This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 91Reinforcement Learning
- 21Machine Learning
- 10Artificial Intelligence
- 6Transfer Learning
- 5Planning
- 5Representation Learning
- 1Abbasi Brujeni, Lena
- 1Abbasi-Yadkori, Yasin
- 1Aghakasiri, Kiarash
- 1Alikhasi, Mahdi
- 1Asadi Atui, Kavosh
- 1Banafsheh Rafiee
-
Fall 2011
This thesis studies the reinforcement learning and planning problems that are modeled by a discounted Markov Decision Process (MDP) with a large state space and finite action space. We follow the value-based approach in which a function approximator is used to estimate the optimal value function....
-
Spring 2021
On July 20, 1969, the Apollo 11 lunar module, with Astronauts Neil Armstrong and Buzz Aldrin aboard, landed on the moon. It was a great achievement in space exploration. Most people know of this mission's success; yet, there is an untold story about this mission that many people are not aware...
-
Spring 2020
Reinforcement learning (RL) has received wide attention in various fields lately. Model-free RL brings data-driven solutions that learn the control strategy directly from interaction with process data without the need for a process model. This is especially beneficial in the case of nonlinear...
-
Spring 2018
Recent advancements in reinforcement learning have made the field interesting to academia and industry alike. Many of these advancements depend on deep learning as a means to approximate a value function or a policy. This dependency usually relies on high performance hardware (e.g., a graphics...
-
Reinforcement Learning-Driven Local Transactive Energy Market for Distributed Energy Resources
DownloadFall 2023
Technological breakthroughs in renewable power generation, battery storage, electric mobility, and advanced data logistics are changing the electric grid. The huge influx of distributed energy resources (DERs), while important to curb carbon emissions, is not without consequences. The highly...
-
Sample-Efficient Control with Directed Exploration in Discounted MDPs Under Linear Function Approximation
DownloadSpring 2022
An important goal of online reinforcement learning algorithms is efficient data collection to learn near-optimal behaviour, that is, optimizing the exploration-exploitation trade-off to reduce the sample-complexity of learning. To improve sample-complexity of learning it is essential that the...
-
Spring 2020
In model-based reinforcement learning, planning with an imperfect model of the environment has the potential to harm learning progress. But even when a model is imperfect, it may still contain information that is useful for planning. In this thesis, we investigate the idea of using an imperfect...
-
Fall 2018
Neural approaches to sequence labeling often use a Conditional Random Field (CRF) to model their output dependencies, while Recurrent Neural Networks (RNN) are used for the same purpose in other tasks. We set out to establish RNNs as an attractive alternative to CRFs for sequence labeling. To do...
-
Fall 2020
For artificially intelligent learning systems to be deployed widely in real-world settings, it is important that they be able to operate decentrally. Unfortunately, decentralized control is challenging. Even finding approximately optimal joint policies of decentralized partially observable Markov...
-
Fall 2019
In this thesis, we investigate sparse representations in reinforcement learning. We begin by discussing catastrophic interference in reinforcement learning with function approximation, and empirically investigating difficulties of online reinforcement learning in both policy evaluation and...