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In this note we consider the almost sure convergence (as e — 0) of solution X*(*),
defined over the interval 0 = 7 = 1, of the random ordinary differential equation

Xt(r) = F(X*(r), 7/e)  subject to X*(0) = x,.
Here {F(x, 1, w), t = 0} is a strong mixing process for each x and {(x, 1) = F(x,
t, w) is subject to regularity conditions which ensure the existence of a unique
solution over 0 = r < 1 for all £ > 0. Under rather weak conditions it is shown

that the function X°(-, w) converges a.s. to the solution x%:) of a non-random
averaged differential equation

A7) = F%r))  subject tox%0) = x,,

the convergence being uniform over 0 < 7 = 1. © 1994 Academic Press, Inc.

1. INTRODUCTION
Consider the following ordinary differential equation in R¥.
Z5(t) = eF(Z5(1), £&(1) subject to Z5(0) = x, (1.1)

where ¢ > 0 is a small parameter, {£(¢), t = 0} is a given function, and
the right-hand side of (1.1) is regular enough to ensure that there is a
unique solution Z%(-) defined on all intervals of the form [0, I/e] (I a
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STOCHASTIC AVERAGING PRINCIPLE 135

fixed finite number). Differential equations with the structure of (1.1) are
common in physics and engineering, and one is usually interested in the
asymptotic limit, if any, of the solution Z*(-) over the interval [0, I/¢]
as ¢ — 0. The study of this question is usually simplified by making
the substitution

Xe(r) & Zo(sle), O=r=<]/,
in which case (1.1) assumes the form
X%(1) = F(X*(7), £(v/e))  subject to X°(0) = x,, (1.2)

and the problem in question reduces to that of determining the asymptotic
limit, if any, of the solutions X®(-), defined over the interval [0, /], as ¢ —
0. When the limit

1T _
llmij; F(x, £(t) dt = F(x) (1.3)

T

exists for each x in R then it seems reasonable to expect that the solution
x°(-) of the ordinary differential equation

() = F(x(7))  subjecttox(0) = x, (1.4)

(assumed, for the time being, to exist on the interval [0, /] and to be
unique) approximates X®(-) uniformly on [0, 7] for all small values of &.
This general intuitive idea is known as the averaging principle and (1.4)
is sometimes called the averaged differential equation. As noted in Section
52 of Arnol’d [1], the idea of the averaging principle originates in celestial
mechanics and has been in use for several centuries. Clarification of the
precise conditions on (1.1) which ensure that the averaging principle is
valid is comparatively recent and is largely due to Soviet mathematicians.
The averaging principle is so commonly used in physics and engineering
that finding conditions under which it holds is an important question;
indeed, Sanders and Verhulst [19, page 33] note an instance ([9]) where
a use of the averaging principle outside its domain of applicability leads
to erroneous results. The first conditions on (1.1) which imply the validity
of the averaging principle are due to Bogoliubov (see Chapter 4 in [3]),
Gihman [8], and Krasnoselskii and Krein [11], who establish the following:
If the function x — F(x, t) is Lipschitz continuous with a Lipschitz con-
stant that is global with respect to (x, ¢), the function (x, t) = F(x, t) is
uniformly bounded on D ) [0, ) and the convergence in (1.3) holds for
each x € D, where D is any bounded subset of ¢ which contains the
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136 HEUNIS AND KOURITZIN

trajectory {x%(1), 0 = 7 < I} within its interior, then the solution X*(-) of
(1.2) converges to the solution x°(:) of (1.3) uniformly on [0, I] as £ — 0.
A detailed survey of these results, along with many extensions, can be
found in Volosov [22] and Sanders and Verhulst [19].

The question of conditions under which the averaging principle holds
can also be raised in the case where £(¢) in (1.1) is not a single given
function but a random process defined on some probability space. Now
the ensemble of solutions X*(-, w) of (1.2), found pointwise for each w,
constitutes a random process and it is reasonable to expect that if a “‘law
of large numbers’’ effect causes a convergence such as that in (1.3), and
the limiting vector-field F(x) is independent of w, then the solutions X*(-)
of (1.2) should be approximated, in some sense, by the non-random solu-
tion x%) of (1.4) for all small values of e. Indeed, a modification of the
arguments of Gihman [8] gives conditions on (1.2) which ensure that
the quantity

Osupl |X5(7) — x%(7)| (1.5)

converges to zero in probability (for the details see Theorem 3.1 on page
217 of Freidlin and Wentzell [6]), a result which can be regarded as a type
of weak law of large numbers. A corresponding functional central limit
theorem has been obtained by Khas’minskii [10, Theorem 3.1] who formu-
lates conditions on (1.2) which ensure that ¢~ '"2(X*(-) — x°(-)) converges
weakly in C[0, I] to a certain limiting Gauss—Markov process, while
Freidlin [7, Theorem 2.1] associates a rate with the convergence (in proba-
bility) of (1.5) to zero in the form of a large deviations principle.

In this note we are interested in formulating fairly weak conditions on
(1.2) such that (1.5) converges to zero almost surely as € — 0, that is,
there holds a strong law of large numbers for X*(-) corresponding to the
weak law of large numbers mentioned above. Almost-sure convergence
in the averaging principle has received considerable attention in the guise
of the theory of recursive stochastic algorithms (see [15, 12, 2, 17]) where,
in place of (1.1), one considers a difference rather than a differential
equation, and the step size used in solving this difference equation is
allowed to converge to zero (see e.g. (4.1) on page 146 of [17]). Because
the step size decreases to zero, results about a.s. convergence for recursive
stochastic algorithms are usually accompanied by a restriction that, with
probability one, the iterations (generated by the algorithm) are infinitely
often in a certain compact neighbourhood (see e.g. Theorem C on page
146 of [17]), and the proofs of convergence are usually quite long and
involved. Such a restriction is not relevant to our problem, and the proof
of a.s. convergence given here parallels arguments used for establishing
simple strong laws of large numbers (see, e.g., Section 7 in Lamperti [14]).
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The assumed moment bounds are weak, being only slightly greater than
second order, and the type of dependency structure needed for {£(1)} is
strong mixing in the sense of Rosenblatt, which is actually one of the
weaker mixing restrictions for which meaningful results can be formulated.
Moreover, stationarity of {£(¢)} is not assumed.

In Section 2 we state the regularity conditions which are assumed
throughout this note and make some remarks on these conditions. In
Section 3 the proof of the main convergence result is given, while in
Appendices 1-3 useful technical results are collected; these results are
stated in a self-contained manner and are used in the proofs in Section 3.
The main tools of proof are an adaptation to the continuous-parameter
setting of moment bounds for strong mixing processes due to Serfling
[20] and Sotres and Ghosh [21] as well as a maximal inequality due to
Longnecker and Serfling [16].

2. CONDITIONS

Suppose that (Q, #, P) is a probability space on which is defined a
system of RN¢-valued processes {F(x, s, o), s = 0} indexed by x € R¢ and
jointly measurable in (s, w) for each x. The following conditions are
assumed throughout this note:

(C0) There exists a set A, € %, such that P(A)) = 0 and, if
w & Ay, then

f’ |F(©,s)|ds<» forallt=0.
0

Remark 2.1. Throughout this note || is used to denote the Euclidean
norm in RY as well as the absolute value of a real number.

(C1) There exist non-negative functions L(¢, w) and Ly(w) such that,
for almost all w;

T
(1) lim suplj L(t,w)dt = Lj(w) <=
T-= Ty
(i) |F(x, 1 - F(x', 1| = L(t, w)|x — x|, for all x, x’ € R? and
t=0.
In view of (C0) and (C1) there exists some P-null set A € ¥ (not depen-
dent on ¢) such that, for each @ &€ A and & > 0, the ordinary differen-
tial equation

x(1) = F(x(7), 1/e), subject to x(0) = x,, 2.1
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has a unique solution, denoted by X*(7, wv), defined on the interval 0 <
7 < 1. This follows from, for example, the standard theory in Chapter 11

of Reid [18].

(C2) There exist o-algebras {F., 0 = s = 1t < =} such that for each
xand r = 0, F(x, t) is F-measurable with respect to w where

W ¥FCF for0=s=r=x
(i) F CF for0=u=s=s=r=sv=x
(ili) There is some non-increasing function «(-) such that
sup sup |[P(A N B) — P(A)P(B)| = a(1) for0=sr=x(2.2)
20 4e3;
Be#F,,
Without loss of generality, it is assumed that 0 < a(7) < { forall 7 = 0.

(C3) There is some 8 > 0 such that
M2 sup IFO,0).s<* and N2 sup || (1) f,5 < =,
= 1=

where, for any r > 0 and random vector X = (X' - -+ X9), || X||, denotes
the Euclidean length of the vector (|X'||, - - - | X9,) and || Z]|, is the L,-norm
of a random variable Z.

(C4) The Rosenblatt mixing coefficient, «, defined in (C2) satisfies

a(r) = 9

for some constants 8 > 1 + 28", n > 0, and all 7 = 1, where 8 is the
constant of (C3).

(C5) For each x € R7, the limit

F(x) 2 lim % j "EF(x. 1) dt

T-ox 0

exists. Note that by (Cl, ii) and (C3) the above integral is well defined
for T = 0.

Now, by condition (C1) for x, x' € R¢;

|EF(x',t) — EF(x,t)] <supEL(t) - |x' = x| =N - |x’ = x|. (2.3)
=0
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Clearly, in view of (C5) and (2.3), for x. x' € R,

|F(x) - F(x')| = lirrrl sup%fT|EF(x, 1) — EF(x', 1)] dt = Nix — x'|, (2.4)
e 0

so F has a global Lipschitz constant N and the differential equation
i(r) = F(x(r)),  subjecttox(0) = x,, (2.5)

has a unique solution, x%(7), on 0 =< r = |, Moreover, for any = € [0, 1],
1X%(r) — xo <| fo F(x(s)) — F(xo) ds|+7|F(xy)|

and so by the Gronwall inequality (see for example Lemma 1.1 in Chapter
2 of Freidlin and Wentzell [6]) and (2.4),

sup |x(7)| = eMF(xg)| + |xo| 2 D. (2.6)
O<r<l
Moreover, from condition (C3), and Eqgs. (2.4) and (2.6);

I(r) — X7 = f IF((s)) - F(O)| ds + ] "|F©0)| ds
. - 2.7

<(ND + M)|r - 7|

whenever 0 = 7' = 7 =< |. The bounds (2.6) and (2.7) are useful for proofs

in later sections.
The following definitions are made for ease of notation:

F(x,t) & F(x,t) — EF(x, 1) (2.8)

and
[ ¥l £ max [¥(r)] forall ¥ € CI0, 1]. 2.9)
0=r=<|

Remark 2.2. Conditions (C2) and (C4) ensure that there is enough
mixing for a law of large numbers effect to average out the right-hand
side of (1.2). Note the trade-off involved between (C3) and (C4): weak
moment restrictions (corresponding to small values of 8 > 0 in (C3))
require a fast rate of mixing in (C4), while a slow rate of mixing is permissi-
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ble when strong moment bounds (i.e., large values of §) are postulated
in (C3).

Remark 2.3. The strong mixing in the sense of Rosenblatt assumed in
(C2) is among the least restrictive of a variety of mixing hypotheses. A
comparison of mixing conditions can be found in Bradley [4, pages
165-192].

Remark 2.4. In the great majority of applications condition (C1) holds
with L(t, w) = L, for all (¢, w) where L, is a constant. This corresponds
to F(x, t, w) having a global Lipschitz constant L, with respect to x in
(C1). However, there are right-hand sides in (2.1), often suggested by
problems in data-communication and adaptive filtering, where the extra
generality provided by condition (C1) proves useful. For example, if { Y{¢)}
and {(#)} are given random processes defined on a common probability
space such that Y(z, w)is ad by I column vector and (¢, w) is real-valued,
then the continuous-parameter version of a commonly used adaptive filter
(see e.g. (1.1) in Kushner and Schwartz [1]) is given by

Z® = eF(Z%1), 1), t=0,

where

F(x,t,0) 2 —(Y(t) - YI(O)x + Y(O)U(1).

Here there is generally no global Lipschitz constant for F(x, ¢, ) with
respect to x (unless we assume the presence of a uniform bound for the
function (¢, w) — Y(¢, w), which is generally an unacceptable restriction
in adaptive filtering), but, as is seen later, it is easily verified that (C1)
holds if the processes {Y(#)} and {y(¢)} are strong mixing with a suitable
mixing rate. Condition (C1) has been motivated by condition (E4) on page
146 of Metivier and Prioret [17].

Remark 2.5. Our goal is to establish a.s. convergence of X°(*) to
x%) uniformly on the unit interval [0, 1]. One possible approach is to
show that the conditions of the deterministic averaging principle (see,
for example, page 429 of Bogoliubov and Mitropolskii [3]) are satisfied
““pointwise’’ for almost all w. However, proofs of the deterministic averag-
ing principle depend quite strongly on uniform boundedness of the right-
hand side with respect to (x, t) taken over D &) [0, =) where D is some
(usually bounded) subset of R¢. This uniform boundedness condition may
fail to hold almost surely for random right-hand sides F(x, t, w), as can
be seen by considering e.g. the very common right-hand side

F(x, 1, 0) & Ax + £(1),
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where {£(1)} is a strong mixing R-valued Gaussian process and A is a
fixed square matrix. Here, for arbitrary w, there generally fails to exist a
finite number M(w) such that

sup |F(x, t, w)| = M(w)
x€ED

=0

since one cannot ensure that sup,.,|£(7)] < = a.s. for a Gaussian process.
Actually, one can adapt existing proofs of the deterministic averaging
principle to overcome this problem and to fit conditions (C0) to (CS5), but
this requires showing that, for almost all w, one has

l —
lims[ sup [ {F(x,v,®) — F(x)} dv ] =0
e 0=r<e” 1 170
€ XED

for some bounded set D C R¢ which contains the trajectory {x%r), 0 <
7 =< 1} in its interior (see the definition of F(&) after (26.16) on page 432
of Bogoliubov and Mitropol’skii [3] along with the assertion that F(g) —
0 as ¢ — 0). Rather than adopt this approach it is easier to give a direct
proof of convergence.

Remark 2.6. In this note convergence of X*(-) to x°(:) uniformly on
the interval [0, 1] is considered. The results generalise in a trivial manner
to uniform convergence on any finite interval [0, 7].

3. MAIN RESULT

The main result of this note is the following strong convergence resuit.
It is a functional strong law of large numbers for the stochastic averaging
principle when the ‘‘driving’’ random process is Rosenblatt mixing.

ProrosITION 1. Under the conditions (C0)-(C5) of Section 2;

lim|X* - xY-=0 as.,
e—0

e>0

where {X¢(-), ¢ > 0} and x°(-) are as defined in Section 2.

Proof. Without loss of generality the P-null set A originating in the
conditions (C0) and (C1) of Section 1 can be assumed empty since A can
always be subtracted from the underlying probability space ({}, ¥, P) to
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yield a new probability space. Thus we suppose that X*(r, w) is defined

on0=r7<Ilforeache>0and w € ().
Fixanw € Q. Forany0=7=1,0<e =1,

|Xe(r) — x%r)l = “TF(X“(S), sle) — F(x%s), s/e) ds
0

+ 3.1

j "F((s), sle) — EF(xXs), sle) ds
1]

+

"EF(:%s), sle) — F(X(s)) ds
0

and by condition (CI), Eq. (2.8), and Lemma A.2 of Appendix 3 we have

1X¥(r) — x%r)| = j " Lisis, @) X*(s) — x%(s)| ds
0

(3.2)
+ max

O=r=|

JTF(XO(S), sle) ds
0

+ p(e)

for some function p(g) — 0 as £ — 0. By (3.2) and the Bellman-Gronwall
inequality (see [5, page 252])

|Xe(r) — X))
3.3)

=exp (JOI L{s/e, w) ds) {max + p(a)}

0=r=i

JT F(x%s), s/e) ds
0

for all 0 = 7 < 1. But by conditions (C1.i) there is some A(w) < = such that
1 g1
j L(s/e, ) ds = aj L(s,w)ds <A(w) forallo<e=1
0 0
and so there exists constant B(w) < o such that

|X5(1) — x%7)| = B(w) {max

0=r=l

fi’(x“(s), s/e)ds
0

+ p(s)}

forall0=r=1. 3.4

For ease of notation define 7, 2 &', n° £(T,], and

(3.5)

£y A F(X%s/U),s) for0=s=U
ohs) = 0 fors > U,
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where [a] denotes the largest integer not greater than a. We now reduce
convergence (as £ — 0) of the ser of functions {X*(-)} to convergence of
some sequence of functions, to which a.s. convergence arguments using
the Borel-Cantelli lemma can be applied. By (3.4), (3.5), the change of
variables formula, and the fact T, = 1:

+ p(e)}

X — e < Blw) {-— max

7 max jﬂ Fy(s)ds

= B(w) = T f IFT(S) n +1(S)|ds

+ Blw)~ max [ () ds| + B@ple)  (3.6)

T 0<[<n +1

= B(CO) 1 f ’FT(S) n +I(s)| ds

E

max + B(w)p(e)

Vosin,+1

+ Blw)—2 [ Eoyils) ds
n, 0 £

(since 1 + n, = 2T, for all 0 < & = 1). It is now shown that each of the
terms on the far right of (3.6) converges a.s. to zero as ¢ — 0. By (3.5),
(2.3), (2.7), and condition (C1, ii and i) there exists H(w) < o such that

1 (% - N
), 1) = Fr il ds

T

£ nE

TS
s%;fo {L(s, w) + N}[ND + M] (i - i 1) ds (3.7)

_T (T
<(ND + M)i’ﬁf—le—if L(s) + Ndss-’YQTiMH(w),
& 0

£

since by (2.8) and (2.3), F(x, t) has a Lipschitz constant of L(f, w) + N
with respect to x. Now consider the second term on the right of (3.6). By
(3.5) and Lemma Al of Appendix 3;

IF(s)pes=2M + 2ND <,  foralls=0,n=1,2,... (3.8

Thus, in view of conditions (C2) and (C4) and Corollary Al of Appendix
1, there exists some 8 > 0 and I' > 0 such that

2+8
=T - (u—- "2 =[h(t, )]+ (3.9)

E fu F(s)ds
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foralln =1,2,3,...and 0 =<t < u = n where
h(t,u) 2 TR . (4 — ¢),

Thus by (3.9) and Corollary A2 of Appendix 2 (withy 2 1 + /2, » 2
2 + P), there exists some A, > 0 depending only on 8 such that

‘)+ﬂ
}SABFn”B/z, n=123,.. .10

jF(s)ds

{max
0=1=n
By (3.10) and the Chebyshev inequality;

ATn!+82

P { max FEXEVT

N o=r=<n

fF(s)ds >n- B/W*ﬁ)}_

(3.11)
= Agln (A9,

so by the Borel Cantelli lemma;

- max
N o=t<n

]F(s)ds

—0 asn— o a.s, (3.12)

Letting n 4 n,+ 1 in (3.12) for the second term on the right of (3.6),
we have

Xt = x%Yc—0 ase—0 a.s. (3.13)
by (3.6), (3.7), (3.12), and the fact that p(¢) — as e— 0 (see Lemma A2). |

Remark 3.1.  As an example consider the continuous-parameter ver-
sion of the adaptive filtering algorithm mentioned in Remark 2.4 Let
Fl,t,0) £ —(Y(t, @) YT (t, 0))x + $() Y(1) (3.14)

forall x € M9, t = 0, 0 € Q, where {¥(f), t = 0} and {Y(¢), 1 = 0} are,
respectively, real and R ¢ valued jointly measurable stochastic processes
defined on a common probability space (), F, P). We assume that {{i(¢)}
and {Y(?)} satisfy the following conditions.

(A1) There is some § > 0 such that, foralli,j = 1,2, ..., d,

su(;)) Y () Yi)|,.s < and su(;)) W) Y ()]s < =
= =

(where Y(z) is the ith element of the vector Y(¢)).
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(A2) Thereis ad X d matrix R, along with a d-vector b, such that

lim

T 1 T
- T _ .1 _
lim: [ EQOY @) dt =R and lim o [FECOW@) di = b.

(A3) There are o-algebras {F!, 0 = 5 < ¢ =< o} which satisfy (i—iii)
of condition (C2) of Section 2, such that Y{f, w) and ¢(¢, w) are Fi-
measurable in w for all 1 = 0. Moreover, the Rosenblatt mixing coefficient
a(+) for these o-algebras satisfies

a(r) =n779, forallz =1,

where n > 0 and # > 1 + 28! are constants (8 being given by (Al)).
It then follows at once that (C0) and (C2)-(C5) in Section 2 hold, where
F(x) 2 —Rx + b. (3.15)

As for condition (C1), if we define

Lit,w) 2 || Y, ) YT(1, @) |

and

Liw) 2 ||R| forallt=0,0€EQN

(here ||| - ||| denotes the Euclidean norm of a d X d matrix), then it is a
consequence of the law of large numbers for non-stationary strong mixing
processes (see Theorem 2.2 in Sotres and Ghosh [21]) that

1T
IImTL L(t,w)dt = L, a.s.

T—ox
so condition (C1) holds as well. Applying Proposition 1, we see that

sup |X(r) — x°(7) (3.16)

0=r=]

converges to zero a.s. as € — 0, where X °(-) and x°(-) are the solutions of
(2.1)and (2.5) with right-hand sides given by (3.14) and (3.15), respectively.
This strong convergence result complements the convergence in probabil-
ity to zero of (3.16) which was established by Kushner and Shwartz [13,
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page 178] (in the discrete parameter setting) using a method based on the
Stroock-Varadhan martingale problem and weak convergence of probabil-
ity measures. Note that conditions (A1) to (A3) imply only very weak
stationarity restrictions on the given processes {{)(#)} and {¥Y(¢)}, which is
in contrast to many studies of this adaptive filtering algorithm where rather
strong stationarity is often assumed. For example, if (A1) and (A3) hold,
and t — E(Y(t) YT(t)) and t — E(Y(t)¥(t)) are periodic with period A,
then (A2) holds as well with

A
R2 Hﬂ E(YOYT() dt, b2 %f: ECY(O)w(0)) dt.

APPENDIX 1: MoMENT BOUNDS

In the development of Proposition 1 we required moment bounds on
row-wise integrals of an array of continuous-parameter strong mixing
stochastic processes {F (1), t = 0}, for n = 1, 2, ... (see Eq. (3.9)). The
following result, which is a consequence of bounds obtained by Sotres and
Ghosh [21] and Serfling [20], is the main tool for establishing these bounds.

THEOREM Al. Let{X,;,i= 1,2, ...} be a zero mean R%-valued process
on (), %, P) such that

(@ E|X|P**=M<o foralll=i<andsomed >0 and

(b) there exists some non-increasing sequence of numbers {&(j),
Jj=1,2,..}such that

sup sup |P(A N B) — P(A)P(B)| = a(j)
k=1 AEME
BEM:”

(where./l/l,’;é o{X;, a =i< b} forl Sasb<w,M;‘éa{X,-,aSi<
<} for 1 = a < »)and
a(n=mnj=% forallj=1,2,3, ..,

where 1) > 0and 6 > 1 + 287" are constants. Then there exist constants
I' > 0and 0 < 8 < & such that

2+ 8
<[ -m'*8"? (ALD
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for all integers a = 0 and m = 1, where B8 and T depend only on M, 8,
n, and 8.

Proof. Under conditions (a) and (b), Sotres and Ghosh show (see pages
3 and 4in [21]) that there exist finite positive constants ¢, ¢,, 5, depending
only on M, 8, %, and 8, such that

E[m"( D Xi>b:|SC| (AL2)
i=a+1
and

el (e (15 )

f=a+]

<cm™t (Al3)

M?) ~E [m“ (;: X’ﬂ

for all integers a = 0 and m = 1. Now Theorem Al follows from these
bounds and the following theorem which is due to Serfling [20].

THEOREM. Under the conditions (a) of Theorem Al and Egs. (Al.2)
and (A1.3) there exists some I' < = and B > 0 depending only on M, 8,
€y, ¢, and s such that

at+m
E]m'”z z Xilzw <T

i=a+]|

for all integers a = 0andm = 1. |

Remark Al.1. Lines (A1.2) and (Al.3) above. correspond to bounds
(2.9) and (2.10) respectively on page 3 of [21]. The above theorem of
Serfling is a direct consequence of Lemma 2.1 of [20] and the sufficiency
part of Theorem 3.1 of [20]. It should be noted that the proof of the
sufficiency part of Theorem 3.1 continues to hold with no changes at all
when condition (A2) on page 1158 in [20] is replaced with the slightly
weaker condition that (A1.2) hold for all integers a = 0, m = 1.

The next corollary adapts Theorem Al to continuous parameter processes
and is used in line (3.9) of Section 3.

COROLLARY Al. Suppose that {£(s), s = 0} is a zero mean, R%values,
Jointly measurable process on (), ¥, P) such that

(@ E|lE@)**=M<x foralls=0 and some & > 0.

(b) There exists o-algebras {F:, 0 < 5 = 1 < »} which satisfy (i),
(ii), and (iii) of condition (C2), Section 1, such that £(t) is Fi-measurable
inw forallt =0, and let a(-) be as in (2.2).
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(c) There are constants 8 > 1 + 28! (where § > 0 is the constant
in (a)) and m = 0 such that the mixing coefficient a(-) in (b) satisfies

alr) =nyr-? forallr=1.

Then there exist constants I' > 0 and 0 < 8 < 8§ such that

2+ 8

=T -(u—-0"F?  forall0=t=u. (Al.4)

E 'J”f(s) ds

where I and 8 depend only on M, 8, m, and 6.
Proof. Without loss of generality, we assume that n = 2 ¢,

(I) Consider the case 0 = u — t < 1, where ¢t, u = 0. The case t =
u is trivial, so assume that 0 <« — ¢ = 1. For any 0 < 8 < §, we have,
by Jensen’s inequality, Fubini’s theorem, and Holder’s inequality,

u 2+B wllu—¢) 2+p
E f Es)ds| = (u - PPE j £(u — 1)s") ds’
t tie—1)
1/u—1)
<{(u — t)**PE [EWu — t)s)*HE ds’ (Al.5)
Hu-10
wl(u—1n
< (Ll _ t)ZﬂSj (E,f((l«l _ I)sr)'2+5)(2+3)/(2+8)dsv.

Hu-0

Therefore by (Al.5), hypothesis (a), and the fact that 0 = u — 1t < |,

u 2+8
E “ £(s)ds| = (u — 1)?*EMETBIC+Y
t (AL.6)
< (u _ t)l+/3/2M(2+ﬁ)/(2+6)
(II) Consider the case | < u — t, where r, u = 0. Then
u 1+ ] [1e] u
[ewds=[ "ewds+ ¥ X+ | &0ds  as, (ALY
t ' i=2+(1] {u)

where

X,.éf' £s)ds  foralli=1,2,... as. (AL.8)
i-1
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For any 0 < 8 < & we have, by (Al.7), Part (I), and the fact that « —
t>1,

y 248 1+0e) 2+8
E f £(s)ds| =3RLE f £(s) ds
H !
Ju] 2+ u 2+8
+E| > X +E' £(s) ds }
i=2+11] [u]
< 3VPBMBILEDL([f] + | — 1) A2 (A1.9)
[12] 2+8
+(u — [u])'*P?) + 3BE| > X,
=2+t
u] 2+8
=2- 32+/3M(2+m/(2+5)(u _ t)1+/3/2 + 32+ﬁE X
i=2+[1

By Jensen’s inequality, Fubini’s theorem, and (a),
E(Xi\z*ﬁsELi_l\g(s)lz*ﬁdssM, foralli = 1,2, ..., (A.10)
and
EX, = f_lEtf(s) ds = 0. (A.11)
Define
MP A o{X,a<i=b} forallintegersl =a=<b<ox (A.12)

MZ 2 o{X,asi<o} forallintegers | =a<w

{a(j— 1) forj =2,3,...
72° forj =1

lie

a(Jf) (A1.13)

Then M4 C F§, M7, C F5o,-1, and &(j) < 2° 7 for all integers j, k =
1,2, 3, ..., so by condition (b},

sup sup |P(A N B) — P(A)P(B)| = a(j) (Al.14)
k=1 gemt
BEML,;
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Also, é_z(O) = @&(1) = ... . Therefore, by Theorem Al, there are 0 < 8 <
é and I' > 0 depending only on M, 6, m, and 8 such that

2+8
=T(u] = [t1] - D" <T@ — 1)'*F2. (A1.15)

U

E X;

i
i=2+1t)

By (A1.9) and (A1.15), there exists I' > 0 depending only on M, 6, 1, §
and B such that

2+8
=T(u — 1)+ (Al.16)

E U”g(s) ds

and the corollary follows from (A1.6) and (Al.16). |}

Remark A1.2. The essence of the above-quoted bounds of Serfling
{20] and Sotres and Ghosh [21] is that if {X,} is a zero mean sequence,
suitably bounded and mixing, such that

a+m 2
E[(m'”z D X,)] = 0(1) (A1.17)

i=a+1

for all integers a = 0, m = 1, then (Al.17) continues to hold when the
exponent 2 is increased to 2 + 8. It is this constant 8 > 0 which allows
use of the Borel-Cantelli lemma in (3.11).

APPENDIX 2: A MAXIMAL INEQUALITY

The following maximal inequality, established in Theorem 1 of Long-
necker and Serfling [16], is the essential tool in establishing Corollary A2
(which follows), which is the maximal inequality used in line (3.10) of
Section 3.

THEOREM A2. Let X, ..., X, be R¥%valued random vectors. Suppose
there are constants y > 1, v > 0 such that

3 %
k=i

and the function g(-, ) satisfies

W E =[gG,j)l> foralllsisj=<n

(i) gi,))+g(i+1, k=gl k foralllsi<j<k=n.



STOCHASTIC AVERAGING PRINCIPLE 151

Then there exists a constant /im > 0 (depending only on vy, v) such that

l:l<s<n 3

] =4, lg(1,m)].

Remark A2.1. The proof of Theorem A2 given in [16] extends trivially
to R¢valued random vectors with Euclidean norm. A , is defined in terms
of v and y by (2.2) and (2.3) of [16] and it is lmportant to note that A
does not depend on n.

COROLLARY A2. Let {£(s), 0 =< s < T} be an arbitrary contin-
ugus parameter, R-valued, jointly measureable process such that
f |E(s)| ds < = a.s. Suppose that for some constants v > 0 and y > 1,

(A(t, W)} foral0=t=u=T,

(a) E\j"f(s)ds =

where the function h satisfies
(b) h(s, t) + h(t, u) = h(s, u), forall0=s<t=su=<T.

Then there exists some constant A, , (depending only on v, v) such that

E [max ] =A,,[hO, 1.

0=t=T

4
[ s
0
Proof. Fix an integer m = | and define for almost all w
k27

e éj £s)ds  forallk = 1,2, ..., [T2"].  (A2.1)
(k-12-"

Then by (A2.1) and hypothesis (a), for integers 1 =i = j < [T2"],

e[l -] ] -

J
> &
P,
s[h (Lzm—'-zf;)] =[£G, )",

gnlinj) 2 h( 2".1,-2%) foralll <i<j=[T2"]. (A2.3)

j2mm g
[* s
i-n2"

where

409/187/1-12
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Moreover, by hypothesis (b), forall 1 =i =j <k < [T27],

gnli )+ 8, U+ 1LE)<h <l~:,,,~12£,,,) = gn(i, k). (A2.4)

In view of (A2.2), (A2.3), and the Longnecker—Serfling inequality (Theo-
rem A2), there exists some A, , such that

14
] = E[ max
1<j=[T2™)

<A, lg.(1, (T2"D].

S, e
k=1

[" e ds

E[ max
0

0=j=[T2"]

] (A2.5)

Now, let T,, be the largest number of the form 27" such that T = [27"
where [ is an integer. Then, by (A2.5) and (A2.3),

t v - -
E[ max f £(s)ds ] =A4,,lg,(1,T,2M]" = A, [k, T,)}
O=i=T,, |70 (A2.6)
1=07"
<A, [h0, D" forallm=1,2,...,
since by hypothesis (a) #(T,,, T) = 0 and so by hypothesis (b)
h(0,T,) = h(0,T). (A2.7)

But for almost all w,

v

max
0=t=T,

=0""

asm / o, (A2.8)

v
/7 max
0=i<T

jo "£(s) ds fol &(s) ds

The corollary follows from (A2.6), (A2.8), and the Monotone Conver-
gence theorem. |

APPENDIX 3: REQUIRED BOUNDS

LEMMA Al. Assume conditions (C0), (C1), (C3), and (C5) in Section
2. Then, for each 1 = A =2 + §,

sup sup || F((/T), t)||, =2M + 2ND,
T=0 0=¢=T

where F(x, t) is given by (2.8) and x°(-) is the unique solution of (2.5).
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Proof. Fix T > 0and 0 < r =< T, then by (2.8}, condition (Cl.ii),
and (2.3),

|[EGO@/IT), 1) < {L(t, w) + N} [x°@/T)| + |F(, 1) (A3.1)
and so by (2.6), Minkowski's inequality, (C1), and (C3),
IEGC@/ T, O, < (L@, + N)D + |[F0, 1|, <2ND + 2M (A3.2)

forall0=<¢r=T. |
The following result is used in line (3.2) of Section 3.

LEMMA A2. Under conditions (C0), (Cl), (C3), and (CS5) of Section
2, there exists some function p: (0, 1] — [0, %) such that

sup

0=r=l

j TEF((s), sle) — E(x*(s)) ds| = p(e) (A3.3)
0

forall0 < e <1 and

lim p(e) = 0. (A3.4)

e—0
e>0

Proof. This proof uses an argument due to Gihman [8, page 217]. For
each 7 € [0, 1] and € € (0, 1], define

@) & jof (EF(x"(s), s/e) — E(x%(s))} ds (A3.5)
= a[ﬁg {EF (x%(ug), u) — F(x*(ug))} du.
0

In a manner similar to that used in Lemma Al, we find forall 0 = 4 <
-1
e, eg>0,

|EF(x%(ug), u) — F(x"(ue))|<2M + 2ND (A3.6)
and hence by (6.5),
|@%(1) — @°%(r")| < (2M + 2ND)|r — 7’|  forall0=r,7’ <1. (A3.7)

Thus, {©¢, ¢ > 0} is equicontinuous and it remains to show lim @¢(r) =

e—0

0foreach0 =7 =< 1. Fixsuchar, ad >0, define
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Ge(x, s) A EF(x, sle) — F(x) forallxe R4, 0=<s5s=<1, (A3.8)

and find an integer n large enough that

x0(s) — xY ([_n_sl) < 5
n

max m

O=s=1

(A3.9)

Then, by (2.3), (2.4) and (A3.9):
©<(r)| = l [ G5s).5) - G (x° (l—’ﬂ) , s) a’sl
(1] n
+ jT G*® (x“ (Ln_s]) , s) ds
0 n
x%(s) — x° ([_ns_])
n
G€< ([in"ﬂ) ,s) ds‘ .

Now, by (A3.8) and condition (C35), there exists an g4(8, n) such that
[e (x° (5)-1)«
0 n
(H—l)/n
G* ( ( ) )ds
I GS( (3):5) o] +2
n
ilne
Sl Ge( (1))
n
( ([7"1) ) ds
oS () #(el0)
_2.'21 Tfo EF(x p , 5] - Flx " ds

< 712N - max
O=s=|{

+ JOTGS (x" (%s—])s) dsl

<%,
2

+

Jr, 00 (e (52) ) s
[rnlin n ’

’ G* (x” ([—75—]) , s) ds
0

[rn]

<2Z

lTnl
=2

(A3.1D)

A
(NYE-Y)

for all £ < g4(8, n).
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The lemma follows from the equicontinuity of {®¢, £ > 0}, (A3.10), and
As1n. 1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22
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