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Abstract 

Suppose { i:~ . -co < k < cs} is an independent. not necessarily identically distributed 
sequence of random variables, and {c,},~~~, Id,};“,,, are sequences of real numbers such that 
c, cf < 3~. 1, df < co. Then, under appropriate moment conditions on {CA. -~-x < X c 

w}. ?‘A fi C&L., Eh -,, Zk 2 x2,, d, t:k _, exist almost surely and in C” and the question of 

Gaussian approximation to S~,J ” z;‘i,(~nzi, - E{_~i,ik}) b ecomes of interest. Prior to this 
work several related central limit theorems and a weak invariance principle were proven under 
stationary assumptions. In this note, we demonstrate that an almost sure invariance principle 
for .SL,I, with error bound sharp enough to imply a weak invariance principle, a functional 
law of the iterated logarithm, and even upper and lower class results, also exists. Moreo\cr. 
we remove virtually all constraints on 8:~ for “time” k GO, weaken the stationarity assumptions 
on {ci, --x < k < cc}, and improve the summability conditions on {c,},~,,. {tl,};“,, ah 
compared to the existing weak invariance principle. Applications relevant to this work Include 
normal approximation and almost sure fluctuation results in sample covariances (let tl, ~= c’, ,,, 
for j2, and otherwise 0), quadratic forms, Whittle’s and Hosoya’s estimates, adaptive filtering 
and stochastic approximation. 

Ke,~wwt/.c: Almost sure invariance principle; Linear processes; Non-stationary inno\,ations: 
Covariance process; Law of the iterated logarithm 

1. Introduction 

Linear process models enjoy widespread use in such diverse fields as engineering, 
econometrics, and statistics; and the convergence properties of the sample covariance 
and related processes for such a model is of great interest. Yet, from a mathematical 
viewpoint linear models are often less desirable than mixing-type assumptions since 
diikult manipulations usually arise when striving to establish rate of convergence re- 
sults for the sample covariance of a non-stationary, linear model. Still, the realization 
that not every linear model yields a strong mixing process and the non-encompassing 
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nature of the known sufficient conditions for the strong mixing property (see Withers, 
1981; Gorodetskii, 1977) have resulted in a number of convergence property inves- 
tigations of sample covariance and related processes for linear models. To deal with 
the resulting imposition of difficult manipulations, some authors have introduced a 
martingale approximation to the sample covariance process and then bounded the er- 
ror term. In this note, we strive to ease the process of bounding the error between 
a sample covariance or related process and its martingale approximation, when the 
innovation process of the linear model has finite fourth-order moments, by decom- 
posing this error in a convenient manner. However, of at least equal importance as 
this decomposition is our main result which is an almost sure invariance principle 
with error O(t”2-‘), i. > 0 for the sample covariance and related processes. Our 
result will be established under mild conditions and will imply (see the introduction 
of Philipp and Stout, 1975) that the weak invariance principle as well as various 
laws of the iterated logarithm and upper and lower class results hold for these pro- 
cesses. 

We let yl; e c,E, c,i .z_, and zk e x,pO d, ok_-/, k = 1,2,3, . . . be one-sided lin- 
ear processes subordinated to the same innovations process and note that for most of the 
works listed below the independence assumption on {ck, --M < k < cc} has been 
replaced with a variety of more general assumptions. Then, the works of Anderson 
and Walker (1964) and Hannan and Heyde (1972, Theorem 3) resulted in a central 
limit theorem for the so-called autocorrelation process of {yk, k = 1,2,3, . ..} under 
strict stationarity and the nearly optimal summability condition that C,i j”‘c; < oe. 
In fact, Anderson and Walker showed that normal approximation can continue to hold 
even when &k does not have finite fourth-order moments but, as illustrated in Davis and 
Marengo ( 1990), this is limited to one-dimensional autocorrelation processes. Later, 
Hannan (1976) added the autocovariance process to the class of strictly stationary, 
linear-model-based processes satsifying the central limit theorem under general condi- 
tions including finite fourth-order moments for Ek. Next, in studying the sample co- 
variance process, ( l/N) alit” yk yk+s, Hosoya and Taniguchi (1982) reduced the strict 
stationarity assumption to fourth-order stationarity for their central limit theorem. Sub- 
sequently, Giraitis and Surgailis (1990, Theorem 3) proved a central limit theorem for 
the related process (l/N) c,“l=, yk zk and allowed both yk and zk to be two-sided linear 
processes. Finally, in a complimentary and very interesting set of results, Davis and 
Resnick (1985, 1986) have established weak convergence results for sample covariance 
processes of two-sided linear models to non-normal stable distributions (as well as sev- 
eral other weak convergence results) when ak does not have fourth order moments. 

Although the previously mentioned results are unquestionably important, only weak 
convergence results are obtained and very strong stationarity assumptions are made. 
In this note, we envision our linear process models as generalized stable ARMA-type 
system models where the transients have not fully died out and strive to establish an 
almost sure invariance principle for (l/N) CYX x , ykzh with a rate sufficient to imply 
all classical fluctuation results. It is in this light that we refer to the other central 
limit theorem in Hannan and Heyde (1972, Theorem 2) and the weak invariance prin- 
ciple of Phillips and Solo (1992, Theorem 3.8). These results have obviously sub- 
optimal summability conditions on {cj} and stronger stationarity conditions than we 



wish to use. However, their method of proof relies on martingale approximations for 
which there exist general almost sure invariance principles even under non-stationary 
conditions. Indeed, there are almost sure invariance principles for martingales under 
much greater non-stationarity than we will make use of here (see Philipp and Stout, 
1986; Jain et al., 1975). Still, our motivation stems from situations where mild forms 
of stationarity prevail asymptotically and the almost sure invariance principle of Ebcr- 
lein and Philipp (see Philipp, 1986) will prove to be more manageable for our pur- 
posts. 

The widespread acceptance and use of linear models combined with the lack of 
almost sure fluctuation results for cross-covariance processes of such models should 
be motivation enough for our present work. However, we briefly mention below a 
few situations where normal approximation is of particular interest. Hannan and Hcydc 
( 1972) stress the importance of normal approximation of the autocorrelation process for 
a linear model to the classical inferential theory and apply their central limit theorems 
to autoregression problems. Hosoya and Taniguchi (1982) apply their result to obtain 
an asymptotic theory for Hosoya’s estimate for selecting a least diverged. as haacd 
upon the periodogram of a partial observation, spectral density from a fitted model 
and then apply this asymptotic theory to estimating parameters of an autorcgrcssi\e 
signal when the observed process is corrupted by white noise. Ciiraitis and Surgailis 
( 1990) utilize their previously mentioned result to obtain a central limit theorem t‘oi 
quadratic forms of strongly dependent linear variables and apply this theorem to prove 
asymptotic normality of the parameters in Whittle’s &mate. Our result and method 
contribute to these applications respectively a stronger, almost sure form of Gaussian 
approximation from which all classical fluctuation results for ( I /ni’) Ci~ , ).A -_/, tblloc~ 
and a means (see Remark 4. I ) to reduce the stationarity conditions imposed in these 

works. Finally, we refer to Kouritzin ( 1994) for the relcvancc of the present \~orh to 
the areas of adaptive filtering and stochastic approximation. 

2. Notation 

Let {C/, . -x < k < cc} be a sequence of zero mean, independent random variables 
on some probability space (12,3,P). We will not require that they arc identically 
distributed but rather only the much weaker condition that sup, E(Q 1”” < x for some 
(5 :> 0. Obviously, this condition permits the sometimes separately considered situation 
where i:k E 0 for k < 0. At this point, it is convenient to define the pair of independent 
o-algebras: 

for each m = 0, 1,2, . Then, under the above conditions, it is not difficult to set 
that the partial summations C;l, hi E-_,, CT:, C;“_, u/.,(E_,_/x~_, - E{c_, />;A , } ), 
for any sequences {h,}, {a,,,} such that C,:,j bf < 3~ and XI;=0 a;,, < x, con- 
verge in C3(1?, &,P) respectively C?( 12. FL. P) to limits which we shall denote by 

C:z,j /?I i&,* Cp,j C;“=, U/.j(C-,p/J:kp, _- E{cA- ,_/Q _,}). (Of course, the Kolmogoro\, 
zero-one law ensures that the first series also converges almost surely.) 
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Now we let {cj},Es, {di},z, be two sequences of real numbers satisfying c,EO cj 
< 00, c,E, d; < cc and summarize our remaining notation: 

,vk e 2 cj Ek_j, zk 5 F djEk_j for all k = 1,2,3 ,..., 
j=O j=O 

CT: 5 EC:, q!~k 5 EEL, yk 2 EC: for all k E Z (the set of integers), 
m+n 

S n,m n c ( ykzk -E{ykZk}) for all n,m = 0, 1,2 ,..., 
k=m+l 

sl = ST,0 for all n = 1,2,3, . . . . 

fc,j e C, dj for all j = 0, 1,2, . . . . 

f/,j 5 C,dj+/ +djcj+/ for all 1 = 1,2,3 ,..., j = 0,1,2 ,..., 
cx, 

T,,i e C f/,j for all l,i=O,1,2 ,..., 

llXllp 4. (EIX(p)"p for p3 1, 

and an,m “2 b,,, means that there is a constant c such that lan,J <c lb,,/ for all ~1, m. 

This is a natural extension to the Vinogradov symbol <. 

3. Results and discussion 

Our aim is to produce an almost sure invariance principle for S,, under only mild 
pseudo-stationarity conditions (which do not require all transients to have died out) 
and summability conditions on {Cj} and {dj} comparable to those required for the 
central limit theorems mentioned in the introduction to hold (under stronger stationarity 
conditions). Indeed, we are fortunate to have a powerful theorem due to Eberlein 
and Philipp from which we can conclude that our desired invariance principle holds 
provided, for m > 0, n 2 1, 

(I) /lE{Sn,,~l~flZ}lli Ynf+ for some 8 > 0, 

(II) There exists an C.C~ 20 such that IIE{S~,,/~~}-~z(x21/I 2 n’-” for some E > 0, 
(III) supkaOElyk14+’ < cc and ~up~~~EIzk(~+’ < cc for some 0 < 6 < 1. 
It follows from Theorem 1 of Philipp (1986) that under (I))(IlI) there exists a 

process {S,, n = 0, 1,2, . ..} and a Brownian motion {z(t), t >O} with incremental 
variance r2 on some probability space (Ai, F,p) such that: (a) C({S,, n = 0, 1,2, . ..}) = 

Q{S,, n = 0,1,2 ,... }) and (b) for some A > 0 we have that IS,,, -R(t)1 & t4-l for 
all t > 0 a.s. [p]. 

Remark 3.1. Originally, Serfling (1970, Theorem 4.1) established a central limit the- 
orem under conditions similar to (I)-(III). Later, McLeish (1975, Theorem 2.6) es- 
tablished a weak invariance principle under related conditions. Next, Eberlein (1986, 
Theorem 1) demonstrated how general these type of conditions are and established 
an almost sure invariance principle in the vector-valued case. Finally, Philipp (1986, 
Theorem 1) extended the almost sure invariance principle to Hilbert space valued ran- 
dom variables and concurrently weakened the conditions somewhat. We have stated 
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an R-valued version of Philipp (1986) with the exception that (I) is more stringent 
than it has to be. However, we will not be able to use the extra generality afforded by 
Philipp’s version of (I) so our real benefit of Philipp’s generalization is being able to 
treat (II) as one rather than two parts. 

We now state the main result of this note. Later, in Section 4, we will prove this 
result by establishing (I)-(III) above. 

Theorem 1. Suppose that {ck, -cx < k < w}, {,f,,,}c,, and {S,},:~,, WY OS in 
Section 2 und, spec~@dly, thut 

supq:J+‘) < ix: .for some d > 0 (3.1) 

Morrowr, suppose &jr Some 0 -c 0 < i thut 

FFg,., -fl,,+n)2 2 tzpii n = 1,2,3. . . . . for all 
I= I I-0 

,for all n= 1,2,3 _..., 

,for all n == 1,2,3 . . . . . 

(3.2) 

(3.3) 

(3.4) 

und thrre rxists some x2 3 0 such that 

for ull n, m = 0, 1,2, . . . Then, without changing its distribution, WY’ cun rc&jinc~ the 
seyumct~ {S,,, n = 0, 1, 2, . ..) on u richrr probuhility space on \\hich there ruists 11 
Brolvniun motion {X(t), t 20) with wriuncr dt such thut ,f;w some L > 0 

t 
(SI,~ -X(t)1 << tfeL for all t > 0 as. 

Remark 3.2. (i) Clearly, (3.5) does not impose any restriction on the statistics of 

{,~ r,i, , -x < k < 0). Hence the only restriction on {Q , --x; < k < x} at or before 
“time zero” is through (3.1). Moreover, if yk z ;’ and 0: E o2 for all k = 1,2. .._ (01 
they decay sufficiently fast to these constant values) then (3.5) follows by (3.3) with 

(3.6) 
i-1 

(ii) Next, (3.2)-(3.4) might appear somewhat complicated. However, it follows from 

(3.6) that summability conditions on our coefficients stronger than Cs,,ff, < 9~ are 

required. In fact, it is easily seen that both (3.3) and (3.4) imply Cz, f’:,(, < 30. On 

the other hand, it is an easy exercise to show constraints like cy & ,j- i-“, ~15 & j L ” 

for all ,j> I, which are enough to ensure that ~~,,~~,~, < x, also imply (3.2)-(3.4). 
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Of course, these constaints would not be sufficient to ensure that c,p, IciJ < cc or 
c,EOjc$ < 03 as used in the central limit theorem of Hannan and Heyde (1972, 
Theorem 2) and the weak invariance principle of Phillips and Solo (1992, Theorem 
3.8). Finally, Giraitis and Surgailis (1990, Theorem 3) establish a central limit theorem 

under (stationarity and) conditions somewhat stronger than C~,~~,,, < 30. It would 
be natural to expect that our almost sure invariance principle would require stronger 
summability conditions than their central limit theorem. However, it appears that their 
conditions are not completely comparable to (3.2)-(3.4). 

4. Proof of Theorem 1 

4.1. Martingale approximation and Condition (I) 
The Conditions (I) and (II) of Section 3 are suggestive to making martingale approx- 

imations. Hence, we follow previous developments (see e.g. Phillips and Solo, 1992, 
pp. 972 and 979) somewhat and introduce the C2, {Fm}-martingale: 

M, 2 2 
I 

&J, (E; - 6;) + &k Fj,,, a&[ for all m = 0, 1,2, . . . (4.1) 
k=O /=I 1 

(Using (3.3) we have CT”=, &, < x so C,“=,,i,,, ck-/ E C4( R, 3k-1, P) and the mar- 
tingale property follows easily.) 

As for the error 

R II, m a &,t,* - Mz+,n + Mm, for all n,m=0,1,2 ,..., 

we make use of the following lemma: 

(4.2) 

Lemma 2. Under the conditions of Theorem 1, 

R p.m = Qp + P, + 0, for all m,p=0,1,2 ,... a.s. , (4.3) 

where 

p I p-i- 1 

Qp = Qp,m n c c f;,,+,(~;~-,_; l{kO} - &?,+,I-i Gn+p--i--l), (4.4) 
;=a I=0 

P, = P,, ’ 5 g (.f/,i+, -.f/,i+~+l) (“??-i ‘*-i--l - OL-i l{lyO})* (45) 
r=O /=a 

Op = Op,m ’ - x x-fk-_i.r+l &fp-k h+p-i, (4.6) 
i=O k=p 

“for all m, p = 0, I, 2, . . . . Moreover, 

max{EQi, EP;, EOf,) 22 p’-” for all m,p = 0, 1,2 ,..., 

where 0 < V < 4 is the constant of (3.2)-(3.4) in Section 3. 

(4.7) 



Remark 4.1. (i) It will become obvious during the course of the proof of Lemma 2 
that Q,, and P,, are the projections of S’,.,!, --M,,, :,, + IV,,,, onto the closed linear spans 01 
respectively {I:,. )I,, - of 1 i,._ 1, m < I: s < m-t p} and {I:,- I:,, - 0; I i,.=s), ~ x < r. s <VI}. 
(ii) In light of (3.4), (3.2), and the discussion in Section 2, it is easy to see that O,, 
and P,, arc well defined. (iii) This decomposition and, in fact, all the development 
in Subsections 4.1 and 4.2 require only uniform fourth-order moment conditions on 

{CL. --x < k < x}. Hence, one could use our method and the result of Sertling 
( 1970, Theorem 4. I ) to establish a central limit theorem under our pseudo-stationarity 
conditions hut with weaker moment bounds. 

Proof of Lemma 2. We will first prove (4.7). Fix integers 111, p >O. Then. by (3. I ) 
and (3.4) it follows that 

Moreover, by continuity of inner product, (3.1), and (3.2), WC find that 

Next, we use Fatou’s lemma along with (3.1) and (3.4) to conclude that 

(4.X) 

(4.9) 

(4.10) 

Now, to show (4.3), we again fix integers j~.rn >,O and define C = Span (z, I:,~ 
0; l{,.,,) : -3~ < r.s <m + p} (the C’(R,F. /‘)-closed linear span of {l:,. I:, ’ cii; 
l{,.,,}: --x < r,.s<m + y}). 0 ne can easily show, using only elementary methods, 

that S,,. n,r Klfp, M,,,. Q,, P,,, O,] t C. Hence, the lemma will follow by linearity and 
continuity of inner product as well as the zero-mean nature of S,].,,, ~ A4,,,_, ,’ + A{,,, ~~ 
Q,, -- P,, ~ (I,, if we show that 

E {(S,m, - IV,,,_ ,, + A4, - (I, - P,>)F,- c,~} = E {Cl,, I:,- i:,) (4.11) 
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for all --oo < r<s,<m + p. However, the right-hand side of (4.11) is clearly 0 
except when -cc < r <m < s <m + p. In this case it is -CT,’ 0, fy?_,. m+p_-s+, . 
Noting that 

s P. m - Mm+p + Mm 
m+P 

= c;-h c -gf0,,(8;_j-c&j - &;+o;) 
k=m+l j=O 

N N-J N 

+CCf l,jgk-j-l&k-j - c- .f,,OEk--IEk as. 
j=O I=1 I=1 

(4.12) 

by simple manipulation, one can easily validate (4.11). ??

Of course, Condition (I) is immediately verified through Lemma 2 and (4.2). How- 
ever, this lemma will also be found useful while investigating Condition (II). 

4.2. Condition (II): conditional variance 
Now in preparation of verifying Condition (II), we fix integers m, n > 0 and note by 

the martingale property that 

IIE { (Mn+n -Mm)*l&} - na*ll,= II 2 [E{(Mm+i - Mn+j-~)21%J - a*] 111 
,j=I 

(4.13) 

Next, defining La = KO = 0 and 

wi k-m- I 

Lj ’ c (ci - ~~)f’,,, f c f-l,0 &k Ek-l Ki e Mm+j -Mm - L,i,(4.14) 
k=m+l I=1 

for j = 1,2, . . . . n, we find that 

(12 [E{(Mm+j -Mm+~-~)*lL~ - ~‘1 I/I 
j=l 

+)I ‘&E{(k; -Kj-1)21-%}II~ 
j=l 

However, by (4.14) and (3.5) we have that 

l~E(LJ-Lj-~)2-nY.21 YnleO . 
j=l 

(4.15) 

(4.16) 

Moreover, clearly Kj - Kj-1 = Em+j CEjfl,o Evz+j-l a.s. and C~jf/,o’n~+,i-l E L4 

(Q ~ill>P) so 

as. (4.17) 



and by (4.14) 

E{(L, - L,-I )(K, - &I )IFMI = .f,.,, @m+., 2 .f,., GI +,-i as. (4.18) 
,::, 

Hence, by (4.15))(4.18), Cauchy-Schwarz and (3.1) it follows that 

2 [EWfn,+., - M,+j_1)2(Fn,} - x’] Y n’-” 
/-I 

Finally, because 

by Jensen’s inequality, we have by (4.13), (4.19) and (3.3) that 

NOW. it follows from Lemma 2 that 

IIE{&I -Tm>ll I ‘2 PI-’ 

and from conditional Cauchy-Schwarz, (4.21), and (4.22) that 

~~E{$&G~ - n@*lIt d IlE{R:,,~~l 3,,Ill1 

+2 dm E{(Mn+n II - M,, )’ / Z;,, ) 
II, 

(4.19) 

(4.20) 

(4.21 ) 

(4.22) 

+ IIE{(Mm-,, - Mm )‘I -6, > - xc2 /I I 
Il.07 
<< nl-” + ,&f,i + &! ‘2, ,71--!, 

t 4.23 ) 

4.3. Condition (III ): moment condition 
We assume without loss of generality that ci < 2, let x = 612 and note (see Long- 

necker and Serfling, 1978, Lemma 3.1) that 

so it follows by (4.24) and (3.1) that 

(4.24) 
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Therefore, following the proof of Marcinkiewicz-Zygmund in Chow and Teicher ( 1988, 
pp.368-369) and applying (4.25) and Jensen’s inequality, we find 

E cj ck -J 

;=o 

4+6 

I I &E 

2f% 
x 

2 2 c I cj t,l-j 

/=o 

c,:E;_,~~+‘+~c;~EE;_~. 
J=o ;=o 

(4.26) 
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