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Abstract

For artificially intelligent learning systems to be deployed widely in real-world

settings, it is important that they be able to operate decentrally. Unfortu-

nately, decentralized control is challenging. Even finding approximately op-

timal joint policies of decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs), a standard formalism for modeling these interactions,

is a NEXP-complete problem. While there has been significant progress in

developing strong teams of agents over the last decade, this progress has been

fragmented among the engineering community, the Dec-POMDP community,

and the deep multi-agent reinforcement learning (MARL) community. This

thesis begins by reviewing the literature of each of these communities in unified

language and formalizes a connection between recent developments exploiting

common knowledge in common-payoff games and two-player zero-sum games.

It then experimentally compares a select group of never-before-compared suc-

cessful training paradigms. Lastly, and most significantly, it identifies and fills

an algorithmic gap existing between the engineering and Dec-POMDP com-

munities, which have proposed algorithms that are asymptotically optimal

but difficult to scale, and the deep MARL community, which has proposed

algorithms that, while scalable, have difficulty solving even small games, by

proposing cooperative approximate policy iteration (CAPI), a novel algorithm

for computing joint policies in common-payoff games. Experiments demon-

strate that CAPI is capable of solving games that are orders of magnitudes

larger than those that have been solved in existing literature.
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Chapter 1

Introduction

In reinforcement learning [72], an agent seeks to learn a policy that extracts a

large cumulative reward from an environment, making it a valuable algorith-

mic tool for many control problems. But the classical reinforcement learning

framework assumes that decision making is centralized in a single decision

maker. In general, a control problem may require multiple decision makers to

act independently. This problem setting is broadly referred to as decentralized

control.

Despite involving multiple agents, the decentralized control problem bears

relatively little similarity to general game-theoretic settings [55] in which agents

possess adversarial incentives and there is not a generally agreed upon notion

of optimality. It is also distinct from other problem settings operating under

common-payoff game formalisms, such as ad hoc coordination [69], in which

some of the agents are externally specified, or emergent communication [34],

in which coordination must arise naturally (not from precoordinated learning

procedures). Instead, in the decentralized control problem, an entity seek-

ing to maximize cumulative reward specifies all agents and may precoordinate

learning procedures.

While the decentralized control problem bears resemblance to the classical

reinforcement problem in that both involve maximizing cumulative reward,

decentralized control presents challenges that do not arise in classical rein-

forcement learning. One distinction is that, in decentralized control, agents

have imperfect information, meaning that some have information that the oth-
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ers do not have (and vice versa). Another is that dynamic programming is

not directly applicable to agents in decentralized control problems because the

value of an agent’s information state depends on its teammates’ policies.

One way to circumvent the latter issue is by alternating maximization [46].

Each agent optimizes its policy in turn, holding the policies of its teammates

fixed. This procedure guarantees convergence to a local optimum, but can

be arbitrarily far away from a global optimality and yields particularly poor

results in games in which good performance requires agents to perform simul-

taneous exploration. A closely related approach is independent reinforcement

learning (IRL) [73], a paradigm in which all agents concurrently execute re-

inforcement learning algorithms. Despite resting on more tenuous theoretical

foundations than alternating maximization, IRL is popular among the deep

multiagent reinforcement learning (MARL) community and has achieved sig-

nificant empirical success in large games.

A second family of approaches is centered around the idea of common

knowledge [47]. By conditioning on common knowledge, a team of decentral-

ized agents effectively acts as a single agent, allowing for the direct application

of dynamic programming. But while conditioning on common knowledge leads

to solution methods capable of finding optimal policies for toy games, these

methods are not immediately applicable to larger games, as conditioning on

common knowledge comes at an exponential cost.

Unfortunately, while a number of important lines of research have emerged

out of these approaches, they exist in largely disjointed communities and there

has been relatively little interaction between them. This thesis takes a modest

step toward addressing this issue by:

1. Offering discussion on the relationship between these lines of work in unified

language and formalizing a connection between methods based on common

knowledge and public subgame decomposition, a recent insight in the two-

player zero-sum imperfect information game community.

2. Benchmarking a collection of successful, yet never-before-compared, train-

ing paradigms arising from these lines of work.
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Finally, this thesis makes its main contribution by recognizing and filling

a gap in existing literature. Lines of research coming out of engineering and

Dec-POMDP communities have produced algorithms that, while recovering

the optimal joint policy in small games, do not scale. Inversely, the deep

MARL community has produced algorithms that, while scaling to very large

games, fail to recover the optimal policy, even in very small games. To bridge

this gap, this thesis proposes cooperative approximate policy iteration (CAPI),

a novel approximate policy iteration algorithm for decentralized control. CAPI

scales a framework originating in the engineering community using artificial

neural networks, insights from the two-player zero-sum game community, and

ideas from the deep MARL community. To demonstrate the efficacy of CAPI,

this thesis employs two common-payoff games from OpenSpiel [33]. Having

as many as tens of thousands of states and as many as hundreds of actions,

these games are orders of magnitudes larger than the common-payoff games

in existing literature that have been solved exactly [16]. CAPI achieves strong

performance on these games, solving (discovering an optimal joint policy for)

both games a majority of the time.

3



Chapter 2

Preliminaries

This chapter introduces game theory, common-payoff games, temporally-extended

games, the decentralized control problem, Markov decision processes, partially

observable Markov decision processes, dynamic programming, reinforcement

learning, and deep reinforcement learning in language intended to be approach-

able for a reader who is already familiar with most (but perhaps not all) of

the topics. Readers who require a more thorough introduction are referred

to Shoham and Leyton-Brown [63] for game theory, common-payoff games,

and temporally-extended games; to Oliehoek and Amato [49] for decentral-

ized control; to Sutton and Barto [72] for Markov decision processes, partially

observable Markov decision processes, dynamic programming, reinforcement

learning; and to François-Lavet et al. [20] for deep reinforcement learning. A

reader with a good understanding of the basics of all of these subjects may

safely skip this chapter.

2.1 Game Theory

A game is a mathematical model describing a relationship between behaviors,

technically referred to as joint policies (also known as policy profiles, joint

strategies, and strategy profiles), and outcomes. Board games such as chess,

checkers, and backgammon are among the most obvious examples. Many real-

world applications, such as auctions, biological systems, consumer product

pricing, security systems, and war bargaining, can also be formulated as games.

But perhaps the most customarily used example of a game is the prisoner’s
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dilemma.

In the prisoner’s dilemma, two criminals, Alice and Bob, are being interro-

gated for two charges. The major charge has a two year sentence. The lesser

charge has a one year sentence. The prosecutor has insufficient evidence to

convict Alice and Bob on the major charge, but sufficient evidence to convict

them for the lesser. To incentivize Alice and Bob to testify against one an-

other for the major charge, the prosecutor offers the following transpose deals

to Alice and Bob, respectively:

• If Alice testifies against Bob for the major charge, the prosecutor will drop

the lesser charge against her.

• If Bob testifies against Alice for the major charge, the prosecutor will drop

the lesser charge against him.

Each of Alice and Bob must decide independently from the other (without

knowledge of the other’s decision).

There are four possible outcomes, which are more concisely described by

Figure 2.1:

1. Alice and Bob remain loyal to one another and refuse the prosecutors deal.

Both serve one year sentences for the lesser crime.

2. Alice betrays Bob and takes the prosecutor’s deal. Bob remains loyal to

Alice and refuses the prosecutor’s deal. Alice gets off while Bob serves three

years for the major and the lesser charge.

3. Bob betrays Alice and takes the prosecutor’s deal. Alice remains loyal to

Bob and refuses the prosecutor’s deal. Bob gets off while Alice serves three

years for the major and the lesser charge.

4. Both Alice and Bob betray one another and take the prosecutor’s deal.

Each serves two years for the major charge.

Among the most important questions about games like the prisoner’s dilemma

are: What should the players do? and What will the players do? Unfortu-

nately, these questions are difficult to answer with generality because what a

5



Alice \ Bob Take Deal Refuse Deal

Take Deal 2y, 2y 0y, 3y
Refuse Deal 3y, 0y 1y, 1y

Figure 2.1: The prisoner’s dilemma.

particular player should do is a function of what the other players will do and

because what the players will do depends on who is playing the game.

A less ambitious question is: Assuming participating agents are perfectly

rational, what are the equilibria of the game? The answer depends on the

precise definition of the equilibrium concept, of which there are many. This

thesis only requires understanding one—the Nash equilibrium. A joint policy

is Nash equilibrium if no agent, after having been informed of the policies of

the other agents, would have anything to gain by deviating from its policy.

Every game is guaranteed to have at least one Nash equilibrium.

In the prisoner’s dilemma, there is only one Nash equilibrium—both Alice

and Bob take the deal. The reason this is a Nash equilibrium is that Alice

receives a lesser sentence by taking the deal than by refusing if Bob is taking

the deal, and vice versa. In contrast, other joint policies are not Nash equilib-

ria because, independent of Bob’s policy, Alice minimizes her prison time by

taking the deal, and vice versa.

Another question that game theory asks of games like the prisoner’s dilemma

is: What are desirable joint policies? In general, this is a difficult question to

answer because agents may have competing interests. But one criteria that is

agreed upon is that a desirable joint policy should be Pareto optimal. A joint

policy is Pareto optimal if no agent can be made better off without making

another worse off. Every game is guaranteed to have at least one deterministic

joint policy that is Pareto optimal.

In the prisoner’s dilemma, there are three deterministic Pareto optimal

joint policies:

• If both Alice and Bob refuse the prosector’s deal, each receives one year

in prison. For either Alice or Bob to receive less than one year in prison,

the other must receive more than one year. Thus, refuse-refuse satisfies the

6
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Figure 2.2: Analysis of the prisoner’s dilemma.

criteria of Pareto optimality.

• If Alice takes the deal and Bob refuses the deal, Alice gets off with no prison

time and Bob serves three years. For Bob to serve less than three years,

Alice must serve prison time. Thus, take-refuse (and, by the same logic,

refuse-take) are Pareto optimal.

There are also an infinite number of non-deterministic Pareto optimal joint

policies. For example, Alice could refuse the deal and Bob could refuse the deal

with probability 1/2 and take the deal with probability 1/2. In this example,

Alice receives an expected sentence of 2 years and Bob receives an expected

sentence of six months. One of them must be made worse off to make the

other better off.

On the other hand, the deterministic joint policy take-take is a not a Pareto

optimal joint policy because a player (in fact both players) would be better off

under refuse-refuse without another player being worse off.

Paradoxically, not only is the Nash equilibrium of the prisoner’s dilemma

not Pareto optimal, it is the only not Pareto optimal deterministic joint policy

in the game, as show in Figure 2.2. This puzzling property of the prisoner’s

dilemma illustrates a fundamental tension between the incentives of the indi-

vidual and the welfare of the collective in strategic interactions: Each agent

acting in its own best interest can lead to a collectively undesirable outcome.

7



2.2 Common-Payoff Games

Common-payoff games are a special subclass of games in which all partici-

pating actors experience the same outcome. One might think that by forcing

participating actors to share the outcome, the tension between the incentive

of the individual and the welfare of the collective would be resolved. Unfortu-

nately, this is only true to a limited extent, as is illustrated by the following

hiker’s quandry.

After two years in prison, Alice and Bob, neither of whom hold grudges,

have reunited. To celebrate their freedom, they decide to go backcountry

hiking together at a local mountain. But unfortunately, on their way to the

summit, they are separated. Having no cell phone service, and little chance of

finding one another in the dense forest, Alice and Bob are each left with two

options: To continue on to the summit or to head back to the car. Because

Alice and Bob must make decisions independently, there are again four possible

outcomes for the pair.

1. Alice and Bob both return the car. They are disappointed that they did

not get to see the view at the summit but happy that they have found one

another.

2. Alice goes to the summit while Bob goes to the car. Both are unhappy

that they have not found one another. Alice cannot enjoy the view at the

summit without the company of Bob. And Bob cannot drive home without

first finding Alice.

3. Alice goes back to the car while Bob goes to the summit. Both are unhappy

that they have not found one another. Alice cannot drive home without

first finding Bob. And Bob cannot enjoy the view at the summit without

the company of Alice.

4. Alice and Bob both go to the summit. They are happy that they are

together and enjoying the scenic view.

These joint policies are described concisely in Figure 2.3 in terms of utilities.

8



Alice \ Bob Car Summit

Car 1 0
Summit 0 2

Figure 2.3: The hiker’s quandry.

A utility is a real number associated to an agent and a joint policy that reflects

that reflects the agent’s degree of satisfaction with the joint policy.1 In general,

different agents may associate different utilities to the same joint policy, as

is the case in the prisoner’s dilemma. However, in common-payoff games, by

definition, all agents associate the same utility (a.k.a. payoff) to each outcome.

Therefore, it is only necessary to write a single utility for each outcome, as is

done in Figure 2.3.

In common-payoff games, all Pareto optimal joint policies receive the same

payoff and it is acceptable to simply refer to these joint policies as optimal,

as is done hereinafter. In the hiker’s quandry, there is only one optimal joint

policy—both Alice and Bob proceed to the summit and enjoy the scenic view

in each other’s company.

On the other hand, there are two deterministic Nash equilibria: Either

both Alice and Bob head back to the car or both Alice and Bob proceed

to the summit. That the former is a Nash equilibrium may be puzzling at

first glance—why wouldn’t they both proceed to the summit and receive the

higher payoff? The answer lies in a careful inspection of the definition of a

Nash equilibrium. For a joint policy to be a Nash equilibrium, it need only

be the case that no player stands to gain from unilateral deviation. If Alice

is told that Bob is going to the car, she only stands to lose from going to the

summit, and vice versa.

There is also one non-deterministic Nash equilibrium in the hiker’s quandry:

each of Alice and Bob go back to the car with probability 2/3 and go to the

summit with probability 1/3. This is a Nash equilibrium because, given Al-

ice’s policy, Bob’s expected utility for going to the car (2/3× 1 = 2/3) is the

same as his expected utility for going to the summit (1/3× 2 = 2/3), and vice

1The actual values of the utilities are only important up to positive affine transformation.
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Nash
EquilibriumSummit

Car

Car Summit

Figure 2.4: Analysis of the hiker’s quandry.

versa. Thus, neither Alice nor Bob has any incentive to deviate, despite that

this Nash equilibrium is even worse than the one in which they both go to the

car.

The status of Nash equilibria in the hiker’s quandry, shown in Figure 2.4,

is reflective of broader properties of common-payoff games. In common-payoff

games, all optimal joint policies are Nash equilibria and at least one of these

is guaranteed to be a deterministic joint policy. This contrasts general-sum

games (the general case in which agent utilities need not observe any partic-

ular structure), in which, as is observed in the prisoner’s dilemma, there may

not exist any Pareto optimal Nash equilibria. But like general-sum games,

common-payoff games may have arbitrarily suboptimal Nash equilibria. For

example, if the payoff for car-car were −1010 and the payoffs for car-summit

and summit-car were −1010 − 1, car-car would still be a Nash equilibrium.

Thus, while the tension between the incentives of the individual and the welfare

of the collective is lessened in common-payoff games, it remains a significant

challenge.

2.3 Temporally-Extended Games

Despite having prematurely ended their hike, Alice and Bob remain in a cele-

bratory mood and head to the local casino to play guess the hat, their favorite
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Figure 2.5: Guess the hat.

gambling game. The game has a $2 entrance fee and proceeds as follows.

1. First, the dealer flips a fair coin.

• If the coin comes up heads, the dealer hides $3 under the right hat.

• If the coin comes up tails, the dealer hides $3 under the left hat and asks

Alice whether she would like to opt out of the game. If Alice opts out

of the game, Alice and Bob are refunded their $2 entrance fee and the

game ends.

2. If the game has not ended, Bob, who is unaware of both the outcome of the

coin-flip and whether Alice has been given the option to opt out, guesses a

hat.

• If Bob guesses the hat with $3 underneath, Alice and Bob get to keep

the $3 (netting $1 in aggregate).

• Otherwise, Alice and Bob do not win any money (and are not refunded

their $2 entrance fee).

The guess the hat game described above differs from the games that have

been described so far in that it takes place over multiple time steps. While it is

possible to express temporally-extended interactions in normal-form, the table

representation that was used to express the prisoner’s dilemma and the hiker’s
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quandry, it can be very inconvenient to do so. Instead, it is easier to represent

such interactions in formalisms explicitly designed for temporally-extended

interaction. Figure 2.5 expresses the guess the hat game in an extensive-form

representation, one such formalism.

In extensive-form representation:

• The node labelled C (for chance) represents a probabilistic event.

• The apricot colored nodes represent decisions that Alice makes.

• The blue colored nodes represent decisions that Bob makes.

• The squares represent the end of the game. The numbers inside of the

squares represent the utility corresponding to that trajectory.

• The horizontal line between Bob’s rightmost nodes means that Bob is un-

able to distinguish the two nodes. In other words, Bob’s policy must dictate

a single distribution over actions for both of these nodes. Games in which

players have access to different sets of information are called imperfect in-

formation games.

Because Bob is unable to distinguish the situation in which the $3 is under

the right hat from the situation in which the $3 is under the left hat, it is

not possible for Alice and Bob to win $1 every game. The best that can be

done is for Alice to always opt out. That way, Bob knows that if the game

proceeds, the $3 will be under the right hat. This optimal joint policy yields

an expected $0.50.

By first glance, temporally-extended representations, having chance events

and imperfect information, might appear more difficult to handle than normal-

form games, for which the optimal policy can be found simply by scanning over

the payoff matrix. One might ask: Can we just convert the game to normal-

form and then solve it? Unfortunately, while this works for very small games,

it is not a scalable approach. Converting an extensive-form game to normal-

form is exponentially expensive. The size of the induced normal-form game

quickly reaches astronomical proportions.

12



A reader may counter: If we must deal with games in some temporally ex-

tended representation, can we at least get rid of imperfect information? It may

be necessarily for gambling or board games, but in real-world applications we

could equip the agents with communication devices. This is a fair point, and

in many applications it is indeed possible to remove imperfect information by

equipping agents with communication devices. Unfortunately, it is not always

so. In some applications, communication devices may be too expensive to be

worth the cost. In others, they may pose a security risk. And even when

agents can be equipped with communication devices, it does not necessarily

guarantee perfect information—communication may be delayed or of uncer-

tain reliability. Thus, imperfect information must be accepted as a reality of

temporally-extended common-payoff games.

2.4 The Decentralized Control Problem

There are a number of important problem settings taking place within temporally-

extended common-payoff games. In the ad hoc coordination setting [69], the

objective is to train an agent to spontaneously cooperate with other, exter-

nally specified, agents. In the emergent communication setting [34], a team

of agents must learn to communicate naturally, meaning there can be no ex

ante (before the event) coordination. In the decentralized control setting, the

objective is to produce a team of ex ante coordinated agents that generate a

large utility.

There are many more specific variants of the above problem settings. This

thesis regards a specific variant of the decentralized control problem. In the

variant considered in this thesis, the team of agents is given an exact simulator

for the common-payoff game of interest and may generate their joint policy by

any means. In particular, this setting allows for centralized training, meaning

that agents may communicate during training within the common-payoff game

in ways that they may not be allowed during execution. Note that this setting

does not allow for centralized execution, meaning that, during execution (i.e.

test time) agents must obey the constraints of the game, which may not have
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been adhered to during training. This variant of the decentralized control

problem is henceforth referred to as the decentralized control problem with

the understanding that the above qualifications apply.

The decentralized control problem can be thought of as a single entity seek-

ing to maximize its utility in a control problem requiring multiple decision mak-

ers. In this respect, the decentralized control problem is not game-theoretic, as

it involves no strategic interaction between agents. Instead, the decentralized

control problem is better thought of as an optimization problem—a problem

in which the objective is to maximize an objective function subject to some

constraints. In particular, the decentralized control problem is about optimiz-

ing the utility function, subject to the constraint that the input be a joint

policy.

2.5 Single Player Games

A special edge case of the decentralized control problem is common-payoff

games in which there is only one player. Such games can be expressed as

Markov decision processes (MDPs) or partially observable Markov decision

processes (POMDPs).

2.5.1 Markov Decision Processes

An MDP is a tuple 〈S,A, p〉 where:

• S is a set of states.

• A is a set of actions.

• p is the dynamics function specifying the probability p(s′, r | s, a) of

transitioning to the state s′ ∈ S and the emitting the reward r ∈ R

given the state s ∈ S and action a ∈ A.

In an MDP, rather than receiving a utility at the end of the game, an agent

may receive incremental rewards throughout the game. The agent’s utility is
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Figure 2.6: An agent interacting with an MDP.

equal to the sum of these rewards.2

The agent-MDP interaction loop is shown in Figure 2.6. At each time

step, the agent decides an action a based on its current state and passes that

action to the MDP. The MDP samples a reward r and a next state s using the

dynamics function p, the current state, and the action a. The MDP passes r

and s to the agent for its next decision.

2.5.2 Partially Observable Markov Decision Processes

That the next state and reward of an MDP depend only on the current state

and action make MDPs easy to work with. But, as has been discussed, the

agent may not be able to observe the underlying state of the world. In these

cases, it is more natural to express the environment as a POMDP. A POMDP

is a tuple 〈S,O,A, p〉 where:

• S is a set of states.

• A is a set of actions.

• O is a set of observations.

• p is the dynamics function specifying the probability p(s′, o, r | s, a) of

transitioning to the state s′ ∈ S and emitting observation o ∈ O and

reward r ∈ R given the state s ∈ S and action a ∈ A.

2This thesis assumes a finite horizon setting. In an infinite horizon setting the agent’s
utility is either a discounted sum of rewards or the average reward.
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Figure 2.7: An agent interacting with a POMDP.

When interacting with a POMDP, the agent observes observations rather

than the underlying state, as shown in Figure 2.7. This is a crucial difference.

In an MDP, an optimal policy need only condition on the state most recently

emitted by the environment. But in a POMDP, there generally does not exist

an optimal policy that only conditions on the the most recent observation.

There are two general theoretically sound ways of resolving this problem. Each

amounts to converting the problem to an MDP. In the first, called a history

MDP:

• Each state is a history h = (o0, a0, r1, o1, . . . , ot) of the agent’s inter-

action with the POMDP, from the perspective of the agent, where the

superscripts denote the time step.

• Actions are those of the POMDP.

• For history h′ ≡ (h, a, o, r), the transition probability is given by

p(h′, r | h, a) = E
s∼p(S|h)

p(o, r | s, a).

Because the agent’s history contains all information the agent has access to,

an optimal policy for history MDP gives an optimal policy for the POMDP.

In the second, called a belief MDP:

• Each state is a distribution b over the states S. These distributions are

called belief states.
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• Actions are those of the POMDP.

• Given a belief state b, an action a, a reward r and an observation o, the

next belief state b′ = τ(b, a, r, o) is defined by

b′(s′) ∝ E
s∼b

p(s′, o, r | s, a).

The transition probability in the belief MDP is given by

p(b′, r | b, a) =
∑

o:τ(b,a,r,o)=b′

E
s∼b

p(o, r | s, a).

Belief states capture all information relevant for the agent’s decision making.

Thus, an optimal policy for the belief MDP gives an optimal policy for the

POMDP.

2.6 Solving Single Player Games

The reason that single player games merit special attention is that there exist

principled and efficient (in the case of MDPs) algorithms for solving them. This

section discusses two closely related families of such algorithms for MDPs.

The first, dynamic programming methods, assume white box access to the

dynamics function p, meaning that the exact function is known. The second,

reinforcement learning methods, assume black box access, meaning that p can

be sampled but its internal values are not known.

2.6.1 Dynamic Programming

To introduce dynamic programming, it is first necessary to formally introduce

the notions of a policy and value function. A policy π : S → ∆(A) is a function

mapping from states to distributions over actions. Given some policy π, the

corresponding value function vπ : S → R maps a state s to the expected reward

that π accumulates from state s. The optimal value function v∗ maps each

state to the maximum expected cumulative reward that can be achieved from

that state. Any policy π whose value function vπ = v∗ is optimal.3

3Additionally, any policy which achieves the optimal expected return may be informally
referred to as optimal. This section uses the term formally. Later parts of the thesis use it
informally.
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Dynamic programming methods are based on Bellman’s equations, which

relate the expected value of states to the expected value of their successors.

Value Iteration

Value iteration uses the Bellman optimality equation

v∗(s) = max
a

E
r,s′∼p(R,S|s,a)

r + v∗(s
′).

The Bellman optimality equation states that the optimal value of a state is

equal to the expected sum of the reward and the optimal value of the next state,

for the best action. By induction, it can be observed that the optimal value

function satisfies the Bellman optimality equation and that a value function

satisfying Bellman’s optimality equation must be the optimal value function.

Value iteration works by beginning with an arbitrary real-valued function

over the state space v0 : S → R and iteratively applying the Bellman optimality

equation as a backup operator

vk+1(s)← max
a

E
r,s′∼p(R,S|s,a)

r + vk(s
′).

Assuming finite horizon T , it is easily shown by induction that value iteration

converges to the optimal value function after T iterations. Given the optimal

value function, an optimal policy can be constructed using the greedification

operator

π∗(s)← arg max
a

E
r,s′∼p(R,S|s,a)

r + v∗(s
′).

The above equation should be understood as an abuse of notation by which

it is meant that π∗(s) is assigned such that its support is restricted to the arg

max actions.

It also possible to do value iteration using state-action values instead of

state values. In this case, value iteration uses the Bellman optimality equation

q∗(s, a) = E
r,s′∼p(R,S|s,a)

r + max
a′

q∗(s
′, a′).

Again, it follows from induction both that an action-value function is the

optimal action value function if and only if it obeys Bellman’s equations and
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that applying the Bellman optimality equation as a backup operator

qk+1(s, a)← E
r,s′∼p(R,S|s,a)

r + max
a′

qk(s
′, a′)

converges to the optimal state-action value function after T iterations for

games of finite horizon T . Given the optimal state-action value function q∗,

an optimal policy can be constructed using the greedification operator

π∗(s)← arg max
a

q∗(s, a).

Policy Iteration

Policy iteration uses the Bellman equation

vπ(s) = E
a∼π(s)

E
r,s′∼p(R,S|s,a)

r + vπ(s′).

The Bellman equation states that the value of a state is equal to the expected

sum of the reward and the value of the next state, when the action is sampled

according to the policy. By induction, a value function is the value function

corresponding to the policy π if and only if it satisfies π’s Bellman equations.

Policy iteration works by alternating between evaluating and greedifying

the policy. It begins with an arbitrary policy π0. It evaluates πk by itera-

tively applying the Bellman equation as a backup operator to each state. By

induction, for a finite horizon T , the sequence converges to vπk after no more

than T iterations. Given vπk , policy iteration produces πk+1 by applying the

greedification operator

πk+1(s)← arg max
a

E
r,s′∼p(R,S|s,a)

r + vk(s
′).

In aggregate, policy iteration looks like

π0
evaluation−→ vπ0

greedification−→ π1
evaluation−→ · · · greedification−→ π∗.

Again, by induction, it can be observed that policy iteration coverges to an

optimal after T iterations of evaluation and greedification, for an MDP of finite

horizon T .
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2.6.2 Reinforcement Learning

While dynamic programming offers an efficient path to an optimal policy, it

requires white box access to the dynamics function p, meaning that the exact

function must be known. In contrast, reinforcement learning methods only

require black box access, meaning that it need only be possible to sample

trajectories from p. Intuitively, this means that the agent is able to interact

with the MDP as it would at execution time but that it is not privy to p

itself. This sections reviews epsilon-greedy Q-learning and policy gradients,

two foundational reinforcement learning algorithms.

Epsilon-Greedy Q-learning

The first, epsilon-greedy Q-learning, can be thought of as a form of approxi-

mate asynchronous (state-action) value iteration. Given a state s, with prob-

ability ε, epsilon-greedy Q-learning selects an action at uniform random and,

with probability 1 − ε, selects an action in arg maxa q(s, a). In other words,

it acts randomly ε of the time and greedily the rest, hence the name epsilon-

greedy. After acting, it receives (r, s′) ∼ p(R, S|s, a) from the MDP and up-

dates the state-action value q(s, a) toward the target r + maxa′ q(s, a
′). Note

that this update rule is essentially the same as that of state-action value iter-

ation, except that the target is sampled instead of taken in expectation and

the update only moves q(s, a) in the direction of the target rather than setting

it exactly to the target. This difference is necessary to satisfy the requirement

that reinforcement learning only assumes black box access to the MDP.

Epsilon-greedy Q-learning is considered approximate value iteration be-

cause it makes updates using samples rather than the full expectation. It is

considered asynchronous because it may update some state-action pairs mul-

tiple times before updating other state-action pairs. Given a particular learn-

ing rate schedule, it can be shown that epsilon-greedy Q-learning converges

asymptotically to the optimal state-action value function [7].
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Policy Gradients

In contrast to value-based methods, policy gradient methods work by directly

optimizing the policy. Observe that the utility of a policy can be written

u(π) := E
(s0,a0,r1,s1,...,rT )∼P (S0,A0,R1,S1,...,RT |p,π)

T∑

t=1

rt

where superscripts denote the time step. Taking the gradient of both sides, it

follows that

∇θπu(π) = E
(s0,a0,r1,s1,...,rT )∼P (S0,A0,R1,S1,...,RT |p,π)

T−1∑

t=0

∇θπ log π(at | st)
T∑

t=1

rt.

This equation is written in terms of an expectation over trajectories, exactly

the form required to do updates with black box access to p. The policy gradient

algorithm implemented using this equation is called REINFORCE [78].

In practice, it is unusual for policy gradient methods to be implemented

using the above equation because it exhibits high variance. A lower variance,

but also unbiased, equation for the gradient is

∇θπu(π) = E
(s0,a0,r1,s1,...,rT )∼P (S0,A0,R1,S1,...,RT |p,π)

T−1∑

t=0

∇θπ log π(at | st)(qπ(st, at)−vπ(st)).

This update rule is commonly seen in practice using concurrently learned es-

timates of qπ and vπ. The value qπ(st, at)− vπ(st) is called the advantage.

In the tabular case, policy gradient methods can be shown to converge to

the optimal policy under certain restrictions [8].

2.7 Deep Reinforcement Learning

While tabular dynamic programming and reinforcement methods are effective

tools for solving MDPs, they are nevertheless too slow and memory intensive

to be practical for very large MDPs. Deep reinforcement learning is a recent,

rapidly expanding, line of research that aims to produce strong, though not

necessarily optimal, policies for very large MDPs. The characterizing feature

of deep reinforcement learning algorithms is that, rather than keeping tabu-

lar functions of state, it parameterizes functions of states with deep learning

architectures.
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Introducing deep learning into the training loop drastically increases the

number of required design choices. There has been significant work on devel-

oping best practices regarding what transitions to replay [59]; how to compute

learning targets from those transitions [25]; what learning architecture to use

[15]; how to do distributed learning [27]; how to do recurrent learning [30];

how to do model-based reinforcement learning [60]; how to do exploration [5];

how to implement policy gradient methods [23], [61]; and many other subjects.

While these matters are of crucial importance to the performance of reinforce-

ment learning agents, they are each expansive topics in their own right. The

body of this thesis will largely omit details on these subjects, including them

only insofar as they are necessary to understand recent progress in decentral-

ized control.
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Chapter 3

Background and Notation

Roughly speaking, modern algorithms for decentralized control fall into one of

two families:

1. Those based on aspirations of player-by-player optimality.

2. Those based on common knowledge.

This chapter discusses background necessary to understand player-by-player

optimality and common knowledge and introduces suitable notation for de-

scribing algorithms based on these ideas.

3.1 Player-by-Player Optimality

The first family of approaches is based on notions of player-by-player op-

timality, also known as person-by-person optimality [40]. A joint policy is

player-by-player optimal if and only if it is a Nash equilibrium. Formally, a

joint policy π is a Nash equilibrium (or equivalently, player-by-player optimal)

if the expected utility of π is greater than the expected utility achieved by a

unilateral deviation from π. Symbolically, this is written as

u(π) = max
i

max
π′i

u(π−i, π
′
i),

where u denotes the expected utility function and π−i denotes the policies of

each player except player i.
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3.2 Common Knowledge

The second family of approaches is based on the idea of common knowledge.

Common knowledge has long been a subject of investigation in philosophy

[37], [76], multiagent systems [24], and (epistemic) game theory [4], [52], [53].

Let KG
1 be the set of information known to all agents in group G. Let KG

i+1

be the subset of KG
i that is known by all agents to be in KG

i . Then

KG
common

:= ∩∞i=1K
G
i

is common knowledge among G. The significance of common knowledge

is that the inclusion status of any proposition is known by every member of

the group. In general, the same cannot be said for the set KG
i for any i ∈ N.

This distinction has important implications regarding the abilities of groups

of agents to coordinate their actions. To gain intuition for this, consider the

following thought experiment.

Alice and Bob are participating in a cooperative game show. Partway

through the game show, the host comes up behind Alice and Bob and

places a red hat on the head of each. Because Alice and Bob are in plain

view of one another, it is mutually clear that Alice knows the color of

Bob’s hat, and vice versa. But they are both unaware of the colors of the

hats on their respective heads. After this, one of three events occurs.

1. The host does nothing.

2. The host informs Alice, in view of Bob but such that Alice is unaware

that Bob is observing, that at least one of the two has a red hat, and

vice versa.

3. The host publicly announces that at least one of Alice and Bob has a

red hat.

Following this event, the host asks: “Do you know whether your own hat

is red?” Both Alice and Bob, obligated to respond honestly, answer “No”.

Now Alice and Bob must simultaneously and separately decide whether to
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opt in or opt out. If both Alice and Bob opt out, they keep their existing

winnings. If both Alice and Bob opt in and have red hats, they double

their winnings. Otherwise, they lose their winnings. Assuming that it

is common knowledge among Alice and Bob that both are loss-averse,

self-interested, and have strong deduction skills, what happens?

In variant (1), the answer is that both Alice and Bob will opt out. Both

knows that the other’s hat is red but have no information about the color of

their own hat. Therefore both of them will reason that the loss-averse decision

is for both of them to opt out.

In variant (2), both Alice and Bob can reason that both of them have red

hats. Like variant (1), each of Alice and Bob knows that the other’s hat is red.

Thus, each of Alice and Bob knows that at least one of them has a red hat.

Additionally, as a result of event (2), each knows that the other knows that at

least one their hats is red. Thus, prior to the host’s question, both Alice and

Bob know that both Alice and Bob know that at least one their hats is red.

Each of Alice and Bob can use this information to reason about the other’s

answer to the host’s question. Alice can reason that, because Bob knows that

at least one of them has a red hat, Bob would’ve answered “yes” to the host’s

question if he had not seen that Alice had red hat, and vice versa. (If Bob

knew that at least one of them had a red hat and also knew that Alice did not

have a red hat then he would have deduced that his own hat was red.) Thus,

after the host’s question, both Alice and Bob can deduce that both Alice and

Bob have red hats. However, Alice does not know that Bob was observing

when the host informed Alice that at least one of the them had a red hat, and

vice versa. Since this information was necessary to make the deduction above,

neither Alice nor Bob is aware that the other knows that both have red hats.

Thus, each is unwilling to risk only one of them opting in and opts out.

In variant (3), both Alice and Bob can reason that both agents have the

correct answer using the same logic as in variant (2). However, unlike in

variant (2), both can additionally reason that both of them know that both of

them have the correct answer because both knew that they both had access
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to the information necessary to make the deduction. In fact, it is common

knowledge among the agents that both have the correct answer because it is

common knowledge among the agents that both had access to the information

necessary to make the deduction. Resultantly, they both reach the conclusion

that it is safe to opt in.

The differences in these outcomes are characterized by the differences in

the levels of knowledge. In all three variants, that fact φ—that at least one

of Alice and Bob has a red hat—is a member of KG
1 . However, in variant (1),

the fact ψ—that both Alice and Bob have a red hat—is not known.

On the other hand, in variant (2), ψ ∈ KG
1 as a result of φ ∈ KG

2 and

deduction about the answers to the host’s question. Yet, since neither Alice

nor Bob knows that ψ ∈ KG
1 , neither can be sure that the other will opt

in. More generally, Alice and Bob would be forced to opt out for similar

reasoning were ψ ∈ KG
i \ KG

i+1 for any i ∈ N. For example, say that they

agreed beforehand to opt in if ψ ∈ KG
i . Then they both must know ψ ∈ KG

i

to safely opt in, which is equivalent to agreeing to opt in if ψ ∈ KG
i+1, which

is in turn subject to the same logic.

This contrasts variant (3), in which each agent can be positive that the

other will opt in because they are able to deduce that ψ ∈ Kcommon from

φ ∈ Kcommon. The set Kcommon is special because ψ ∈ Kcommon implies that every

agent knows that ψ ∈ Kcommon.

Unfortunately, while common knowledge appears to be essential for coor-

dination in many settings, the infinite regress that defines it can make it ex-

pensive to compute [14], [24], [32], [71], [79]. In imperfect information games,

a recent effort to circumvent this issue focuses attention on public knowledge,

a special subset of common knowledge that is easily computable [32]. Specifi-

cally, public knowledge is the subset Kpublic ⊂ Kcommon of common knowledge

that is immediate, rather than derived. For example, in variant (3), that at

least one of Alice and Bob had a red hat is public knowledge (due to the

host’s public announcement), whereas that both Alice and Bob have red hats

is common knowledge, but not public knowledge because it required deduction.

Another, more realistic, example contrasting public and common knowledge
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is as follows: Alice shows Bob her driver’s license. Now it is public knowledge

among Alice and Bob that Alice has her driver’s license. But it is only common

knowledge (and not public) that Alice has passed the driving test because it

requires some amount of deduction from the fact that Alice has her driver’s

license.

3.3 Factored-Observation Games

Because this thesis deals both with methods based on player-by-player opti-

mality and based on common knowledge, it is important that the choice of no-

tation have machinery conducive to describing members of both families. Un-

fortunately, while there are many well-established formalisms for temporally-

extended common-payoff games, including extensive-form games (EFGs), ran-

dom variable notation, partially observable stochastic games (POSGs), and

Decentralized POMDPs (Dec-POMDPs), none of them were designed with

public knowledge in mind, and are thereby not well-equipped to describe meth-

ods that exploit it. Many of the methods discussed in this thesis rely on public

knowledge.

Thus, so as to increase the clarity of presentation, this thesis eschews

these more well-established notations in favor of a newly introduced formalism

known as factored observation games (FOGs) [32]. FOGs are very similar to

POSGs, but differ in that they possess machinery for handling public knowl-

edge.

A FOG is a tuple G = 〈N ,W , w0,A, T ,R,O〉 where

• N = {1, . . . , N} is the player set.

• W is the set of world states and w0 is a designated initial world state.

• A = A1 × · · · × AN is the space of joint actions.

• T is the transition function mapping W ×A → ∆(W).

• R=(R1, . . . ,RN) where Ri : W ×A → R is player i’s reward function.

• O = (Opriv(1), . . . ,Opriv(N),Opub) is the observation function where
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– Opriv(i) : W × A ×W → Opriv(i) specifies the private observation that

player i receives.

– Opub : W × A × W → Opub specifies the public observation that all

players receive.

– Oi = Oi(w, a, w′) = (Opriv(i)(w, a, w
′),Opub(w, a, w

′)) is player i’s obser-

vation.

In addition to the fundamental objects described above, there are also a num-

ber of important derived objects in FOGs.

• A history is a finite sequence h = (w0, a0, . . . , wt). The notation g v h

means that g is a prefix of h.

• The set of histories is denoted by H.

• The information state for player i at h = (w0, a0, . . . , wt) is

si(h) := (O0
i , a

0
i , . . . , O

t
i).

• The information state space for player i is Si := {si(h) | h ∈ H}.

• The legal actions for player i at si is denoted Ai(si).

• A joint policy is a tuple π = (π1, . . . , πN), where each policy is of the

form

πi : Si → ∆(Ai).

• The cumulative reward for player i for a terminal trajectory z is denoted

u(z) :=
∑

ha@z

Ri(h, a).

• The expected return to joint policy π is for player i denoted

ui(π) := E
z∼P (Z|T ,π)

ui(z).

• The public state at h is the sequence spub(h) := spub(si(h)) := (O0
pub, . . . , O

t
pub).
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• The public tree Spub is the space of public states.

• The public set for s ∈ Spub is Ipub(s) := {h | spub(h) = s}.

• The information state set for player i at s ∈ Spub is

Si(s) := {si ∈ Si | spub(si) = s}.

• The reach probability of h under π is P π(h) = PT (h)
∏

i∈N P
π
i (h) where

– Chance’s contribution is PT (h) :=
∏

h′awvh T (h′, a, w).

– Player i’s contribution is P π
i (h) := P π

i (si(h)) :=
∏

s′iavsi(h) πi(s
′
i, a).

There are a number of important details about FOGS deserving of further

discussion.

• World states in FOGs are Markov and play an analogous role to states in

POMDPs.

• The transition function in FOGs is analogous to the dynamics functions

in MDPs and POMDPs. But whereas the dynamics function described in

Section 2.5 gives a joint probability distribution over the next Markov state,

reward, and observation, the transition function in FOGs gives a distribution

over only the next world state, which (in combination with the current world

state and joint action) deterministically specifies the players’ rewards and

observations. This choice does not reduce the expressive power of FOGs, but

does mean that a greater number of world states may need to be included.

• In FOGs, a player’s information state is its history of actions and observa-

tions but not its rewards. FOGs implicitly assume that a player’s reward

history can be losslessly reconstructed from its action observation history

(this constraint can easily be satisfied by including the reward in the obser-

vation).

• In common-payoff FOGs, for any terminal history z, and for two players i

and j, it must be the case that ui(z) = uj(z). The remainder of this thesis

deals exclusively with common payoff FOGs.
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• FOGs assume timeability, meaning that players can always agree on how

much time has passed, and perfect recall, meaning that the game never

forces a player to forget specific information that it already knows. POSGs

and Dec-POMDPs also assume timeability and perfect recall, whereas EFGs

assume neither. This thesis further assumes a finite horizon, meaning that

there exists some positive integer T such that every trajectory terminates

after no more than T steps.

30



Chapter 4

The Player-by-Player Approach

Computing an ε-optimal joint policy for Dec-POMDPs is a provably NEXP-

complete problem [56]. This is a discouraging result. Informally, a NEXP-

complete problem is a problem for which it takes an exponential amount of

time to verify that a proposed solution is valid. For comparison, it takes only

a polynomial amount of time to verify solutions to NP-complete problems, a

class of problems which is itself regarded as very hard.

In practical terms, this means that, for any algorithm that is guaranteed

to produce an approximately optimal solution, there exists a common-payoff

game for which that algorithm takes an intolerably long time to terminate.

More straightforwardly, there is no scalable algorithm with approximate

optimality guarantees.

This dismaying fact leads to valid skepticism regarding the usefulness of

optimality guarantees. If performance in practice is the priority, does it matter

whether algorithms are asymptotically (approximately) optimal? What if there

exist heuristic algorithms that are not guaranteed to produce approximately

optimal solutions but perform better in practice than those for which guarantees

exist?

This chapter takes the perspective of the skeptic. That is, it takes the

perspective that to achieve good performance in practice, it may not be im-

portant for algorithms to have global optimality guarantees. In particular,

this chapter regards algorithms designed based on notions of player-by-player

optimality. While some algorithms it discusses do have formal guarantees
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Alice \ Bob left right

left 0 1
right 1 0

Figure 4.1: Evasion.

of player-by-player optimality, player-by-player optimal joint policies can be

arbitrarily globally suboptimal. Others, though inspired by notions of player-

by-player optimality, operate with no guarantees at all. Nevertheless, as is

detailed hereinafter, these algorithms can achieve good performance in prac-

tice.

4.1 Alternating Maximization

This section discusses the theoretical foundations of player-by-player approaches.

In particular: How can a team of agents find a player-by-player optimal joint

policy? Perhaps the most obvious approach would be to have the agents run

independent dynamic programming algorithms, each considering the policies

of its teammates as part of the dynamics function. This approach does work,

but there is a caveat. The problem is that the value of an agent’s information

state depends on its teammates’ policies in addition to its own. If the agents

perform simultaneous dynamic programming updates, each (falsely) assuming

that its teammates’ policies will stay fixed, policy improvement is not guar-

anteed and the procedure may cycle. To illustrate this problem, consider the

following one-shot perfect information mutual evasion game.

Alice and Bob are upset with one another and would like to avoid interact-

ing. They live together in a two room house and each must decide whether to

go to the left room or the right room. Both are happy if they select different

rooms and both are unhappy if they select the same room, as described in

Figure 4.1.

If Alice and Bob independently run dynamic programming with simulta-

neous updates, they run the risk of cycling, as is shown in Figure 4.2. In

narrative form, one might imagine that both Alice and Bob initially go to the

left room. Both Alice and Bob are unhappy about this situation, and each,
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Iteration qAlice qBob Greedy Action (Alice) Greedy Action (Bob)

0 (·, ·) (·, ·) left (arbitrary tiebreak) left (arbitrary tiebreak)
1 (0, 1) (0, 1) right right
2 (1, 0) (1, 0) left left
3 (0, 1) (0, 1) right right
...

...
...

...
...

Figure 4.2: Synchronous independent dynamic programming in evasion.

falsely presuming that the other will not move, moves to the right room. Both

repeat this logic again, moving back to the left room, and so forth, never

converging to a policy in which they choose different rooms.

The natural way to resolve this issue is to perform alternating dynamic

programming updates among the players. By having only one agent update

its policy at a time, the presumption that the policies of the other agents

is fixed holds true and policy improvement is guaranteed. And since there

are a finite number of deterministic joint policies, and there is guaranteed to

be at least one deterministic player-by-player optimal joint policy (by virtue

of the fact that there is guaranteed to be at least one deterministic optimal

joint policy) it is easy to see that this process will converge to a player-by-

player optimal solution after a finite amount of time. This approach, referred

to as alternating maximization, coordinate ascent, iterated best response, or

hill climbing, is detailed in Algorithm 1. The subroutine optimize(πi | π−i)

optimizes player i’s policy as if player i were interacting with a single-agent

game with the transitions in part dictated by π−i. Any method that guarantees

policy improvement may be used. In small common-payoff games, tabular

forms of alternating maximization can easily be implemented that achieve

their player-by-player optimality guarantees in practice.

Algorithm 1 Alternating Maximization

procedure optimize(π)
while π not converged do

for i ∈ N do
optimize(πi | π−i)
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4.2 Scaling Player-by-Player Algorithms

Recently, there has been much interest in scaling learning algorithms to large

settings. In the single-agent setting, this has involved equipping reinforcement

learning algorithms with artificial neural networks. Reinforcement learning

algorithms are preferred over dynamic programming algorithms because they

are better equipped to handle unwieldy dynamics functions. And artificial

neural networks allow algorithms to be scaled to settings that would be too

time and memory intensive to handle tabularly.

In the multi-agent setting, scaling up alternating maximization in an anal-

ogous fashion is expensive—each player must collect an entirely new batch of

data to do its maximization (because its teammates’ policies have changed). In

practice, the deep MARL community most often simply ignores the possibility

of cycling and operates within an independent reinforcement learning (IRL)

framework in which the agents synchronously and independently execute their

own reinforcement learning algorithms, as shown in Algorithm 2. While the

convergence properties of IRL are tenuous, it is easy to implement and often

performs well in practice. Moreover, as the introduction to this chapter dis-

cussed, it is not even clear that theoretical guarantees should be a point of

emphasis to entities concerned with performance in practice.

Algorithm 2 Independent Reinforcement Learning

procedure Run Episode
for t = 1 . . . T do

for i ∈ N do
ati ← i.act(sti)

env.step(at)
for i ∈ N do

i.update(sti, a
t
i, r

t+1
i , st+1

i )

The remainder of this chapter describes research in the deep MARL com-

munity that builds upon the idea of simply running deep reinforcement algo-

rithms concurrently. Roughly speaking, those described fall into three cate-

gories (i) those modifying experience replay to better handle the nonstation-

arity induced by the presence of other agents; (ii) those exploiting centralized
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training by means of a shared value function; (iii) those signaling exploration.

While these areas are by no means exhaustive of the work that has been done

in deep MARL, they do represent some of the more significant recent progress.

4.2.1 Stabilizing Experience Replay

Even in the single player case, introducing deep learning to reinforcement

causes significant instability. If updates are made online, meaning that each

transition is used to update the network immediately after it occurs and is

thereafter discarded, the network’s learning progress may be inhibited by the

fact that its training examples are highly correlated. One of the important

insights made by DQN [43], the seminal breakthrough in deep reinforcement

learning, is that learning stability can be drastically improved by updating the

network with batches which are randomly sampled from the last buffer size

transitions. This idea is commonly referred to as experience replay.

In a single-agent setting, transitions continue to offer useful information

even long after they have occurred because the dynamics function is fixed.

Thus, in addition to stabilizing network updates, experience replay can im-

prove sample efficiency.

On the other hand, in multi-agent setting, under the IRL paradigm, from

the perspective of any given agent, the dynamics function involves both the

transition function of the underlying game and the policies of the other play-

ers. This means that learning from old transitions may be counterproductive

because they are no longer reflective of the policies of the other agents.

Foerster et al. propose two ways of remedying this problem [18]. The first

is by importance sampling. Importance sampling is a method that, given

sampling access to one distribution, reweights the samples of this distribution

so that a property of another distribution can be estimated. As an example,

take some distribution µ. By reweighting each sample from µ by µ̃/µ the

expectation of µ̃ can be estimated

E
xj∼µ

µ̃(xj)

µ(xj)
xj =

∑

xj

µ(xj)
µ̃(xj)

µ(xj)
xj =

∑

xj

µ̃(xj)xj = E
xj∼µ̃

xj.

Foerster et al. propose using importance sampling to reweight the loss of old
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transitions according to the probability that they would occur with the players’

current policies.

The second remedy Foerster et al. propose is augmenting the agent state

with information about the exploration rate and episode number. This allows

agents to learn from old experience while simultaneously differentiating it from

contemporaneous experience.

4.2.2 Learning a Central Value Function

Another line of research involves exploiting the centralized training for decen-

tralized execution paradigm. One way in which this paradigm can be exploited

is by training with a centralized value function. A centralized value function is

a value function that takes as input more information than is accessible to any

one agent. As long as each agent’s policy is not centralized and the centralized

value function is only required for training, the team of agents can still execute

decentrally while obeying the constraints of the game.

Lowe et al. and Foerster et al. were among the first to propose doing this

[17], [38]. Though they differ at a detailed level, the basic idea of both papers

is to perform independent policy gradient algorithms using a centralized value

function. For example, each agent might perform an update using an equation

resembling

∇θπi log πi(ai | si)(qπ(w, a)− vπ(w)).

This update differs from independent policy gradients in that the advantage

is computed using the world state w and joint action a as input, rather than

player i’s information state si and action ai.

Sunehag et al. were also among the first to propose doing this, but with

independent Q-learning rather than policy gradients [70]. In particular they

perform Q-learning updates using the loss

MSE

(∑

i∈N

qi(s
t
i, a

t
i),
∑

i∈N

rt+1
i + max

a′
qi(s

t+1
i , a′i)

)
.

This can be thought of as using a centralized Q-function q : S1 × · · · × SN ×

A1 × · · · × AN → R under the assumption that this Q-function decomposes
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additively across players. Because the centralized Q-function decomposes ad-

ditively by construction, each player is able to construct its part of the argmax

joint action at execution time.

Rashid et al. build on this idea using the insight that the centralized value

function need not be constrained to decompose additively [57]. As long the

partial gradient of the centralized value function with respect to each player’s

input is positive, each player can reconstruct its component of the argmax

joint action at execution time. Rashid et al. propose exploiting this insight

by parameterizing the centralized value function using qw : RN → R under the

constraint that the network uses only positive weights (thereby ensuring that

the necessary partial derivatives are positive). In total, a centralized value

looks like qw (q1(s1, a1), . . . , qN(sN , aN)). Note how not assuming an additive

decomposition allows the decomposition to be world state specific.

4.2.3 Signaling Exploration

A third line of research is concerned with multi-agent exploration. It seeks

to address the problem that each time an agent explores, its teammates are

unaware of its exploration. The reason that this can be problematic is that

agents may associate the ensuant outcome with their own actions, rather the

exploration of their teammate(s).

Simplified Action Decoding

Hu and Foerster suggest resolving this issue via the centralized training for

decentralized execution paradigm [28]. In particular, they suggest that the

acting agent announce its greedy action to the other players during training.

By doing so, each agent is made to understand whether the acting player is

exploring or not (the action that was taken matches the announced greedy

action if and only if exploration did not occur). In games with publicly ob-

servable actions, the agents can operate on the same input during test time

because all agents are known to be acting greedily (i.e., the observed action

is also the greedy action). Hu and Foerster refer to this as simplified action

decoding (SAD).
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While the original version of SAD only works in games with public observ-

able actions, it can be modified to work in games in which actions are not

public observable. These modifications are most easily explained using com-

mands. In the original version of SAD, agents command acting players: Tell

me your greedy action. That this command requires information even if the

acting agent is not exploring precludes its applicability to games in which that

information is not available at test time. The key modification that makes

other SAD variants compatible with games in which actions are not publicly

observable is that they use commands of the form: If you explored, tell me X.

If you did not explore, tell me nothing. Commands of this form are compatible

with private actions because they do not require any additional information at

test time (since all agents are acting greedily). Three SAD variants that are

compatible with private actions, binary SAD, action SAD, and private SAD,

are described below.

• Binary SAD (BSAD) was independently proposed by Edward Lockhart and

Jakob Foerster through personal communication. BSAD agents make the

command: Tell me whether or not you explored. BSAD is the simplest form

of SAD.

• Action SAD (ASAD) is novel to this thesis. ASAD agents make the com-

mand: If you explored, tell me your greedy action. If you did not explore, tell

me nothing. ASAD is the most faithful way to extend the original version

of SAD to games with private actions.

• Private SAD (PSAD) was proposed by Edward Lockhart through personal

communication. PSAD agents makes the command: If you explored, tell me

your private information. If you did not explore, tell me nothing. PSAD is

the logical extreme of information sharing within the SAD family.
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Chapter 5

The Common Knowledge
Approach

The previous chapter took the position that it may not be useful to pursue

algorithms with approximate optimality guarantees for the purpose of achiev-

ing good performance in practice. To justify its position, it invoked the fact

that complexity results lead to the conclusion that there can be no scalable

algorithm with approximate optimality guarantees. This chapter takes the

opposite perspective. Although there exist games for which algorithms with

approximately optimal guarantees take an intolerably long time to terminate,

these games may be small in number or may not be representative of games

that have practical relevance. Furthermore, algorithms with approximately

optimal guarantees may offer useful intuitions on top of which to build heuris-

tic algorithms with greater practical relevance. Thus, this chapter regards

algorithms that either themselves have guarantees of global optimality, or are

inspired by those that do. As will become clear, the idea of common knowledge

is essential to this pursuit.

5.1 Computing Optimal Joint Policies

In order to discuss how it is possible to compute an optimal joint policy, it is

helpful to consider, at a high level, why it is that player-by-player approaches

suffer from spurious local optima. The answer, in short, is because player-

by-player approaches optimize each player’s policy independently. They are

39



susceptible to suboptimal joint policies that can only be improved by mul-

tilaterial deviation. Take the hiker’s quandry, described in Figure 2.3 as an

example. A strictly player-by-player approach beginning in the deterministic

joint policy car-car can never escape because joint policy improvement requires

Alice and Bob to simultaneously shift their policies. The identification of this

deficiency of player-by-player approaches leads to the intuition that, to com-

pute a globally optimally policy, it may be necessary to directly optimize the

joint policy, without factoring updates by player.

In common-payoff games with perfect information, there is an obvious way

of doing this. At each time step, a coordinator observes the world state w

and selects a joint action a. Each player plays its corresponding component of

the joint action as instructed by the coordinator. From this perspective, the

coordinator is facing an MDP in which the states are the world states of the

common-payoff game, the actions are the joint actions of the common-payoff

game, and the reward and dynamics function are induced by the common-

payoff game. Clearly, there is a bijection between policies in this MDP and

the joint policies in the common-payoff game for which identified policies and

joint policies receive the same expected return. Thus, to solve a common-

payoff game with perfect information, it suffices for the coordinator to solve

the corresponding MDP. One can imagine that this perspective could be exe-

cuted decentrally by having each agent carry around an identical copy of the

coordinator. Or alternatively, the coordinator could write out its policy and

each player could memorize its part.

Now consider a slightly more general case—games in which all actions and

observations are publicly observable but the underlying world state is not.

This case can be solved by a similar approach. At each time step, the central

coordinator observes the information state s1 ≡ · · · ≡ sN (or the corresponding

belief state b) and again acts by selecting a joint action a, each component of

which is executed by the corresponding agent. From this perspective, the

coordinator is facing a history MDP (or a belief MDP), optimal policies of

which are also optimal joint policies of the common-payoff game. Again, this

formulation can be executed decentrally by having each player carry around
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an identical copy of the coordinator.

Now consider the most general case—that in which agents neither observe

the world state nor share information states with their teammates. In this

case, it is not immediately clear that the previous approach can be extended.

The central coordinator cannot condition its policy on every player’s informa-

tion state (s1, . . . , sN) because, at execution time, each copy of it will only

have access to one player’s information state. But if coordinator uses less in-

formation than si to decide ai, it may be unable to express an optimal joint

policy of the common-payoff game.

An alternative, fully general, approach is for the coordinator to specify the

entire deterministic joint policy at once, without having received any informa-

tion. From this perspective, the coordinator faces an MDP in which there is

only one state and each deterministic joint policy is an action. Clearly, there

is again a bijection between the coordinator’s policies and joint policies in the

common payoff game in which identified policies and joint policies receive the

same expected return.

These two approaches represent two extremes of central coordination. On

one extreme, the coordinator decides as little as possible (only the joint action

for the current time step) at a time. On the other, it decides everything (the

entire deterministic joint policy) all at once. While the former is more easily

scalable, it is limited in its applicability. In contrast, the latter is much harder

to scale, but fully general. Ideally, there would be an approach that inter-

polates between the two, prescribing individual actions where it is possible,

falling back to joint policy prescriptions where it must, and most typically

lying somewhere in between.

As it turns out, such an approach exists. The key insight is that, even

when players exist in distinct information states, a central coordinator can still

condition on the public knowledge among the players. The logic behind this

insight is that, by definition of public knowledge, each player is independently

cognizant of public knowledge at execution time.

To gain intuition for how this how this approach works, consider the pre-

vious edge cases. In the edge case that all actions and observations are public,

41



a b c d e
Action

In
fo

rm
at

io
n 

St
at

e s1(s)1

s1(s)2

s2(s)1

s2(s)2

s2(s)3

�1

�2

Figure 5.1: An example prescription vector.

the coordinator need only decide the the actions for that particular public

state. In the edge case that there is no public knowledge, the coordinator

must decide the entire deterministic joint policy at once.

In the more general case in which the players have enough public knowledge

to rule out some information states but not others, the coordinator must decide

the part of a deterministic joint policy relating to the information states that

are deemed possible from public information. The construction in which this

coordinator operates, which is called the public POMDP. Given a common-

payoff FOG 〈N ,W , w0,A, T ,R,O〉, the entity seeking to maximize return can

construct a public POMDP 〈W̃ , w̃0, Ã, T̃ , R̃, Õ〉 as follows.

• The world states of the public POMDP W̃ are the histories H of the

common-payoff FOG.

• The initial world state of the public POMDP w̃0 is the one tuple (w0).

• The actions of the public POMDP are called prescription vectors. A

prescription vector is denoted by Γ and has N components. The ith com-

ponent of a prescription vector Γi is the prescription for player i. The

prescription Γi maps si to an element of Ai(si) for each si ∈ Si(spub). In

words, a prescription instructs a player in the common-payoff FOG how to

act as a function of its private information. An example is shown in Figure

5.1. There are two players, with five actions each. Player one (red) has
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Figure 5.2: A visualization of a decision point in the PuB-MDP.

two possible information states while player two (blue) has three. The pre-

scription vector decides each player’s action as a function of its information

state, as shown by the darkened squares.

• Given w̃ ≡ h and Γ, the transition distribution T̃ (w̃,Γ) is induced by

T (h, a), where

a ≡ Γ(h) := (Γ1(s1(h)), . . . ,ΓN(sN(h))) .

• The reward function is such that, for any trajectory, the cumulative reward

is equal to that of the players’ in the common-payoff game.

• Given w̃ ≡ h and w̃′ ≡ h′, the observation Õ(w̃,Γ, w̃′) ≡ Opub(h,Γ(h), h′).

In summary, the public POMDP can be informally described as involving

a coordinator who only observes public observations and instructs the players

how to act as a function of their non-public information. There is a bijection

between policies in the public POMDP and joint policies in the common-payoff

game for which identified policies and joint policies receive the same expected

return. Thus, to solve a common-payoff game, it is sufficient to solve

the corresponding public POMDP.

As with any with POMDP, the public POMDP can also be considered as

a belief MDP, as is exampled in Figure 5.2. The game begins in state bs,

a distribution over the public set Ipub(s). The coordinator is given a choice

between two possible prescriptions Γ′ and Γ′′. Both choices generate observa-

tions O′pub and O′′pub with positive probabilities (inducing public states s′ and
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s′′ respectively). Accordingly, there are four possible belief states for the next

time step. This thesis follows the precedent set by Foerster et al., who refer

to this perspective as the public belief MDP (PuB-MDP).

As may already be apparent, the public POMDP is not the only possible

central coordinator transformation of a common-payoff game—every coarsen-

ing of the common knowledge partition of the histories of the game leads to

a distinct central coordinator POMDP. For a specific game, there may be a

very large number of possible coarsenings. Other than the public POMDP

and PuB-MDP, the common POMDP and CB-MDP, which condition on the

full set of common knowledge, the temporal POMDP and TB-MDP, which

condition on the time step, and the vacuous POMDP and VB-MDP, which

condition on nothing, merit names. While the common POMDP is the easiest

to solve, it can be difficult to construct. Resultantly, the public POMDP is

the most frequently used. The temporal POMDP is more difficult to solve

than the public POMDP but is important for historical reasons. The vacuous

POMDP is the most difficult to solve and is essentially equivalent to converting

the game to normal form.

5.2 Common Knowledge in Games

The significance of common knowledge in imperfect information games has

been rediscovered numerous times across different communities.

5.2.1 The Engineering Community

Nayyar et al. [47] were the first to formalize the general importance of public

knowledge for coordinating teams of agents in common-payoff games. They

introduced the partial history sharing information structure, a model for de-

centralized stochastic control. Nayyar et al. show that this structure can be

converted into a central coordinator POMDP by conditioning on any subset

of common knowldge. Nayyar et al.’s insights have been applied extensively

in control literature [1], [3], [21], [22], [29], [36], [50], [51], [74], [75], [77], [81].
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5.2.2 The Dec-POMDP Community

Independently from Nayyar et al., Dibangoye et al. [16] showed that a common-

payoff game can be converted into the temporal POMDP and the temporal be-

lief MDP (TB-MDP),1. Dibangoye et al. also introduce feature-based heuristic

search value iteration (FB-HSVI), a novel planning algorithm with optimality

guarantees. In a large-scale study, Dibangoye et al. show that combining the

TB-MDP, FB-HSVI, and equivalence relations over information states solves

games with hundreds of states and outperforms contemporaneously existing

methods.

MacDermed and Isbell build on the TB-MDP approach, showing that it

extends to infinite horizon problems in games with a finite number of beliefs.

They also show how belief compression can be combined with point-based

value iteration [68] to achieve good empirical results.

5.2.3 The Two-Player Zero-Sum Game Community

Public knowledge has also proven to be of significant importance in two-player

zero-sum imperfect information games. Independently from the communities

studying common-payoff games, the two-player zero-sum game community re-

cently showed that public knowledge can be used to decompose a game into

independently analyzable subgames [9], [12], [13], [44], [45]. This idea, known

as subgame decomposition, is the engine behind recent superhuman per-

formances in no-limit hold’em [10], [11], [45]. The centralized POMDPs in

common-payoff games can also be viewed as a form of subgame decomposi-

tion, as this thesis shows in Appendix A.

Like the public POMDP, public subgame decomposition requires main-

taining a public belief state. Maintaining a public belief state is problematic

because the size of the public set (the domain of a public belief state) grows

exponentially as a function of time.2 Even when the public set is small enough

1Dibangoye et al. call it the occupancy state MDP.
2Though in practice, there are many cases in which the public set does not grow expo-

nentially. One example is in games in which all private observations occur at the beginning
of the game, such as Texas Hold’em or Stratego. Another example is in games in which
old private observations are revealed when new private observations are introduced, such as
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that an analytical belief state is tractable, the belief state may still be too

unwieldy for practical use as input to a neural network, as is required by

DeepStack. DeepStack addresses this problem by losslessly compressing the

representation of the public belief state using playerwise factorization [31],

[45].

To understand this compression, it is helpful to examine the playerwise

factorization of the public belief state

P π(h | s) =
PT (h)

∏N
i=1 P

π
i (si(h))∑

h′∈Ipub(s) PT (h′)
∏N

i=1 P
π
i (si(h′))

.

Observe that it follows from this factorization that P π(h | s) can be losslessly

reconstructed from the rules of the game, the public state s, and each player’s

functional contribution to the public belief state

[
P π

1 |S1(s)(· | s), . . . , P π
N |SN (s)(· | s)

]

where f |X denotes the restriction of f to the domain X. Therefore, the public

state and each player’s functional contribution to the public belief state is a

sufficient statistic for the public belief state. While this sufficient statistic still

grows exponentially in the length of the game, it is a much smaller dimension-

ality than the public belief state and is used by DeepStack to play heads-up

no-limit hold’em.

5.2.4 The Deep MARL Community

Unfortunately, even using DeepStack’s belief state compression trick, the pub-

lic POMDP is so massive (there are roughly |Ai|N ·|Si| actions at each decision

point) that it is infeasible to apply POMDP solution methods [26], [54], [58],

[62], [64], [65], [67], [68], out-of-the-box, to common-payoff games of non-trivial

size. Nevertheless, the deep MARL community has proposed a number of ap-

proaches for scaling common knowledge approaches.

Hanabi. A third is settings in which imperfect recall is sound, as is true in some graphical
security games.
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BAD

The Bayesian action decoder (BAD) [19] scales an approximate form of the

PuB-MDP to two-player Hanabi [6], a large imperfect information common-

payoff card game. There are two problems that make the PuB-MDP difficult

to scale that BAD overcomes. The first is that even a compressed form of

the belief state in Hanabi is too unwieldy to use as input to a network. The

second is that there are an astronomical number of prescription vectors in Han-

abi. To address the first problem, BAD uses a Hanabi-specific independence

assumption on top of belief compression and a belief update correction proce-

dure resembling expectation propagation [41]. To address the second problem,

BAD parameterizes its policy as a distribution over prescription vectors that

factorizes by information state, as shown below

π(b,Γ) =
∏

i∈N

∏

si∈Si(supp(b))

π̃(b, si,Γi(si))

where supp(b) denotes the support of b. Pictorially, one can imagine that this

parameterization amounts to keeping an independent distribution for each

row of the prescription vector shown in Figure 5.1, where π̃(b, si, ·) is the

distribution corresponding to the row for information state si. BAD trains its

policy network, parameterized as described above, using policy gradients.

Impressively, when combined with population based training, Foerster et al.

show that BAD can be scaled to two-player Hanabi, yielding contemporaneous

state of the art performance. Yet, BAD’s scalability comes at a significant cost.

The independence assumption that it makes about belief state and the way

in which it parameterizes its policy leave it vulnerable to local optima. This

vulnerability is illustrated by BAD’s inability solve toy games that are small

enough to be easily solved by brute force.

MACKRL

Witt et al. propose multi-agent common knowledge reinforcement learning

(MACKRL), a hierarchical policy gradient algorithm for decentralized control

[79]. MACKRL uses one central coordinator and
(
N
2

)
pairwise coordinators.
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The central coordinator only observes common knowledge among all agents

and partitions the team of agents into pairs. For each pair that the central

coordinator selects, the corresponding pairwise coordinator either selects a

joint action (not a prescription vector) based on common knowledge among

the pair of agents or instructs each agent to select its own action using its full

information state.

MACKRL has vulnerabilities both to local optima requiring trilateral (or

more) deviation to improve upon and to local optima in which a pair of players

must act according to nontrivial functions of their private information to es-

cape. Nevertheless, MACKRL empirically shows strong performance on chal-

lenging problems in StarCraft II unit micromanagement compared to player-

by-player approaches.

SPARTA

Lerer et al. propose search for partially observing teams of agents (SPARTA),

a decision-time policy improvement algorithm for common-payoff games that

operates within the PuB-MDP. Decision-time policy improvement algorithms

are decision-time planning algorithms that improve upon an externally spec-

ified policy, which Lerer et al. call the blueprint policy. SPARTA improves

its blueprint by doing a one-ply search over the actions of the acting player,

assuming that the remainder of the game will be played according to the

blueprint.

SPARTA’s approach has the advantage of scalability but the drawback of

weak theoretical guarantees. It is scalable because, by virtue of not requiring a

function approximation to take public belief states as input, it is able to main-

tain an exact belief state in very large games (e.g. five-player Hanabi). On the

other hand, because SPARTA assumes that the rest of the game will be played

according to its blueprint, it only guarantees weak asymptotic improvement,

meaning that in the limit of the number of search rollouts, SPARTA’s policy

is only guaranteed to be no worse than its blueprint. In practice, despite this

weak guarantee, empirical results on Hanabi suggest that SPARTA tends to

significantly outperform its blueprint policy.
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Chapter 6

Benchmarking Tabular
Value-Based Approaches

Having completed the previous two chapters, each of which introduced a large

number of algorithms, a reader might wonder: How do these algorithms com-

pare? Unfortunately, because the communities that introduced these algo-

rithms are largely disjointed and because there are multiple popular bench-

marks within each community, many of the algorithms that previous sections

discussed have never been directly compared. This chapter takes a modest

step toward addressing the issue by benchmarking a large number of these

algorithms on The Tiny Hanabi Suite.

6.1 The Tiny Hanabi Suite

The Tiny Hanabi Suite is a collection of six toy common-payoff games created

by Neil Burch and Nolan Bard. Each game is structured in three steps.

1. A dealer samples two cards from separate piles of num cards cards with

uniform probability and gives the first card to player one and the second

player two.

2. Player one chooses one of num actions actions. Player two observes player

one’s action.

3. Player two chooses one of num actions actions.
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After player two’s action, the game ends and the common payoff is determined

as a function of the cards dealt and the actions taken.

The games, which are labelled by the letters A-F, are described in detail in

Appendix B. Foerster et al. [19] introduced game E of The Tiny Hanabi Suite.

The remainder of the games were unreleased prior to this thesis.

6.2 Experiments

This section describes the experiments performed on The Tiny Hanabi Suite.

Documented code for all of the experiments in this chapter is available at

https://github.com/ssokota/tiny-hanabi.

To make the comparison between approaches straightforward, the experi-

ments restrict their attention to approaches that can be implemented with tab-

ular epsilon-greedy Q-learning. This includes the player-by-player approaches:

IRL, SAD, BSAD, ASAD, and PSAD, each of which can optionally be com-

bined with additive value decomposition (AVD)—the loss function used by

value decomposition networks. This also includes the common knowledge ap-

proaches: PuB-MDP, TB-MDP, and VB-MDP.

The experimenter performed two sets of experiments. The first tested the

hyperparameter sensitivity of each algorithm. The second tested the perfor-

mance of algorithms after tuning the hyperparameters. These sets of experi-

ments offer complementary value. Experiments using tuned hyperparameters

give a sense of what an algorithm’s performance might be in settings in which

extensive tuning is possible, whereas hyperparameter sensitivity experiments

give a sense of what an algorithm’s performance might be in settings in which

it is not.

6.2.1 Setup

For each experiment:

• The experimenter normalized the payoffs of each game to [0, 1].

• The experimenter used tabular epsilon-greedy Q-learning.
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• The experimenter monitored performed over one million episodes.

• The experimenter linearly decayed the learning rate and exploration rate

from their initial values to zero over the course of one million episodes.

• The experimenter ran 30 independent runs. (Graphs display the average of

these runs.)

An algorithm is said to solve the game only if its joint policy after one million

episodes is optimal for each of the 30 runs.

For the hyperparameter sensitivity experiments, the experimenter ran each

algorithm over the same set of nine hyperparameter settings. For the tuned hy-

perparameter experiments, for each algorithm, the experimenter selected the

hyperparameter setting having the highest average final performance among

the hyperparameter settings solving the largest number of games for that al-

gorithm. For visual clarity, the tuned hyperparameter experiments exclude

the algorithms that performed most poorly in the hyperparameter sensitivity

experiments.

6.2.2 Hyperparameter Sensitivity Results

This section discusses the high level takeaways from the hyperparameter sen-

sitivity experiments. See Appendix C for graphs for each experiment.

A summary of the results is presented in Figure 6.1. In the table, per-

game-max refers to the number of games for which the best performing hyper-

parameter setting for that game solved the game; max refers to the number of

games for which the best performing hyperparameter setting across the suite

solved the game; per-game-median refers the number of games for which the

median performing hyperparameter setting for that game solved the game.

As expected, the common knowledge approaches perform best, each solving

all six games under both the per-game-max and max criteria. The PuB-MDP

also solves six games under the per-game-media criteria. The TB-MDP and

VB-MDP do a bit worse under the per-game-median criteria but only due to

have having an insufficient number of episodes—not as a result of local optima.
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Method Per-Game-Max Max Per-Game-Median

IRL 4 4 3
IRL with AVD 5 5 3

SAD 5 5 5
SAD with AVD 4 3 1

BSAD 4 4 4
BSAD with AVD 3 2 1

ASAD 5 5 5
ASAD with AVD 3 2 1

PSAD 4 4 4
PSAD with AVD 4 4 3

PuB-MDP 6 6 6
TB-MDP 6 6 4
VB-MDP 6 6 5

Figure 6.1: Tiny Hanabi hyperparameter sensitivity results summary.

It is worth keeping in mind that Q-learning is not a particularly sensible choice

of algorithm for the TB-MDP or the VB-MDP because they are deterministic.

And if an entity were to use Q-learning for the TB-MDP or VB-MDP, it would

make sense to do so with high learning and exploration rates, as is evidenced

by the fact that the TB-MDP and VB-MDP runs with the highest learning

and exploration converge quickly and reliably.

Of the player-by-player methods, SAD and ASAD perform best, reliably

solving all games except game C. That ASAD performs comparably to SAD is

encouraging, given that, as discussion in Section 4.2.3, ASAD possesses wider

applicability. IRL with AVD also performs well, but is more hyperparameter

sensitive than SAD and ASAD. BSAD and PSAD perform next best, reliably

solving four of the six games. IRL and PSAD with AVD also solve four of

the six games but are more hyperparameter sensitive. The other approaches,

which combine variants of SAD with AVD, appear to be very hyperparameter

sensitive and solve the fewest games.

Overall, it appears the AVD is only helpful in conjunction with IRL and

is actually harmful when combined SAD variants. One possible explanation

is that it is harmful for an agent, to whom exploration has been signaled, to

help set the target value for that exploration.
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Regarding the difficulty of the games, it appears that game A is the easiest.

Almost all hyperparameter settings for all methods discovered an optimal joint

policy within the allotted horizon. On the other hand, it appears that game C

is hardest for methods in the player-by-player family. There was not a single

hyperparameter setting for any of the player-by-player methods that solved

game C on average within one million episodes. Game E appears to be the

second hardest for player-by-player methods—of those that solved only four

games, none solved game E. Game D is the hardest for the PuB-MDP and is the

only game for which not all hyperparameter settings solve the game. Games E

and F are hardest for the TB-MDP and VB-MDP, presumably because they

are the largest.

6.2.3 Tuned Hyperparameter Results
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Figure 6.2: Tiny Hanabi tuned hyperparameter results.
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Method Number of Games Solved

IRL 3
IRL with AVD 4

SAD 4
BSAD 4
ASAD 3
PSAD 4

PuB-MDP 6
TB-MDP 6
VB-MDP 6

Figure 6.3: Tiny Hanabi tuned hyperparameter results summary.

Figure 6.2 shows the results of the tuned experiments. Figure 6.3 shows a

summary of the results. All methods solved games A, B, and D. The common

knowledge methods all also solved games C, E, and F. (In some games their

performance curves are almost identical, making them difficult to see.) The

interesting differences occur among the player-by-player approaches in games

C, E, and F.

Among the player-by-player methods, IRL with AVD arguably performed

best, coming close to solving game E on average and achieving the highest

average score on game C. PSAD arguably performs second best, performing

only marginally worse on game E and achieving the second highest average

score among the player-by-player methods on game C. SAD, BSAD, and ASAD

are the middle of the pack—SAD and BSAD perform relatively poorly on game

C while ASAD fails to solve game F. IRL performs the worst, receiving the

lowest average score across all methods in games C, E, and F.

Note that while IRL with AVD, SAD, and ASAD all solved game E for

their respective hyperparameter settings in the hyperparameter sensitivity ex-

periments, all failed to solve it in the tuned experiments. Similarly, ASAD

failed to solve game F, despite that it solved it with the same configuration in

the hyperparameter sensitivity experiments. These differences are a result of

the maximization bias.
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Chapter 7

Solving Common-Payoff Games

Chapter 4 introduced the player-by-player family of algorithms. Player-by-

player algorithms often achieve good performance in practice, but have no

guarantee of recovering optimal joint policies. Chapter 5 introduced the com-

mon knowledge approach, which uses a central coordinator to determine the

joint policy. Algorithms that use a central coordinator have optimality guaran-

tees. Chapter 6 empirically reiterated this difference of guarantees—player-by-

player algorithms are sometimes effective in practice, but common knowledge

approaches are far more robust at recovering optimal joint policies.

It is tempting to conclude that entities concerned with optimality should

prefer common knowledge approaches. But, as has been discussed, common

knowledge approaches scale very poorly. This leads to the question: What

algorithm should a entity who is hoping to find an optimal joint policy choose

for a game that has thousands or tens of thousands of world states or a game

that has hundreds of actions? Exact common knowledge approaches do not

scale to games of this size. And although the deep MARL community has

proposed methods to scale approximate common knowledge approaches, these

approaches require such extreme compromises that they are unable to find

optimal joint policies on games as small as tiny Hanabi [19]. Unsatisfyingly,

among existing algorithms, the best answer to this question may be a tabular

player-by-player approach.

This chapter argues that it is possible to do better. Toward that end, it

proposes cooperative approximate policy iteration (CAPI), a novel instance of
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approximate policy iteration operating within the PuB-MDP. Like approaches

coming from the deep MARL community, CAPI uses deep learning and makes

compromises to gain scalability. But unlike these approaches, CAPI’s com-

promises are modest and it prioritizes correctness over scalability.

7.1 Cooperative Approximate Policy Iteration

The enumeration below describes CAPI’s decision making process in language.

The same process is described symbolically in Algorithm 3.

1. At each decision point, CAPI takes a public belief state b as argument.

2. CAPI’s policy dictates a distribution over prescription vectors π(b) as a

function of the public belief state. CAPI either tabularly maintains a sep-

arate distribution for each public state in the game (i.e. π(b) = π[spub(b)]

or produces distribution by passing the public belief state through a policy

network (i.e. π(b) = πθ(b)).

3. CAPI acquiresK prescription vectors from π(b). CAPI acquires them either

by sampling or by taking the K-most-likely. Sampling is more parallelizable

but K-most-likely is more stable.

4. CAPI evaluates each of the K prescription vectors. For each prescription

vector Γ(k), this involves

(a) Computing expected reward r(k) for Γ(k) given b.

(b) Computing the next belief state b(k,Opub) for each Opub.

(c) Estimating the value v(k,Opub) of b(k,Opub) using the value function.

(d) Computing the probability distribution p(k) over public observations

given b and Γ(k).

The assessed value is the expected reward plus the expected estimated value

of the next belief state

q(k) ← r(k) + E
Opub∼p(k)

v(k,Opub).
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Algorithm 3 CAPI

procedure act(b)
[Γ(k)]← prescription vectors(π(b), K)
[r(k)]← expected reward(b, [Γ(k)])
[b(k,Opub)]← next belief(b, [Γ(k)])
[v(k,Opub)]← estimate value([b(k,Opub)])
[p(k)]← public observation probabilities(b, [Γ(k)])
[q(k)]← [r(k)] + public expectation([p(k)], [v(k,Opub)])
k∗ ← argmax([q(k)])
add to buffer(b,Γ(k∗), q(k∗))
if explore then

return random([Γ(k)])

return Γ(k∗)

5. CAPI trains its policy output to more closely resemble the most highly

assessed prescription vector Γ(k∗) and the value function output to more

closely resemble the corresponding value q(k∗).

6. CAPI returns a random prescription vector among those it assessed if it

is exploring. Otherwise it returns the most highly assessed prescription

vector.

CAPI runs without sampling transitions, meaning that the episode is played

out for every transition (i.e. every branch of the public tree) that occurs with

positive probability. After each episode, CAPI trains its value function and

policy and wipes its memory buffer.

As of yet, two important details have yet to be explained. First: How

can CAPI keep a value function over an exponential number of public belief

states? To do so, CAPI adopts DeepStack’s approach (described in 5.2) and

combines its lossless public belief compression with a parameterized value net-

work. While this approach does not scale to games having large amounts of

private information (e.g. Hanabi), it is sufficient for games of the size consid-

ered this chapter.

Second: How can CAPI maintain a policy over an exponentially large ac-

tion (prescription vector) space? To do so, CAPI adopts BAD’s approach [19]
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and factorizes its policy across information states (as is described in Section

5.2). This parameterization reduces the space required to store the distribu-

tion from |Ai|N ·|Si| to |Ai| · N · |Si|, making it explicitly manageable in the

games considered in this chapter. While this parameterization is constraining

in that direct optimization by gradient ascent will only guarantee a local op-

tima, decision-time search gives CAPI the opportunity to escape these local

optima. CAPI can optionally exploit this parameterization to add structured

exploration by adding noise to rows of the π(b).

7.2 Experiments

7.2.1 Problem Domains

The experiments employ two games from OpenSpiel [33].

Trade Comm

The first is an emergent communication game called Trade Comm. The game

occurs in four steps, as the enumeration below describes.

1. Each player is independently dealt one of num items items from separate

piles with uniform probability. Each player observes its own item but not

its teammate’s.

2. Player 1 makes one of num utterances utterances. Player 2 observes player

1’s utterance.

3. Player 2 makes one of num utterances utterances. Player 1 observes player

2’s utterance.

4. Both players simultaneously request one of the num items∗num items pos-

sible trades.

The trade is successful if and only if both player 1 asks to trade its item for

player 2’s item and player 2 asks to trade its item for player 1’s item. Both

players receive a reward of one if the trade is successful and zero otherwise.

The experiments set num items = num utterances = 15. This means that
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there is exactly enough bandwidth for the players to losslessly communicate

their items and an optimal joint policy receives an expected reward of one.

This deceivingly easy sounding game nicely illustrates the difficulty of

common-payoff games. It is too large to be tackled directly by using a public

POMDP transformation and POMDP solution methods (the combination of

which have only been applied to games having fewer than 10 actions, whereas

Trade Comm has 100s). But at the same time, independent deep reinforcement

learning [42], [43] catastrophically fails to learn a good policy.

Abstracted Tiny Bridge

The second game is abstracted tiny bridge, a small common-payoff version of

contract bridge retaining some interesting strategic elements. In the game,

each player is dealt one of 12 hands as a private observation. The two players

then bid to choose the contract. The common payoff is determined by the

chosen contract, the hand of the player who chose the contract, and the hand

of player who did not chose the contract. The challenge of the game is that the

players must use their bids (actions) both to signal their hands and to select

the contract, for which there are increasingly limited options as more bids are

made. The exact rules are detailed in OpenSpiel [33].

Despite its name, abstracted tiny bridge is much larger than games tra-

ditionally considered in engineering or Dec-POMDP literature, having over

50,000 world states. For reference, Mars Rover [2], the largest game consid-

ered by many Dec-POMDP papers, has only 256.

7.2.2 Setup

For both games, IRL and SAD with tabular epsilon-greedy Q-learning were the

best baselines that the experimenter tried (both outperformed deep variants).

The experimenter tuned the baselines for Trade Comm over 25 hyperparameter

settings and the baselines for tiny abstracted bridge over 9 hyperparameter

settings.

For both games, CAPI used a four layer neural network with 256 hidden

units and K = 10,000 prescription vectors and ε-greedy exploration. In Trade
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Figure 7.1: Performance comparison on Trade Comm.

Comm, CAPI used a dual headed network (one value head, one policy head);

it acquired its prescription vectors by sampling from the policy head. In

abstracted tiny bridge, CAPI kept its policy as a function of the public state;

deterministically acquired the most-likely prescription vectors from the policy;

and during training, added structured exploration by randomly setting a row

of π(b) to uniform random before taking the K-most-likely.

7.2.3 Results

Trade Comm

Figure 7.1 shows the results for IRL and SAD after 24 hours (between 50

million and 70 million episodes) and results for CAPI after 2000 episodes. To

give context to the scores on the graph, the optimal return is one (gray line)

and the best joint policies that do not require coordination achieve an expected

return of only 1/225.

All three methods perform well relative to the best no-coordination joint

policy. That being said, CAPI outperforms both IRL and SAD, solving the

game in 25 out of the 32 runs and nearly solving it on the remaining 7. In

contrast, neither IRL nor SAD solve Trade Comm on any of their respective

32 runs. This thesis hypothesizes that the especially poor performance of SAD

is due to the fact that it is being applied to utterances. Unlike actions in the
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Figure 7.2: Performance comparison on abstracted tiny bridge.

general case, utterances in Trade Comm have no affect on the world state tra-

jectory. Instead, a large part of the benefit to exploring over utterances comes

from testing the other player’s response. Thus, by announcing its counterfac-

tual greedy utterance to its teammate, the exploring player may be blunting

the benefit of its exploration.

Abstracted Tiny Bridge

Figure 7.2 shows the results for IRL and SAD after 10 million episodes and

results for CAPI after 100 thousand episodes. To give context to the scores

on the graph, the optimal return is the gray line and the best no-coordination

joint policy (that is known) achieves an expected return of 20.32.

IRL exhibits the largest variance, occasionally performing worse than the

aforementioned no-coordination joint policy (in general there do exist Nash

equilibria with lower returns than no-coordination joint policies) but some-

times performing on par with or better than SAD. In contrast, SAD shows

consistency, repeatedly finding joint policies achieving similar scores and out-

performing IRL on average. CAPI shows the strongest performance, solving

the game on 18 of its 32 runs, in contrast with IRL and SAD, which do not

solve the game on any of their runs and perform worse on average. However,

CAPI’s runs do not dominate those of IRL and SAD as they did in Trade

Comm. In particular, there are three runs that perform worse than many of
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those of IRL and SAD. These outliers likely occur because of the difficulties

of training the value network on abstracted tiny bridge, which has a more

complex value function landscape than Trade Comm.
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Chapter 8

Closing Discussion

This thesis’s contributions are:

1. Deriving the common knowledge approach to common-payoff games through

the lens of public subgame decomposition.

2. Benchmarking a large number of never-before-compared tabular value-based

algorithms on The Tiny Hanabi Suite.

3. Introducing CAPI, a novel approximate policy iteration algorithm for common-

payoff games, and showing that it is capable of solving common-payoff

games orders of magnitudes larger than existing algorithms.

This closing discussion proposes two interesting research directions for fu-

ture work that build on these contributions. First: Are there player-by-player

approaches that can robustly solve all six games of The Tiny Hanabi Suite?

This thesis found that, even with extensive tuning, existing player-by-player

approaches are unable to do so. Pursuing this direction is very accessible be-

cause experiments on The Tiny Hanabi Suite are computationally inexpensive

and provide quick feedback. Yet, it also is potentially highly impactful—were

such a player-by-player algorithm to exist, it is very plausible that a deep vari-

ant of the algorithm would achieve strong performance on large games, such

as Hanabi.

Second: Do there exist algorithms that are able to solve small and medium-

sized games, such as CAPI does, but that also achieve good performance per-

formance on large games, such as Hanabi? The existence of such an algorithm
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would be a significant and unifying finding. It would likely require effective

mechanisms for learning or approximating public belief states and for working

with compressed or implicit representations of prescription vectors. Both of

these mechanisms would also be of significance for two-player zero-sum games,

where the intractability of public belief states and prescription vectors is the

limiting factor for applying decision-time planning approaches to larger prob-

lems.
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ing Formal Models of Partially Observable Multiagent Decision Making,”
CoRR, vol. abs/1906.11110, 2019. arXiv: 1906.11110. [Online]. Avail-
able: http://arxiv.org/abs/1906.11110.

67

https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/cs.DC/0006009
https://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1803.00933
https://doi.org/10.1109/ACC.2015.7172192
https://openreview.net/forum?id=r1lyTjAqYX
https://arxiv.org/abs/1906.06412
http://arxiv.org/abs/1906.06412
http://arxiv.org/abs/1906.06412
https://arxiv.org/abs/1906.11110
http://arxiv.org/abs/1906.11110


[33] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J.
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Appendix A

Public Subgame Decomposition

The term subgame decomposition [13] refers to the idea of decomposing a game

into subgames that can be analyzed independently. In two-player zero-sum

imperfect information games, subgame decomposition has led to significant

advancements in game playing capabilities [10], [45]. As this appendix details,

subgame decomposition is also possible in common-payoff games and leads

directly to approximate value iteration results for the PuB-MDP.

A.1 Derivation

Definition A.1.1. Let bs be a distribution over Ipub(s) for some s ∈ Spub. The

public subgame G(bs) is defined as follows. With probability bs(h), the game

begins by transitioning to world state w1 = w(h) with each player i receiving

observation O1
i = si(h).1 The game proceeds as the original game would from

h. When bs is induced by a policy profile π it can be written G(s, π) := G(bs).2

A performance metric is required to analyze public subgame decomposition.

1Entrance probabilities for subgames can also be defined in terms of the joint distribution
Pπ(spriv(1), . . . , spriv(N), w | s), where spriv(i) denotes the sequence of private observations for
player i.

2This definition differs slightly from that of two-player, zero-sum literature [13], [31],
[32], [71], which defines the subgame as a set of histories, rather than a game. This is
reflective of the difference between the public knowledge approaches to adversarial games
and common-payoff games. The former is unable to construct the public subgame (as this
thesis defines it) because the opponent’s policy (and therefore Pπ(h | s)) is unknown. As a
result, a gadget game is required [9], [44], [71]. In contrast, the public knowledge approach
to common-payoff games makes use of the public subgame directly since the coordinator
centrally manages all players’ policies.
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Definition A.1.2. A joint policy π is ε-optimal or has suboptimality

bounded by ε if

max
π′

u(π′)− u(π) < ε.

This appendix proves that the suboptimality of public subgame decompo-

sition decomposes linearly by its subgame solution error, value function error,

and posterior error. Building on this result, it shows that an approximate

value function can be acquired via approximate value iteration and prove that

the induced policy is approximately optimal.

Observe first that a policy profile constructed by aggregating good public

subgame solutions has low suboptimality.

Lemma A.1.1. Let π be a policy profile such that decisions at each s ∈ Spub

are dictated by an ε-optimal solution to the public subgame G(s, π). (Note that

π is well-defined by induction.) Then π is d × ε-optimal policy profile, where

d is the depth of the game.

Taken alone, this result is not very helpful. Solving the initial public sub-

game with ε-precision is the same as solving the entire game with ε-precision.

The importance of this result is that it shows that full joint policies are not

needed to compute full policy profiles for public subgames. As long as the

prescription vector for the first step of the public subgame has an ε-optimal

extension, Lemma A.1.1 can be applied. This is important because it allows

for depth-limited solving. After finding a policy profile up to some depth-limit,

a value function can be queried to check whether a low-suboptimality exten-

sion of this policy profile exists. However, a value function over observations

(or histories) does not suffice: its input must have sufficient information to

construct a subgame [31], [48].

Definition A.1.3. The optimal value function v maps a public belief state

to the expected return of playing optimally in the induced public subgame

v (bs) := max
π

uG(bs)(π) = max
π

∑

h∈Ipub(s)

bs(h)u(π | h).
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Figure A.1: A visualization of a depth-limited public subgame.

The optimal value function allows us to define a depth-limited public sub-

game that retains the important properties of the public subgame.

Definition A.1.4. The depth-limited public subgame GT (bs) is defined

as follows. Each state in the game is a public belief state; the initial state

is bΓ0

s0
:= bs. Each player i acts by choosing a prescription Γi. The game

transitions from state bΓ:t

st to state bΓ:t+1

st+1 with observation Opub(s
t+1) under joint

action Γt+1 with probability

P Γt+1

(bΓ:t+1

st+1 | bΓ:t

st ) :=
∑

h,h′

bΓ:t

st (h)T (h,Γt+1(h), h′)

where

bΓ:t+1

st+1 (h′) ∝ bΓ:t

st (h)T (h,Γt+1(h), h′).

The game terminates after T steps with payoff dictated by optimal value of

contemporaneous public belief state. Symbolically, the utility of a policy profile

π in the depth-limited public subgame is defined by

uGT (bs)(π) :=
∑

s′ : s@s′∈St+Tpub

P π
bs(s

′)v
(
P π
bs|Ipub(s′)(· | s′)

)

where

P π
bs(h) :=

∑

h′∈Ipub(s)

bs(h
′)P π(h | h′) and s ∈ Stpub.
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Depth-limited public subgames have two important properties:

1. They are fully observable common-payoff games—they can directly be treated

as MDPs and solved centrally, as is described in Figure A.1. The game

begins in bs. The coordinator is given a choice between two possible pre-

scriptions Γ′ and Γ′′. Both choices generate observations O′pub and O′′pub with

positive probabilities (inducing public states s′ and s′′ respectively). Ac-

cordingly, there are four possible public belief states at the next time step.

The value of public belief state is determined by the value of the optimal

policy of the public subgame that would be induced by that public belief

state.

2. Policy profiles that are ε-optimal have extensions to the public subgame

that ε-optimal.

These two properties allow the construction of a policy profile by aggregating

solutions depth-limited public subgames.

In practice, it is unrealistic to assume access to the optimal function v; it

may also be unrealistic to assume the exact public belief state. To make these

assumptions more realistic, consider an approximate depth-limited public sub-

game.

Definition A.1.5. Define GT (b̂s, P̂ , v̂) as an approximate depth-limited

public subgame. This approximate depth-limited public subgame follows the

same structure as a depth-limited public subgame except that bs is replaced by

b̂s, P is replaced by P̂ , and v is replaced by v̂.

When b̂s, P̂ , and v̂ are similar to bs, P and v, the value of a policy profile

assessed byGT (b̂s, P̂ , v̂) is similar to the value that would be assessed inGT (b̂s).

Lemma A.1.2. Let b̂s and P̂ be such that for any π the total variation error

over the induced public belief states is bounded as

1

2

∑

s′∈St+Tpub

|P̂ π
b̂s

(s′)− P π
bs(s

′)| < εsp
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and such that given any s′ ∈ St+Tpub , the total variation error over the induced

public belief states is bounded as

1

2

∑

h∈Ipub(s′)

|P̂ π
b̂s

(h | s′)− P π
bs(h | s

′)| < εhp .

Let v̂ be such that, given any b, |v̂(b)− v(b)| < εv. Then uGT (bs) and uGT (b̂s,P̂ ,v̂)

can disagree on the value of a policy profile by no more than

εv + 2 max
z
|u(z)|(εsp + εhp).

Combining Lemma A.1.2 with Lemma A.1.1 and some additional work

leads to a result analogous to Theorem 1 of DeepStack—aggregating good so-

lutions to approximate depth-limited public subgames with small errors yields

a good solution to the complete game.

Theorem A.1.3. Consider a finite common-payoff FOG of depth bounded by

d. Let π be a policy profile such that decisions at each s ∈ Spub are dictated

by an εr-solution to the auxiliary game GT (b̂s, P̂ , v̂) where εv, ε
s
p, and εhp bound

errors as in Lemma A.1.2 and bs is the public belief state induced by the trunk

policy. Then π is ε-optimal, where ε is bounded by

d× [εr + 2εv + 4 max
z
|u(z)|(εsp + εhp)].

Hence, if an oracle offers a value function εv-close to the optimal value

function, an approximately optimal policy profile can be constructed. Alter-

natively, it can be acquired via approximate value iteration.

Theorem A.1.4. Let v̂0 be a map from public belief states to reals such that,

for public belief states over terminal histories, v̂0 agrees with v. Let v̂i share

its domain and codomain with v̂0 and map each public belief state to the value

that would be assessed by approximate depth-limited planning with errors εsp,

εhp , and εr defined as as in Lemma A.1.2, using the value function v̂i−1. Then

for i > d, where d is the depth of the game, the distance between v̂i and v in

the infinity norm is bounded by

d× [εr + 2 max
z
|u(z)|(εsp + εhp)].

77



Plugging Theorem A.1.4 into Theorem A.1.3 shows the structure of the

suboptimality of the policy profile induced by a value function acquired from

approximate value iteration.

Theorem A.1.5. Let π be the policy profile induced by v̂, εr, εp, where v̂ is

a value function acquired from εr, εp, and the procedure described in Lemma

A.1.4 after a sufficient number of iterations. Then π is ε-optimal, where ε is

bounded by

(2d2 + d)× εr + (4d2 + 4d)×max
z
|u(z)|(εsp + εhp).

Observe that the case in which each auxiliary game has a depth limit of

one corresponds exactly to approximate value iteration in the PuB-MDP.

A.2 Proofs

Lemma A.1.1

Proof. First observe that this result holds trivially when d = 1. Now assume

the result for d ≤ k and consider the case that d = k + 1. Then note that,

for each public state s consistent with one time step having passed, G(s, π) is

a common-payoff FOG of depth less than or equal to k. Then, by inductive

hypothesis, the aggregation of the subgame strategies over the last k time

steps has suboptimality bounded by k× ε with respect to the public subgame

G(s, π) for any s ∈ S1
pub. Denote by π̃ the ε-optimal solution to the initial

public subgame that dictates π for the first time step. Then observe

max
π′

u(π′)− u(π) (A.1)

= max
π′

u(π′)− u(π̃) + u(π̃)− u(π) (A.2)

≤ ε+ u(π̃)− u(π) (A.3)

= ε+
∑

s∈S1pub

P π(s)[u(π̃ | s)− u(π | s)] (A.4)

≤ ε+
∑

s∈S1pub

P π(s)[max
π′

u(π′ | s)− u(π | s)] (A.5)

≤ ε+ k × ε (A.6)

= (k + 1)× ε. (A.7)
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Line (A.3) follows from the fact that the initial public subgame is the game

itself. Line (A.4) factors by invoking the fact that π̃ and π agree over the first

time step. Line (A.5) upper bounds the utility of π̃ in the public subgame

G(s, π) by the utility of the optimal policy profile for each s ∈ S1
pub. Line

(A.6) invokes the inductive hypothesis using the fact that the public subgame

is itself a common-payoff FOG.

Lemma A.2.1. Take bs and b′s such that δ(bs, b
′
s) < εp where δ denotes total

variation distance. Then G(bs) and G(b′s) can disagree on the value of a policy

profile by no more than 2 maxz |u(z)|εp.

Proof. Fix π. Then

|uG(bs)(π)− uG(b′s)(π)| = |
∑

h∈Ipub(s)

u(π | h)[bs(h)− b′s(h)]| (A.8)

≤ 2 max
z
|u(z)|εp. (A.9)

This follows from the definition of a public subgame and generalized Cauchy-

Schwarz.

Lemma A.2.2. Let f1 and f2 be functions sharing a domain and satisfying the

inequality |f1(x)−f2(x)| < ε. Then it follows that |[supx f1(x)]−[supx f2(x)]| <

ε.

Proof. This is immediate from the chain of inequalities

sup
x
f2(x)− ε ≤ f1(arg sup

x
f2(x))

≤ sup
x
f1(x)

≤ f2(arg sup
x

f1(x)) + ε

≤ sup
x
f2(x) + ε.

Lemma A.2.3. The Lipschitz constant of the optimal value function v is

bounded by 2 maxz |u(z)| with respect to total variation distance.

Proof. This is immediate from Lemma A.2.1 and Lemma A.2.2.
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Lemma A.1.2

Proof. For brevity, define u := maxz |u(z)| and leave function restrictions and

the index set of summations implicit. Then

|uGT (bsP,v)(π)− uGT (b̂s,P̂ ,v̂)(π)| (A.10)

= |
∑

s′

P π
bs(s

′)v(P π
bs(· | s

′))− P̂ π
b̂s

(s′)v̂(P̂ π
b̂s

(· | s′))| (A.11)

≤ εv + |
∑

s′

P π
bs(s

′)v(P π
bs(· | s

′))− P̂ π
b̂s

(s′)v(P̂ π
b̂s

(· | s′))| (A.12)

≤ εv + 2uεhp + |
∑

s′

v(P π
bs(· | s

′))[P π
bs(s

′)− P̂ π
b̂s

(s′)]| (A.13)

≤ εv + 2u(εsp + εhp). (A.14)

Line (A.11) holds from definition, (A.12) by assumption on v̂, (A.13) from

Lemma A.2.3 and assumption on P̂b̂s , and (A.14) from assumption on P̂b̂s .

Lemma A.2.4. Let π be εr-optimal in GT (b̂s, P̂ , v̂), where εv, ε
s
p, and εhp upper

bound errors as in the Lemma A.1.2. Then π is ε-optimal in GT (bs) where ε

is no more than εr + 2εv + 4 maxz |u(z)|(εsp + εhp).

Proof.

|max
π′

uGT (bs,P,v)(π′)− uGT (bs,P,v)(π)| (A.15)

= |max
π′

uGT (bs,P,v)(π′)−max
π′

uGT (b̂s,P̂ ,v̂)(π′) (A.16)

+ max
π′

uGT (b̂s,P̂ ,v̂)(π′)− uGT (b̂s,P̂ ,v̂)(π)| (A.17)

+ |uGT (b̂s,P̂ ,v̂)(π)− uGT (bs,P,v)(π)| (A.18)

≤ εr + 2εv + 4 max
z
|u(z)|(εsp + εhp). (A.19)

The first equality holds since the line just adds and subtracts maxπ′ u
GT (bs,P̂ ,v̂)(π′)

and uGT (b̂s,P̂ ,v̂)(π). Line (A.16) is bounded by εv + 2 maxz |u(z)|(εsp + εhp) by

Lemma A.2.2 and Lemma A.1.2. Line (A.17) is bounded by εr by assumption.

Line (A.18) is bounded by εv + 2 maxz |u(z)|(εsp + εhp) by Lemma A.2.2 and

Lemma A.1.2.

Theorem A.1.3.
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Proof. From Lemma A.1.1, the suboptimality is bounded by d× ε, where ε is

an upper bound on the suboptimality of optimal public subgame extensions.

From Lemma A.2.4, an εr-optimal policy profile in GT (b̂s, P̂ , v̂) is at worst

an εr + 2εv + 4 maxz |u(z)|(εsp + εhp)-optimal policy profile in GT (bπs , P, v). By

construction of GT (bπs , P, v), an ε-optimal policy profile has an extension to

G(s, π) bounded by the same suboptimality. The result follows.

Lemma A.2.5. Let π be εr-optimal in GT (b̂s, P̂ , v̂), where εv, ε
s
p, and εhp upper

bound errors as in the Lemma A.1.2. Then

|max
π′

uGT (bs)(π′)− uGT (b̂s,P̂ ,v̂)(π)| < εr + 2εv + 4 max
z
|u(z)|(εsp + εhp).

Proof.

|max
π′

uGT (bs,P,v)(π′)− uGT (b̂s,P̂ ,v̂)(π)| (A.20)

= |max
π′

uGT (bs,P,v)(π′)−max
π′

uGT (b̂s,P̂ ,v̂)(π′) (A.21)

+ max
π′

uGT (b̂s,P̂ ,v̂)(π′)− uGT (b̂s,P̂ ,v̂)(π)| (A.22)

≤ εr + εv + 2 max
z
|u(z)|(εsp + εhp). (A.23)

The first equality holds since the line are just adds and subtracts maxπ′ u
GT (b̂s,P̂ ,v̂)(π).

Line (A.21) is bounded by εv + 2 maxz |u(z)|(εsp + εhp) by Lemma A.2.2 and

Lemma A.1.2. Line (A.22) is bounded by εr by assumption.

Theorem A.1.4

Proof. Define the height of a history to be the maximum number of time

steps it could take to terminate from that history. Proceed by induction. By

assumption, at public belief states over histories at height zero, v̂0 is exact.

Now assume that at height k, v̂k has error bounded by

k × [εr + 2 max
z
|u(z)|(εsp + εhp)].

Then observe from Lemma A.2.5 that an assessed value of bs differs from

its optimal value by no more than εr + 2 maxz |u(z)|(εsp + εhp) + εv. Then by
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assumption, at height k + 1, v̂k+1 has error bounded by

εr + 2 max
z
|u(z)|(εsp + εhp) + k × [εr + 2 max

z
|u(z)|(εsp + εhp)]

= (k + 1)× [εr + 2 max
z
|u(z)|(εsp + εhp)].

Then by induction, the result holds.

Theorem A.1.5

Proof. Again abbreviating maxz |u(z)| by u, observe

max
π′

u(π′)− u(π) (A.24)

≤ d
[
εr + 4u(εsp + εhp) + 2εv

]
(A.25)

≤ d
[
εr + 4u(εsp + εhp) + 2d[εr + 2u(εsp + εhp)]

]
(A.26)

= (2d2 + d)εr + (4d2 + 4d)u(εsp + εhp). (A.27)

Line (A.25) follows from Theorem A.1.3. Line (A.26) follows from Theorem

A.1.4. The final line is just rearrangement.
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Appendix B

The Tiny Hanabi Suite

Although the tiny Hanabi games are most naturally thought of as temporally-

extended, the payoff functions can be succinctly described as payoff tables, as

is shown in Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, and

Figure B.6.

• The uppercase numerals in the leftmost column represent the card dealt to

player one.

• The lowercase numerals in the uppermost column represent the card dealt

to player two.

• The uppercase letters represent player one’s action.

• The lowercase letters represent player two’s action.

• The integer corresponding to a particular quadruplet is the payoff to that

trajectory.

In games A, B, C, and D, num cards= 2 and num actions= 2. In game

E, num cards= 2 and num actions= 3. In game F, num cards= 3 and

num actions= 2.
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B.1 Game A

Card i ii
Action a b a b

1 A 0 1 0 1
B 0 0 3 2

2 A 3 3 2 0
B 3 2 3 3

Figure B.1: Game A of The Tiny Hanabi Suite.

B.2 Game B

Card i ii
Action a b a b

1 A 1 0 0 1
B 1 0 0 1

2 A 0 1 1 0
B 0 0 1 0

Figure B.2: Game B of The Tiny Hanabi Suite.

B.3 Game C

Card i ii
Action a b a b

I A 3 0 2 0
B 0 3 3 3

II A 2 2 0 1
B 3 0 0 2

Figure B.3: Game C of The Tiny Hanabi Suite.

B.4 Game D

Card i ii
Action a b a b

I A 3 0 3 0
B 1 3 3 0

II A 3 2 0 1
B 0 2 0 0

Figure B.4: Game D of The Tiny Hanabi Suite.
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B.5 Game E

Card i ii
Action a b c a b c

I A 10 0 0 0 0 10
B 4 8 4 4 8 4
C 10 0 0 0 0 10

II A 0 0 10 10 0 0
B 4 8 4 4 8 4
C 0 0 0 10 0 0

Figure B.5: Game E of The Tiny Hanabi Suite.

B.6 Game F

Card i ii iii
Action a b a b a b

I A 0 3 0 0 3 1
B 3 2 0 1 2 1

II A 0 2 1 2 0 1
B 0 1 1 2 0 3

III A 1 3 0 3 3 1
B 1 2 2 2 3 0

Figure B.6: Game F of The Tiny Hanabi Suite.
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Appendix C

Tiny Hanabi Graphs

C.1 IRL
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Figure C.1: IRL in tiny Hanabi.

IRL (Figure C.1) solved game A and D with all of the hyperparameter set-

tings. To solve game B it required a large initial learning rate and substantial

exploration. To solve game F it required substantial exploration. It failed to

solve games C and E.
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C.2 IRL with AVD
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Figure C.2: IRL with AVD in tiny Hanabi.

IRL with AVD (Figure C.2) solved game A and D with all of the hyperparam-

eter settings. It solved game F on all of the hyperparameter settings except

the one with the lowest learning rate and the lowest exploration rate. It solved

game B and E only with the hyperparameter setting having the highest learn-

ing rate and the highest exploration rate. It failed to solve game C. Compared

to IRL, IRL with AVD performed better.
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C.3 SAD
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Figure C.3: SAD in tiny Hanabi.

SAD (Figure C.3) solved games A and D with all of the hyperparameter set-

tings. It solved game B for sufficiently high learning rates and exploration

rates. It solved game F for every hyperparameter setting except the one hav-

ing the highest learning rate and lowest exploration rate. It solved game E

for sufficiently high exploration rates. It failed to solve game C. Compared to

IRL, SAD performed better.
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C.4 SAD with AVD
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Figure C.4: SAD with AVD in tiny Hanabi.

SAD with AVD (Figure C.4) solved games A with all of the hyperparameter

settings. It solved games B and D only with a low learning rate and a large

(and also medium in the case of game D) exploration rate. It solved game F

only with a low learning rate and a medium exploration rate. It failed to solve

games E and C. Compared to SAD, SAD with AVD performed worse.
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C.5 BSAD
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Figure C.5: BSAD in tiny Hanabi.

BSAD (Figure C.5) solved games A and D with all of the hyperparameter

settings. It solved games B consistently with a large learning rate and game

F consistently with medium and small learning rates. It failed to solve games

E and C. Compared to SAD, BSAD performed worse.
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C.6 BSAD with AVD
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Figure C.6: BSAD with AVD in tiny Hanabi.

BSAD with AVD (Figure C.6) solved game A with all of the hyperparameter

settings. It solved game B with a medium learning rate and high exploration.

It solved game D with a low learning rate and low exploration and a medium

learning rate and medium exploration. It failed to solve games C, E, and F.

Compared to BSAD, BSAD with AVD performed worse.
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C.7 ASAD
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Figure C.7: ASAD in tiny Hanabi.

ASAD (Figure C.7) solved games A and D with all of the hyperparameter

settings. It solved games B, E, and F on most of the hyperparameter settings.

It failed to solve game C. Compared to SAD, ASAD performed comparably.
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C.8 ASAD with AVD
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Figure C.8: ASAD with AVD in tiny Hanabi.

ASAD with AVD (Figure C.7) solved game A with all of the hyperparameter

settings except the one having the highest learning rate and least exploration.

It solved game B only with the hyperparameter setting having the lowest

learning rate and highest exploration rate. It solved games A and D on all

of the hyperparameter settings. It solved games B, E, and F on most of

the hyperparameter settings. It failed to solve game C. Compared to ASAD,

ASAD with AVD performed worse.
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C.9 PSAD
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Figure C.9: PSAD in tiny Hanabi.

PSAD (Figure C.9) solved games A, D and F with all of the hyperparameter

settings. It solved game B consistently with a large learning rate. And it failed

to solve games C and E. Compared to SAD, PSAD performed worse.
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C.10 PSAD with AVD
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Figure C.10: PSAD with AVD in tiny Hanabi.

PSAD with AVD solved games A and B with all of the hyperparameter set-

tings. It is the only player-by-player method that did so for game B. It only

solved game D on the hyperparameter setting with the lowest learning rate

and lowest exploration rate. It solved game E on a few hyperparameter set-

tings. It failed to solve games C and F. Compared to PSAD, PSAD with AVD

performed worse.
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C.11 PuB-MDP
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Figure C.11: PuB-MDP for tiny Hanabi.

The PuB-MDP approach solved games A, B, C, and E with all of the hyperpa-

rameter settings. On game D, a smaller learning rate appears more favorable

to convergence within the allotted horizon. On game F, all hyperparameter

settings except the one having the smallest learning rate and the smallest

exploration rate converged to the optimal policy.
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C.12 TB-MDP
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Figure C.12: TB-MDP for tiny Hanabi.

The TB-MDP approach (Figure C.12) solved games A, B, C, and D on all

hyperparameter settings. On games D and F, a larger learning rate and ex-

ploration rate appear more favorable to convergence.

97



C.13 VB-MDP
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Figure C.13: VB-MDP for tiny Hanabi.

The VB-MDP (Figure C.13) solved games A, B, C, and D on all hyperparam-

eter settings. On games D and F, a larger learning rate and exploration rate

appear more favorable to convergence.
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