Reinforcement Learning on Resource Bounded Systems

by

Jaden B. Travnik

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

(© Jaden B. Travnik, 2018

Abstract

Recent advancements in reinforcement learning have made the field interesting
to academia and industry alike. Many of these advancements depend on deep
learning as a means to approximate a value function or a policy. This depen-
dency usually relies on high performance hardware (e.g., a graphics processing
unit, GPU) and applications of deep learning are often limited to domains
where a substantial amount of time is allowed for a prediction to be made
or an action to be chosen. Although these criteria cover many important use
cases, the growing popularity of the “Internet of Things,” wearable electron-
ics, and the advancement of myoelectric prosthetic limbs presents a rapidly
growing real-time domain of resource bounded systems that are not properly
suited for deep learning yet could still benefit from the application of rein-
forcement learning. Furthermore, many of these systems are limited by the
physical space they must occupy. This restricts the size of the hardware and
thereby the computational and memory resources that can be used. Despite
these restrictions, demand for prompt actions from receptive systems continues
to grow.

To address these problems, I first highlight the difficulties one is faced with
when implementing reinforcement learning on a system which is deployed in
an asynchronous environment and introduce a new metric of performance by
measuring the time it takes for a system to react to an observed state of
an asynchronous environment. Secondly, I develop a class of algorithms that

addresses these issues by reordering the algorithmic components to minimize

i

reaction time. Thirdly, to minimize both the time and memory necessary to
compute function approximation, I introduce a novel linear function approxi-
mation method, selective Kanerva coding (SKC), that allows a reinforcement
learning agent to perform behaviors reactively in real-time while using less
memory and computation time than the standard linear approach of tile cod-
ing. I also show that SKC is less sensitive to the curse of dimensionality than
tile coding making SKC a significant step towards accurately representing high
dimensional data on resource bounded systems. Moreover, I show that SKC
can make the inclusion of more sensory modalities more feasible, which can
increase prediction accuracy when those modes of sensation are relevant to the
prediction. Finally, I present an exploration of the meta-parameters of SKC
and evaluate the performance of two different variations of SKC against the
original formulation.

These findings are imperative to the current state of the field of reinforce-
ment learning as they form a challenging perspective that is contrary to the
current direction of the field’s focus on deep learning. I form this argument
by emphasizing the impracticality of deep learning in domains of resource
bounded systems deployed in real-time environments, establishing the limi-
tations on available computation and memory of these systems, and address

these issues by proposing new insights, algorithms, and representations.

1l

Preface

A version of Chapter 3 has been submitted for publication as Jaden B. Travnik,
Kory W. Mathewson, Richard S. Sutton, and Patrick M. Pilarski, “Reac-
tive Reinforcement Learning in Asynchronous Environments”, in Frontiers in
Robotics and Al

A version of Chapter 4 has been accepted for publication and presentation
as Jaden B. Travnik and Patrick M. Pilarski, “Representing High-Dimensional
Data to Intelligent Prostheses and Other Wearable Assistive Robots: A First
Comparison of Tile Coding and Selective Kanerva Coding”, for the Proc. of
the 2017 IEEE International Conference on Rehabilitation Robotics (ICORR).
London, United Kingdom, 2017 where it was presented as a poster. An ex-
tended abstract of this paper was also presented as a poster and a 60 second
spot-light talk at the Multidisciplinary Conference on Reinforcement Learning
and Decision Making (RLDM), Ann Arbor, Michigan, June 11-14, 2017.

A version of Chapter 5 has been submitted for publication as Jaden B.
Travnik, Dylan J. A. Brenneis, Michael R. Dawson, and Patrick M. Pilarski,
“Grasping Predictions with Multimodal Sensors”, in Frontiers in Neurorobotics.

The experimental design, implementation, execution, and analysis for the
bulk of manuscript composition was authored by myself. The supervisory
author, Pilarski, contributed to the manuscript and provided feedback and
insight throughout the process of the research detailed within.

This research received ethics approval for its protocol from the human

research ethics board at the University of Alberta.

v

To my parents, Danijel and Christel
Thank you for the love and support and free food, for teaching me good work

ethics, and for letting my imagination run wild.

To my brother, Tyson and sister-in-law Gabrielle
Thank you for looking out for me, for being role models, and for sharing your

sense of humor.

To Sarah
Thank you for sharing your life with me, listening to my wacky thoughts, and

for your unwavering love and support.

Acknowledgements

I wish to express my sincerest gratitude to Patrick M. Pilarski for his fantastic
energy, optimism, and mentorship. To Patrick: Not only have you imparted to
me an appreciation and understanding of good research but you also provided
me with a great environment to work and think in as well as the time and
encouragement necessary to explore my ideas and become a better scientist.
The many opportunities and trips that I have gone on have given me a lot of
research experience but also invaluable world knowledge and I could not have
done any of it without your support and guidance. I couldn’t have asked for
a better supervisor.

I'd also like to thank Rich Sutton. Like many former, current, and likely
future graduate students, his course was a major decisive factor in my choice to
work on Reinforcement Learning. His critical feedback has made me analyze
my thoughts thoroughly and has helped me become a better researcher. Many
thanks to Martha White and Martin Miiller for their thoughtful questions and
suggestions as a part of my thesis committee.

I'm incredibly grateful to Dylan Brenneis, Kory Mathewson, Michael Rory
Dawson, Alex Kearney, Gautham Vasan, Craig Sherstan, Adam Parker, and
Vivek Veeriah for all their help throughout. We’ve had multiple discussions
about Al, neuroscience, the function of happiness, water bears, flaws in time
travel movies, video games, and we also started the Society of Those Who
Have Generous Hoods And Sleeves. I am also hugely grateful to other col-
leagues in the BLINC lab (Nadia!, Katherine, Tarvo, McNiel, Jon, Sai, Riley,
Quinn, Oggy, James, and Jackie) and the RLAIT lab for their sincere friendship,

interest, and support.

IWho is one of the best editors I have ever known.

vi

Contents

1 Introduction 1
1.1 Addressing Computation Challenges of Reinforcement Learning

on Resource Bounded Systems 2

1.2 Our Contributions 4

2 Background Material 5

2.1 Limited Computation on
Untethered Systems 5
2.1.1 Internet of Things. 5
2.1.2 Wearable Electronics 6
2.1.3 Myoelectric Prosthetic Limbs 6
2.2 Custom Hardware 8
221 TheBento Arm 8
2.2.2 Humanoid, Anthropometric, Naturally Dexterous, Intel-
ligent (HANDi) Hand 9
2.2.3 Gesture Layout Observation Via Impedance (GLOVi)

Glove 10

2.3 Reinforcement Learning 11
2.3.1 True Online Temporal-Difference Learning 13
2.3.2 General Value Functions 13
2.3.3 Continuous-Time and Real-Time Reinforcement Learning 14
2.34 DataTraces 16

2.4 Sparse Distributed Memory L. 17
3 Reaction Time is Important 18
3.1 Overview. 18
3.1.1 Related Background 19

3.2 Temporal Delays in Asynchronous Environments 20
3.3 Reactive SARSA 21
3.4 Experiments 23
3.4.1 Experiment 1 0L 25
3.4.2 Experiment 2 27

3.5 Discussion 28
3.6 Conclusions 30
4 Dealing with Increasing Dimensionality 32
4.1 Overview 32
4.1.1 Towards Computationally Efficient Representations . . 34

4.2 Representation using Linear Methods 35
421 Tile Coding 37
4.2.2 Kanerva Coding L. 38
4.2.3 Selective Kanerva Coding 39

4.3 Experiment 40

4.4 Results
4.5 DISCUSSION
4.6 Conclusions,

5 Selective Kanerva Coding in a Multimodal Domain
5.1 Overviewo
5.2 Experiments
5.2.1 Data Collection
53 Results.
5.4 Discussion
5.5 Conclusions

6 Discussion and Exploration of Selective Kanerva Coding

1 Sensitivity Analysisofn

.2 Multiple Feature Sets

6.2.1 Multiple Prototype Sets

6.2.2 Multiplen Values

6.3 Future Research Areas
6.3.1 Optimal Algorithm Ordering
6.3.2 Future Work with Selective Kanerva Coding

7 Conclusion

References

viil

List of Tables

4.1 The maximum number of features that can be calculated within
100 ms on a single-core 2.5 GHz processor.

X

List of Figures

o Ul Wb

ww W W N
S Ot =~ N —

i
B —

L
NIV

5.2
5.3
5.4

5.9

A
o

A labeled high-level depiction of a prosthetic arm.
A side view of the Bento Arm with a chopsticks gripper.)
A picture of the HANDi Hand

A labeled picture of an experimenter wearing the GLOVi Glove.

The interaction a reinforcement learning agent has with its en-
vironment adapted from Sutton and Barto, 1998.
An example of data traces.

The Hallway-World Task
Timestep comparison of standard and reactive reinforcement
learning algorithms 0oL
The setup of the robot for Experiment 1 in Chapter 3. .
Key result: a comparison of summed reward over the last 10
episodes of 30 trials across 5 different learning delay length
lengths during robot arm motion.
The resulting of failed stops in Experiment 2 in Chapter 3. . .
Boxplot comparison of the distributions of events over all episodes

between Reactive SARSA and the standard SARSA algorithm.

The setup of the Bento Arm in Chapter 4.
A depiction of Sparse Distributed Memory (SDM) prototypes
being activated within a fixed radius of a specified address in
the state space.
A depiction of tile coding
Comparison of the prediction error and the computation time
fore tile coding and selective Kanerva coding.

The table associating GLOVi Glove hand gestures to shapes for
Chapter 5.
A side view of the experiment setup showing how the shapes
were oriented in the HANDi Hand’s grasping area.
A top view of the experiment setup showing how the shapes
were rotated into the HANDi Hand’s grasping area.
A picture showing the HANDi Hand (left) holding a green cylin-
der and the experimenter wearing the GLOVi Glove (right) per-
forming the appropriate hand gesture as indicated by the table
in Figure 5.1. oo
The camera’s 480 x 640 RGB view of the green cylinder (top)
against the black background with the Thumb of the HANDI
Hand (left) in view. L L

A sample of the data stream from the Experiment in Chapter 5.

A plot of the predictions for one of the Green Cylinder trials in
the testing phase. L.

10

12
17

21
23
24
26
28

29
33

36
36

43

51
52
o2

52

52
23

5

5

6.

6

S i
o e w

8

9

1

2

A side-by-side boxplot of the distributions of the error between
the true return and the predictions during the testing phase in
Chapter 5.
The results of a Cohen’s D test between the error of the different
input settings for each prediction in Chapter 5.

The sensitivity in error for different values of n of varying sizes
of prototype sets.o
The distribution of the distance between a random point in
[0, 1]™ space, for n € {1,2,4,8}, to the nearest prototype as the
size of the prototype set increases. 50 random seeds were used
to initialize each prototype set for each dimension setting. 200
random points were then generated and the distance between
them and the closest prototype was recorded.
A high-level example of 3 overlapping prototype subsets.

Time comparison between single set and multiple subsets . . .
The error sensitivity profiles of different prototype subsets across
different values of oL
A high-level example of 3 ns on the same prototype set.

A comparison of the error for the best n for normal 500, 4000
and 8000 prototype sets against the error for 4000 prototypes
with two ns and 500 prototypes with 16 ns ranging between
0.0025 to 0.075.

x1

o7
o8

62

63
64
65

66
67

68

If knowledge can create problems, it is not through ignorance that we can
solve them.

— Issac Asimov, science fiction novelist & scholar (1920 - 1992)

This quote is often falsely attributed to Mark Twain.
— Randal Munroe, comic artist of xked (1984 - Present)

xii

Chapter 1

Introduction

On-device learning for untethered systems is rapidly becoming a necessity
for many applications of machine learning. Along with the complexities of
machine learning, deployments of untethered systems bring along their own
abundance of problems (Kober, Bagnell, and Peters 2013). The amount of on-
board computation, memory, battery power, and the physical size and shape
of the system are often restrictions imposed by the physical design and in-
stallation of the hardware. These challenges are not necessarily overcome by
an increased budget for high-end components. For example, systems used in
medical rehabilitation such as prosthetic devices are restricted to wearable
sizes and must last long periods of time on a single battery. Even further
restrictions are present in implanted devices like pacemakers or implantable
cardioverter defibrillators, which must be small and last years on a single bat-
tery to minimize surgical procedures to replace the system. These physical
restrictions, in turn, limit what on-board hardware can be installed. Despite
the limitations, demand for intelligent devices grows as the benefit of intel-
ligent devices becomes more apparent (Castellini et al. 2014; Kortuem et al.
2010; Scheme and Englehart 2011a; Google TensorFlow Lite!; Apple Core
ML?; SONY NNABLAS3).

In addition to the demand of intelligent systems, low latency in response

time is also a common request. Humans today often get frustrated when their

LGoogle TensorFlow Lite - tensorflow.org/mobile/tflite/
2Apple Core ML - developer.apple.com/machine-learning/
3SONY NNABLA - nnabla.org/

mobile phones take seconds to perform a computation that once would have
taken years (Ceaparu et al. 2004; Ramsay, Barbesi, and Preece 1998). A
system that can react swiftly to new data is important to quell impatience but
also is necessary to take advantage of the information and respond accordingly,
such as selling when current stock prices are high or braking to avoid a newly
detected pedestrian.

One method of decreasing the reaction time as well as the battery con-
sumption on a resource-bounded system is to offload the computation to a
more powerful remote system which can return results back to the resource-
bounded system over a network. For many applications, this method is power-
ful in that it conserves time and battery life and is most beneficial when large
amounts of computation are needed with relatively small amounts of commu-
nication (Chen et al. 2004). However, when the amount of communication
becomes excessive, the toll on latency and battery life outweighs any benefit
(Kumar, Liu, et al. 2013; Kumar and Lu 2010). For systems with multiple
high-rate sensors, such as upper-limb prosthetic devices or self-driving cars
where reactiveness and reliability are priorities, ofHoading computation in this

manner is not a viable option (Dawson et al. 2014; Johannes et al. 2011).

1.1 Addressing Computation Challenges of Re-
inforcement Learning on Resource Bounded
Systems

This thesis explores how reinforcement learning can be applied on resource
bounded systems. Specifically, we study how reinforcement learning with lin-
ear function approximation can be deployed on resource bounded systems and
what limitations one should be aware of when doing so.

Linear function approximation is appealing on resource bounded systems
because, along with theoretical convergence guarantees, linear function ap-
proximation can be applied on-line. This is crucial when considering optimal
control policies and value functions in which estimates must be available after

each interaction with the world (Sutton, Szepesvéri, et al. 2012). Otherwise,

2

if learning updates were instead performed in mini-batches, the extra compu-
tation on the learning step would postpone actions and increase the reaction
time of the system.

Although there has been no comprehensive study of reinforcement learn-
ing with linear approximation on resource bounded systems, other studies
have addressed the issues that come with applying reinforcement learning to
robotic domains, which also arise in resource bounded systems. Like other re-
inforcement learning applications, robotic systems often suffer from the curse
of dimensionality, as they require increasing amounts of data and computation
to cover the state-action space. This curse is confounded in robotic systems
by the fact that collecting data on a robot is time consuming and expensive.
Moreover, robotic systems themselves are often expensive and because they
must interact with the physical world, safe exploration becomes key to avoid
damage caused by the system (Hester, Quinlan, and Stone 2010; Kober, Bag-
nell, and Peters 2013).

Others have focused on maximizing the representative power of linear rep-
resentations by gradually modifying a linear function approximation to have
higher accuracy (Cheng and Meleis 2008; Curran et al. 2016; Li et al. 2017; Lin
and Wright 2010; Ratitch, Mahadevan, and Precup 2004; Ratitch and Precup
2004; Whiteson, Taylor, and Stone 2007; Wu and Meleis 2009). However, these
works often do not consider state spaces with more than four dimensions and
never assess the time it takes to compute these representations on resource
bounded systems as the tasks are performed in simulation.

More recent work shows promising results by approximating Gaussian Ra-
dial Basis Functions with Finite Support Basis Functions. A Gaussian Radial
Basis Function (GRBF) is a function that computes the distance from an
input point, z, to some fixed point called the ’center’, ¢, using the formula
o(r) = e)? where r = |||z — ¢/||| and € € IR. Typically, multiple GRBFs
are combined in a weighted sum. Learning methods can be applied to these
weights so that the result of the weighted sum of GRBF's approximates some
target function. As function approximation using GRBFs requires the com-

putation of multiple exponential functions, recent work has proposed using

3

approximations of exponential functions, called Finite Support Basis Func-
tions, can reduce the computation time on resource bounded systems while
not sacrificing performance (Lobos-Tsunekawa, Leottau, and Ruiz-del-Solar

2017).

1.2 Owur Contributions

This thesis seeks to answer the following question: Can we develop a repre-
sentation that allows a reinforcement learning agent to perform behaviors re-
actively in real-time with limited computational resources and training times?
One of the main objectives of this thesis is to highlight the difficulties one is
faced with when implementing reinforcement learning on a real-time system.

In chapter 3, we define an asynchronous environment to better model
the control problem an agent faces when deployed in real-time domains. We
then present a class of reactive algorithms to deal with these asyn-
chronous environments by minimizing the reaction time of the algorithm
while ensuring the same theoretical guarantees of previous control algorithms.

In Chapter 4, we introduce a novel linear representation, selective
Kanerva coding, which requires fewer features, and less time than the
popular linear representation method, tile coding, while having better pre-
diction performance.

In Chapter 5, we show that although adding multiple modalities increases
the dimensionality of the state space, it can be worth it for the increase in
accuracy. We also show that by using selective Kanerva coding on a
multimodal domain, we can make adding multiple modality sensors
more tractable on resource bounded systems.

Chapter 6 addresses possible issues as well as future areas of study
and includes an exploration of the meta parameters and variations of
selective Kanerva coding which can help to decrease the necessary memory.

Lastly, Chapter 7 reaffirms the arguments made in the previous chapters,

makes final remarks and offers a conclusive summary of this work.

Chapter 2

Background Material

2.1 Limited Computation on
Untethered Systems

2.1.1 Internet of Things

The Internet of Things (IoT) connects electronic devices in much the same
way that the Internet connects people around the globe. The main goal of
connecting electronic devices in this way is so that they may communicate
their own information to other devices so that the devices can work more
synergistically (Lee, Crespi, et al. 2013; Xia et al. 2012). For example, a motion
detector set up in a home as part of a security system could be connected to
the lights in the house and turn them off when the occupants are not in the
room thus saving energy. Another example could be a person’s mobile phone
sending a message to the house’s furnace to heat up the home before the person
arrives home from work. Use cases like these are common in modern life and
become possible as more devices are connected to the IoT (Kortuem et al. 2010;
Wortmann and Fliichter 2015; Yang 2014). It is often the case that appliances,
such as the furnace in the previous example, are connected to the IoT through
small cheap micro-controllers such as an Arduino or micro-computers similar
to the Raspberry Pi or the Beagle Bone (Badamasi 2014; Coley 2013; Kopetz
2011; Richardson and Wallace 2012). Despite their lack of computation ability,
these small devices are used to read sensors, receive messages, and carry out

simple tasks thus providing the underlying mechanisms for the IoT.

2.1.2 Wearable Electronics

An interesting side product of the Internet of Things is wearable electronics,
the idea that electronics can be worn to read and display information about
the person wearing them or the environment around the person. An obvi-
ous example of wearable electronics are smart phones but growing interest in
recording one’s physical activity has motivated the development of wearable
devices that measure data such as daily steps, heart rate, quality of sleep, steps
climbed, and other personal metrics involved in fitness (Tao 2005). Other ex-
amples are becoming more common as well, including self-heated jackets, light
up shoes, smart glasses, and smart ID tags. Unlike most other applications of
the IoT, wearable electronics have to be in close proximity to a person moving
around in the world. This means that they must be safe, durable, flexible,
and portable. The challenge posed by wearable electronics led to innovations
in the different materials and fibers to be used to make flexible wiring (Jost
et al. 2013; Kou et al. 2014; Zeng et al. 2014), heaters (Hong et al. 2015),
sensors (Lee, Kwon, et al. 2015), and even methods to self-power electronics

using human body heat (Leonov and Vullers 2009).

2.1.3 Myoelectric Prosthetic Limbs

A myoelectric prosthetic arm is a battery-powered robotic arm attached to
a person. Typically the actuating joints are controlled via electromyographic
(EMG) signals, the electrical potential of active muscles. These signals are
recorded by placing non-invasive electrodes on the user’s skin over target mus-
cle sites (see Figure 2.1). The recorded signals from each EMG channel are
then filtered, amplified, and processed so that they can be used as control
signals (Scheme and Englehart 2011b).

A common complaint with mobile electronics is limited battery power and
myoelectric prosthetic arms are no exception (Pilarski and Hebert 2017). Al-
though some mobile electronics have space for a larger battery, myoelectric
prosthetic arms do not have this affordance so readily. Typically very little

room for extra battery power is available within the housing of the arm and

often the available space is a complex shape. These restrictions challenge elec-
trical engineers to design physically malleable batteries with unique geometries
such that the volume within the arm can be optimally utilized.

Although myoelectric arms have become powerful devices, the gross mis-
match between the functions available and the control signals offered by the
person creates a very challenging problem. While applications of pattern
recognition have had varying degrees of success to deal with this problem,
the necessity for more intelligent prosthetic arms becomes more evident as
the functionality of prosthetic arms continues to grow (Cook and Polgar 2015;
Dawson et al. 2014; Johannes et al. 2011; Pilarski, Sutton, and Mathewson
2015; Scheme and Englehart 2011b). Although there are promising results
of artificially intelligent arms working together with the person to overcome
this challenge, the results have yet to be evaluated on the limited computa-
tion available on battery-powered prosthetic arms (Edwards 2016; Sherstan,

Modayil, and Pilarski 2015).

Surface EMG Electrode /

Computer
J :
Arm Socket o

Battery

Electric Motors

Figure 2.1: A labeled high-level depiction of a prosthetic arm.

Figure 2.2: A side view of the Bento Arm with a chopsticks gripper.

2.2 Custom Hardware

2.2.1 The Bento Arm

The studies in Chapters 3 and 4 used an inexpensive robotic arm known as
the Bento Arm (Dawson et al. 2014). This arm was designed to be worn
as a myoelectric training device and research platform for machine learning
techniques. The arm is comprised of five actuators from the Dynamixel line
(Robotis, Inc.), one for each of the following functions: shoulder rotation,
elbow flexion, wrist rotation and extension, and for the gripper (see Figure 2.2).

For the experiment in Chapter 3, the gripper on the arm was replaced with

8

a custom hammer attachment to more effectively break eggs. Each actuator
provided sensor readings of encoder position, angular velocity, temperature,
and load which were read at a rate of 30Hz using a USB2Dynamixel converter

provided by Robotis, Inc.

2.2.2 Humanoid, Anthropometric, Naturally Dexterous,
Intelligent (HANDi) Hand

Figure 2.3: A picture of the HANDi Hand opened with the palm-plate open
revealing the closing mechanisms for the fingers and the webcam embedded in
the palm.

The experiments in Chapter 5 and 6 made use of an inexpensive sensorized
hand known as the Humanoid, Anthropometric, Naturally Dexterous, Intelli-
gent (HANDi) Hand, developed at the University of Alberta (Brenneis, Daw-
son, and Pilarski 2017)!, which has one force sensitive resistor (FSR) embed-
ded into each fingertip (see Figure 2.3). The HANDi Hand is also capable
of position sensing by use of MuRata SV series rotary potentiometers (Mu-

Rata Manufacturing Co. Ltd., Kyoto, JP) at 9 of the joints. These measured

'HANDi Hand Repository - github.com/blincdev/HANDi-Hand
9

joints include all of the joints of the first digit (the thumb), the proximal and
intermediate joints of digits 2 and 3, and the proximal joints of digits 4 and
5. A USB webcam embedded in the palm of the hand records visual data
from the perspective of the hand. The hand is controlled using an Arduino
Mega (Arduino LLC, Italy), which sends position signals to the servos of the
hand and collects sensory signals from the sensors in the hand. The FSRs and
potentiometers send analog signals ranging from 0 to 5 V to the Arduino; the
Arduino’s analog-to-digital converter (ADC) converts this range to an integer
in the range 0 - 1023. The USB webcam bypasses the Arduino and records
directly to a computer, with an image size of 480 x 640 RGB at a rate of 15
Hz.

2.2.3 Gesture Layout Observation Via Impedance (GLOVi)
Glove

S String anchored to fingertip

Thumb rotation measurement
‘ Potentiometer enclosure

Thumb flexion measurement
Anti-aliasing filter; cutoff 48 Hz

Signals out to Arduino Uno

Figure 2.4: A labeled picture of an experimenter wearing the GLOVi Glove.

Also used in the experiment in Chapter 5 and 6 was a Gesture Layout Ob-
servation Via Impedance (GLOVi) Glove, an inexpensive data capture glove,
again developed at the University of Alberta. This glove uses the same type
of rotary potentiometers as the HANDi Hand to measure the flexion of each
finger of the wearer of the glove, as shown in Figure 2.4. This is accomplished

by means of a string tied to the tip of each finger, which rotates a spring-

10

loaded spool attached to the back of the glove, which in turn rotates the
potentiometer. The potentiometer signals, after individually passing through
an anti-aliasing filter with a cutoff frequency of 48 Hz, are fed directly to an
Arduino Uno. These signals also range from 0 to 5 V, and are converted to an
integer in the range 0 - 1023 using the Arduino’s ADC. The potentiometers
on the back of the glove are set up in such a manner so as to independently
measure thumb flexion and rotation. In this way, six signals describe the level
of flexion/extension of each of the fingers of the hand; finger ad/abduction is
not measured. A more detailed description of the design and capabilities of

the GLOVi Glove accompanies the open-source release of the design?.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a learning method that uses interaction with
an environment to learn rewarding control policies. Often referred to as an
agent, a system utilizing RL learns to achieve a goal through interaction with
its environment. In the RL learning problem explained in Sutton and Barto,
1998 the agent interacts with its environment at each timestep ¢ by taking
an action A; and the environment in turn yields a new situation referred to
as the state S;,1 as well as a special scalar value called the reward r;,;. The
agent’s goal is to maximize the sum of the future discounted rewards it receives
known as the discounted return G, by a discount factor v € [0,1). In many
domains, the agent’s actions have long term consequences thus, although the
environment yields a reward on every timestep, a change in the reward as
a consequence of an agent’s action could be temporally delayed. This delay
makes it difficult for an agent to discern what past action or series of actions
caused this change. This temporal dependency is what makes RL different

from other learning methods in that time matters.

o0

2 ;
Gi =T + Vg2 Y T3+ = E V'K v
=0

2GLOVi Glove Repository - github.com/blincdev/GLOVi-Glove

11

Although the agent cannot know the return ahead of time, it can be es-
timated by a value function. The value of a state estimates the return an
agent can expect over the future, beginning in that state. These values can
be learned through interaction with the environment and then used to take
actions which lead to higher valued states. Further, one can learn the value
of taking an action in a state, referred to as a Q-value. Q-learning is a popu-
lar algorithm that can learn these Q-values to give a good estimation of the
value of an action in a state (Watkins 1989). @Q-values are used to determine
how an agent chooses its actions, referred to as a policy. For instance, tak-
ing the actions with the maximum @Q-value is referred to as a greedy policy
as it is exploiting the agent’s previous experience to try and maximize the
agent’s expected future return. This exploitation means that some states and
actions will not be seen by the agent if their estimated Q-values are low even
if they would actually lead to higher returns. Thus, it is important to balance

exploration and exploitation in an agent’s policy.

action
d,

Environment [=—

Figure 2.5: The interaction a reinforcement learning agent has with its envi-
ronment adapted from Sutton and Barto, 1998.

12

2.3.1 True Online Temporal-Difference Learning

A central part of RL is the temporal-difference learning method known as
TD(A)3. With its low computational cost and good performance, it is fre-
quently used when learning temporally extended predictions in the RL setting.
However, TD(\) is known to not maintain an exact equivalence with ideal
mathematical outcomes for learned predictions—termed the forward view.
Recently, Van Seijen et al. 2016 proposed two small changes to the update
rule of TD()), allowing true online temporal-difference learning methods to
be constructed that do have algorithmic equivalence with the forward view.
These true online methods have been used to approximate value functions of
sensorimotor interactions with superior performance over regular TD(\) and
SARSA()N) (Van Seijen et al. 2016). Algorithm 1 shows the true online algo-

rithm as implemented in Chapter 3.

Algorithm 1 True Online TD(\)
Initialize 6 arbitrarily
loop {over episodes}
Initialize e = 0
Initialize S
Vg <+ HT(ﬁ(S’)
Repeat (for each step of episode):
generate reward R and next state S’ for S
Vgr 0T¢(S/)
0 <— R+ ")”IA)S/ — ?g
e < yAe + a[l — yAeTp(S)]o(S)
0 < 0+ de + alvs — 07d(S)]d(S)
’65 < ’ﬁsl
S5
until S is terminal
end loop

2.3.2 General Value Functions

A value function in reinforcement learning is a mapping from the state at time

t, S, of an agent to a prediction of an input signal given a target policy 7 and a

3\ refers to the eligibility trace, a way of assigning credit for good and bad outcomes to
states seen in the past (Sutton and Barto 1998).

13

termination function, v(S;) (Sutton and Barto 1998; White 2015). Although
value functions are commonly used in control problems to find the optimal
policy by predicting the future return of a state given the current policy, they
have also been used to construct more general knowledge from sensorimotor
interaction such as bump sensors on mobile robots (Sutton, Modayil, et al.
2011) or servo encoder sensors on robotic arms (Edwards 2016; Travnik and
Pilarski 2017). These general value functions (GVFs) provide the semantics
to ask questions about data experienced by a system (Sutton, Modayil, et
al. 2011; White 2015). When a GVF is asking a question about the current
behavior of an agent, it is referred to as an on-policy GVF. If the termination
function v is set to a constant value between 0 and 1, it represents making
a prediction about the expected discounted return over a certain timescale.
One can approximate this timescale by estimating the number of timesteps
within the timescale as given by the equation timesteps = ﬁ Thus with a
constant v = 0.9, an on-policy GVF will make a prediction about the expected
discounted return over approximately the next 10 timesteps. Similarly, with
~v = 0.999 the prediction concerns the expected return over approximately the

next 1000 timesteps.

2.3.3 Continuous-Time and Real-Time Reinforcement
Learning

As described in the previous subsections, RL is classically defined as an agent
in state Sy, taking an action, A;, observing reward and state, r;,; and S;yq,
respectively, and performing a learning update. The t 4+ 1 subscript, that
denotes a timestep jump, refers to the iteration of the learning loop. In sta-
tionary problems, such as checkers, the duration of the timestep is not a factor
in learning nor part of the problem and is readily ignored. In other problems,
like the cart-pole task, the timestep must be carefully chosen to have the de-
sired outcome (see Sutton & Barto, 1998, p. 59 for a brief description). Large
timesteps may not give the agent a proper view of the world unless special fea-
tures are chosen to represent changes in the world’s state over time. Choosing
timesteps to be smaller may also impact learning. For example, in domains

14

with continuous states and actions, it is often the case that performing one
non-optimal action in a long sequence of optimal actions will have little effect
on the total reward. In such cases, if using Q-learning, the Q-values between
actions in the same state will be relatively close. If the Q-function is stored
with a function approximation method with some error, the Q-values will tend
to be sensitive to that error. This sensitivity may cause a non-optimal action
to have a learned Q)-value that is higher than the optimal action leading to
a non-optimal policy. As the length of a timestep approaches 0, the penalty
for taking one wrong action in a sequence decreases and the approximated
Q-function becomes more sensitive to noise or function approximation error
yielding a highly erroneous policy (Baird and Klopf 1993).

Beyond the issues associated with problem domains where a constant timestep
length can be chosen, there are problem domains that have timesteps with
random lengths. Rather than the typical time series that classic RL problems
have, problem domains like traffic control, customer behaviour, and traces of
events in computer systems have event-driven time series. In these domains, it
is difficult to settle on a static timestep in which to apply RL. Unlike in clas-
sic RL problems, where the agent observes one state within one timestep, in
event-driven time series problems there is some probability that more than one
observation of state occurs within one timestep. Although there are several
solutions to this problem, including combining observations, ignoring some,
or assigning observations to “empty” timesteps, none of them are convinc-
ingly justified. It is obvious that a reduction of timestep length reduces the
probability of co-occurrence of observations. However, small timesteps can-
not represent long delays appropriately because if the length of time between
observations varies greatly, it leads to long chains of silence which tend to
deteriorate model quality.

It is important to note that even though learning algorithms on digital
computers cannot be in continuous time, the policies they produce are in
continuous time if they are within a continuous time system such as a robot.
For example, if an agent deployed on a robot initiates the action of forward,

the robot will begin moving forward and will continue to do so until the agent’s

15

next timestep where the agent can initiate another action. If the robot instead
moved a preset distance on each forward action and stopped before the agent’s
next action took place, the pause in movement is inherent to forward action
and thus a result of the agent’s policy. In either case, an agent is constantly
interacting with the world through its most recently calculated policy. It is
therefore importunate that RL systems have short timesteps when deployed
in fast dynamic systems, and even more so when reaction time is prioritized.
The longer the duration of a timestep, the rarer the opportunity an agent has

to change its behaviour.

2.3.4 Data Traces

A common problem in reinforcement learning is state conflation, when an agent
cannot determine the difference between two different states. This tends to
happen if the agent has no information about how long a signal has had its
current value. For example, given a repeating binary signal which is 1 for 500
steps and 0 for 1500 steps (a total period of 2000 steps) the agent would not
be able to predict the signal changes unless it had information about how long
the signal had been in its current state. A common solution to this type of
problem is to include a summarization of the history of the signal, known as
a trace, in the agent’s representation (Edwards 2016; Edwards, Hebert, and
Pilarski 2016; Edwards, Kearney, et al. 2013; Pilarski, Dawson, Degris, Carey,
and Sutton 2012; Pilarski, Dawson, Degris, Fahimi, et al. 2011). Given a signal
St and a decay parameter Agecqy € (0,1), the value of the trace 17" at time ¢
is Ty11 = T} * Adecay + Stt41. The closer the value of Ajecqy is to 1, the longer
the history will be, with the length of the history in timesteps given by the

formula timesteps = as seen in Figure 2.6. It is common to normalize

N S
1 7)‘deca,y

the value of the trace before using it in a representation (NormalizedT;, =

Tt+1 (1 -)\decay)) .

16

Trace Example
1.0 — signal
—— Trace Decay = .9
/ / —— Trace Decay = .99

/ | / —— Trace Decay = .999
0.8 [I / ‘

0.6 | |

Values |

0.4 |

0.2 |

0.0

o 1000 2000 3000 4000 5000
Steps

Figure 2.6: An example of traces for a signal (black) using 3 different values
of a decay parameter, Agecay-

2.4 Sparse Distributed Memory

Sparse Distributed Memory (SDM) is a mathematical model of human long-
term memory (Kanerva 1988). It models how the distances between con-
cepts in a human mind are similar to the distances between points of a high-
dimensional space where high-dimensional is at least in the hundreds. In
the original formulation presented by Pentti Kanerva, a high-dimensional bi-
nary space could be represented with a set of fixed randomly placed points
in the same space known as prototypes (Kanerva 1988). Each prototype can
be thought of as a memory element where its address is its position in the
space, and its value is data that can be read from and written to. The main
parameter of the representation is a radius. A prototype is said to be activated
by a given address if the hamming distance between the prototype’s position
and the specified address is smaller than the radius.

In order to write to SDM, given an address and a value, each prototype
that is activated by the specified address is updated to an average of its ex-
isting value and the specified value (see Figure 4.2). Reading from SDM is
performed using the same radius method where the read value is then the
average of the values from all activated prototypes. This read value is then a
close approximation of data written previously to addresses near the specified

address.

17

Chapter 3

Reaction Time is Important

3.1 Overview

Reinforcement learning (RL) algorithms for solving optimal control problems
are comprised of four distinct components: acting, observing, choosing an ac-
tion, and learning. This ordering of components forms a protocol which is used
in a variety of applications. Many of these applications can be described as
synchronous environments where the state of the environment remains in the
same state until the agent acts at which point the environment immediately re-
turns its new state. In these synchronous environments, such as Backgammon
(Tesauro 1995) or classic control problems, it is not necessary to know the com-
putation time to perform any of the protocol’s components. For this reason,
most reinforcement learning software libraries, such as RL-Glue, BURLAP 2
or OpenAl gym 3, have functions which accept the agent’s action, and return
the new state and reward immediately (Tanner and White 2009). These func-
tions remain convenient for simulated environments where the dynamics of
the environment can be computed easily (Sutton and Barto 1998). However,
unlike synchronous environments, asynchronous environments do not wait for
an agent to select an action before they change state. The computation of RL

protocol components (acting, observing, choosing an action, learning) takes

LA version of Chapter 3 has been submitted for publication as Jaden B. Travnik, Kory W.
Mathewson, Richard S. Sutton, and Patrick M. Pilarski, “Reactive Reinforcement Learning
in Asynchronous Environments”, for Frontiers in Robotics and AL

2http:/ /burlap.cs.brown.edu/

3https://gym.openai.com/

18

time and an asynchronous environment will continually change state during
this time (Caarls and Schuitema 2016; Degris and Modayil 2012; Hester, Quin-
lan, and Stone 2010). This can negatively affect the performance of the agent.
If the agent’s reaction time is too long, its chosen action may become inappro-
priate in the now changed environment. Alternatively, the environment may
have moved into an undesirable terminal state.

In this Chapter, we explore a very simple alternative arrangement of the
reinforcement learning protocol components. We first investigate a way to re-
order SARSA control algorithms so that they are able to react to the most
recent observation before learning about the previous timestep; we then dis-
cuss convergence guarantees of these reordered approaches when viewed in dis-
crete time (following (Singh et al. 2000)). Then, we examine an asynchronous
continuous-time robot task where the reaction times of agents affect the overall
task performance—in this case, breaking or not breaking an egg with a fast-
moving robotic arm. Finally, we present a discussion on the implementation

of reactive algorithms and their application in related settings.

3.1.1 Related Background

The focus of most contemporary RL research is on action selection, repre-
sentation of state, and the learning update itself; the performance impact of
reaction time is considered less frequently, but is no less important of a con-
cern (Barto, Bradtke, and Singh 1995). Several groups have discussed the
importance of minimizing reaction time (Caarls and Schuitema 2016; Degris
and Modayil 2012; Hester, Quinlan, and Stone 2010). Hester et al. noted that
existing model-based reinforcement learning methods may take too much time
between successive actions and presented a parallel architecture that outper-
formed traditional methods (Hester, Quinlan, and Stone 2010). Caarls and
Schuitema extended this parallel architecture to the online learning of a sys-
tem’s dynamics (Caarls and Schuitema 2016). Their learned model allowed
for the generation of simulated experience which could be combined with real
experience in batch updates. While parallelization methods may improve per-

formance, they are computationally demanding. We propose an alternative
19

approach when system resources are constrained.

3.2 Temporal Delays in Asynchronous Envi-
ronments

Temporal-difference (TD) control algorithms like SARSA and Q-Learning were
introduced with synchronous discrete-time environments in mind; these envi-
ronments are characterized by remaining stationary during the planning and
learning of the agent (Sutton and Barto 1998; Watkins and Dayan 1992). In
synchronous environments, the time to perform the individual components of
the SARSA algorithm protocol has no impact on task performance. Specifi-
cally, the time it takes to react to a new game state in chess without imposed
time limits has no influence over the end of the game. In asynchronous envi-
ronments, however, the time it takes for the agent to react to new observations
can drastically influence its performance on the task. Such as, in the formula-
tion of a cart-pole, the agent applied its actions left and right at discrete time
intervals (Barto, Sutton, and Anderson 1983). These time intervals were set
small enough so that the pole would not fall further than the agent would be
able to recover.

As a concrete example, imagine an asynchronous environment called Hallway-
World with a left turn leading to the terminal state, as shown in Fig. 3.1. The
agent starts an episode near the bottom of a hallway and has two actions:
mowve left and move up which move the agent in a direction and continue to
move the agent in that direction with constant velocity until interrupted with
the other action, hitting a wall, or arriving in the terminal state. If the agent
hits a wall it receives a reward of -1 and comes to a stop. When the agent
reaches the terminal state it will receive a negative reward directly propor-
tional to the duration of the episode. In this way, the agent is motivated to
get to the terminal state as quickly as possible without touching the walls.
The only observation that the agent can make is to determine if there is a wall
on its left.

The optimal policy in Hallway-World is for the agent to move upward

20

o

Figure 3.1: The Hallway-World task with the agent (the blue circle) starting
near the bottom of the hallway. The gray square denotes the terminal state.
The arrows denote the 2 actions which move the agent leftwards or upwards
and continue moving the agent in that direction until interrupted.

and observe the wall continually until an opening in the wall is observed then
immediately move leftwards towards the terminal state. SARSA (Alg. 2) is
unable to learn this optimal policy because it is restricted by the delay between
observing the opening in the wall and moving towards the terminal state. Even
in the best case scenario, that is, if the SARSA agent observed the opening in
the wall just as it appeared, it would not be able to act on this observation
until it had spent time learning about the previous action and observation.
Assuming that each component of the algorithm (acting, observing, choosing
an action, and learning) takes some constant amount of time t., if a SARSA
agent observes an opening in the wall, it must choose to move left and learn
about the previous state-actions before taking the action, this would add 2t.
onto episode time, thereby affecting the total reward and task performance.
Thus, overall performance in Hallway-World decreases with the time the agent
spends selecting an action and learning, irrespective of how these components

are performed.

3.3 Reactive SARSA

To minimize the time between observing a state and acting upon it, we propose
a modification to conventional TD-control algorithms: take actions immedi-
ately after choosing them given the most recent observation. Reactive SARSA

21

is one example of this modification (Alg. 3); in each iteration of the learning
loop, the agent observes a reward and new state, chooses an action from a
policy based on the new state, immediately takes that action, then performs

the learning update based on the previous action.

Algorithm 2 SARSA: An on-policy TD control algorithm
Initialize Q(s, a) arbitrarily, for all s € S,a € A(s)
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A
Observe R, S’
Choose A" from S’ using policy derived from @ (e.g., e-greedy)
Q(S, 4) « Q(S, 4) + alR +1Q(S", A) - Q(S, A)]
S S A A

Algorithm 3 Reactive SARSA: A reactionary on-policy TD algorithm
Initialize Q(s, a) arbitrarily, for all s € S,a € A(s)
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A
Repeat (for each step of episode):
Observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Take action A’
Q(S, 4) — Q(S, 4) + a[R +1Q(S", A) - (S, A)]
S+ S, A+ A

The slight reordering of RL algorithm protocol components does not affect
convergence in discrete time. Here, we provide a basic theoretical sketch that
in discrete-time synchronous tasks, Reactive SARSA learns the same optimal
policy as SARSA, in the same manner. This equivalence is trivially evident
by observing that in both algorithms the first 2 actions are selected using
the initial policy. In each subsequent step ¢, actions are chosen using the
policy learned on the last step, and the policy updates happen with identical

experiences, as is illustrated in Fig. 2.

22

|— Initialization | Loop over t € [0,T-1] }

(A) '
Initialize Observe
s, a,—,(s,) | Take a, s, a,,—a(s,,) | Ty — L(5,8,5,8,,.1)
(B)
f——— Initialization | Loopoverte [0,T-1] ———
Initialize Observe Take
s, a,«m,(s,) | Take a, Sy a,, (s, a,, g — L(S,8,1,8,,4T)

Figure 3.2: Timestep comparison of (A) standard and (B) reactive reinforce-
ment learning algorithms. The function L refers to a learning function which
updates the policy m. The learning function L is not limited to the SARSA
learning update and encompasses any learning update such as Q-learning.

If we redefine Hallway-World as a synchronous environment where the
agent moves a constant distance for each action instead of continually moving,
the same policies and performance would be expected between both algorithms
and this is what we found in practice. The difference between reactive and
non-reactive algorithms is the order of the RL components (acting, observing,

choosing an action, and learning).

3.4 Experiments

To explore the differences between the SARSA and Reactive SARSA learn-
ing algorithms in asynchronous environments, we designed a reaction-time-
dependent task similar to Hallway-World as described above and illustrated
in Figure 3.1. The task was performed using one joint of a robotic arm (see
Figure 3.3). We conducted two experiments with the same episodic stopping
task. The arm started at one extreme of the joint rotation range and was then
rotated quickly towards the other end of its range. The agent must stop the
rotation as soon as possible following an indication to stop that is observed by
a state change from “Normal” to “Emergency”.

The agent had two actions: stop and mowve. If the agent chose to stop
while in the “Normal” state, the agent would receive a reward of -1, remain in

the “Normal” state, and the arm would continue rotating. If the agent chose

23

Figure 3.3: Experimental setup, showing the robot arm in motion for the first
experiment (left) and the robot arm poised to impact an egg during the second
experiment (right).

to move while in the “Normal” state, the agent would receive a reward of 0,
remain in the “Normal” state, and continue rotating. Once the “Emergency”
state had been observed, the reward for either action would be a negative
reward proportional to the amount of time (in us) spent in the “Emergency”

Y

state. When the agent chose to stop in the “Emergency” state, it transitioned
to the terminal state, thereby ending the episode. This reward definition was
chosen as a convenient means of valuing reaction time; the distance traveled
during the reaction time is a valid alternative.

If complete information about the stopping task was available, optimal
performance could be obtained through direct engineering of a control sys-
tem designed to stop the arm as soon as the state changes. However, the
agent did not know which state was the “Emergency” state and used its ex-
perience to learn what to do in any given state. By excluding the complex
state information of many real-world robotic tasks and using a simple stopping
task, we elucidate the effects of reaction time on overall performance, and the

differences between conventional and reactive TD-control algorithms can be

investigated.

24

3.4.1 Experiment 1

To explore the effect of the reactive algorithms on reaction time and task
performance, the Bento Arm was programmed to move at a constant velocity
along a simple trajectory (see Figure 3.3, left) (Dawson et al. 2014). The
experiment involved 30 trials, each of which was comprised of 20 episodes
with the agent starting in a “Normal” state and switching to the “Emergency”
state after some uniform random amount of time. The standard and Reactive
SARSA agents were compared with greedy policies, v = 0.9, A = 0.9, and «
= 0.1.

In any learning system, there may be time delays in the learning step. One
example comes from the idea of predictive knowledge representations. Here
knowledge is represented and learned as a collection of predictions about an
agent’s observed experience. Such knowledge may be updated and computed
during each cycle. One approach to building this knowledge is the Horde
architecture; Horde introduces the idea of demons (also referred to as gen-
eral value functions), which learn predictions about the environment and can
build on each other to achieve a scalable method of knowledge learning (Sut-
ton, Modayil, et al. 2011). A Horde architecture with 2576 demons (predicting
the position, velocity, temperature, load and other measures) was experimen-
tally validated on the robotic arm. On the experimental setting tested, this
setup resulted in an average computation time of one demon’s prediction to
be ~3.33us. The more predictions one wants to make, the longer the du-
ration of learning, thus the reaction time increases. Specifically, the time
delays of 50ms, 100ms, 250ms, and 500ms on the experimental hardware are
equivalent to Horde architectures of approximately 15000, 45000, 75000, and
150000 demons, respectively. It is clear that more predictions increase the
reaction-time, thus adding time delays in the following experiments appropri-
ately simulates the addition of more predictions. To simulate the performance
of these additional predictions and modulate in a controlled fashion the effect
of longer learning steps, time delays were added to the learning update step.

Figure 3.4 shows how the the duration of learning influenced the task per-

25

2o Algorithm Reward Comparison

— Standard
Of =— — —— Reactive
-
&\ =
T -100f T ;
-
a E‘ = ‘
@
-200} !
2 L =
o
n +
& 300} —
P
] 1
>
o
o —400f E]
©
E —_—
£ —s00} T
ke
(]
£
£ —600}
3
wv
—-700 |
—-800 =
0 I 50 I 100 I 250 I 500

Added Delay Times (ms)

Figure 3.4: Key result: a comparison of summed reward over the last 10
episodes of 30 trials across 5 different learning delay length lengths during
robot arm motion. Reactive SARSA had a significantly reduced reaction time
when compared to the standard SARSA algorithm for all delay lengths.

formance. The figure shows the average cumulative episodic return for the last
10 episodes, once both agents had learned policies. As the delay increased,
both algorithms suffered performance decreases, but the standard SARSA al-
gorithm performed worse with larger variability. While Reactive SARSA was
affected by increasing time delays, the impact was less severe. Specifically, the
median reaction time of Reactive SARSA was approximately half of the added
learning delay. This effect is most likely because the transition from “Normal”
to the “Emergency” state occurred at a uniformly random selected time. Since
the majority of the duration of a timestep was comprised of learning, the ran-
dom timing lead the state change to occur, on average, halfway through the
learning step. This also accounts for the increasing reaction time in the stan-
dard SARSA implementation, as the agent must wait a full additional timestep

before reacting to the “Emergency” state.

26

3.4.2 Experiment 2

The second experiment considered a human-robot interaction task which de-
manded cooperation between a human and a robotic arm to not crush an egg
(see Figure 3.3, right). The robot arm was positioned above a target, which
in this task was an egg, and would move at a constant velocity toward the
target. The human was told to press a button to stop the arm before crushing
the egg, and to try to stop it as close to the egg as possible without touching
it. The learning task for the RL agent was to learn to stop as soon as the par-
ticipant pressed a button. For the first 10 episodes of a trial, the participant
trained using a hard-wired stopping algorithm which automatically stopped
the arm when the participant pressed a button. We refer to this algorithm as
the control condition. For the remaining 40 episodes of the trial, agents that
had previously learned using the SARSA and Reactive SARSA algorithms
were used. Each algorithm was used for 20 episodes, and the algorithm used
was randomly chosen on each episode. The state changed from “Normal” to
“Emergency” when the participant pressed a button. All three algorithmic
conditions: 1) control, 2) SARSA, and 3) Reactive SARSA, included a con-
stant 50ms delay to simulate a longer learning step (e.g., the time it would
take to update the predictions for 15000 demons). The algorithm used on a
trial was hidden from the participant. Four individuals participated in the ex-
periment, providing a total of 80 episodes of each algorithm. All participants
provided informed consent as per the University’s Ethics Review Board and
could voluntarily end the experiment at any time if they wished.

Figure 3.5 shows the total of all failed stops (“broken eggs”) for each al-
gorithmic condition as summed across all four participants. Reactive SARSA
had fewer failed stops than the standard SARSA agent which performed sig-
nificantly worse with more than four times as many failed stops.

In addition to comparing the number of failed stops, and thus crushed
eggs, of each algorithmic condition, the time between the state change from the
button push of the participant and the reaction time of the agent was recorded

and is presented in Figure 3.6. The effects of longer learning on reaction time

27

0 Number of Failed Stops

251

20+

15+

Failed Stops

10+

Control Standard Reactive
Experimental Condition

Figure 3.5: The total number of failed stops for each algorithm during the
robot’s acceleration toward a breakable object (Experiment 2), summed over
all four participants. For all subjects, Reactive SARSA had far fewer failed
stops than the standard SARSA.

are evident in this figure, as the standard SARSA agent’s stop action is trailing
behind the button press by approximately the length of the learning update
and delay; this is contrasted by the tight overlap of the stimulus and action

for the Reactive SARSA agent.

3.5 Discussion

Our results indicate that rearranging the fundamental components of exist-
ing TD-control algorithms (act, observe, choose action, learn) has a beneficial
effect on performance in asynchronous environments where task performance
is reaction-time dependent. A reactive agent can perform better in these en-
vironments as it can act immediately following observations. This effect be-
comes especially prominent as the duration of learning operations increases.
Although the current experimental design added a simulated delay to the
learning update step, our results indicate that as the time between observing

and acting grows, performance in these environments deteriorates, regardless

28

Reactive

Reactive - Button Pressed
Reactive - AZEnt SENt STOp

Standard - Button Pressed
Standard - Agent Sent SI0p s

Standard

0 .5 1 1.5 2 25 3 3.5 4 4.5
Time (seconds)

Figure 3.6: Boxplot comparison of the distributions of events over all episodes
between Reactive SARSA and the standard SARSA algorithm. Zero on the
x-axis is the moment the arm begins moving. The overlap of the button press
and reactive agent’s action indicates that the reactive agent has negligible
delay in its reaction to the participant’s input (seen in the overlap between
light red and dark red, top). The standard agent’s ability to act is delayed by
the length of learning (visible gap between light blue and dark blue, bottom).

of the source of these delays. As standard online RL algorithms perform
learning and state representation construction between observing and acting,
additional computation time is necessary (e.g., tile-coding (Sutton and Barto
1998), deep neural networks (Silver et al. 2016), etc.). In asynchronous envi-
ronments, as these steps become longer, the order of algorithmic components
(acting, observing, choosing an action, and learning) becomes more critical.
As we have shown in Figure 3.4, performance in asynchronous environments
that favor short reaction-times has an inverse relationship to the total length
of time between observations and acting.

One alternate means of addressing delay-induced performance concerns
may be to create a dedicated thread for each of the RL algorithm components
(Caarls and Schuitema 2016). We believe this is a promising area for continued
research. However, as multi-threading is difficult on single-core machines such

as micro-controllers, reactive algorithms as suggested in this work may have

29

great utility when applied to embedded learning systems or smaller single-
thread computers. While the order of algorithmic components might seem at
first like a minor implementation detail, it may prove critical when applied
to these systems. Reactive SARSA, and similar reactive algorithms, do not
require multiple threads. Even in the case of multi-threaded systems, it may
still prove fruitful to re-order the fundamental components of RL learning
for improved performance. For example, if a state requires minimal reaction
time, one may forgo a learning update and queue it for a later time when
fast reactions are not required. We believe allowing an RL agent to learn an
optimal ordering of its learning protocol or to interrupt learning components

for more pressing computations are interesting subjects of future work.

3.6 Conclusions

RL algorithms are built on four main components: acting, observing, choos-
ing an action, and learning. The execution of any of these components takes
time, and while this may not affect synchronous discrete-time environments,
it is a critical consideration for asynchronous environments, especially when
task performance is tied to the reaction time of the agent. If learning is done
correctly, an agent should never have to wait to take an action after receiving
up-to-date observations. In this chapter we present a novel reordering of the
conventional RL algorithm which allows for faster reaction times. We present
a simple proof for the algorithmic equivalence in synchronous discrete-time
and show improved performance in an asynchronous continuous-time stopping
task which is directly linked to agent reaction time. These results indicate that
1) reaction time is an important consideration in asynchronous environments,
2) the choice of when in a loop the RL agent should act affects an agent’s reac-
tion time, 3) reordering of the components of the algorithm will not affect an
agent’s performance in synchronous discrete-time environments, 4) reactive al-
gorithms reduce the reaction time, and thus improve performance, potentially
also decreasing the time it takes for an agent to learn an optimal policy. This

work, therefore, has wide potential application in real-world settings where

30

decision making systems must swiftly respond to new stimuli.

31

Chapter 4

Dealing with Increasing
Dimensionality

4.1 Overview

To respond appropriately to the intentions and needs of their human users,
prosthetic limbs and other assistive rehabilitation technologies rely on their
sensors. In the specific case of clinically prescribed upper-limb prosthetic de-
vices, the electromechanical sensor information available to a device’s control
system is typically limited to mechanical toggles or a small number of myo-
electric (EMG) signals recorded from the tissue of the user’s residual limb
(Castellini et al. 2014; Pilarski and Hebert 2017). These sensors provide
enough information to design a prosthetic solution wherein a patient may
be able to directly control one or two prosthetic actuators (Parker, Englehart,
and Hudgins 2006). The use of machine learning approaches such as pattern
recognition allow available sensors to be further leveraged to increase the num-
ber of functions controllable by a user (Scheme and Englehart 2011a). There
is now convincing evidence that machine learning control approaches such

as pattern recognition can enable patients with amputations to sequentially

LA version of Chapter 4 has been published and presented as Jaden B. Travnik and
Patrick M. Pilarski, “Representing High-Dimensional Data to Intelligent Prostheses and
Other Wearable Assistive Robots: A First Comparison of Tile Coding and Selective Kan-
erva Coding”, for the Proc. of the 2017 IEEE International Conference on Rehabilitation
Robotics (ICORR). London, United Kingdom, 2017 where it was presented as a poster. An
extended abstract of this paper was also presented as a poster and a 60 second spot-light
talk at the Multidisciplinary Conference on Reinforcement Learning and Decision Making
(RLDM), Ann Arbor, Michigan, June 11-14, 2017.

32

Figure 4.1: The upper-limb research prosthesis used in this study (the Bento
Arm (Dawson et al. 2014)). The Bento Arm generates a continuous stream of
position, velocity, load, voltage, and temperature sensor signals for each of its
five actuators during its ongoing operation.

control a device with a robotic elbow, wrist, and hand with multiple discrete
grasp patterns—far more degrees of control than were previously possible with
conventional control solutions (Castellini et al. 2014; Scheme and Englehart
2011a). This increase in function can be attributed both to an increase in the
number of sensors deployed within a prosthetic socket, and the efficient use and
synthesis of the information provided by these sensors. The combination of
sensorimotor signals into a useful summary of a system’s state, termed a state
representation, has become increasingly important to the performance of pros-
thetic devices, especially those that leverage pattern recognition, regression,
or real-time machine learning (Castellini et al. 2014).

As sensors have played a critical role in increasing the capabilities of clini-
cally deployed prostheses, pre-clinical research prostheses have also continued
to evolve in terms of their sensorimotor space to try and meet the function,
form, and feedback needs of users with amputations (c.f., Antfolk et al. 2013;
Atkins, Heard, and Donovan 1996; Castellini et al. 2014; Pilarski and Hebert
2017). As one representative example, Fougner et al. have shown that the
addition of sensors to help resolve residual limb position (e.g., accelerometers
or inertial measurement units) can dramatically increase the performance of

myoelectric pattern recognition as a subject with an amputation moves their

33

limb through a range of common positions (Fougner et al. 2011). Further,
even without the addition of new sensors to a prosthetic socket, the modern
actuators and sensors within multi-joint prosthetic limbs can now generate a
wealth of data of different frequencies, ranges, and modalities. If used care-
fully, these signals present a valuable window into the intent of a human user

and their prosthesis’ interactions with a changing, daily-life environment.

4.1.1 Towards Computationally Efficient Representations

A prosthesis must be able to approximate and react to its sensor inputs within
a short window of time in order to remain effective (Farrell and Weir 2007).
If a representation can be formed for a control system in an efficient way,
even in the face of high-dimensional sensor data, it can readily be computed,
stored, and used in real time on the computationally limited hardware embed-
ded within wearable prosthetic devices.

Previous work by our group has explored in detail the use of real-time
machine learning methods for prosthetic control-—we have to date performed
a wide range of prosthetic prediction and control studies wherein subjects
with and without amputations used different techniques from the field of re-
inforcement learning (RL) to operate a robotic arm (Edwards 2016; Edwards,
Dawson, et al. 2016; Edwards, Hebert, and Pilarski 2016; Pilarski, Dawson,
Degris, Carey, Chan, et al. 2013; Pilarski, Dawson, Degris, Fahimi, et al.
2011; Pilarski, Dick, and Sutton 2013; Sherstan, Modayil, and Pilarski 2015).
In all of these studies we exclusively relied on the linear representation method
known as tile-coding (Sutton and Barto 1998) to provide our RL prediction
and control systems with a view into the available space of prosthesis- and
user-derived sensorimotor signals. These linear representations were chosen
because they are highly efficient in both computation and data usage for a
fixed (small) number of input signals. However, as prosthetic devices improve
and the number of sensors available to the system increases, it remains un-
clear how standard linear representations like tile-coding are affected, and if
more scalable representations exist which would be more aptly suited for use

in prosthetic limbs and other wearable assistive rehabilitation technologies.
34

Finding a good representation of input signals in complex, high-dimensional,
and continuous environments is a difficult problem faced not just in the adap-
tive control of prosthetic limbs, but in a wide range of domains where designers
seek to deploy machine learning for real-world control tasks; notable exam-
ples range from speech recognition to self-driving vehicles. However, unlike
enterprise-scale applications with access to vast computational resources, the
prosthetic setting requires that all computation be limited to run on small,
power efficient processors that can be installed in a self-contained way within
the chassis of a prosthetic device. The representation of high-dimensional
continuous state information therefore needs to be done in a computation-
ally efficient fashion. Furthermore, and specific to robotic applications, it
is often impossible to exactly represent the state of a system to a control
process; some approximation of the continuous state of the system must be
used. One method of approximating continuous signals and reducing high di-
mensional data is principal component analysis (PCA) which compresses high
dimensional data to a much smaller set of salient features. However, recent
studies have found that the relevant variables PCA produces are not usable
by a machine learner that requires representations of the interactions between
sensorimotor data to perform well (Legenstein, Wilbert, and Wiskott 2010).

In this chapter, we therefore contribute a first study on the effects of in-
creasing the dimensionality of prosthetic sensory data in terms of computation
time and prediction accuracy for linear tile-coding representations (the domi-
nant linear function approximation approach used in RL), and propose a novel
approach, Selective Kanerva Coding. Modified from Kanerva Coding, Selective
Kanerva Coding promises to scale accurately and efficiently as the number of
sensory dimensions increases on an assistive device (Kanerva 1988; Ratitch

and Precup 2004).

4.2 Representation using Linear Methods

Approximating a value function using linear methods is considered a standard

approach because of the ease of computing the gradient of the value function

35

Figure 4.2: A depiction of Sparse Distributed Memory (SDM) prototypes being
activated within a fixed radius of a specified address in the state space.

Figure 4.3: 2D and 3D views of three overlapping tilings covering a 2D state
space with three tiles per dimension. The number of features for this example
is 27, where only three features are activated as given by the grey dot and line
inside their tiles.

with respect to the learned parameters or weights (e.g., the weight vector 6 in
Alg. 1) (Sutton and Barto 1998). This leads to a particularly simple form of
the gradient-descent update with the guarantee that any convergence to a lo-
cal optimum is a convergence to a global optimum. On top of their theoretical
results, linear methods can excel in terms of computation and data efficiency
but this depends critically on how the dimensions of states are represented in
terms of the representation’s feature vector, ¢. For instance, in continuous en-
vironments, it is natural for a single feature, ¢(i), to represent a selected range
of continuous values such as “joint A’s angle is between 150 and 180 degrees.”
For complex tasks using linear methods, it is necessary to use features that
represent combinations of state dimensions because linear methods, by their

nature, are unable to represent interactions between their features.

36

4.2.1 Tile Coding

Tile coding (TC) is a linear representation that is often chosen in RL for its
efficiency in online learning. Typically, tile coding splits up a d-dimensional
state space into m overlapping partitions called tilings where each tiling is
split into a set of n? tiles, n tiles along each dimension. Each tiling has an
offset from each other (see Figure 4.3), which leads to a better generalization
(Sutton and Barto 1998). Each tile represents a binary (0 or 1) feature that
is activated when the state lies within the tile. Finer granularity can then be
achieved by increasing the number of tiles and decreasing the size of a tile in
each tiling. Unfortunately, this granularity has a trade-off with generalization
because states are less likely to activate the same tile.

A binary feature vector ¢, of length mn? can then be constructed by
concatenating all n features for all m tilings. Since only m features are
activated, tile coding has an advantage when choosing a constant step-size
parameter, «, as the number of active features is independent of the state.
For example, a reasonable step-size parameter might be o = 0.1m.

In order to capture the interaction between dimensions, tilings must span
the state space so that each tile represents a small d-dimensional hyper-cube.
The number of features grow exponentially with the number of dimensions.
For the small number of dimensions found in common control tasks, tile coding
provides an easily implementable representation with clear benefits. However,
as the dimension of the task grows, so does the memory cost.

A common method of reducing the memory requirements is hashing, a
pseudo-random compression of a large tiling into a reduced set of tiles of a
given memory size, however, hashing still has some drawbacks. It is not clear
how to choose a good memory size and some hand-tuning must be admin-
istered in practice. Additionally, the hashing function is a pseudo-random
process which may have collisions leading to one feature being activated by
two or more distinctly different sensory observations. Collisions may be ac-

cidentally beneficial if the collisions occur between sensory observations that

37

have similarities? and extend the generalization capabilities of the represen-
tation. However, the odds are usually in favor of a collision having negative
affects. These tile collisions become more common as the memory size shrinks
relative to the total number of tiles. Although it is possible to use chaining?®
to make “safe” hashing implementations of tile coding that take preventative
measures when a collision is detected, these checks take additional time and

require still more time to handle a collision when one has occurred.

4.2.2 Kanerva Coding

Kanerva coding is the application of sparse distributed memory as a represen-
tation in reinforcement learning (Algorithm 4). Unlike tile coding, the number
of features in Kanerva coding does not grow with the number of dimensions.
This can lead to dramatic savings in necessary memory resources. Although
a common issue when using Kanerva coding in RL is choosing an appropriate
number of prototypes and activation radius, in contrast to other approxima-
tors, e.g., neural networks, the structural parameters of Kanerva coding can
be easily changed without retraining the learned model. In fact, several re-
searchers have shown improved performance by moving the prototypes around
the representation space or by growing the representation using experience
from the learner (Cheng and Meleis 2008; Ratitch and Precup 2004). These
methods are effective but add extra memory and computational complexity to
keep and examine different prototype statistics. Other work has shown that
Kanerva coding may successfully be applied to continuous domains (Ratitch,
Mahadevan, and Precup 2004). However, the computational cost of high-
dimensional continuous states has not yet been explored. This is especially
important in settings with limited computation and where the representation

must be computed within a small amount of time.

2This is known as Locally Sensitive Hashing.
3A hashtable with chaining stores an array at each hash index which stores all of the
collisions for the index.

38

Algorithm 4 Kanerva Coding
Initialize all K prototypes in P randomly
Choose an activation radius r and distance function d (e.g., Euclidean dis-
tance)
Given state S
For v =0 to K-1
¢i <0
Ifd(pP;,S)<r
¢ 1
return ¢

4.2.3 Selective Kanerva Coding

We propose a method of finding nearby prototypes with minimal computation.
The idea is to remove the activation radius and simply find the ¢ closest pro-
totypes to the state of the system using Hoare’s quickselect which can be used
to find the ¢ shortest distances in an array of distances (Hoare 1961). One way
of choosing a good c¢ is to choose a small ratio, i such that ¢ = | Kn|. Not only
does this method, which we refer to here as Selective Kanerva Coding (SKC),
still have the same O(K) complexity as computing how many prototypes are
within an activation radius, but it shares with tile coding the guarantee of the
same number of activated features along with the associated benefits like select-
ing learning step sizes. Utilized alongside True Online TD(A), SKC promises
to be an efficient, reliable representation for computing GVFs.

A simple extension of selective Kanerva coding would be returning real-
valued features. In this setting, after applying quickselect to find the closest
¢ prototypes, the value of the closest prototypes’ features would be based on
the prototypes’ proximity to the state relative to the other close prototypes
while still ensuring that the total activation of the features remains equal to c.
Further investigation into this real valued selective Kanerva coding is needed,

as it has great potential utility for assistive technologies.

39

Algorithm 5 Selective Kanerva Coding
Uses quickselect(D, ¢) which finds the ¢ smallest indicies in array D of length
K in O(K) complexity
Initialize all K prototypes in P randomly
Choose an 7 such that ¢ = [Kn] << K and distance function d (e.g.,
Euclidean distance)
Given state S
Initialize D = 0
Fori =0to K —1
¢; <0
D; + d(P;,S)
I + quickselect(D, c)
Fort =0toc—1
index < I;

qbindex +—1
return ¢

4.3 Experiment

A robotic arm designed to be worn as a research prosthesis (the Bento Arm of
Dawson et al., (Dawson et al. 2014), Figure 4.1) was used to generate data for
a prediction problem in order to compare the time and prediction performance
of selective Kanerva coding and tile coding. This robot arm has shoulder and
elbow joints, wrist rotation and flexion, as well as a gripper for a total of 5
degrees of freedom. Each joint contained sensors for position, velocity, load,
and temperature which leads to 20 real valued sensor signals from all of the
servos (as shown using different coloured traces in Figure 4.1).

The arm was controlled in a sorting exercise where three different objects
were picked up from the same location, carried, and then dropped at different
locations assigned by their weight. A single trial consisted of the arm beginning
at one end of its shoulder rotation, closing its gripper around an object, lifting
its elbow while rotating its shoulder towards the drop off location at which
point the elbow would descend, the gripper would release the object, and then
the arm would return to the initial position. 30 trials were performed for
each of the three objects, giving a total of 90 trials. Data from all servos was

collected during each of these trials. Since each trial began and ended in the

40

same location, the order in which each trial was presented could be and was
randomly shuffied. Five long streams of continuous sensor information were
created using this method, each containing over 16 minutes of sensor readings.

The goal of the prediction task was then to predict what the expected cu-
mulative sum of the shoulder angle sensor would be over the next 10 timesteps
(~0.3 seconds into the future). Predictions were made through the use of an
on-policy general value function learned via true online temporal-difference
learning (Algorithm 1). In order to predict 10 timesteps into the future,
v = 0.9 was used in specifying the GVF. Learning rate and the eligibility
trace parameters were empirically set to a = 0.001 and A = 0.99, respectively.

To examine the effect of the number of sensor dimensions on prediction
performance and computation time, three different sensor combinations were
used—representations were constructed with 2, 8, and 12 sensory input signals.
In the 2-dimensional setting, only the elbow angle and load were given as part
of the representation, whereas in the 8-dimensional setting, the angle, load,
temperature, and velocity of both the elbow and the wrist rotator were given.
Finally, the angle, load, temperature, and velocity of the elbow, the wrist
rotator, and the wrist flexor were given in the 12-dimensional task.

Exactly 248 different combinations of tiles and tilings were used to generate
a wide range of tile coding configurations and thus a wide range of features
for each dimensional setting, ranging from 128 to 331776 features. One ex-
isting method of offsetting each tiling is to deterministically shift each tiling
using a deterministic knight’s-move pattern®. Although this knight’s pattern
is deterministic, by using the five different long streams of data generated by
shuffling the trials, a representative distribution of online learning performance
was calculated.

For selective Kanerva coding, the number of prototypes ranged from 1000
to 20000 where each prototype was a point in the 2, 8, or 12 dimensional space.

Euclidean distance was used to measure how close each prototype was to the

4Similar to that in chess, the knight’s pattern used here shifted by an increasing amount
for each new tiling, as per Miller and Glanz 1996. Each tiling produced by a shift is then
included in the representation.

41

observed state after the state was normalized using the ranges of the sensors.
A constant ratio n = 0.025 of features (rounded down) were active at any
time. For example, in the 1000 prototype case, the features of the 25 closest
prototypes to the observed state were activated. In the 8000 prototype case,
the features of the closest 200 prototypes to the observed state were activated.
To ensure that the performance was not dependent on the random distribution
of the prototypes, five different seeds were used to randomly distribute the
prototypes.

Thus each of the 248 configurations of tile coding and all five seeds of
selective Kanerva coding were used for the 2, 8, and 12 dimensional settings
using all five of the long streams of robot generated data. For each run, the
prediction performance and the computation time per timestep was recorded.
To reveal the relation between the number of features that could be calculated
and the calculation time per timestep, the number of features that could be

calculated within 100 ms was also recorded.

4.4 Results

Figure 4.4 compares the variation in both prediction error and computation
time for tile coding and SKC as their number of features increases, up to a
maximum computation time per step cut-off of 100ms (selected in this study
as the upper limit for real-time prosthesis control, c.f., Farrell and Weir 2007).
After removing outliers from the tile coding data which had error orders of
magnitude worse than the trend seen in Figure 4.4, the data indicates that

both tile coding and SKC have improved performance as the number of features

5This was due to configurations of tile coding that had very few features.

Table 4.1: The maximum number of features that can be calculated within
100 ms on a single-core 2.5 GHz processor.

Tile Coding ‘ Selective Kanerva Coding
Dimensions | Mean ~ Std | Mean Std

21247439 302 | 19333 236

8 | 244496 534 | 12960 198

12 | 245724 620 | 10883 165

42

Mean Absolute Error of Last 10% of Timesteps by Number of Features

0.05 T T T T T T T T T T T LA B |

o0 |- TC12 .
5 | TCS
5 om | N ! -
i RN AN A i
g 0.02 § i ‘q‘ s -1
§ Sl 2

0.01 |= KOS t Nt =

e _ SKC12 nu |ur v

Number of Features

Computation Time per Timestep by Number of Features

I i i i L | i i i L | i i i ror T
T «— SKCS8 i
0.12 -
. 1 //11 ,1m Vg

Mean Timestep Duration (milliseconds)

Number of Features

Figure 4.4: Key result: comparison of prediction error and computation time
for tile coding and SKC as their number of features increases, including (top)
the mean absolute prediction error on the last 10% of the combined data for
SKC and tile coding on 2, 8, and 12 dimensions; and (bottom) the mean
computation time of the combined data for SKC and tile coding on 2, 8, and
12 dimensions. The maximum features computable in a 100ms timestep is
shown in both plots by blue lines and the points I, II, II, and IV for SKC12,
SKC8, SKC2, and TC2/8/12, respectively

increases up until an optimum point after which the error increased or the
representation took too long to compute. The maximum number of features
calculated within 100 ms for the 12, 8, and 2 dimensional settings for SKC
are represented as points I, II, and III, respectively. The maximum number
of features that can be calculated within 100 ms using tile coding had little
variation on the log scale presented in Fig. 4.4, and is represented by a single
point IV. The exact numbers these labeled points represent is shown in Table

4.1.

43

The 100 ms processing limit had the effect that the 8 and 12 dimensional
settings of tile coding did not improve the prediction error beyond what the
2 dimensional setting was able to achieve, despite the possibility of improved
prediction performance if more computation was allowed. TC was quite unlike
SKC, which not only had similar performance trends across different numbers
of dimensions but utilized the additional dimensions of the state space to
improve performance using the same number of prototypes and thus features.
The best performance in terms of error across all conditions was found to be
SKC at 8000 prototypes, with 12D SKC at 8000 features demonstrating the
overall best performance on the entire experiment. After 8000 features, large
numbers of additional features proved to be detrimental to SKC’s performance
which resulted in the error having a convex form with a minimum at 8000.

Additionally, the timestep duration increased for both tile coding and SKC
as the number of features increased. Not only was tile coding significantly
more time efficient than SKC, but because there were tile coding configura-
tions with the same number of features across different numbers of dimensions
and each tile coding feature is calculated at the same speed, these different
configurations had the same computation time per timestep and thus visually
overlapped as seen in Figure 4.4 (bottom). As Euclidean distance was used
to compute the distance between prototypes in SKC, the computation time
per timestep increased with additional dimensions. As more dimensions were
added, this extra computation decreased the number of features that could be
calculated within 100 ms, as seen in Table 4.1.

Although SKC required significantly more time to calculate activated fea-
tures, the extra time taken proved to have a stronger influence on prediction

accuracy up until the optimal.

4.5 Discussion

Our results indicate that SKC is a representation that should be explored
further within the context of prosthetic control, assistive or rehabilitation

robotics, and other domains where high-dimensional continuous signals must

44

be efficiently represented in real-time to an adaptive or non-adaptive control
process.

The five different random distributions of prototypes created for SKC did
not lead to significant inter-distribution variations in performance (i.e., SKC
had a consistently small standard error across prototypes distributions). This
is an improvement over standard Kanerva coding, where the distribution of
prototypes is known to play a significant role in the performance of the predic-
tor. By only activating the features whose prototypes are the closest relative
to other prototypes instead of within a radius, SKC invokes a limit on the
distance between the furthest activated prototype and the state by the nature
of distances in higher dimensional spaces. As the number of dimensions of a
state space grows, the distances between random points in the space grows.
In standard Kanerva coding, this growth along with the distribution of proto-
types themselves increases the difficulty of appropriately setting the activation
radius as it must grow as well. SKC, on the other hand, uses a notion similar
to K-Nearest-Neighbors and locates the closest prototypes given that the ma-
jority of the prototypes (assuming 7 < 0.5) are further away. Following from
the increasing distances between these prototypes, the set of features activated
by SKC is appropriately flexible to changes in scale and dimension.

The error with respect to the number of features in SKC follows a convex
curve which indicates that there is an optimal number of prototypes, given
an 7. This decrease in performance as excessive prototypes are added to the
representation requires further investigation. It is most likely caused by the
limited number of training examples but may also be caused by over-fitting.
Following from previous work where the addition and deletion of prototypes
has been explored, one could extend the present work by applying gradient
descent methods to learn the optimal number of prototypes K, activation ratio
n, and effective distribution of prototypes (e.g., via gradient derivations similar
to those of Sutton, Maei, et al. 2009). This would be an important result, as it
could lead to a representation with fewer prototypes, and thus features, that
still accurately represents a high dimensional state space. With fewer features,

the representation can be constructed faster and the extra time can be devoted

45

to making more predictions or to engaging more computation-heavy methods
such as planning.

As the computation time increases with additional dimensions and features,
there must exist an upper bound of how many dimensions and features can
be represented on a single-core processor within a specified amount of time.
The results indicate that SKC might be a representation that could provide
accurate predictions until this upper bound is reached. Although this study
explored the effect of higher dimensions while constraining computation time
within 100ms, further studies are needed to consider the utility of different
methods given variable time constraints and even higher dimensions.

Finally, it is natural to expect that to achieve the best performance on a
prosthetic prediction or control task, the optimal number of or distribution of
features in a SKC (or other) representation may be specific to each individual.
That is, the best representation for a given prosthesis-user partnership may
depend on the unique characteristics of an individual user’s signals, behaviours,
and the capabilities and operation of their prosthetic device. The best way to
interpret signals for use in a machine learning or conventional control system
may also change with time as the user’s interactions with a device shift through
experience and training. Exploring adaptive extensions to SKC and comparing
them with other representation learning approaches to determine their viability
on resource-constrained prosthetic control systems is therefore an important

topic for future study.

4.6 Conclusions

As the number of sensors available on prosthetic devices grows with their ca-
pabilities, an appropriate synthesis of sensorimotor signals into a useful repre-
sentation becomes vital to the performance of these devices’ machine learning
control systems. If such a representation can remain computationally effi-
cient, it can readily be used on the computationally limited systems residing
within wearable prosthetic technology. The study in this chapter explored how

increasing the number of input signals affected performance and per step com-

46

putation time of a true-online reinforcement learning system using both tile
coding and a new, modified version of Kanerva coding that we term selective
Kanerva coding.

The presented results reaffirm previous findings about tile coding’s increas-
ing computational requirements on high dimensional data. Our results fur-
ther show that selective Kanerva coding can be readily applied to upper-limb
robotic prediction tasks. We note that selective Kanerva coding takes more
time to compute a representation than tile coding, but also show that not only
are there significant gains in prediction performance with additional features
but that there is an optimal number of prototypes for a fixed activation ratio, 7
and limited training data. These findings suggest that selective Kanerva cod-
ing merits further study, and as such, this work contributes a significant step
towards accurately representing the high-dimensional data of assistive tech-
nologies to a machine learning control system such as a reinforcement learning

agent.

47

Chapter 5

Selective Kanerva Coding in a
Multimodal Domain

5.1 Overview

Intelligent robotic limbs represent the fusion of advanced robotics and machine
intelligence, and are beginning to make their way out of the pages of science
fiction into real-world applications. Previous work shows that intelligent arms
have become useful for many tasks such as Amazon’s Picking Challenge (Her-
nandez et al. 2016) which requires an arm to pick up and place several objects
in the shortest amount of time. Another application where intelligent robotic
arms are becoming increasingly useful is as prosthetic devices where the robotic
arm cooperates with a human user to allow synergistic movements (Sherstan,
Modayil, and Pilarski 2015; Pilarski, Edwards, and Chan 2015; Pilarski, Sut-
ton, and Mathewson 2015; DeGol et al. 2016).

As robotic limbs interact more and more with their environment, the am-
bition to build accurate knowledge of a complex and changing world becomes
increasingly necessary. To address this problem, architectures have been pro-
posed which show improved results on the 3-dimensional Labyrinth task by
having multiple predictions of subtasks (Jaderberg et al. 2016), while other
architectures show the expressive power of multiple predictions as knowledge

(Sutton, Modayil, et al. 2011; Littman and Sutton 2002).

LA version of Chapter 5 has been submitted for publication as Jaden B. Travnik, Dylan
J. A. Brenneis, Michael R. Dawson, and Patrick M. Pilarski, “Grasping Predictions with
Multimodal Sensors”, for Frontiers in Neurorobotics.

48

Vision systems combined with distance or inertial measurement sensors
have previously been used to provide grasp prediction in powered hand pros-
theses (DoSen et al. 2010; Ghazaei et al. 2017; Markovic et al. 2015) and
robotic arms (Lenz, Lee, and Saxena 2015). The methods employed to make
the grasp predictions include heuristics (Dosen et al. 2010; Markovic et al.
2015) and deep learning (Ghazaei et al. 2017; Lenz, Lee, and Saxena 2015)
where the sensors are placed near the back of the grasping hand (Dosen et al.
2010; Ghazaei et al. 2017) or affixed to the head of the robot or user (Lenz, Lee,
and Saxena 2015; Markovic et al. 2015). Using multimodal sensors with surface
electromyography (sSEMG) has also been identified as a promising approach for
improving the control of myoelectric prostheses when mapping muscle contrac-
tions to joint movements on the prosthesis (Jiang et al. 2012). Several studies
have found that combining inertial measurement data (accelerometer, mag-
netometer, and gyro) with SEMG can improve classifier accuracy when using
pattern recognition classifiers such as linear discriminant analysis (Krasoulis
et al. 2017; Kyranou et al. 2016; Markovic et al. 2015; Radmand, Scheme,
and Englehart 2014). The main contributing signals were reported to be ac-
celerometer, magnetometer, and sEMG while the gyro data was found to not
contribute significantly (Markovic et al. 2015). Scheme et al. found that ac-
celerometer data could sometimes degrade classification when trying to solve
the limb position problem (Radmand, Scheme, and Englehart 2014). Their
proposed solution was to train the classifier while moving the prosthesis dy-
namically through a range of static movements in which case the training time
is reduced and performance is improved by using both the accelerometry and
sEMG data instead of the sSEMG alone.

It can be argued that making multiple accurate predictions requires mul-
tiple types of sensors, because the type of sensory information presented to a
learning agent drastically affects the accuracy of the predictions it is able to
make with the data. Take for example, a robotic arm tasked with predicting
whether it will contact a red object. A robotic arm capable of sensing color
would be expected to make more accurate predictions at this task than an arm

without this sensory information. A challenge then lies in determining which
49

modes of sensory information will be the most important to a learner for any
particular task: a process, referred to as feature selection, used in many ma-
chine learning applications (Guyon and Elisseeff 2003). The more relevant the
subset of inputs are to the prediction to be made, the higher the prediction
accuracy. In the arm example, if sensors relaying color information were avail-
able, they would be most relevant to predictions involving color. In this way,
the type of sensors used on a robotic arm dictate what predictions can be made
accurately irrespective of the representation used. If specific types of sensors
are required to make accurate predictions which pertain to specific types of
sensory information, it is a natural extension to see that multiple modes of
sensors will be required to make predictions which pertain to multiple sensory
modalities.

In this chapter we examine the effects of using different sets of multi-modal
sensory inputs in a prediction task using real-time data on a robotic hand. We
first document the custom robotic hand and data glove used for data collection
in the experiment. We then introduce the design of experiment and provide
a description of the data collected. Then, we detail the implementation of
the representation and learning algorithms used, along with the 3 modality
settings for comparison. After discussing the results, we present insight on
the effects of using multi-modal data sensors in predictions of robotic arm
data. Finally, we conclude that intelligent robotic arms of the future require

multi-modal sensors.

5.2 Experiments
5.2.1 Data Collection

Four shapes differing in color and shape were 3D printed and a mapping be-
tween shape and hand gestures was chosen so that there was no association
between any color and finger nor any shape and finger. As follows, we hy-
pothesized that the most accurate prediction would have to have information
about both modalities.

The HANDi Hand was set up such that the camera faced a solid black
50

Figure 5.1: The table associating GLOVi Glove hand gestures to shapes. There
are 4 shapes in all: green and orange cylinders, and green and orange steps.
If the shape is the Orange Step, then the experimenter wearing the GLOVi
Glove, puts their ring and pinky fingers down.

background, next to a pipet stand used to present objects to the hand in a
repeatable orientation (see Figures 5.2 and 5.3). The objects varied in shape
and color to include a green cylinder, an orange cylinder, a green stepped
cylinder, and an orange stepped cylinder. These colors were chosen as it
was expected that averaged RGB values collected by a camera would show
noticeable differences between the colors. Similarly, the shapes were chosen
as such because it was expected that the HANDi Hand would naturally grasp
them differently, resulting in a noticeable difference in finger position. Each
trial began with a recorded button press, followed by the introduction of the
shape to the hand’s grasping area. Three seconds following the button press,
the hand closed around the object in a column grasp, and held the object for
three seconds. During this grasp phase, the experimenter wearing the data
glove would perform a hand gesture particular to the object being held by
the HANDi Hand, as outlined in Figure 5.1. The presentation of these hand
gestures never deviated from the presentations in the table. Natural small
deviations in movement of the experimenter’s hand (i.e. small inconsistencies
in finger position or timing) were allowed, as they are representative of typical
human interactions. Upon release of the grasp, the object was removed from
the grasping area of the hand, and the experimenter returned the GLOVi
Glove to a neutral position with all fingers extended. Three seconds following

the release of the object marked the end of each trial, making each trial a total

o1

130

Figure 5.3: A top view of the
experiment setup showing how
the shapes were rotated into the
HANDi Hand’s grasping area.

Figure 5.2: A side view of the ex-
periment setup showing how the
shapes were oriented in the HANDi
Hand’s grasping area.

Figure 5.4: A picture showing ' :
the HANDi Hand (left) holding Figure 5.5: The camera’s 480 x

a green cylinder and the experi- 640 RGB view of the green cylinder

menter wearing the GLOVi Glove (top) against the black background
(right) performing the appropriate with the Thumb of the HANDi
hand gesture as indicated by the ta- Hand (left) in view.

ble in Figure 5.1.

of nine seconds long.

For each object, the number of trials recorded is as follows: green cylin-
der: n = 31; orange stepped cylinder: n = 33; green stepped cylinder: n =
33; orange cylinder: n = 34. Position and force data from the HANDi Hand
was collected using an Arduino Mega at a rate of approximately 70 Hz; po-
tentiometer data from the GLOVi Glove was collected on an Arduino Uno at

a rate of approximately 750 Hz; camera data was collected via USB to the

52

computer at a rate of 15 Hz with an image size of 480x640 RGB. A timestamp
was also recorded for each reading so that the data could be synchronized
offline. As the highest data collection frequency was from the GLOVi Glove,
the data from the camera and HANDi Hand was upsampled using the most
recent timestamp. This resulted in a total of over 850,000 data points for all
sensors. As each trial started and ended in relatively the same position with
the GLOVi Glove and the HANDi Hand opened and an empty camera view,
the order of the trials was randomly shuffled such that the trials of four shapes
were randomly distributed into a long stream of sensory data. The sensory
values were then normalized between 0 and 1 using the sensor’s minimum and

maximum over the entire data stream.

Signals from a Sample of 4 Concatenated Trials Containing All 4 Shapes

Orange Cylinder Green Cylinder Green Step Orange Step
Lo —— Thumb Rotation Pot.
l {‘——_ Thumb Flex Proximal Pot
0-5 ‘== | — Thumb Flex Distal Pot.
= e
—— Index Proximal Pot.
0.0
1.0 ;
1 l l‘ Middle Proximal Pot.
0.5 ‘ Ir——'_.,\ —~__} {i — —— Middle Intermediate Pot.
i | = = —— Avg Blue of Camera
0.0 - Pinky Proximal Pot.
0 —— Thumb FSR

—— Index FSR
—— Middle FSR
—— Ring FSR
—— Pinky FSR

Sensor Values
(=]
w

—— Ring Proximal Pot.
—— Index Inter. Pot.

.| = Avg Red of Camera
- Avg Green of Camera

0.0

GLOVi Glove P
1.0

0.0

—— GG Middle Finger Pot.
GG Ring Finger Pot.
- GG Pinky Finger Pot.

5000 10000 15000 20000 25000
Time Steps

Figure 5.6: A sample of the data stream created by concatenating the different
trials. The top 4 rows show different groups normalized sensor values from the
HANDi Hand. The 4th row shows the subset of signals used in the “All”
input setting. The 5th row shows normalized values of the Middle, Ring,
and Pinky Potentiometers of the GLOVi Glove. The colored sections indicate
which shape is being presented. Small jumps can be seen in the signals when
trials meet. An exception is the Thumb Flex Distal Potentiometer which had
large variations in its value as the thumb of the HANDi Hand drifted over the
course of the experiment.

When the HANDi Hand closed around a step shape, the index and ring

fingers closed further than they would have if the shape had been a cylinder.
53

This can be seen from Figure 5.6 in the 4th row. Further, the potentiometers
of all other joints on the HANDi Hand either did not move (e.g., Thumb Ro-
tation), had movement but were indiscernible across the different shapes (e.g.,
Middle Intermediate), or had a noticeable drift during the experiment which
produced large jumps in value after the trials were concatenated together.
As these large jumps were indicative of what shape was to be presented, the
Thumb Flex Distal Potentiometer was not considered as an input signal for
the experiment. Additionally, only the force sensitive resistor in the thumb
of the HANDi Hand was activated and although it activated with different
profiles between all shapes it was determined that this difference was a result
of the drift in the HANDi Hand thumb flex joint which occurred during data
collection so it was also not included as an input to the predictions. Likewise,
since adding a non-relevant sensor would hamper the accuracy of a prediction
and would make a prediction harder to interpret (Guyon and Elisseeff 2003;
James et al. 2013), such signals were also not used as inputs to the predictions.

In this way, a manual feature selection ensured that the potentiometer of
the intermediate joint of the index finger and the proximal potentiometer of
the ring finger from the HANDi Hand together contained enough information
to discern between cylindrical shapes and stepped shapes. In a similar manner,
the averages of the red and green channels from the camera, unlike the average
of the blue channel, contained enough information to discern between the green
and orange shapes. In this way, a representative subset of 4 sensors was isolated
as it provided the information necessary to discern each shape and thus predict
each finger for the GLOVi Glove. For each of the 4 sensor values, a trace with
Adecay = 0.999 was calculated and normalized as well. Three different input
space settings were constructed using this subset of sensors and associated
traces. A “Color Only” setting was created using the averages of the red and
green channels from the camera and their normalized traces thus making a
4 dimensional input space. A “Position Only” setting was created using the
potentiometers of the HANDi Hand fingers from the subset along with their
normalized traces making another 4 dimensional input space. Finally, an “All”

input space was constructed by using all 4 sensory signals from the subset and

o4

their associated normalized traces making an 8 dimensional input space.
Each of the 3 different input space settings was represented using selective
Kanerva coding with 8000 features and an n = .025 with input dimensions
respective to the input space setting (Travnik 2017). Three on-policy general
value functions, one for each of the moving finger’s potentiometers on the
GLOVi Glove (middle, ring, and pinky finger), were implemented with learning
parameters v = 0.999 and A = 0.9 and the learning target of their respective
GLOVi Glove potentiometer. Each of these general value functions was used
to learn a prediction of their potentiometer with a step size of o = 0.01 for 80%
of the data then was tested on the last 20% of the data using a step size which
did not modify the learned weights (o = 0). For each of the 177419 timesteps
of the testing phase, the true return of the potentiometer was calculated with
v = .999 and the squared error between the prediction and true return was

recorded.

5.3 Results

After collecting the data, the predictions of each of the three general value
functions on the last 20% of data, where there was no learning (« = 0), were
plotted along side the potentiometer signal and its true return. The predic-
tions, potentiometer values, and the true return, for one trial of the Green
Cylinder are plotted in Figure 5.7. As the Green Cylinder shape required the
experimenter wearing the GLOVi Glove to put down their middle, ring, and
pinky fingers, the values for the potentiometers of middle, ring, and pinky
have a distinct square pulse as the potentiometer turned with the spooling
mechanism, and the associated true return has a curve indicative of this pulse.
The accuracy of the predictions (blue) for these square pulses on this trial
vary across the different input space settings (columns), with the “All” setting
having a better approximation of the true return than the other 2 settings.
The “Position Only” predictions of the ring, and pinky fingers have a large
offset before the onset of the experimenter’s finger movements but were able

to have a fairly close approximation of the drop off of the return during the

95

step function. The “Color Only” predictions did not have a large offset but
were not able to accurately predict any of the potentiometer values. The “All’
input setting was able to have both the lower initial offset similar to the “Color
Only” input setting and an accurate approximation of the of the return during

the rest of the trial.

= Prediction
Sensor

= True Return Position Only Color Only All
1.0

Green Cylinder

MiddIeO.5

0.0
1.0

Values Ring o

0.0
1.0

Pinky 0.5

0.0

0 2500 5000 0 2500 5000 0 2500 5000

Timesteps

Figure 5.7: A plot of the predictions for one of the Green Cylinder trials in the
testing phase. For each of the three generate value functions, the prediction of
the potentiometer for each of the input space settings (blue) is plotted against
the value of the potentiometer sensor (orange) and the sensor’s true return
(green). Following the hand gestures from 5.1, the experimenter wearing the
GLOVi Glove put down their middle, ring, and pinky fingers for the Green
Cylinder shape as can be seen from the sensor (orange) lines.

To compare the rest of the trials, the distributions of the root squared error
between the true return and the predictions after learning were compared for
each prediction and input setting (see Figure 5.8). Accross all input settings,
the distribution of error for the middle finger has lower variance than those of
the ring finger and pinky. The distributions in error for the “All” input space
setting have a smaller variance and a lower mean and median for the middle
and pinky potentiometers compared to the other two input space settings. The

median for the ring finger in the “All” input setting is almost identical with
56

the median for the ring finger in the “Position Only” input setting but the

variance for the “All” input setting on the ring finger is slightly smaller.

Distribution of Root Squared Error

between True Return and Predictions
after Learning

0.5
==mm Position Only
Color Only -
All
0.4 = Median
== = Meah T T
Root 0.3
Squared T
Error -
0.2 B
0.1 [| —
0.0 : T ‘ : —‘7

Middle Ring Pinky
Glove Potentiometers

Figure 5.8: A side-by-side boxplot of the distributions of the root squared
error between the true return and the predictions of the general value functions
during the testing phase. Each distribution is comprised of 177419 data points.
Outliers outside of 2 standard deviations are removed for clarity.

Although a two-tailed two-sample t-test proved statistical difference (p-
value = 0) between the distributions of error of the “All” input space setting
and the other two input space settings, a Cohen’s D test was performed to
find the effective difference between the distributions of error (Cohen 1977;
Lin, Lucas Jr, and Shmueli 2013). A small to medium effective difference was

observed between the “All” input space setting and the other 2 settings for

o7

all of the fingers with the exception of the ring finger on the “Position Only”
setting.

Cohen's D Between the Means

of the Distributions of Error
1.0

------- Small Effect

—— Medium Effect

0.8 [Color Only and Position Only
[Color Only and All

mmm Position Only and All

Cohen's D 2:9

Values

0.4/

0.2 - B

0.0

Middle Ring
Glove Potentiometers

Pinky

Figure 5.9: The results of a Cohen’s D test between the distributions of error
of the different input settings for each prediction.

5.4 Discussion

As can be seen in Figure 5.7, the predictions more closely approximate the
true return when the data from all sensory modalities is given to the learner.
This same result is supported by the analysis of error distributions given in
the boxplots of Figure 5.8. Perhaps the most interesting feature of Figure
5.7 is the bottom central plot; that of the pinky finger prediction as made
using only the color data. For this particular prediction one might expect
reasonably good accuracy, since if the learner knows that the color of the
object is green, regardless of the shape, the pinky finger of the GLOVi Glove

should be predicted to move down, giving the square pulse. The prediction

o8

that is made here does not fully reflect the true return unless the data from
the HANDi Hand fingers is also included, as seen in the “All” column. Thus,
it appears that even when it is expected that a particular subset of sensors
might be enough to give a reasonable prediction, additional data from different
sensory modalities can be used to increase prediction accuracy.

The results of a Cohen’s D test show that the middle, ring, and pinky
predictions made in the “All” input setting not only have a small to medium
effective difference between the distributions of error of the “Color Only” and
“Position Only” input spaces (see Figure 5.9), but with the addition of sen-
sors with different modalities, the root mean squared error of the predictions
decreased along with the median for most of the predictions. Additionally, the
variances of the distributions of error for the middle, ring, and pinky predic-
tions were narrower than those of the other two input settings (see Figure 5.8).
The higher error seen in the “Color Only” input setting predictions is evident
given the large offsets between the predictions and the baseline positions of
the potentiometer sensors.

The performance seen in the “Position Only” input setting predictions suf-
fered in part due to the lack of information about the incoming object which
was available in the “Color Only” input setting. As the “Position Only” input
setting did not provide enough information to tell the difference between the
green and orange objects, each prediction made using that input setting was
instead offset based on the frequency of the associated finger moving?. The
“All” input setting did not have this drawback and had an accurate approxi-
mation of the return during the entirety of the trial.

In the “Color Only” input setting, the ring and pinky predictions tended to
increase just before the hand gesture in the GLOVi Glove was made. This was
surprising, as this jump occurred just as the HANDi Hand closed. Analyzing
the data after the fact, the jump in prediction occurs because the HANDi
Hand thumb is in the frame of the camera, so when the HANDi Hand closed

around a shape, the averages of the colors also changed. In fact, for the Step

2The Pinky was moved in 75% of the trials, the Ring in 50% of the trials, and the Middle
in only 25% of the trials.

29

shapes, the thumb rotated into the groove of the step and further out of the
frame of the camera than it did for the cylindrical shapes. This made a small
but noticeable difference in the average of the colors such that the predictions

in the “Color Only” input setting could discern when the hand was closed.

5.5 Conclusions

Using a custom robotic hand and inexpensive data capture glove, comparisons
were made between the prediction accuracies of different learning scenarios
with particular subsets of sensory modalities. The results from this study show
that the inclusion of relevant multimodal sensors to an input space of a machine
learner can increase the prediction accuracy over the prediction accuracy of
machine learners that only include sensors of a single sensory modality. In
cases where it might be expected that reasonably accurate predictions could be
made using a single sensory modality, the introduction of alternate modalities
still increased the prediction accuracy. This finding seems to suggest that
machine learning systems that have access to a variety of different types of
sensory information might be able to generate more accurate predictions than
those with more limited sensory inputs. Indeed, this makes intuitive sense: we
as human beings integrate information from a wide variety of sensory inputs
to make predictions about the world we interact with, and when deprived of
our senses (for example, by being blindfolded), we tend to have more trouble.

The future of artificial intelligence systems will depend on the generation of
accurate predictions in order to build up expansive knowledge of the complex
world that an agent acts in. The findings of this study suggest that these
accurate predictions rely on diversity in the sensory input space, hinting that
future robotic applications will benefit by the inclusion of multimodal sensory
inputs. In the specific case of machine learning as applied to prosthetic limbs,
this means that robotic arms should be made to include many different kinds

of sensors.

60

Chapter 6

Discussion and Exploration of
Selective Kanerva Coding

The experiments in Chapters 4 and 5 show how selective Kanerva coding
(SKC) can be used as an effective linear function approximator with large state
dimensions and across different sensor modalities. In this chapter we explore
the sensitivity of SKC’s meta-parameter n on prediction accuracy, evaluate
possible variations of SKC, and discuss future research opportunities.

The following experiments reuse the HANDi Hand and GLOVi Glove data
from Chapter 5. Specifically, they use the same subset of 4 signals from the
HANDi Hand data: the potentiometer of the intermediate joint of the index
finger, the proximal potentiometer of the ring finger, the averages of the red
and green channels from the camera. Each following experiment also uses the
ring finger from the GLOVi Glove as the target signal to be predicted by on-
policy GVFs. The learning parameters of a = 0.01, v = 0.999, and A\ = 0.9

were also kept the same as well as a data trace of Agecay = 0.999.

6.1 Sensitivity Analysis of n

To analyze the sensitivity of SKC’s prediction accuracy to changes in 7, an
encompassing sweep across varying numbers of prototypes and varying values
of n was performed. To account for variations in the spacial distribution of
prototypes, 40 iterations, each with a different random seed were used. Using

the same strategy as in Chapter 5, GVFs were implemented and trained for

61

80% of the data and then had their predictions compared against the true
return for the last 20%. The mean squared error between the prediction and
the true return for each GVF was calculated and recorded. The resulting
profiles for the prototype set size and the n value used can be seen in Figure

6.1.

Mean Squared Error for Prototype Set Sizes over Different Eta Values

0.12
0.11
Mean
Squared 0.10
Error
0.09 Prototype
Set Sizes
— 250
0.08 =— 500
= 1000
— 2000
0.07 —— 4000
= 8000
12000
0.06
1074 1073 1072 1071 10°

Figure 6.1: The sensitivity in error for different values of n of varying sizes of
prototype sets. The profiles for the smaller prototype set sizes are staggered
as an n < %, where K is the prototype set size, results in 0 active prototypes
so they can not be evaluated at these values. The smaller prototype sets (e.g.,
250 to 4000) show an increase in variability for small 7s.

The plot in Figure 6.1 captures a few important qualities about SKC.
Firstly, it reaffirms that additional prototypes can decrease the prediction
error with diminishing returns, at least until a point as shown in Chapter
4. Secondly, it shows that the variation in different prototype distributions
affects the variability of prediction error more strongly for small prototype
distributions. This variability is easily attributed to the larger variability in
the average distance between prototypes as when smaller prototype sets are
randomly initialized (see Figure 6.2). Finally, together with the results from
Chapter 4 Figure 4.4, Figure 6.1 shows that for a given GVF which requires a
prediction within a limited amount of time, if a GVF can be predicted using

selective Kanerva coding, there exists a global minimum selective Kanerva
62

coding representation with a specific prototype set size and 1 which gives
the least prediction error while remaining within the limited time constraint.
For instance, although the setting with 12,000 prototypes performed the best
out of all of the other settings, it also took longer to compute one step of the
learning algorithm than 0.0013 seconds, the maximum amount of time allowed
for the algorithm to stay up to speed with the GLOVi Glove signals which were
read at a rate of 750 Hz. Although reducing the rate of sensor readings would
allow for more time to compute more prototypes, the diminishing returns of

additional prototypes show that it is not worth the effort.

Mean Euclidian Distance to Nearest Prototype from Random Point

Di

0.5

0.4

Distance

0.2

0.1

0.0

250 500 1000 2000 4000 8000 12000
Number of Prototypes

Figure 6.2: The distribution of the distance between a random point in [0, 1]”
space, for n € {1,2,4,8}, to the nearest prototype as the size of the proto-
type set increases. 50 random seeds were used to initialize each prototype set
for each dimension setting. 200 random points were then generated and the
distance between them and the closest prototype was recorded.

6.2 Multiple Feature Sets

Implementations of tile coding often employ a simple technique to increase the
granularity of their representations. The idea is to have multiple overlapping

tilings which may even have different resolutions. It is reasonable to ask if

63

this technique can translate to SKC and if it would improve performance.
Specifically, we would like to have improved prediction performance without
extra memory or computation requirements, namely no additional features or
prototypes. In this section we describe two possible scenarios of how one could
implement multiple overlapping prototype sets and evaluate their performance

against vanilla SKC.

6.2.1 Multiple Prototype Sets

A very simple change to SKC is to have multiple overlapping prototype sets as
seen in Figure 6.3. Essentially, one generates two or more sets of prototypes
across the same state space and uses each independently to create a feature
vector. Then all of the feature vectors are concatenated together to form a
longer feature vector whose length is equal to the total number of prototypes.

This final feature vector is given to to the learning agent.

@ Red Subset
@ Blue Subset
© Green Subset
@ State

Figure 6.3: A high-level example of 3 overlapping prototype subsets using
n = .5. The lines between the state (black) and the prototypes (red, green,
and blue) indicate that the feature associated with the prototype is activated.

For example, the SKC with 8000 prototypes from section 6.1 could be
broken up into multiple smaller SKCs; 2 subsets of 4000, 4 subsets of 2000,
or even 16 subsets of 500. The subsets do not have to be all the same size,
however, so a subset of 1500 together with a subset of 6500 is reasonable.

Although the total number of prototypes or features does not change, and the

64

computational complexity for each subset remains the same as the original
SKC algorithm given the same total number of prototypes, the total time to
complete training, and thus the length of a single timestep, varies with the size
of a subset and number of subsets as seen in Figure 6.4. Together with the
error plots in Figure 6.5, this suggests although a representation comprised of
a few small subsets (e.g., 4 sets of 2000 prototypes) has worse performance

than a single set of 8000, it can be computed in roughly half of the time.

Size of Multiple Subsets
10 " el <
1_6%,’6%" Ao 2 68! 50 o°

1600 = Multiple Subsets
= Single Set

1400

1200

Time to 1000
Complete
Training
(seconds) 800

600

400

200

\J \\J \J O \\J \J \} \J
2590 oo 20° 20° a0 &° P P
Size of Single Set

Figure 6.4: A time comparison between single prototype set representations
(lower x-axis, green), and multiple prototype subset representations (upper x-
axis, blue) using = 0.05. Similar to the curves in Figure 4.4, the green curve
indicates that the time to compute a single set representation increases with
its size. The bowl shape in blue indicates that although the time to compute
the one subset representation grows with its size, the total time to compute
all of the subsets depends on the number and size of the subsets.

65

Mean Squared Error of Prototype Subsets

Prototype Subsets
16x500
0.080 Em— 4x2000
mm 2x4000
8000
0.075
Mean
Squared
Error
0.070
0.065
103 102
n
Mean Squared Error of Prototype Subsets
Prototype Subsets
mm 1500, 3000, and 5000
mmmm 1500 and 6500
0.075 = 8000
Mean
Squared 0-070
Error
0.065

103 102
n

Figure 6.5: The error sensitivity profiles of different prototype subsets across
different values of 1. The smaller a prototype subset (e.g., 1500), the more
variability in prediction accuracy for small 7s.

The results in Figure 6.5 compare examples of multiple prototype sets,
as listed above, on the same prediction problem of predicting the ring finger
signal of the GLOVi Glove. These results do not indicate any advantage to
using multiple prototype sets although they do verify that the fewer prototypes
that are in a subset, the more sensitive the predictions are to the variability

in distance as described by Figure 6.2.

66

6.2.2 Multiple n Values

An alternative to having multiple prototype subsets is to instead have one set
of prototypes and have multiple different values of 1 as seen in Figure 6.6. In
this variation, features for each 7, are calculated and concatenated together.
In this variation, every prototype is represented by N features where N is the
total number of ns used. If a prototype happens to be the closest to the input,
then all N of its features will be on as it will satisfy the activations of every
7. Each of these features will then be used with a different weight during the
weight update step.

Small n
=== Medium n

OO O OO O |osae"

O O OPrototype
O
O OO
ole o ©
O
© o0 O O

Figure 6.6: A high-level example of 3 ns on the same prototype set. The differ-
ent lines (red, green, and blue) between the state (black) and the prototypes
(white) indicate that a feature associated with the prototype and that 7 is
activated.

This variation may be faster than the either of “normal” or the multi-
prototype set settings, given a feature vector length. There are two reasons.
First, since there are fewer prototypes to store in memory, there are few dis-
tances to calculate. Second, by starting with the largest 7 in the set, the
resulting partition can be used as the starting set for the second largest 1 as
every prototype not in this partition is too far away to be considered by the
smaller 7. For example, in one experimental run with 4000 prototypes, we
computed the partitions for n = 0.1,0.05, in order.

By reducing the number of prototypes necessary in memory, there is more
room for extra weights to be learned. For instance, comparing once again to

67

the same baseline of 8000 prototypes and one 7, one could imagine having
a set of 4000 prototypes with two ns, meaning that there are half as many
prototypes in memory but the same number of weights (8000) in either case.
Towards the extreme, one could also imagine a set of 500 prototypes and 16
different 7s, using 1/16th of the prototypes to calculate 8000 features and
learn 8000 weights. Comparing these different settings against the best of
the original SKC formulation gives the results presented in Figure 6.7. There
seems to be little difference between the 4000 prototype settings other than
a small decrease in variability when using more 7s. A much more noticeable
change is evident when using 500 prototypes. By using 16 7 values ranging
between 0.0025 to 0.075, the error drops substantially although not as good
as the performance seen in the original SKC setting with 8000 prototypes and
n = 0.0025.

Mean Squared Error Comparing Multiple Il Sets

0.080

0.075

Mean
Squared 0.070
Error

0.065

0.060

8000 - 0.0025 4000 - 0.005 4000 - 0.005, 0.01 500 - 0.025 500 - 16ns

Selective Kanerva Coding Settings

Figure 6.7: A comparison of the error for the best 1 for normal 500, 4000, and
8000 prototype sets against the error for 4000 prototypes with two ns and 500
prototypes with 16 ns ranging between 0.0025 to 0.075.

68

6.3 Future Research Areas

6.3.1 Optimal Algorithm Ordering

In Chapter 3, we proposed the class of Reactive learning algorithms as which
aim to minimize the time it takes to respond to new stimulus. Reactive-SARSA
fits within this class of algorithms by the simple reordering of the components
of the classic algorithm from: observe, act, learn. A future research area going
beyond this hard-coded reordering is to allow an agent the freedom to decide
when it should learn, act, or observe.

As a thought experiment, imagine an oracle-agent that has perfectly mod-
eled its environment, knowing the outcome of every possible action. If this
environment is asynchronous and provides more positive rewards for complet-
ing a task as quickly as possible, then in order for this oracle-agent to maximize
its reward, it should eliminate all unnecessary computation routines, as they
delay the agent. Since it has perfectly modeled its environment, learning does
not improve its model. Moreover, if by predicting the state using its perfect
model, the agent can achieve a perfect state prediction without observing,
observation is also an unnecessary computation. Thus the oracle-agent can
eliminate learning and observing and simply act. Experts, such as video-game
speed runners or musicians, are sometimes able to perform their talents with-
out actually observing the consequences of their actions. This is because they
know their environment and task so well that they can simply act. By viewing
the order of algorithmic components of learning algorithms as modifiable, an
agent may be able to find an optimal ordering of its learning protocol or to in-
terrupt long-lasting computations (e.g., analyzing an image) for more pressing

computations (e.g., avoiding a pedestrian).

6.3.2 Future Work with Selective Kanerva Coding

Chapters 4 and 5 and the explorations in the previous sections of this chapter
have shown that selective Kanerva coding (SKC) can readily be used for linear
function approximation. Like tile coding, it asserts that a constant number
of features are activated at any time which allows the same freedom when

69

selecting a step size that tile coding provides. The variations of SKC pre-
sented in the preceding sections highlight that SKC as a starting framework
is highly malleable and can easily be transformed into alternative function
approximators which may have their own properties such as reducing memory
requirements.

With such a malleable starting point, there are many branches of future
work. One tempting direction is to apply the strategies presented by Ratitch,
Mahadevan, and Precup 2004. Their collection of case studies shows some
methods to redistribute the prototypes of classic Kanerva coding such that
they can have a finer granularity over important areas. Combining these tech-
niques with SKC should minimize the sensitivity of SKC to its prototype

distributions although at the cost of more computation time.

70

Chapter 7

Conclusion

The overall goal of my research has been exploring how reinforcement learn-
ing can be effectively applied on resource bounded systems. Specifically, 1
explored how reinforcement learning with linear function approximation be
deployed on responsive resource bounded systems and what limitations one
should be aware of when doing so. Understanding the additional limitations
present when deploying a reinforcement learning agent on a resource bounded
system provides insight into what an agent is capable of and can lead to much
more scalable architectures when not constrained computationally. I defined
an asynchronous environment to better model the difficulties faced with RL in
real-time domains and introduced a linear function approximation algorithm
that provides an effective alternative to previous linear function approxima-
tion methods. While my long-term goals include freeing an artificial agent to
choose how best to organize its own data and cognitive functions, this the-
sis primarily focused on how one could begin to approach these problems on
limited hardware. Current methods of reinforcement learning do not evaluate
the time it takes to react to a new situation. Minimizing the reaction time of
RL algorithms is an important problem as RL agents become more common
in the modern world. Although rarely, if at all, considered, this problem is
not unique to the robotic domains explored in the previous chapters but can
be found in many resource bounded systems including smart phones, the [oT,
and self-driving cars. It is obvious that fast reaction time is good, provided the

chosen action is appropriate. From this, one might theorize, as I do throughout

71

this thesis, that control over one’s cognitive components would be a beneficial
tool to intelligent agents.

This thesis looked at several different aspects of reinforcement learning on
resource bounded systems. Chapter 3 introduced an asynchronous environ-
ment to better model the control problem an agent faces when deployed in a
real-time domain. Chapter 3 also proposed a class of reactive algorithms to
deal with the issues caused by asynchronous environments by minimizing reac-
tion time and presented empirical results justifying the claims. These results
would benefit from deeper investigation on how the arrangement of learning
components can be learned by the agent. Chapter 4, which is arguably the
most important contribution of this thesis, introduced selective Kanerva cod-
ing as a novel approach to linear function approximation. The method was
evaluated on a prediction task using data from a robotic arm performing a
sorting task. This successfully demonstrated that selective Kanerva coding
showed improved prediction accuracy on the prediction task while reducing
the number of features necessary to complete the task compared to tile cod-
ing. Together these results show that SKC is an effective approach to linear
function approximation. Chapter 5 extended these results by exploring how
SKC performs with different modalities in the state space. Typically the ad-
dition of sensors and different modalities brings a curse of dimensionality to
linear function approximation techniques. Taken together with the findings
in Chapter 4, these results indicate that SKC is less susceptible to this curse,
allowing for more modalities to be presented to a learning agent, affording
more accurate predictions. Chapter 6 explored the sensitivity of the meta pa-
rameters of SKC, presented two variations, and provided direction for future
research areas.

During the writing of this thesis, the field of reinforcement learning was
heavily impacted by significant advancements using deep learning, specifically
deep convolutional neural networks (Silver et al. 2016). These and previous
findings revolutionized and motivated many industries and much of artificial
intelligence research to focus on deep learning and its applications. Contrary

to this direction, I focused on domains of resource bounded systems deployed

72

in real-time environments. The nature of the available computation and mem-
ory of these systems often establish deep learning as not a viable option for
function approximation. Further, the environments tend to reward fast reac-
tion times which may not be feasible when applying deep learning on limited
hardware. It is from this perspective that I set out to write this thesis. First, I
introduced a new perspective on algorithm performance, namely that the time
it takes to react to a new state of an asynchronous environment can impact the
performance of a reinforcement learning agent. Secondly, I focused the rest of
the thesis, chapters 4, 5, and part of 6, on novel linear function approxima-
tion in regards to prediction learning and showed improved prediction accuracy
over common methods. Besides the importance of these contributions detailed
in the previous chapters, the findings of this thesis provide a perspective that

challenges the current state of the field of reinforcement learning.

73

References

Antfolk, Christian, Marco D’Alonzo, Birgitta Rosen, Goran Lundborg, Fredrik
Sebelius, and Christian Cipriani (2013). “Sensory feedback in upper limb
prosthetics.” In: Ezpert Review of Medical Devices 10, pp. 45-54.

Atkins, Diane J., Denise C. Y. Heard, and William H. Donovan (1996). “Epi-
demiologic overview of individuals with upper-limb loss and their reported
research priorities.” In: Journal of Prosthetics and Orthotics 8, pp. 2-11.

Badamasi, Yusuf Abdullahi (2014). “The working principle of an Arduino.”
In: FElectronics, Computer and Computation (ICECCO), 2014 11th Inter-
national Conference on. IEEE, pp. 1-4.

Baird, Leemon C. and A. Harry Klopf (1993). “Reinforcement learning with

33

33

high-dimensional continuous actions.” In: Wright Laboratory, Wright-Patterson

Air Force Base, Tech. Rep. WL-TR-93-1147.

Barto, Andrew G., Steven J. Bradtke, and Satinder P. Singh (1995). “Learning
to act using real-time dynamic programming.” In: Artificial intelligence
72.1-2, pp. 81-138.

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson (1983). “Neu-
ronlike adaptive elements that can solve difficult learning control prob-
lems.” In: IEEFE transactions on systems, man, and cybernetics 5, pp. 834—
846.

Brenneis, Dylan J. A., Michael R. Dawson, and Patrick M. Pilarski (2017).
“Development of the Handi Hand: An Inexpensive, Multi-articulating, Sen-
sorized Hand for Machine Learning Research in Myoelectric Control.” In:

15

19

20

Proc. of MEC"17: Myoelectric Controls Symposium. Fredericton, New Brunswick.

9
Caarls, Wouter and Erik Schuitema (2016). “Parallel online temporal difference

learning for motor control.” In: IEFEE transactions on neural networks and

learning systems 27.7, pp. 1457-1468.
Castellini, Claudio, Panagiotis Artemiadis, Michael Wininger, Arash Ajoudani,

19, 29

Merkur Alimusaj, Antonio Bicchi, Barbara Caputo, William Craelius, Strahinja

Dosen, Kevin Englehart, Dario Farina, Arja Gijsberts, Sasha B. Godfry,
Levi Hargrove, Mark Ison, Todd Kuiken, Marko Markovic, Patrick M. Pi-
larski, Rudiger Rupp, and Eric Scheme (2014). “Proceedings of the first
workshop on peripheral machine interfaces: Going beyond traditional sur-
face electromyography.” In: Frontiers in Neurorobotics 8, p. 22.

74

1,32, 33

Ceaparu, Irina, Jonathan Lazar, Katie Bessiere, John Robinson, and Ben
Shneiderman (2004). “Determining causes and severity of end-user frus-
tration.” In: International journal of human-computer interaction 17.3,
pp. 333-356.

Chen, Guangyu, B-T Kang, Mahmut Kandemir, Narayanan Vijaykrishnan,
Mary Jane Irwin, and Rajarathnam Chandramouli (2004). “Studying en-
ergy trade offs in offloading computation/compilation in java-enabled mo-
bile devices.” In: IEEE Transactions on Parallel and Distributed Systems
15.9, pp. 795-8009.

Cheng, Wu and Waleed M. Meleis (2008). “Adaptive Kanerva-based function
approximation for multi-agent systems.” In: Proceedings of the 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 1361-1364.

Cohen, Jacob (1977). Statistical power analysis for the behavioral sciences (re-
vised ed.) New York: Academic Press.

Coley, Gerald (2013). “Beaglebone black system reference manual.” In: Tezas
Instruments, Dallas.

Cook, Albert M. and Janice M. Polgar (2015). “Chapter 12 - Technologies
That Aid Manipulation and Control of the Environment.” In: Assistive
Technologies (Fourth Edition). Ed. by Albert M. Cook and Janice M. Pol-
gar. Fourth Edition. St. Louis (MO): Mosby, pp. 284-313. 1SBN: 978-0-
323-09631-7. DOI: https://doi.org/10.1016/B978-0-323-09631 -
7.00012-0. URL: https://www.sciencedirect.com/science/article/
pii/B9780323096317000120.

Curran, William, Tim Brys, David Aha, Matthew Taylor, and William D.
Smart (2016). “Dimensionality Reduced Reinforcement Learning for Assis-
tive Robots.” In: 2016 AAAI Fall Symposium Series.

Dawson, Michael R., Craig Sherstan, Jason P. Carey, Jacqueline S. Hebert, and
Patrick M. Pilarski (2014). “Development of the Bento Arm: An improved
robotic arm for myoelectric training and research.” In: Proc. of MEC’14 :
Myoelectric Controls Symposium. Fredericton, New Brunswick, pp. 60—64.

DeGol, Joseph, Aadeel Akhtar, Bhargava Manja, and Timothy Bretl (2016).
“Automatic grasp selection using a camera in a hand prosthesis.” In: Engi-
neering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual
International Conference of the. IEEE, pp. 431-434.

Degris, Thomas and Joseph Modayil (2012). “Scaling-up Knowledge for a Cog-
nizant Robot.” In: AAAI Spring Symposium: Designing Intelligent Robots.

19

Dosen, Strahinja, Christian Cipriani, Milos Kosti¢, Marco Controzzi, Maria C.
Carrozza, and Dejan B. Popovié¢ (2010). “Cognitive vision system for con-
trol of dexterous prosthetic hands: experimental evaluation.” In: Journal
of neuroengineering and rehabilitation 7, p. 42.

Edwards, Ann L. (2016). “Adaptive and Autonomous Switching: Shared Con-
trol of Powered Prosthetic Arms Using Reinforcement Learning.” Master’s
thesis. University of Alberta.

5

57

2,7, 8, 25, 33, 40

48

49

7, 14, 16, 34

http://dx.doi.org/https://doi.org/10.1016/B978-0-323-09631-7.00012-0
http://dx.doi.org/https://doi.org/10.1016/B978-0-323-09631-7.00012-0
https://www.sciencedirect.com/science/article/pii/B9780323096317000120
https://www.sciencedirect.com/science/article/pii/B9780323096317000120

Edwards, Ann L., Michael R. Dawson, Jacqueline S. Hebert, Craig Sherstan,

Richard S. Sutton, K. Ming Chan, and Patrick M. Pilarski (2016). “Appli-

cation of real-time machine learning to myoelectric prosthesis control: A

case series in adaptive switching.” In: Prosthetics € Orthotics International

40.5, pp. H73-581. 34
Edwards, Ann L., Jacqueline S. Hebert, and Pilarski M. Pilarski (2016). “Ma-

chine learning and unlearning to autonomously switch between the func-

tions of a myoelectric arm.” In: Proceedings of the 6th IEEE RAS/EMBS

International Conference on Biomedical Robotics and Biomechatronics (BioRob2016),

pp. 514-521. 16, 34
Edwards, Ann L., Alexandra Kearney, Michael R. Dawson, Richard S. Sutton,

and Patrick M. Pilarski (2013). “Temporal-difference learning to assist hu-

man decision making during the control of an artificial limb”. 16
Farrell, Todd R. and Richard F. Weir (2007). “The optimal controller delay

for myoelectric prostheses.” In: IEEFE Transactions on neural systems and

rehabilitation engineering 15.1, pp. 111-118. 34, 42
Fougner, Anders, Erik Scheme, Adrian D. C. Chan, Kevin Englehart, and

Oyvind Stavdahl (2011). “Resolving the limb position effect in myoelectric

pattern recognition.” In: IEFE Transactions on Neural Systems and Re-

habilitation Engineering 19.6, pp. 644-651. DOI: 10.1109/TNSRE. 2011 .

2163529. 34
Ghazaei, Ghazal, Ali Alameer, Patrick Degenaar, Graham Morgan, and Kianoush

Nazarpour (2017). “Deep learning-based artificial vision for grasp classi-

fication in myoelectric hands.” In: Journal of Neural Engineering 14.3,

p. 036025. 49
Guyon, Isabelle and André Elisseeff (2003). “An introduction to variable and

feature selection.” In: Journal of machine learning research 3.Mar, pp. 1157—

1182. 50, 54
Hernandez, Carlos, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser, Jethro

Tan, Kanter van Deurzen, Maarten de Vries, Bas Van Mil, Jeff van Egmond,

Ruben Burger, Mihai Morariu, Jihong Ju, Xander Gerrmann, Ronald En-

sing, Jan Van Frankenhuyzen, and Martijn Wisse (2016). “Team Delf’s

Robot Winner of the Amazon Picking Challenge 2016.” In: arXiv:1610.05514[cs.RO)].

48

Hester, Todd, Michael Quinlan, and Peter Stone (2010). “Generalized model

learning for reinforcement learning on a humanoid robot.” In: Robotics

and Automation (ICRA), 2010 IEEE International Conference on. IEEE,

pp- 2369-2374. 3,19
Hoare, Charles A. R. (1961). “Algorithm 65: Find.” In: Communications of
the ACM 4.7, pp. 321-322. 39

Hong, Sukjoon, Habeom Lee, Jinhwan Lee, Jinhyeong Kwon, Seungyong Han,
Young D. Suh, Hyunmin Cho, Jaeho Shin, Junyeob Yeo, and Seung Hwan
Ko (2015). “Highly stretchable and transparent metal nanowire heater for
wearable electronics applications.” In: Advanced materials 27.32, pp. 4744~
4751. 6

76

http://dx.doi.org/10.1109/TNSRE.2011.2163529
http://dx.doi.org/10.1109/TNSRE.2011.2163529

Jaderberg, Max, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,
Joel Z. Leibo, David Silver, and Koray Kavukcuoglu (2016). “Reinforce-
ment learning with unsupervised auxiliary tasks.” In: arXw preprint arXiw:1611.05397.
48
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013).

An introduction to statistical learning. Vol. 112. Springer. 54
Jiang, Ning, Strahinja Dosen, Klaus-Robert Muller, and Dario Farina (2012).

“Myoelectric control of artificial limbs—is there a need to change focus?[In

the spotlight].” In: IEEE Signal Processing Magazine 29.5, pp. 152-150. 49
Johannes, Matthew S., John D. Bigelow, James M. Burck, Stuart D. Harsh-

barger, Matthew V. Kozlowski, and Thomas Van Doren (2011). “An overview

of the developmental process for the modular prosthetic limb.” In: Johns

Hopkins APL Technical Digest 30.3. JHU/APL, pp. 207-216. 2,7
Jost, Kristy, Daniel Stenger, Carlos R. Perez, John K. McDonough, Keryn

Lian, Yury Gogotsi, and Genevieve Dion (2013). “Knitted and screen printed

carbon-fiber supercapacitors for applications in wearable electronics.” In:

Energy € Environmental Science 6.9, pp. 2698-2705. 6
Kanerva, Pentti (1988). Sparse distributed memory. Cambridge: MIT Press. 17, 35
Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement learn-

ing in robotics: A survey.” In: The International Journal of Robotics Re-

search 32.11, pp. 1238-1274. 1,3
Kopetz, Hermann (2011). “Internet of things.” In: Real-time systems. Springer,
pp. 307-323. 5

Kortuem, Gerd, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton
(2010). “Smart objects as building blocks for the internet of things.” In:
IEEE Internet Computing 14.1, pp. 44-51. 1,5

Kou, Liang, Tieqi Huang, Bingna Zheng, Yi Han, Xiaoli Zhao, Karthikeyan
Gopalsamy, Haiyan Sun, and Chao Gao (2014). “Coaxial wet-spun yarn
supercapacitors for high-energy density and safe wearable electronics.” In:
Nature communications 5. 6

Krasoulis, Agamemnon, Iris Kyranou, Mustapha Suphi Erden, Kianoush Nazar-
pour, and Sethu Vijayakumar (2017). “Improved prosthetic hand control
with concurrent use of myoelectric and inertial measurements.” In: Journal
of neuroengineering and rehabilitation 14.1, p. 71. 49

Kumar, Karthik, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava (2013).

“A survey of computation offloading for mobile systems.” In: Mobile Net-
works and Applications 18.1, pp. 129-140. 2

Kumar, Karthik and Yung-Hsiang Lu (2010). “Cloud computing for mobile
users: Can offloading computation save energy?” In: Computer 43.4, pp. 51—

56. 2

Kyranou, Iris, Agamemnon Krasoulis, Mustafa Suphi Erden, Kianoush Nazar-
pour, and Sethu Vijayakumar (2016). “Real-time classification of multi-
modal sensory data for prosthetic hand control.” In: Biomedical Robotics
and Biomechatronics (BioRob), 2016 6th IEEE International Conference
on. IEEE, pp. 536-541. 49

7

Lee, Gyu Myoung, Noel Crespi, Jun Kyun Choi, and Matthieu Boussard
(2013). “Internet of things.” In: Evolution of Telecommunication Services.
Springer, pp. 257-282.

Lee, Jaehong, Hyukho Kwon, Jungmok Seo, Sera Shin, Ja Hoon Koo, Changhyun

Pang, Seungbae Son, Jae Hyung Kim, Yong Hoon Jang, Dae Eun Kim,
and Taeyoon Lee (2015). “Conductive Fiber-Based Ultrasensitive Textile
Pressure Sensor for Wearable Electronics.” In: Advanced materials 27.15,
pp. 2433-2439.

Legenstein, Robert, Niko Wilbert, and Laurenz Wiskott (2010). “Reinforce-
ment learning on slow features of high-dimensional input streams.” In:
PLoS Comput Biol 6.8, e1000894.

Lenz, Tan, Honglak Lee, and Ashutosh Saxena (2015). “Deep learning for de-
tecting robotic grasps.” In: The International Journal of Robotics Research
34.4-5, pp. 705-724.

Leonov, Vladimir and Ruud J. M. Vullers (2009). “Wearable electronics self-
powered by using human body heat: The state of the art and the per-
spective.” In: Journal of Renewable and Sustainable Energy 1.6, p. 062701.

6

Li, Wei, Fan Zhou, Waleed Meleis, and Kaushik Chowdhury (2017). “Dynamic
Generalization Kanerva Coding in Reinforcement Learning for TCP Con-
gestion Control Design.” In: Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, pp. 1598-1600.

Lin, Mingfeng, Henry C. Lucas Jr, and Galit Shmueli (2013). “Research com-
mentary—too big to fail: large samples and the p-value problem.” In: In-
formation Systems Research 24.4, pp. 906-917.

Lin, Stephen and Robert Wright (2010). “Evolutionary Tile Coding: An Auto-
mated State Abstraction Algorithm for Reinforcement Learning.” In: Ab-
straction, reformulation, and approzimation.

Littman, Michael L. and Richard S. Sutton (2002). “Predictive representations
of state.” In: Advances in neural information processing systems, pp. 1555—
1561.

Lobos-Tsunekawa, Kenzo, David L. Leottau, and Javier Ruiz-del-Solar (2017).
“Toward Real-Time Decentralized Reinforcement Learning using Finite
Support Basis Functions.” In: arXiv preprint arXiv:1706.06695.

Markovic, Marko, Strahinja Dosen, Dejan Popovic, Bernhard Graimann, and
Dario Farina (2015). “Sensor fusion and computer vision for context-aware
control of a multi degree-of-freedom prosthesis.” In: Journal of neural en-
gineering 12.6, p. 066022.

Miller, Thomas W. and Filson H. Glanz (1996). “UNH CMAC version 2.1:
The University of New Hampshire implementation of the Cerebellar Model
Arithmetic Computer - CMAC.” Robotics Laboratory Technical Report,
University of New Hampshire, Durham, New Hampshire.

Parker, Philip A., Kevin B. Englehart, and Bernard Hudgins (2006). “Myoelec-
tric signal processing for control of powered limb prostheses.” In: Journal

78

35

49

57

48

49

41

of Electromyography and Kinesiology 16.6, pp. 541-548. DOI: 10.1016/j.
jelekin.2006.08.006.

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Jason P. Carey,
K. Ming Chan, Jacqueline S. Hebert, and Richard S. Sutton (2013). “Adap-
tive artificial limbs: A real-time approach to prediction and anticipation.”
In: IEEE Robotics and Automation Magazine 20.1, pp. 53—64. DOI: 10.
1109/MRA.2012.2229948.

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Jason P. Carey,
and Richard S. Sutton (2012). “Dynamic switching and real-time machine
learning for improved human control of assistive biomedical robots.” In:
Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS
& EMBS International Conference on. IEEE, pp. 296-302.

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Farbod Fahimi,
Jason P. Carey, and Richard S. Sutton (2011). “Online human training
of a myoelectric prosthesis controller via actor-critic reinforcement learn-
ing.” In: Proceedings of the[EEE International Conference on Rehabilita-
tion Robotics (ICORR). Zurich, Switzerland, pp. 134-140.

Pilarski, Patrick M., Ann L. Edwards, and K. Ming Chan (2015). “Novel Con-
trol Strategies for Arm Prostheses: A Partnership between Man and Ma-
chine.” In: The Japanese Journal of Rehabilitation Medicine 52.2, pp. 91—
95.

Pilarski, Patrick M. and Jacqueline S. Hebert (2017). Upper and lower limb
robotic prostheses Robotic Assistive Technologies: Principles and Practice,
Eds. P. Encarnagao and A. M. Cook. Boca Raton, FL.: CRC Press ISBN:
978-1-4987-4572-7, pp. 99-144.

Pilarski, Patrick M., Richard S. Sutton, and Kory W. Mathewson (2015).
“Prosthetic Devices as Goal-Seeking Agents.” In: 2nd Workshop on Present
and Future of Non-Invasive Peripheral-Nervous-System Machine Interfaces,
Singapore.

Pilarski, Pilarski M., Travis B. Dick, and Richard S. Sutton (2013). “Real-
time prediction learning for the simultaneous actuation of multiple pros-
thetic joints.” In: Proceedings of the 15th IEEE International Conference
on Rehabilitation Robotics (ICORR). Seattle, USA, pp. 1-8.

Radmand, Ashkan, Erik Scheme, and Kevin Englehart (2014). “On the suit-
ability of integrating accelerometry data with electromyography signals for
resolving the effect of changes in limb position during dynamic limb move-
ment.” In: JPO: Journal of Prosthetics and Orthotics 26.4, pp. 185—193.

49

Ramsay, Judith, Alessandro Barbesi, and Jenny Preece (1998). “A psycho-
logical investigation of long retrieval times on the World Wide Web.” In:
Interacting with computers 10.1, pp. 77-86.

Ratitch, Bohdana, Swaminathan Mahadevan, and Doina Precup (2004). “Sparse
distributed memories in reinforcement learning: Case studies.” In: Proc. of
the Workshop on Learning and Planning in Markov Processes-Advances
and Challenges, pp. 85-90.

79

32

34

16

16, 34

48

6, 32, 33

7, 48

34

3, 38, 70

http://dx.doi.org/10.1016/j.jelekin.2006.08.006
http://dx.doi.org/10.1016/j.jelekin.2006.08.006
http://dx.doi.org/10.1109/MRA.2012.2229948
http://dx.doi.org/10.1109/MRA.2012.2229948

Ratitch, Bohdana and Doina Precup (2004). “Sparse distributed memories for
on-line value-based reinforcement learning.” In: European Conference on
Machine Learning. Ed. by Springer Berlin Heidelberg, pp. 347-358.

Richardson, Matt and Shawn Wallace (2012). Getting started with raspberry
PI. 7 O’Reilly Media, Inc.”

Scheme, Erik and Englehart Englehart (2011a). “Electromyogram pattern
recognition for control of powered upper-limb prostheses: State of the art
and challenges for clinical use.” In: Journal of Rehabilitation Research and
Development 48.6, pp. 643-660.

Scheme, Erik and Kevin Englehart (2011b). “Electromyogram pattern recog-
nition for control of powered upper-limb prostheses: State of the art and
challenges for clinical use.” In: Journal of rehabilitation research and de-
velopment 48.6, p. 643.

Sherstan, Craig, Joseph Modayil, and Patrick M. Pilarski (2015). “A collabora-
tive approach to the simultaneous multi-joint control of a prosthetic Arm.”
In: Proceedings of the 14th IEEE/RAS-EMBS International Conference on
Rehabilitation Robotics (ICORR). Singapore, pp. 13-18.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Dominik G. Dieleman, John Nham, Nal
Kalchbrenner, Ilya Suskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglo, Thore Graepel, and Demis Hassabis (2016). “Mastering the
game of Go with deep neural networks and tree search.” In: Nature 529.7587,
pp. 484-489.

Singh, Satinder, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvari
(2000). “Convergence results for single-step on-policy reinforcement-learning
algorithms.” In: Machine learning 38.3, pp. 287-308.

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement learning: An
introduction. Cambridge: MIT Press.

Sutton, Richard S., Hamid R. Maei, Doina Precup, Shalabh Bhatnagar, David
Silver, Csaba Szepesvari, and Eric Wiewiora (2009). “Fast gradient-descent
methods for temporal-difference learning with linear function approxima-
tion.” In: Proceedings of the 26th Annual International Conference on Ma-
chine Learning. ACM, pp. 993-1000.

Sutton, Richard S., Joseph Modayil, Michael Delp, Thomas Degris, Patrick
M. Pilarski, Adam White, and Doina Precup (2011). “Horde: A Scal-
able Real-time Architecture for Learning Knowledge from Unsupervised
Sensorimotor Interaction.” In: Proc. the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). Taipei, Taiwan,
pp- 761-768.

Sutton, Richard S, Csaba Szepesvéri, Alborz Geramifard, and Michael P. Bowl-
ing (2012). “Dyna-style planning with linear function approximation and
prioritized sweeping.” In: arXiv preprint arXiv:1206.3285.

80

3, 35, 38

1,32, 33

7, 34, 48

29, 72

19

13, 14, 18, 20, 29, 34, 36

45

14, 25, 48

Tanner, Brian and Adam White (2009). “RL-Glue: Language-independent
software for reinforcement-learning experiments.” In: Journal of Machine

Learning Research 10.Sep, pp. 2133-2136. 18
Tao, Xiaoming (2005). Wearable electronics and photonics. Elsevier. 6
Tesauro, Gerald (1995). “T'd-gammon: A self-teaching backgammon program.”

In: Applications of Neural Networks. Springer, pp. 267-285. 18

Travnik, Jaden B. and Patrick M. Pilarski (2017). “Representing high-dimensional
data to intelligent prostheses and other wearable assistive robots: A first
comparison of tile coding and selective Kanerva coding.” In: Rehabilitation
Robotics (ICORR), 2017 International Conference on. IEEE, pp. 1443—
1450. 14

Van Seijen, Harm, A. Rupam Mahmood, Patrick M. Pilarski, Marlos C. Machado,
and Richard S. Sutton (2016). “True online temporal-difference learning.”

In: Journal of Machine Learning Research 17.14, pp. 1-40. 13
Watkins, Christopher J. C. H. and Peter Dayan (1992). “Q-learning.” In: Ma-
chine learning 8.3-4, pp. 279-292. 20
Watkins, Christopher John Cornish Hellaby (1989). “Learning from delayed
rewards.” PhD thesis. King’s College, Cambridge. 12
White, Adam (2015). “Developing a predictive approach to knowledge.” PhD
thesis. PhD thesis, University of Alberta. 14

Whiteson, Shimon, Matthew E. Taylor, and Peter Stone (2007). Adaptive tile
coding for value function approximation. Computer Science Department,

University of Texas at Austin. 3
Wortmann, Felix and Kristina Fliichter (2015). “Internet of things.” In: Busi-
ness & Information Systems Engineering 57.3, pp. 221-224. 5

Wu, Cheng and Waleed Meleis (2009). “Function approximation using tile
and Kanerva coding for multi-agent systems.” In: Proceedings of adaptive
learning agents workshop (ala) in aamas. 3

Xia, Feng, Laurence T. Yang, Lizhe Wang, and Alexey Vinel (2012). “Inter-
net of things.” In: International Journal of Communication Systems 25.9,

p. 1101. 5
Yang, Shuang-Hua (2014). “Internet of things.” In: Wireless Sensor Networks.
Springer, pp. 247-261. 5

Zeng, Wei, Lin Shu, Qiao Li, Song Chen, Fei Wang, and Xiao-Ming Tao (2014).
“Fiber-based wearable electronics: a review of materials, fabrication, de-
vices, and applications.” In: Advanced Materials 26.31, pp. 5310-5336. 6

81

	Introduction
	Addressing Computation Challenges of Reinforcement Learning on Resource Bounded Systems
	Our Contributions

	Background Material
	Limited Computation on Untethered Systems
	Internet of Things
	Wearable Electronics
	Myoelectric Prosthetic Limbs

	Custom Hardware
	The Bento Arm
	Humanoid, Anthropometric, Naturally Dexterous, Intelligent (HANDi) Hand
	Gesture Layout Observation Via Impedance (GLOVi) Glove

	Reinforcement Learning
	True Online Temporal-Difference Learning
	General Value Functions
	Continuous-Time and Real-Time Reinforcement Learning
	Data Traces

	Sparse Distributed Memory

	Reaction Time is Important
	Overview
	Related Background

	Temporal Delays in Asynchronous Environments
	Reactive SARSA
	Experiments
	Experiment 1
	Experiment 2

	Discussion
	Conclusions

	Dealing with Increasing Dimensionality
	Overview
	Towards Computationally Efficient Representations

	Representation using Linear Methods
	Tile Coding
	Kanerva Coding
	Selective Kanerva Coding

	Experiment
	Results
	Discussion
	Conclusions

	Selective Kanerva Coding in a Multimodal Domain
	Overview
	Experiments
	Data Collection

	Results
	Discussion
	Conclusions

	Discussion and Exploration of Selective Kanerva Coding
	Sensitivity Analysis of
	Multiple Feature Sets
	Multiple Prototype Sets
	Multiple Values

	Future Research Areas
	Optimal Algorithm Ordering
	Future Work with Selective Kanerva Coding

	Conclusion
	References

