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Herein, an averaging theory for the solutions to Cauchy initial value problems of
arbitrary order, =-dependent parabolic partial differential equations is developed.
Indeed, by directly developing bounds between the derivatives of the fundamental
solution to such an equation and derivatives of the fundamental solution of an
``averaged'' parabolic equation, we bring forth a novel approach to comparing
x-derivatives of

�t u=(x, t)= :
|k| �2p

Ak (x, t�=) �k
x u=(x, t)+ f =(x, t), u=(x, 0)=.=(x)

on Rd_[0, T] to like derivatives of

�t u(x, t)= :
|k|�2p

A0
k (x) �k

x u=(x, t)+ f (x, t), u(x)=.(x)

(as = � 0) under general regularity conditions and our basic hypothesis that

"|
t

0

Ak(x, s�=)&A0
k (x) ds" ww�= � 0 0

for each x, t (i.e., pointwise). The flexibility afforded by studing fundamental vis-a� -
vis specific solutions of these equations not only permits =-dependent Cauchy data
and provides a unified method of treating all x-derivatives of u= up to order 2p&1
but also proves an invaluable tool when considering related problems of stochastic
averaging. Our development was motivated by and retains a strong resemblance to
the classical theory of parabolic partial differential equations. However, it will turn
out that the classical conditions under which fundamental solutions are known to
exist are somewhat unsuitable for our purposes and a modified set of conditions
must be used. � 1997 Academic Press
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1. INTRODUCTION

Apparently, the method of averaging to compare a non-linear ordinary
differential equation

d
d{

z=({)==F(z= ({), {) subject to z=(0)=x0 (1)

for small =>0 over intervals like [0, T�=] or, equivalently, the time-changed
equation

d
dt

x=(t)=F(x=(t), t�=) subject to x=(0)=x0 (2)

over compact intervals [0, T], with a time-homogeneous differential equation

d
dt

x0(t)=F� (x0(t)) subject to x0(0)=x0 . (3)

was first used in celestial mechanics centuries ago. The primary additional
regularity justifying such a comparison as = � 0 is the ability to ``average
out'' the t-dependence on the right hand side of (1) and the definition

F� (x). lim
t � �

1
t |

t

0
F(x, s) ds \x # Rd. (4)

However, precise conditions under which x= converges uniformly over
[0, T] to x0 were not established until the works of Bogoliubov (see [4]),
Gikhman [7], and Besjes [3]. Subsequently, averaging principles were
extended (using probabilistic methods) by Khas'minskii [10] to second
order parabolic partial differential equations (pdes) with the form

�t u=(x, t)= :
d

i, j=1

aij \x,
t
=+ �xi xj u

=(x, t)+ :
d

i=1

bi \x,
t
=+ �xi u

=(x, t)

+c \x,
t
=+ u=(x, t)+d \x,

t
=+ . (5)

More recently, Bensoussan et al. [2], Henry [8], and Zhikov et al. [13]
developed other averaging principles for parabolic pdes and Watanabe
[12] initiated investigations of stochastic averaging principles for second
order parabolic equations with random coefficients.

In the present note, we extend the theory of (deterministic) averaging for
parabolic pdes by developing a theory directly for the derivatives of the
fundamental solution of arbitrary-order parabolic equations. For concreteness,
we will use the multi-index notation of L. Schwartz (see Section 2 to follow)
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and consider the CN-valued system of parabolic equations (for each =>0)

�t u=(x, t)= :
|k|�2p

Ak (x, t�=) �k
x u=(x, t)+ f =(x, t)

subject to u=(x, 0)=.=(x) (6)

with the limit equation

�t u(x, t)= :
|k|�2p

A0
k (x) �k

x u(x, t)+ f (x, t)

subject to u(x, 0)=.(x). (7)

Then, under general regularity conditions on the coefficients (see Theorem A
of Section 2) fundamental solutions 1= and 1 exist for (6) respectively (7),
and, furthermore,

u=(x, t).|
Rd

1=(x, t; !, 0) .=(!) d!&|
t

0
|

R d
1=(x, t; !, {) f =(!, {) d! d{ (8)

and

u(x, t).|
R d

1(x, t; !, 0) .(!) d!&|
t

0
|

R d
1(x, t; !, {) f (!, {) d! d{ (9)

are continuous solutions to respectively (6) and (7). By bounding the dif-
ference

�k
x [1 =(x, t; !, {)&1(x, t; !, {)] \x, ! # Rd,

0�{�t�1, =>0, |k|<2p; (10)

and making use of classical bounds for �k
x 1=, |k|<2p, =>0 (see

Theorem A of Section 2); our approach allows one to compare readily

�k
x u=(x, t)&�k

x u(x, t)

=|
R d

�k
x 1=(x, t; !, 0)[.=(!)&.(!)] d!

+|
R d

�k
x[1 =(x, t; !, 0)&1(x, t; !, 0)] .(!) d!

&|
t

0
|

R d
�k

x 1=(x, t; !, {)[ f =(!, {)& f (!, {)] d! d{

&|
t

0
|

R d
�k

x [1=(x, t; !, {)&1(x, t; !, {)] f (!, {) d! d{ (11)
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simultaneously for all |k|<2p without any apriori constraints on ., .=, f,
f =. Moreover, in the stochastic setting Ak (x, t�=) whence 1 =(x, t; !, {) will
not only be =-dependent but also random. However, A0

k (x) and 1(x, t; !, {)
will remain non-random and the bounds on (10) applied almost surely will
permit replacing the random =-dependent kernel 1=(x, t; !, {) with the non-
random, =-homogeneous, averaged kernel 1(x, t; !, {)=1(x, t&{, !) in
problems of stochastic averaging. This approach has been employed in
Dawson and Kouritzin [5].

In many applications the pdes of interest will not immediately have the
desired form but rather will satisfy equations like

�{ v=(x, {)== :
|k|�2p

Ak (x, {) �k
x v=(x, {)+g=(x, {)

subject to v=(x, 0)=.=(x). (12)

However, (6) can easily be recovered via the substitutions t={=, u=(x, t).
v=(x, t�=) and f =(x, t).(1�=) g=(x, t�=). Alternatively, in other applications
the original pdes may have higher order derivatives in t. However, by
introducing new variables (see e.g. pp. 238�9 of Friedman [6]) these equa-
tions can often be reduced to the case considered here.

Our proof will utilize several well-known bounds for fundamental solu-
tions, introduce supplementary equations where the x-dependence of the
coefficients in (6) and (7) is replaced with an auxiliary parameter, and
adhere to the long-established parametrix method. Therefore, our develop-
ment will retain many similarities to the classical literature for parabolic
pdes. On the other hand, our proof is not short of novelties. For instance,
through modest use of analysis and pde theory we reduce our problem to
that of establishing convergence for certain objects (defined in (38) and
(47) of Subsection 3.1) as = � 0 on spaces of continuous functions with
unbounded domain. Relative compactness for these objects is then estab-
lished by imposing only a slightly strengthened version of the regularity
conditions required for existence of our fundamental solutions to (6) and
(7). It is only then that we will require our basic hypothesis that

"|
t

0
Ak \y,

=
s+&A0

k (y) ds"� 0 as = � 0, (13)

for each y # Rd and t # [0, T] (i.e., pointwise) to show that the only
possible limit for either object in (38) or (47) is 0. Moreover, the classical
conditions for existence of fundamental solutions to (6) (for each =) which
are uniformly bounded in = and thereby useful for our problem would
require an assumption like:
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(A) For each |k|=2p, (the principle coefficient) Ak (x, t�=) is con-
tinuous in t uniformly with respect to (x, t, =) # Rd_[0, �)_(0, 1].

Obviously, this condition would not allow our principle coefficients
[Ak] |k|=2p to depend on t or = and our work would result in a rather unin-
teresting averaging theory. Therefore, we eschew this condition entirely and
instead show (in Lemma 5 of Subsection 3.4) that the classical theory still
holds without Assumption (A) if one imposes a slightly stronger uniform-
parabolic-type condition than is customary.

Our note is organized as follows: Section 2 contains the notation and
conditions required to state and prove our result as well as the result itself
and some motivation for its use. The proof of this result is first sketched in
Subsection 3.1 and then proved in Subsections 3.2 and 3.3. To avoid com-
plicating the proof unnecessarily several subsidiary lemmas have been
placed in Subsection 3.4. The reader may find it beneficial to keep a separate
copy of Subsection 3.1 handy while reading Subsections 3.2, 3.3, and 3.4.

2. NOTATION, CONDITIONS, AND RESULT

Throughout this note; p, N, and d are fixed positive integers; and | } |
denotes absolute value as well as modulus. For technical reasons it will be
most convenient to define our norms on CN and Cd via

|`|._ :
N

j=1

|` j |
r&

1�r

and |x|._ :
d

j=1

|x j |
r&

1�r

, r=
2p

2p&1
(14)

for all ` # CN and x # Cd. Then, & } & will be used for the | } | &induced
norm for CN_N matrices. Moreover, for vectors k=(k1 , k2 , ..., kd ) of non-
negative integers, we define

|k|.k1+k2+ } } } +kd (15)

and let ``� |k|�2p'' denote the summation over all possible d-tuples k of non-
negative integers such that |k|�2p. (It will always be clear from the
context whether | } | is being used as absolute value, modulus, norm in CN,
norm in Cd, or the sum of non-negative integers). Next, letting ei.
(0, ..., 0, 1, 0, ..., 0)T # Rd with the 1 in the i th row, and k be as above, we
define

�k
x.�k1

x1
�k2

x2
} } } �kd

xd
\ x # Rd (16)

dx.�x1
e1+�x2

e2+ } } } +�xd ed \ x # Rd. (17)
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Likewise, for any vector ` # Cd and d-tuple of non-negative integers k, we
define

`k.(`1)k1 (`2)k2 } } } (`N)kd. (18)

Finally, Re A and Im A will denote the real and imaginary parts of a com-
plex matrix A, a 6b and a 7b will be used to denote the maximum respec-
tively minimum of two real numbers a, b, and am, n Rn, m bm, n will imply
that there is a constant c>0 such that |am, n |�c |bm, n | for all n, m. The
latest notation is a natural extension to the Vinogradov symbol.

The following Conditions will be assumed throughout this note:

(C1) The system (6) is uniformly parabolic in the sense that

&sup
t�0

sup
x # Rd

max
j

sup
|!|=1

* j (!; x, t)>0, (19)

where [* j (!; x, t)]2N
j=1 are the (real) roots of the polynomial

det \ :
|k| =2p _

Re[Ak (x, t)+AT
k (x, t)]

Im[Ak (x, t)&AT
k (x, t)]

&Im[Ak (x, t)&AT
k(x, t)]

Re[Ak (x, t)+AT
k(x, t)] &

_(i!)k&*I2N+ (20)

for all !, x # Rd, and t�0, I2N being the identity matrix in R2N_2N.

(C2) (7) is uniformly parabolic in the sense that

& sup
x # R d

max
l

sup
|!|=1

Re[*0
l (!; x)]>0, (21)

where [*0
l (!; x)]N

l=1 are the roots of the polynomial

det \ :
|k|=2p

A0
k (x)(i!)k&*IN+ (22)

for all !, x # Rd, IN being the identity matrix in CN_N.

(C3) For each |k|�2p: (i) Ak is continuous in t over [0, �), and (ii)
Ak and A0

k are uniformly bounded in Rd_[0, �) respectively Rd.

(C4) For each |k|�2p, �xi Ak and �xi A
0
k exist and are uniformly

bounded in Rd_[0, �) respectively Rd for i=1, ..., d.

(C5) When |k|=2p, �xi Ak and �xi A
0
k are Ho� lder continuous in x with

exponent 0<��1 uniformly in Rd_[0, �) respectively Rd for i=1, ..., d.
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The following theorem is a variation on Theorems 2 and 3 in Chapter 9
of Friedman [6]. It can be proved by combining Lemma 5 of Subsec-
tion 3.4 herein with the proofs of said theorems on pp. 251�257 of [6].
Actually, this theorem would still hold under a weaker version of (C4).

Theorem A. Suppose Regularity Conditions (C1�C4) hold. Then, there
exist ( forward ) fundamental solutions 1= and 1 to the equations

�t z=(x, t)= :
|k|�2p

Ak\x,
t
=+ �k

x z=(x, t)

and

�t z(x, t)= :
|k|�2p

A0
k (x) �k

x z(x, t). (23)

Moreover, these fundamental solutions satisfy

&�b
x 1=(x, t; !, {)& 6 &�b

x 1(x, t; !, {)&

�
C

|t&{| (d+|b| )�2p exp _&c } |x&!| 2p

t&{ }
1�(2p&1)

& (24)

with constants C, c>0 (depending only on the constants in (C1�C4) and, in
particular, independent of =>0) for all |b|<2p, = # (0, 1], 0�{�t�T and
x, ! # Rd. Finally, suppose f =, f are continuous, bounded functions on
Rd_[0, T] and .=, . are continuous, bounded functions on Rd. Then, there
exist continuous, bounded solutions to (6) and (7) on Rd_[0, T] which are
given by

u=(x, t).|
Rd

1=(x, t; !, 0) .=(!) d!&|
t

0
|

R d
1=(x, t; !, {) f =(!, {) d! d{ (25)

u(x, t).|
Rd

1(x, t; !, 0) .(!) d!&|
t

0
|

R d
1(x, t; !, {) f (!, {) d! d{. (26)

We now state the main result in this note which compliments Theorem A
and is an averaging principle for derivatives of such fundamental solutions.
The phrase ``slightly strengthened version of the regularity conditions'' in
the second last paragraph of our introduction refers to the fact that
whereas Theorem A holds without (C5) and with (C4) replaced by Ho� lder
continuity, Theorem 1 below requires (C4) and (C5) as stated above.
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Theorem 1. Suppose the Regularity Conditions (C1�C5) hold and for
each y # Rd and each t # (0, T] we have that

"|
t

0
Ak \y,

s
=+&A0

k (y) ds"� 0 as = � 0. (27)

Then, for any 0</, &<1 it follows that there exists a positive constant
c~ =c~ /, & and a R-valued function #(})=#/, & (}) satisfying lim= � 0 #(=)=0 such
that

&�b
x [1 =(x, t; !, {)&1(x, t; !, {)]&

�
#(=) |1+|!| 2 | &

(t&{)(d+|b|+/)�2p exp _&c~ } |x&!| 2p

t&{ }
1�(2p&1)

& (28)

for all 0�|b|<2p, = # (0, 1], 0�{�t�T and x, ! # Rd, where 1= and 1
are the fundamental solutions introduced in Theorem A above.

Remark 1. By comparing the right hand side of (28) to that of (24),
one can see that they are of the same form with the exception that (28) has
the extra multiplicative term

#(=) |1+|!| 2 | & (t&{)&/�2p . (29)

Whereas the first factor in (29) establishes that �b
x 1= will approach �b

x 1 as
= � 0 the remaining two factors are required to allow a uniform result over
all 0�{�t�T and x, ! # Rd. Indeed, it can be seen from the proof in the
sequel that these factors can be replaced by other functions that grow even
slower as |!| � � and t&{ � 0. The only motivation for the present
factors was to simplify the right hand side of (28).

Remark 2. Of course, it is sufficient by continuity for (27) to hold in a
dense subset of Rd_[0, T].

As we mentioned in the introduction, Theorem 1 can immediately be
used to compare �k

x u= to �k
x u whereas several additional assumptions

would be required to use, for example, Exercise 1 and Theorem 7.5.2
pp. 218�221 of Henry [8]. Most critically; k, N, d, and p would have to be
respectively 0, 1, 1, and 1; f = and f would both have to be 0; the principle
coefficients could not depend on =; and the limits in (27) would have to be
replaced by more restrictive uniform limits. In fact, there are several other
differences between Henry's work and ours. However, the four points
mentioned previously are enough to distinguish our work from all other
work on averaging for parabolic equations.
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Both equivalent formulations (6) and (12) for our original system of
parabolic equations suggest that our results provide a means to find an
appropriate solution to a more complicated partial differential equation via
a simpler one. For example, our condition (27) is equivalent to

lim
T � �

1
T |

T

0
Ak (y, {) d{=A0

k (y) \y # Rd (30)

and our coefficients form Krylov�Bogoliubov�Mitropolsky vector fields (see
Sanders and Verhulst [11]). Hence, �k

x v=(x, {) of our system (12) with
almost-periodic coefficients (see p. 55 of [11]) can be approximated
uniformly by �k

x u(x, ={) over Rd_[0, T=&1]. However, probing this appli-
cation further and investigating a simple R-valued Itô stochastic differential
equation

dX =
t=m(X =

t , !t�=) dt+_(!t�=) dWt , X =
0=\, (31)

where [Wt , t�0] is a standard Brownian motion, m: R2 � R, _: R � R
are non-linear functions and [!t , t�0] is a (non-anticipative) stochastic
process, we find under certain conditions that the law of Xt given _[!s�= ,
0�s�t] has a density

�t p=
X | ! (x, t)= 1

2_2(!t�=) �2
x p=

X | ! (x, t)&m(x, !t�=) �x p=
X | ! (x, t)

&�x m(x, !t�=) p=
X | ! (x, t), (32)

p=
X | ! (x, 0)=p\ (x).

Thus, our results also provide a means of approximating the law of a con-
trolled diffusion (31) under the mild ergodic conditions that there exist a0,
m0, and b0 such that

|
t

0
_2(!{�=)&a0 d{, |

t

0
m(x, !{�=)&m0(x) d{,

(33)

|
t

0
�x m(x, !{�=)&b0(x) d{ ww�

= � 0
0

pointwise for all t, x in a dense set of [0, T]_R. This idea can, of course,
be extended to more complicated, multi-dimensional diffusions and recent
work (see e.g. Hochberg and Orsingher [9]) connecting densities of certain
stochastic processes with higher order linear parabolic equations suggests
that similar applications of our results with higher order parabolic equa-
tions may be in the offing. Still, our personal motivation for our results was
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applications in stochastic partial differential equations and the stochastic
averaging of parabolic equations with random coefficients for which we
refer the reader to Dawson and Kouritzin [5].

3. PROOF OF THEOREM 1

Inasmuch as the value of T does not change the following proof in any
significant way, we will take T=1 in the sequel. Moreover, to ease the
notation in the following proof we define

A� k (y, s).Ak (y, s)&A0
k (y), q.2p, (34)

and (cf. Conditions (C1�C2))

$.& 1
2[sup

t�0

sup
x # Rd

max
j, l

sup
|!|=1

[* j (!; x, t) 6 Re[*0
l (!; x)]]]>0. (35)

3.1. Sketch of Proof.

Our proof relies heavily on the classical theory summarized in Chap-
ters 1 and 9 of Friedman [6]. Indeed, we will follow the general plan out-
lined there by first, in Subsection 3.2, using Fourier transform techniques to
establish bounds for the fundamental solutions of

�t v=(x, t, y)= :
|k|=q

Ak \y,
s
=+ �k

x v=(x, t, y) (36)

for all y # Rd. To make our presentation manifest, suppose Z= and Z
denote the (forward) fundamental solutions to (36) and

�t v(x, t, y)= :
|k|=q

A0
k (y) �k

x v(x, t, y) (37)

and V= respectively V denote the Fourier transforms of Z = and Z. Further-
more, suppose *1>0 is a constant whose value will be fixed later and
$1 # (0, $) with $ as in (35). Then, Subsection 3.2 follows the following
outline:

(i) Using only the Regularity Conditions (C1�5), show that (t, {; y, `)
�,=(t, {; y, `), =>0 are appropriately bounded and equicontinuous, where

,=(t, {; y, `).�=(t, {; y, `)(1+|y| 2)&& (38)

�=(t, {; y, `).'=(t, {; y, `) exp[[$1 |:|q&*1 |;|q](t&{)](t&{)/&1 (39)
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and

'=(t, {; y, `).|
t

{
V =(t, s; y, `) :

|k|=q

A� k \y,
s
=+ V(s, {; y, `) ds (40)

for all =>0, 0�{�t�1, `.:+i; # Cd and y # Rd.

(ii) Use (i) to show that [,=]=>0 is relatively compact in a space of
continuous, bounded CN_N-valued functions with unbounded domain. Since
this space will be complete the argument reduces to showing [,=]=>0 is
totally bounded which is done by showing restrictions onto compact sets are
totally bounded and then convolving a finite ('�4)-net for such restrictions with
``nice'' kernels to produce an appropriate net for the unrestricted functions.

(iii) Next, our main hypothesis (27) is used to show that the set of
limit points (as = � 0) for ,= is the single point 0. The convergence of ,= to
0 implied by (ii) and (iii) will yield a desirable bound on '=(t, {; y, `).

(iv) Then, a variation-of-constants-based argument is used to show
that V=&V is bounded in terms of '= from which it follows by taking
inverse Fourier transforms and applying Cauchy's integral theorem that for
any d-vector of non-negative integers b there exists a constant c=cb, /, &>0
and a function #1(})=#1, b, /, &(}) independent of (x, t, !, {, y) and satisfying
lim= � 0 #1(=)=0 such that

&�b
x [Z=(x&!, t, y, {)&Z(x&!, t, y, {)]&

�
#1(=)

(t&{)(d+|b|+/)�q exp _&c } |x&!|q

t&{ }
1�(q&1)

& (1+|y| 2)& (41)

for all = # (0, 1], x, y, ! # Rd, and 0�{�t�1.
In Subsection 3.3, we also follow the classical theory somewhat by using

the parametrix method to develop our desired bounds between the
fundamental solutions of (6) and (7).

(v) Initially, we follow the program outlined in (i�iii) above.
However, we must redefine ,= which requires some notation. First, we fix
constants c, C>0 such that (41) with 0�|b|�q as well as the classical-
type bounds in Lemma 5(i�iv) of Subsection 3.4 hold. Secondly, we fix
vectors of non-negative integers m, k such that 0�|m|�q, 0�|k|�q,
make the simplifying definitions

A0
m (x, y).A0

m (x)&A0
m (y), A� k \y, !,

s
=+.A� k \y,

s
=+&A� k \!,

s
=+ ,

(42)

Z� (x, t; y, s).Z(x&y, t, y, s), Z� =(x, t; y, s).Z=(x&y, t, y, s) (43)
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(with Z and Z= as in the previous paragraph and also defined in (83) and
(82) of Subsection 3.2), and define '=='=

m, k (x, t; y, s; !, {) by

'=.

�m
x Z� (x, t; y, s) A� k \y,

s
=+ �k

y Z� (y, s; !, {)

(44)

|m|, |k|<q

�m
x Z� (x, t; y, s) A� k \y, !,

s
=+ �k

y Z� (y, s; !, {)

|m|<|k|=q

A0
m (x, y) �m

x Z� (x, t; y, s) A� k \y,
s
=+ �k

y Z� (y, s; !, {)

|k|<|m|=q

A0
m (x, y) �m

x Z� (x, t; y, s) A� k \y, !,
s
=+ �k

y Z� (y, s; !, {)

|m|, |k|=q.

Furthermore, for all x, y, ! # Rd and 0�{�s�t we define Y ==
Y=

m, k (x, t; y, s; !, {) by

Y=.'=
m, k (x, t; y, s; !, {) exp {c1 } |x&!|q

t&{ }
1�(q&1)

= (t&{) (d+|m| 7 (q&�))�q ,

(45)

where � is as in Condition (C5) and 0<c1<c is a constant, let

�=(x, t; !, {)=|
({+t)�2

{
|

R d
Y=(x, t; y, s; !, {) dy ds

+|
t

({+t)�2
|

R d
Y=(x, t; y, s; !, {) dy ds

.�=
1(x, t; !, {)+�=

2(x, t; !, {), (46)

and define

,=
m, k (x, t; !, {).�=

m, k (x, t; !, {)(1+|!| 2)&&. (47)

Then, using only basic vector calculus, we show ,=
m, k converges to 0 in a

space of continuous, bounded functions with unbounded domain according
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to the program in (i�iii) above and conclude that there exists a function
#2(}) independent of (x, t; !, {, m, k) and satisfying lim= � 0 #2(=)=0 such
that

"|
t

r
|

R d
'=

m, k (x, t; y, s; !, {) dy ds"
�

#2(=) |1+|!| 2 | &

|t&{| (d+|m| 7 (q&�))�q exp {&c1 } |x&!|q

t&{ }
1�(q&1)

= . (48)

(vi) Next, on the basis of (41), (44), (48), standard bounds
(Lemma 5 of Subsection 3.4), and a calculus-based bound (Lemma 4(ii) of
Subsection 3.4), one concludes that there exists a function #3(}) independent
of (x, t; !, {) satisfying lim= � 0 #3(=)=0 such that

"|
t

{
|

R d
�m

x Z� (x, t; y, s)[K=(y, s; !, {)&K(y, s; !, {)] dy ds"
�

#3(=) |1+|!| 2 | &

(t&{)(d+|m| )�q exp {&c1 } |x&!| q

t&{ }
1�(q&1)

= (49)

when |m|<q and

"|
t

{
|

R d
A0

m (x, y) �m
x Z� (x, t; y, s)[K=(y, s; !, {)&K(y, s; !, {)] dy ds"

�
#3(=) |1+|!| 2 | &

(t&{)1+(d&�)�q exp {&c1 } |x&!|q

t&{ }
1�(q&1)

= (50)

when |m|=q, where (as in Friedman [6], p. 252)

K=(y, s; !, {). :
|k|=q

Ak \y, !,
s
=+ �k

y Z� =(y, s; !, {)

+ :
|k|<q

Ak \y,
s
=+ �k

y Z� =(y, s; !, {) (51)

K(y, s; !, {). :
|k|=q

A0
k (y, !) �k

y Z� (y, s; !, {)

+ :
|k|<q

A0
k (y) �k

y Z� (y, s; !, {). (52)
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(vii) Next, defining (see Friedman [6] p. 252 for motivation) 8, 8=

via the integral equations

8(x, t; !, {)=K(x, t; !, {)+|
t

{
|

Rd
K(x, t; y, s) 8(y, s; !, {) dy ds (53)

8=(x, t; !, {)=K=(x, t; !, {)+|
t

{
|

R d
K=(x, t; y, s) 8=(y, s; !, {) dy ds, (54)

fixing (!, {), and letting

u=(x, t)."|
t

{
|

R d
K(x, t; y, s)[8=(y, s; !, {)&8(y, s; !, {)] dy ds" , (55)

we can use (49) and (50) to bound u= recursively (in terms of u=(x, s) for
s�t) and then expand this using a little operator theory to get a non-
recursive bound. It then follows immediately from (49), classical bounds for
8=, �b

x Z� (Lemma 5), this bound for u=, and the triangle inequality that
there are constants c~ , C� >0 with c~ <c1 such that

"|
t

{
|

R d
�b

xZ� (x, t; y, s)[8 =(y, s; !, {)&8(y, s; !, {)] dy ds" (56)

�
C� #3(=) |1+|!| 2 | &

(t&{)(d+|b| )�q exp {&c~ } |x&!|q

t&{ }
1�(q&1)

= \0�|b|�q.

(viii) Finally, noting (again see Friedman [6] p.252 for motivation)
that

1(x, t; !, {).Z� (x, t; !, {)+|
t

{
|

Rd
Z� (x, t; y, s) 8(y, s; !, {) dy ds (57)

respectively

1=(x, t; !, {).Z� =(x, t; !, {)+|
t

{
|

R d
Z� =(x, t; y, s) 8=(y, s; !, {) dy ds (58)

form our fundamental solutions for (7) and (6), one finds from the triangle
inequality, (41), a classical bound for 8= (Lemma 5), Lemma 4(ii), and
(56) that

&�b
x [1=(x, t; !, {)&1(x, t; !, {)]&

�
#(=) |1+|!| 2 | &

(t&{)(d+|b|+/)�q exp {&c~ } |x&!|q

t&{ }
1�(q&1)

= (59)
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for some # as in the statement of Theorem 1 and all |b|<q, = # (0, 1],
0�{�t�1, and x, ! # Rd as desired.

For expository reasons we have relegated much of the details in Subsec-
tions 3.2 and 3.3 to subsidiary lemmas in Subsection 3.4.

3.2. Bounds for the Fundamental Solutions of (36)

We start by using Fourier transform methods and defining V= and V by

V=(t, {; y, `)=I+|
t

{
:

|k|=q

Ak \y,
s
=+ (i`)k V=(s, {; y, `) ds (60)

and

V(t, {; y, `)=exp { :
|k|=q

A0
k(y)(i`)k (t&{)==V(t&{; y, `)

so

V(t, {; y, `)=I+|
t

{
:

|k|=q

A0
k (y)(i`)k V(s&{; y, `) ds

=I+|
t

{
:

|k|=q

A0
k (y)(i`)k V(t&s; y, `) ds (61)

for all 0�{�t�1, ` # Cd and y # Rd. Now, letting `=:+i;, and recalling
the definition of $ from (35), one finds by Lemma 5 of Subsection 3.4 that

&V=(t, s; y, `)& R
=, t, s, y, `

exp[[* |;|q&$ |:| q](t&s)] (62)

and

&V(t, s; y, `)& R
s, {, y, `

exp[[* |;|q&$ |:|q](s&{)] (63)

for some *>0 and all 0�{�s�t�1, ` # Cd and y # Rd. Next, fixing a
*1>*, recalling the definition of �= from (39), and defining

$� .$&$1 , *� .*1&*, (64)

we find from Lemma 6 of Subsection 3.4 that (t, {; y, `) � �=(t, {; y, `),
= # (0, 1] are equicontinuous and

&�=(t, {; y, `)& R
=, t, {, y, `

exp[&[*� |;|q+$� |:| q](t&{)](t&{)/ (65)

for all =>0, 0�{�t�1, `.:+i; # Cd and y # Rd.
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Now, we recall definition (38) and show that [,=, 0<=�1] is totally
bounded in the Banach space of continuous, bounded CN_N-valued
functions

(CB(2), sup
2

& } &), 2.[(t, {, y, `) # [0, 1]2_Rd_Cd : {�t]. (66)

Indeed, letting '>0 be an arbitrary positive constant and availing
ourselves of (65) and (38), we can find a C=C'>1 such that
&,=(t, {, y, `)&�'�4 for all =>0, 0�{�t�1, `=:+i; # Cd and y # Rd

such that max j=1, 2, ..., d |y j | 6 |: j | 6 |; j |>C&1. Now, for each r=0, 1
2 , 1,

we define

4r.[(y, :, ;) # R3d : |y j | 6 |: j | 6 |; j |�C&r \j=1, 2, ..., d ] (67)

0r.[(t, {, y, :+i;) # 2 : (y, :, ;) # 4r] (68)

and consider the restrictions, ,= | 00 , of ,= to 00. Clearly, 00 is a compact
subset and [,= |00 , 0<=�1] is relatively compact whence totally bounded
in CB (00). Let [,0

1 , ..., ,0
n] be a finite collection of functions on all of 2

such that support (,0
l )=00 for each l=1, 2, ..., n and [,0

1 | 00 , ..., ,0
n | 00]

forms a ('�4)-net for [,= | 00 , 0<=�1]. Now, define

,a
l (t, {, y, :+i;).|

R3d
,0

l (t, {, %, v+i�)

_\a((y, :, ;)&3) d3, 3=(%, v, �) (69)

for each a>0, l=1, 2, ..., n, 0�{�t�1, and y, :, ; # Rd where \a(}), a>0
are the Laplace distributions

\a(3).\a
2+

3d

exp {&a :
3d

j=1

|3 j |= , 3 # R3d, a>0. (70)

(The functions [,0
1 , ..., ,0

n] will be continuous on the interior of 00 and 0
on (00)c. However, they will in general be discontinuous on the boundary
�00 and hence will not be in CB (2). Therefore, we concolve them with nice
kernels \a which approach the Dirac delta distribution as a � �. Actually,
there are a variety of other kernels that could have been used instead of the
Laplace distributions; the appeal of the Laplace distributions is that they
form a simple single parameter class.) Clearly, [,0

1 , ..., ,0
n] are uniformly
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bounded by D>0 say and one can fix an open ball of R3d B=B(0, }) with
0<}� 1

2 such that

[(t, {, y&%, `&v&i�) : (t, {, y, `) # 01�2, (%, v, �) # B]/00 (71)

and

&,0
l (t, {, y&%, `&v&i�)&,0

l (t, {, y, `)&�
'
4

(72)

for all l=1, 2, ..., n, (t, {, y, `) # 01�2, and (%, v, �) # B. Finally,

|
[3 # R3d : |3j |�#]

\a(3) d3=exp[&a#] (73)

for all a, #>0 and j=1, 2, ..., d so by (69), (72), and (73) it follows that
there is some a}>0 such that

&,0
l (t, {, y, `)&,a

l (t, {, y, `)&

�|
B

&,0
l (t, {; y, `)&,0

l (t, {; y&%, `&v&i�)& \a(3) d3

+|
Bc

[&,0
l (t, {; y, `)&+&,0

l (t, {; y&%, `&v&i�)&] \a(3) d3

�
'
4

+2D exp {&
a}
r

- 3d=<
'
2

\(t, {; y, `) # 01�2, l=1, ..., n

provided a>a} , r being defined in (14). Hence, fixing an arbitrary =>0
and finding an l such that

&,=(t, {, y, `)&,0
l (t, {, y, `)&<

'
4

\(t, {, y, `) # 00, (75)

we find by (74) and (75) that

sup
01�2

&,=(t, {, y, `)&,a
l (t, {, y, `)&<' (76)

for any a>a} . On the other hand; using (69), (75), and (73); and fixing a
large enough a (which is independent of =); we find that
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sup
(01�2)C

&,=(t, {, y, `)&,a
l (t, {, y, `)&

�
'
4

+ sup
(01�2)c |(41)c

&,0
l (t, {, %, v+i�)& \a((y, :, ;)&3) d3

+ sup
(01�2)c |41

&,0
l (t, {, %, v+i�)& \a((y, :, ;)&3) d3

�
'
4

+
'
2

+D exp {&
a
2=<'. (77)

It follows easily by (76) and (77) that [,a
1 , ..., ,a

n] forms a finite '-net for
[,=, 0<=�1] and [,=, 0<=�1] is relatively compact in CB (2).

Now, we show that the only possible limit point for [,=, 0<=�1] as
= � 0 is 0. In fact, it follows from integration by parts, (60�63), Condition
(C3), our hypothesis (27) and the dominated convergence theorem that

"|
t

{
V=(t, s; y, `) :

|k| =q

A� k \y,
s
=+ V(s, {; y, `) ds"

�"|
t

{
:

|k| =q

A� k \y,
s
=+ ds V(t, {; y, `)"

+"|
t

{
�s V=(t, s; y, `) |

s

{
:

|k|=q

A� k \y,
_
=+ d_ V(s, {; y, `) ds"

+"|
t

{
V=(t, s; y, `) |

s

{
:

|k|=q

A� k \y,
_
=+ d_ �s V(s, {; y, `) ds"� 0 (78)

for each fixed (t, {, y, `) and it follows by (38�40) that ,= � 0 in CB (2).
Next, we use this convergence to establish our bound between the

fundamental solutions of (36) and (37). Letting W=(t, {; y, `).
V=(t, {; y, `)&V(t, {; y, `), we find by (60), (61), and (34) that

W=(t, {; y, `)=|
t

{
:

|k|=q

Ak \y,
s
=+ (i`)k W =(s, {; y, `) ds

+|
t

{
:

|k|=q

A� k \y,
s
=+ (i`)k V(s, {; y, `) ds (79)

or by variation of constants and (40) that

&W =(t, {; y, `)&�&'=(t, {; y, `)& } |`|q \=>0, (t, {, y, `) # 2. (80)
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Consequently, using (80), (38�40), and the fact ,= � 0, one finds
that there exist constants C, $2 , *2>0 and a function #1(}) satisfying
lim= � 0 #1(=)=0 such that

&V=(t, {; y, `)&V(t, {; y, `)&

�
#1(=) |`| q

(t&{)/&1 exp[[*1 |;|q&$1 |:|q](t&{)](1+|y| 2)&

�
C#1(=)
(t&{)/ exp[[*2 |;|q&$2 |:|q](t&{)](1+|y| 2)& (81)

for all =>0, (t, {, y, `) # 2. Now, one finds (see Friedman [6] Section 2,
Chapter 9) that with any ; # Rd

Z=(x&!, t, y, {).
1

(2?)d |
Rd

exp[(i:&;)(x&!)]

_V=(t, {; y, :+i;) d: (82)

Z(x&!, t, y, {).
1

(2?)d |
Rd

exp[(i:&;)(x&!)]

_V(t, {; y, :+i;) d: (83)

form fundamental solutions for (36) and (37) respectively and, using (81)
as well as the argument on pp. 245�6 of [6], that for any vector of non-
negative integers b there exist constants c, C=cb, /, & , Cb, /, &>0 such that

&�b
x [Z=(x&!, t, y, {)&Z(x&!, t, y, {)]&

�
C#1(=)

(t&{)(d+|b|+/)�q exp _&c } |x&!|q

t&{ }
1�(q&1)

& (1+|y| 2)& (84)

for all = # (0, 1], x, y, ! # Rd, and 0�{�t�1.

3.3. Bounds in the Parametrix Method

For simplicity, we define

Ak \y, !,
s
=+.Ak \y,

s
=+&Ak \!,

s
=+ \y, ! # Rd, 0�s�1, =>0. (85)

Next, we recall from Subsection 3.1 that:

(i) c, C>0 are constants such that (84) holds for all 0�|b|�q and
Lemma 5 (i�iv) of Subsection 3.4 also holds; and
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(ii) c~ , c1 are constants satisfying 0<c~ <c1<c. Then, we show that
(48�50) and (59) of Subsection 3.1 hold as follows: From (84) of Subsec-
tion 3.2, (43) of Subsection 3.1, (85), Condition (C4), Lemma 5(i), and
Lemma 4(ii) (both to follow), we find that for small enough a>0

"|
t

{
|

R d
�m

x Z� (x, t; y, s) Ak \y, !,
s
=+ �k

y [Z� =(y, s; !, {)&Z� (y, s; !, {)] dy ds"
R|

t

{
|

R d

1
(t&s)(d+|m| )�q } | y&!| q

s&{ }
1�(q&1)

exp {&a } | y&!|q

s&{ }
1�(q&1)

=
_

#1(=) |1+|!| 2 | &

(s&{)(d+q&1+/)�q

_exp {&c } |x&y|q

t&s }
1�(q&1)

&(c&a) } | y&!|q

s&{ }
1�(q&1)

= dy ds

R
=, x, !, t, { #1(=) |1+|!| 2 | &

(t&{)(d+|m|+/&1)�q exp {&c1 } |x&!|q

t&{ }
1�(q&1)

= (86)

for all = # (0, 1], x, ! # Rd, and 0�{�t�1 when |m|<q and |k|=q. In a
similar manner, we discover that

"|
t

{
|

R d
�m

x Z� (x, t; y, s) Ak \y,
s
=+ �k

y [Z� =(y, s; !, {)&Z� (y, s; !, {)] dy ds"
R

#1(=) |1+|!| 2 | &

(t&{)(d+|m|+/&1)�q

_exp {&c1 } |x&!|q

t&{ }
1�(q&1)

= when |m|, |k|<q, (87)

"|
t

{
|

R d
A0

k (x, y) �m
x Z� (x, t; y, s) Ak \y,

s
=+

_�k
y [Z� =(y, s; !, {)&Z� (y, s; !, {)] dy ds"

R
#1(=) |1+|!| 2 | &

(t&{)1+(d+/&2)�q

_exp {&c1 } |x&!|q

t&{ }
1�(q&1)

= when |m|=q, |k|<q, (88)
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and

"|
t

{
|

Rd
A0

k (x, y) �m
x Z� (x, t; y, s) Ak \y, !,

s
=+

_�k
y [Z� =(y, s; !, {)&Z� (y, s; !, {)] dy ds"

R
#1(=) |1+|!| 2 | &

(t&{)1+(d+/&2)�q exp {&c1 } |x&!|q

t&{ }
1�(q&1)

=
when |m|, |k|=q. (89)

Moreover, recalling definitions (45�47) and availing one's self of Lemma 2
of Subsection 3.4, one establishes (48) of Subsection 3.1. Hence; combining
(44) and (48) with (86�89); recalling definitions (51) and (52); and making
use of Minkowski's inequality; we can now establish (49) and (50) of Sub-
section 3.1. Consequently, an additional application of (52) together with
Condition (C3) yields a C>0 such that

w=(x, t; !, {)."|
t

{
|

Rd
K(x, t; y, s)[K =(y, s; !, {)&K(y, s; !, {)] dy ds"

�
C#3(=) |1+|!| 2 | &

(t&{)1+(d&�)�q exp {&c1 } |x&!| q

t&{ }
1�(q&1)

= (90)

for all = # (0, 1], x, ! # Rd, 0�{�t�1. Moreover, fixing (=, !, {); recalling
definitions (53�55); interchanging the order of integration; utilizing the
bound (1+|z| 2)& Rz, ! (1+|!| 2)&+|z&!| 2& for all z, ! # Rd; and using
(90), Lemma 5(iii), (ii) and Lemma 4(ii); one finds that there exist con-
stants C>0, c2 # (c~ , c1) independent of (=, !, {, x, t) such that

u=(x, t)�w=(x, t; !, {)+|
t

{
|

R d
w=(x, t; z, _) &8=(z, _; !, {)& dz d_

+|
t

{
|

R d
&K(x, t; y, s)& u=(y, s) dy ds

�
C#3(=) |1+|!| 2 | &

(t&{)1+(d&�)�q exp {&c2 } |x&!| q

t&{ }
1�(q&1)

=
+|

t

{
|

R d

C
(t&s)1+(d&1)�q

_exp {&c2 } |x&y| q

t&s }
1�(q&1)

= u=(y, s) dy ds (91)

for all x # Rd, t # [{, 1].
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Next, letting (!, {) remain fixed, we use our recursive bound in (91) to
establish an absolute bound for u=. First, we let a, [ai]q+d

i=0 be constants
such that c~ <a<ai+1<ai<c2 , let [CW, i]q+d

i=0 denote the Banach spaces of
continuous R-valued functions . on Rd_({, 1] such that

|.| i.sup
x, t { |.(x, t)| (t&{)1+(d&�&i)�q exp {ai } |x&!|q

t&{ }
1�(q&1)

==<�,

(92)

and define the operators Ti : CW, i � CW, i+1 (c.f. Lemmas 3 and 4(ii) of
Subsection 3.4) by

Ti .(x, t).|
t

{
|

Rd

C
(t&s)1+(d&1)�q

_exp {&c2 } |x&y| q

t&s }
1�(q&1)

= .(y, s) dy ds. (93)

(The completeness of each CW, i follows from the completeness of the space
of continuous, bounded functions on Rd_({, 1] and isometry.) Now, it
follows by (55), Lemma 5(ii), (iii), and Lemma 4(ii) that

u=(x, t) R
=, x, t; !, { 1

|t&{| (q+d&2)�q exp {&c1 } |x&!| q

t&{ }
1�(q&1)

= (94)

for all = # (0, 1], x # Rd, {�t�1. Hence, it follows by Lemmas 3 and 4(ii)
that

v=(x, t).Td+q&1 } } } T0 u=(x, t) and g=(x, t).Td+q&1 } } } T0 f =(x, t) (95)

are well defined, where

f =(x, t).
C#3(=) |1+|!| 2 | &

(t&{)1+(d&�)�q exp {&c2 } |x&!|q

t&{ }
1�(q&1)

= . (96)

Moreover, letting CB (Rd_[{, 1]) be the Banach space of bounded, con-
tinuous R-valued functions with supremum norm and _}_ denote the
operator norm on CB (Rd_[{, 1]), we find from (91), (93), and (95) that

u=(x, t)� f =(x, t)+ :
d+q&2

j=0

Tj Tj&1 } } } T0 f =(x, t)+v=(x, t) (97)
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and

v=(x, t)�g=(x, t)+ :
n&1

i=1

S ig=(x, t)+_S n_ } |v=|CB \n=1, 2, ..., (98)

where S: CB (Rd_[{, 1]) � CB (Rd_[{, 1]) is also defined by

S.(x, t).|
t

{
|

R d

C
(t&s)1+(d&1)�q exp {&c2 } |x&y|q

t&s }
1�(q&1)

= .(y, s) dy ds.

(99)

Now, it follows from (93), (95), (96), and Lemma 3 as well as Lemma 4(ii)
that there is a c3 # (c~ , a) such that

:
d+q&2

j=0

Tj } } } T0 f = (x, t)+g=(x, t)

R
x, t; =, !, { #3(=) |1+|!| 2 | &

(t&{)1+(d&1&�)�q exp {&c3 } |x&!|q

t&{ }
1�(q&1)

= (100)

and for some C$>0

Sn.(x, t)�{
|

t

{
|

R d

C$
(t&s)1+(d&n)�q exp {&an } |x&y| q

t&s }
1�(q&1)

=
(101)

_|.(y, s)| dy ds n<q+d

|
t

{
|

R d

C$An

1(1+(n&d )�q)
exp {&a } |x&y| q

t&s }
1�(q&1)

=
_|.(y, s)| dy ds n�q+d

for all . # CB (Rd_[{, 1]) so

_S n_ R
n An

1 \1+
n&d

2 +
� 0 as n � �. (102)

Therefore, letting n � � in (98), substituting the resultant into (97),
exploiting (101) and estimates for the gamma function, applying (96), (100)
and (95), and availing ourselves of Lemma 3 as well as Lemma 4(i), one
finds that
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u=(x, t)� f =(x, t)+ :
d+q&1

j=0

[Tj } } } T0 f =(x, t)+S jg=(x, t)]

+|
t

{
|

R d
:
�

j=d+q

C$A j

1 \1+
j&d

q +
_exp {&a } |x&y|q

t&s }
1�(q&1)

= g=(y, s) dy ds

R
x, t; =, !, { #3(=) |1+|!| 2 | &

(t&{)1+(d&�)�q

_exp {&c3 } |x&!|q

t&{ }
1�(q&1)

= \x # Rd, t # [{, 1]. (103)

Piecing everything together, we find by (53�55), the fact |1+|z| 2 | & Rz, !

|1+|!| 2 | &+|z&!| 2& for all z, ! # Rd, (49), and (103) as well as
Lemmas 5(i), (iii) and 4(ii) that

"|
t

{
|

Rd
�b

x Z� (x, t; y, s)[8=(y, s; !, {)&8(y, s; !, {)] dy ds"
�"|

t

{
|

R d
�b

x Z� (x, t; y, s)[K=(y, s; !, {)&K(y, s; !, {)] dy ds"
+|

t

{
|

R d "|
t

_
|

Rd
�b

x Z� (x, t; y, s)[K=(y, s; z, _)&K(y, s; z, _)] dy ds"
_&8=(z, _; !, {)& dz d_

+|
t

{
|

R d
&�b

x Z� (x, t; y, s)& u=(y, s) dy ds

R
=, x, t, !, { #3(=) |1+|!| 2 | &

(t&{)(d+|b| )�q exp {&c~ } |x&!|q

t&{ }
1�(q&1)

= (104)

for all = # (0, 1], 0�|b|<q, 0�{�t�1, and x, ! # Rd. Finally, from (58),
(57), and (43) of Subsection 3.1, (84) of Subsection 3.2, Lemma 5(iii), the
fact that (1+|y| 2)&R(1+|!| 2)&+|y&!| 2&, Lemma 4(ii), and (104) it
follows that
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&�b
x[1=(x, t; !, {)&1(x, t; !, {)]&

�&�b
x [Z� =(x, t; !, {)&Z� (x, t; !, {)]&

+|
t

{
|

R d
&�b

x [Z� =(x, t; y, s)&Z� (x, t; y, s)]& &8=(y, s; !, {)& dy ds

+"|
t

{
|

R d
�b

x Z� (x, t; y, s)[8=(y, s; !, {)&8(y, s; !, {)] dy ds"
�

#(=) |1+|!| 2 | &

(t&{)(d+|b|+/)�q exp {&c~ } |x&!|q

t&{ }
1�(q&1)

= (105)

for all = # (0, 1], 0�|b|<q, 0�{�t�1, and x, ! # Rd. K

3.4. Subsidiary Results

Our first lemma is used in Subsection 3.3 to establish ,=, as defined in (47),
converges to 0 in the space of bounded, continuous > |m| , |k|�q CN_N-valued
functions

(CB (21), sup
21

&}&),
(106)

21.[(x, t, !, {) # Rd_[0, 1]_Rd_[0, 1] : {�t].

Lemma 2. Suppose ,= is defined as in (47) of Subsection 3.1 and Condi-
tions (C1�5) are satisfied. Then, ,= � 0 in CB (21).

To ease the notation in the following proof we define

:=:m.
|m| 7 (q&�)

q
and ;=;k.

|k| 7 (q&1)
q

, (107)

where � is the constant of Condition (C5).

Proof. Suppose C, c>0 are constants such that Lemma 5(i�iv) hold
and, as in Subsection 3.1, c1 # (0, c). Then, it follows from (45), (46),
Lemma 5(i), Conditions (C3) and (C4), and both parts of Lemma 4 that
there exist constants C2 , c2>0 such that

&�=
m, k (x, t; !, {)&

�exp {&c2} |x&!| q

t&{ }
1�(q&1)

= |
t

{
|

R d

(t&{):+(d�q) dy ds
(t&s):+(d�q) (s&{);+(d�q)

_exp {&c3 } |x&y|q

t&s }
1�(q&1)

&c3 } | y&!|q

s&{ }
1�(q&1)

=
�C2(t&{)1�q exp {&c2 \ |x&!| q

t&{ +
1�(q&1)

= , (108)
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for all (=; x, t; !, {; m, k), where c3.c&c1&c2>0. Now, we show that the
functions (x, t; !, {) � �=(x, t; !, {), 0<=�1 are equicontinuous in CB (21).
First, we fix arbitrary 0�{�t�1 and 0�{$�t$�1 such that t�t$ and
claim that (108) implies that

&�=(x, t; !, {)&+&�=(x, t$; !, {$)&

�2C2 } 21�q [|t&t$ | 1�q+|{&{$| 1�q] (109)

when t$�(t+{)�2 or {$�(t+{)�2 or {�(t$+{$)�2. (To show for example
the case t$�(t+{)�2 one could consider the subcases {$�{ and
{�(t$+{$)�2 separately and note that (t$+{$)�2�{$.) On the other hand;
assuming for the moment that there exist ĉ, C� >0 such that

&d_Y =
m, k (x, _; y, s; !, {)&

C�
(_&{)(s&{);+(d�q) exp {&ĉ } | y&!|q

s&{ }
1�(q&1)

= s�
_+{

2
�{ (110)

C� (_&{):&;

(_&s)1+:+(d�q) exp {&ĉ } |x&y|q

_&s }
1�(q&1)

= s�
_+{

2

for all x, y, ! # Rd, 0�{�s�_�1, = # (0, 1], |m| , |k|�q; we would find
that

|
t

t$
|

(_+{)�2

{
|

Rd
&d_ Y=(x, _; y, s; !, {)& dy ds d_

R
=, x, !, {, t, t$

|
t

t$

1
_&{ |

(_&{)�2

0
s&; ds d_

R(t&{)1�q&(t$&{)1�q�(t&t$)1�q (111)

when t$�(t+{)�2 and

|
t

t$
|

t$

(_+{)�2
|

Rd
&d_ Y=(x, _; y, s; !, {)& dy ds d_

R
=, x, !, {, t, t$

|
t

t$
|

t$

(_+{)�2
(_&s)&:&1 ds(_&{):&; d_

R
=, x, !, {, t, t$

|
t

t$ _(_&t$)&:&\_&{
2 +

&:

& (_&{):&; d_

R
=, x, !, {, t, t$

|
t

t$
(_&t$)&(: 6 ;) d_R(t&t$)��q (112)
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when t$�(t+{)�2. Furthermore, availing ourselves once again of (95),
Conditions (C3�C4), and Lemmas 5(i) and 4(i), we would find that

"|
t

t$
|

R d
Y =(x, t; y, s; !, {) dy ds" R

=, x, !, {, t, t$

|
t&t$

0

(t&{):&;

s: ds

R|
t&t$

0
s&(: 6 ;) dsR(t&t$)��q (113)

when t$�(t+{)�2. Therefore, it would follow from (109) when t$�(t+{)�2
or otherwise from (46), and (111�113) that

&�=(x, t; !, {)&�=(x, t$; !, {)& R
=, x, !, {, t, t$

|t&t$| ��q (114)

for all = # (0, 1] and x, ! # Rd, if 0�{�t$�t�1. Moreover, postulating
existence of constants ĉ, C� >0 such that

&d_Y =
m, k (x, t$; y, s; !, _)&

C�
(s&_)1+;+d�q exp {&ĉ } |x&!|q

s&_ }
1�(q&1)

= s�
t$+_

2
�{ (115)

C� (t$&_):&;&1

(t$&s):+d�q exp {&ĉ } |x&y| q

t$&s }
1�(q&1)

= s�
t$+_

2

for all (=; x, t; y, s; !, _; m, k) and repeating the above arguments, one
would find that

&�=(x, t$; !, {)&�=(x, t$; !, {$)& R
=, x, !, {, {$, t$

|{&{$ | ��q (116)

for all = # (0, 1] and x, ! # Rd if {�t$. Combining (109), (114), and (116),
we would find that

&�=(x, t; !, {)&�=(x, t$; !, {$)& R
=, x, !, {, {$, t, t$

|t&t$| ��q+|{&{$ | ��q (117)

for all = # (0, 1], 0�{�t�1, 0�{$�t$�1, and x, ! # Rd. Next; suppose
there exist constants ĉ, C� >0 such that

&�!i
Y =

m, k (x, t; y+!, s; !, {)&

�C�
exp {& ĉ } |y| q

s&{ }
1�(q&1)

& ĉ } |x&!|q

t&{ }
1�(q&1)

=
(t&{)1�q (s&{)1+(d&�)�q (118)
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for any i=1, 2, ..., d if s�(t+{)�2 and |k|�q&1, with � being the
constant of Condition (C5);

&�!i
Y =

m, k (x, t; y, s; !, {)&

�C�
exp {&ĉ } |y&!|q

s&{ }
1�(q&1)

&ĉ } |x&!|q

t&{ }
1�(q&1)

=
(s&{)1+(d&1)�q (119)

for any i=1, 2, ..., d if s�(t+{)�2 and |k|<q&1; or

&�!i
Y =

m, k (x, t; y, s; !, {)&�
C� (t&{):&;&(1�q)

(t&s):+(d�q) exp {&ĉ } |x&!|q

t&s }
1�(q&1)

=
(120)

for any i=1, 2, ..., d if s�(t+{)�2. Then, we would fix !$, ! # Rd, define

!i.(!1 , ..., !i&1, !i$, ..., !$d )T, i=0, 1, ..., d+1, (121)

and note that

&�=
1(x, t; !, {)&�=

1(x, t; !$, {)&

� :
d

i=1

&�=
1(x, t; !i+1, {)&�=

1(x, t; !i, {)& . (122)

However, in the case |k|�q&1 and !i�!i$ , it would then follow by (46),
(121), (118), and Ho� lder's inequality that

&�=
1, m, k (x, t; !i+1, {)&�=

1, m, k (x, t; !i, {)&

�|
!i&!$

i

0
|

(t+{)�2

{
|

R d
&�!i

Y =
m, k (x, t; y+!i+uei , s; !i+uei , {)& dy ds du

R|
|!i&!$

i |

0
|

(t+{)�2

{

ds
(t&{)1�q (s&{)1&(��q)

_exp {&c } |x&!i&uei |
q

t&{ }
1�(q&1)

= du

R|
|!i&!$

i |

0
(t&{)(� &1)�q } |x&!i&uei |

q

t&{ }
(�&1)�q

du

R|
|!i&!$

i |

0
|xi&!i$&u| �&1 du�|!i&!i$ |

�2 _|
1

0
|xi&!i$&u| &1�(1+�) du&

1&�2

R
=, x, t, {, !, !$

|!&!$| �2
(123)
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for all i=1, ..., d, = # (0, 1], 0�{�t�1, and x, !$, ! # Rd with |!&!$|�1.
The cases |k|<q&1, and |k|�q&1, !i<!i$ can be handled similarly if one
substitutes (119) for (118) when |k|<q&1. Moreover, one would find by
(46), (120) as well as substitutions of variables that

&�!i
�=

2(x, t; !, {)&R|
(t&{)�2

0

(t&{):&;&1�q

s:

_|
R d

1
sd�q exp {&ĉ } |y| q

s }
1�(q&1)

= dy dsR1 (124)

for all i=1, 2, ..., d, 0�{�t�1, and x, ! # Rd. Hence, it follows easily
from (124), the mean value theorem, (122) and (123) that

&�=(x, t; !, {)&�=(x, t; !$, {)& R
=, x, !, !$, {, t

|!&!$| �2
(125)

for all = # (0, 1], 0�{�t�1, and x, !$, ! # Rd with |!&!$|�1. Finally;
assuming existence of constants C� , ĉ>0 such that

&�xi Y
=
m, k (x, t; y, s; !, {)&�

C�
(t&{)1�q (s&{)1+(d&1)�q

_exp {&ĉ } |y&!|q

s&{ }
1�(q&1)

= (126)

for any i=1, 2, ..., d if s�(t+{)�2;

&�xi Y
=
m, k (x, t; y+x, s; !, {)&

�C�
exp {&ĉ } |y| q

t&s }
1�(q&1)

&ĉ } |x&!|q

t&{ }
1�(q&1)

=
(t&{);+(1�q)&: (t&s):+(d�q) (127)

for any i=1, 2, ..., d if s�(t+{)�2 and |m|�q&1; or

&�xi Y
=
m, k (x, t; y s; !, {)&

�C�
exp {&ĉ } |x&y|q

t&s }
1�(q&1)

&ĉ } |x&!| q

t&{ }
1�(q&1)

=
(t&{);&: (t&s):+(d+1)�q (128)
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for any i=1, 2, ..., d if s�(t+{)�2 and |m|<q&1; one would find by
(126�128), and an argument similar to the previous one that

&�=(x, t; !, {)&�=(x$, t; !, {)& R
=, x, x$, !, {, t

|x&x$| �2
(129)

for all = # (0, 1], 0�{�t�1, and x, x$, ! # Rd with |x&x$|�1. Equicon-
tinuity on 21 follows from (129), (125), and (117) and one can easily adapt
the arguments in (66�77) of Subsection 3.2 (with aid of (108), (47), and
this equicontinuity) to discover that [,=, 0<=�1], defined by (47), is
realtively compact in CB (21). To show ,= � 0 as = � 0 we only have to
show ,=

m, k (x, t; !, {) � 0 for a dense set of (x, t; !, {; m, k). To do this we
note by (47), (46), and the argument used in (108) as well as the
dominated convergence theorem that we only have to show

|
t

{
Y =

m, k (x, t; y, s; !, {) ds � 0 as = � 0 (130)

for almost all (x, t; !, {; y; m, k). Indeed, suppose |m|<q, |k|=q, x{y
and y{!. Then, noting by Lemma 5(i) that lims � t �m

x Z� (x, t; y, s)=
lims � { �k

y Z� (y, s; !, {)=0 (pointwise), one finds from integration by parts
that

|
t

{
�m

x Z� (x, t; y, s) A� k \y, !,
s
=+ �k

y Z� (y, s; !, {) ds

= &|
t

{
�m

x Z� (x, t; y, s) |
s

{
A� k \y, !,

_
=+ d_ �s �k

y Z� (y, s; !, {) ds

&|
t

{
�s �m

x Z� (x, t; y, s) |
s

{
A� k \y, !,

_
=+ d_ �k

y Z� (y, s; !, {) ds (131)

for all 0�{�t�1. Now, using (43), (83), and (61), we discover that

�s �m
x Z� (x, t; y, s)=& :

|b|=q

A0
k (y) �b+m

x Z� (x, t; y, s) (132)

and, adding Condition (C3) and Lemma 5(i), that

&�s �m
x Z� (x, t; y, s)&R

s 1
(t&s)2+(d&1)�q

_exp {&c } |x&!|q

t&s }
1�(q&1)

=R
s

1 (133)
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(since x{y). Hence, after creating similar bounds for the other Z� terms,
we find by such bounds, (44), (45), (42), (34), our hypothesis (27), and the
dominated convergence theorem that

|
t

{
Y =

m, k (x, t; y, s; !, {) ds � 0, |m|<q, |k|=q (134)

as = � 0 provided x{y and y{!. The cases |m|<q, |k|<q; |m|=q,
|k|<q; and |m|=q, |k|=q are handled similarly and it only remains to
establish (110), (115), (118), (119), (120), (126), (127), and (128).

Inasmuch as the proofs of all eight bounds under all combinations of the
conditions: |m|<q or |m|=q, and |k|<q or |k|=q are very similar, we
will only prove (110) under the conditions |m|=q, |k|=q and (118) under
the conditions |m|<q, |k|=q here. The remaining bounds follow through
similar arguments. For (110) with |m|=q, |k|=q, it follows from (45),
(44), an entirely similar argument to (132�133), Lemma 5(iii), Condition
(C4), and Lemma 4(i) that there are 0<c1<c2<c and ĉ>0 such that

&dtY =
m, k (x, t; y, s; !, {)&

R&A0
m(x, y)& {&dt �m

x Z� (x, t; y, s)&+
&�m

x Z� (x, t; y, s)&
t&{

__1+ } |x&!| q

t&{ }
1�(q&1)

&= exp {c1 } |x&!|q

t&{ }
1�(q&1)

=
_"A� k \y, !,

s
=+ �k

y Z� (y, s; !, {)" } |t&{| :+(d�q)

R
|x&y|

(t&s)2+(d�q) exp {&c } |x&y| q

t&s }
1�(q&1)

=
_{1+ } t&s

t&{ }= exp {c2 } |x&!| q

t&{ }
1�(q&1)

=
_

|y&!|
(s&{)1+(d�q) exp {&c } |y&!| q

s&{ }
1�(q&1)

= (t&{):+(d�q)

R
=; x, t; y, s; !, { (t&{):+(d�q)

(t&s)2+(d&1)�q (s&{)1+(d&1)�q

_exp {&ĉ } |x&y| q

t&s }
1�(q&1)

&ĉ } |y&!|q

s&{ }
1�(q&1)

= (135)

for all (=; x, t; y, s; !, {) and (110) follows by considering s�(t+{)�2 and
s�(t+{)�2 separately.
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Now for (118) with |m|<q, |k|=q, one finds by (42), Conditions (C4)
and (C5) as well as Lemma 5(i), (iv) that there are 0<c2<c and C, C$>0
such that

"�!i _A� k \y+!, !,
s
=+ �k

y Z� (y+!, s; !, {)&"
�"A� k \y+!,

s
=+&A� k \!,

s
=+" &�!i

�k
y Z� (y+!, s; !, {)&

_"�!i _A� k \y+!,
s
=+&A� k \!,

s
=+&" &�k

y Z� (y+!, s; !, {)&

�
C |y| �

(s&{)1+(d�q) exp {&c } |y|q

s&{ }
1�(q&1)

=
�

C$
(s&{)1+(d&�)�q exp {&c2 } |y|q

s&{ }
1�(q&1)

= (136)

for all x, y, ! # Rd, 0�{�s�1 and, defining z=x&y&!, `=y+!, one
finds by Lemma 5(i), (iv) that

&�!i
�m

x Z� (x, t; y+!, s)&

=&�`i
�m

z Z� (z+`, t; `, s)&�zi �
m
z Z� (z+`, t; `, s)&

R
1

(t&s)(d+|m|+1)�q exp {&c } |x&y&!| q

t&s }
1�(q&1)

= (137)

for all x, y, ! # Rd, 0�s�t�1. Hence, since s�(t+{)�2 we find by (45),
(44), (137), (136), Lemma 5(i), and Lemma 4(i) that there are 0<c1<
c3�2<c2<c and ĉ>0 such that

&�!i
Y =

m, k (x, t; y+!, s; !, {)&

=(t&{):+(d�q)

"�!i {�m
x Z� (x, t; y+!, s) A� k \y+!, !,

s
=+ �k

y Z� (y+!, s; !, {)

_exp {c1 } |x&!|q

t&{ }
1�(q&1)

=="
R

=; x, t; y, s; !, { (t&{):+(d�q)

(t&s)(d+|m| )�q (s&{)1+(d&�)�q _ 1
(t&s)1�q+1+

1
(t&{)1�q&
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_exp {&c } |x&!&y|q

t&s }
1�(q&1)

&c2 } |y|q

s&{ }
1�(q&1)

+c3�2 } |x&!|q

t&{ }
1�(q&1)

=
R

=; x, t; y, s; !, { 1
(t&{)1�q (s&{)1+(d&�)�q

_exp {&ĉ } |y| q

s&{ }
1�(q&1)

&ĉ } |x&!|q

t&{ }
1�(q&1)

= (138)

for all = # (0, 1], x, y, ! # Rd, and 0�{�s�t�1 such that s�(t+{)�2. K

Lemma 3. Suppose n is a positive integer; {, C, c2 , a, and [ai]q+d
i=1 are

non-negative constants satisfying 0<a<ai+1<ai<c2 for all i=1, ..., q+
d&1; and (U, D(U)) is the operator on the vector space of continuous func-
tions on Rd_[{, 1] defined by

U.(x, t).|
t

{
|

R d

C
(t&_)1+(d&1)�q

_exp {&c2 } |x&z| q

t&_ }
1�(q&1)

= .(z, _) dz d_ (139)

for all . # D(U), t # [{, 1]. x # Rd, D(U) being an appropriately defined
domain. Then; for any . # D(U) such that Um. # D(U) for m=1, 2, ..., n&1;
we find that

Un.(x, t)�{
|

t

{
|

R d

Bn

(t&s)1+(d&n)�q exp {&an } |x&y|q

t&s }
1�(q&1)

=
(140)

_|.(y, s)| dy ds n<q+d

|
t

{
|

R d

B$An(t&s)(n&d )�q&1

1(1+(n&d)�q)
exp {&a } |x&y|q

t&s }
1�(q&1)

=
_|.(y, s)| dy ds n�q+d

for all t # [{, 1], x # Rd; where B>0 does not depend on x, t or .;
B$.Bq+d; and A.[C } �R d exp[&(c2&a) |z| q�(q&1)] dz } 1(1�2p)] 6 1.

Proof. (140) holds for n=1 so we assume that it holds for all
1�n�n0<q+d. Then, we find by (139), (140), and Lemma 4(ii) that
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Un0+1.(x, t)�U \|
_

{
|

Rd

Bn0 |.(y, s)|
(_&s)1+(d&n0)�q

_exp {&an0 } |z&y| q

_&s }
1�(q&1)

= dy ds+ (x, t)

�|
t

{
|

Rd |
t

s
|

Rd

dz d_ dy ds CBn0 |.(y, s)|
(t&_)1+(d&1)�q (_&s)1+(d&n0)�q

_exp {&c2 } |x&z| q

t&_ }
1�(q&1)

&an0 } |z&y|q

_&s }
1�(q&1)

=
�|

t

{
|

Rd

Bn0+1

(t&s)1+(d&n0&1)�q

_exp {&an0+1 } |x&y|q

t&s }
1�(q&1)

= |.(y, s)| dy ds (141)

for all t # [{, 1], x # Rd provided B>C is large enough. Moreover, if
(140) holds for all 1�n�n0 with n0�q+d then by (139), (140), and
Lemma 4(i), it follows that

Un0+1.(x, t)�U |
_

{
|

R d

B$An0 |_&s| (n0&d&q)�q

1 \1+
n0&d

q +
_exp {&a } |z&y|q

_&s }
1�(q&1)

= |.(y, s)| dy ds (x, t)

�|
t

{
|

Rd |
t

s
|

Rd
exp {&(c2&a) } |z| q

t&_ }
1�(q&1)

= CB$An0 dz
(t&_)d�q

_
(_&s)(n0&d&q)�q d_

(t&_)1&(1�q) 1 \1+
n0&d

q +
_exp {&a } |x&y|q

t&s }
1�(q&1)

= |.(y, s)| dy ds

�|
t

{
|

Rd

B$An0+1(t&s)(n0+1&d&q)�q

1 \1+
n0+1&d

q +
_exp {&a } |x&y|q

t&s }
1�(q&1)

= |.(y, s)| dy ds. K (142)
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The following lemma is used throughout Subsections 3.3 and 3.4. Part (i)
follows inter alia from the proof of Theorem 2 (see the equation following
Equation (4.15) on p. 254) in Friedman [6]. Part (ii) is a simple conse-
quence of Lemma 7 p. 253 of Friedman [6].

Lemma 4. Let 0�:, ;<1, q be an even positive integer,

f (y, s; z, _). } |y| q

s }
1�(q&1)

+ } |z|q

_ }
1�(q&1)

\y, z # Rd, s, _>0 (143)

and Ja.Ja (x, t; !, {) be defined by

Ja.|
t

{
|

Rd

dy ds
(t&s)(d�q)+: (s&{)(d�q)+; exp[&a f (x&y, t&s; y&!, s&{)]

for all a>0, x, ! # Rd and 0�{�t�1. Then,

(i) f (y, s; z, _)� } |y+z|q

s+_ }
1�(q&1)

\y, z # Rd, s, _>0 (144)

and for any 0<a$<a there exists a Ma$=Ma$, :, ;>0 such that

(ii) Ja�
Ma$

(t&{)(d�q)+:+;&1 exp {&a$ } |x&!|q

t&{ }
1�(q&1)

= (145)

for all 0�{�t�1, and x, ! # Rd.

Lemma 5. Suppose Conditions (C1�C4) of Section 2 are satisfied and V=,
V are as defined in (60) and (61). Then, there exist *, K>0 independent of
= # (0, 1], 0�{�t�1, `=:+i; # Cd, and y # Rd such that

&V=(t, {; y, `)& 6&V(t, {; y, `)&�K exp[[* |;| q&$ |:|q](t&{)], (146)

where $>0 is the constant of (35). Moreover, Z� , Z� =, K, K=, 8, and 8=, as
defined in (43) and (51�54), exist as continuous function on

21.[(x, t, !, {) # Rd_[0, 1]_Rd_[0, 1] : {<t], (147)

Z� and Z� = are continuously differentiable to any order with respect x, and
there exist c, C>0 independent of (x, t; !, {; j, a) and = such that

(i) &�a
x Z� (x, t; !, {)& 6 &�a

x Z� =(x, t; !, {)&

�
C

(t&{)(d+|a| )�q exp {&c } |x&!|q

t&{ }
1�(q&1)

= (148)
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(ii) &K(x, t; !, {)& 6&K=(x, t; !, {)&

�
C

(t&{)1+(d&1)�q exp {&c } |x&!|q

t&{ }
1�(q&1)

= (149)

(iii) &8(x, t; !, {)& 6 &8=(x, t; !, {)&

�
C

(t&{)1+(d&1)�q exp {&c } |x&!|q

t&{ }
1�(q&1)

= (150)

(iv) &�!j
�a

x Z� (x+!, t; !, {)&

�
C

(t&{)(d+|a| )�q exp {&c } |x|q

t&{ }
1�(q&1)

= (151)

for all (x, t, !, {) # 21, = # (0, 1], j=1, ..., d and 0�|a|�2q (say).

Proof. Suppose we showed that there is a constant *$>0 such that

&V=(t, {; y, `)&2�N exp[[*$ |;| q&$ |:|q](t&{)] (152)

for all (x, t, !, {) # 21, 0�{�t�1, y # Rd, `=:+i;, and = # (0, 1]. Then,
a similar bound for V could be established by elementary methods and
(146) would follow. Furthermore, since the theory on pp. 245�246 of [6]
does not require Assumption (A) of the introduction once (146) has been
established, (i) above would follow. (ii) would follow from (i), (51�52), and
Conditions (C3�C4) and (iv) would follow from Condition (C4) and (3.11)
of Friedman [6]. Finally, (iii) would result from (ii) and the development
on pp. 252�255 (top) of Friedman [6]. Hence, it only remains to show
(152).

To establish (152) we adapt the method of Agarwal and Gupta [1]
pp. 174�5. Thus, we define the norm

_B_=� :
N

m, n=1

|Bm, n | 2 , (153)

Bm, n representing the (m, n)th element of B, for all CN_N-matrices B and
let

R=(t, {, y, `)=Re[V=(t, {; y, `)],
(154)

I=(t, {, y, `)=Im[V=(t, {; y, `)]
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so V==R=+iI =. Then; suppressing the dependence on (y, `) for V=, R=, I=;
recalling definition (60); letting

A(s)= :
|k|=q

Ak (y, s)(i`)k; (155)

and utilizing properties of symmetric and skew-symmetric matrices; one
finds that

_V=(t, {)_2&_V=(t$, {)_2

=2 :
m, n

|
t

t$
[R=

m, n (s, {)[Re[A(s�=) V=(s, {)]]m, n

+I =
m, n (s, {)[Im[A(s�=) V=(s, {)]]m, n] ds

=:
n
|

t

t$
[R=

n (s, {)T I =
n (s, {)T] S(s�=) _R=

n (s, {)
I =

n (s, {) & ds

�|
t

t$
*max(S(s�=)) } _V=(s, {)_2 ds \0�t$�t�1, = # (0, 1], (156)

where R=
n (s, {) denotes the n th column of R=(s, {) and S(_)=S(_, `, y) is

defined by

S(_). :
|k| =q

(i`)k

__Re[Ak (y, _)+AT
k(y, _))]

Im[Ak (y, _)&AT
k(y, _))]

&Im[Ak (y, _)&AT
k (y, _))]

Re[Ak (y, _)+AT
k(y, _))] & (157)

for all 0�_<�, y # Rd, and ` # Cd. Now, it follows from Condition (C1),
(35), and Friedman [6] Lemma 1, p. 242 that the maximum eigenvalue of
S(_, `, y) satisfies

*max(S(_, `, y))� &$ |:|q+*$ |;| q (158)

for all 0�_<�, `=:+i; # Cd, and y # Rd, where $>0 is the constant of
(35) and *$>0 does not depend on _, `, or y. Hence, it follows by (156)
and (158) that

dt [_V=(t, {; y, `)_2 exp[[$ |:|q&*$ |;|q](t&{)]]�0 (159)

for all 0 � { � t � 1, = # (0, 1], y # Rd, ` # Cd, and (152) follows since
_V=({, {; y, `)_2=N. K
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Lemma 6. Suppose �= is as defined in (39) of Subsection 3.1; and *� , $� are
as in (64) of Subsection 3.2. Then, under Conditions (C1�5) of Section 2 it
follows that (t, {; y, `) � �=(t, {; y, `), =>0 are equicontinuous and

&�=(t, {; y, `)& R
=, t, {, y, `

exp[&[*� |;|q+$� |:|q](t&{)](t&{)/. (160)

Proof. (160) follows immediately via (40), (39), Condition (C2) and
(62�64). Moreover, as a result of this argument one finds that

&'=(t, {; y, `)& R
=, t, {, y, `

exp[[* |;| q&$ |:|q](t&{)](t&{). (161)

In preparation for the equicontinuity argument, we note that it follows
from the argument in (79�80), Equations (60�4), and Condition (C4) that

&V=(t, s; y, `)&V=(t, s; y$, `)&

� :
|k|=q "|

t

s
V =(t, _; y, `) _Ak \y,

_
=+&Ak \y$,

_
=+& V=(_, s; y$, `) d_" } |`| q

R
=, t, {, y, `

|y&y$| exp[[*1 |;|q&$1 |:|q](t&s)], (162)

and

&V(s, {; y, `)&V(s, {; y$, `)&

R
s, {, y, `

|y&y$ | exp[[*1 |;|q&$1 |:|q](s&{)] (163)

for all = # (0, 1], y, y$, :, ; # Rd, `=:+i; and all 0�{�s�t�1. Hence,
it follows from (40), Minkowski's inequality, (62), (63), (162), (163), (34),
and Conditions (C3) and (C4) that

&'=(t, {; y, `)&'=(t, {; y$, `)&

R
=, t, {, y, y$, `

|y&y$ | (t&{) exp[[*1 |;| q&$1 |:| q](t&{)] (164)

from which it follows immediately from (39) that

&�=(t, {; y, `)&�=(t, {; y$, `)& R
=, t, {, y, y$, `

|y&y$| (165)

for all = # (0, 1], y, y$ # Rd, ` # Cd, and 0�{�t�1. As for `=:+i;, we
note by (60), variation of constants, Condition (C3) and (62) that
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&�:j V
=(t, s; y, `)&

="|
t

s
V=(t, _; y, `) :

|k|=q

Ak \y,
_
=+ [�:j (i:&;)k] V=(_, s; y, `) d_"

R
=, t, {, y, `

(t&s)1�q+(q&1)�q |`|q&1 exp[[* |;|q&$ |:|q](t&s)]

R
=, t, {, y, `

exp[[*1 |;|q&$1 |:| q](t&s)], (166)

and a similar bound holds for �:j V(s, {; y, `) so by (40), (64), and Condi-
tion (C3)

&�:j '=(t, {; y, `)& R
=, t, {, y, `

(t&{) exp[[*1 |;|q&$1 |:|q](t&{)] (167)

for all j=1, 2, ..., d, = # (0, 1], y, :, ; # Rd, and 0�{�t�1. Furthermore,
since d: |:| q=q |:|q(q&2)�(q&1) �d

j=1 |:j |
1�(q&1) sgn(:j)ej by (14), we find

|d: exp[[$1 |:| q&*1 |;|q](t&{)]|

R(t&{) |`|q&1 exp[[$1 |:|q&*1 |;|q](t&{)] (168)

so we easily discover through (39), the mean value theorem, (167), (161),
and (168) that

&�=(t, {; y, :+i;)&�=(t, {; y, :$+i;)&

�(t&{)/&1 &d: ['=(t, {; y, :*+i;)

_exp[[$1 |:*|q&*1 |;| q](t&{)]](:&:$)&

R
=, t, {, y, `, `$

|:&:$| (t&{)/ R
=, t, {, y, `, `$

|:&:$| (169)

for all = # (0, 1], y, :, :$, ; # Rd, and 0�{�t�1, where :* in some point
on the line connecting : and :$. A similar bound can be established in
terms of ;. Next, we consider the uniform continuity in the pair ({, t).
Indeed, one finds by Condition (C3), (62), and (63) that

"|
t

t$
V=(t, s; y, `) :

|k|=q

A� k \y,
s
=+ V(s, {; y, `) ds" (t&{)/&1 (170)

R
=, t, t$, {, y, `

(t&t$)/ exp[[* |;|q&$ |:| q](t&{)]
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for all 0�{�t$�t�1 and by (60), (62�64), and Condition (C3), that

"|
t

t$
|

t$

{
d_ [V=(_, s; y, `) exp[[$1 |:| q&*1 |;|q](_&{)](_&{)/&1]

_ :
|k| =q

A� k \y,
s
=+ V(s, {; y, `) ds d_"

R
=, t, t$, {, y, `

(t$&{) |
t

t$ { |`|q+
1

_&{=
_exp[&[*� |;|q+$� |:|q](_&{)](_&{)/&1 d_

R
=, t, t$, {, y, `

(t$&{) |
t

t$
(_&{)/&2 d_

�
(t&{)/&(t$&{)/

/
R

=, t, t$, {, y, `
(t&t$)/ (171)

for all 0�{�t$�t�1. Therefore, it follows by (39), (40), (64), (170) and
(171) that

&�=(t, {; y, `)&�=(t$, {; y, `)& R
=, t, t$, {, y, `

(t&t$)/ (172)

for all = # (0, 1], y # Rd, ` # Cd, and 0�{�t$�t�1. In exactly the same
manner, we find that

&�=(t$, {; y, `)&�=(t$, {$; y, `)& R
=, t, {$, {, y, `

|{&{ $| / (173)

for all = # (0, 1], y # Rd, ` # Cd, and 0�{�{$�t�1 or 0�{$�{�t$�1.
Moreover, if t$<{ then t&{�t&t$ and t$&{$�{&{$ and it follows from
(160), (172), and (173) that

&�=(t, {; y, `)&�=(t$, {$; y, `)& R
=, t, t$, {, {$, y, `

|t&t$ |/+|{&{$| / (174)

for all = # (0, 1], y # Rd, ` # Cd, 0�{�t�1 and 0�{$�t$�1. Hence, it
follows easily from (165), (169), and (174) that (t, {; y, `) � �=(t, {; y, `)
are equicontinuous. K
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