
A Weighted Interacting Particle-based Nonlinear Filter

David J. Ballantyne, Surrey Kim, and Michael A. Kouritzin

MITACS-PINTS,
Department of Mathematics at the University of Alberta,

Edmonton, Canada

ABSTRACT

Particle-based nonlinear filters have proven to be effective and versatile methods for computing approximations to
difficult filtering problems. We introduce a novel hybrid particle method, thought to possess an excellent compromise
between the unadaptive nature of the weighted particle methods and the overly random resampling in classical
interactive particle methods, and compare this new method to our previously introduced refining branching particle
filter. Our experiments involve various fixed numbers of particles and compare computational efficiency of our new
method to the incumbent. The hybrid method is demonstrated to outperform two previous particle filters on our
simulated test problems.

To highlight the flexibility of particle filters, we choose to test our methods on a rectangularly-constrained Markov
signal that does not satisfy a typical stochastic equation but rather a Skorohod, local time formulation. Whereas
normal diffusive behavior occurs in the interior of the rectangular domain, immediate reflections are enforced at the
boundary. The test problems involve a fish signal with boundary reflections and is motivated by the fish farming
industry.
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1. INTRODUCTION

The basic requirements for a particle method are simulation of particles with the same law as the signal and the
resampling of these particles to incorporate observation information effectively. Then, the high-particle limit of an
empirical measure for the resulting particle system can be anticipated to exist and yield the conditional distribution
of the signal at a particular time given the back observations. Beyond these requirements, the precise resampling
procedure affects the capacity to construct path-space estimates and also the computational efficiency and filter
performance for practical implementations with a fixed number of particles. For example, the “cautious” branch-
ing method discussed in Ballantyne, Chan, and Kouritzin1 has been demonstrated to have path-space estimation
capabilities as well superior performance and computational efficiency.

This paper introduces a novel weighted-interacting hybrid particle-based method that accepts the extent of
resampling as a parameter. The test problem for our simulations involves tracking a fish signal with boundary
reflections given a noisy observation sequence. Performance in fidelity and computational complexity of the hybrid
filter is compared against the original interacting particle method of Del Moral and Salut2 and the refining branching
particle method.1

2. REFINING PARTICLE FILTERS

2.1. Background

The classical weighted particle filter does not adapt its particle locations based upon information supplied from the
observations but instead only weights the particles in an observation-dependent manner. Typically, most particle
evolutions would differ significantly from the real signal and in normal operation the method assigns significant
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weights to a very few particles. Consequently, fidelity of performance becomes reliant upon fewer and fewer particles,
while computational resources are used by many insignificant particles.

To illustrate this and future considerations, we let t → Xt be a measurable Markov process estimated through
observations Yk = h(Xtk)+ vk corrupted by an independent noise sequence {vk, k = 1, 2, 3, . . .} that is also indepen-
dent of X . Then, the weight of the jth of N particles ξj at time tk is W1,k(ξj), which is calculated for each particle
based on the sequence of observations Y1, Y2, . . . , Yk. Particles for which W1,k(ξj) is relatively small have virtually
no effect on the approximate conditional probabilities

P (Xtk ∈ A| Y1, . . . , Yk) ≈ 1∑N
j=1 W1,k(ξj)

N∑
j=1

W1,k(ξj)1ξj
tk

∈A.

In the past decade, the importance of resampling particles and adapting them to the observations has become
apparent. We loosely classify a filter as being an adaptive grid filter if the particle locations are modified in a
reasonable manner to include the information from the observations. For example, in the adaptive interactive filter
introduced by Del Moral and Salut,2 the weights need not be stored but rather are used immediately to assign the
particles to new sites. Suppose that the particles just prior to the kth observation are denoted

{
ξ1
tk−, ξ

2
tk−, . . . , ξ

N
tk−

}
.

Then, just after the observation, the ith particle is assigned to the site ξitk− with probability
Wk,k(ξi)∑N

j=1 Wk,k(ξj)
independent

of the other assignments. The approximate conditional probabilities become

P (Xtk ∈ A|Y1, . . . , Yk) ≈ 1
N

N∑
j=1

1ξj
tk

∈A.

Whereas the previous method does not resample, this method adds unnecessary noise in the resampling process,
thereby degrading performance. We can refer the interested reader to Del Moral, Kouritzin, and Miclo3 for a
detailed explanation of this deficiency. Another consequence of this overly random resampling is that there is no
natural association of a particle at time tk with one at time tk−1 and the historical empirical measure satisfies

1
N

N∑
j=1

1(ξj
t1
,ξj

t2
,... ,ξj

tk
)∈A1×A2×···×Ak

N→∞→ P (Xt1 ∈ A1|Y1)P (Xt2 ∈ A2|Y1, Y2) · · ·P (Xtk ∈ Ak|Y1, Y2, . . . , Yk),

meaning that it does not converge to P (Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtk ∈ Ak|Y1, Y2, . . . , Yk).

We loosely define a refining grid filter as an adaptive grid filter such that the historical empirical measure
converges to P (Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtk ∈ Ak|Y1, Y2, . . . , Yk) as the number of particles increases and suggest
that these are the adaptive grid particle filters that do not allow too much randomness in their resampling. Their
performance at calculating approximate conditional probabilities P (Xtk ∈ A|Y1, Y2, . . . , Yk) has been demonstrated
to be superior.1 It is important to note that by this definition a refining grid filter must first be an adaptive grid
filter, since, while the historical empirical measure for the classical weighted particle method discussed first does
converge to P (Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtk ∈ Ak|Y1, Y2, . . . , Yk), it is not refining as it is not adaptive. To rephrase,
we claim that the refining filters are the filters that undertake the correct amount of resampling.

2.2. Refining Branching Method
The large majority of researchers currently implement adaptive, non-refining filters that provide poorer performance
than easily implementable refining filters. The popular weighted, branching, and interactive particle filters all have
refining versions. Indeed, Del Moral, Kouritzin, and Miclo3 introduced the refining version of the popular interacting
method and showed that the performance of the refining variant was superior to the original, merely adaptive, one.
Practitioners can now replace non-refining filters with refining versions.

To our knowledge, the first and hitherto the best refining filter is the refining branching particle filter introduced by
Fleischmann and Kouritzin. (See also Ballantyne, Chan, and Kouritzin1 for a discussion of it.) It provides improved
performance over the previously introduced non-refining branching filter of Crisan and Lyons. The operation of the
refining branching particle filter is as follows:

1. Initialize particles
{
ξ1
0 , ξ

2
0 , . . . , ξ

N
0

}
so that 1

N

∑N
i=1 δξj

tk

is a good approximation to the distribution of X0.
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2. Repeat for k = 1, 2, . . .

(a) Evolve the particles forward independently of each other with a simulation technique designed to mimic
the law of the signal evolution over this time interval. Call the new particles just prior to the next
observation

{
ξ1
tk−, ξ

2
tk−, . . . , ξ

N
tk−

}
.

(b) Repeat for i = 1, 2, . . . , N

i. Collect the kth observation and evaluate ζik =
Wk,k(ξi)N∑

j Wk,k(ξj)−1, which is the desired branching functional
for particle i.

ii. Remove particle i with probability −ζik if ζik < 0.
iii. Otherwise, add

⌊
ζik

⌋
particles at the location ξjtk−. Then, add one more particle at this site with

probability ζik −
⌊
ζik

⌋
.

(c) Introduce more unbiased particle control to bring the number of particles back to N .

(d) Relabel the resulting particles
{
ξ1
tk
, ξ2
tk
, . . . , ξNtk

}
.

The conditional distributions for this algorithm are calculated by

P (Xtk ∈ A|Y1, . . . , Yk) ≈ 1
N

N∑
j=1

1ξj
tk

∈A.

We did not clutter this description of the algorithm with all practical programming efficiencies. The historical
estimates come extremely easily, bearing out our refining grid claim: all we have to do is keep the ancestral locations
of each current particle. Then, in constructing the historical conditional distribution estimates, we weight earlier
particle locations that are ancestors to several current particles by an integer multiple equal to the number of current
particles of which it is an ancestor. Notice in this algorithm that most particles will neither be removed nor branched
since values of ζik close to 0 are common with any appreciable amount of noise in the observations.

2.3. New Hybrid Method

Whereas to make the original interacting or branching particle filters refining we had to reduce the amount of
resampling, to make the weighted particle system refining we must introduce an effective resampling procedure. We
describe this in the current subsection and call the result the weighted-interacting hybrid method. However, it could
just as well have been called the refining weighted filter.

A particle in the hybrid method is updated as a simple weighted particle
(
ξitk ,W1,k(ξi)

)
until such time its weight

differs significantly from the majority of the particle weights. After each observation extremely weighted particles
are resampled so that the range of weights (expressed as a ratio) is less than a specified parameter ρ > 1. There are
a number of technical implementation details that can be employed to make this method very efficient.

3. FISH TRACKING PROBLEM

Motivated by the fish-farming industry, the test problem is the tracking of a single fish in a tank with boundary
reflections.

3.1. Fish Motion Model

For simplicity we choose a 2-dimensional fish defined by the following Skorohod SDE (stochastic differential equation):

dXt = −α
(
Xt − L

2

)
dt+ βdvt + χ∂D(Xt)γ(Xt)dξt (1)

where X0 is a random variable, v is a standard Brownian motion in R
2, L = (L1, L2)T is the size of the tank,

γi(x) =
∑2

j=1 aijUj(x), i = 1, 2 is the conormal vector field with a11 = a22 = β2, a12 = a21 = 0, and ξ is the local
time for X at the boundary. In our simulations, we take α and β to be parameters and simplify our example by
selecting L1 = L2 = 1.
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3.2. Fish Observation Model

The observation process consists of a discrete sequence of images, arriving every ε = 1.0 time units at observations
times {tk}∞k=1, each observation being a two-dimensional raster {Y (i,j)

tk }R,Ri,j=1,1. Y
(i,j)
tk is the (i, j) component of a

raster depiction of the observation. We let h(i,j)(·) be the indicator function

h(i,j)(x1, x2) = 1[ x1R
L1

− 3
2 ,

x1R
L1

+ 3
2 ]×[

x2R
L2

− 3
2 ,

x2R
L2

+ 3
2 ]
(i, j) (2)

representing a 3 × 3 pixel square image of the fish and let V (i,j)
k be pixel-by-pixel zero-mean independent Gaussian

noise. Then, an observation at time tk is constructed by superimposing the square image of the signal onto the raster
and adding noise according to the formula

Y
(i,j)
tk

= h(i,j)(Xtk) + V
(i,j)
k . (3)

For our simulations, the size of the length and width of the observation rasters, R, is 128 and the standard deviation
of V (i,j)

k is set as a parameter. Observations are not preprocessed; the information from the raster pixels is used
directly in the filter algorithms.

3.3. Objective

The problem is to estimate the conditional distribution of the fish position based solely on the noisy observations
and the initial conditions X0, that is,

P (Xtk ∈ dx|σ{
Y

(i,j)
tl , 1 ≤ l ≤ k, 1 ≤ i, j ≤ 128

}
). (4)

4. HYBRID FILTER TECHNIQUE

4.1. Update Algorithm

The implementation of the hybrid method has an important computer science component. Considerations such as
the data structure used can greatly reflect filter fidelity and efficiency. Simulations were developed and run on a
DEC-ALPHA 3000/700 255 MHz system. The adaptive interacting and refining branching algorithms have been
described previously. The basic refining hybrid algorithm proceeds as follows:

1. Initialize particles
{
ξ1
0 , ξ

2
0 , . . . , ξ

N
0

}
uniformly over the domain [0, L1]× [0, L2], thus yielding 1

N

∑N
i=1 δξj

tk

as a

good approximation to the assumed uniform distribution of X0. Set W̃0(ξj) = 1, ∀j = 1, . . . , N .
2. Repeat for k = 1, 2, . . .

(a) Evolve all particles over time interval ε using, for example, Euler approximations. Call the new particles
just prior to an observation Ytk

{
ξ1
tk−, ξ

2
tk−, . . . , ξ

N
tk−

}
.

(b) Upon receiving the kth observation, calculate the weight for all
{
ξ1
tk−, ξ

2
tk−, . . . , ξ

N
tk−

}
according to

W̃k(ξj) =Wk,k(ξj)W̃k−1(ξj).

(c) Resample ξi until W̃k(ξi) < ρW̃k(ξj).

(d) Relabel the resulting particles
{
ξ1
tk
, ξ2
tk
, . . . , ξNtk

}
.

(e) The conditional distribution for the fish location is approximated by

P (Xtk ∈ A|Y1, . . . , Yk) ≈ 1∑N
j=1 W̃k(ξj)

N∑
j=1

W̃k(ξj)1ξj
tk

∈A

.

(f) The position estimate for the fish is calculated as the conditional expectation

E[Xtk | Ytl , 1 ≤ l ≤ k] ≈ 1∑ N
j=1 W̃k(ξj)

∑N
j=1 W̃k(ξj)ξ

j
tk .
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4.2. Parameters N and ρ

The hybrid filter, in concordance with other particle filters, has a parameterN which determines the initial number of
particles. Unlike the case for the branching filter algorithm, the number of particles in the hybrid filter is inherently
static, thus eliminating excess computation for control of the total number of particles at the end of each update
phase. A key feature of the hybrid method is its parameter ρ. At one extreme, choosing ρ = 1, the method mimics the
interacting method, thus overly resampling. The other extreme, ρ =∞, in which no resampling is done, results in a
filtering procedure that does not resample (i.e. the classical weighted method). This parameter allows customization
of the extent of resampling to a specific problem. An empirical solution for the optimal selection of ρ is still under
investigation. To provide some intuition regarding values for ρ that are reasonable for various problem parameters,
we examine five different fish tracking scenarios that differ in the initial number of particles, observation noise, and
the chaotic nature of the signal motion.

5. FILTER COMPARISONS

5.1. The Simulation

A graphic representation of the simulations has been constructed and is depicted in Fig. 1. This is one frame of an
animation that displays the signal evolution, observation sequence, and filter output. The top left panel indicates the
simulated fish position. The upper middle panel is the observation raster as it is presented to the filter algorithms.
The bottom three panels each display, on a heat scale, a current filter estimate of the conditional distribution of the
signal position, one for each of the three particle-based filter methods applied in these trials. The refining hybrid
filter estimate is presented on the left, the refining branching is in the middle, and the adaptive interacting estimate
is on the right.

5.2. Problem Scenarios

Five fish tracking scenarios are simulated with the following parameters:

Problem Scenario α β Std. of V (i,j) N ρ

A 0.0005 0.0125 1.0 10000 1650
B 0.0005 0.0125 1.0 6000 1950
C 0.0005 0.0125 1.25 6000 2400
D 0.00005 0.0200 1.0 50000 2250
E 0.00005 0.0200 1.0 10000 2600

where α and β are signal motion model parameters (Sect. 3.1), Std. of V (i,j) is the standard deviation of the
observation noise on a pixel-by-pixel basis (Sect. 3.2), and N and ρ correspond to filter parameters: the initial
number of particles and the extent of resampling in the hybrid filter, respectively (Sect. 4.2). Reasonable values of
ρ for the hybrid filter were not calculated but instead experimentally determined and are not optimized. Smaller
values for α and larger values for β increase the difficulty of tracking the signal by making the fish movement more
chaotic. Simulations are repeated for 500 trials with ε = 1 and total simulation time = 100, where ε is the fixed time
step between observations. Note that the fish signal has an initial position that is randomly and uniformly selected
from the domain [0, L1] × [0, L2], and that the initial location of each particle is uniformly distributed. Because of
this, each of the particle filters begins with an estimated position of the fish near the center of the observation area,
and thus there is an average mean square error at the start of the simulation that all of the filters share.

5.3. Comparison Data

Graphs of the average mean square error (MSE) in the position estimates over the simulated time for 500 trials are
provided in Figures 2 to 6 for each of the five problem scenarios (Sect. 5.2).

Variance in the approximated distribution of the interacting filter is less consistent after a few observations than
the variance of the branching and the hybrid filter. This is due to overly extensive resampling during the update
phase of the interacting filter that continues after the target has been found. Not only do the two refining filters
have a more consistent average distribution variance, but on average these variances are smaller. For example, the
average distribution variance for problem scenario D is graphed in Fig. 9. Note that for the simple 2-dimensional
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Figure 1. Sample frame from a fish problem animation.

fish signal in moderate observation noise, all three filtering algorithms, being at least adaptive, are readily able to
localize the target. Therefore, the comparisons are not as dramatic as they would otherwise be. We expect that if
the signal is defined in a higher dimensional domain and exhibits different states (for example, if fish have distinct
swimming and eating states), the results will further favor the hybrid and branching methods. The reason for this
is that while the refining methods undertake a more “cautious” particle adjustment, the merely adaptive interacting
method will often eventually cluster all of its particles to suspected target positions, and thereby, with a practical
finite number of particles, will have made erroneous particle adjustments that hamper long-term adaptation.

For scenarios A, B, C, and E the computation time for the hybrid filter is found to be approximately 12% less than
that of the branching filter. The interacting filter has the fastest performance, outpacing the hybrid filter by more
than 10% (Fig. 7). With ρ = 1950, the hybrid method resamples approximately three fifth of the particles at each
observation. In problem scenario D the intial number of particles is 50000, and the hybrid filter ρ parameter is set
relatively high, thus resampling approximately only two fifth of the particles at each observation. The computation
time of the hybrid method is approximately 21% less than that of the branching method and 1% less than that of the
interacting method. This gain in performance is due to the increased particle number and increased ρ value (Fig. 8).
Following are the results of the MSE comparisons:

• Problem scenario A:
In this, the easiest problem scenario, we find that the hybrid filter MSE is approximately 35% less than that
of the other two filters.
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• Problem scenarios B & C:
For the next two scenarios the number of particles is decreased to 6000 and the observation noise raised (in
scenario C), thus making the tracking problem more dificult. All three filters perform poorer in comparison to
scenario A. With the hybrid filter ρ value adjusted to 1950 in scenario B, and 2400 in scenario C, the hybrid
filter marginally outperforms the branching filter by approximately 7%. Both hybrid and branching filters have
approximately 23% lower MSE than the interacting filter.

• Problem scenario D:
With the signal parameters α modified to one tenth of the original value and β modified from 0.0125 to 0.02,
the resulting fish signal evolves much more chaotically over time. The hybrid filter outperforms the other two
filters by approximately 20% in the fidelity of its estimates.

• Problem scenario E:
In the final problem scenario, the same parameters are used as in scenario D but with five times fewer particles.
All three filters have trouble tracking the chaotic fish, hence the lack of a downward drift in MSE over time
(Fig. 5). The hybrid filter, though, outperforms the other filters by approximately 25%.

Figure 2. Average mean square error in fish position estimate for problem scenario A.
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Figure 3. Average mean square error in fish position estimate for problem scenario B.

Figure 4. Average mean square error in fish position estimate for problem scenario C.
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Figure 5. Average mean square error in fish position estimate for problem scenario D.

Figure 6. Average mean square error in fish position estimate for problem scenario E.
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Figure 7. Average computation time for problem scenario B.

Figure 8. Average computation time for problem scenario D.
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Figure 9. Average variance in the distribution for problem scenario D.

6. CONCLUSIONS

The weighted-interacting hybrid method exhibits superior performance in all five problem scenarios of this simulation
for the selected ρ values. The parameter ρ is adjusted according to the amount of resampling desired. For problem
scenarios with greater observation noise a higher ρ was considered. In our experiments, the diffusiveness of the fish
signal motion was varied and corresponding adjustments to ρ led to superior hybrid filter performance in terms
of both computing time and track fidelity. We are confident that for signals in higher dimensions and with more
complicated structure, the capacity to customize the hybrid filter to the problem will lead to results that are similarly
dominating. The desirable amount of resampling may even be dynamic during the filtering process (for example, a
different resampling focus may be preferred for pre-localization and post-localization segments).

Whereas the refining branching method relies on deletions and duplications for particle resampling, thus requiring
extra computations to control the randomly varying particle count, the hybrid method has an inherently static number
of particles and therefore performs observation updates faster.

The advantage of refining grid particle-based nonlinear filters over the larger containing class of adaptive filters
is that refining filters undertake a reduced, yet still asymptotically optimal amount of resampling. The introduced
weighted-interacting hybrid or refining weighted filter is currently the best performing refining filter on the set of
problems described in this paper and has outperformed other particle filters on all other problems assessed in our
research.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support and sponsorship of Lockheed Martin Naval Electronics and Surveil-
lance Systems, Lockheed Martin Canada, the Pacific Institute for the Mathematical Sciences, the Natural Science
and Engineering Research Council (NSERC) through the Prediction in Interacting Systems (PINTS) centre of the
Mathematics of Information Technology and Complex Systems (MITACS) network of centres of excellence, and the
University of Alberta.

Proc. SPIE Vol. 4729246

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



REFERENCES
1. D. Ballantyne, H. Chan, and M. Kouritzin, “A novel branching particle method for tracking,” Proceedings of
SPIE, Signal and Data Processing of Small Targets 2000 4048, pp. 277–287, 2000.

2. P. Del Moral and G. Salut, “Non-linear filtering using Monte Carlo particle methods,” C.R. Acad. Sci. Paris
320, Série I, pp. 1147–1152, 1995.

3. P. Del Moral, M. Kouritzin, and L. Miclo, “On a class of discrete generation interacting particle systems,”
Electronic Journal of Probability paper No. 16, pp. 1–20, 2001.

Proc. SPIE Vol. 4729 247

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms


