters.

However, we were limited to use a very small observation size due to the time required to calculate At. As a result
of this, we were forced to decrease the size of the dinghy, causing the dinghy to move at sub-pixel levels between
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Figure 1. RMS error in estimated position
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Figure 2. Estimate in �1 | true value is 0.5
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Figure 3. Estimate in �2 | true value is 0.5
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Figure 4. Estimate in �3 | true value is 0.2
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observation times. The e�ect of this is that the parameters have very little e�ect on the observation, giving the
algorithm very little information. As well, the dinghy would leave the observation area after relatively few frames,
which would not allow the algorithm suÆcient time to guess the parameters to a suÆcient degree of accuracy.

We propose to try to increase the speed of calculating At by using a functions of square matrices approach,
which should allow us to use a larger observation size and a larger dinghy size. This would also allow us to run
the simulations for a longer amount of time, giving better estimates for the parameters, while continuing to give us
excellent state estimates.
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