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Abstract

In model-based reinforcement learning, planning with an imperfect model of

the environment has the potential to harm learning progress. But even when a

model is imperfect, it may still contain information that is useful for planning.

In this thesis, we investigate the idea of using an imperfect model selectively :

the agent should plan in parts of the state space where the model would be

helpful but refrain from using the model where it would be harmful. An effec-

tive selective planning mechanism needs to account for at least three sources

of model errors: stochastic dynamics of the environment, insufficient coverage

of the state space, and limited capacity to model the dynamics. Prior work

has used parameter uncertainty for selective planning, where the estimated

uncertainty signals the errors due to insufficient coverage. In this work, we

emphasize the importance of structural uncertainty that signals the errors due

to limited capacity; we show that the learned input-dependent variance, under

the standard Gaussian assumption, can be interpreted as an estimate of struc-

tural uncertainty. We empirically evaluate the ability of the learned variance

to help plan selectively under limited capacity. The results show that selective

planning with the learned variance can be useful, even when planning with the

model non-selectively would cause catastrophic failure.
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“Having done nothing, I had nothing to lose. Having made a happy life

without having achieved anything at all artistically, I found that any artistic

achievement was a bonus. Having finally conceded that I wasn’t a prodigy

after all, I had the total artistic freedom that is afforded only to the beginner,

the doofus, the aspirant.”

– George Saunders, CivilWarLand in Bad Decline.
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Chapter 1

Introduction

Reinforcement learning is a computational approach to learning via interac-

tion. An algorithmic agent is tasked with determining a behavior policy that

yields a large cumulative reward. Generally, the framework under which this

agent learns its policy falls into one of two groups: model-free reinforcement

learning or model-based reinforcement learning. In model-free reinforcement

learning, the agent acts in ignorance of any explicit understanding of the dy-

namics of the environment, relying solely on its state to make decisions. In

contrast, in model-based reinforcement learning, the agent possesses a model

of how its actions affect the future. The agent uses this model to reason about

the implications of its decisions and plan its behavior.

The model-based approach to reinforcement learning offers significant ad-

vantages in two regimes. The first is domains in which acquiring experience

is expensive. Model-based methods can leverage planning to do policy im-

provement without requiring further samples from the environment. This is

important both in the traditional Markov decision process setting, where sam-

ple efficiency is often used as a performance metric, and also in a more general

pursuit of artificial intelligence, where an agent may need to quickly adapt to

new goals. Second is the regime in which capacity for function approximation

is limited and the optimal value function and policy cannot be represented.

In such cases, agents that plan at decision-time can construct temporary local

value estimates whose accuracy exceed the limits imposed by capacity restric-

tion (Silver et al. 2008). These agents are thereby able to achieve superior
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policies than similarly limited model-free agents.

Far from being special cases, sample-sensitive, limited-capacity settings

are typical of difficult problems in reinforcement learning. It is therefore not

surprising that many of the most prominent success stories of reinforcement

learning are model-based. In the Arcade Learning Environment (ALE) (Belle-

mare et al. 2013), algorithms that distribute training across many copies of

an exact model of the environment have been shown to massively outperform

algorithms limited to a single instance of the environment (Kapturowski et al.

2019). And in Chess, Shogi, Go, and Poker, superhuman performance can be

reached by means of decision-time planning on exact transition models (Brown

and Sandholm 2017; Moravč́ık et al. 2017; Silver et al. 2018).

However, the premise of these successes is subtly different from the classical

reinforcement learning problem. Rather than being asked to learn a model

from interactions with a black box environment, these agents are provided

an exact model (or many exact models) of the dynamics of the environment.

While the latter is in itself an important problem setting, the former is more

central to the pursuit of broadly intelligent agents.

Unfortunately, learning a useful model from interactions has proven dif-

ficult. While there are some examples of success in domains with smooth

dynamics (Deisenroth and Rasmussen 2011; Hafner et al. 2019), learning an

accurate model in more complex environments, such as the ALE, remains out

of reach. In a pedagogical survey of the ALE, Machado et al. (2018) state

“So far, there has been no clear demonstration of successful planning with a

learned model in the ALE.” Basic non-parametric models that replay observed

experiences (Schaul et al. 2016) remain convincingly superior to state-of-the-

art parametric models (Hasselt et al. 2019).

Some of the difficulty of increasing performance with a learned model arises

from the twofold nature of the problem. First, learning a useful model is a

difficult challenge. It is impractical to model transitions over observation space

in complex environments but learning a more compact representation remains

difficult. Second, it is not clear when and how an imperfect model is best used.

Using an imperfect model can be catastrophic to progress if it is incorrectly
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trusted by the agent.

In this work, we concern ourselves with the latter problem: how to effec-

tively use imperfect models. We discuss planning methods that only use the

model where it makes accurate predictions. Such techniques should allow the

agent to plan in regions of the state space where the model is helpful but re-

frain from using the model when it would be damaging. We refer to this idea

as selective planning.

There are two interrelated problems involved in selective planning: de-

termining when the model is and is not accurate, and devising a planning

algorithm which uses that information to plan selectively. In this thesis, we

address these problems as follows:

• We formulate the first problem as that of uncertainty estimation. We

discuss three types of uncertainty: parameter, aleatoric, and structural,

and emphasize the relevance of structural uncertainty for selective plan-

ning under limited-capacity. We empirically investigate specific meth-

ods that let us represent uncertainty in the context of neural networks,

and evaluate their effectiveness under the limited-capacity setting. We

demonstrate that the learned input-dependent variance — under the

standard Gaussian assumption (Nix and Weigend 1994), for instance —

can reveal the presence of structural uncertainty.

• We address the second problem by empirically investigating selective

planning in the context of Model-based Value Expansion (MVE), a plan-

ning algorithm which uses the learned model to construct multi-step TD

targets for evaluating the greedy policy (Feinberg et al. 2018); we show

that MVE can fail when then model is subject to capacity constraints.

We study the performance of Selective MVE, an instance of selective

planning which weights the multi-step TD targets according to the struc-

tural uncertainty in the model’s predictions. Our findings show that the

idea of selective planning is promising: selective planning can result in

sample-efficient learning even with an imperfect model that otherwise

leads to planning failures.

3



This thesis is organized into 7 chapters. Chapter 2 discusses relevant back-

ground concepts. Chapter 3 discusses the three types of uncertainty. Chapter

4 uses a simple regression problem to highlight the importance of structural

uncertainty for expressing model errors due to limited-capacity. Chapter 5

contains the results of our empirical investigations into selective planning with

the proposed structural uncertainty method. Chapter 6 emphasizes the bene-

fits of structural uncertainty over parameter uncertainty for selective planning

under the limited-capacity setting. Finally, Chapter 7 concludes the thesis

with a discussion of possible future work.
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Chapter 2

Background

In this chapter, we will briefly review some of the key reinforcement-learning

concepts. We will also introduce the relevant notation.

2.1 Learning as Reward Maximization

Reinforcement learning (RL) is a computational approach to learning from

interaction (Sutton and Barto 2018). An agent interacts with its environment

to determine a behavior that maximizes a special signal, called the reward.

Formulating goals as maximization of a reward signal is one of the central

ideas of reinforcement learning.

2.2 Markov Decision Processes

A reinforcement-learning problem is typically formulated as a finite Markov

Decision Process (MDP) (Puterman 2014). An MDP is defined as a tuple

(S,A,R, p, γ): S is the set of states; A is the set of actions; R is the set of re-

wards; p denotes the dynamics of the environment such that p(s′, r|s, a)=̇Pr(St+1 =

s′, Rt+1 = r|St = s, At = a), for all s′, s ∈ S, a ∈ A, and r ∈ R; γ : (S,A,S)→

R+ is the discount function.

At each time-step t, the environment is in some state St ∈ S; the agent

executes an action At ∈ A; the environment responds with some rewardRt+1 ∈

R and transitions to a new state St+1 ∈ S. This agent-environment interaction

gives rise to a stream of experience: ... St, At, Rt+1, St+1, At+1, Rt+2, St+2, ...
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The agent chooses actions according to a policy π : S × A → [0, 1], which

maps states to probabilities of selecting each possible action 1. The goal of

reinforcement learning is to use this experience to learn a policy π∗ that max-

imizes the future reward.

2.3 Value Functions

Value functions underlie most RL solution methods. A value function sum-

marizes the reward consequences of future behavior into a single number. The

value of a state s under a policy π, denoted as υπ(s), is the discounted cumu-

lative reward the agent is expected to receive when it starts in s and follows

π thereafter:

υπ(s)=̇Eπ
[ ∞∑
k=0

γkRt+k+1|St = s

]
The action-value function of a state s and action a under a policy π, denoted as

qπ(s, a), is the discounted cumulative reward the agent is expected to receive

if it starts in s, takes the action a, and follows π thereafter:

qπ(s, a)=̇Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]

There exists a unqiue value function, referred to as the optimal value function

υ∗, which maximizes the value over all states:

υ∗(s)=̇ max
π

υπ(s)

for all s ∈ S. All policies that share the optimal value function are optimal;

an optimal policy can be written as:

π∗=̇ arg max
π

υπ(s)

Optimal policies also share the same action-value function q∗, which can be

written as:

q∗(s, a)=̇ max
π

qπ(s, a)

for all s ∈ S and a ∈ A.

1If the policy is deterministic, we can alternatively write it as a function π : S → A
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Value-based reinforcement methods typically estimate the optimal action-

value function as a means to an optimal policy; for instance, a determinstic

policy π : S → A that is greedy with respect to q∗ is an optimal policy:

π∗(s) = arg max
a
q∗(s, a)

2.4 Bellman Equations and Dynamic Program-

ming

Bellman equations are at the heart of reinforcement learning solution methods.

One of the key properties of Bellman equations is that they relate the value

of a state (or a state-action pair) to that of its successor states (or successor

state-action pairs), paving a way for learning to be online and incremental.

Consider, for instance, the Bellman equation of the action-value function qπ

of a policy π:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)
]

If the environment’s dynamics p are known, then the above Bellman equation

can be mechanized into a policy evaluation algorithm for estimating the action-

value function of an arbitrary policy π — 1) initialize an action-value function

estimate Q(s, a) for all (s, a) pairs, 2) loop over all (s, a) pairs and update

Q(s, a) towards the quantity
∑

s′,r p(s
′, r|s, a)[r+γ

∑
a′ π(a′|s′)Q(s′, a′), 3) halt

when estimates change only negligibly. The essence of this algorithm is in the

following update equation:

Q(s, a)←
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′|s′) Q(s′, a′)
]

An application of the above update equation is also referred to as a full backup

— it uses the dynamics model to perform a full-width lookahead over all

possible state transitions. Now consider the Bellman equation for the optimal

action-value function q∗:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

7



The above Bellman equation leads to a value iteration algorithm for estimating

the optimal action-value function, which has the following update equation:

Q(s, a)←
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
Q(s′, a′)

]
If the above update equation is used for the action values of all state-action

pairs infinitely many times, the estimated Q converges to q∗.

Value iteration combines policy evaluation with policy improvement — the

policy to be evaluated is always greedy with respect to the currently estimated

Q. Value iteration can be interpreted as an instance of generalized policy

iteration (GPI): a general idea which refers to policy evaluation and policy

improvement working in tandem to find the optimal value function and an

optimal policy (Sutton and Barto 2018).

Policy evaluation and value iteration are instances of dynamic programming

(DP), a class of methods which can compute quantities such as qπ and q∗

if given a perfect model of the environment’s dynamics. DP methods are

model-based : they primarily rely on planning with a model to estimate value

functions; while interactions with the environment may be needed as means to

a model, no further interaction is needed once the model has been obtained.

DP methods also bootstrap: they update the value estimates of states on the

basis of the value estimates of successor states. Bootstrapping is central to

many RL algorithms as it enables the learning to be online: the estimates can

be improved without waiting for the final outcome to be known — the sum of

future rewards, for example. For the learning to progress, the successor states

and the rewards along the way are all that are needed.

2.5 Q-learning

While DP methods require a perfect model of the environment’s dynamics,

methods based on temporal-difference (TD) learning (Sutton 1988) can esti-

mate value functions model-free; that is, TD methods learn directly from raw

experience without an explicit model of the environment’s dynamics. Con-

sider, for instance, Q-learning (Watkins 1989) — a prototypical temporal-
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difference learning algorithm for estimating q∗. Given a sample transition,

(St, At, Rt, St+1), Q-learning updates the action values according to the up-

date rule:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.1)

where α is the step-size parameter.

2.6 Dyna

Dyna is an approach to model-based RL which unfies the essential ideas of

dynamic programming and temporal difference learning. A planning agent

uses real experience, acquired by interacting with the environment, to update

the value function with TD learning; in addition, the real experience is used

to learn a model of the environment, which is then used to simulate additional

experience; the value function is updated with the simulated experience in the

same way as with the real experience — with TD learning.

DynaQ (Sutton 1991) is a prototypical Dyna algorithm. DynaQ uses the Q-

learning update rule (Equation 2.1) for both learning from real experience and

planning from simualted experience. For every real transition, DynaQ updates

the value function using the Q-learning update rule; the same transition is also

used to update the model, to make it more consistent with the real dynamics of

the environment. Then, planning proceeds until some computational budget

runs out. During planning, a state, S, is sampled from the set of previously

seen states; an action, A, is sampled from the set of actions previously taken in

S; the model is used to predict the next state, S ′, and reward, R′; the resulting

simulated transition, (S,A,R, S ′), is used to update the value function using

the same Q-learning update (Equation 2.1).

Dyna allows flexible planning with its search control : a process that se-

lects the starting states and actions for the simulated experiences generated

by the model. Planning efficiency can be significantly improved if the plan-

ning budget is focused on particular state-action pairs. For instance, priori-

tized sweeping (Moore and Atkeson 1993; Peng and Williams 1993) improves
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planning efficiency by prioritizing the predecessor states of state-action pairs

whose estimated values have changed. Search control makes Dyna an attrac-

tive framework for selective planning: planning computations can be focused

on states and actions for which the model makes accurate predictions.

2.7 Value-Function Approximation

Our discussion so far has focused on the tabular solution methods : that in

which the state and action spaces are represented as a table. In many interest-

ing problems, the size of the state space, S, or the state-action space, S × A,

it too large for the tabular methods to be applicable. Approximate solution

methods extend the key ideas of reinforcement learning to large state spaces

by means of function approximation.

Consider, for instance, the optimal action-value function. The optimal

action-value function can be approximated using a function parametrized by

a weight vector w ∈ Rd: q̂w(s, a) ≈ q∗(s, a). Learning, in this case, involves

the use of real experience to adjust the parameters so as to reduce the approx-

imation error. Semi-gradient Q-learning, a variant of Q-learning for function

approximation, is an example of a learning algorithm which, given a transition,

(St, At, Rt+1, St+1), adjusts the parameters according to the update rule:

wt+1=̇wt + α
[
Rt+1 + γmax

a
q̂wt(St+1, a)− q̂wt(St, At)

]
∇wt q̂(St, At) (2.2)

where ∇wt q̂(St, At) is the gradient of q̂(St, At) with respect to the weight vec-

tor w at time-step t.

A simple approach to function approximation is the use of linear functions.

Under linear function approximation, the approximate function is linear in the

features — q̂w(s, a)=̇w>x(s, a), where x : S×A → Rm is the feature extractor.

The gradient ∇wq̂(s, a), in this case, is simply the feature vector x(s, a).

While the class of linear functions is well-understood, its effectiveness

greatly depends on the feature mapping x. An alternative is to use a non-

linear function approximator, such as a neural network, for value function
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approximation. On the other hand, while neural networks offer a rich class

of functions, they can be difficult to optimize due to nonstationarity, boot-

strapping, and delayed targets — a combination of challenges unique to rein-

forcement learning. In the next section, we discuss Deep Q-Networks (DQN)

(Mnih et al. 2015), an algorithm which uses a neural network for value-function

approximation.

2.8 Deep Q-Networks

Deep Q-Network (DQN) has achieved impressive performance on Arcade Learn-

ing Environment (ALE) (Bellemare et al. 2013), a suite of Atari 2600 games

designed to study reinforcement learning algorithms. It is a semi-gradient Q-

learning algorithm which approximates the value function using a deep (multi-

layer) neural network trained via backpropagation (Rumelhart et al. 1986). In

order to stabilize the learning process under nonstationarity and bootstrap-

ping, DQN relies on two cruical pieces: experience replay and target networks

— which effectively bring Q-learning closer to the simpler supervised-learning

setting in which neural networks tend to work reliably.

Instead of updating the value function online with every transition, as done

in Q-learning, DQN places the transitions into an experience replay buffer (Lin

1992). A batch of transitions is sampled from the replay buffer and the value

function is updated using the semi-gradient Q-learning update (Equation 2.2).

Experience replay offers several cruicial benefits: it temporally decorrelates the

updates as the transitions are randomly sampled from the buffer, it enables

smooth sample gradients by means of a batch of randomly sampled transitions,

and, finally, it allows for more efficient use of real experience — a particular

transition is used to update the value function several times before it is removed

from the replay buffer.

DQN addresses the optimization challenges caused by bootstrapping by

employing a target network, parameterized by the weight vector w− ∈ Rd.

Every K steps, the parameters, w, of the approximate value function, q̂w, are

copied to the target network. For the next K steps, the target network is
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used to provide Q-learning update targets: Rt+1 +γmaxa q̂w−(St+1, a). Target

network ensures that the update targets are stationary during the interval in

which the target network parameters remain fixed.

2.9 Experience Replay as Dyna-style Planning

RL algorithms with experience replay mechanisms can be well thought of as

instantiations of the Dyna framework: planning involves improving the ap-

proximate value function by replaying transitions from the experience replay

buffer — a non-parametric model of the environment’s dynamics (Hasselt et

al. 2019).

However, there are limited benefits to simply replaying stored experiences.

For instance, a replay buffer cannot be used to simulate novel experiences as

it only stores what the agent has already experienced. On the other hand, a

parametric model that generalizes meaningfully can be used to generate new

experiences, which may involve actions that have not yet been taken, or states

that have not yet been visited. Planning with a parametric model, which

can simulate novel experiences, can be significantly more sample-efficient than

simply replaying stored experiences (Holland et al. 2018).

2.10 Model-based Value Expansion

Model-based Value Expansion (MVE) (Feinberg et al. 2018) can be seen as an

extension of DQN in which the model-simulated experience is used to evaluate

the greedy policy. DQN samples a batch of transitions from the replay buffer

to update the value estimates of state-action pairs towards the TD target

constructed with the rewards and the values of the next states. In contrast,

MVE samples a batch of transitions from the replay buffer, and simulates —

for each state-action pair in the sampled batch — an H-step trajectory using

the learned model and the greedy policy. The simulated trajectories are then

used to construct multi-step TD-targets towards which the value estimates

of the state-action pairs are updated. If the model is accurate, model-based

value expansion can help reduce the bias of the updates, potentially improving
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U2(S0, A0) = R1 + γR2 + γ2max
a

̂qw(S2, a)

U1(S0, A0) = R1 + γ max
a

̂qw(S1, a)

U3(S0, A0) = R1 + γR2 + γ2R3 + γ3max
a

̂qw(S3, a)

1-step target

2-step target

3-step target

S0 S1 S2 S3A0 A1 A3
R1 R2 R3

Sk+ 1,Rk+ 1, ∼ ̂p(Sk+ 1,Rk+ 1 |Sk, Ak)Ak = argmax
a

̂qw(Sk, a)
Simulation Policy:

(greedy policy)
Model Prediction:

Simulated Trajectory:
Starting from S0, A0

Uavg(S0, A0) = weighted-avg(U1(S0, A0),U2(S0, A0),U3(S0, A0))Update Target

̂qw(S0, A0)→ Uavg(S0, A0)Update

Figure 2.1: A pictorial representation of MVE: a model is used to simulate
a trajectory. The simulated trajectory is used to construct multi-step TD
targets for evaluating the greedy policy. The TD-targets are combined using
a weighted average — the weight can be distributed uniformly on all targets,
for example. The approximate action-value is updated towards the weighted
average.

sample-efficiency.

The essence of MVE is depicted in Figure 2.1 using a single state-action

pair as an example. Given a state-action pair, (S0, A0)
2, selected for a plan-

ning update by search control, a 3-step trajectory is simulated by the model

using the greedy policy implied by the approximate action value function q̂w.

The simulated trajectory is used to construct TD-targets: a 1-step target,

U1(S0, A0), a 2-step target, U2(S0, A0), and a 3-step target, U3(S0, A0). More

generally, an h-step target Uh can be written as:

2In this case, the subscript zero of (S0, A0) should not be confused with the real time-step
of the agent-environment interaction. We use zero to indicate the state-action pair sampled
using search control — random sampling from the replay buffer, for example. The value of
the sampled state-action pair are updated using the simulated experience.
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Uh(S0, A0) =
h∑
k=1

γk−1Rk + γh max
a∈A

q̂w(Sh, a) (2.3)

The TD-targets are combined into Uavg(S0, A0) by computing the weighted

average; for instance, the weight can be distributed uniformly on all targets, or

all weight can be put exclusively on the target obtained by bootstrapping from

the last simulated state. Finally, the estimated value of the state-action pair,

q̂w(S0, A0), is updated towards Uavg(S0, A0) — by the semi-gradient update,

for example.

2.11 Model Learning as Supervised Learning

A model of the environment can be classified into one of the three types: dis-

tribution models, sample models, or expectation models. Given a state feature

vector and an action: a distribution model produces a distribution over the

next-state feature vectors and rewards, a sample model generates a sample of

the next-state feature vector and reward, and an expectation model produces

the expectation of the next-state feature vector and reward. Expectation mod-

els have been used to extend Dyna to linear function approximation (Asadi

2015; Sutton et al. 2008). While expectation models are relatively easier to

learn, they introduce bias in TD updates if the environment is stochastic

and the value function is non-linear (Wan et al. 2019). For the special case

of deterministic environments, expectation models have been used with non-

linear function approximation (Oh et al. 2015). Feinberg et al. (2018) also

use expectation models to evaluate MVE, a flavor of Dyna-style planning, in

deterministic environments. In this thesis, we develop selective planning in the

context of expectation models and use non-linear value functions; as a result,

we simulate experience only for the state-action pairs for which the dynamics

are deterministic.

Learning an expectation model of next-state features can be well thought

of as a supervised learning problem. Consider D = {(x(Si), Ai,x(S ′i))}Ni=1,

a training-set, generated by interacting with an environment with dynamics
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p, using some policy π. Our goal is to find a predictor f : Rd × A → Rd,

from some function class F , which, given a state feature vector, in Rd, and an

action, in A, predicts the expected next-state feature vector, in Rd.

In particular, we are interested in learning a parametric model using a

neural network — we would like to find a predictor in a neural network’s

function class F that consists of all functions representable by the network

with its allowable parameter configurations. The model parameters can be

chosen by minimizing the empirical risk (Vapnik 1992): find a weight vector

θ ∈ Rm that minimizes the loss on the training set.

θ∗ = min
θ∈Rm

ED
[
`
(
fθ
(
x(S), A

)
,x(S ′)

)]
(2.4)

where ` is a loss function. For squared loss, the optimal model is the expec-

tation model (Geman et al. 1992): the deterministic function of x(S) and A

which predicts the expected x(S ′).

2.12 Stochastic Ensemble Value Expansion

The idea of selective planning is not novel. A particularly prominent ap-

proach is Stochastic Ensemble Value Expansion (STEVE) (Buckman et al.

2018). STEVE is an extension of MVE that uses an ensemble of neural net-

works to estimate parameter uncertainty. Intuitively, individual networks in

an ensemble should make similar predictions in the regions of the state space

where sufficient samples have been observed while making dissimilar predic-

tions elsewhere. The degree of agreement can be used as a proxy for the

trustworthiness of the model in a particular area of the state space. STEVE

uses the estimated parameter uncertainty to weight the multi-step TD targets:

it uses a small weight for a target with high parameter uncertainty, and vice

versa.

However, we argue that paramater uncertainty may not offer a sufficient

measure of whether the model is trustworthy, and that it needs to be used in

tandem with structural uncertainty. In case of a neural network ensemble, for

instance, a set of networks with insufficient capacity may reach an agreement

15



on a solution that efficiently allocates capacity but does not match the ob-

served data. Being aware of this type of error is critical for selective planning,

especially due to the fact that it is unreasonable to assume that the model will

have sufficient capacity in a complex environment. In this thesis, we highlight

the importance of structural uncertainty for selective planning under limited

capacity.
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Chapter 3

Types of Uncertainty

There are many reasons why the model may be inaccurate in certain situations:

the agent may as yet not seen sufficient data, or the outcomes are highly

stochastic, or there is too much complexity to model.

Consider an agent learning to navigate. The agent can take an action for

each of the four cardinal directions: up, down, left, and right. An action moves

the agent in the intended direction unless the agent is in front of an obstacle,

in which case the agent stays where it is. The agent begins to roam around the

world, and decides to build a model with its stream of experience. Crucially,

the agent has not yet had a face-off with any of the obstacles; as a result, the

data used to build the model does not include any information about what

the agent should expect when it is facing an obstacle. What should the model

predict when the agent faces an obstacle and plans to move towards it?

In other cases, the outcome is stochastic. Imagine a world with slippery

surfaces. When the agent attempts to move in one direction while it is on a

slippery surface, it has a nonzero chance of slipping in the opposite direction.

What should happen when the agent uses the model to make predictions about

its movement on slippery surfaces?

The world is also likely to be more complex than what the agent can model.

Consider a navigation problem in which the agent senses the x, y coordinates

representing its position, and the obstacles are arranged in a way that both

coordinates jointly determine the next position. Imagine that the agent can

only afford a factored model that cannot take both dimensions into account
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jointly. To get the majority of the predictions correct, the model completely

ignores the presence of the obstacles. What should happen when the agent

faces an obstacle in this case?

In all of these cases, the model is likely to make arbitrary predictions which

can cause planning failures. It is therefore desirable that the model conveys

some quantity which lets the agent distinguish such cases from the ones in

which the model predictions can be used safely. That is, the model should not

only predict the future but also convey its level of uncertainty in the prediction

it makes. In this chapter, we discuss different sources of uncertainty and the

methods to estimate them.

3.1 Sources of Uncertainty

While the three example scenarios outlined earlier are similar in that they all

bring attention to the need of mechanisms which account for uncertainty in the

predictions, they are exemplars of the distinct types of uncertainty which may

require separate treatment in terms of formalism and solution methods. In

the following, we discuss the sources of uncertainty, and label the situations in

which it is desirable for the model to express low confidence in its predictions.

3.1.1 Stochasticity

The inherent stochasticity of the data generating process can contribute an

irreducible component to a model’s uncertainty in its predictions. Consider,

for instance, the roll of a die: the probability of each face may be nonzero,

making the outcome truly random.

This type of uncertainty is referred to as aleatoric uncertainty. Aleatoric

uncertainty is irreducible in that it cannot be resolved by collecting more

samples, or by increasing the complexity of the model. In the context of re-

inforcement learning, MDPs with stochastic dynamics — which can capture

our slippery surface navigation problem, for example — lead to aleatoric un-

certainty.
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3.1.2 Insufficient Coverage

The model is typically learned using a training set D constructed from a finite

number of samples {(Si, Ai, Ri, S
′
i)}Ni=1 generated randomly with respect to a

combination of the envrionment dynamics, p, and a policy, π (Section 2.11).

Depending on the policy, the training set may or may not be representative

of the environment dynamics. A training set with insufficient coverage of the

state space, in that it does not account for certain regions of the state space,

may lead to an inaccurate model. While the resulting model may still be

useful for the states that are sufficiently represented in the training set, it

may make arbitrary predictions elsewhere. As such, the model should express

uncertainty when it makes a prediction for a state for which it has not yet

observed sufficient training samples.

In one of our example navigation problems, the training set was not suf-

ficiently representative of the dynamics: it did not include transitions which

had obstacles. If a model learned from this training set expresses uncertainty

for input states in which the agent faces an obstacle, the agent can avoid using

the model in those states.

In the case of parametric models, the uncertainty due to insufficient cov-

erage is referred to as parameter uncertainty ; there can be a large number of

parameter configurations that are consistent with the observed data — there

is uncertainty about which parameter configuration should be chosen for mak-

ing the prediction. Unlike aleatoric uncertainty, parameter uncertainty can be

reduced by gathering more data and making the training set more representa-

tive.

3.1.3 Limited Capacity

The model may have insufficient capacity to express the environment dynam-

ics. In other words, the model is unable to fit the training set. In case of

limited capacity, the model may trade off accuracy on certain regions of the

input space to make accurate predictions elsewhere. While the exact nature of

this trade-off may depend on the specific model-learning approach, we would
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like the model to express high uncertainty on the compromised regions of the

state space.

In our factored model example, the model had limited capacity: it was

unable to express the dynamics perfectly as it could not consider the inter-

actions between the two coordinates. In this case, the model should express

uncertainty when any of the coordinates has a value that sometimes precedes

an obstacle.

The uncertainty due to limited capacity is also referred to as structural un-

certainty. Structural uncertainty due to limited capacity can only be resolved

by increasing the model complexity.

3.2 Uncertainty in the Context of the Bias-

Variance Trade-off

Ultimately, we want the uncertainty estimates to reflect how the learned model

differs from the true dynamics of the environment: the uncertainty estimates

should provide a sense of the approximation error of the learned model. One

can gain a deeper insight into how various types of uncertainty relate to the

approximation error by using the lens of the bias-variance trade-off (Geman

et al. 1992) — one of the central tenets of the field of machine learning.

Consider the problem of regression: given a training set D = {(xi, yi)
N
i=1}

from Rd × R, find a predictor f : Rd → R which predicts the target y given

the input vector x. The samples (x, y) in the training set D are drawn from a

probability distribution P over Rd × R.

The predictor f is typically chosen from some function class or hypothesis

space F . For instance, a neural network’s function class F consists of all

functions f that are representable by the network with its allowable parameter

configurations. The predictor f can be chosen using the principle of empirical

risk minimization (Vapnik 1992): find a predictor fD ∈ F that minimizes the

empirical risk — or, in other words, the training loss

fD = min
f∈F

E(x,y)∼D[`(f(x), y)] (3.1)
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where ` is a loss function (squared loss, for instance).

While the true risk of a model E(x,y)∼P [`(f(x), y)] — or the approxima-

tion error, in other words — is the objective evaluation criteria of the model’s

efficacy, we cannot compute it since we do not have access to the true distri-

bution P . The hope is that the empirical risk can be a good estimate of the

true risk; that is, a predictor that minimizes the loss on the training samples

should generalize to the test samples that are drawn independently from P .

Generalization to unseen test samples is in fact the goal of supervised machine

learning.

For squared loss, the optimal predictor f ∗ that minimizes the true risk is

the mean predictor (Geman et al. 1992): the deterministic function of x which

predicts the mean value of y conditioned on x. As such, the risk of a predictor

fD depends on the variance of y given x (irreducible stochasticity), as well as

how well the predictor approximates f ∗. Geman et al. (1992) showed that the

expected squared error, for a given x, can be decomposed as follows:

Ey∼P (y|x),D[(fD(x)− y)2] = Ey∼P (y|x)[(y − E[y|x])2] (Irreducible Error)

+ ED[(fD(x)− ED[fD(x)])2] (Variance)

+ (ED[fD(x)]− E[y|x])2 (Bias2)

This decomposition is suggestive of the prevalent regularization techniques as

it emphasizes the need to balance bias and variance. If the function class F is

too simple, a predictor fD will have bias: fD fails to fit the training samples

(large empirical risk), and predicts poorly on the test samples (large true risk).

On the other hand, a complex function class may lead to high variance: fD

is susceptible to the nonrepresentativeness of the training samples, and while

fD may successfully capture the training samples (small empirical risk), it

generalizes poorly to the test samples (large true risk).

The bias-variance decomposition of squared-error is reminiscent of the

types of uncertainty discussed in the previous section. A predictor contributes

to the approximation error in three ways: with the limitation of its func-

tion class (bias), with its susceptibility to the spurious patterns manifested by
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the insufficient coverage of the training set (variance), and with the inherent

stochasticity of the data generating process (irreducible error).

In the context of selective planning, we need uncertainty mechanisms that

identify the regions of the state space where the learned model is not accu-

rate, enabling the planning algorithm to be robust to the inaccuracies of the

learned model. The difficulty is that it is difficult to express uncertainty for

all three sources of error. Bayesian approaches, though, do allow us to express

uncertainty in case of insufficient coverage, as we describe in the next section.

3.3 Estimating Parameter Uncertainty using

Bayesian Inference

Bayesian inference offers an elegant approach for estimating parameter uncer-

tainty. The key idea is to maintain a (posterior) distribution over plausible

hypotheses (parameter configurations). When there are several plausible hy-

potheses that are consistent with the observed data, the degree to which they

disagree in their predictions for an input not covered by the training set reflects

the level of uncertainty: there is uncertainty about which hypothesis should

be chosen for making the prediction.

3.3.1 Maintaining a Posterior

Consider a hypothesis space F with N hypotheses: f1, f2, ..., fN . Our prior

belief in the plausibility of hypothesis fi is p(fi). The likelihood of observing

data D if hypothesis fi is true is p(D|fi). Once we observe data D, we can

update our beliefs in the plausibility of alternative hypotheses by computing

the posterior with Bayes’ rule (Bayes 1763):

p(fi|D) =
p(fi)p(D|fi)

p(D)
(3.2)

p(D) is the marginal distribution of the data: p(D) =
∑N

i=1 p(D|fi)p(fi). It is

also referred to as model evidence or marginal likelihood. We can write Bayes’

rule in words as:

posterior =
prior× likelihood

model evidence
(3.3)
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Under the Bayesian framework, learning refers to Bayesian inference: the

process of transforming the prior over the alternative hypotheses in F into

posterior by incorporating the observed data. The posterior distribution is

then used for making predictions and estimating uncertainty in the hypotheses.

Let us now make these ideas concrete by looking at the problem of Bayesian

regression.

3.3.2 Bayesian Regression: An Example

Assume we are given a data set D = {(xi, yi)
N
i=1}. Our goal is to determine

the extent to which a function fw : Rd → R, parametrized by the weight

vector w, is likely to have generated the targets y given the input vectors

x. Let’s assume that our hypothesis space consists of the linear functions,

fw(x) = w>x, corresponding to all plausible configurations of the weight

vector, w ∈ Rd.

We begin by assuming a likelihood distribution p(y|x,w). Given a weight

vector w, the likelihood determines how the target Y is generated for a par-

ticular input x. Consider, for example, the Gaussian likelihood: p(y|x,w) =

N (w>x, σ2). This likelihood assumes that the target variable Y is Gaussian

distributed, with mean w>x and input-independent variance σ2. Once the

data D has been observed, the posterior can be written using the Bayes’ rule

(Bayes 1763) as follows:

p(w|X,y) =
p(w)p(y|X,w)

p(y|X)
(3.4)

where y = [y1 y2 ... yN ]T is an n × 1 vector, X = [x1 x2 ... xN]T is an n × d

matrix, and n is the number of training samples in D.

If the prior, p(w), is a zero-mean Gaussian with covariance Σd, then the

corresponding posterior (Bishop 2006) is:

p(w|X,y) = N (
1

σ2
A−1X>y, A−1) (3.5)

where

A =
1

σ2
X>X + Σ−1d (3.6)

23



The application of Bayes rule increases our belief in the weight configurations

under which the likelihood of observed data is large, while reducing our belief

in the weight configurations under which the likelihood of observed data is

small. The updated beliefs can be used to predict the target for a test input

x as follows:

p(y|x,X,y) =

∫
p(y|x,w)p(w|X,y)dw (3.7)

This distribution is referred to as the predictive distribution. The expected

value of Y under the predictive distribution, E[Y ], can be used as a prediction

of the target variable Y for a given x, whereas the variance of Y , Var[Y ],

can be used as an estimate of parameter uncertainty. In our example. the

predictive distribution can be written as:

p(y|x,X,y) = N (
1

σ2
x>A−1X>y,x>A−1x) (3.8)

where E[Y ] = 1
σ2 x

>A−1X>y; Var[Y ] = x>A−1x — parameter uncertainty.

Parameter uncertainty can be used to identify situations in which we have

insufficient coverage. In the next section, we discuss methods which extend

Bayesian regression, beyond the simple case of linear models, to neural net-

works.

3.4 Parameter Uncertainty Methods for Neu-

ral Nets

We now turn towards specific techniques for expressing parameter uncertainty

in the context of neural networks. There is a rich history of research on neural-

network uncertainty under the umbrella of Bayesian neural neworks (Barber

and Bishop 1998; Bishop et al. 1998; Hinton and Van Camp 1993; MacKay

1992; Neal 1995). Under the Bayesian framework, predictions require inte-

gration over the posterior distribution; in the case of neural networks, the

integral is analytically intractable. A significant body of research on Bayesian

neural networks is concerned with the approximation of these intergrals — by

modeling the posterior distribution using a Gaussian (MacKay 1992), or by

generating samples from the posterior distribution with Markov Chain Monte
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Carlo (MCMC) simulations, or by formulating the inference problem as an

optimization problem: variational inference (Barber and Bishop 1998; Graves

2011; Hinton and Van Camp 1993). Some of the more recent approaches ap-

proximate the posterior distribution using dropout sampling (Gal and Ghahra-

mani 2016; Gal et al. 2017; Li and Gal 2017).

There is an alternative line of research inspired by the statistical boot-

strap (Efron 1982). The corresponding methods train an ensemble of neural

networks, possibly on independent bootstrap samples of the original training

samples, and use the predictive distribution of the ensemble to estimate param-

eter uncertainty (Lakshminarayanan et al. 2017; Osband et al. 2016; Osband

et al. 2018; Pearce et al. 2018). The essential idea is that the individual mem-

bers in the ensemble would make dissimilar predictions for the regions of the

input space that are not sufficiently represented in the training samples. While

ensemble-based methods can be interpreted as Bayesian approximations only

under restricted settings (Fushiki 2005a; Fushiki et al. 2005b; Osband et al.

2018), they do share do share one of the goals of the Bayesian methods — ex-

press the uncertainty due to insufficient coverage. In the following, we review

a subset of the methods that can be used to estimate parameter uncertainty.

3.4.1 Monte-Carlo Dropout

Gal and Ghahramani (2016) proposed to use dropout (Srivastava et al. 2014)

for obtaining uncertainty estimates from neural networks. Dropout is a reg-

ularization method which prevents overfitting by randomly dropping units

during training — with probability p, dropout technique independently sets a

hidden unit activation to zero. Monte-Carlo dropout estimates uncertainty by

computing the variance of the predictions obtained by M stochastic forward

passes through the network. This technique can be interpreted through the

lens of Bayesian inference; that is, the dropout distribution approximates the

Bayesian posterior (Gal 2016).
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3.4.2 Ensemble of Neural Networks

In this approach, K randomly initialized neural networks are trained indepen-

dently — the variance in the predictions of individual networks is then used

to estimate parameter uncertainty (Lakshminarayanan et al. 2017; Osband et

al. 2016; Pearce et al. 2018). Intuitively, the individual networks in an ensem-

ble should make similar predictions in the regions of the input space where

sufficient samples have been observed while making dissimilar predictions else-

where.

3.4.3 Randomized Prior Functions

Randomized Prior Functions (RPF) (Osband et al. 2018) can be viewed as

an extension to the ensemble method: each network in the ensemble is cou-

pled with a random but fixed prior function — a randomly initialized neural

network whose weights remain unchanged during training. Prediction of an

individual ensemble member is now the sum of its trainable network and its

prior function. Given sufficient samples, the ensemble members will agree in

their predictions; on the other hand, for the regions of the input space where

sufficient samples have not been observed, the generalization of the individ-

ual networks and the priors will lead to disagreements. For Gaussian linear

models, this approach is equivalent to exact Bayesian inference (Osband et al.

2018).

3.4.4 Randomized Prior Functions with Bootstrapping

Randomized prior functions can be combined with bootstrapping. One com-

mon approach to bootstrapping involves random sampling from a given dataset

D to construct several datasets D̂, and using the resulting datasets to obtain

as many estimators; the resulting ensemble of estimators can be used to esti-

mate uncertainty. While boostrapping has been used with both the ensemble

of neural nets (Osband et al. 2016) as well as with randomized prior functions

26



(Osband et al. 2018), we will only focus on the latter as it has been noted to

provide better uncertainty estimates (Osband et al. 2018).

3.5 Parameter Uncertainty and a Limited Hy-

pothesis Space

Parameter uncertainty, as described above, refers to the uncertainty in the hy-

potheses (parameter configurations); that is, there may be multiple hypotheses

consistent with the observed data. As more data is observed, this uncertainty

diminishes, ultimately going to zero in the limit of data: the posterior dis-

tribution concentrates at the true hypothesis in the hypothesis space if it

contains the true hypothesis (De Finetti 1937). If, however, the hypothesis

space is limited in that it does not contain the true hypothesis, one can expect

the posterior distribution to concentrate at the hypothesis which is closest, in

some sense, to the true hypothesis. While this closest hypothesis may not be

fully consistent with the observed data, there would be no uncertainty in the

plausible hypotheses in the hypothesis space — parameter uncertainty would

resolve.

Nonetheless, parameter uncertainty can be an important component of a

selective planning mechanism as it can express an important source of uncer-

tainty: insufficient coverage. However, we need a separate uncertainty mecha-

nism for structural uncertainty and aleatoric uncertainty. In the next chapter,

we describe a mechanism which can effectively account for both types of un-

certainties.
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Chapter 4

Parameter Uncertainty is Not
Enough

In the previous chapter, we outlined distinct types of uncertainty — namely,

aleatoric uncertainty, parameter uncertainty, and structural uncertainty. We

reviewed parameter uncertainty methods for neural networks, and argued that

parameter uncertainty in and of itself may not be sufficient to signal the er-

rors due to limited capacity. In this chapter, we present an approach for

aleatoric uncertainty that can also be used to express structural uncertainty.

We then use a simple regression problem to demonstrate that while parameter

uncertainty methods can be predictive of insufficient coverage, the presented

approach can be predictive not only of the inherent stochasticity but also of

the inaccuracies due to limited capacity — suggesting that an effective se-

lective planning solution needs to use a combination of uncertainty methods

capturing different sources of uncertainty.

4.1 Estimating Structural Uncertainty using

the Learned Variance of a Gaussian Dis-

tribution

Neural networks are typically trained to output a point estimate as a function

of the input. When trained with mean-squared error, the probabilistic inter-

pretation is that the point estimate corresponds to the mean of a Gaussian

distribution with fixed input-independent variance σ2: p(y|x) = N (fµ(x), σ2);
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Figure 4.1: The target function y = x + sin(4x) + sin(13x) + ε — where
ε ∼ N (0, 1) when x ∈ (0.4, 0.6) and otherwise ε = 0 — shown for the training
interval (-1.0, 2.0). The points in blue represent 300 training samples drawn
uniform randomly from the training interval.

maximizing the likelihood in this case leads to least-squares regression.

An alternative is to assume that the variance is also input-dependent:

p(y|x) = N (fµ(x), fσ(x)2), where fµ(x) is the predicted mean and fσ(x)2

is the predicted variance. Under this assumption, maximizing the likelihood

leads to the following loss function (Nix and Weigend 1994):

Li(θ) =
(yi − fµ(xi))

2

2fσ(xi)2
+

1

2
logfσ(xi)

2 (4.1)

The learned variance fσ(x) can be predictive of stochasticity: the network

can incur less penalty in high-noise regions of the input space by predicting

high variance. Interestingly, the learned variance can be predictive of the er-

rors in the context of limited capacity: a network can maintain a small loss

by allowing the variance to be larger in regions where it lacks the capacity to

make accurate predictions.
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4.2 An Example Regression Problem

We now use a simple regression problem to investigate the utility of the learned

variance to signal the errors due to limited capacity. The example also high-

lights the limitation of parameter uncertainty when the model capacity is

limited. In particular, we qualitatively evaluate methods for parameter uncer-

tainty: Monte-Carlo dropout — a Bayesian method (Section 3.4.1); ensemble-

based methods — an ensemble of randomly initialized neural networks (Section

3.4.2), randomized prior functions (3.4.3), and randomized prior functions with

bootstrapping (Section 3.4.4).

We construct a dataset of 5,000 training examples using the function y =

x + sin(αx) + sin(βx) + ε, where α = 4, β = 13, and ε ∼ N (0, 1) when

x ∈ (0.4, 0.6) and otherwise ε = 0 (Figure 4.1). The inputs x are drawn from

a uniform distribution over the interval (−1.0, 2.0). We would like to find a

predictor f : R → R, from some function class F , which predicts the target

y given the input x. The function class F is implied by the neural network

architecture and the training procedure — for instance, F can consist of all

functions reachable by the application of Adam optimizer (Kingma and Ba

2015) for 100 epochs, over a fully connected neural network with two hidden

layers of 50 ReLU units each, initialized using Glorot initialization (Glorot and

Bengio 2010).

4.3 Experiment Setup

We vary the effective capacity of the model by reducing the number of layers

and the number of hidden units. In particular, we use neural networks with

three degrees of complexity: 3 hidden layers with 64 hidden units each (referred

to as large), a single hidden layer with 2048 hidden units (medium), and a

single hidden layer with 64 hidden units (small). We use Adam optimizer for

training the model. We set the batch size to 16. We consider the learning

rates 0.01, 0.001, and 0.0001. We use ReLU activations for non-linearities,
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and initialize the networks with Glorot initialization.

In MC-Dropout, we set the dropout probability p = 0.1. For obtaining the

variance , we perform 10 stochastic forward passes.

For the ensemble-based methods, we use ensembles of 10 neural networks.

All networks in the ensemble are trained using the squared-error loss.

For randomized prior functions, we simply modify each member of the

ensemble to also have an additional network representing the prior function. In

case of randomized prior functions with bootstrapping, we train each member

of the ensemble on a bootstrapped dataset generated from the original dataset

by randomly sampling with replacement.

For the aleatoric-uncertainty method, which learns the mean and the vari-

ance under the Gaussian assumption, we train separate neural networks for

the mean and the variance, and optimize them jointly using the loss from

Equation 4.1. While we change the capacity of the mean network across the

three regimes (large, medium, and small), we restrict the variance network to

be small — a single hidden layer with 64 hidden units — in all three regimes.

For each uncertainty method, every configuration is evaluated using 5 in-

dependent runs initialized with a different random seed. While the results

remain consistent across the independent runs, we present results for a single

run chosen randomly. The results are shown in Figure 5.2 (large capacity),

Figure 5.3 (medium capacity), and Figure 3.4 (small capacity) for a single

configuration of learning rate. We found the results to be consistent across

learning rate configurations (see the appendix).
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Figure 4.2: Large Capacity Results. The network architecture consists of 3
hidden layers with 64 hidden units each. The ground truth function is in blue in
all plots. Each row represents the mean predictions and uncertainty estimates
of a particular modeling approach over the course of training. Uncertainty
estimates are represented by shaded intervals; parameter uncertainty is in
purple; Learned variance is in red; darker purple/red intervals show mean ±
1 standard-deviation and lighter intervals show mean ± 2 standard-deviation.
Learning rate is 0.001 for all methods; the results for other configurations of
the learning rate, which are consistent with the results in this figure, can be
found in the appendix
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Figure 4.3: Medium capacity results. The network architecture consists of a
single hidden layers with 2048 hidden units. The ground truth function is in
blue in all plots. Each row represents the mean predictions and uncertainty
estimates of a particular modeling approach over the course of training. Uncer-
tainty estimates are represented by shaded intervals; parameter uncertainty is
in purple; Learned variance is in red; darker purple/red intervals show mean ±
1 standard-deviation and lighter intervals show mean ± 2 standard-deviation.
Learning rate is 0.01 for all methods; the results for other configurations of
the learning rate, which are consistent with the results in this figure, can be
found in the appendix
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Figure 4.4: Small capacity results (learning 0.001). The network architecture
consists of a single hidden layer with 64 hidden units. The ground truth func-
tion is in blue in all plots. Each row represents the mean predictions and
uncertainty estimates of a particular modeling approach over the course of
training. Uncertainty estimates are represented by shaded intervals; param-
eter uncertainty is in purple; Learned variance is in red; darker purple/red
intervals show mean ± 1 standard-deviation and lighter intervals show mean
± 2 standard-deviation. Learning rate is 0.01 for all methods; the results for
other configurations of the learning rate, which are consistent with the results
in this figure, can be found in the appendix
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4.4 Results and Conclusion

With a sufficiently powerful network (Figure 5.2), the ensemble learns to ac-

curately predict the mean, and the variance of the ensemble (purple) appro-

priately assesses the parameter uncertainty — the ensemble variance is large

outside the observed training distribution. However, the variance of the en-

semble fails to express uncertainty in the input region with stochasticity; that

is, the individual members of the ensemble make similar predictions in the

noisy input interval. We observe the same effect for the other ensemble-based

methods, as well as Monte-Carlo dropout. In contrast, while the learned vari-

ance (light red) fails to reflect parameter uncertainty, it still expresses aleatoric

uncertainty in the noisy interval.

As the capacity is reduced (Figure 5.2 and Figure 5.3), all methods fail

to fit the mean function accurately over the entire observed input space. In

case of ensemble-based methods, the variance of the ensemble within the train-

ing distribution remains small. A similar effect is observed for Monte-Carlo

dropout. On the other hand, the learned variance reliably reflects the errors

within the input distribution; that is, it expresses structural uncertainty. In

this case, while the capacity is insufficient to learn the target function, it is

enough to express the inability to do so.

These results support the idea that relying parameter uncertainty (MC-

dropout, ensemble of randomly initialized networks, randomized prior func-

tions with and without bootstrapping) is an insufficient metric for selective

planning. Instead, they suggest that a combination of one of these methods,

which tends to accurately reflect parameter uncertainty, with learned variance,

which tends to accurately reflect aleatoric and structural uncertainty, yields

a much more robust error detection mechanism than either do individually.

While the former method would represent uncertainty in case of insufficient

coverage, the latter would express uncertainty in case of stochasticity and lim-

ited capacity. In order to demonstrate this, we use the loss function in Equa-

tion 4.1 to train an ensemble of neural networks which predict both mean and

variance, and query the model for both the learned variance and ensemble
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variance. The results are shown in the last rows of figures 5.2, 5.3 and 5.4 —

they suggest that a combination such as this one can provide a comprehensive

estimate of uncertainty.

In the next chapter, we study the utility of the learned variance in the

context model-based reinforcement learning; in particular, we investigate if

the learned variance can be used to plan selectively with a low-capacity model

that otherwise leads to planning failures.
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Chapter 5

Combating Planning Failures
under Limited Model Capacity

In the previous chapter, we discussed how the diversity of networks in an

ensemble — by virtue of random initialization, for example — can reflect

parameter uncertainty in situations where the model has not seen sufficient

samples. On the other hand, the learned variance (Section 4.1) can express

uncertainty not only in the case of stochasticity but also in the case of limited

capacity. In this chapter, we explore the utility of the learned variance in

combating planning failures that are caused by inadequate model capacity.

We choose Model-based Value Expansion (MVE) (Feinberg et al. 2018)

(Section 2.10), a planning algorithm, as the subject of study. To isolate the

effect of model capacity, we progressively reduce the size of the neural network

used for model learning, eventually leading to planning failures. To investigate

if the learned variance can help recover the performance of low capacity models,

we instantiate Selective MVE — an MVE extension that uses the learned

variance to regulate model usage.

5.1 Experiment Design

5.1.1 Environment

In this chapter, experiments are done using Acrobot (Sutton 1996), a classic

environment loosely based on a gymnast swinging on a highbar. It consists of

two links and two joints, as depicted in Figure 5.1. The goal is to swing the
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Acrobot

Figure 5.1: A pictorial depiction of Acrobot

endpoint of the lower link above the bar up to a height equal to the length

of one of the links. The state consists of sines and cosines of two rotational

joint angles, and the joint angular velocities, leading to a 6-dimensional state

representation. The joint between the two links can be actuated by the agent;

the agent’s action space is discrete and consists of three actions: positive

torque, negative torque, and no torque. The reward is -1 on all time steps. In

our experiments, we use OpenAI gym’s implementation of Acrobot (Brockman

et al. 2016).

5.1.2 Baseline Algorithms

Deep Q-Networks (DQN)

We use Deep Q-Networks (DQN) (Mnih et al. 2015) as the baseline model-free

algorithm; we estimate the action-value function using a fully connected neural

network with ReLU activations. We repeat all experiments in this chapter for

four different fully connected neural network architectures: 1 hidden layer with

64 hidden units, 1 hidden layer with 128 hidden units, 2 hidden layers with 64

hidden units each, and 2 hidden layers with 128 hidden units each. For each

network architecture, we determine the best setting for the step-size, the batch

size, and the replay memory size by sweeping over possible parameter config-

urations (Section 5.1.3 describes the parameter sweep strategy). For DQN

baseline, the range of values for the parameter sweep, and the configuration

of the rest of the hyperparameters are presented in Table 5.1.
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Table 5.1: DQN hyperparameters used in the experiments. The step-size, the
batch size, and the replay memory size were determined by sweeping over the
range specified in the respective rows.

Hyperparameter Values

Optimizer RMSProp
Step-size (α) 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001
Batch size 16, 32, 64
Replay memory size 10000, 20000, 50000
Target network update frequency 256 environment steps
Training frequency 1 update for every environment step
Exploration rate (ε) 0.1
Discount factor (γ) 1.0

Model-Based Value Expansion (MVE)

We implement MVE by extending the DQN algorithm with the model-based

policy evaluation technique exemplified in Figure 2.1. For simplicity, we in-

stantiate MVE with a deterministic model learned using the squared error loss,

which is equivalent to learning an expectation model of the next state features.

We assume the reward signal to be known; that is, we only learn the state dy-

namics. We present MVE’s pseudocode in Appendix B. As alluded to earlier,

we study the effect of model capacity by progressively reducing the size of the

neural network used for model learning. In particular, we use four variants of

a single hidden layer neural network, which vary only in the number of hidden

units: 128 hidden units, 64 hidden units, 16 hidden units, and 4 hidden units.

In all cases, we learn the model online using the experience gathered in the

replay buffer: at every time-step, alongside the MVE value function update,

we separately sample a batch of transitions to update the model.

Once we have identified the best hyper-parameter configuration for the

DQN baselines which vary in their value function architecture, we keep the

same hyper-parameter configuration for their MVE extensions, and only sweep

over the model learning rate for each of the four model architectures. The

range of values for the parameter sweep, and the configuration of the rest of

the hyperparameters are presented in Table 5.2.
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Table 5.2: MVE specific hyperparameters. For each simulated trajectory
length (rollout length), the model learning step-size (β) was determined by
sweeping over the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment step
Simulated trajectory length 2, 3, 4

5.1.3 Parameter Sweep Strategy

All experiments in this chapter are run for 100,000 environment interactions.

The resolution of the reported results is 2,000 steps: we log the average returns

of the last 20 episodes every 2,000 steps. To determine the best-performing

hyper-parameter setting, each configuration is evaluated using 10 independent

runs initialized with a different random seed, leading to as many learning

curves. The learning curves are averaged, and the second half of the averaged

learning curve is summed up to obtain a single number representing the perfor-

mance of the particular configuration. If the best-performing parameter setting

falls on the boundary of the range of tested values for any hyper-parameter,

we widen the range until this is not true. The best-performing configuration

is evaluated using 30 additional runs, each initialized with a different random

seed, and the average learning curve, along with its standard error, is reported.

5.2 Evaluation of MVE under Capacity Con-

straints

Figure 5.2 depicts the effect of reducing model-capacity on the performance of

MVE for which the action-value function is approximated using a single hid-

den layer neural network with 128 units. (The results for other value function

network architectures are presented at the end of this chapter.) While MVE

instances with 64 and 128 hidden units offer modest sample efficiency benefits

for rollouts consisting of 2 model simulations (Figure 5.2 b), MVE instances
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Figure 5.2: The effect of model capacity on MVE’s performance. The learning
curves are averaged over 30 runs; the shaded regions show the standard error.
As we increase the rollout length, the sample-efficiency of MVE improves in
case of larger models of 64 and 128 hidden units, whereas planning failures are
observed for smaller models of 4 and 16 hidden units.

with 4 and 16 hidden units achieve subpar asymptotic performance. As we

increase the rollout length (Figure 5.2 c-d), the sample efficiency benefits of

MVE become more pronounced for larger models. On the other hand, the per-

formance of MVE with smaller models deteriorates as we increase the rollout

length. In the next section, we investigate if selective planning can salvage the

performance of the smaller models.
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5.3 Selective Model-Based Value Expansion

The learned variance, as discussed in the previous chapter, can be predictive

of the accuracy of the model. In this section, we propose a technique which

uses the learned variance to enable selective model-based value expansion:

trust a multi-step target only when the simulated trajectory is expected to be

accurate. Given a maximum rollout length H, consider the weighted-average

of h-step targets:

Uavg(s0, a0) =
H∑
h=1

wh(s0, a0)Uh(s0, a0)

We would like the weight on an h-step target to be inversely proportional

to the cumulative uncertainty in the h-step simulated trajectory σ1:h(s0, a0)

originating from (s0, a0):

wh(s0, a0) ∝
1

σ1:h(s0, a0)

The cumulative uncertainty σ1:h on an h-step simulated trajectory is the sum

of the predicted uncertainty σ(si, ai) of the state-action pairs that constitute

the simulated trajectory:

σ1:h(s0, a0) =
h−1∑
k=0

σ(sk, ak)

Given the cumulative uncertainty of the targets, we can determine the weight

of an individual target by computing the softmax:

wh(s0, a0) =
exp(−σ1:h(s0, a0)/τ)∑H
i=1 exp(−σ1:i(s0, a0)/τ)

(5.1)

where τ is a hyper-parameter which regulates the weight’s sensitivity to the

predicted uncertainty: the sensitivity to the uncertainty in the target increases

as we reduce the value of τ .

In order to achieve the desired weighting, the model has to predict σ(s, a)

for a given (s, a). This can be achieved by extending the assumptions de-

scribed in Section 4.1 — for regressing over a scalar — to account for d-

dimensional predictions. Let s and a be the feature vector representation
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of state s and action a. We assume that next-state features are normally

distributed with mean µθ(s, a) and diagonal covariances Σθ(s, a); that is,

p(s′|s, a) = N (µθ(s, a),Σθ(s, a)). Under this assumption, given a transition

(s, a, s′), maximizing the likelihood leads to the following loss function:

L(s,a,s′)(θ) = [µθ(s, a)− s′]TΣ−1θ (s, a)[µθ(s, a)− s′] + log det Σθ(s, a) (5.2)

The intuition discussed in Section 4.1 also translates to the d-dimensional

case: to reduce the loss, the predicted covariance will be large in regions where

the model lacks the capacity to make accurate predictions.

Table 5.3: Hyperparameters for Selective-MVE. Model learning step-size (β)
was determined by sweeping over the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Equation 5.2
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ) 0.1

Selective MVE Implementation: We modify the base neural networks

to output the diagonal covariances alongside the mean next-state feature vec-

tor. We enforce the positivity constraint on the covariances by passing the

corresponding output through the softplus function log(1 + exp(.)); and, for

numerical stability, we also add a small constant value of 10−6 to the predicted

covariances (Lakshminarayanan et al. 2017). The model is optimized using the

loss function in equation 5.2. For input (si, ai), σ(si, ai) is simply the trace of

Σθ(si, ai). The range of values for the parameter sweep, and the configuration

of the rest of the hyperparameters are presented in Table 5.3.
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Figure 5.3: Results of Selective MVE (τ = 0.1). The learning curves are aver-
aged over 30 runs; the shaded regions show the standard error. Selective MVE
with models of 4 hidden units (a) and 16 hidden units (b) not only matches the
asymptotic performance of DQN, but it also achieves better sample-efficiency
than the DQN baseline. More interestingly, however, Selective MVE improves
the sample-efficiency even in the case of larger models consisting of 64 hidden
units (c) and 128 hidden units (d).

5.4 Evaluation of Selective MVE under Ca-

pacity Constraints

The results for Selective MVE — for which the action-value function is ap-

proximated using a single hidden layer neural network with 128 units — are

presented in Figure 5.3. (The results for other value function network ar-

chitectures are presented at the end of this chapter.) We note that Selective

MVE under capacity constraints (models with 4 and 16 hidden units) not only

matches the asymptotic performance of DQN — effectively avoiding planning
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Figure 5.4: Performance of MVE when the model is learned using the loss
function from Equation 5.2. The learning curves are averaged over 10 runs;
the shaded regions show the standard error. Similar to the squared error loss,
the performance deteriorates as we increase the rollout length. However, unlike
the squared error loss, the performance of MVE with models of 64 and 128
hidden units also deteriorates as the rollout length is increased. This result
suggests that the loss function alone does not explain the superior performance
of Selective MVE.
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failures — but it is also more sample-efficient than the DQN baseline (Figure

5.3 a-b). More interestingly, however, Selective MVE improves the sample-

efficiency even in the case of larger models consisting of 64 and 128 hidden

units (Figure 5.3 c-d). To verify that the gains in performance are not due to

the change in loss function — Selective MVE uses the loss from Equation 5.2,

whereas MVE used the squared error loss — we evaluate MVE with the same

loss function as that of Selective MVE. The results, presented in Figure 5.4,

suggest that simply changing the loss function does not lead to an accurate

model, and that the model still needs to be used selectively.

Expected Rollout Length: To get a better of sense of how Selective MVE

is robust to model errors, we compute the expected rollout length of each of the

four model sizes. Recall that we compute a weighted average of h-step returns

using Equation 5.1; that is, the weights sum to 1. For a sampled (s0, a0), we

can therefore compute the expected rollout length ĥ:

ĥ = 1× w1(s0, a0) + 2× w2(s0, a0) + 3× w3(s0, a0) + 4× w4(s0, a0)

The expected rollout length of an update is simply the mean of the expected

rollout lengths of individual state-action pairs in the sampled batch. We log

the mean of the expected rollout length of all updates in the intervals of 2000

steps, and average the curves of independent runs to obtain the reported curve.

The learning curves of the expected rollout length are reported in Figure 5.5.

For Selective MVE, there is a clear ordering in the expected rollout length

of the four models; h−step targets consisting of longer trajectories are given

relatively more weight when the model is larger and, therefore, more accurate.

Selective MVE with the smallest model of 4 hidden units does not use the

model as much as its variants with bigger models, but the limited use is still

sufficient to improve the sample efficiency of DQN, while preventing the model

inaccuracies to hurt the control performance. The dashed horizontal line at

the top, labelled as Uniform Average, at the expected rollout length of 2.5,

represents MVE when the length of the simulated trajectory is 4; this is be-
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Figure 5.5: Expected Rollout Length of Selective MVE for τ = 0.1. Each
reported curve is the average of 30 runs; the shaded regions show the standard
error. h-step targets consisting of longer trajectories are given relatively more
weight when the model is larger and, therefore, more accurate.

cause MVE uniformly weights all h-step targets. On other hand, the expected

rollout length of DQN can be interpreted to be 1: DQN only uses one-step

transitions for updating the value function.

This result suggests that the learned covariances can provide a meaningful

signal for selective planning.

It is important to point out that simply reducing the rollout length of MVE

does not make a limited capacity model useful. Consider Selective MVE with

a model consisting of 16 hidden-units for which the expected rollout length

is roughly 1.6 (Figure 5.3 b), and contrast this with MVE with a maximum

rollout length of 2 leading to an expected rollout length of 1.5 (Figure 5.2 b).

While Selective MVE improves sample efficiency and matches DQN’s asymp-

totic’s performance, vanilla MVE does neither, suggesting that even a short

rollout of length 2 can hurt the performance. This particular comparison sug-

gests that while Selective MVE considers longer rollouts when the model is

accurate, it rejects even the shorter ones when the model is inaccurate.
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Effect of τ on the performance of Selective MVE:
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Figure 5.6: Effect of τ on the performance of Selective MVE. Each reported
curve is the average of 30 runs; the shaded regions show the standard error.
As τ → 0, Selective MVE reduces to the DQN baseline; on the other hand, as
τ is increased, Selective MVE reduces to vanilla MVE.

As mentioned earlier, τ regulates the sensitivity of Selective MVE to the

predicted uncertainty. In the previous experiments, we used τ = 0.1 for all

model variants. To get a better sense of how τ relates to the robustness of

Selective MVE, we now present the results for τ = 1.0 and τ = 0.01 alongside

τ = 0.1 in Figure 5.6. Consider the learning curve and the expected rollout

length of Selective MVE with 4 hidden units (Figure 5.6-a & 5.6-e). For

τ = 0.01, the expected rollout length almost reduces to 1, and the performance

becomes indistinguishable from that of DQN. On the other hand, for τ = 1.0,

the expected rollout length grows enough to enable the model’s inaccuracies

to hurt the performance. Contrast this with the Selective MVE variant using

a model of 128 hidden units (Figure 5.6-d & 5.6-h). In this case, even τ = 0.01

permits sufficient planning since the model is considerably more accurate than

the one with mere 4 hidden units. Interestingly, for τ = 1.0, Selective MVE

begins to suffer a noticeable loss in sample efficiency as the expected rollout

length is now approaching that of vanilla MVE, which uses the model a bit

too excessively.
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Concluding Remark: This extended example suggests that a model with

inadequate capacity can be selectively useful if reliable estimates of its struc-

tural uncertainty can be obtained — the learned variance may satisfy that

desideratum.

5.5 Additional Results

We now present results for value function networks of a) single hidden layer

with 64 hidden units, b) 2 hidden layer with 64 hidden units each, and c) 2

hidden layer with 128 hidden units each. All reported curves are obtained

by averaging 30 runs; the shaded regions represent the standard error. These

results are consistent with the discussion in the preceding sections, and provide

additional evidence for the utility of selective planning. For instance, they

suggest that selective planning is useful even when the value function itself

has restricted capacity — the network with only 64 hidden units, for example.
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Results for Value Function Network of Single Hidden Layer and 64

Hidden Units
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Figure 5.7: The effect of model capacity on MVE’s performance.
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Figure 5.8: Results of selective MVE (τ = 0.1).
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Figure 5.9: Effect of τ on the performance of Selective MVE
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Results for Value Function Network of 2 Hidden Layer and 64 Hid-

den Units Each:
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Figure 5.10: The effect of model capacity on MVE’s performance.
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Figure 5.11: Results of selective MVE (τ = 0.1).
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Figure 5.12: Effect of τ on the performance of Selective MVE.
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Results for Value Function Network of 2 Hidden Layer and 128 Hid-

den Units Each:
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Figure 5.13: The effect of model capacity on MVE’s performance.
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Figure 5.14: Results of selective MVE (τ = 0.1).
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Figure 5.15: Effect of τ on the performance of Selective MVE.
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Chapter 6

An Empirical Comparison of
Selective Planning Mechanisms

In Chapter 3, we argued that parameter uncertainty by itself is insufficient for

selective planning under capacity constraints, and it needs to be used in com-

bination with structural uncertainty. In Chapter 4, we used a simple regression

problem to evaluate specific methods that capture parameter uncertainty; we

found that, under capacity constraints, the estimated parameter uncertainty

resolved when the model made inaccruate predictions: all members of the en-

semble converged to the same wrong prediction. In the previous chapter, we

empirically demonstrated how the learned variance can provide reliable esti-

mates of structural uncertainty that can enable effective selective planning.

In this chapter, we contrast the ensemble variance with the learned vari-

ance in a relatively more complicated setup. The analysis in this chapter is

quantitative rather than qualitative: we assess the two approaches primarily

in terms of their selective planning performance. We learn the model online

using the experience gathered in the replay buffer so the data distribution

changes as the agent’s policy changes.

In particular, we compare Selective MVE with learned variance, as de-

scribed in the previous chapter, with Selective MVE with ensemble variance.

The ensemble-based Selective MVE is exactly like the learned-variance variant

except for one key difference: the uncertainty, σ(s, a), is the variance of the

predictions made by the individual members of the ensemble1.

1we simply add the components of the variance vector to obtain a single number

53



While Selective MVE with ensemble variance is similar to STEVE (Section

2.12) in that it uses ensemble variance to weight the multi-step TD targets, it

only uses an ensemble of models and not the value functions to compute the

weightings.

6.1 Acrobot Experiments
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Figure 6.1: Acrobot results. (a) Comparison of ensemble variance and learned
variance, in terms of Selective MVE performance, for τ = 0.1. (b) Effect of τ
on Selective MVE with ensemble variance. (c) Effect of τ on Selective MVE
with learned variance. Similar to the learned variance, the ensemble variance
also improves sample-efficiency while avoiding planning failures. The learning
curves are averaged over 30 runs; the shaded regions show the standard error.

We first extend the results from the previous chapter by evaluating the

ensemble-based Selective MVE on Acrobot. In particular, we extend the re-

sults in which the action-value function is approximated with a single layer

neural network with 128 units, and the size of the neural network for the model

is restricted to 4 hidden units (Section 5.4). The range of values for the pa-

rameter sweep, and the configuration of the rest of the hyperparameters are

presented in Table 6.1 (all results in this chapter follow the sweep strategy

described in Section 5.1.3).

6.1.1 Results

Learning performance: the results, for ensembles consisting of 5 networks,

are presented in Figure 6.1. Similar to the learned-variance variant, we note

54



Table 6.1: Hyperparameters for ensemble-based Selective MVE in Acrobot.
Model learning step-size (β) was determined by sweeping over the range spec-
ified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ) 1.0, 0.1, 0.01
Number of networks 2, 3, 4, 5
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Figure 6.2: Comparison of expected rollout length of the two variants Selective
MVE, for fixed values of τ , in Acrobot. For a given value of τ , ensemble-based
selective MVE uses longer rollouts on average than Selective MVE with learned
variance. Each reported curve is the average of 30 runs; the shaded regions
show the standard error.

that an intermediate value of τ provides sample-efficiency benefits while avoid-

ing planning failures; the results show that, in this example, ensemble variance

also effectively identifies model errors.

Effect of τ on the expected rollout length: we find that, for a given

value of τ , ensemble-based Selective MVE uses longer rollouts on average than

Selective MVE with learned variance (Figure 6.2); while the relatively longer

rollouts are innocuous in this example, it may still affect the performance

negatively in some problems, as we will see in the next couple of examples.

Effect of the number of networks in the ensemble: we find that the

performance of ensemble-based Selective MVE improves as we increase the
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Figure 6.3: Effect of the number of networks on the performance of ensemble-
based Selective MVE in Acrobot. The performance improves as we increase
the number of networks in the ensemble. Each reported curve is the average
of 30 runs; the shaded regions show the standard error.

number of networks in the ensemble (Figure 6.3).
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Figure 6.4: A pictorial depiction of Cartpole (left) and Navigation (right)

6.2 Cartpole Experiments

We evaluate the two variants of Selective MVE on Cartpole (Barto et al.

1983), a classic control environment. The goal is to balance a pole attached

to a movable cart, as depicted in Figure 6.4 (left). The state consists of the

current position of the cart on the x-axis, the velocity of the cart, the angle of

the pole with respect to the vertical axis, and the rate of change of the angle,

leading to a 4-dimensional state representation. The agent can move the cart

to the left or to the right; the agent’s action space is discrete and consists

of two actions. The reward is +1 on all time steps. The episode terminates

when the pole’s angle with respect to the vertical axis exceeds 15°, or when the

environment interaction exceeds 200 time-steps, whichever occurs first. In our

experiments, we use OpenAI gym’s implementation of Cartpole (Brockman et

al. 2016).

For the DQN baseline, we estimate the action-value function using a single

hidden layer network of 128 hidden units; we determine the best setting for

the step-size, the batch size, and the replay memory size by sweeping over

possible parameter configurations (see Table 6.2).

For MVE variants, we extend the DQN baseline and evaluate two neural

network sizes for the model: a single hidden layer network with only 2 hidden

units, and a single hidden layer network with 64 hidden units. The range

of values for the parameter sweep, and the configuration of the rest of the

hyperparameters are presented in Table 6.3 (MVE), Table 6.4 (Selective MVE
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with learned variance), and Table 6.5 (Selective MVE with ensemble variance).

Table 6.2: DQN hyperparameters in Cartpole. The step-size, the batch size,
and the replay memory size were determined by sweeping over the range spec-
ified in the respective rows.

Hyperparameter Values

Optimizer RMSProp
Step-size (α) 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001
Replay memory size 10000, 20000, 50000
Target network update frequency 512, 1024, 2048
Batch size 16
Training frequency 1 update for every environment step
Exploration rate (ε) 0.1
Discount factor (γ) 0.95

Table 6.3: MVE specific hyperparameters in Cartpole. The model learning
step-size (β) was determined by sweeping over the range specified in the re-
spective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment steps
Simulated trajectory length 4
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Table 6.4: Hyperparameters for Selective MVE with learned variance. Model
learning step-size (β) was determined by sweeping over the range specified in
the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Equation 5.2
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ) 0.1, 0.01, 0.001, 0.0001

Table 6.5: Hyperparameters for Selective MVE with ensemble variance. Model
learning step-size (β) was determined by sweeping over the range specified in
the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Number of networks 5
Softmax temperature (τ) 0.1, 0.01, 0.001, 0.0001
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Figure 6.5: The performance of MVE with the two model sizes: 2 hidden units
and 64 hidden units. The MVE variant with the smaller model (2 hidden
units) performs worse than the DQN baseline. The MVE variant with the
bigger model (64 hidden units) improves the sample-efficiency only slightly.
The learning curves are averaged over 30 runs; the shaded regions show the
standard error.

6.2.1 Results

Figure 6.5 shows the performance of MVE for the two model sizes. While

the MVE variant with the bigger model (64 hidden units) does not improve

sample-efficiency over the DQN baseline, the MVE variant with the smaller

model (2 hidden units) performs worse than the DQN baseline.

Results for the smaller model of 2 hidden units: Figure 6.6 compares

the performance of the two variants of Selective MVE for the smaller model of

2 hidden units. As we progressively reduce the value of τ from 0.1 to 0.0001,

Selective MVE with learned variance improves, and eventually outperforms

the DQN baseline. On the other hand, the performance of Selective MVE

with ensemble variance does not improve noticeably. Figure 6.7 helps explain

this result by showing the expected rollout length for each value of τ . The

expected rollout length of Selective MVE with learned variance decreases as

we reduce the value of τ . On the other hand, the decrease in the expected

rollout length for the ensemble-based variant plateaus, and is not as systematic
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as it is in the case of the learned variance.
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Figure 6.6: Evaluation of the two variants of Selective MVE, in Cartpole,
for neural network models consisting of 2 hidden units. The performance of
Selective MVE with learned variance improves as we reduce the value of τ from
0.1 to 0.0001, and eventually eclipses the performance of the DQN baseline.
On the other hand, the performance Selective MVE with ensemble variance
does not improve noticeably. Each reported curve is the average of 30 runs;
the shaded regions show the standard error.

Results for the bigger model of 64 hidden units: Figure 6.8 compares

the performance of the two variants of Selective MVE for the bigger model of

64 hidden units; Figure 6.9 shows the expected rollout length for each value

of τ , for each of the two variants of Selective MVE.

In this case, Selective MVE with learned variance outperforms the DQN

and MVE baselines for all values of τ , except for τ = 0.01, where it matches the
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Figure 6.7: Comparison of the expected rollout length of the two variants of
Selective MVE, in Cartpole, for neural network models consisting of 2 hidden
units. While the expected rollout length of Selective MVE with learned vari-
ance reduces as we reduce the value of τ , the decrease in the expected rollout
length for the ensemble-based variant plateaus, and is not as systematic as it
is in the case of the learned variance. The curves are averaged over 30 runs;
the shaded regions show the standard error.

performance of the baselines. On the other hand, the performance Selective

MVE with ensemble variance is not any better than the performance of the

DQN and MVE baselines for any of the τ values. Particularly interesting is the

contrast between the ensemble-based Selective MVE with τ = 0.0001 and the

learned-variance variant with τ = 0.001 and τ = 0.0001. While the expected

rollout of length of the ensemble-based Selective MVE is somewhere between

the expected rollout lengths of the learned-variance variants (Figure 6.9), its

performance is worse than either of the two learned-variance variants (Figure

6.8-c and 6.8-c).
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Figure 6.8: Evaluation of the two variants of Selective MVE in Cartpole for
neural network models consisting of 64 hidden units. Each reported curve is
the average of 30 runs; the shaded regions show the standard error.
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Figure 6.9: Comparison of the expected rollout length of the two variants of
Selective MVE in Cartpole for neural network models consisting of 64 hidden
units. The curves are averaged over 30 runs; the shaded regions show the
standard error.
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6.3 Navigation Experiments

We now evaluate the two variants of selective MVE in a continuous two-

dimensional navigation environment, as depicted in Figure 6.4 (right). The

state consists of the (x, y) coordinates of the agent, where x, y ∈ (0, 1). The

goal is to navigate to the green block, where x > 0.9 and y > 0.9. Each

episode starts in one of the four blue blocks chosen at random. The agent can

move in any of the four cardinal directions; the agent’s action space is discrete

and consists of four actions. An action moves the agent in the intended direc-

tion with an offset of 0.025, except when the agent runs into a wall, in which

case the agent stays in its position. The reward is zero everywhere except

when the agent transitions into the green block, where the reward is +1. The

episode terminates when the agent reaches the goal, or when the environment

interaction exceeds 1000 time-steps, whichever occurs first.

For the DQN baseline, we estimate the action-value function using a single

hidden layer network of 256 hidden units; we determine the best setting for

the step-size, the batch size, and the replay memory size by sweeping over

possible parameter configurations (see Table 6.6).

For MVE variants, we extend the DQN baseline and evaluate two neural

network sizes for the model: a single hidden layer network with only 4 hidden

units, and a single hidden layer network with 64 hidden units. The range

of values for the parameter sweep, and the configuration of the rest of the

hyperparameters are presented in Table 6.7 (MVE), Table 6.8 (Selective MVE

with learned variance), and Table 6.9 (Selective MVE with ensemble variance).

6.3.1 Results

Figure 6.10 shows the performance of MVE for the two model sizes. While

the MVE variant with the smaller model (4 hidden units) performs worse than

the DQN baseline, the MVE variant with the bigger model (64 hidden units)

results in improved sample-efficiency.

Figure 6.11 compares the performance of the two variants of Selective MVE

for the smaller model of 4 hidden units. As we progressively reduce the value
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Figure 6.10: The performance of MVE with the two model sizes: 4 hidden
units and 64 hidden units. The curves are averaged over 30 runs; the shaded
regions show the standard error.

of τ from 0.01 to 0.00001, Selective MVE with learned variance improves, and

eventually achieves stable asymptotic performance (Figure 6.11-d), while still

being sample-efficienct. On the other hand, while the performance of Selective

MVE with ensemble variance is better than vanilla MVE with 4 hidden units,

it does not improve as consistently as the learned variance, when the value τ is

decreased (compare, for example, the performance of τ = 0.0001 (Figure 6.11-

c) and τ = 0.00001 (Figure 6.11-d). Figure 6.12 shows the expected rollout

length for each value of τ . The expected rollout length of the learned-variance

variant decreases as we reduce the value of τ . On the other hand, exepected

rollout length of the ensemble-based variant also decreases, but the decrease

is not as dramatic as it is in the case of the learned variance.
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Figure 6.11: Evaluation of the two variants of Selective MVE, in Navigation,
for neural network models consisting of 4 hidden units. Each reported curve
is the average of 30 runs; the shaded regions show the standard error.
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Figure 6.12: Comparison of the expected rollout length of the two variants
of Selective MVE, in Navigation, for neural network models consisting of 4
hidden units. The curves are averaged over 30 runs; the shaded regions show
the standard error.
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Concluding Remark: The results in this chapter show that, under limited

capacity settings, the learned variance can be more effective as a selective plan-

ning mechanism than the ensemble variance. More importantly, these results

provide additional evidence in the ability of the learned variance for enabling

effective selective planning. More work needs to be done for understanding

the trade-offs between the two mechanisms, and devising a selective planning

method that combines that two approaches; we leave that for future work.

Table 6.6: DQN hyperparameters in Navigation. The step-size, the batch
size, and the replay memory size were determined by sweeping over the range
specified in the respective rows.

Hyperparameter Values

Optimizer RMSProp
Step-size (α) 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003
Replay memory size 10000, 20000, 50000
Target network update frequency 512, 1024, 2048
Batch size 16
Training frequency 1 update for every environment step
Exploration rate (ε) 0.1
Discount factor (γ) 0.99

Table 6.7: MVE specific hyperparameters in Navigation. The model learn-
ing step-size (β) was determined by sweeping over the range specified in the
respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment steps
Simulated trajectory length 4
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Table 6.8: Hyperparameters for selective MVE with learned variance. Model
learning step-size (β) was determined by sweeping over the range specified in
the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Equation 5.2
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ) 0.01, 0.001, 0.0001, 0.00001

Table 6.9: Hyperparameters for selective MVE with ensemble variance. Model
learning step-size (β) was determined by sweeping over the range specified in
the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Squared error
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Number of networks 5
Softmax temperature (τ) 0.1, 0.01, 0.001, 0.0001
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Chapter 7

Conclusion and Future
Directions

In this thesis, we investigated the idea of selective planning: the agent should

plan only in parts of the state space where the model is accurate. We treated

the problem of determining when the model is accurate as that of uncertainty

estimation; we discussed three types of uncertainty: parameter, aleatoric, and

structural. We highlighted the importance of structural uncertainty for se-

lective planning under limited model capacity: structural uncertainty signals

the model errors due to limited capacity. We showed that the learned input-

dependent variance, under the standard Gaussian assumption, can reveal the

presence of structural uncertainty.

We performed a suite of experiments to investigate the ability of the learned

variance to combat planning failures that are caused by inadequate model ca-

pacity. Specifically, we evaluated the performance of Model-based Value Ex-

pansion (MVE), a planning algorithm that uses the learned model to construct

multi-step TD targets for evaluating the greedy policy (Feinberg et al. 2018);

we found that MVE can fail when the model is subject to capacity constraints.

We then evaluated the performance of Selective MVE, an instance of selective

planning which weights the multi-step TD targets according to the structural

uncertainty in the model’s predictions; we found that Selective MVE avoids

planning failures and, at the same time, improves sample-efficiency. The re-

sults show that selective planning with the learned variance can be useful,

even when planning with the model non-selectively would cause catastrophic
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failure.

The core idea of selective planning is general and there are many aspects

to be examined. We point out a couple of research directions that warrant

further investigation.

While we focused exclusively on the limited capacity scenario, insufficient

coverage and stochasticity are also important sources of model errors. Devis-

ing a selective planning mechanism that combines parameter, aleatoric, and

structural uncertainties requires further work.

The efficacy of the learned variance for robust selective planning hinges on

the state representation: the predicted variance is proportional to the squared

error in the representation space (see Equation 4.1). It is not difficult to think

of a state representation for which small errors in the representation space lead

to large biases in the TD targets. Thus, structural uncertainty estimates need

to be value aware: predicted variance should be proportional to the error in

the TD targets for the value function update.
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[54] Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. H.
Dyna-style planning with linear function approximation and prioritized
sweeping, in UAI 2008, Proceedings of the 24th Conference in Uncer-
tainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008, 2008,
528–536. 14

[55] Vapnik, V. Principles of risk minimization for learning theory, in Ad-
vances in Neural Information Processing Systems, 1992, 831–838. 15, 20

[56] Wan, Y., Zaheer, M., White, A., White, M., and Sutton, R. S. Planning
with expectation models, in Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, 2019, 3649–3655. doi: 10.24963/ijcai.
2019/506. 14

[57] Watkins, C. J.C. H. Learning from delayed rewards, PhD thesis, 1989. 8

77

https://doi.org/10.24963/ijcai.2019/506
https://doi.org/10.24963/ijcai.2019/506


Appendix A

Additional Results for the
Regression Example

We now present results for additional configurations of the learning rate for

the example regression problem discussed in Chapter 4.
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Figure A.1: Large Capacity Resultsfor learning rate 0.01. The network ar-
chitecture consists of 3 hidden layers with 64 hidden units each. The ground
truth function is in blue in all plots. Each row represents the mean predictions
and uncertainty estimates of a particular modeling approach over the course
of training. Learning rate is 0.01 for all methods

79



Learned
Variance

Learned 
Variance

Dropout

Randomized
Priors 

Bootstrap

Ensemble

+

Randomized
Priors 

Ensemble

+

Epoch 5 Epoch 10 Epoch 50 Epoch 100 Epoch 300

-1 2

0

6

-6
noise 
region

Figure A.2: Large Capacity Results for learning rate 0.0001. The network
architecture consists of 3 hidden layers with 64 hidden units each. The ground
truth function is in blue in all plots. Each row represents the mean predictions
and uncertainty estimates of a particular modeling approach over the course
of training. Learning rate is 0.0001 for all methods
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Figure A.3: Medium Capacity Results for learning rate 0.001. The network
architecture consists of a single hidden layer with 2048 hidden units each. The
ground truth function is in blue in all plots. Each row represents the mean
predictions and uncertainty estimates of a particular modeling approach over
the course of training. Learning rate is 0.001 for all methods
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Figure A.4: Medium Capacity Results for learning rate 0.0001. The network
architecture consists of a single hidden layer with 2048 hidden units each. The
ground truth function is in blue in all plots. Each row represents the mean
predictions and uncertainty estimates of a particular modeling approach over
the course of training. Learning rate is 0.0001 for all methods
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Figure A.5: Small Capacity Results for learning rate 0.001. The network
architecture consists of a single hidden layer with 64 hidden units each. The
ground truth function is in blue in all plots. Each row represents the mean
predictions and uncertainty estimates of a particular modeling approach over
the course of training. Learning rate is 0.001 for all methods
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Figure A.6: Small Capacity Results for learning rate 0.0001. The network
architecture consists of a single hidden layer with 64 hidden units each. The
ground truth function is in blue in all plots. Each row represents the mean
predictions and uncertainty estimates of a particular modeling approach over
the course of training. Learning rate is 0.0001 for all methods
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Appendix B

MVE Psuedocode
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Algorithm 1 Model-based Value Expansion

Initialize replay memory D to capacity N
Initialize action-value function Qw

Initialize target action-value function Qw−

Initialize the dynamics model fθ

1: for episode=1, M do
2: for t=1, T do
3: With probability ε select a random action at
4: otherwise select at = arg maxaQw(x(st), a)
5: Execute action at in the environment and observe reward rt+1 and

feature x(st+1)
6: Store transition

(
x(st), at, rt+1,x(st+1)

)
7: Sample a random mini-batch of transitions

(
x(sj), aj, rj+1,x(sj+1)

)
from D

8: Simulate H-step trajectories starting from x(sj+1), with
the model fθ and a policy greedy w.r.t Qw, to obtain
x(sj+1), aj+1, rj+2,x(sj+2), ...,x(sj+H), aj+H , rj+H+1,x(sj+H+1)

9: for k=1, H+1 do
10: Compute multi-step targets: Uh

(
x(sj), aj

)
=

∑h
k=1 γ

k−1rk +
γh maxa∈AQw−(x(sh), a)

11: end for
12: Average multi-step targets: Uavg(sj, aj) = 1

H+1

∑H+1
h=1 Uh(sj, aj)

13: Update action-values Qw(sj, aj) for the sampled mini-batch towards
Uavg(sj, aj) using semi-gradient Q-learning update

14: Every Z steps copy weights w to w−

15: Sample a random mini-batch of transitions
(
x(sj), aj, rj+1,x(sj+1)

)
from D

16: Learn model fθ with the sampled transitions by minimizing the
squared error using gradient descent

17: end for
18: end for
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