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Consider the following random ordinary differential equation:
Xe(r) = F(Xe(r), T/e, w) subject to X*¢(0) = g,

where {F(x,t,w), t > 0} are stochastic processes indexed by x in R4, and
the dependence on x is sufficiently regular to ensure that the equation has
a unique solution X¢ (7, w) over the interval 0 < 7 < 1 for each € > 0. Under
rather general conditions one can associate with the preceding equation a
nonrandom averaged equation:

i) =F(«°(r)) subject to x°(0) = xo,

such that lim,_,osupy<, <1 E |X¢(7) — 2%(r)| = 0. In this article we show

that as e — 0 the random function (X¢(-) — 29(-))/1/2¢logloge—1 almost
surely converges to and clusters throughout a compact set K of C[0, 1].

1. Introduction. Consider the random ordinary differential equation
in R4,

(1.1) X*(r) = F(X%(r),7/e,w) subject to X(0) = xo,

where ¢ > 0 is a “small” parameter and {F(x,t,w), ¢ > 0} is an R%-valued
“mixing” stochastic process, for each x € R¢, regular enough to ensure that
(1.1) has a unique solution X*(7,w) over the interval 0 < 7 < 1 for each € > 0
[precise conditions on {F(x,,w), ¢ > 0} will be formulated in Section 2]. Taking
€ — 01in (1.1) corresponds to “accelerating” the right-hand side of the differ-
ential equation, and the limiting behavior (if any) of the X¢(r,w) as ¢ — 0 is
very relevant to many problems in diverse areas of physics and engineering.
If {F(x,t), t > 0} is weakly stationary as well as mixing for each x and if one
defines F(x) 2 EF(x, 0), then it seems reasonable to expect that the solution of
the nonrandom “averaged” ordinary differential equation

(1.2) #0(r) = F(xo(r)) subject to x°(0) = xo,

will approximate X¢(-) for small values of ¢ > 0. In fact, under rather broad
regularity conditions on (1.1), it has been established that the following hold:
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660 M. A. KOURITZIN AND A. J. HEUNIS

(a) lim._osupyc,<; EIX*(r) — x°(7)| = 0; (b) if one defines Y(r, w)£e~1/2
(Xe(T, w) — x°(7)), then the family of processes {Y°(r), 0 < 7 < 1} converges
weakly to a certain limiting Gauss—Markov process as € — 0 (see [10], Theo-
rems 1.1 and 8.1). Moreover, Freidlin [9, Theorem 2.1] develops a large- dev1at10ns
principle for the “weak law of large numbers” in (a).

Motivated by the preceding results, we consider in this article the question
of a law of the iterated logarithm for X¢(-). Our goal then is to prove that as
€ — 0, Y¢(-,w)/+/2logloge~! almost surely converges to and clusters through-
out a compact set K of C[0, 1], the space of continuous functions from [0, 1] into
R4, Previously Tomkins [23] and Lai and Wei [14] have studied laws of the iter-
ated logarithm for weighted sums of the form ¥} ,/( /n)ﬁ, and Y7 ,a;,&;, where
f(.) is a continuous function on [0, 1] and {¢;} is an i.i.d. sequence. Using (1.1)
and (1.2) to write

Yé(r,w) 1

v/2logloge—1 "~ \/2eTlogloge1

-1

X [ /0 "~ {F(X%(es),s) — F(x%es)) } ds|,

one can see that there are certain similarities between the law of the iterated
logarithm of interest here and the laws developed in [23] and [14]. Indeed, our
approach is suggested to some extent by that adopted in [14], although there
are also substantial differences as well. In particular, the proofs in [23] and [14]
are based on rather direct use of exponential inequalities. Because our problem
involves an underlying process which is mixing (rather than independent) and
the interest is in a functional (rather than classical) law of the iterated log-
arithm, we find it more effective first to obtain rate bounds on the Prokhorov
distance arising from the functional central limit theorem associated with the
CI[0, 1]-convergence of X¢(-) to x°(-). These bounds are then used, along with an
approximation theorem of Berkes and Philipp [4, Theorem 1] and a theorem of
Kuelbs [12, Theorem 4.3] (which relates proximity in Prokhorov distance from
a Gaussian measure to iterated logarithm behavior) to obtain eventually the
desired result.

At this point it might not be inappropriate to point out an approach to func-
tional laws of the iterated logarithm due to Stroock [22], who uses a large
deviations principle of Schilder (in place of the Kolmogorov exponential in-
equalities) to prove the celebrated functional law of the iterated logarithm for
Brownian motion due to Strassen [21]. Continuing this approach, Baldi [3] uses
the Wentzell-Freidlin theory for stochastic differential equations with “small”
noise (extended by Azencott [2] and Priouret [20]) to obtain a functional law of
the iterated logarithm for diffusions with a suitably scaled driving Brownian
motion (see (2.6) and Theorem 2.2 in Baldi [3]). This certainly suggests the pos-
sibility of similarly using the large-deviations theorem of Freidlin [9] [for (1.1)]
for the averaging principle. However, the hypotheses associated with this theo-
rem are quite strong and entail uniform boundedness of F(x, ¢,w) [with respect
to (x,¢,w)] as well as a rather nonstandard mixing condition (see condition F

1.3)
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in [9], page 130). Moreover, it is not entirely clear how to adapt the general
approach of Stroock to our problem. For these reasons we have eschewed large
deviations and prefer to use a central limit theorem with rate bound instead.

In Section 2 we list the regularity conditions which will always be assumed
in connection with (1.1); Section 3 contains the statement and proof of the law
of the iterated logarithm, while Section 4 is a collection of results used for the
technical developments in the article.

2. Conditions and notation. Suppose that (2, F,P) is a probability
space on which is defined a system of ®¢-valued processes {F(x,s,w), s > 0}
indexed by x € R¢ and jointly measurable in (s,w) on [0, 0] x  for each x. The
following five conditions will be assumed throughout this article.

(C0) For each w outside some P-null set A; € F, one has fg |F(0,s,w)| ds <
oo, forall0 < ¢ < o0 [henceforth, for any integer m > 1 and x = (x1,...,%Xng)
(S §Rmd, we write |x| e maxi<i<md {xl|] .

(C1) There exist a P-null set Ay € F and a constant N > 0 such that x —
F(x,t) is twice continuously differentiable for each ¢ > 0,w & Ay and

e

Henceforth we often use N2 N - d.

(C2) There are o-algebras {Ff, 0 < s <t < oo} in Q such that F(x,t,w) is
Ft-measurable in w, for each x € R¢, ¢ > 0, where the following hold:

@) FifcFlcF,forall0<u<s<t<uy;

(ii) The F! are strong mixing in the sense of Rosenblatt. That is, if a(7) is
defined for all 7 > 0 by a(r)2 sup |P(AB) — P(A)P(B)| (the supremum being
taken over all A € F¢, B € 7%, and ¢ > 0), then a(r) — 0 as 7 — oo.

(C3) For each x € R?, the process {F(x,t), ¢t > 0} is weakly stationary [i.e.,
EF(x,s) = EF(x,0) and E{F;(x,s)Fj(x,t)} = E{F;(x,0)Fj(x,t — s)},for all 0 < s <
t, 1 <i, j <d]. Moreover, for all p > 1, one has

(x t, w)k} <N,

foralllSL,J,de,xe%d, £>0, we A

M, £ sup ||F(0, t)||p < o0,
£>0

where, for any d-dimensional random vector X = (X;,...,X3) and 1 < r < oo,
we write || X| £ EV7(IX]").

(C4) The mixing coefficient o(-) defined in (C2) satisfies

olr) < nexp(—7") ateachr > 1, for some constants & > 0, n>0.
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In view of (C0) and (C1) the random ordinary differential equation
2.1 #(r) = F(x(1),7/e,w) subject to x(0) = xo,

has a unique solution X*(7, w) defined for all 7 € [0, 1], w & A;UAy, € > 0. More-
over, if one defines an “averaged” right-hand side for (2.1) by F(x) £ EF(x, 0),
then the averaged differential equation

2.2) %(1) = F(x(r)) subject to x(0) = xo,

has a unique solution x%(7), 0 < 7 < 1. In the above and throughout this article,
the initial condition x is held fixed as we study the a.s. asymptotics of X°(-, w)
with € — 0. For later reference, define the following:

2.3) D2 sup %), N2Nd, M=2M; [see(C3));
0<r<1

(2.4)  F(x,t) 2 Fx,t)— EF(x,t) = F(x,t) — F(x),

1>

for each x and ¢. Moreover, for each x define the d x d symmetric positive semi-
definite matrix

25 A2 /0 ooE{(ﬁ*(x, 0) (Fx, 1)) "} + E{ (Fx, 1) (F, 0))"' } dt,

and let {EO(T, @), 0 < 7 < 1} be an R%-valued standard Brownian motion
defined on some probability space @, f ,P). We now define the Gauss—Markov
processes {W(r,&), 0 <7 <1} and {Y%r,@), 0 <7 < 1} on (Q, F,P) by

2.6) dWr) £ AV2(x%(r)) dB%7) subject to W°(0) = 0,
@7  dY%) 2 %g (%) Y(r)dr +dW(r) subject to Y*(0) = 0,

where A(x) = (A2(x))(A/2(x))T. Finally, we define on the original probability
space (2, F, P) the process {Y*(r,w), 0 < 7 < 1}, for each € > 0, by

(2.8) Ye(r,w)& 6_1/2(X€(7', w) — 2%(7)), 0<r<1.

Theorem 3.1 of Khas’'minskii [10] implies that, under conditions which cer-
tainly include (C0)~(C4), the family of processes {Y*(:)} converges weakly to
the limiting process {170(~)} as € — 0. In this note we establish a correspond-
ing functional law of the iterated logarithm (LIL) which is suggested by this
“central limit theorem.” Namely, it will be shown that, for a.a. w, the set of
all C[0, 1]-accumulation points of {Y*(-,w)(2logloge=1)~1/2, ¢ > 0} (taken as
¢ — 0)is equal to the unit ball of the reproducing kernel Hilbert space generated
by the covariance function of the Gauss—Markov process {Y°(-)} in (2.7).

REMARK 2.1. We let C[0, 1] denote the Banach space of all functions x from
T2{1,2,...,d} x [0,1] into R such that 7 — x(i, 7) is continuous on [0, 1], for
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all 1 <i < d, with norm defined by

A .
%l 2 max, %G, 7)|.
0<r<1

The theory of reproducing kernel Hilbert spaces (RKHS) generated by a sym-
metric positive semidefinite function from 7' x T into R has been amply de-
veloped elsewhere (see, e.g., Aronszajn [1], LePage [15] and Kuelbs [12]). For
our purpose we need only the following observation, which follows from Kuelbs
[12], Lemma 2.1 (vi)). If ;1 is some zero-mean Gaussian measure on B £ C[0, 1]
[i.e., each f € B* is a zero-mean Gaussian random variable with variance
fo2(x) dux)] and R(G,0),(j, 7)) 2 E*[x(,0)x(j, ), (G,0),(j,7) € T, is the co-
variance function of 1, then the RKHS generated by R coincides with the Hilbert
space H,, in Kuelbs [12, Lemma 2.1]. (A similar statement can be made if B £ R%,
for some k£ > 1.) If Hy and Hy are the reproducing kernel Hilbert spaces cor-
responding to {W°(:)} and {Y?(.)} [see (2.6) and (2.7)], then their unit balls can
be shown to be

Kw = {¢ € ACo[0,1], Iy(¢) <1} and Ky = {¢ € AC,[0,1], Iy(¢) < 1},

respectively, where

ACol0,1] £ {9 € CI0,1]: (0) = 0, ¢;(-) is absolutely continuous},
1
In(®) & inf{% / WT(shuls)ds: u € Ll0, 11, ¢(t) = A2 (xo(t))u(t)},
u 0
1 /1
Iy(¢) £ inf {§ / uT(s)u(s)ds: u € Ly[0,1],
u 0

$(t) = %% (x°@®) ¢(8) + AM2 (x°2)) u(t)}.

We mention these explicit representations of Ky and Ky for interest only.
These forms will not be used in any of our proofs.

REMARK 2.2. We shall use the following notation due to Kuelbs [12]: If
¢(-) is some function from (0, 1] into a metric space (S, p), then set p(x,A) 2
inf,cs -p(x,y) for any set A C S, and let C{¢(e), ¢ > 0} denote the set of all
possible limit points (if any) of ¢(¢) as € — 0. Finally, we write {¢(¢), ¢ > 0}—A
to indicate (i) p(¢(¢),A) — 0 as ¢ — 0 and (ii) C{¢(e), € > 0} = A.

REMARK 2.3. In many applications the process {F(x,t,w), t > 0} is typi-
cally of the form F(x,t,w) 2 Fy(x, £(t,w)), where (x,y) — Fi(x,y): ¢ x R — R<
is sufficiently regular for (C1) to hold, and {{(t,w), t > 1} is a stationary
process obtained from a given stationary “discrete-time” process {gk(w), k=
0,1,2,...} by &t ,w)2&(w), for all ¢ € [k,k + 1). [Two common cases are (i)



664 M. A. KOURITZIN AND A. J. HEUNIS

Flx,t,w) 2 a(x) + &(t,w) and (i) F(x,t,w) 2 b(x) - £(¢,w), where, in the case of (ii),
&(t,w) must be uniformly bounded in (¢,w) and typically arises from a finite
state Markov chain {{} in the manner indicated previously.] Bradley [5] gives
several examples of processes {{k, k=0,1,2,...} which are strong mixing with
exponentially decreasing mixing rates and thus are sufficient to ensure that
(C4) holds (note in particular Theorems 4.2 and 5.1 and the examples in Sec-
tion 6 of [5], as well as the related Theorem 3.1 of Pham and Tran [19] and
Theorem 1 of Mokkadem [17]).

REMARK 2.4. From (1.3) one sees that the parameter ¢ > 0 determines
not only the range of integration [0,7¢~1] but also affects the mixing process
appearing after the integral sign. This causes some technical complications,
and our approach to resolving this issue uses the full strength of the moment
bounds and mixing rates in (C3) and (C4). These conditions are invoked only
to conclude the proof of Proposition 3.2 (to follow). For all other proofs and
arguments much less restrictive mixing rates and moment bounds suffice.

3. Alaw of the iterated logarithm for {Y®(-),e >0}. The main result of
this article is the following.

THEOREM 3.1. Under conditions (C0)—(C4) of Section 2 one has

{——YL—-—, € > 0} — Ky a.s.,

v/2logloge—1

where Ky is a compact subset of C[0, 1], namely, the unit ball of the reproducing
kernel Hilbert space generated by the covariance function of the Gauss-Markov

process {Y°()} defined in (2.7), and {Y*(-)} is defined by (2.8).
Proor. Define G: C[0,1] — C[0, 1], by G(1)) £ ¢, where

(3.1 (1) = (1) + /T ?g (x%s))¢(s)ds for0 <7 <1.
0

From standard theory of linear integral equations (see [6], Theorem 3.3.2),
corresponding to each ¢(-) € C[0, 1] there is a unique ¢(-) € C[0, 1] which solves
(8.1), so G(-) is well defined on C[0, 1]. Clearly G(-) is one-to-one and onto, and
both G(-) and G~1(-) are continuous and linear. Now, by Proposition 3.2 and 3.3,

/HO!
3.2) —1 >0, Ky as,
{\/210gloge‘1 } v
where Ky is defined to be the unit ball in the RKHS generated by the covariance

function of the Gauss—Markov process {W°( -)} defined in (2.6), and {W5(7), 0 <
7 < 1} is defined by

3.3) Wi(r) 212 / ’ F(x%s),s/e) ds
0
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with F given by (2.4). Since u 2 £(W?) is easily seen to be a Gaussian measure
on B = C[0, 1], it follows from Remark 2.1 and Kuelbs [12, Lemma 2.1(iv)] that
Ky is a compact subset of C[0, 1]. Set

(3.4) Ky £ GIKw];

by the continuity of G, the set Ky is a compact subset of C[0, 1]. Defining Z5(-)
by Z5 £ G(W$), one sees from (3.4) and (3.2) that

(3.5) {—Zi()———, €> 0} —+ Ky a.s.

v/2logloge—1
Moreover, from the definition of {170(-)} in (2.7) it follows that
(3.6) Y0 = GOWO).

If(Hy, ||-|ly) and (Hw, ||-|lw) are the RKHS’s generated by the covariance function

of the Gauss—Markov processes {Y°(-)} and {VT’O(')}, respectively, then it is easy
to see from (3.6), the characterization of RKHS in Kuelbs [12, Lemma 2.1] and
the fact that G(-) and G~1(-) are continuous linear one-to-one functions from
C[0, 1], onto C[0,1], that Hy = G[Hy] and |x|lw = ||G&)|y, for all x € Hy.
Now it follows at once that the set Ky in (3.4) is the unit ball of (Hy, ||-|ly)-
Theorem 3.1 follows from (3.5) and Lemma 3.5. O

3.1. A law of the iterated logarithm for {W5(-), € > 0}.

ProposITION 3.2. Under (C0)—(C4) of Section 2 we have that, for a.a. w,
€ .

m —————Wl( ) - KW

>9 v/2logloge—1

where {W3(7), 0 < 7 < 1} is defined in (3.3) and Ky is a compact subset of
C[0, 1], namely, the unit ball of the RKHS generated by the covariance function
of the Gauss—Markov process {W°(7), 0 < 7 < 1} in (2.6).

=0,
C

3.7

1
€

Proor. Fixanyo € [1/2,1)and pute, = exp(~r?), r =2,3,... .ByLemma 3.4
there exist ¢; > 0 and p > 0 such that the Prokhorov distance between the laws

of {W5(-)} and {WO(.)} satisfies
(LW, L(Wo)) < cyexp(—pr?), r=2,3,....

Now u2 £(WP) is easily seen to be a mean-zero Gaussian measure on B2
CI0, 1]. Hence, by Theorem 4.5(i), one obtains

AN

\/2logloge ‘/_

(3.8) lim =0 fora.a.w,

r—oo
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where Ky is as specified in the statement of the lemma. Now we prove

(3.9) P{lim max W5 - Wirlle =0} =1

r—oo g1<e<er
by adapting an idea of Lai and Wei [14, page 328] for i.i.d. random variables to
the case of C[0, 1]-valued mixing random functions. In order to do this we define

T

T 0
(3.10) Sp(r)2 /0 F(x(s/T),s)ds, 0<7<1,T>0,

0, 0<7<1,T=0.

Then, for any integer p > 3,

2
E l:“:r}l%a:éer ”Wf B W;r CPJ
(3.11) < 22P{EL max |[(¥2 - 83/2)s€-1||f;]

+E[g; max ||s€_1—s€r_1||f;’]}.

ers1<e<er

Now, from Lemma 3.8, one sees that

1/2 _ _1/2 2p 1/2 _ _1/2\2p/__1\P
(3.12) E[e,fg%}ée,”(a &r'")Se-1; ] <er(s” &) (em1)
p
<a{(e—ea) )}

for some constant ¢;. Again, from Lemma 3.8,

eref (o) (et =7

p-1
< cle{(er — &r41) (8;11)} :

where the second inequality follows because (¢, /¢,+1) < e (since o < 1). How-
ever, by the mean value theorem and the fact that 0 < 1, one sees that

(6r — €rs1)e; ! < eor®~1. Thus, choosing an integer p > (2 — 0)/(1 — 0), we
see from (3.11)—(3.13) and the monotone convergence.theorem that

2]
:]<oo,

which is enough to establish (3.9). Equation (3.7) follows easily from (3.8), (3.9)
and the fact that one can choose o < 1 arbitrarily near to 1 in the definition
ofe.. O

IA

B[ max | -S,q]
(3.13) Ers1SESEr

E[ max ||W§ — W

>2 ernn<e<er
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ProprosITION 3.3. Under (C0)-(C4) of Section 2, we have for a.a. w that

(3.14) KW=C{—W—5(')—— £>0},

v2logloge=1’

where {W5(-)} and Ky are as in Proposition 3.2.

Proor. From (C0), (C1) and (C3), one easily sees that ¢ — W5(-): (0,00) —
C[0, 1] is continuous for a.a. w. In view of (3.7) and the fact that Ky is a compact
subset of C[0, 1], hence totally bounded, it follows that

Ws()
(3.15) —_—Ll 1>e>0
{ v2logloge—1 }

is a relatively compact subset of C[0, 1] for a.a. w. Now, we will use this compact-

ness along with Lemma 4.1 to prove (3.14). Fixany0 < < <+ <7 =1,

some 1 < ¢ < 2 and define ¢, £ exp(—r?), for all r = 2,3,... . Also choose an

integer r such that ro > (103m)*/®, (ry — 1)°~! > 2logr, and rq > (2/71)'/2. To
lighten the notation define

T

Unw) 2 [(W;'(Tl,w))T, (Werrg, )7, .., (W;r(fm,w))T] ,

U'@) & [(Wo(rl,w))T, (Wo(Tz,w))T, e (WO(Tm,w))T] T,

where .{WO(T), 0 < 7 < 1} is defined by (2.6). Also, let G, 2 o{U;,...,U,}. Now
le* —e?| < |x —y|, x,y € R, so, for any u € R, r > r¢, one has

Bl {exp (4701) 161} - B{ exp (0, )|

(3.16) < 2B[uT(V, - U,)

+E

)

E{ exp (iuTV;) | gr—l} -E { exp (iu"V;)}

where V, is the md-dimensional random vector whose (i — 1)d + j)-th scalar
component is defined fori=1,...,m, j=1,...,d,by °

et

(3:17) VG-Ddx) a.1/2 /

nrte

i’j (x%(ers), 5) ds,

for all r > rg, and Fis given by (2.4). (From the definition of ry one sees that
r2e7} < et forallr > ro.) Now by (C2)—(C4) of Section 2 and by Lemma 4.7(a),
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there exists a number c¢; > 0, independent of r, such that [setting 2 £ (i — 1)d +]

1 2

-r,-rzer__ -
e/2g1/2 / ' Fj(x%;s),5) ds
0

E|U* — V|

IA

(3.18) c1 (E,Tirzar‘_ll) 1/2

IA

IA

cirexp [—%(r — 1)(‘"1)} .

-1
Using (C2) and (C4) of Section 2, the fact that G,_; C .7-“;’“‘ and Lemma 4.2,
there is a constant ¢y > 0 such that

3.19) E ‘E { exp (u”V;) | gr—l} -E { exp (iu’V;) }'
< 27ra< (rar? — 1)8,__11) < cogr-1,

for all r > ry, u € ®™¢. However, by Lemma 3.4 and the definition of Prokhorov
distance, there are constants c3 > 0 and p > 0 such that

(3.20) 2 (LU, £(0°)) < caef forallr > ro.

[Here IT7(P, Q) denotes the Prokhorov distance between probability measures
P and @ defined on the Borel o-algebra of the md-dimensional vector space
(®™2_|-).] Thus, by the Strassen-Dudley theorem (see Theorem 4.4), there ex-

ists some 2md-dimensional random vector ((~J,T , W)T on a probability space
(Q,, Fr,P,) such that

LWU)=LW,), LX)=LU% and P,(|U, - Y,| > cgef) < cge?
for each r > ry.

Now let g(u), u € ®™?, be the characteristic function of ffo. Then
E{ exp (iuTUr)} —g(w)

exp (iuTlN],) — exp (iuT?,)

;{li}r - ?rl > C35£}}

sE"r[
(3.21)

o, [md|u| AR ANl A AP caag}]
< 2c3ef + md|u|C3sf,

for r > ry, where E, denotes integration with respect to P,. In view of (3.16),
(3.18), (3.19) and (3.21), there is a ¢4 > 0, independent of r, such that

EIE{ exp (iuTU;) | Gr-1} —-g(u)l

3.22)
<cyr®exp (- Br—1D) £,
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for all 7 > ro, |u| < Tr27r%4, where 2 min(p, 1/2). Moreover, one can easily
bound the Gaussian distributed random vector U?, to find some constant c;s
such that

(3.23) B(|0°| > 1Ty) < exp (- esT2) 24,

(see Berkes and Philipp [4], page 43, and observe that cov( ffo) need not be non-
singular for this estimate to be valid, as follows from the comment on page 1015
of Kuelbs and Philipp [13]). If one defines o, 2 16mdT log T, + 4\ 2Tmd + 6,
then it follows that Y, < co; hence, from (3.23), (8.22) and Theorem 4.3, there

exist on some (8, F, P) the md-dimensional vector processes {U,, r > ro} and

{I_J'io), r > ro} such that the following hold:

(@ {U,, r>ro} =p {U,, r >1o};
) {T°, r > ro} is iid. with £T°) = £T°), for r > ro;
(©) limy o | U — ﬁ?l =0, a.s. [P].
By virtue of (b), (c) and Theorem 4.5(ii), it is easy to see that

(3.24) { Ur ,rZro}—>—>KW[7'1--~Tm] a.s. [P],

where K, is as in Proposition 3.2, and the notation Ky [7; - - - 7,,] is defined in the
statement of Lemma 4.1. Now logloge, 1 = slogr and [see (a)] (3.24) continues
to hold a.s. [P] when U, is replaced by U,. Thus, by Lemma 4.1 and a.s. relative
compactness of (3.15), one sees that

&—C —Wir___ CC{—-—W-IE——- 8>0}
4 v/2logloge;? V2logloge-T’ ’

for a.a. w. The arbitrary choice of 1 < o gives one half of the set equality in
(8.14); the opposite half is an immediate consequence of Proposition 3.2. O

3.2. Central limit theorem with rate of convergence for {W(:),e > 0}
(from [11], Lemma A6.1).

LEMMA 3.4. Under (C0)—(C4), there are constants ¢c; > 0, p > 0 and ¢ €
(0, 1] such that

H([,( f),ﬁ(‘ﬁ’ )) <ci1e?, 0<e<e.

Here £(W5) and L‘,(VT’O) are the respective probability measures generated in

C[0, 1] by the processes {W5(-)} and {W°(~)}"in (3.3) and (2.6), and II(P, @) de-
notes the Prokhorov distance between probability measures P and @ in C[0, 1].
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3.3. An a.s. approximation of Y¢ by G(W3).

LEMMA 3.5. Assume (C0)~(C4) of Section 2. If Z £ G(W?), where {W5(-)} is
defined by (3.3) and G(-) is defined by (3.1), then

(3.25) lim |Z] -Y*|c=0 as,
e>0

where {Y*(-)} is given by (2.8).

Proor. PutUj(r) 2 Ye(r)—Z5(7). From (3.1), (2.8), (3.3), (2.2) and (2.1), one
sees that

Us(n) = /T (¥(s,e) — Es,¢)) ds + /T E(s,e)ds +I{(7)
0 0

(3.26) " oF
0 s €
+/0 —a?(x (S),g)Ul(S)dS,
where
U(s,e) & 12 [F (Xe(s), g) —F(xo(s), g)
38.27)
_ a9 <x°<s>, f) Yf<s>] ,
Ox €
E(s,e) & ¢7V/2 [F (xo(s) +e'2Z5(s), Z) — F(x%Gs),s/e)
(3.28)
oF
_ 51/2_8; (xO(s), g) i(s)] ,
. [T |0F oF .
329)  In & /o l@; (xO(s), g) Sl (xO(s))] “(s)ds.

Now, by the mean value theorem and (2.8),

U(s,e) — E(s,€) = [QE (05(3), f) o (xo(s), E)] Ui(s)
ox € Ox €

[for some o(s) on the line joining X*(s) and x%(s)++/Z§(s)], so, by (3.26) and (C1),
T 1
(3.30) lUf(T)l < N/ ‘|Uf(s)| ds+ / |E(s, s)l ds + ||Iillc,
0 0
for 0 < 7 < 1, and by the Gronwall inequality one obtains

1
(3.3D) 1Utlle <& { | 12 ds + lIIillc}-
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Now we show that both of the terms in braces on the right-hand side of (3.31)
go to zero a.s. as € — 0. From (3.28), (C1) and the mean value theorem, one sees
that |2(s, €)| < (3)e!/2dN||Z||%, and applying the Gronwall inequality to (3.1)
gives || Z5|lc < €V||W¢||c, whence, by (3.3),

b

1
(3.32) / |E(s, s)|ds < (%) dNezN{s3/4 max
0

0<t<e—1

t o~
/ F(x%(se),s) ds
0

so, in view of Lemma 3.6 and (3.32),
1
(3.33) lim / I5s,6)ds =0 as.
e—0 Jo

As for the second term in braces on the right-hand side of (3.31), if we let
K(r,u), 0 < 7,u < 1, be the resolvent kernel (see [6], page 139) for the inte-
gral equation in (3.1), then, by definition of Z§ £ G(W$), we get Z5(s) = Wi(s) +
J; K(s,u)W$(u) du, and hence, by (3.29),

(3.34) I5(7) = A*(1) + B*(7),

where one easily sees from (3.3) that

AS(r) = / ’ %’f(xo(s),s Je)Wi(s)ds
0 X

(335) T/e ps _
= 83/2/ / ®4(s)P(u)duds,
o Jo
Bé(t) = /OT %g(xo(s),s/e) /Os K(s,u)Ws(u)duds
(3.36)

T/e _ S u
=55/2/ <I>€(s)/ K(ss,eu)/ *(w)dwduds
0 0 0

for all 0 < 7 < 1. Here we have used the notation
oF (x%es), s)
ax )
for 0 < s < e~! with F defined in (2.4). For ease of notation define T, 2£¢1,
ne 2 [T.] (the largest integer less than or equal to T) and

o°(s) 2 F(x%es),s) and ®°(s)2

(3.37) Grls)2 / "$17(s) . YT w) dv,
A .

forall0 <s < T, T > 0. From (3.35) it is easily seen that

’ 3/2
o < (L52e) " [lava

€

(3.38) ¢

T, :
+ Te—3/2 / |GT5(3) - G,,€+1(s)| ds.
0
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Moreover, since x%(s) has a Lipschitz constant of M + ND in s, while f‘(x, s) and
OF(x,s)/0x; have Lipschitz constants of 2N in x, it is not difficult to see from
(3.37) that

+N } ,

for all 0 < s < T.. It is then clear from Lemma 3.6 that the second term on the
right-hand side of (3.38) goes to zero a.s. as € — 0. As for the first term on the
right-hand side of (3.38), we see from Lemma 3.7 that there is some constant
¢1 > 0 such that E||AY"||4 < cin=2 s0 ||AY"||c — 0 a.s. as n — oo, and it follows
that ||A%||c — 0 a.s. as ¢ — 0. It remains to show that |B¢||c — O a.s.ase — 0,
where B¢(-) is given by (3.35). For all 0 <s < T, T > 0, define

t ~
|Gr.(s) — Gn,11(8)| < 2N(M+ND){T;1d Jmax / F(x°w/T.), u)du
St>de 0

T,

(3.39) Hils) 2 / "K(s/T,/T) / " oUW dudr,
0 0
(3.40) Jr(s) 2 YT (s)H(s).

Then one easily sees from (3.35) that

e 1+n, 5/2 1/(1+n.)
Bl < (R5me) " s

c
(3.41)

Te
#T52 / 1T7.(8) — p.a1(8)] ds,
0

where, as before, T. 2 ¢~1 and n. £ [T.]. Now a tedious calculation involving the
mean value theorem and the uniform boundedness of K(-, -) on the unit square
shows that

|Hr,(s) — Hp,11(5)]
(3.42) Cos’ .\ c3s e
- T2 T§/4(ne +1)3/4 0<t<l4n,

2

bl

¢
/ ®Y/ D) dy
0

for constants cy,c3 > 0; from (3.39) and the uniform boundedness of K(-,-) one
sees that

¢
/ ®YTe(s)ds
0

(3.43) |Hr,(s)| < css max
0<¢<T.

Putting together (3.40), (3.42), (3.43) and (C1) and using Lemma 3.6, it is easily
seen that the second term on the right-hand side of (3.41) goes to zero a.s. as
€ — 0. As for the first term on the right-hand side of (3.41), we can see from
Lemma 3.7 that E|BY"||§ < csn~2 for some c5 > 0, whence || BY/"||c — 0 a.s. as
n — oo; from (3.41) we then get ||B¢||c — 0 a.s. as ¢ — 0. Lemma 3.5 follows
by (3.34). O
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LEMMA 8.6. Under (C0)~(C4) of Section 2, if ny 2 [T, then
T 0 _S_
/0 F<x <T>,s) ds

PROOF. Define Fr(s) 2 F(x(s/T),s), for all w, 0 < s < T. Since the func-
tions 7 — x%(r) and x — F(x,s) have Lipschitz constants (M + ND) and 2N,
respectively, it is easy to see that

/ Fr(s)ds

(3.44) Jim n -3/ max

=0 a.s
T—oo T 0<r<T ’

where F(.) is defined by (2.4).

=3/
T 0<T s

(3.45)

+NWM + ND)}

/ Frany(s)ds

3/4
S np
0<7-< 1+nT

Now, in view of Lemma 4.7(a) and Theorem 4.6 there exists a constant ¢; > 0
such that

(3.46)

6
/ Fy.n(s)ds } <eci(n +1)%

[0<T<n+l

Since ¥n~%2(n + 1)% < 0o, we get (3.44) from (3.46) and (3.45). O
The following technical result is proved in [11], Lemmas A5.2 and A5.3.

LEMMA 3.7. Assume (C0)—(C4) of Section 2, and let A%(t) and B&(r),
0 < 7 < 1, be defined by (3.35) and (3.36). Then there is a constant ¢ > 0 such
that, for all € > 0,

@) E|A%|; <ce? and
(i) E||B|g < ce?.

3.4. A required maximal inequality.

LEMMA 8.8. Suppose conditions (C0)-(C4) of Section 2 hold. Corresponding
to each integer p > 3 there exists some constant op > 0 such that

(3.47) E[ Jmax IS, - sTng] < 0, UU - Y"1,

for U > T > 0, where Sy(-) is defined by (3.10).

PROOF. Suppose that, for each integer p > 3, there is some constant ¢, > 0
such that
(3.48) E[[|S. - Si[&] < cputu — 177,
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for all 0 < ¢t < u. If we set A(t,u) 2 {cou(u — tP~1}/®-D 0 < ¢ < u, then it is
easily checked that

(3.49) h(t,u) + h(u,v) < h(t,v),

for all 0 < ¢ < u < v. Now a simple but tedious calculation using (C0) and
(C1) shows that the function ¢ — S;(:) from [0, co) into C[0, 1] is continuous for
a.a. w. Fix arbitrary 0 < T < U. Then (3.47) follows from (3.48), (3.49) and
Theorem 4.6 (with y2£p — 1, v22p, Q;£8S; and X £ C[0, 1]). Thus, in order to
finish the proof of Lemma 3.8, it remains to show that corresponding to each
integer p > 3 is some constant ¢, > 0 such that (3.48) holds for all 0 < ¢ < u.
Choose some integer p > 3, and fix arbitrary numbers 0 < ¢ < u. Then

.

/‘ru F~’(x°(s/u), s)ds
Tt

(5. - /2]

Tt
/ ®,,(s)ds
0

<2%
(3.50) S2¥E [Jgﬁg‘l

+2%F| max

0<r<1

2p
b

where ®;,(s) 2 F(x%(s/u)s) — F(x%(s/t),s), for all s € [0,¢]. Considering the first
term on the right-hand side of (3.50), we have by the 2N(M + 2ND) Lipschitz
constant of v — F(x%v),s), for all 0 < v < 1 and all s > 0, that |®;,(s)] <
2N(M +2ND)u —t)/u, for all s € [0, ¢]. Thus, from Lemma 4.7(b), corresponding
to p > 3 is some constant b, > 0 such that

2p

3.51) E / Bu)ds| < {h,w)?,

for all 0 < v < w < t, where h1(v,w) 2 (b,)YP{(u — t)/u}*(w — v) (b, does not
depend on ¢ and u). In view of (3.51) and Theorem 4.6, corresponding to p > 3
is some constant 3, > 0 (likewise not depending on ¢ and u), where

(3.52) E [ max
0<v<t

v 2p
/ <Dz‘.u(s)ds ] < ﬂp{hl(o, t)}p S ,prp(u — )P,
0

For the second term on the right-hand-side of (3.50) define the half-overlapping
intervals I; by putting [ 2 [u/(u — t)] (where [a] is the integer part of a),
tiéi c(uw -t fori =0,1,2,...,1, Iié[ti—latz}l] fori = 1,2,...,1 — 1, and
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.

/wf‘(xo(s/u), s)ds

I; = [t;—1,u]. Then

/m F(x%s/u),s) ds

t

<
(3.53) <E [;ixll,ax,l v,mwaé}I(.

:
|

Now by (C1), (C3), (C4) and Lemma 4.7(a), corresponding to p > 3 is some
constant v, > 0 such that

/v F(xo(s/u),s) ds
ti_1

!
< 2% E E[malx
i=1 vel

w __ 2p
(3.54) E / F(xo(s/u),s) ds

v

< plw —v)?,

for all 0 < v < w < u. In view of Theorem 4.6 and (3.54), there is a constant
o, > 0 such that

%p
(3.55) E [max < bt — 8P < 2P0l (u — )P

vel;

/u F(x%s/u),s)ds

ti1

Since (u — t)?1 < u(u — t)?~1, we get (3.48) from (3.50), (3.52) and (3.53), for all
0 < t < u. The case of 0 = ¢ < u is established in the same way but is even
easier since one need be concerned only with the second term on the right-hand
side of (3.50). O

4. Useful results. For convenience we collect here the main results
required for the proofs of Section 3.

Lemma 4.1 is a simple extension to the vector case of Proposition 2 in [18],
page 257. It is used in the proof of Proposition 3.3.

LEMMA 4.1. Let u be a zero-mean Gaussian measure on C[0,1] with co-
variance function R((G,0),(j,T)2Etxi(oxi(7)], 1 <i,j<d, 0 < o,7 <1,
and let K be the unit ball of the RKHS generated by R. For any ¢ € C[0,1]
and {r1,...,7m} C (0,1l with 0 < 11 < T3 <,...,< Ty = 1, set @[r1,...,Tm] 2
@T(ry), ..., @ ()T, and let K1y, ..., mm] 2 {@ln1, ..., Tm]: ¢ € K}. Suppose that
{pr(t,w)} is a sequence of C[0, 1]-valued random variables such that {.(-,w)} is
a relatively compact subset of C[0,1] for a.a. w. If, for each such finite collection
{m,-..,™m} C(0,1], one has

{orlrr,...,mml} > Kl1,...,7m] as., then {o}—K as.
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Lemma 4.2 (due to Dvoretzky [8], Lemma 5.3 on page 528) is also used in
the proof of Proposition 3.3 [see (3.19)].

LEMMA 4.2. Let ¢ be a complex-valued random variable with |€| < 1, and let
F be the o-field generated by &. Then, for any o-field G, ,

E|EE¢|G) - E¢| <2 sup |P(AB) — P(A)P(B)|.
€
Beg

The following approximation theorem is a special case of Berkes and Philipp
[4, Theorem 1]. It is used in the proof of Proposition 3.3.

THEOREM 4.3. Let {X;, k > 1} be a sequence of R%-valued random variables
and let {Fr, k > 1} be a nondecreasing sequence of o-fields such that X is
Fi-measurable. Moreover, let G be a probability distribution on R¢ with char-
acteristic function g(u), u € R%. Suppose that, for each k > 1, there are some
nonnegative numbers X\, o3, and T, > 108d such that

E\E{exp (i(u, Xk))l.?-"k_l} —g(u)j <
for all u with |u| < Ty, and G{u: |u| > 3T} < &.

Then there is a sequence of ®2*-valued random variables {(X’Z‘ , ?{)T, k>1}on
some (Q, F, P) such that (i) {f’k, k > 1} is i.i.d. with marginal distribution G,
(i) {Xs, b > 1} =p {Xi, & > 1} and Gii) P{X, — Yi| > o4} < on, k > 1, where
a1 = 1and oy, 2 16dT; *log Ty + 4\ 2T + 6, k > 2.

The Prokhorov distance between probability measures P and @ on the Borel
o-field of a metric space (S, p) is defined by

II5(P,Q)2 inf {§ > 0: P(A) < Q(A®) +§, for all closed sets A C S},

where A°2{x € S; px,A) < 6}. The following theorem of Strassen and
Dudley (see [7], Theorem 1) is required for the proof of Proposition 3.3 [see (3.21)].

THEOREM 4.4. Let (S, p) be a separable metric space with Borel o-field S.
Suppose Py and Py are probability measures on S such that IIg(P1,P3) < o
Then there is a probability measure @ on the Borel sets of S x S with marginals
P; and P; such that Q{(x,y): p(x,y) > a} < a.

Theorem 4.5 (which is due to Kuelbs [12] Theorem 4.3) is used in the proofs
of Proposition 3.2 [see (3.8)] and Proposition 3.3 [see (3.24)].

THEOREM 4.5. Let (B, ||-|) be either (C[0;1], || - ||c) or (R?,|-|), for some d > 1,
and let {Yy,, k > 1} be a sequence of B-valued random variables. Suppose 1 is a
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mean-zero Gaussian measure on B such that 332, I1g(L(Y}), 1) < oo, where L(Y},)
denotes the distribution of Y}. Then the following hold for a.a. w:

Yk(w) =0
(2logk)1/2 c

(ii) If,in addition to the preceding conditions, the Y}’s are independent, then,
for a.a. w,

(i) -K

k—o0

Yk(w)

where K is the unit ball of RKHS generated by the covariance function of p.

The following maximal inequality is a simple generalization of Longnecker
and Serfling’s maximal inequality (see [16], Theorem 1) to the case of continuo-
us-time processes in a normed vector space. The proof of Theorem 4.6 follows
from the inequality

< 2Y max

a<r<b ’

S|

a<r<s<b
k=r

r v
D>
k=a
for any x4,%441,.--,% in some normed vector space (X, |-||), the proof of
Theorem 1 in [16] (with norms replacing absolute values) along with discretiza-
tion and passage to a continuous limit.

THEOREM 4.6. Let 0 < T < U < oo and suppose that {@:;, T <t < U}
is a process assuming values in some normed vector space X with norm |-||
such that the following hold: (i) t — Q:(w) is continuous on [T, U] for almost
all w and (ii) there exist constants v > 1 and v > 0 such that E||Q, — Q¢||” <
[, )", forall T <t <u < U, where h(t,u)is a nonnegative function satisfying
h(t,u) + h(u, v) < h(t,v), forall T <t <u < v < U. Then there exists a constant

A, ., depending only on v and v such that

1Qu - @ilI*] <Ay [T, V)]

[ T<t< <U

The following moment bounds for strong mixing processes are due to
Khas’minskii (see [10], the statement of Lemma 2.1 and the line following equa-
tion (2.10) on page 215).

LEMMA 4.7. For some positive integer k, let ®1(t), 05(2), ..., Do (¢), t > 0, be
zero-mean stochastic processes on some probability space (Q0, F, P). Suppose each
®,(t) is F}-measurable, where {Ft, 0 < s <t < oo} satisfies condition (C2) of
Section 2 wzth some function af-).

(a) Suppose, for some § > 0, the following hold:
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(i) M2 sup_ [|:@®)|2+6)26—1) < 005
i=1,2,...,2
o0
(ii) R 2 / "o dr <00, n=12,...,k
0

Then there exists a cg, > 0, depending only on k,M',R1,..., R}, such that, for
all0<t<u,

/t " /t ’ |E{@1(51)- - @auloan)}

d31 oo dsy, <cu(u — t)k'

(b) Suppose there is some number N such that the following hold:
@d) |®:(¢,w)] <N forallt>0,i=1,2,...,2k, a.a.w e

oo

>i1) R, 2 1 [a('r)] dr<ooforalln=1,2,... k.
0

Then there exists a constant cg, depending only on k,Ry,...,Ry, such that, for
all0<t<uy,

u u
/ . / |E<I>1(sl)- . <I>2k(32k)| dsy - -dsgp < cop N (u — t)*.
t t
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