
Sample-Efficient Control with Directed Exploration in Discounted MDPs
Under Linear Function Approximation

by

Raksha Kumar Kumaraswamy

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Raksha Kumar Kumaraswamy, 2021

Abstract

An important goal of online reinforcement learning algorithms is efficient data collection

to learn near-optimal behaviour, that is, optimizing the exploration-exploitation trade-off

to reduce the sample-complexity of learning. To improve sample-complexity of learn-

ing it is essential that the agent directs its exploratory behaviour towards either visiting

unvisited parts of the environment, or reducing uncertainty it may have with respect to

the visited parts. In addition to such directed exploration, sample-complexity of learning

can be improved by using a representation space that is amenable to online reinforcement

learning. This thesis presents several algorithms that focus on these avenues for improv-

ing the sample-complexity of online reinforcement learning, specifically in the setting of

discounted MDPs under linear function approximation.

A key challenge to direct effective online exploration is the learning of reliable uncer-

tainty estimates. We address this by deriving high-probability confidence-bounds for value

uncertainty estimation. We use these derived confidence-bounds to design two algorithms

that direct effective online exploration; they differ mainly in their approach to directing ex-

ploration for visiting unknown regions of the environment. In the first algorithm we propose

a heuristic to do so, whereas the second algorithm uses a more principled strategy based on

optimistic initialization. The second algorithm is also a planning-compatible algorithm that

can be parallelized, scaling sample-efficiency benefits with the compute resources afforded

to the algorithm.

To improve sample-efficiency by utilizing representations that are amenable to online

reinforcement learning, the thesis proposes a simple strategy for learning such represen-

tations offline. The representation learning algorithm encodes a property we call locality.

Locality reduces interference in learning targets used by online reinforcement learning algo-

ii

rithms, consequently improving its sample-efficiency. The thesis shows that these learned

representations also aid effective online exploration.

Overall, this thesis proposes algorithms for improving sample-efficiency of online rein-

forcement learning, motivates their utility, and evaluates their benefits empirically.

iii

Preface

This thesis is an original work by the author.

Some central chapters of this thesis are based on co-authored conference publications.

• Chapter 4 is based on Kumaraswamy et al. (2018).
Martha, Adam, and I derived the uncertainty estimates, and developed the algorithm
together. Matthew and I worked on the experiments together. The paper was the
result of a collaborative writing effort.

• Chapter 5 is based on Liu et al. (2019).
Vincent, and I developed the idea, and worked on the experiments together. The
paper was the result of a collaborative writing effort.

iv

To my parents.

v

The truth is, most of us discover where we are headed when we arrive.

– Bill Watterson.

vi

Acknowledgements

This document would not be possible without the many marvellous people I have been

privileged to know and benefit from.

I am extremely fortunate to work under the guidance of my amazing advisors Martha

White and Adam White. They have been a constant source of inspiration and kindness, and

I sincerely thank them. Their approach to research and life has immeasurably influenced

mine, for which I will always be grateful.

I thank my candidacy and thesis committee members Csaba Szepesvári, Levi Lelis,

Nidhi Hegde, and Joelle Pineau, for their valuable time and feedback.

I thank my professors at Indiana University Bloomington who have been instrumental

in this journey: Sriraam Natarajan, and Predrag Radivojac. They provided much of the

initial boost and encouragement for my interest in research.

I would like to thank the members of RLAI and AMII communities – PIs, peers, col-

leagues, and friends. The rigorous, but not dogmatic, research atmosphere here has helped

shape many things I value. The open and collaborative approach to research has made my

experience a fun and fulfilling one.

I would like to acknowledge the people who helped create the content of, and refine the

presentation of, this thesis: Lei Li, Matthew Schlegel, and Vincent Liu, for being incredible

teammates and excellent collaborators; Khurram Javed, Zaheer Abbas, Abhishek Naik, Han

Wang, and Suyog Chandramouli, for being superb copyeditors and reliable morale boosters.

I owe many thanks to wonderful friends, near and far. Your companionship has been

invaluable through the roller-coaster that is graduate school; thank you for everything.

I owe much gratitude to my family, old and new, for all the patience, support, and love,

while I have been away from home.

And finally, I owe much to Suyog, my kindred spirit and partner in life, for always

facilitating and nurturing a happy headspace.

vii

Table of Contents

1 Introduction 1
1.1 Objective . 2
1.2 Approach . 3
1.3 Contributions . 4
1.4 Overview . 6
1.5 Summary . 7

2 Background 8
2.1 Reinforcement Learning . 8

2.1.1 Discounted Reinforcement Learning 9
2.1.2 Markov Decision Processes . 9
2.1.3 Types of Discounted Environments 10

2.2 Value Functions . 10
2.2.1 Function Approximation . 11
2.2.2 Linear Function Approximation 11

2.3 Policy Evaluation . 13
2.3.1 Temporal Difference Learning . 15
2.3.2 Least Squares Temporal Difference Learning 16

2.4 Policy Iteration . 18
2.5 Other MDP Related Details . 19

2.5.1 Types of MDPs . 20
2.5.2 Types of Learning Problems in MDPs 20

2.6 Summary . 23

3 Exploration in Reinforcement Learning 24
3.1 The Exploration-Exploitation Trade-Off 24
3.2 Directed Exploration in Tabular State-Spaces 25
3.3 Directed Exploration in Continuous State-Spaces 26
3.4 Desiderata for Directed Exploration . 27
3.5 Summary . 29

4 Incremental Control with Policy Evaluation Uncertainty Estimates 30
4.1 Confidence Intervals for LSTD(λ) . 31

4.1.1 Linear Complexity Confidence Intervals for LSTD(λ) 36
4.2 On-Policy Control . 36

4.2.1 Optimistic Values Theorem . 37
4.2.2 UCLS: Control with LSTD using Upper-Confidence Bounds 39
4.2.3 UCLS-L: Estimating Upper-Confidence Bounds for

Linear TD in Control . 45
4.3 Evaluation of UCLS . 47

4.3.1 Online Performance . 48
4.3.2 Sensitivity to p and Benefits of Contextual Uncertainty 50

4.4 Summary . 51

viii

5 Representations for Online Control 52
5.1 Locality in Control . 53
5.2 Distributional Regularizes for Sparsity . 55
5.3 The Utility of Sparsity for Control . 58
5.4 Evaluation of Distributional Regularizers 64

5.4.1 Comparing KL to Set KL . 64
5.4.2 Comparing Sigmoid to ReLU . 65
5.4.3 Comparing to Other Sparse Representation Learning Strategies . . 66

5.5 Sparsity and Exploration Algorithms . 67
5.6 Summary . 68

6 Directed Exploration in Sample-Efficient Online Control 69
6.1 Limitations of UCLS . 70
6.2 An Overview of Online Control Algorithms 72
6.3 Online Optimistic Value Iteration . 76

6.3.1 Outline of OOVI . 78
6.3.2 Ideas Incorporated in OOVI . 81

6.4 Evaluation of OOVI . 83
6.4.1 Evaluating Online Performance 84
6.4.2 Evaluating the Benefit of Replay Updates in OOVI 88
6.4.3 Evaluating OOVI’s Epistemic Uncertainty Components 88
6.4.4 Evaluating OOVI’s Sensitivity to the Size of the Online Buffer . . . 89

6.5 Summary . 90

7 Perspectives and Future Work 91
7.1 Summary of Contributions . 91
7.2 Limitations and Future Work . 93
7.3 Summary . 96

Bibliography 97

A Incremental Control with Policy Evaluation Uncertainty Estimates Appendix 103
A.1 Comparing UCLS and DGPQ . 103
A.2 Issues with LSTD for control . 103
A.3 Details about Other Algorithms . 107

A.3.1 Bootstrapped Upper-Confidence Bounds (UCBootstrap) 107
A.3.2 Delayed Gaussian Process Q-Learning (DGPQ) 108
A.3.3 Least Squares Policy Iteration - Rmax (LSPI-Rmax) 109
A.3.4 Randomized Least Squares Value Iteration (RLSVI) 111

A.4 Experimental Details . 112

B Representations for Online Control Appendix 113
B.1 More Results . 113

B.1.1 Control Curves . 113
B.1.2 Activation Heatmaps . 113
B.1.3 Activation Overlap . 115

B.2 Experimental Details . 115

C Directed Exploration in Sample-Efficient Online Control Appendix 121
C.1 Confidence Intervals for Value Estimates 121

C.1.1 Optimism with Linear MDP . 122
C.1.2 Optimism with Low Inherent Bellman Error 124
C.1.3 Optimism in OOVI . 124

C.2 Confidence Intervals for Value Functions 125
C.3 Details about Other Algorithms . 126

C.3.1 Randomized Prior for Bootstrap DQN (BSP) 126
C.3.2 Uncertainty Bellman Equation (UBE) 127

C.4 Experimental Details . 128

ix

List of Tables

5.1 Activation overlap in Puddle World and Mountain Car. 63

6.1 A table summarizing approaches to sample-efficient online control in the
various online reinforcement learning settings. 72

6.2 A table summarizing the notation used in the OOVI pseudocode. 78

B.1 Activation overlap in Mountain Car and Puddle World. 115

x

List of Figures

2.1 An example depicting how Tile Coding representations are generated. . . . 13

4.1 One-state world, where one action has higher variance than the other. 32
4.2 A comparison of speed of learning of directed exploration algorithms in

Sparse Mountain Car, Puddle World and River Swim. 48
4.3 A comparison of speed of learning of UCLS in Sparse Mountain Car, Pud-

dle World and River Swim to algorithms similar to it and Optimistic Initial-
ization. 49

4.4 The effect of the confidence parameter p on the policy, in River Swim, using
context-dependent variance (UCLS) and global variance (GV-UCB). 50

4.5 Policy evaluation plots comparing variations of final policy obtained by
UCLS (p = 0.1) and GV-UCB (p = 10e−5) after 50,000 learning steps
in River Swim. 51

5.1 A neural network with dense connections producing a sparse representa-
tion: Sparse Representation Neural Network (SR-NN). 54

5.2 Learning curves for SARSA(0) comparing SR-NN, Tile Coding and vanilla
NN in the four domains. 59

5.3 Learning curves for SARSA(0) comparing SR-NN to the regularized repre-
sentations. 59

5.4 A study in Puddle World to investigate the effect of locality during on-
policy control. 61

5.5 A study in Mountain Car to investigate the effect of locality during on-
policy control. 62

5.6 Instance sparsity comparing SR-NN to the regularized variants and vanilla
NN. The percentage evaluation is designed to disregard units that are never
active across all samples in the batch (dead units). 63

5.7 Instance sparsity as evaluated on a batch of test data comparing ReLU+KL
and ReLU+SKL to NN . 64

5.8 Learning curves for SARSA(0) with different Distributional Regularizers. . 65
5.9 Heatmaps of activations with different Distributional Regularizers in Pud-

dle World. 65
5.10 Learning curves for SARSA(0) comparing SR-NN to previous proposed

sparse representations learning strategies. 66
5.11 Instance sparsity comparing SR-NN to previous proposed sparse represen-

tations learning strategies. 66
5.12 Learning curves for the exploration algorithms comparing SR-NN and NN

representations. 68

6.1 Learning performance in the three stochastic domains comparing OOVI to
other online control algorithms. 85

6.2 Learning performance comparing UBE to a version of OOVI with more
replay updates. 85

6.3 Learning performance in the three stochastic domains comparing OOVI
to variants of UCLS: quadratic complexity UCLS and linear complexity
UCLS-L. 86

xi

6.4 Learning curves comparing all the online control algorithms, variants of
UCLS, and OOVI in Deterministic Sparse Mountain Car. 87

6.5 Learning curves evaluating the benefit of increasing replay in all the do-
mains for OOVI. 88

6.6 Learning curves evaluating the importance of the two different epistemic
uncertainty components used by OOVI. 88

6.7 Learning curves evaluating OOVI’s sensitivity to the size of the online
buffer. 90

6.8 Learning curves evaluating OOVI’s online performance with respect to smaller
buffers in two domains. 90

A.1 Learning curves comparing best and worst runs for DGPQ and UCLS. . . . 103
A.2 Learning performance in Mountain Car for LSTD-in and LSTD-out with η

kept constant through learning and η fading with time. 104
A.3 One-state world, where the optimal action (right) has high-variance. 105
A.4 η-sensitivity in 1-State world with various LSTD updates. 106

B.1 Heatmaps of activations comparing SR-NN to different regularization strate-
gies and NN in Mountain Car. 113

B.2 Heatmaps of activations with different Distributional Regularizers in Moun-
tain Car. 114

B.3 Heatmaps of activations for nodes from other networks which aim to gen-
erate sparse representations (ReLU and Sigmoid activation). 114

B.4 Learning curves during the training of neural networks with different regu-
larization methods. 117

B.5 Learning curves during the training of neural networks with different dis-
tributional regularizers. 117

B.6 Learning curves during the training of neural networks with different spar-
sity inducing approaches. 118

B.7 Learning curves for Sarsa(0) comparing various sparsity inducing networks
with Sigmoid activation. 120

B.8 Learning curves for Sarsa(0) comparing various variants of distributional
regularizers with k-sparse. 120

xii

Chapter 1

Introduction

Learning to act by interacting with an environment is a promising strategy for designing

intelligent artificial agents. The agent decides what actions to take based on its knowledge

about the environment’s state to achieve its goals. These actions can, in turn, affect the

state of the environment. Reinforcement learning is a framework for learning to act by

interacting, where the agent’s goal is specified in terms of a scalar signal called the reward.

The agent interacts with the environment to maximize the sum of future rewards. To learn

efficiently, the agent must learn the optimal behaviour in as few interactions as possible,

where optimal behaviour maximizes the sum of future rewards.

In order to learn the optimal behaviour through interactions, it is necessary that the

agent incorporates exploratory behaviour, behaviour that may be suboptimal with respect

to the experience it has accumulated. Exploratory behaviour is valuable for providing the

agent with information that improves its knowledge of the environment, and consequently

in achieving its objective. For example, let’s say we have a driving robot that receives a

reward for completing a route from point A to point B, and is learning online about “how

to be a good driving bot”. A critical decision facing the robot during this learning phase, is

whether it should exploit its current knowledge of the road network, assuming it knows the

best path from point A to point B, or explore to improve its knowledge of the road network,

which may reveal a better path from point A to point B. This dilemma is critical as: (1)

the robot can under-explore, and therefore it may not learn the shortest path, failing to be a

good driving bot, or (2) the robot can over-explore, learning the shortest path, but leading

to an increase in the number of interactions necessary to complete the path, which, again,

does not make it the ideal good driving bot.

Therefore, an important goal of online reinforcement learning algorithms is efficient ex-

perience gathering to learn near optimal behaviour: optimizing the exploration-exploitation

1

trade-off to reduce the number of samples needed for learning (Sutton and Barto, 2018).

Towards this goal, several efficient strategies for exploration have been proposed when

the number of distinct decision points – states of the environment – are small (Strehl and

Littman, 2008; Szita and Szepesvari, 2010; Strehl et al., 2006). In the more general case

where the number of states are large, and approximations are necessary to scale learning,

there has been work under specific assumptions about the structure of the pre-defined ap-

proximator (Li et al., 2009; Grande et al., 2014). Additionally, with recent advances in

Deep Reinforcement Learning there have been a number of approaches proposed for induc-

ing effective exploratory behaviour when the approximator is learned online as well (Os-

band et al., 2016a; ODonoghue et al., 2017; Pathak et al., 2017; Burda et al., 2018). While

these advances have resulted in significant empirical successes, a deeper understanding of

how the proposed exploration methods interact with the inherent representation learning

encoded by these non-linear architectures, is only beginning to be explored. Further, some

approaches to exploration focus on evaluating the proposed algorithms in a separate phase,

in which learning and exploration is turned off, which evaluates the question how good

is this fixed driving bot. As such, these methods ignore the impact of exploration on the

performance as the agent learns, in contrast to methods designed for learning near-optimal

online behaviour, which evaluates the question how good is this bot at learning to drive.

In order to take another step towards sample-efficient online reinforcement learning

algorithms, the goal of this thesis is to provide algorithms for a particular class of environ-

ments called discounted MDPs. In order to do so, the thesis first aims to identify subgoals

that need to be achieved to facilitate sample-efficient online reinforcement learning. With

the subgoals identified, the thesis proposes new algorithms that aim to achieve these sub-

goals, and consequently improve sample-efficiency of online reinforcement learning. As a

first step, the work is focused on the simplest approximation setting for discounted MDPs

— linear function approximation.

1.1 Objective

This thesis aims to provide an answer to the following question:

How should an agent incorporate directed exploration and representation learn-
ing to improve the sample efficiency of online reinforcement learning under
linear function approximation?

Here, directed exploration means to to take actions which are either optimal, or reflect

the agent’s choice to explore the consequence of the particular action in the state it is in.

2

This is different from strategies that do not direct exploration where actions are typically

chosen randomly, for example dithering approaches like ε-greedy. Directed exploration is

important to improve sample-efficiency of online reinforcement learning, as such an algo-

rithm can stop exploring when exploration is not necessary, defaulting to optimal behaviour

based on its experience. Additionally, in some environments a long sequence of particular

actions is necessary to explore effectively. In these “needle in a haystack” environments,

directed exploration strategies can drive behaviour to do so more reliably, resulting in in-

formation that is valuable for improving its behaviour. The probability of a dithering ap-

proach effectively exploring in such domains decays exponentially with the length of the

exploratory path.

While incorporating a directed exploration strategy is one avenue to improve sample-

efficiency of online reinforcement learning, there are other avenues that can improve it as

well. One such promising avenue, in the function approximation case, is that of the gener-

alization structure dictated by the representation. Many online reinforcement learning algo-

rithms utilize bootstrapping — an idea that utilizes the algorithm’s own estimates to design

learning targets. The generalization structure of the representation space strongly influences

the reliability of the learning targets, affecting the sample-efficiency of online reinforcement

learning algorithms. Therefore, it is necessary to design representation learning algorithms

that provide effective generalization for online reinforcement learning. A second avenue

to improve sample-efficiency of online reinforcement learning is to design algorithms that

are compatible with reusing previous experiences. This ability to reuse experiences, or use

experience generated from a learned model, is also called planning. Planning can improve

the sample-efficiency of online reinforcement learning as an agent can now use samples

that are not based on online experience to improve its estimates and learning.

The main objective of this thesis is to design algorithms that achieve these goals in a

particular instantiation of an online reinforcement learning algorithm under function ap-

proximation — the linear function approximation setting. The next section describes our

approach to achieving this objective.

1.2 Approach

In order to address the question posed above, this thesis contains three key components: (1)

identifying the goals for sample-efficient online learning and effective exploration, (2) algo-

rithms that incorporate solution strategies to address these goals, and (3) a comprehensive

3

empirical evaluation of the proposed solution strategy.

To identify key goals that an effective exploration algorithm should satisfy, we review

the existing literature in this area of Reinforcement Learning. This helps motivate a class

of algorithms that we think are particularly scalable, called model-free confidence-based

algorithms. The first bottleneck to algorithmic advancement in this area is the propagation

of uncertainty over the temporal aspect of the learning problem — that is, over the sequence

of states experienced — as immediate decisions in states can affect consequences in future

states. The second difficulty for this class of algorithms is directing exploration to visit

unseen parts of the environment.

In order to propagate uncertainty over the temporal aspect, many algorithms (1) make

assumptions about the structure of the representation space, or (2) make assumptions about

the structure of the stochasticity in a problem, or (3) can be computationally expensive re-

lying on an ensemble of estimators. Here, with limited assumptions, and a single estimator,

we derive confidence sets that offer high probability bounds on the true value estimates for

any policy of interest. Additionally, many algorithms do not explicitly account for the sec-

ond difficulty — of directing exploratory behaviour to visit unseen parts of the environment.

We introduce algorithms that explicitly account for this goal, improving the effectiveness

of online exploration.

To improve sample-efficiency of online reinforcement learning algorithms, we also ad-

dress two other key avenues. One, is the generalization structure of the representations used

by online reinforcement learning algorithms. And the second, is ensuring compatibility of

the algorithm’s exploration strategy with sample-efficiency improving planning strategies

like replay. While many approaches exist to learn representations, these representations

can be inefficient for incremental online reinforcement learning. We identify a property

which can aid incremental online reinforcement learning and design a representation learn-

ing strategy to achieve it. To address the second avenue, we propose a planning-compatible

algorithm to improve sample-efficiency of online reinforcement learning.

1.3 Contributions

The key contributions of this thesis are the following.

An approach to value uncertainty estimation under linear function approximation.

Estimating value uncertainty without making any assumptions about the structure of the

representation, or the structure of the noise is a challenging problems. The thesis provides

4

an approach for doing so under linear function approximation, assuming value estimation is

done using the Least Squares Temporal Difference Learning algorithm. These uncertainty

estimates result in high probability upper-confidence bounds, that can be used to guide

future data collection to improve value estimation. Incorporating assumptions about the

structure of stochasticity, it also provides a looser upper-confidence bound. This work was

published in a refereed conference proceeding (Kumaraswamy et al., 2018).

An incremental on-policy control algorithm implementing directed exploration. The

thesis proposes an incremental on-policy control algorithm that implements directed explo-

ration utilizing the previously discussed uncertainty estimates. The estimated uncertainties

are for a fixed policy, but here, they are tracked with respect to a changing policy to design

a control algorithm. The algorithm is motivated using a simple approach to directed explo-

ration, based on upper-confidence bounds, which can provide good online behaviour. This

contribution improves upon many algorithms designed for the same setting, as validated

with rigorous empirical experiments. This work was published in a refereed conference

proceeding (Kumaraswamy et al., 2018).

An approach to offline representation learning to improve sample-efficiency of online

reinforcement learning. The thesis identifies a key property called locality that can aid

the sample-efficiency of online reinforcement learning algorithms. As this property is only

available via hand-designed representations, the thesis proposes an algorithm for learning

such representations, removing the need for hand-designing. In particular, the algorithm

utilizes the widely used non-linear approximators, neural networks, making it scalable. The

representations generated by this approach are compared to other strategies and their utility

is validated empirically. This work was published in a refereed conference proceeding (Liu

et al., 2019).

A planning-compatible online reinforcement learning algorithm that implements di-

rected exploration. Planning strategies, like replay, are important to improve sample-

efficiency of online reinforcement learning algorithms. Therefore, in order to implement

a principled directed exploration strategy in a planning compatible algorithm, the thesis

proposes a framework for doing so. Built on this framework, it proposes an algorithm to

meet the criteria mentioned. The experimental results reflect the sample-efficiency gains,

and effective directed exploration strategy employed by the proposed algorithm, when com-

pared to other algorithms with similar goals. This work is currently under preparation for

5

submission.

1.4 Overview

The thesis is structured as follows. We first provide a brief review of the background

concepts (Chapter 2), following which we review exploration algorithms in the literature

(Chapter 3). Then algorithms for on-policy control (Chapter 4), representation learning

(Chapter 5), and planning-compatible online control (Chapter 6), are presented. We con-

clude with a chapter reviewing directions for future work (Chapter 7).

Chapter 2: Background

This chapter provides background on Reinforcement Learning and subtopics relevant to

this thesis. In particular it reviews value functions under function approximation, and al-

gorithms for learning them. It also presents the general idea of how online reinforcement

learning algorithms learn optimal behaviour, and the types of objectives addressed for learn-

ing optimal behaviour. It concludes with a brief review of some theoretical tools used to

evaluate such online reinforcement learning algorithms.

Chapter 3: Exploration

This chapter describes the approaches used to drive exploratory behaviour in reinforcement

learning algorithms. It concludes with an overview of desirable attributes of an algorithm

that directs exploration. These attributes motivate the contents of the following chapters.

Chapter 4: Incremental Control with Policy Evaluation Uncertainty Estimates

This chapter presents an approach to estimate upper-confidence bounds for the value es-

timates of a robust policy evaluation algorithm. The complexity of the derived approach

to estimate these upper-bounds is quadratic, and therefore, a linear complexity variant is

also described. The upper-bounds are used to design an incremental on-policy control algo-

rithm. Designing this algorithm involves some approximations in the incremental setting,

and therefore they are discussed in-depth. The chapter concludes with a rigorous empirical

evaluation comparing the proposed algorithm to other approaches with similar goals.

Chapter 5: Representations for Online Control

This chapter identifies an important property of linear representations essential to promote

sample-efficient online learning. It proposes a strategy to learning representations that en-

code this property. These representations are then investigated empirically in the online

6

learning regime to evaluate their sample-efficiency. The proposed representation learning

strategy is compared to many other representation learning strategies, some of which can

promote a facet of the property described, but still fail to be effective. The chapter concludes

with experiments that investigate how these representations impact exploration algorithms.

Chapter 6: Directed Exploration in Sample-Efficient Online Control

This chapter addresses the limitations of the algorithm proposed in Chapter 4. It first pro-

vides an overview of sample-efficient online control algorithms. The assumptions made and

the ideas encoded in these algorithms are reviewed in order to facilitate developing such an

algorithm for the discounted MDP setting under linear function approximation. Following

this, the proposed algorithm is presented and empirically evaluated against other algorithms

that address similar goals.

Chapter 7: Perspectives and Future Work

This chapter concludes the thesis by reviewing its main contributions and discussing their

limitations, along with direction for future research.

1.5 Summary

In this chapter we introduced the problem area addressed by this thesis and its specific goals.

We then described the approach followed in this thesis, and listed the main contributions.

We concluded by listing the main contributions of this thesis, followed by an an overview

of the following chapters in this thesis.

7

Chapter 2

Background

This chapter provides an introduction to Reinforcement Learning, and describes the nec-

essary components that are helpful to understand this document. We will review: (1) the

problem setting and its formulation, (2) value functions in Reinforcement Learning, and

an approach to approximation, (3) a description of some algorithms that we utilize in this

thesis, and (4) some specific details and definitions that help us characterize work related to

this thesis.

2.1 Reinforcement Learning

Reinforcement learning is a learning paradigm for learning through interaction, via trial

and error (Sutton and Barto, 2018). The paradigm consists of two entities: an agent, and an

environment. Typically, the goal of the agent is to maximize a function of an external scalar

signal, called the reward.

The agent interacts with the environment in discrete timesteps t = 0, 1, 2, At any

timestep t, the environment can be described by its state, st ∈ S , where S is a set of possible

states. The agent, being privy to the current state of the environment (st), takes actions (at,

makes decisions), causing a possible change in the state of the environment (st+1). The

agent is then provided this new state, st+1, along with a scalar reward signal, rt+1, that

serves as feedback for its action at when the environment was in state st.

The interaction cycle produces a sequence of random states, actions and rewards:

S0, A0, S1, R1, A2, S2, R2,

The dynamics of how the states and the rewards evolve over time are dictated by the tran-

sition dynamics function, denoted by P , and the reward dynamics function, denoted by R.

An instantiation of S , A, P and R specifies an environment.

8

To maximize the sequence of scalar reward signal – also called the return — learning

algorithms of the agent are designed to learn the optimal policy π∗. In general, a policy, π,

is a mapping from states to a distribution over actions, π : s → ∆(A). The optimal policy

π∗ is the policy that maximizes the return. This learning paradigm has seen many successes

from agents learning to play games like Backgammon (Tesauro, 1994), Go (Silver et al.,

2018), to arcade games in the ALE suite (Mnih et al., 2015).

2.1.1 Discounted Reinforcement Learning

The particular class of Reinforcement Learning problems addressed in this thesis are called

Discounted Reinforcement Learning problems. Discounted Reinforcement Learning prob-

lems incorporate another variable called the discount factor, denoted by γ. This variable is

also provided as feedback to the agent upon executing an action, changing the sequence of

random variables generated due to the agent-environment interaction cycle to

S0, A0, S1, R1, γ1, A2, S2, R2, γ2,

Here, γt+1 denotes the random variable the agent receives as feedback along with the scalar

reward rt+1, and it is in [0, 1]. The sequence of γ’s controls the horizon of the return as the

return, denoted by Gt ∈ R, is defined as the following weighted cumulative sum

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+2 + . . .

=

∞∑
i=0

(i∏
j=1

γt+j
)
Rt+1+i. (2.1)

2.1.2 Markov Decision Processes

The Reinforcement Learning problem is formalized as a Markov Decision Process which

is a quadruple denoted by M =< S,A, P,R >, where S denotes the possible states,

and A corresponds to the actions an agent can take. P is the transition dynamics function

which encodes the conditional distribution of transitioning to state s′, from state s, upon

taking action a — P (s′|s, a). Similarly, R is the reward function which encodes the reward

dynamics for transitioning from state s to state s′ upon taking action a – R(s, a, s′). This

reward can be deterministic or stochastic.

Discounted Markov Decision Processes: Discounted Markov Decision Processes are

a modification of Markov Decision Processes that includes a function γ in its definition,

and is used to model Discounted Reinforcement Learning problems. The function γ is

again defined with respect to the triplet < si, ai, si+1 >, resulting in the random variable

9

γi+1 that is used to define the discounted return in Equation (2.1). While γi+1 can also be a

stochastic variable, usually only deterministic variants of it are used.

2.1.3 Types of Discounted Environments

Typically, with the use of γ, the discount function, two different types of environments are

used in Discounted Reinforcement Learning experiments: (1) episodic environments, and

(2) continuing environments. Defining the γ function based on transition tuples helps unify

both the problems and define them under the same interaction modelling framework (White,

2017).

The first type of environments, episodic environments, consist of interaction cycles that

are defined by interaction trajectories, that may be of different lengths, called episodes.

Such an environment consists of two sets of special states. The first set is called start states

and is denoted by S0, with a distribution defined over it. All episodes start from a state

sampled from this set. The second set of states is called the terminal state set denoted by

ST . All episodes end when an agent transitions into a state in the set ST . The subsequent

next state returned to the agent, upong transitiong to a state in ST in the environment, is a

new start state sampled form the set S0. This is because an agent cannot take any actions in

a state belonging to ST , as the interaction cycle has terminated.

As episodes terminate, it is necessary to ensure returns Gt, for any (s, a) encountered

during an episode, considers only the rewards obtained within the corresponding episode.

This can be done by defining γ(s, a, s′) = 0, for the transitions where taking action a in

state s leads to a terminal state, resulting in s′ being the start state of a new episode. The

value of 0 for γ corresponding to such a transition automatically terminates the sequence

of rewards after the episode while computing Gt. Typically, for episodic problems, γ for

other transitions is set to be a constant value in [0, 1).

The second type of environments, called continuing environments, are just a continu-

ous chain of interactions. These environments can have returns that are unbounded, and

therefore it is necessary to use γ ∈ [0, 1). Typically, a constant γ, γc ∈ [0, 1), is used.

2.2 Value Functions

A fundamental component of Reinforcement Learning is evaluating the value of taking an

action a in a state s, denoted by qπ(s, a), under policy π. The value qπ(s, a) essentially

denotes the expected return the agent can expect upon taking the action a in state s, and

10

consequently acting according to the policy π, defined as

qπ(s, a)
def
= Eπ[Gt|St = s,At = a].

The expectation is taken under the dynamics dictated by the MDP, and the policy π. The

values for all (s, a) pairs can then be represented as qπ ∈ R|S||A|, where each dimension

corresponds to a (s, a) pair.

2.2.1 Function Approximation

When the number of states and actions is a small finite set, qπ(s, a), ∀(s, a) pairs, can be

stored in a table. But in many real problems, this is not the case. Therefore, when the

number of states, and/or actions are large, it is necessary to approximate these values. Only,

then can reinforcement learning be scaled to large problems. Therefore, in large problems

in order to approximate the values, a function approximator is used.

A function approximator is a state-action value function q, that assigns a value for

all (s, a) pairs, qθ : S × A → R, where θ corresponds to the parameters of the value

function. In the simplest case learning such an approximated function can be thought of

as the Regression problem in Machine Learning where the input x corresponds to (s, a)

pairs, and the output y corresponds to a sample of the return G for the pair (s, a). Now,

with many samples of y corresponding to an (s, a) pair, and many different (s, a) pairs and

their corresponding y’s, a function qθ can be learned to make action-value predictions for

possibly unseen (s, a) pairs, denoted by q̂θ(s, a). With sufficient training data, the goal

is for q̂θ(s, a) ≈ qπ(s, a), for policy π, making qπθ ∈ R|S||A| the approximate values for

policy π.

2.2.2 Linear Function Approximation

In the special case where the value-function is being approximated with linear functions

with respect to an orthogonal set of basis {φ1, . . . , φd}, we are interested in learning w ∈

W ⊂ Rd, where d represents the dimensionality of the linear space, and d � |S||A|.

The value of a state-action pair is equal to q̂πw(s, a) = φ(s, a)>w, where φ(s, a) is the

representation for state-action (s, a) in Rd. The learned value estimates correspond to qπw =

Φwπ, where Φ ∈ R|S||A|×d is a matrix that consists of the representations φ(s, a)> for the

various states and actions combinations along its rows, and wπ is the optimal w ∈ W .

There are many approximation schemes for constructing the φ’s corresponding to the

(s, a) pairs, such as Fourier basis (Konidaris et al., 2011), Krylov basis (Parr et al., 2008)Ra-

dial Basis Functions (Sutton and Barto, 2018), etc. WhenA is finite, it is common to create

11

feature representations based only on the state s, denoted by φ̃(s). If the dimension of φ̃(s)

is ds, the final feature vector φ(s, a) is of dimension d, where d = ds × |A|. That is, the

final φ(s, a) consist of φ̃(s) in the sub-vector dedicated to action a, while the remaining

part of the φ(s, a) is set to 0.

In general, while a linear approximation scheme for approximating a complicated value

function may seem simplistic, the prediction power of such an approximation scheme can

be improved significantly by providing a good basis, {φ1, . . . , φd}, for approximating the

value function linearly. This basis could be a non-linear encoding of the (s, a) pairs, pro-

viding a very effective abstraction scheme to scale learning via improved generalization. In

this thesis we use two such widely used approximation schemes: Tile Coding and Neural

Networks. As feature construction using Neural Networks are covered later, we will briefly

review feature construction with Tile Coding next.

Tile Coding

Tile Coding is a feature construction scheme for generating a binary φ given a (s, a) pair

(Sutton and Barto, 2018). The feature construction scheme consists of a gridding unit called

a tiling. Tilings essentially partition the complete input space into non-overlapping regions

called tiles. Many tilings can be used with different offsets, providing variants of gridding

configurations.

The feature representation reflects the tiles of the tilings. As each tiling partitions the

space into non-overlapping regions or tiles, each input can fall only within a single tile,

in a tiling. Consequently, the indicator for the corresponding tile in each tiling is set to 1

in the feature representation, reflecting the partition the input belongs to for the relevant

tiling. Therefore, given n tilings, with c tiles each, the resulting feature vector is d =

c ∗ n dimensional, and consists of n active tiles – tiles whose value equals 1. The features

corresponding to other tiles are set to 0. Figure 2.1 shows a simple example to demonstrate

Tile Coding’s feature construction.

Tile Coding can further be designed to incorporate non-linear interactions in the input

variables by creating tile coding schemes dedicated to a subset of them, or tile coding the

resultant of a function that utilizes them, etc. It can also be simplified to tile code each

dimension of the input independently. In such scenarios the resulting feature representation

of the multiple tile coders employed can be stitched together, resulting in the final feature

representation.

As the size of the feature representation depends on the number of tiles, instead of the

12

0
1
0
1
.
.
.

s tiling 2

tiling 1

state spacestate feature 1

st
at

e
fe

at
ur

e
2

s.

Figure 2.1: An example depicting how Tile Coding representations are generated. The input
state s ∈ R2. The Tile Coding configuration uses 2 tilings of 25 tiles each, with 5 divisions
in each dimension. The state s falls in a tile for each of the tilings used. The corresponding
position in the feature vector is set to 1, with the rest of the positions being 0.

size of the input space, tile coding is an effective framework for reducing the dimensionality

of the problem to scale learning. Additionally, as it is a sparse representation with only

n � d features active, it is also compatible with smarter linear estimation strategies like

utilizing a summation over the relevant dimensions while computing dot products:

φ(s, a)>w =

d∑
i=0

φ(s, a)[d] ∗w[d] =

n∑
i=0

w[t[i]],

where, t represents a vector of length n, containing the feature number corresponding to

the active tile for each of the n tilings, the active tiles.

2.3 Policy Evaluation

Given a policy π, learning the corresponding value function qπ, or qπθ , is the problem of

policy evaluation. It is a fundamental task in Reinforcement Learning as it aids in learning

better behaviour via the policy iteration framework (Sutton and Barto, 2018).

As presented earlier, the value of a state corresponds to the expected cumulative dis-

counted rewards into the future – the return Gt – after starting at state s with action a,

and following π thereafter, with the dynamics dictated by the MDP’s transition and reward

dynamics denoted by P and R respectively. These values

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ[Rt+1 + γt+1Gt+1|St = s,At = a],

when unrolled, correspond to

qπ(s, a) =
∑
s′∈S

P (s, a, s′)R(s, a, s′) +
∑
s′∈S

P (s, a, s′)γ(s, a, s′)
∑
a′∈A

π(s′, a′)qπ(s′, a′).

13

The exact values qπ(s, a) satisfy the above equation for all state-action pairs.

In matrix form, the system can be written as

qπ = r + Pπ
γq

π,

where qπ in R|S||A| denotes the state-action values for all S × A pairs, r ∈ R|S||A| is the

expected immediate reward

r((s, a))
def
=
∑
s′∈S

P (s′|s, a)R(s, a, s′),

and Pπ
γ ∈ R|S||A|×|S||A| is a sub-stochastic matrix that represents the transition process

under π

Pπ
γ ((s, a), (s′a′))

def
= P (s′|, s, a)γ(s, a, s′)π(a′|s′).

The resulting linear system is

(I−Pπ
γ)qπ = r.

This linear system can be solved analytically or iteratively to obtain the exact qπ values,

and the associated fixed point for this linear system is denoted by the Bellman evaluation

operator Tπ. This operator is defined as

Tπq
π def

= r + Pπ
γq

π.

Tπ is a monotonic and quasi-linear operator which is a contraction mapping in the L∞

norm, which was later extended to p-norms by Munos (2003), with contraction rate γc in

the constant-discounting regime (Bertsekas and Tsitsiklis, 1996). Therefore, repeated ap-

plication of Tπ to any random vector q converges to the optimal state-action value function

qπ associated with π, for which

Tπq
π = qπ.

With the aid of this Bellman evaluation operator, Policy Evaluation algorithms aim to find

the value function corresponding to a given policy π.

Policy Evaluation can be carried out online, while the agent is interacting with the

environment, or offline, using interaction sequences generated by some policy in the envi-

ronment. In either case the evaluation algorithms have access to samples of the form

< si, ai, ri+1, γi+1, si+1, ai+1 > .

14

Here, if offline, the actions ai and ai+1 can be based on a different policy. In the online

case, there are two options. In the simplest case where the policy being followed online

is the policy we are interested in evaluating, the procedure is referred to as on-policy pol-

icy evaluation. Alternatively, if they differ, the regime is referred to as off-policy policy

evaluation.

2.3.1 Temporal Difference Learning

In the simplest case, on-policy policy evaluation is possible because the value of a state-

action pair can be written as

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[

∞∑
i=0

(i∏
j=1

γt+j
)
Rt+1+i|St = s,At = a]

= Eπ[Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + . . . |St = s,At = a]

= Eπ[Rt+1 + γt+1(Rt+2 + γt+2Rt+3 + . . .)|St = s,At = a]

= Eπ[Rt+1 + γt+1Gt+1|St = s,At = a]. (2.2)

Because Eπ[Gt+1|St = s,At = a] = qπ(St+1, At+1), the value of a state can written

recursively as

qπ(s, a) = Eπ[Rt+1 + γt+1q
π(St+1, At+1)|St = s,At = a].

Providing an estimate of Gt, using the estimate of qπ(St+1, At+1) is called bootstrapping.

Built on this idea of bootstrapping, Temporal Difference algorithms are a family of

policy evaluation algorithms that are applicable for incremental policy evaluation. The

basic update made by this family of algorithms utilizes the notion of Temporal Difference

error (TD error) which corresponds to

δt
def
= δ(St, At, Rt+1, γt+1, St+1, At+1)

= Rt+1 + γt+1q
π(St+1, At+1)− qπ(St, At), (2.3)

to update the possibly incorrect estimate at qπ(St, At) and improve the estimation of the

value function. If the value function is approximated with a linear function approximator,

the expected update to w corresponds to E[δtφt], where φt is the shorthand for φ(St, At).

The resulting algorithm is also called SARSA(0) (Singh et al., 2000).

15

Traces

To improve the efficiency of Temporal Difference learning, an algorithm can incorporate

traces (Sutton and Barto, 2018). Simplistically, traces are credit assignment tools that im-

prove the sample-efficiency of online learning by using a different return as the learning

target. Instead of the classical return Gt, traces utilize an alternative return called the λ-

return, denoted by Gλt .

Gλt
def
= (1− λ)

∞∑
n=1

λn−1Gt:t+n,

where,

Gt:t+n
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 +

(
Πn
j=1γt+n

)
Qπ(St+n, At+n),

is called the n-step return.

The corresponding value for a state-action pair is

qπ(s, a) = Eπ[Gλt |St = s,At = a],

and the corresponding TD-error utilizing Equation (2.3) is defined to

δλt
def
= δt + γt+1λδ

λ
t+1. (2.4)

But, here the λ-return target cannot be easily decomposed as in Equation (2.2), mak-

ing δλt impossible to be estimated in the online case. Therefore, TD(λ) algorithms utilize

another component called eligibility traces, et, to enable incremental learning (Sutton and

Barto, 2018). One update for the traces in the online case correspond to

et = γtλet−1 + φt. (2.5)

This update is called accumulating traces, and the corresponding expected update to w is

equal to E[δtet]. It can be shown that E[δλt φt] = E[δtet] (Sutton and Barto, 2018), and the

resulting algorithm is called SARSA(λ) (Singh et al., 2000).

2.3.2 Least Squares Temporal Difference Learning

In the special case where the value-function is approximated with linear functions with re-

spect to an orthogonal set of basis {φ1, . . . , φd}, we can estimate closed-form solutions for

16

the parameters of the value function w ∈ W ⊂ Rd, instead of using the linear complex-

ity SARSA algorithms described previously. The goal of both algorithms is to learn the

optimal parameters wπ for evaluating the policy π.

In the linear approximation framework it is necessary that this optimal parameter satis-

fies the fixed-point equation ΠφTπΦw = Φw, where Πφ denotes a projection operator for

the linear basis φ. This is because, the application of the Bellman operator to any q = Φw

in this space results in a new vector, Tπq, which may not be in the span defined by the

basis {φ1, . . . , φd}. Therefore, a projection operation, Π, is necessary to bring the resultant

vector Tπq back to the representable space of functions (as spanned by the chosen basis).

For linear systems, a simple weighted projection of the form Πφ = Φ(Φ>DΦ)−1Φ>D

can be used, where D ∈ R|S||A|×|S||A| is a diagonal matrix that weights the state-action

pairs and controls the approximation error. Therefore, for any q,

ΠφTπq = argmin
w∈W

||w − Tπq||22 = Φ(Φ>DΦ)−1Φ>D(r + Pπ
γq).

As ΠφTπΦwπ = Φwπ for the optimal wπ, the equation can be expanded with respect

to Tπ and Πφ, and manipulated to yield a linear system of the form

Φ>D(I−Pπ
γ)Φwπ = Φ>Dr.

In standardized notation, the components of the linear system correspond to

A = Φ>D(I−Pπ
γ)Φ, b = Φ>Dr.

Therefore, the optimal w ∈ W for any π, wπ, can be estimated as

wπ = A−1b,

and is termed as the least-squares fixed-point approximation to the true value function

(Lagoudakis and Parr, 2003).

This formulation can be used incrementally for learning approximate value functions

from samples and the algorithm is called Least Squares Temporal Difference Learning

(LSTD) (Bradtke and Barto, 1996). Further, the algorithms can be extended to use λ-

returns as well, leading to the LSTD(λ) algorithm (Boyan, 2002). Here, the linear system

corresponds to

Aλ = Φ>D(I−Pλ)Φ, bλ = Φ>Drλ,

17

where,

Pλ = I− (I− λPπ
γ)−1(I−Pπ

γ), rλ = (I− λPπ
γ)−1r.

If we have an interaction trajectory of length T of the form

s0, a0, r1, γ1, s1, a1, r2, . . . rT

with actions at being chosen by a policy µ in the off-policy case, or the policy π in the

on-policy case, the components of the linear system can be estimated as

AT =
1

T − 1

>∑
t=0

[et(φt − γt+1φt+1)>], bT =
1

T − 1

>∑
t=0

[etrt+1],

with,

et ← γtλ
π(st, at)

µ(st, at)
et−1 + φt,

e−1 = 0, and γ0
def
= 0.

e is the eligibility trace, and the update accounts for the data being off-policy: if the actions

were sampled by a policy µ, different from π, the policy being evaluated. In such a case,

the best w given the data can be estimated as

ŵπ = A−1
T bT .

As the data structures AT and bT may not reflect the accurate expected values for a finite

sample-size, in general ŵπ 6= wπ, where wπ is the least-squares fixed-point for the λ-return

of π, with weighting given by Dµ. In the limit,

ŵπ = wπ ⇔ EDµ [δtet] = 0.

2.4 Policy Iteration

Policy Iteration is a central idea in Reinforcement Learning, and is a procedure to find the

optimal policy π∗ using the principle of Dynamic Programming (Bellman, 1957). Classi-

cally, state value functions, vπ, are evaluated, where,

vπ(s) =
∑
s∈A

π(a|s)qπ(s, a),

18

but here for ease of exposition, we will use state-action value functions, qπ instead. The

algorithm assumes access to a perfect model of the MDP, which is usually assumed to have

a finite state and action space. It consists of two phases – (1) a Policy Evaluation phase -

this is the process of evaluating the qπ for a fixed deterministic policy π, and (2) a Policy

Improvement phase - this is the process of obtaining a policy π′, given the value function

of π, such that vπ
′
(s) ≥ vπ(s), ∀s ∈ S .

The process starts with a randomly initialized π0 and qπ0 . The evaluation phase con-

sists of repeated application of the previously described Bellman evaluation operator for

evaluating qπt , using the available model to get the expected targets. The improvement

phase consists of creating an improved policy πt+1 that is greedy w.r.t. qπt . The process is

repeated until convergence, that is πt = πt+1. When function approximation is necessary

to make learning tractable the algorithm is called Approximate Policy Iteration (Bertsekas

and Tsitsiklis, 1996).

Algorithms that utilize this idea and only drive online reinforcement learning through

the use of value functions are also called value-based reinforcement learning algorithms.

Alternatively, some algorithms learn an explicit parametrized policy, like the parameterized

value function. We do not utilize those class of algorithms in this thesis.

Generalized Policy Iteration

While Policy Iteration consists of two processes in two distinct phases, many online incre-

mental learning algorithms are based on an approximation of the two phases such that the

processes may not have converged, but are still influencing each other. This generalized

process is called Generalized Policy Iteration (GPI) (Sutton and Barto, 2018).

An important attribute of GPI is that it does not rely on either process converging.

Although convergence of GPI to the optimal policy has been proved only for asynchronous

dynamic programming methods (that rely on a perfect model, but are not strict about the

convergence of the processes) (Bertsekas, 1983), many empirically successful algorithms

can be cast under this framework, such as Sarsa (Rummery and Niranjan, 1994), Q-learning

(Watkins and Dayan, 1992), and LSPI (Lagoudakis and Parr, 2003).

2.5 Other MDP Related Details

In this section we provide an overview regarding other details about MDPs that is relevant

when we characterize other work related to this thesis. Previously, we described Discounted

MDPs, and and Discounted RL problem. In this section, we describe another dimension for

19

classifying MDPs – based on its transition dynamics. After, we summarize all the learning

problems modelled as MDPs in the Reinforcement Learning literature, and the tools used

to evaluate the performance of these learning algorithms.

2.5.1 Types of MDPs

An MDP can encompass processes with extremely different transition dynamics. To aid in

analysis, there are four fundamental types of MDPs based on the transition dynamics they

encode (Kallenberg, 2011; Bartlett and Tewari, 2012). This classification arises based on

the long-time behaviour of stationary deterministic policies, π : S → A in MDPs, resulting

in a visitation structure in the MDPs’ set of S .

• Ergodic Every π induces a single recurrent class, that is, it is possible to reach any

state from any other state in S .

• Unichain Every π induces a single recurrent class, plus a possibly empty set of tran-

sient classes.

• Communicating For every sa, sa ∈ S , there exists a π that can transition from s1 to

s2.

• Weakly Communicating The state space S decomposes into a set of transient states,

and another set that constitutes a communicating MDP.

This categorization enables characterizing the difficulty of reaching states in the MDP.

While every stationary deterministic policy would reach the complete state space of an

ergodic MDP, this is not so in a communicating MDP. Therefore, ideas of exploration can

be incorporated in ergodic MDPs to improve sample efficiency gains, but the necessity of

exploration is more evident, for instance, in a communicating MDP. In such a scenario,

exploration plays the critical role of promoting visitation to unknown/unvisited parts of the

MDP. Alternatively, even in ergodic MDPs there may exist parts of the MDP that are more

stochastic than the other – requiring more samples to ensure effective learning. In such a

scenario, exploration plays the crucial role of increasing visitation to these parts of the MDP

to promote effective learning.

2.5.2 Types of Learning Problems in MDPs

Previously we provide a categorization of MDPs based on the transition dynamics. The

reward dynamics on the other hand – which provide the learning signal for an agent – are

20

not considered for it. But the reward dynamics of an MDP are critical as they set up the

learning problem for an agent that lives in the given MDP. Therefore, given an MDP many

different learning problems can be set up with respect to the reward function R, and the

transition dynamics P of the MDP. From an optimization perspective, there is a gradation

to the difficulty of learning problems. Below, we describe the main learning problems

prevalent in the literature, in increasing order of difficulty.

• Finite-Horizon RL Given a starting state distribution over the MDP’s state-space S

from which s0 is sampled, the agent’s goal is to learn a policy π∗ that maximizes the

cumulative H-step reward Eπ[
∑H

h=0 rh+1], where rh+1 the reward received by the

agent for the decision made at step h. H denotes the horizon of the problem after

which the process terminates, following which the agent is reset.

• Discounted RL Given a starting state distribution over the MDP’s state-space S

from which s0 is sampled, the agent’s goal is to learn a policy π∗ that maximizes the

discounted return Eπ[
∑∞

t=0 γ
t
t+1rt+1], where γt+1, and rt+1 are the discount factor

and the reward received by the agent for the decision made at timestep t. The learning

problem here is characterized by a function γ, called the discount function which

provides the values γi+1 ∈ [0, 1], and an absorbing state (or a set of absorbing states)

in S called the terminal state(s), for transitioning into which γi+1 = 0, and the agent

is reset. As some of the literature uses the term episode to also refer to the trajectories

generated in finite-horizon learning problems, we will use the word discounted to

refer to these class of problems.

• Average-Reward RL The learning problem here is similar to the finite-horizon set-

ting where H = ∞, and there are no resets. The agent starts at a random state in

the MDP and lives in it forever, with its experience dictated by the dynamics of the

MDP and its decisions. In such a scenario the cumulative reward can be unbounded,

and therefore, the goal of the agent is to learn π∗ that maximizes a finite alternative

– the average reward, defined as Eπ
[

limT→∞
1
T

∑T
t=0 rt+1

]
. Additionally, every

average-reward problem can be cast as a discounted RL problem where γ is a con-

stant function equal to γ′ ∈ (0, 1) such that γ′ ≥ γ∗, called the critical discount rate

of this learning problem, which depends on the particular MDP.

The categorization of learning problems also provides a lens to assess the difficulty of

the problem from an online learning perspective. The finite decision making points which

21

constitute the optimization of a finite-horizon learning problem lends itself to tractable al-

gorithmic design via backward induction (Kallenberg, 2011). Additionally, discounted and

average reward learning problems can be cast as instances of finite-horizon learning prob-

lems by considering a horizon H that is large enough. This is because the difference be-

tween the performance of the optimal policy under such a finite-horizon formulation, and

the optimal policy of the original problem – the sub-optimality gap – is inversely propor-

tional to H (Wei et al., 2020).

Evaluating Performance of Learning Algorithms

While a learning algorithm’s primary goal is maximizing the particular signal relevant to

the learning problem, the algorithm does not have direct access to an objective-form that

captures these signals. Therefore, as a surrogate goal, algorithms are designed to optimize

two main types of objectives, optimizing which, is proportional to maximizing the primary

objective (Szepesvári, 2010); they are: (1) minimize the regret, and (2) minimize sample

complexity.

Before defining the surrogate goals it is useful to first describe how the performance

of a policy π returned by any learning algorithm can be evaluated with a single number

in the different learning problems. With S as the set of all states, if we assume V π
x is

the value function of policy π in learning problem x, µx is the start-state distribution over

S in learning problem x (for fixed-horizon and discounted learning problems), µπ is the

stationary distribution induced by π over S , then, the long-run performance of π — denoted

by ρπx , performance of π in learning problem x — can be evaluated as follows

ρπFH =
∑
s∈S0

µFH(s)V π
FH(s), for finite-horizon learning problems,

ρπD =
∑
s∈S0

µD(s)V π
D(s), for discounted learning problems,

ρπAR =
∑
s∈S

µπ(s)Eπ[rt+1|St = s], for average-reward learning problems.

The optimal policy π∗x for every learning problem x in the MDP, from the space of all

possible policies Π, can be defined as

π∗FH = argmax
π∈Π

ρπFH , for finite-horizon learning problems,

π∗D = argmax
π∈Π

ρπD, for discounted learning problems,

π∗AR = argmax
π∈Π

ρπAR, for average-reward learning problems.

22

With the above definitions, the first type of algorithms are designed to minimize regret.

Given K episodes of interaction for finite-horizon problems, or K steps of interaction for

average-reward problems, with respect to an algorithm, its regret for the learning problem

x — denoted byRx — is defined as

RFH =
K∑
k=1

(
V π∗
FH(sk1)−

H∑
h=1

rkh+1

)
, for finite-horizon learning problems,

RAR = Kρπ
∗
AR −

K∑
k=1

rk+1, for average-reward learning problems.

As far as we are aware, there has not been a definition for regret proposed in the literature

for algorithms maximizing discounted return. One possible straightforward method for

doing so is via the definition of regret for finite-horizon problems – where the H-step sum

would need to be replaced by the discounted rewards experienced in the corresponding

trajectory. Nonetheless, the goal of analysis of algorithms that minimize regret is to provide

high probability upper-bounds on the algorithm’s regret, utilizing parameters of the MDP.

In contrast, algorithms of the second type that aim to minimize sample complexity —

called PAC-MDP algorithms, Probably Approximately Correct in the MDP — aim to bound

the number of steps where the algorithm’s policy is suboptimal compared to the optimal pol-

icy by more than a specified amount, using parameters of the MDP. That is, an algorithm is

said to PAC-MDP if the number of steps, t, where V πt(St) < V π∗(St) − ε is polynomial

in (S,A, 1/ε, 1/γ, 1/δ). Here, πt is the policy of the algorithm at time-step t, and St is

the state experienced at time-step t. As algorithms which are designed to minimize this ob-

jective have only considered the discounted RL problem setting, in literature, γ mentioned

here is the constant value used by the γ function everywhere except for transitions leading

to terminal states, and 1− δ is the probability with which this bound holds.

2.6 Summary

This chapter provided a review of basic concepts that will be useful for understanding the

following chapters of this thesis. We described the problem setting, its formulation as

MDPs, and the types of problems tackled in this thesis. Following this we reviewed value

functions, function approximation, policy evaluation and policy iteration - the core rein-

forcement topics relevant to this thesis. Then we concluded by reviewing concepts that are

used to characterize work related to this thesis – a classification of types of MDPs, other

types of learning problems based on MDPs studied in the broader reinforcement learning

23

literature, and theoretical tools used in literature to evaluate performance of learning algo-

rithms.

24

Chapter 3

Exploration in Reinforcement
Learning

This chapter provides a background about exploration algorithms in Reinforcement Learn-

ing. We particularly expand on algorithms that direct exploration to improve sample-

efficiency of online reinforcement learning. The goal of the chapter is to provide an overview

of the approaches to exploration, and conclude with what we believe is a scalable approach

to exploration in the online reinforcement learning setting, along with desiderata for such

an algorithm. In this thesis we compare to many algorithms described here, and design

algorithms to meet the desiderata outlined.

In the next section, we will summarize approaches in literature which are motivated

by the goal of directed exploration in order to learn optimal policies in MDPs where the

states can be represented independently, tabular state-spaces. Following this, we will cover

approaches which extend the ideas of tabular approaches to the case where they cannot be

used, continuous state-spaces. We will conclude by highlighting desirable properties for

directed exploration which motivates the development of the following chapters.

3.1 The Exploration-Exploitation Trade-Off

Single-agent online reinforcement learning is a problem where the goal of a sole agent is

to learn optimal behaviour through interactions with the environment. A key challenge

in this interactive style of learning is that of exploration-exploitation trade-off : balancing

decisions to gain information – exploration – with that of behaving optimally based on

current knowledge – exploitation.

Balancing exploration-exploitation is crucial as the data gathering process significantly

impacts the optimality of the learned policies and values. The agent needs to balance the

25

amount of time taking exploratory actions to learn about the world, versus taking actions to

behave optimally - that is, maximize cumulative rewards. If the agent explores too conserva-

tively, it could converge to a suboptimal policy; exploring too non-conservatively, however,

results in many suboptimal decisions, that is, exploratory decisions which did not help im-

prove the behaviour towards optimality. The goal of the agent is data-efficient exploration:

to minimize how many samples are wasted in exploration, particularly exploring parts of

the world that are known, while promoting exploration to provide coverage of unknown

parts of the world in order to ensure convergence to the optimal policy.

To achieve such a goal, directed exploration strategies are key. Undirected strategies,

where random actions are taken, such as in ε-greedy, are used commonly. In small domains

these methods are guaranteed to find an optimal policy (Singh et al., 2000), because the

agent is guaranteed to visit the entire space—but may take many many steps to do so. But

in larger problems this is not guaranteed, and may take infinitely long. Therefore, while

these strategies have the advantage of being simple, they are not data-efficient.

3.2 Directed Exploration in Tabular State-Spaces

Directed exploration strategies have largely been explored under the framework of “op-

timism in the face of uncertainty” (Kaelbling et al., 1996; Szepesvári, 2010). These can

generally be categorized into count-based approaches and confidence-based approaches.

Count-based approaches estimate the “known-ness” of a state, typically by maintaining

counts for finite state-spaces (Kearns and Singh, 2002; Brafman and Tennenholtz, 2003;

Szita and Szepesvari, 2010). These counts are essentially maximum likelihood estimates

for the unknown parameters of the environment - the transition kernel P, and reward kernel

R.

Confidence-based approaches, on the other hand, maintain interval estimates, and de-

pend on variance of the target, not just on visitation frequency for states. Confidence-based

approaches can be more data-efficient for exploration because the agent can better direct

exploration where the estimates are less accurate. The majority of confidence-based ap-

proaches compute confidence intervals on model parameters (Strehl and Littman, 2004;

Kaelbling, 1993; Auer and Ortner, 2006; Jaksch et al., 2010; Osband et al., 2013).

While the methods listed until now operate by utilizing a model to estimate P, and are

therefore model-based, a few algorithms encourage exploration in a model-free manner by

utilizing a known value for rmax, the maximum reward possible in the environment (Strehl

26

et al., 2006; Szita and Lorincz, 2008). A particular work utilizes the notion of uncertainty in

the value estimates themselves (Meuleau and Bourgine, 1999), and describes the difficulties

with extending the local measures of uncertainty from the bandit literature to reinforcement

learning.

3.3 Directed Exploration in Continuous State-Spaces

In most problems the state-space of the environment is large, and therefore the above listed

methods are computationally infeasible. In such a framework, it is necessary to utilize a

function approximator to ensure computationally tractable learning.

Counting-based approaches from finite state-spaces have been extended to continuous

state-spaces when both (1) a fixed linear/non-linear basis, and (2) a learned non-linear ba-

sis (neural networks), is used for function approximation. Count-based approaches are ex-

tended by approaches that assume the fixed basis enforces a smoothness property with mod-

els (Kakade et al., 2003; Jong and Stone, 2007; Nouri and Littman, 2009; Li et al., 2009),

and without (Pazis and Parr, 2013; Martin et al., 2017; Jung and Stone, 2010). Learned non-

linear basis methods, on the other hand, utilize a notion of psuedo-counts to design bonuses

that incentivize exploration in model-free algorithms. These bonuses are added on to re-

wards, leading them to be propagated to estimate optimistic value. The psuedo-counts are

estimated via various strategies like density models (Bellemare et al., 2016), the successor

representation (Machado et al., 2018), and feature aggregation (Ostrovski et al., 2017).

Confidence-based approaches with models are extended by similar smoothness assump-

tions with fixed representations (Ortner and Ryabko, 2012), and with Bayesian approaches

for learning the models (Abbasi-Yadkori and Szepesvari, 2014; Osband and Van Roy, 2017).

Although propagation of uncertainty is hard due to the long-term dependencies in rein-

forcement learning (Meuleau and Bourgine, 1999), computational tractability with models

in continuous state-spaces can in-fact be more challenging.

Therefore, there have been more approaches that maintain confidence intervals on the

value function for continuous state-spaces, by maintaining a distribution over value func-

tions to estimate an upper-bound (White and White, 2010; Grande et al., 2014), or by main-

taining a randomized set of value functions from which to sample (Osband et al., 2016b,a;

Plappert et al., 2017; Moerland et al., 2017; ODonoghue et al., 2017; Osband et al., 2018).

Though significant steps forward, these approaches have limitations particularly in terms of

computational efficiency.

27

DGPQ (Grande et al., 2014) requires updating Gaussian Processes, which is cubic in

the number of basis vectors for the Gaussian Process. RLSVI (Osband et al., 2016b) is

relatively efficient, maintaining a Gaussian distribution over parameters with Thompson

sampling to get randomized values. Similarly, BSP (Osband et al., 2018) maintains a poste-

rior over value functions by using an ensemble. Both the algorithms, RLSVI and BSP, use a

staged approach which does not allow for value estimates to be updated online, as the value

function is fixed per episode to gather an entire trajectory of data. Moerland et al. (2017),

on the other hand, sample a new parameter vector from the posterior distribution each time

an action is considered, which is expensive. The bootstrapping approaches can be efficient,

as they simply have to store several value functions, either for training on a bootstrapped

subset of samples, as in Bootstrapped DQN (Osband et al., 2016a), or for maintaining a

moving bootstrap around the changing parameters themselves, as in UCBootstrap (White

and White, 2010). For both of these approaches, however, it is unclear how many value

functions would be required, which could be large depending on the problem.

Alternatively, ODonoghue et al. (2017) formulate an Uncertainty Bellman operator for

propagating uncertainty - like the propagation of values via the regular Bellman operator,

which is computationally efficient. Although the paper shows promising empirical evidence

for the method, these uncertainty estimates are with respect to the policy being followed -

instead of the optimal policy - and may therefore be suboptimal for covering the continuous

state-space.

More recently, inspired by information-directed sampling (IDS) strategies in bandit al-

gorithms (Russo and Roy, 2014), Nikolov et al. (2018) propose an algorithm called C51-

IDS. Information-directed strategies assume access to a function called the information gain

function utilizing which they compute a regret-information ratio. This ratio is inversely

proportional to information gain – higher the gain, lower the ratio. The regret-information

ratio is used for decision making, selecting actions that lead to the lowest regret, and highest

information gain. This approach is a little different from other count-based and confidence-

based methods whose action selection is guided by implementing the principle of optimism

in the face of uncertainty.

C51-IDS (Nikolov et al., 2018) builds on the combination of Bootstrap DQN (Osband

et al., 2016a) — which uses and ensemble of value functions — and C51 (Bellemare et al.,

2017) — which estimates return distributions, instead of expected returns — to compute

the regret-information ratio. It is one approach to implementing IDS for exploration in on-

line reinforcement learning. While IDS itself as an approach seems promising, it is still

28

new and under-explored in the reinforcement learning setting. One difficulty for designing

exploration algorithms based on IDS is computing the regret-information ratio in a compu-

tationally tractable manner.

3.4 Desiderata for Directed Exploration

Given the overview of existing approaches to directed exploration in literature, we believe

model-free confidence-based methods are particularly scalable. This is especially because

learning effective models in the approximation setting is still a hard problem with active

on-going research. Additionally, accurately evaluating visitation counts can be challenging

in the function approximation case. Keeping this in mind, to be an effective model-free

confidence-based algorithm, we think the algorithm needs to account for three key factors.

While these factors may not be the complete list of attributes of an effective model-free

confidence-based algorithm, we believe it identifies key necessary attributes, which serve

as the motivation for the contents of this thesis.

First, the key difficulty, as highlighted in Meuleau and Bourgine (1999), is the prop-

agation of uncertainty over the long-term dependencies. If this uncertainty propagation

bottleneck can be overcome - either via augmenting the reward function or by an explicit

second learner - then such an approach would be promising. An approach that propagates

uncertainty correctly can induce exploratory behaviour that can trade-off immediate reward

for reducing uncertainty in the future, informing learning.

Second, to ensure effectiveness of directed exploration strategies in online control, it is

necessary that the function space being used is amenable to sample-efficient learning. For

example, with linear function approximation it is necessary that the generalization structure

of the representations used facilitates the learning algorithm and its updates. Similarly, with

such representations under nonlinear function approximation, sample-efficiency of online

learning can be improved without using strategies like target networks (Ghiassian et al.,

2020). Additionally, such amenability to online reinforcement learning can also help im-

prove the sample-efficiency of exploration strategies.

Third, to effectively implement the idea of optimism in the face of uncertainty under

function approximation, it is necessary that the optimal value function, q∗, is within the

set used by the directed exploration strategies. This is necessary to guide exploratory be-

haviour that encompasses the complete state space, as, if the agent inherently undervalues

any part of the state space with respect to its optimal value, then it cannot implement the

29

idea of optimism faithfully. With confidence-interval based. methods, the set used by the di-

rected exploration strategy can be large including q∗, narrowing slowly based on the online

experience.

Therefore, with the three desiderata described above: (1) propagation of uncertainty

over the long-term dependencies, (2) function space being used is amenable to sample-

efficient learning, and (3) the optimal value function, q∗, is within the set used by the

directed exploration strategies, the rest of this thesis proposes solutions towards each of

them. In Chapter 4 we derive a method for efficient propagation of uncertainties in the

Policy Evaluation setting, and adapt these uncertainty estimates to design an incremental

control algorithm, addressing desiderata (1). Chapter 5 addresses desiderata (2), where we

highlight a desirable attribute of representation basis for improving sample-efficiency in

the incremental setting, and propose a method to learn such a basis. Chapter 6 addresses

desiderata (3) by proposing an exploration strategy that incorporates a solution strategy to

address it.

3.5 Summary

This chapter provided an overview of algorithms that utilize directed exploration strategies.

It discussed algorithms both in the tabular and continuous state-space settings, and outlined

limitations of proposed solutions. Finally, it provided a list of desiderata for effective di-

rected exploration in the online control setting which guides the content of further chapters

in this thesis.

30

Chapter 4

Incremental Control with Policy
Evaluation Uncertainty Estimates

In this chapter, we present a method for directing exploration in the online incremental

on-policy setting. The previous discussion highlighted that model-free confidence-based

methods are particularly scalable. A key bottleneck to design such a method is effective

uncertainty propagation (Meuleau and Bourgine, 1999). If this bottleneck can be overcome,

however, such a method is promising for the online setting. A typical solution to design such

a strategy with value-based reinforcement learning algorithms is to estimate uncertainties

about value estimates.

In the online setting, the policy used for decision making by the agent is constantly

changing. Nevertheless, at each point decision point the behaviour is dictated by the value

estimates of a policy. If these value estimates are accurate the agent can act greedily with

respect to them and improve its online behaviour. However, since these value estimates are

learned online, they are estimates, and it is likely they are not accurate – that is, the agent

is uncertain about them. If this uncertainty in the value estimate can be estimated online as

well, then the agent could utilize these estimated value and uncertainty estimates to guide

better behaviour to improve value estimation.

There are two key components to such a process when used online: (1) accurate value

estimation, and (2) accurate uncertainty estimation. It is important that the value estimation

algorithm is good, as this can significantly reduce any uncertainty arising from just poor

learning. One such good online value estimation algorithm for a stationary problem is

the Least Squares Temporal Difference Learning (LSTD) algorithm. LSTD, at each step,

solves a linear system to estimate the values of a policy. If the uncertainty around these

value estimates can be evaluated, then these uncertainty estimates can be used to guide

exploration in the online control setting.

31

In this chapter, we develop such an algorithm. We first derive a method for estimating

confidence intervals around value estimates learned with Least Squares Temporal Differ-

ence Learning (LSTD) for a fixed policy π. Following this, we present an algorithm for

online incremental on-policy control with LSTD, called Upper-Confidence Least Squares

(UCLS), and evaluate it empirically.

Contributions

Contribution 1: A method to estimate confidence-intervals around the value estimates

provided by the LSTD algorithm. The goal is to guarantee with high probability that

the true values are within the range provided by the estimated values plus/minus the un-

certainty estimates. Our idea is to estimate the variance of the value estimate given the

linear representations used by the algorithm. Then, by characterizing this variance, uncer-

tainty estimates around the value estimates can be derived. We provide two forms of such

an upper-confidence bound, one that makes a simplifying assumption of uniform noise

across the state space (as would be common in Machine Learning), and another that does

not, resulting in the assumption that the noise is a state-dependent function which is more

natural in MDPs.

Contribution 2: A quadratic complexity algorithm that utilizes these derived upper-

confidence bounds to guide exploration during online incremental on-policy control, and

a linear complexity extension of the same. The algorithms are empirically evaluated and

compared to other algorithms that estimate upper-confidence bounds to drive exploratory

behaviour as well, albeit with different machinery. The empirical evaluation also high-

lights the benefits of utilizing state-dependent context without making the simplifying

assumption of uniform noise in the MDP to guide online exploration.

4.1 Confidence Intervals for LSTD(λ)

Consider the goal of obtaining a confidence interval around value estimates learned incre-

mentally by LSTD(λ) for a policy π. The goal is to guarantee, with probability 1 − p for

a small p > 0, that the confidence interval around this estimate contains the value φ>wπ

given by the optimal wπ ∈ W , where φ is the state-action representation. To estimate such

an interval without parametric assumptions, we use Chebyshev’s inequality which—unlike

other concentration inequalities like Hoeffding or Bernstein—does not require independent

samples.

32

s E[R] = 2,V[R] ≈ 28E[R] = 1,V[R] = 0

Figure 4.1: One-state world, where one action has higher variance than the other; the reward
here is uniformly sampled from within the set {−5,−2, 2, 5, 10}.

To use this inequality, we need to determine the variance of the estimate φ>w; the vari-

ance of the estimate, given φ, is due to the variance of the weights. Let wπ be the solution

corresponding to the TD fixed-point for the λ-return for a fixed policy π. To characterize the

noise for this optimal estimator, let νt be the TD-error for the optimal weights wπ, where

rt+1 = (φt − γφt+1)>wπ + νt with E[νtet] = 0, (4.1)

where the expectation is with respect to the stationary distribution of the policy used for

generating the data.

This noise νt is incurred from the variability in the reward, the variability in the tran-

sition dynamics and potentially the capabilities of the function approximator. A common

assumption — when using linear regression for contextual bandits (Li et al., 2010) and for

reinforcement learning (Osband et al., 2016b) — is that the variance of the target is a con-

stant value σ2 for all contexts φ. Such an assumption, however, is likely to produce larger

confidence intervals than necessary. For example, consider a one-state world with two ac-

tions, as shown in Figure 4.1, where one action has a high variance reward and the other has

a lower variance reward. A global sample variance will encourage both actions to be taken

many times. For data-efficient learning however, the agent should take the high-variance

action more, and only needs a few samples from the low-variance action.

We derive a confidence interval for LSTD(λ) without making the simplifying assump-

tion of a global variance, and instead allow for the variance of νt to be context-dependent.

We provide this result in Theorem 1.

Theorem 1 (Contextual upper-confidence bounds for LSTD). Let ν̄T
def
= 1

T

∑T−1
t=0 etνt and

wT = A+
T bT where A+

T is the pseudoinverse of AT . Let επT
def
= (A+

TAT − I)wπ reflect the

degree to which AT is not invertible. Assume that the following are all finite: E[A+
T ν̄T +

επT], V[A+
T ν̄T + επT] and all state-action features φ. With probability at least 1 − p, given

33

state-action features φ,

φ>wπ ≤ φ>wT +
√

p+1
p

√
φ>E[A+

T ν̄T ν̄
>
T A+>

T]φ +O
(
E[(φ>επT)2]

)
. (4.2)

Proof: First we compute the mean and variance for our learned parameters. Because

rt+1 = (φt − γφt+1)>wπ + νt,

wT =

(
1
T

T−1∑
t=0

et(φt − γφt+1)>

)−1(
1
T

T−1∑
t=0

etrt+1

)

= A+
T

(
1
T

T−1∑
t=0

et((φt − γφt+1)>wπ + νt)

)

= A+
TATwπ + A+

T

(
1
T

T−1∑
t=0

etνt

)
= wπ + A+

T ν̄T + επT .

This estimate has a small amount of bias, that vanishes asymptotically. But, for a finite

sample,

E

[
A+
T

(
1
T

T−1∑
t=0

etνt

)]
6= E[A+

T]E

[
1
T

T−1∑
t=0

etνt

]
= 0.

Further, because AT may not be invertible, there is an additional error επT term which will

vanish with enough samples, i.e., once AT can be guaranteed to be invertible.

For covariance, because

wT − E[wT] =
(
wπ + A+

T ν̄T + επT
)
− E

[
wπ + A+

T ν̄T + επT)
]

= A+
T ν̄T + επT − E

[
A+
T ν̄T + επT

]
,

the covariance of the weights is

V[wT] = V
[
A+
T ν̄T + επT

]
.

Now we can use concentration inequalities to bound the deviation of our estimate using

the variance. While many concentration inequalities require independent samples – which

are not available in this framework – Chebyshev’s inequality does not. Chebyshev’s in-

equality states that for a random variable X , if the E[X] and V[X] are bounded, then for

any ε ≥ 0:

Pr
(
|X − E[X]| < ε

√
V[X]

)
≥ 1− 1

ε2
.

34

If we set ε =
√

1/p, then this gives

Pr
(
|X − E[X]| <

√
1
p

√
V[X]

)
≥ 1− p.

Now we have characterized the variance of the weights, but what we really want is to

characterize the variance of the value estimates. Notice that the variance of the value-

estimate, for state-action φ is

V[φ>wT |φ] = E[φ>wTw>T φ|φ]− E[φ>wt|φ]2

= φ>
(
E[wTw>T]− E[wT]E[wT]>

)
φ

= φ>V[wT]φ.

Therefore, the variance of the estimate is characterized by the variance of the weights. With

high probability,∣∣∣φ>wT − φ>wπ
∣∣∣ =

∣∣∣φ>(wT − E[wT]) + φ>(E[wT]−wπ)
∣∣∣

≤
∣∣∣φ>(wT − E[wT])

∣∣∣+
∣∣∣φ>(E[wT]−wπ)

∣∣∣
≤ 1
√
p

√
φ>V

[
A+
T ν̄T + επT

]
φ +

∣∣∣φ>E[A+
T ν̄T + επT]

∣∣∣ (4.3)

=
1
√
p

√
φ>
(
E
[
A+
T ν̄T ν̄

>
T A+>

T + Σπ
T

]
− µπTµ

π>
T

)
φ +

√
φ>µπTµ

π>
T φ,

(4.4)

where Equation (4.3) uses Chebyshev’s inequality, and the last step is a rewriting of Equa-

tion (4.3) using the definitions

µπT
def
= E[A+

T ν̄T + επT],

and

Σπ
T

def
= A+

T ν̄T ε
π>
T + επT (A+

T ν̄T)> + επT ε
π>
T .

To simplify Equation (4.4), we need to determine an upper bound for the general for-

mula c
√
a2 − b2 + b where a ≥ b ≥ 0. Because p < 1, we know that c =

√
1/p ≥ 1.

Therefore, the extremal points for b, b = a and b = 0, both result in an upper bound of ca.

Taking the derivative of the objective, gives a single stationary point in-between [0, a], with

b = a√
c2+1

. The value at this point evaluates to be a
√
c2 + 1. Therefore, this objective is

upper-bounded by a
√
c2 + 1.

Now for a2 = φ>E
[
A+
T ν̄T ν̄

>
T A+>

T + Σπ
T

]
φ, the term involving φ>E [Σπ

T]φ should

quickly disappear, since it is only due to the potential lack of invertibility of AT while T

35

si small. This term is equal to E
[
2(φ>A+

T ν̄T)(φ>επT) + (φ>επT)2
]
, which results in the

additional O(E[(φ>επT)2]) in the bound.

�

Why does the uncertainty reduce to 0?

If we assume AT is invertible, the big-O term in Equation (4.2) above would disappear.

Consequently, the magnitude of the upper-bounds is controlled by a term proportional to

E[A+
T ν̄T ν̄

>
T A+>

T]. In this term, ν̄T is a vector that accumulates the product of TD-error

and traces, ν̄T = 1
T

∑T−1
t=0 etνt.

As T → ∞, the expectation concentrates, improving the estimation of wT . We know

that at the optimal weights, wπ, E[etνt] = 0. Therefore, as T → ∞, wT → wπ, and

ν̄T → 0. Consequently, the expected covariance E[A+
T ν̄T ν̄

>
T A+>

T] → 0, resulting in the

uncertainty estimate reducing to 0.

Additionally, if one were to use an estimated covariance Ê[A+
T ν̄T ν̄

>
T A+>

T], instead of

the true covariance E[A+
T ν̄T ν̄

>
T A+>

T], the uncertainty estimates would still reduce to 0 with

increasing T . The reasoning is similar: as T → ∞, wT → wπ, resulting in ν̄ → 0, and

consequently Ê[A+
T ν̄T ν̄

>
T A+>

T]→ 0.

Global-variance Upper-Bounds for LSTD

We also derive the confidence interval assuming a global variance in Corollary 1, to provide

a comparison. Again, if AT is invertible, the big-O term in Equation (4.5) would disappear.

Corollary 1 (Global-variance bounds for LSTD). Assume that νt are i.i.d., with mean zero

and bounded variance σ2. Let ēT = 1
T

∑T−1
t=0 et and assume that the following are finite:

E[επT], V[επT], E[A+
T ēT ē>TA+>

T] and all state-action features φ. With probability at least

1− p, given state-action features φ,

φ>wπ ≤ φ>wT + σ
√

p+1
p

√
φ>E[A+

T ēT ē>TA+>
T]φ +O

(
E[(φ>επT)2]

)
. (4.5)

Proof: The result follows similarly, with some simplifications due to global-variance:

E
[
A+
T ν̄T

]
= E

[
E
[
A+
T ν̄T

∣∣∣S0,, ST

]]
= E

[
A+
T

1
T

T−1∑
t=0

etE
[
νt

∣∣∣S0,, ST

]]
= 0,

E[A+
T ν̄T ν̄

>
T A+>

T] = σ2E[A+
T ēT ē>TA+>

T].
�

36

4.1.1 Linear Complexity Confidence Intervals for LSTD(λ)

The uncertainty estimates derived above have quadratic computational complexity. But

alternatively, they can be approximated with linear computational complexity for a fixed

policy. As the covariance matrix is the outer-product of the solution to a least-squares

system, A−1
T ν̄T , its solution wvar, and can be estimated incrementally as:

wvart+1 = wvart + αδvartet,

where, δvart = δt + γt+1φ
>
t+1wvart − φ>t wvart. Therefore, for a given policy, the true

action-values satisfy the following:

φ>wπ ≤ φ>wT +
√

p+1
p

√
φ>wvarTwvar

>
Tφ. (4.6)

Similarly, a linear variant for Corollary 1 can be obtained, and it consists of an outer-

product of a least-squares system whose solution is given by A−1

T ēT .

4.2 On-Policy Control

The classical idea of GPI (Sutton and Barto, 2018) is adapted here with LSTD value es-

timates for designing an on-policy control algorithm. The characteristic feature of an on-

policy algorithm is simply that the learning goal of the agent corresponds to its behaviour

– that is, the agent learns about the policy it is following. Therefore, if the policy it is fol-

lowing improves, its value estimates improve; if the value estimates improve, the policy it

is following improves – the crux of GPI. In such a scenario, it is important to ensure the

agent’s behaviour is neither so exploitative that it learns a suboptimal policy, nor so ex-

ploratory that it takes a lot of suboptimal decisions. The goal here, then, is data-efficient

exploration: taking exploratory actions which are the most beneficial for improving on the

current policy, if the policy can be improved, else behaving according to the current policy.

To achieve such a goal, directed exploration strategies are key.

Towards designing such a strategy consider having access to confidence-intervals which

estimate a radius of uncertainty û(St, At) around value estimates q̂(St, At). Let the action

selection be greedy w.r.t. to these optimistic values, argmaxa q̂(St, a) + û(St, a), which

provides a high-confidence upper bound on the best possible value for that action. If the

û(St, At) estimates are optimistic with respect to the optimal values q∗(St, At) in expecta-

tion, then, similar to online learning, we can guarantee that greedy-action selection accord-

ing to upper-confidence values will converge to the optimal policy, (1) if the confidence

37

interval radius shrinks to zero, (2) if the algorithm to estimate action-values for a policy

converges to the corresponding actions, and (3) if the upper-confidence estimates are op-

timistic with respect to the optimal values in expectation. This simple, general idea, is

presented below as a theorem.

4.2.1 Optimistic Values Theorem

Let π∗ be the reference (optimal or approximately optimal) policy, q∗ the true action value

for that policy, and d : S × A → [0,∞), an evaluation density that dictates the relative

importance of state-action pairs. This d can be related to the trajectory of the optimal policy

π∗, but generically allows specification of any density, such as one putting all weight on a

set of start states or such as one that is uniform across states and actions to ensure equal

importance for any point in the state-action space.

Here, we provide a motivational theorem that shows that if an agent (1) estimates two

quantities - action-values, and confidence-interval radius, (2) behaves greedily with respect

to the resulting upper-confidence bounds, and (3) its estimated quantities satisfy some as-

sumptions under the evaluation density d, the agent can be expected to learn the approxi-

mate q∗ under the evaluation density d.

Let q̃t = q̂t + ût be the estimated action-values plus the confidence interval radius ût

on time step t, to get the estimated upper-confidence bound which the agent uses to select

actions. Let πt be the policy induced by greedy action selection on q̃t.

Assumption 1 (Expected Optimism). At some point T > 0, the action-values at every step

t ≥ T are optimistic in expectation: E[q̃t(S,A)] ≥ E[q∗(S,A)], with expectation according

to density d.

Assumption 2 (Shrinking Confidence Interval Radius). The expected value under d of the

confidence interval radius ût goes to zero: E[ût(S,A)] ≤ f(t) for some non-negative

function f with f(t)→ 0.

Assumption 3 (Convergent Action Values). The expected value under d of the estimated

action-values q̂t approach the expected value of the true action-values for policy

πt: |E[q̂t(S,A)− qπt(S,A)]| ≤ g(t) for some non-negative function g with g(t)→ 0.

Given the three key assumptions, the theorem below is straightforward to prove. How-

ever, these three conditions are fundamental, and do not imply each other. For example,

Assumption 1 and 2 do not imply Assumption 3, because the confidence interval radius

38

could decrease to zero, and q̂t can still be optimistic in expectation and an over-estimate of

values that correspond to a suboptimal policy. Assumption 1 and 3 do not imply Assump-

tion 2, because q̂t could converge to the policy corresponding to acting greedily w.r.t. q̃t, but

ût may never fade away. Then, q̃t could still be optimistic in expectation, but the policy πt

could be suboptimal because it is acting greedily according to inaccurate, inflated estimates

of value q̃t.

Theorem (Optimistic Values Theorem). Under Assumptions 1, 2 and 3,

E[q∗(S,A)]− E[qπt(S,A)] ≤ f(t) + g(t),

and as t→∞, E[q∗(S,A)]− E[qπt(S,A)]→ 0.

Proof: Consider the difference across states and actions

E[q∗(S,A)− qπt(S,A)] = E[q∗(S,A)− q̃t(S,A)] + E[q̃t(S,A)− qπt(S,A)]

≤ E[q̃t(S,A)− qπt(S,A)]

because E[q∗(S,A)− q̃t(S,A)] ≤ 0 by Assumption 1. By Assumptions 2 and 3,

E[q̃t(S,A)− qπt(S,A)] = E[q̂t(S,A)− qπt(S,A)] + E[ût(S,A)] ≤ g(t) + f(t).

Additionally as f(t) → 0, and g(t) → 0, as t → ∞, E[q∗(S,A)] − E[qπt(S,A)] → 0 as

t→∞, completing the proof. �

This result is abstract such that the three assumptions could be satisfied in a variety of

ways. The first assumption would need propagation of optimism as done by many methods

which use the principle of optimism in the face of uncertainty in tabular RL. We hypothesize

that the last two assumptions could be addressed with a two-timescale analysis, with ût

updating more slowly than q̂t. This would reflect an iterative approach, where the optimistic

values are essentially held fixed—such as is done in Delayed Q-learning (Grande et al.,

2014)—and qπt estimated, before then adjusting the optimistic values. The updates to q̂t,

then, would be updated on a faster timescale, converging to qπt , and the upper confidence

radius ût updating on a slower timescale. If Assumption 1 does not hold on the other

hand, the regret can be high, but the behaviour policy q̃t would still converge to policy πt if

Assumptions 2 and 3 are satisfied.

The result is inspired by a well known result in the literature: a Bayesian regret bound

for the algorithm RLSVI, provided by Osband et al. (2016b). The work characterizes the

expected Bayesian regret experienced by an RLSVI agent in a finite-horizon tabular state-

space setting, which is dependent on the size of the state and action spaces. The episodic

39

regret is calculated considering a policy that remains stationary for the length of the episode,

H , the finite-horizon, where a stationary policy for the episode implies πx = πx+1 =

. . . πx+H , ∀x ∈ {x|x ∈ N, (x + H − 1)%H == 0}. The expected episodic regret looks

similar to the result provided above with d as the starting state distribution for the finite-

length episodes.

Additionally, the Optimistic Values Theorem result also looks to be similar to another

well-known result: the Performance Difference Lemma provided by Kakade and Langford

(2002). While they results look similar because they both present an approach to evaluate

the difference between the value of two policies under a distribution, the two results are

different because the result provided by Performance Difference Lemma does not imply the

Optimistic Values Theorem result.

This result is useful because it suggests that algorithms that use such a confidence-

interval based approach to exploration with optimism can be well-behaved if the assump-

tions discussed are met. The confidence intervals derived in the previous section are epis-

temic confidence intervals for LSTD, which for a fixed policy π, would meet the require-

ments of Assumption 2, Shrinking Confidence Interval Radius. Assumption 3, Convergent

Action Values, can be satisfied with a good policy evaluation algorithm to ensure reliable

value function estimation, and a very small policy improvement step. Fortunately, LSTD

meets this criteria of being a good policy evaluation algorithm. If Assumption 1, Expected

Optimism, can be satisfied, then Theorem 1 can bound the regret of an algorithm which

uses these confidence intervals for exploration. Motivated by this, we present the first-step

taken towards designing such a strategy to exploration in the next section.

4.2.2 UCLS: Control with LSTD using Upper-Confidence Bounds

In order to design a directed exploration strategy we utilize the uncertainty estimates that

were derived in Section 4.1 in the algorithm we call Upper-Confidence-Least-Squares (UCLS).

It uses the incrementally estimated upper-confidence bounds – shown below again for ref-

erence (with the big-O terms omitted) – for guiding on-policy exploration

φ>wπ ≤ φ>wT +
√

p+1
p

√
φ>E[A+

T ν̄T ν̄
>
T A+>

T]φ.

These upper-confidence bounds include the true covariance which we do not have access to

online. Therefore, instead, we utilize the online estimated covariance as a stand-in, while

trading in some of the guarantees provided by the bound. Further, the upper-confidence

bounds are derived for a fixed policy π. In the online control setting, under the GPI frame-

40

work, the key idea is to slowly estimate both the values and the uncertainty estimates, under

a changing policy that acts greedily with respect to the upper-confidence bounds. Effec-

tively tracking these upper bounds with a changing policy effectively incurs some approxi-

mations, and they are discussed below.

(1) We are not evaluating a fixed policy; rather, the policy is changing. The estimates

AT and bT will therefore be out-of-date. As is common for LSTD with control, we use

an exponential moving average to estimate AT , bT and the upper-confidence bound. The

exponential moving average uses AT = (1 − β)AT−1 + βeT (φt − γφt+1)>, for some

β ∈ [0, 1]. If β = 1/T , then this reduces to the standard sample average; otherwise, for a

fixed β, such as β = 0.01, more recent samples have a higher weight in the average. As

exponential average is unbiased, the derived uncertainty bounds will still hold.

(2) We cannot obtain samples of the noise

νt = rt+1 + γt+1φ
>
t+1w

∗ − φ>t w∗

which is the TD-error for the optimal value function parameters w∗. Instead, we use δt as a

proxy. This proxy results in an upper bound that is too conservative—too loose—because

δt is likely to be larger than νt. This is likely to ensure sufficient exploration, but may cause

more exploration than needed. The moving average ν̄t = ν̄t−1 + βt(δtet − ν̄t−1) should

help mitigate this issue, as older δt are likely larger than more recent ones.

(3) The covariance matrix C estimating E[A−1

T ν̄T ν̄
>
T A−1

T] could underestimate covari-

ances, depending on a skewed distribution over states and depending on the initialization.

This is particularly true in early learning, where the distribution over states is skewed to

be higher near the start state. To see why, let a = A−1

T ν̄T . The covariance estimate

Cij = E[aiaj] corresponds to feature i and j. The agent begins in a certain region of the

space, and so features that only become active outside of this region will be zero, providing

samples aiaj = 0. As a result, the covariance is artificially driven down in unvisited regions

of the space by accumulating updates of 0. Further, if the initialization to the covariance Cii

is an underestimate, a visited state with high variance will artificially look more optimistic

than an unvisited state. We propose two simple approaches to this issue: updating C based

on locality and adaptively adjusting the initialization to Cii. Each covariance estimate Cij

for features i and j should only be updated if the sampled outer-product is relevant, with

the agent in the region where i and j are active. To reflect this locality, each Cij is updated

with the aiaj only if the eligibility traces is non-zero for i and j. To adaptively update the

initialization, the maximum observed a2
i is stored, as cmax, and the initialization c0 to each

41

Cii is retroactively updated using

Cii = Cii − (1− β)cic0 + (1− β)cicmax,

where, ci is the number of times Cii has been updated; as though at initialization Cii =

cmax was used. Additionally, because we are in the online setting, we utilize the empirical

covariance instead of the true covariance: that is, C tracks estimated Ê[A−1

T ν̄T ν̄
>
T A−1

T],

instead of E[A−1

T ν̄T ν̄
>
T A−1

T].

(4) To improve the computational complexity of the algorithm, we propose an alterna-

tive, incremental strategy for estimating w, that takes advantage of the fact that we already

need to estimate the inverse of A for the upper bound. In order to do so, we make use of

the summarized information in A to improve the update, but avoid directly computing A−1

as it may be poorly conditioned. Instead, we maintain an approximation B ≈ A−> that

uses a simple gradient descent update, to minimize ‖A>Bφt−φt‖22. If B is the inverse of

A>, then this loss is zero; otherwise, minimizing it provides an approximate inverse. This

estimate B is useful for two purposes in the algorithm. First, it is clearly needed to estimate

the upper-confidence bound. Second, it also provides a pre-conditioner for the iterative up-

date w = w + G(b −Aw), for preconditioner G. The optimal preconditioner is in fact

the inverse of A, if it exists. We use G = B> + ηI for a small η > 0 to ensure that the

preconditioner is full rank.

With these four criteria incorporated, UCLS utilizes the estimated upper-confidence

bounds to guide incremental on-policy exploration. The pseudocode for UCLS is presented

in Algorithm 2.

42

Algorithm 1 GetOptimisticAction(φs,·)

ua ←
√(

1 + 1
p

)
φ>s,aCφs,a ∀a ∈ A

a = argmaxa∈Aφ>s,aw + ua
return a

Algorithm 2 UCLS(λ)
A← 0, b← 0, e← 0, w← 0
B← I, C← I, ν̄ ← 0, c← 1
p = 0.1, η = 10−4, β = 0.001, cmax = 1.0
φs,· ← initial state-action features, for any action
a← GetOptimisticAction(φs,·)
repeat

Take action a and observe φs′,· and r, and γ
a′ ← GetOptimisticAction(φs′,·)
δ ← r + (γφs′,a′ − φs,a)

>w
e← γλe + φs,a
b← (1− β)b + βre
A← (1− β)A + βe(φs,a − γφs′,a′)>
. Update B ≈ A−>

α = min
{

1.0, 0.01
||A||2F ||φs,a||

2
2+1.0

}
B← B− αA(A>Bφs,a − φs,a)φ

>
s,a

. Update C
ν̄ ← (1− β)ν̄ + βδe
a← B>ν̄
temp = cmax
cmax = max(cmax,a

2
1, . . . , a

2
d)

if temp 6= cmax then . Adjust initialization
Cii ← Cii + ci(cmax − temp), ∀i

for i such that ei 6= 0 do
ci = ci(1− β)
for j such that ej 6= 0 do

Cij ← (1− β)Cij + βaiaj

. Update w
w← w + (B> + ηI)(b−Aw)
φs,a ← φs′,a′ and a← a′

until agent done interaction with environment

43

Global Variance UCB

We also adapt the bounds of Corollary 1 which assumes the noise in value estimates to

be i.i.d. variables to design another algorithm called Global Variance-UCB (GV-UCB).

To estimate a global variance σ2, it is possible that the noise may not be 0-mean during

the learning process. We account for this by estimating mean of νt as well. We know

νt ∼ N (ν̄t, σ
2
t). Therefore:

ν̄t+1 = E[rt+1]− E[φt − γφt+1]>wt,

ν̄2
t+1 = E[r2

t+1]− 2E[rt+1(φt − γφt+1)]>wt

+ w>t E[(φt − γφt+1)(φt − γφt+1)>]wt.

These expected values are maintained incrementally. Utilizing this, σ2
t+1 = ν̄2

t+1 − ν̄2
t+1.

We refer to Global variance UCB as GV-UCB. The pseudocode for GV-UCB given in Al-

gorithm 4.

44

Algorithm 3 GetOptimisticActionGlobal(φs,·)

ua ← σ

√(
1 + 1

p

)
φ>s,aCφs,a ∀a ∈ A

a = argmaxa∈Aφ>s,aw + ua
return a

Algorithm 4 GV-UCB(λ)
A← 0, b← 0, e← 0, w← 0,
B← I, C← I, z̄← 0
p = 0.01,η = 10−4, β = 0.001
σ = 1.0, r̄ = 0.0, r̄2 = 100.0, d̄← 0, d̄r ← 0, D̄← 0
φs,· ← initial state-action features, for any action
a← GetOptimisticActionGlobal(φs,·)
repeat

Take action a and observe φs′,· and r, and γ
a′ ← GetOptimisticActionGlobal(φs′,·)
δ ← r + (γφs′,a′ − φs,a)

>w
e← γλe + φs,a
b← (1− β)b + βre
A← (1− β)A + βe(φs,a − γφs′,a′)>
. Update C
z̄← (1− β)z̄ + βe
a← B>z̄
for i such that ei 6= 0 do

for j such that ej 6= 0 do
Cij ← (1− β)Cij + βaiaj

. Update σ
r̄ ← (1− β)r̄ + βr
r̄2 ← (1− β)r̄2 + βr2

d̄← (1− β)d̄ + β(φs,a − γφs′,a′)
d̄r ← (1− β)d̄r + βr(φs,a − γφs′,a′)
D̄← (1− β)D̄ + β(φs,a − γφs′,a′)(φs,a − γφs′,a′)>
ν̄ = r̄ − d̄Tw
ν̄2 = r̄2 − 2d̄r

T
w + w>D̄w

σ =
√
ν̄2 − ν̄2

. Update w and B ≈ A−>

α = min
{

1.0, 0.01
||A||2F ||φs,a||

2
2+1.0

}
B← B− αA(A>Bφs,a − φs,a)φ

>
s.a

w← w + (B + ηI)(b−Aw)
φs,a ← φs′,a′ and a← a′

until agent done interaction with environment

45

4.2.3 UCLS-L: Estimating Upper-Confidence Bounds for
Linear TD in Control

Just as UCLS utilizes the policy evaluation upper-bound of LSTD for control, with a slowly

changing control policy, UCLS-L utilizes the policy evaluation upper-bound of linear TD

for control. At each step, UCLS-L, given in Algorithm 6, uses a stochastic update to es-

timate mean action-values, and their corresponding contextual-variance estimates. These

stochastic updates use fixed, and if necessary are different, step-sizes (α, and αvar respec-

tively), instead of a closed-form solution as done by UCLS. The rate of change of the

policy in UCLS-L is controlled by the step-size, unlike in UCLS which utilizes weighted

forms of experience samples in A and b. Therefore, UCLS-L can be sensitive to the step-

sizes, but adapt more quickly to a changing feature-space. Further, in order to account

for underestimates of variances, UCLS-L uses another vector wvarInit, in a similar spirit

as UCLS’s retroactive initialization of covariance estimates. Additionally, as these upper-

bounds are estimated incrementally, they can be quite loose, specifically so in the linear

framework. Therefore, instead of choosing the best parameter p, we can choose a parame-

ter p̄ =
√

1 + 1
p : the loss of theoretical interpretation of the upper-bound is traded-off for

better empirical performance.

Similarly, a linear variant of GV-UCB can also be derived.

46

Algorithm 5 GetOptimisticActionLinear(φs,·)

ua ←
√(

1 + 1
p

) (
(φ>s,awvar)2 + ||φs,a||2IwvarInit

)
∀a ∈ A

a = argmaxa∈Aφ>s,aw + ua
return a

Algorithm 6 UCLS-L(λ)
p = 0.1, β = 0.001, vinit = 1.0, α = 0.01, αvar = 0.1
w← 0, wvar ← 0, wvarInit ← 1 ∗ vinit, c← 1
φs,· ← initial state-action features, for any action
a← GetOptimisticActionLinear(φs,·)
repeat

Take action a and observe φs′,· and r, and γ
a′ ← GetOptimisticActionLinear(φs′,·)
δ ← r + (γφs′,a′ − φs,a)

>w
δvar ← δ + (γφs′,a′ − φs,a)

>wvar
e← γλe + φs,a
. Update wvar and wvarInit
wvar ← wvar + αvarδvare
temp = vinit
vinit = max(vinit,wvar

2
1, . . . ,wvar

2
d)

if temp 6= vinit then . Adjust initialization
wvarIniti ← wvarIniti + ci(vinit − temp), ∀i

for i such that ei 6= 0 do
ci = ci(1− β)
wvarIniti ← (1− β) ∗wvarIniti, ∀i

. Update w
w← w + αδe
φs,a ← φs′,a′ and a← a′

until agent done interaction with environment

47

4.3 Evaluation of UCLS

We conducted several experiments to (1) investigate the benefits of UCLS’s and UCLS-L’s

directed exploration against other methods that use confidence intervals for action selection,

and (2) to contrast the advantage of contextual variance estimates (Theorem 1) over global

variance estimates (Corollary 1) for directed exploration.

We compare to DGPQ (Grande et al., 2014), UCBootstrap (White and White, 2010),

RLSVI (Osband et al., 2016b) and our extension of LSPI-Rmax to an incremental setting

(Li et al., 2009). All the algorithms are proposed for online control using confidence in-

tervals, or counting strategies, with linear function approximation. DGPQ is a method that

utilizes two estimators: one built on Gaussian Processes to estimate confidence intervals,

and the second a linear estimator to estimate optimistic values. UCBootstrap is a method

that evaluates confidence intervals via statistical bootstrapping strategies, whereas RLSVI

is a method that utilizes Bayesian Linear Regression to evaluate confidence intervals. LSPI-

Rmax is a batch-based algorithm built on LSTD, that utilizes Rmax style bonuses to esti-

mate direct exploration; here, we adapt the algorithm to be compatible to the incremental

setting. We also include Sarsa with ε-greedy, with ε optimized over an extensive parameter

sweep. Though ε-greedy is not a generally practical algorithm, particularly in larger worlds,

we include it as a baseline.

We experiment with the following classical hard exploration problems: (1) Sparse

Mountain Car (Sutton and Barto, 2018) - an episodic task where an agent needs to drive

up a hill from the valley, and receives a reward only at the end of the episode, (2) Puddle

World (Sutton and Barto, 2018) - an episodic task where an agent needs to learn to navigate

to a goal while avoiding puddles which result in high negative rewards, and River Swim

(Szita and Lorincz, 2008) - a standard continuing exploration benchmark where an agent

faces the difficult choice between choosing to swim upstream to a place of high reward,

or choosing to swim downstream to a more easily accessible low reward. More details

regarding the algorithms, their pseudocode, the parameter sweeps, and descriptions of the

domains can be found in the Appendix A.4.

We investigate a learning regime where the agents are allowed a fixed budget of in-

teraction steps with the environment, rather than allowing a finite number of episodes of

unlimited length. Our primary concern is sample-efficiency, and hence, early learning per-

formance. Thus each experiment is restricted to 50,000 steps, with an episode cutoff (in

Sparse Mountain Car and Puddle World) at 10,000 steps. We average over 100 runs in

48

UCLS

RLSVIε-Greedy

UCBootstrap

LSPI-Rmax

DGPQ
Steps per
Episode
x*10^3

Negated
Total

Reward
2^x

20 80 5 10 25Episodes Steps (x*10^3)

Sparse Mountain Car Puddle World River Swim

UCLS

LSPI-Rmax

RLSVI

UCLS

RLSVI

ε-Greedy

UCBootstrap

LSPI-Rmax

UCBootstrap

10

2

12

Total
Reward

10^x

4

1

6

5

50 100 350Episodes

Optimal

(better
perf.)

(better
perf.)

(better
perf.)

DGPQ

DGPQ ε-Greedy

Figure 4.2: A comparison of speed of learning of directed exploration algorithms in Sparse
Mountain Car, Puddle World and River Swim. In plots (a) and (b) lower on y-axis are better,
whereas in (c) curves higher along y-axis are better. Sparse Mountain Car and Puddle World
are episodic problems with a fixed experience budget. Note RLSVI did not show significant
learning after 50,000 steps. The RLSVI result in Puddle World uses a budget of 1 million.
The shaded region represents 95% confidence interval, and are mostly small as the results
are averaged over an extensive number of runs.

River Swim and 200 runs for the other domains. The parameters for UCLS are fixed across

the domains, whereas for the competitors are swept for each domain independently.

Lastly, all the algorithms except DGPQ use the same representation: (1) Sparse Moun-

tain Car - 8 tilings of 8x8, hashed to a memory space of 512, (2) River Swim - 4 tilings

of granularity 32, hashed to a memory space of 128, and (3) Puddle World - 5 tilings of

granularity 5x5, hashed to a memory space of 128. DGPQ uses its own kernel-based repre-

sentation with normalized state information.

4.3.1 Online Performance

Our first set of results compare the online performance of UCLS to other competitors. Fig-

ure 4.2 shows the early learning results across all three domains. In all three domains UCLS

achieves the best final performance. In Sparse Mountain Car, UCLS learns faster than the

other methods, while in River Swim DGPQ learns faster initially. UCBootstrap and UCLS

learn at a similar rate in Puddle World, which is a cost-to-goal domain. UCBootstrap, and

bootstrapping approaches generally, can suffer from insufficient optimism, as they rely on

sufficiently optimistic or diverse initialization strategies (White and White, 2010; Osband

et al., 2016a). LSPI-Rmax and RLSVI do not perform well in any of the domains. DGPQ

does not perform as well as UCLS in Puddle World, and exhibits high variance compared

with the other methods. In Puddle World, UCLS goes on to finish 1200 episodes in the

alloted budget of steps, whereas in River Swim both UCLS and DGPQ get close to the

optimal policy by the end of the experiment. The DGPQ algorithm uses the maximum

49

UCLS
Steps per
Episode
x*10^3

Negated
Total

Reward
2^x

20 80 10 20 50
Episodes Steps (x*10^3)

Sparse Mountain Car Puddle World River Swim

UCLS
UCLS

Optimistic
Initialization

GV-UCB
10

2

10

Total
Reward

10^x

5

1

6

5

250 500 1750Episodes

Optimal

(better
perf.)

(better
perf.)

(better
perf.)

UCLS-L

Optimistic
Initialization

GV-UCB

UCLS-L

GV-UCB
Optimistic
Initialization

UCLS-L

Figure 4.3: A comparison of speed of learning of UCLS in Sparse Mountain Car, Puddle
World and River Swim to algorithms similar to it and Optimistic Initialization. In plots (a)
and (b) lower on y-axis are better, whereas in (c) curves higher along y-axis are better.
Sparse Mountain Car and Puddle World are episodic problems with a fixed experience
budget. The shaded region represents 95% confidence interval, and are mostly small as
the results are averaged over an extensive number of runs.

reward (Rmax) to initialize the Gaussian processes. In Sparse Mountain Car this effec-

tively converts the problem back into the traditional -1 per-step formulation, explaining the

good learning performance. In Puddle World an initialization of 0 corresponds to optimistic

initialization, and therefor ε-greedy performs well.

In our second set of results we compare UCLS to other variants of itself, alongwith

the simple exploration strategy Optimistic Initialization. We include UCLS-L, the linear

complexity variant of UCLS, and GV-UCB, the algorithm derived using Corollary 1 result.

For both UCLS-L and GV-UCB, we sweep the parameter used to scale the uncertainty esti-

mate, along with the learning rates α and αvar for UCLS-L. The initialization for Optimistic

Initialization is also swept from a wide range.

The results are presented in Figure 4.3. Sarsa with optimistic initialization performs

remarkably well in these domains, except in Sparse Mountain Car.

UCLS-L does reasonably well in all the domains. While it experiences more regret in

Puddle World, and River Swim during early learning, by the end of the steps budget, it learns

the optimal policy. In Sparse Mountain Car, surprisingly, UCLS-L learns much faster and a

better policy than UCLS. This can be attributed to the fact that the parameter p in UCLS was

not swept, whereas in UCLS-L we did sweep to find the best parameter to scale the variance

estimate. As the domain is a sparse-reward domain, the variance estimates play a significant

role in influencing exploratory behaviour, and therefore optimizing for p would improve

UCLS’ performance. Nonetheless, these results show UCLS-L to be a promising algorithm

for linear complexity based control. With the loss of contextual variance estimates GV-UCB

50

Steps (x*10^4)1 2 5
1

2

4

Total
Reward
(10^x)

10-5

10-1
Optimal

Suboptimal Random

1 2 5
1

2

4

Total
Reward
(10^x)

10-5
Optimal

Suboptimal Random

10-1

Steps (x*10^4)

UCLS GV-UCB

Figure 4.4: The effect of the confidence parameter p on the policy, in River Swim, using
context-dependent variance (UCLS) and global variance (GV-UCB). The values for p are
{10−5, [1, 2, . . . , 9]× 10−3, 10−2, 10−1}.

explores the complete state space more thoroughly, and therefore performs poorly.

4.3.2 Sensitivity to p and Benefits of Contextual Uncertainty

Next we investigated the impact of the confidence level 1−p, on the performance of UCLS

in River Swim. The confidence interval radius is proportional to
√

1 + 1/p; smaller p

should correspond to a higher rate of exploration. In Figure 4.4, smaller p resulted in a

slower convergence rate, but all values eventually reach the optimal policy.

To investigate the benefit using contextual variance estimates over global variance es-

timates within UCLS, we also show the effect of various p values on the performance of

GV-UCB. While UCLS converges to the optimal policy with different values of p, albeit at

different rates, GV-UCB on the other hand, results in significant over-estimates of variance

across the state space, resulting in poor online performance. The explicit upper confidence

bound given by UCLS does not suffer from this, and sufficiently explores the domain to

converge to an optimal policy without excessively exploring. For regions where there is

low variance, the upper-confidence-bound converges more quickly to zero, whereas it re-

mains higher in regions of uncertainty. Therefore, contextual variance estimates provide the

flexibility of variable convergence based on the variance of the region, and global variance

estimates decay too slowly.

To empirically reinforce the utility of contextual confidence interval radius (CIR) over

global CIR, we evaluate the policies obtained by UCLS and GV-UCB after 50,000 learning

steps in River Swim and present the results in Figure 4.5. In the left plot it can be seen that

UCLS(M) and UCLS(M+CIR) perform almost as well as the optimal policy, whereas both

versions of GV-UCB are still sub-optimal in many parts of the state space. Additionally, the

51

Optimal

Suboptimal

Random

UCLS(M+CIR)
UCLS(M)

GV-UCB(M)

GV-UCB(M+CIR)

Steps (x*10^4)1 2 5
2

3

4
Total

Reward
(10^x)

UCLS(M+CIR)
UCLS(M)

GV-UCB(M)

GV-UCB(M+CIR)

Steps (x*10^4)1 2 5

UCLS

GV-UCB

2

3

4
Total

Reward
(10^x)

Figure 4.5: Policy evaluation plots comparing variations of final policy obtained by UCLS
(p = 0.1) and GV-UCB (p = 10e−5) after 50,000 learning steps in River Swim. Policies
with (M) indicate greedy policy w.r.t. mean estimates, whereas policies with (M+CIR)
indicate greedy policies w.r.t. (mean + CIR) estimates.

overlap of UCLS(M) and UCLS(M+CIR) indicates that contextual CIR fades faster than

global CIR, and is a more data-efficient exploration strategy. The right plot helps contrast

the final policies obtained to the actual control policy used during learning, indicated by

just GV-UCB and UCLS.

4.4 Summary

This chapter addressed a long-standing problem in policy evaluation: of estimating uncer-

tainty in the values estimated by an algorithm. The estimated uncertainties provide high

probability bounds on the range of the optimal value estimate of any state-action for the

policy. These uncertainties are characterized under two situations: (1) when uniform noise

is assumed across the state-action space, and (2) when the noise is allowed to be context

dependent with respect to the representation of the state-action pairs.

Given these uncertainty estimates for a policy, they can be utilized within an approxi-

mate policy iteration framework for control. But, in practice, good online policies can be

learned even under imperfect policy evaluation. Therefore, we build on generalized policy

iteration to present an incremental strategy that utilizes these learned uncertainty estimates

and directs exploration in an on-policy control algorithm. Although the algorithm utilizes

the empirical covariance estimated in place of the true covariance while estimating uncer-

tainties, we empirically show that (1) it performs well, if not better, when compared to other

approaches to exploration based on upper-confidence bounds, and (2) the utility of its un-

certainty estimates that do not make a simplifying assumption of uniform noise across the

state-action space.

52

Chapter 5

Representations for Online Control

In this chapter we shift focus from how to explore for sample-efficient online control to

what representations improve sample-efficiency of learning in online control. Representa-

tions play a critical role in promoting the sample-efficiency of online learning algorithms,

specifically in reinforcement learning, even with linear function approximators. This is be-

cause, the structure of generalization encoded by the representations dictate the targets that

are used for learning, via bootstrapping, in online reinforcement learning algorithms.

Many algorithms learn this generalization structure implicitly, online, by building on

the breakthrough work that utilizes neural networks for feature construction (Mnih et al.,

2015). However, these algorithms incorporate strategies such as experience replay and

target networks to aid online learning. Such strategies not only require additional storage

space for an algorithm, but they slow down learning as they use outdated value estimates, via

target networks, to stabilize online learning. Alternatively, learning representations offline,

which are effective with fast-learning online reinforcement learning algorithms under linear

function approximation, is still a challenging problem.

There has been a lot of work on learning representations that aid value estimation for

a fixed policy (Mahadevan and Maggioni, 2007; Parr et al., 2008; Konidaris et al., 2011).

While such representations have been successful for policy evaluation, their success as ap-

plied to the control setting of reinforcement learning has been limited compared to the

success of a particular representation in the control setting, tile coding (Sutton and Barto,

2018). This is possibly because a significantly useful attribute of tile coding has been its

ability to facilitate online policy improvement with stable learning targets, even under the

extreme case of learning purely from incremental samples, as is done in the SARSA algo-

rithm.

As tile coding is a hand-designed representation, it is not particularly scalable. Although

53

recent work has utilized it a pre-processing step towards improving sample-efficiency of on-

line control with deep neural networks (Ghiassian et al., 2020), the need to hand-design the

tile coder used in the pre-processing step still exists. Alternatively, this chapter proposes a

representation learning strategy that is designed to capture the sample-efficiency improving

characteristic of tile coding, removing the need for any hand-designing.

We will first describe desirable properties of representations for sample-efficient online

control, and then present a method for learning them. Thereafter, we will demonstrate the

empirical benefits of the proposed approach, and analyze its properties along with reasons

for the obtained benefits. We will compare this representation learning strategy with other

strategies that may result in representation spaces with similar properties, before concluding

with experiments that evaluate if the learned representations benefit exploration algorithms.

Contributions

Contribution 1: A method to learn representations that improve sample-efficiency of

incremental online reinforcement learning algorithms. In particular, this method identifies

a key characteristic of hand-designed representations that have been successful in online

control with linear function approximation, and designs a regularizer to encode such a

characteristic in learned representations.

Contribution 2: An empirical evaluation of the proposed representation learning algo-

rithm which: (1) evaluates its effectiveness for online control, and analyses the reason

for it, (2) compares it to other similar representation learning strategies, and (3) evaluates

how the property encoded by the representation learning algorithm can aid exploration in

online reinforcement learning algorithms.

5.1 Locality in Control

In control, an agent updates its value function at every timestep. While model-based ap-

proaches can be incorporated to improve sample-efficiency (Sutton et al., 2012), in the

purely incremental setting an agent can update its learning with just the sample it sees at

a particular timestep t, {St, At, Rt+1, γt+1, St+1}. Such incremental updating is an im-

portant characteristic of successful control algorithms like SARSA (Rummery and Ni-

ranjan, 1994) which use temporal difference updates, that is, the target for timestep t,

Yt+1 = Rt+1 + γt+1Q(St+1, At+1) where At+1 is the action the agent will take in the

54

fully
connected

fully
connected

x1

:

x2

xn

fully
connected yfully

connected

SPARSE
REPRESENTATION

SUPERVISION
SIGNAL

SPARSE REPRESENTATION NEURAL NETWORK

Figure 5.1: A neural network with dense connections producing a sparse representation:
Sparse Representation Neural Network (SR-NN). The green squares indicate active (non-
zero) units, making a sparse last hidden layer where only a small percentage of units are
active. This contrasts a network with sparse connections—which is often also called sparse.
Sparse connections remove connections between nodes, but are likely to still produce a
dense representation.

next state – also called on-policy, as the agent is learning about the policy it is using to

behave.

A particular characteristic of linear function approximation scheme, where algorithms

like SARSA have been effective, is that the representations are all local, like tile coding

(Sutton, 1996). Such local representations enable the agent to learn predictions for that lo-

cal region, without affecting the non-local regions with respect to the function. For instance,

if an agent is learning to drive, it can benefit from a representation that reflects its context –

such as, is it driving in a residential area or an interstate – as likely learning by distinguish-

ing between the two is simpler than learning based on a representation that conflates the

two. Additionally, such a representation can help prevent forgetting or interference (Mc-

Closkey and Cohen, 1989; French, 1991), by only updating local weights, as opposed to

dense representations where any update would modify many weights – thereby providing

more stable targets for temporal-difference based methods like SARSA.

When such representations are learned, using classes of function approximators like

neural networks, it is also important that the learned representations generalize effectively.

While these representations do not need to have binary features like tile coding, it is bene-

ficial that the representation for an input is distributed across multiple features or attributes,

promoting generalization in the compact representation. This property has been described

in the literature as a representation that is distributed (Bengio, 2009; Bengio et al., 2013).

55

Such properties can be well captured by learning sparse representations: those for which

only a few features are active for a given input (Figure 5.1). Enforcing sparsity promotes

identification of key attributes, because it encourages the input to be well-described by a

small subset of attributes. Sparsity, then, promotes locality, because local inputs are likely

to share similar attributes (similar activation patterns) with less overlap to non-local inputs.

In fact, many hand-crafted features are sparse representations, including tile coding (Sut-

ton, 1996; Sutton and Barto, 2018), radial basis functions and sparse distributed memory

(Kanerva, 1988; Ratitch and Precup, 2004). Other useful properties of sparse representa-

tions — which can be seen as projecting data into a higher-dimensional space — include

invariance (Goodfellow et al., 2009; Rifai et al., 2011); decorrelated features per instance

(Földiák, 1990); improved computational efficiency for updating weights in the predictor,

as only weights corresponding to active features need to be updated; and enabling linear

separability in the high-dimensional space (Cover, 1965), which facilitates the learning of a

simple linear predictor. Further, such sparse, distributed representations have been observed

in the brain (Olshausen and Field, 1997; Quian Quiroga and Kreiman, 2010; Ahmad and

Hawkins, 2015).

5.2 Distributional Regularizes for Sparsity

In this section, we describe how to use Distributional Regularizers to learn sparse repre-

sentations with neural networks. The idea was originally introduced for neural networks

with Sigmoid activations in an unpublished set of notes Ng (2011), but had not been sys-

tematically explored. We also introduce the idea of a Set Distributional Regularizer, which

enables sparse representations to be learned with neural networks.

The goal of using Distributional Regularizers is to encourage the distribution of each

hidden node—across samples—to match a desired target distribution. In a neural network,

we can view the hidden nodes, Y1, . . . , Yd, as random variables, with randomness due to

random inputs. Each of these random variables Yj has a distribution pβ̂j(θ), where the

parameters β̂j(θ) of this distribution are induced by the weights θ of the neural network:

pβ̂j(θ)(y) =

∫
s∈S

p(s)p(φj,θ(s) = y)ds.

This provides a distribution over the values for the feature φj,θ(s), across inputs s. A Dis-

tributional Regularizer is a KL divergence KL(pβ ||pβ̂j(θ)) that encourages this distribution

to match a desired target distribution pβ with parameter β.

56

Such a regularizer can be used to encourage sparsity, by selecting a target distribution

that has high mass or density at zero. Consider a Bernoulli distribution for activations, with

Yj ∈ {0, 1}. Using a Bernoulli target distribution with β = 0.1, giving pβ(Y = 1) = 0.1,

encodes a desired activation of 10%. As another example, for continuous nonnegative Yj ,

the target distribution can be set to an exponential distribution pβ(y) = β−1 exp(−y/β),

which has highest density at zero with expected value β. Setting β = 0.1 encourages the

average activation to be 0.1 and increases density on y = 0.

The efficacy of this regularizer, however, is tied to the parameterization of the network,

which should match the target distribution. Therefore, for a ReLU activation, which has

a range [0,∞) an exponential distribution is suitable, but for a Sigmoid activation, giving

values between [0, 1], a Bernoulli is reasonably appropriate. Additionally, the parametriza-

tion should be able to set activations to zero. The ReLU activation naturally enables zero

values (Glorot et al., 2011), by pushing activations to negative values. The addition of a

Distributional Regularizer simply encourages this natural tendency, and is more likely to

provide sparse representations. Activations under Sigmoid and tanh are more difficult to

encourage to zero because they require highly negative input values or input values exactly

equal to 0.5, respectively, to set the hidden node to zero. For these reasons, we advocate for

ReLU for the sparse layer, with an exponential target distribution.

Finally, we modify this regularizer to provide a Set Distributional Regularizer, which

does not require an exact level of sparsity to be achieved. It can be difficult to choose

a precise level of sparsity, making the Distributional Regularizer prone to misspecifica-

tion. Rather, the actual goal is typically to obtain at least some level of sparsity. For

this modification, we specify that the distribution should match any of a set of target dis-

tributions Qβ , giving a Set KL: minp∈Qβ KL(p||pβ̂j(θ)). Generally, this Set KL can be

hard to evaluate. However, as we show below, it corresponds to a simple clipped KL-

divergence for certain choices of Qβ , importantly including for exponential distributions

where Qβ = {pβ̃ |β̃ ≤ β}.

Theorem 2 (Set KL as a Clipped-KL). Let pη be a one-dimensional exponential family

distribution with the natural parameter η, B = [η1, η2] be a convex set in the natural

parameter space and QB = {pη : η ∈ B}. Then the Set KL divergence

SKL(QB||pη)
def
= min

p∈QB
KL(p||pη),

57

is (a) non-negative (b) convex in η and (c) corresponds to a simple clipped form

SKL(QB||pη) =


KL(pη2 ||pη), if η > η2,
KL(pη1 ||pη), if η < η1,

0, else.

Proof: For exponential families, the KL divergence correspond to a Bregman divergence

(Banerjee et al., 2005):

KL(pη1 ||pη) = DF (η||η1),

for a convex potential function F that depends on the exponential family. Hence, we have

SKL(QB||pη) = arg min
η̃∈B

DF (η||η̃).

If η ∈ B, this minimum over Bregman divergences is clearly zero. If η < η1 and η > η2,

we have to consider the minimization. The Bregman divergence is not necessarily convex in

the second argument. Instead, we can rely on convexity of the set B. Taking the derivative

of DF (η||η̃) wrt η̃, we get

d

dη̃
DF (η||η̃) =

d

dη̃

[
F (η)− F (η̃)− (η − η̃)

d

dη̃
F (η̃)

]
= − d

dη̃
F (η̃) +

d

dη̃
F (η̃)− (η − η̃)

d2

dη̃2
F (η̃)

= − d2

dη̃2
F (η̃)(η − η̃).

Now because F is convex, − d2

dη̃2
F (η̃) is always negative. The derivative, then, is negative

when η̃ < η, indicating η̃ should be increased to decrease DF (η||η̃). Similarly, when

η̃ > η, the derivative is positive, indicating η̃ should be decreased to decrease DF (η||η̃).

This derivative, then, points η̃ to the boundaries when η /∈ B, respectively to the boundary

points closest to η. �

Corollary 2 (SKL for Exponential Distributions). For pβ an exponential distribution, with

natural parameter η = −β−1, and B = (0, β], then

SKL(QB||pβ̂)=

{
log β̂ + β

β̂
− log β − 1, if β̂ > β,

0, else.

Proof: For B = (0, β] and η = −β−1, B = (−∞,−1/β], η ∈ B. For exponential

distribution

KL(pη||pη̂) = log(−η) +
η̂

η
− log(−η̂)− 1.

58

Therefore,

SKL(QB||pη̂)=

{
log(−η) + η̂

η − log(−η̂)− 1, if η̂ > −1/β,

0, else.

�

We use the SKL in Corollary 2, to encode a sparsity level of at least β, rather than

exactly β, for the last layer in a two-layer neural network with ReLU activations. We

call the representations learned with this regularizer as SR-NN, which stands for Sparse

Representation learned by a Neural Network.

The overall loss function is

JSR−NN (θ) = J(θ) + λSKL

d∑
i

SKL(QB||pη̂i),

where J(θ) is the vanilla objective function, d is the dimension of representation, and λSKL

controls the weight of the sparsity regularization. We include pseudocode for optimizing

the regularized objective JSR−NN with the SKL for ReLU activation with Exponential

Distributions in Algorithm 7. This algorithm is not used online. Instead, we learn the

representation for a batch of data, offline. The pseudocode is given for this offline batch

setting.

Algorithm 7 Optimizing the regularized objective for SR-NN

1: Initialize neural networks weights based on He initialization (He et al., 2015): for each
layer l and each element ij of the weight matrix W

(l)
ij ∼ N (0, 2

nl
) and b(l) = 0 where

nl the number of input nodes for layer l.
2: while not converge to a minimum do
3: Draw m i.i.d. samples {y1, ..., ym} from the true data distribution, and do the for-

ward pass for the neural network
4: For j = 1, ..., k, compute β̂j =

∑m
i=1 yij/m and the gradient:

∂KL(pβ ||pβ̂j)

∂β̂j
= (

1

β̂j
− β

β̂2
j

)1[β̂j > β]

5: Update each weight θ ∈ {∀l,W(l),b(l)} with the gradient:

∂J(θ)

∂θ
+ λKL

k∑
j=1

∂KL(pβ ||pβ̂j)

∂β̂j

∂β̂j
∂θ

59

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

-200

-600

50

10050 10050 10050

-500

-1500
1000500

Episode number

-100

-300

SR-NN
SR-NN

SR-NN

SR-NN
TC

NN

TC

NN

TC

NN

TC

NN

Figure 5.2: Learning curves for SARSA(0) comparing SR-NN, Tile Coding and vanilla
NN in the four domains. The shaded region represents 95% confidence interval. In all the
domains, higher y-axis is better, and the x-axis denotes the episode number.

5.3 The Utility of Sparsity for Control

We now look at the empirical benefits of such learned sparse representations over just

learned representations. We compare SR-NN to tile coding, a static representation, as a

baseline to compare to, as it known to perform very well in the benchmark RL domains we

experiment with (Sutton and Barto, 2018).

We evaluate control performance on four benchmark domains: Mountain Car, Puddle

World, Acrobot and Catcher. All domains are episodic, with discount set to 1 until termi-

nation. We choose these domains because they are well-understood. A priori, it would be

expected that a standard action-value method, like SARSA, with a two-layer neural net-

work, should be capable of learning a near-optimal policy in all domains.

The experimental set-up is as follows. To extract a representation with a neural net-

work, to be used for control, we pre-train the neural network on a batch of data with a

mean-squared temporal difference error (MSTDE) objective and the applicable regulariza-

tion strategies. The training data consists of trajectories generated by a fixed policy that

explores much of the space in the various domains. For the SR-NN, we use our distribu-

tional regularization strategy. This learned representation is then fixed, and used by a fully

incremental SARSA(0) agent for learning a control policy, where only the weights w on

the last layer are updated. The meta-parameters for the representation along with the agent

were swept in a wide range, and chosen based on control performance. The aim is to pro-

vide the best opportunity to the more sensitive regular feed-forward network (NN) to learn

on these problems.

We choose this two-stage training regime to remove confounding factors in difficulties

of training neural networks incrementally. Our goal here is to identify if a sparse represen-

tation can improve control performance, and if so, why. The networks are trained with an

60

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de
SR-NN

-100

-200

-300

10050

SR-NN

Dropout NN

l1-NN

l2-NN

Mountain Car
0

-200

-400

10050

SR-NN

Dropout-NN

l2-NN

Puddle World
0

-200

-400

-600
10050

SR-NN

Dropout-NN
l1-NN

l2-NN

Acrobot

50

0

1000500

Dropout-NN

l1-NN

l2-NN

Catcher

Episode number

Figure 5.3: Learning curves for SARSA(0) comparing SR-NN to the regularized represen-
tations. The shaded region represents 95% confidence interval. All representations except
`1-NN in Puddle World could reach goals more than 70 times out of 100. `1 does poorly in
Puddle World, and is not visible.

objective for learning values, on a large batch of data generated by a policy that covers the

space; the learned representations are capable of representing the optimal policy. We in-

vestigate their utility for the fully incremental learning framework. Additional details about

the domains, ranges and objectives are provided in Appendix B.2.

The learning curves for the four domains, with Tile-Coding (TC), SR-NN and NN,

are shown in Figure 5.2. Both SR-NN and NN used two-layers, of size [32, 256], with

ReLU activations. The NNs performs surprisingly poorly, in some case increasing and then

decreasing in performance (Mountain Car), and in others failing altogether (Catcher). In

all the benchmark RL domains, the baseline sparse representation, TC, performs well, as

expected. Specifically in Catcher, TC learns a close-to-optimal policy as the representation

is powerful. The learned SR-NN performs as well as TC in all domains except Catcher,

where it is effective for learning, whereas NN performs really poorly in all domains, and

does not learn anything in Catcher. Both SR-NN and NN representations were trained in the

same regime, with similar representational capabilities. Yet, the sparsity of SR-NN enables

the SARSA(0) agent to learn, where the regular feed-forward NN does not. We investigate

this effect further in the next sets of experiments, to better understand the phenomenon.

To determine if the main impact of the sparse representation is simply from regular-

ization, preventing overfitting, we tested several regularization strategies for the neural

network. These include `2 and `1 on the weights of the network (`2-NN and `1-NN re-

spectively) and Dropout on the activation (Srivastava et al., 2014) (Dropout-NN). The `1

regularizer actually encourages weights to go to zero, reducing the number of connections,

but does not necessarily provide a sparse representation. In Figure 5.3, we can see that reg-

ularization is unlikely to account for the improvements in control. SR-NN performs well

across all domains, whereas none of the regularization strategies consistently perform well.

`1-NN and `2-NN perform well in Mountain Car during early learning, but fail in other do-

61

SR-NN l2-NN l1-NN Dropout-NN NN

Number of steps (x*103)
1 7 2 12 20 100 1 5 20 100

0

-15

-30

-50

-150

-250

0

-150

-300

0

-20

-40

0

-200

-600

Estimated
(s,a)
value

0.0 0.32 0.135 0.139 0.0 0.12 0.0 1.25 0.0 1.6

True
(s,a)
value

0

-20

-40

:
:
:
:
:

c

b

d

a

Figure 5.4: A study in Puddle World to investigate the effect of locality during on-policy
control. (a) The activation maps for 20 randomly chosen neurons for different represen-
tations - each cell in the heatmap corresponds to the complete Puddle World state-space.
The activation maps, and magnitude of activation of SR-NN are visibly sparser, and lower,
when compared to Dropout and NN. `1 and `2 are quite dense in terms of activation area,
whereas the magnitudes are really low - due to regularization of the network weights. (b)
A visualization of the domain, denoting the selected state-action pairs used in the analysis.
(c) The estimated state-action values for the selected configurations during on-policy con-
trol with SARSA(0) (ε = 0.1), while utilizing the specific representation of interest. (d)
The true state-action values for the selected configurations with an ε = 0.1-optimal policy,
estimated from 100k Monte Carlo rollouts.

mains. Dropout-NN performs poorly in all domains except Puddle World. Interestingly, in

this one domain, Dropout-NN appears to have learned a sparse representation, based on the

heatmap shown in Figure 5.4. It has been observed that Dropout can at times learn sparse

representations (Banino et al., 2018), but not consistently, as corroborated here.

We next investigate the hypothesis that locality is preventing catastrophic interference.

We first investigate the locality of the representations, as well as examining the bootstrap

values over time. We show results for Puddle World first, as it is an interpretable two-

dimensional domain, and then show the results for Mountain Car.

Figure 5.4(a) shows the activation map of randomly selected hidden neurons with the

different networks in Puddle World. We can see that each hidden neuron in SR-NN only

responds to a local region of the input space, while some hidden neurons in NN respond

to a large part of the space. Consequently, when one state is updated in a part of the space

with the NN representation, it is more likely to significantly shift the values in other parts

of the space, as compared to the more local SR-NN. The `2-NN, and `1-NN representations

do not exhibit any discernible locality properties. Dropout-NN does achieve some degree

of locality in this domain, as mentioned earlier.

To show the interference (or lack of interference) of bootstrap targets used during con-

62

SR-NN l2-NN l1-NN Dropout-NN NN

Number of steps (x*103)

Estimated
(s,a)
value

2 16 2.5 15 2.5 17.5 5 20 5 35

0

-60

-120

0

-80

-160

0

-100

-200

0

-75

-150

0

-100

-200

True
(s,a)
value

-10

-50

-100

close-to-optimal
policy

<valley,-ve>: reverse <firstHillTop,+ve>: accelerate <valley,+ve>: accelerate <secondHillTop,+ve>: accelerate

0.0 0.47 0.135 0.33 0.0 0.75 0.0 0.48 0.0 2.5

c

a

b

Figure 5.5: A study in Mountain Car to investigate the effect of locality during on-policy
control. The chosen 4 state-action pairs are denoted using the following format in the
legend – 〈car-position,car-velocity〉:action. (a) The activation maps for 20 randomly chosen
neurons for different representations - each cell in the heatmap corresponds to the complete
Mountain Car state-space. (b) The true state-action values for the selected configurations
with an ε = 0.1-optimal policy, estimated from 10k Monte Carlo rollouts. (c) The estimated
state-action values for the selected configurations during on-policy control with SARSA(0)
(ε = 0.1), while utilizing the specific representation of interest.

trol, we select five states and evaluate their action-values for the optimal action over the

course of learning. These states are distributed across the observation space, depicted in

Figure 5.4(b). The bootstrap estimates, that correspond to the algorithm settings for the

learning curves, are plotted in Figure 5.4(c). We can see that the relative ordering of the

value estimates is maintained with SR-NN and Dropout-NN, which were the two NNs ef-

fective for on-policy control, and that their values converge to near the true values (given in

Figure 5.4(d)). The other representations, on the other hand, have very poor estimates.

We now present the bootstrap values comparing SR-NN to different regularization

strategies, and NN in Mountain Car in Figures 5.5. We do not visualize the location in

the domain here. We include the bootstrap values and the heatmaps in Figures 5.5(a)

and Figures 5.5(b). Here we see that while the range of values and the relative ordering

of action-vaues estimated by various representations are similar, from Figure 5.5(c), the

heatmaps reflect that the more localized activations result for the neurons learned with SR-

NN, Figure 5.5(b).

Finally, we report additional measures of locality, to determine if the successful methods

are indeed sparse. The heatmaps provide some evidence of locality, but are more qualita-

tive than quantitative. We report two qualitative measures: instance sparsity and activation

overlap. Instance sparsity corresponds to the percentage of active units for each input. A

63

6

2

15

5

100500

6

2

100500 100500

SR-NN l2-NN l1-NN Dropout-NN NN

N
um

be
r o

f i
ns

ta
nc

es
(x

*1
03)

Percentage of hidden units used

8

4

100500

Mountain Car Puddle World Acrobot Catcher

Figure 5.6: Instance sparsity comparing SR-NN to the regularized variants and vanilla NN.
The percentage evaluation is designed to disregard units that are never active across all
samples in the batch (dead units).

sparse representation should be instance sparse, where most inputs use a few active units.

As shown in Figure 5.6, SR-NN has consistently low instance sparsity across all four do-

mains, with slightly higher level in Catcher, potentially explaining the noisy behaviour in

that domain. Once again, Dropout-NN is noticeably more instance sparse on Puddle World,

but less so on other domains. The NN representation has some instance sparsity, likely due

to simply using ReLU activation. Interestingly, `1-NN and `2-NN actually produced less

instance sparsity.

Activation overlap, introduced by French (1991), reflects the amount of shared activa-

tion between any two inputs. We consider a variant of activation overlap that measures

the number of shared activation between two representations, φ(x1) and φ(x2), for two

samples, x1, and x2:

overlap(φ(x1),φ(x2)) =
∑
j

1[(φj(x1) > 0) ∧ (φj(x2) > 0)].

We measure the activation overlap of the five chosen states, distributed across Puddle World

and Mountain Car. If the overlap between two representations is zero, the interference

would be zero. Updating the value function with respect to one state, therefore, would not

affect the other state’s value. Table 5.1 shows the average overlap, and once again, a similar

trend emerges where, SR-NN has significantly less overlap in both the domains (about 8

and 16.8), with Dropout-NN showing the next least overlap in PW (with about 30), and

l2-NN showing the next least overlap in MC (with about 72.5).

Overall, these results provide some evidence that (a) sparse representations can improve

control performance in an incremental control setting, (b) these sparse representations ap-

pear to provide locality and (c) this locality reduces interference and improves accuracy of

bootstrap values in SARSA(0).

64

SR-NN `2-NN `1-NN Dropout-NN NN
PW 8.8 111.5 142.5 31.2 54.0
MC 16.8 112.3 109.5 72.5 106.5

Table 5.1: Activation overlap in Puddle World and Mountain Car. The numbers are the
average overlap over all pairs of selected states.

6

2

100500N
um

be
r o

f i
ns

ta
nc

es
(x

*1
03)

3

1

100500

Mountain Car
6

2

100500

Puddle World
6

2

100500

Acrobot Catcher

Percentage of hidden units used
 ReLU+SKL ReLU+KL NN

Figure 5.7: Instance sparsity as evaluated on a batch of test data comparing ReLU+KL
and ReLU+SKL to NN. While ReLU+KL can make representations denser than just NN,
ReLU+SKL always results in sparser representations.

5.4 Evaluation of Distributional Regularizers

In this section, we investigate the efficacy of Distributional Regularizers for obtaining spar-

sity. There are a variety of possible choices with Distributional Regularizers, including

activation function and corresponding target distribution and using a KL versus a Set KL.

Here, we present results of investigating some of these combinations, particularly focusing

on the difference in sparsity and performance when using (a) KL versus SKL; (b) Sigmoid

(with a Bernoulli target distribution) versus ReLU (with an Exponential target distribution);

and (c) previous strategies to obtain sparse representations versus the proposed variant of

the Distributional Regularizer.

5.4.1 Comparing KL to Set KL

In the first set of experiments, we compare the instance sparsity of KL to Set KL, with ReLU

activations and Exponential Distributions (ReLU+KL and ReLU+SKL). Figure 5.7 shows

the instance sparsity for representations learned with ReLU activations with Exponential

Distributions (ReLU+KL and ReLU+SKL), and for the NN without regularization. Inter-

estingly, ReLU+KL actually reduces sparsity in several domains, because the optimization

encouraging an exact level of sparsity is quite finicky. ReLU+SKL, on the other hand, sig-

65

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

-200

-400

-600

-100

-300

-600

-200

-600

-1000

50

0
10050 10050 10050 1000500

ReLU+SKL ReLU+SKL
ReLU+SKL

ReLU+SKLReLU+KL

SIG+KLSIG+SKL

Mountain Car Puddle World Acrobot Catcher

ReLU+KL

ReLU+KL

ReLU+KL
SIG+SKL

SIG+SKL

SIG+SKL

SIG+KL

SIG+KL

SIG+KL

Episode number

Figure 5.8: Learning curves for SARSA(0) with different Distributional Regularizers. The
shaded region represents 95% confidence interval. ReLU networks utilize exponential dis-
tribution, whereas Sigmoid networks utilize Bernoulli distribution.

0.0 0.1 0.0 0.18 0.1 0.25 0.18 0.22

ReLU+SKL ReLU+KL SIG+SKL SIG+KL
Figure 5.9: Heatmaps of activations with different Distributional Regularizers in Puddle
World. Each square represents the activation of a different neuron across the state space,
and corresponds to the complete 2D state-space.

nificantly improves instance sparsity over the NN. This instance sparsity again translates

into control performance, where ReLU+KL does noticeably worse than ReLU+SKL across

the four domains in Figure 5.8. Despite the poor instance sparsity, ReLU+KL does actually

seem to provide some useful regularity, that does allow some learning across all four do-

mains. This contrasts the previous regularization strategies, `2, `1 and Dropout, which all

failed to learn on at least one domain, particularly Catcher.

5.4.2 Comparing Sigmoid to ReLU

In the next set of experiments, we compare Sigmoid (with a Bernoulli target distribution)

versus ReLU (with an Exponential target distribution). With both KL and Set KL they

result in combinations ReLU+KL, ReLU+SKL, SIG+KL, and SIG+SKL. We expect Sig-

moid with Bernoulli to perform significantly worse—in terms of sparsity levels, locality and

performance—because the Sigmoid activation makes it difficult to truly get sparse represen-

tations. This hypothesis is validated in the learning curves in Figure 5.8 and the heatmaps

for Puddle World in Figure 5.9. SIG+KL and SIG+SKL perform poorly across domains,

66

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

-200

-400

10050

SR-NN

k-sparse-NN
l1R-NN

l2R-NN

WTA-NN

Mountain Car
0

-500

-1000

10050

Puddle World
SR-NN

k-sparse-NNl1R-NN

l2R-NN

WTA-NN

-100

-300

10050

Acrobot

SR-NN

k-sparse-NN

l1R-NN

l2R-NN

WTA-NN

50

0

1000500

Catcher

SR-NN

k-sparse-NNl1R-NN l2R-NN

WTA-NN

Episode number

Figure 5.10: Learning curves for SARSA(0) comparing SR-NN to previous proposed sparse
representations learning strategies. All strategies except SR-NN fail to learn online in
Catcher, resulting in low visibility in the plot.

10

5

10

5

100500

15

10

100500 100500

SR-NN l2R-NN l1R-NN k-sparse-NN WTA-NN

10

5

N
um

be
r o

f i
ns

ta
nc

es
(x

*1
03)

Percentage of hidden units used

Mountain Car Puddle World Acrobot Catcher

100500

Figure 5.11: Instance sparsity comparing SR-NN to previous proposed sparse representa-
tions learning strategies. The shaded region represents 95% confidence interval. All the
representation learning strategies learn relatively sparse representations, with SR-NN being
the most sparse, expect in Catcher. Although SR-NN representations are the least sparse
among all in Catcher, they lead to the best online performance.

even in Puddle World, where they achieved their best performance. Unlike ReLU with Ex-

ponential, here the Set KL seems to provide little benefit. The heatmaps in Figure 5.9 show

that both versions, SIG+KL and SIG+SKL, cover large portions of the space, and do not

have local activations for hidden nodes. In fact, SIG+KL and SIG+SKL use all the hidden

nodes for all the samples across domains, resulting in no instance sparsity.

5.4.3 Comparing to Other Sparse Representation Learning Strategies

Next, we compare to other alternatives for learning sparse representations. One simple

strategy is using `1 and `2 regularization on activation (denoted by `1R-NN and `2R-NN

respectively). These approaches seem natural to achieve sparsity, but there is little litera-

ture investigating their utility (Bengio et al., 2013). Another strategy is enforcing sparsity

explicitly with thresholds. k-sparse auto-encoders guarantee instance sparsity by keeping

only the top-k largest activations for each node (Makhzani and Frey, 2013) (denoted by

67

k-sparse-NN), whereas Winner-Take-All (WTA) autoencoders keeps the top k% activations

per node across instances during training, to promote sparse activations of the node over

time (Makhzani and Frey, 2015) (denoted by WTA-NN). We include learning curves and

instance sparsity for these methods, for a ReLU activation, in Figures 5.10 and 5.11. Results

for the Sigmoid activation are included in Appendix B.1. Neither WTA-NN nor k-sparse-

NN are effective. We found that k-sparse-NN was prone to dead units, and often truncates

non-negligible value. Surprisingly, `2R-NN performs comparably to SR-NN in all domains

but Catcher, whereas `1R-NN is effective only during early learning in Mountain Car. From

the instance sparsity plots in Catcher, we see that `1R-NN and `2R-NN produce highly

sparse (2%-3% instance sparsity), potentially explaining its poor performance. While sim-

ilar instance sparsity was effective in Puddle World, this is unlikely to be true in general.

This was with considerable parameter optimization for the regularization parameter.

5.5 Sparsity and Exploration Algorithms

We next explore how sparsity impacts exploration algorithms. We utilize the SR-NN and

NN representations with two different exploration algorithms: UCLS, presented in Chap-

ter 4, and RLSVI (Osband et al., 2016b). UCLS is a purely incremental control algorithm

whose exploration strategy relies on estimating upper-confidence bounds using learned un-

certainty estimates. This uncertainty estimation procedure can benefit from local/sparse

representations as the locality information can improve the algorithm’s ability to track vis-

ited part of the state space online, in turn, aiding exploration. RLSVI is a batch method to

exploration that uses Bayesian uncertainty estimates. These two methods, therefore, repre-

sent the extremes of the data usage spectrum: one purely incremental relying on tracking,

and the other, utilizing all the data to estimate closed-form solutions. Nonetheless, both

methods can be sensitive to the degree of generalization in the approximation space used.

We experiment with two different forms of UCLS – (1) a UCB variant as presented in

Chapter 4 utilizing an upper-confidence bound, and (2) a Thompson sampling variant that

utilizes the estimated value, q̂(s, a), and uncertainty, û(s, a), to sample value estimates from

a normal distribution N (q̂(s, a), βû(s, a)), where β controls the scale of the uncertainty.

We believe the Thompson sampling variant can be more effective when the representations

are dense. The relevant parameters of all three algorithms are selected based on a sweep.

We present the results comparing the two representations and the three algorithms (two

variants of UCLS, and one RLSVI) in Figure 5.12. In all domains UCLS variants with SR-

68

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Episode number

Mountain Car

-200

-1000
10040

UCLS (NN)

RLSVI (NN)
RLSVI

(SR-NN)

UCLS
(SR-NN)

Puddle World

-1000

-4000

10040
UCLS (NN)

RLSVI
(SR-NN)

UCLS (SR-NN)

Acrobot

-200

-1000
10040

UCLS (NN)

RLSVI (NN)

RLSVI (SR-NN)

UCLS (SR-NN)

Catcher

14

0

1000400
UCLS (NN)

UCLS (SR-NN)

Figure 5.12: Learning curves for the exploration algorithms comparing SR-NN and NN
representations. The shaded region represents 95% confidence interval. The dashed variants
of UCLS lines utilize Thompson sampling. The UCB variant of UCLS(NN) is unstable in
Mountain Car for the parameter range swept, whereas RLSVI(NN) is unstable in Puddle
World; therefore they are not present in the graph. RLSVI with both NN and SR-NN
representations in Catcher learns policies where the episodes do not terminate – the optimal
policies. And therefore, are not present in the graph.

NN representations exhibit good online performance. UCLS variants with SR-NN exhibit

high variance in Catcher, which can likely be reduced with more runs or a finer parameter

sweep. RLSVI on the other hand performs similarly with SR-NN and NN representations

in Mountain Car and Acrobot, possibly because it is a batch algorithm. In Catcher, RLSVI

performs really well with the closed-form solution. With both NN and SR-NN represen-

tations, RLSVI has many runs where episodes do not terminate in a budget of 1M steps,

leading to a very high cumulative reward per episode: 3 of 30 runs where RLSVI uses NN

representations exhibit this behaviour, whereas 22 of 30 runs where RLSVI uses SR-NN

representations exhibit this behaviour. Therefore, they are not included in the plot. RLSVI

with NN representations fail in Puddle World, whereas UCLS with UCB and NN represen-

tations fail in Mountain Car.

Nonetheless, overall, these results suggest that the locality information provided by

SR-NN representations is important for achieving the exploration goals of algorithms like

UCLS that track visitation in state space online.

5.6 Summary

This chapter proposed a strategy for learning representations that improve sample-efficiency

of online reinforcement learning algorithms, called SR-NN. SR-NNs utilize a regularizer to

promote the representation function to include locality, like tile coding, which helps reduce

interference of bootstrap targets during online learning. SR-NNs are evaluated on a suit of

microworlds, and contrasted against other representation learning strategies, along with the

benefits it can provide for algorithms designed address online exploration.

69

Chapter 6

Directed Exploration in
Sample-Efficient Online Control

Off-policy strategies like replay are crucial for improving sample-efficiency of online con-

trol algorithms. As the availability of hardware for storage and compute becomes ubiqui-

tous, algorithms that can benefit from multiple replay based updates will scale in sample-

efficiency as well. However, not all the exploration strategies discussed are compatible with

such sample-efficient replay updates, like, Kumaraswamy et al. (2018); White and White

(2010).

Second, surprisingly, the distinction between the two objectives necessary for effective

exploration – maintaining out-of-sample epistemic uncertainty, and estimating in-sample

epistemic uncertainty – are not explicitly considered in many methods. While some meth-

ods consider the idea of out-of-sample epistemic uncertainty explicitly, like DORA (Choshen

et al., 2018) via exploration-values, others consider the idea of in-sample epistemic uncer-

tainty quantification primarily, like Bootstrap DQN (Osband et al., 2016a).

Third, some methods that maintain a distribution over value functions follow a staged-

approach to exploration where the value function is fixed per episode, which does not al-

low for value estimates to be updated online (Osband et al., 2016b,a, 2018). This delays

learning, and therefore reduces the potential sample-efficiency benefits. Further, the ideal

frequency for policy updates is unclear if the domain is continuing.

Designing a sample-efficient online control algorithm with a compatible exploration

strategy has been a long standing goal of reinforcement learning research. In the approx-

imation setting, designing such an effective exploration strategy inevitably places a strong

requirement on the function approximator used. Additionally, it is also necessary that the

exploration strategy accounts for the two goals of exploration – visiting unknown parts of

the MDP, and reducing uncertainty with respect to the visited part of the MDP – while be-

70

ing compatible with off-policy strategies like replay. There are many algorithms that are

designed to address these two goals, either explicitly (Grande et al., 2014) or implicitly

(Osband et al., 2016b, 2018), but they have limitations that makes it challenging to use

them online. DGPQ (Grande et al., 2014) utilizes a Gaussian Process for learning for which

specifying an effective kernel can be hard. RLSVI (Osband et al., 2016b) and Randomized

Prior for Bootstrap DQN (Osband et al., 2018) are algorithms that maintain a distribution

over value functions, whose online learning schedule can be hard to design, as discussed

previously.

In this chapter, we propose an algorithm to address this problem setting. We first review

the limitations of UCLS, particularly the reasons why it is not a satisfactory algorithm for

this online setting. Then we provide an overview of existing online control algorithms and

the key assumptions they make in the approximation setting. Following this, we present

an architecture for effective exploration in the online setting, and an algorithm that is an

instantiation of the architecture called Online Optimistic Value Iteration (OOVI). We con-

clude this chapter with an empirical investigation of the algorithm.

Contributions

Contribution 1: A classification of algorithms designed for sample-efficient incremental

control, and an overview of the important ideas that makes them effective algorithms.

An identification of two sources of epistemic uncertainty that is important for guiding

effective exploration in the online setting, and an algorithm called OOVI that accounts for

these goals. The algorithm addresses the limitations of UCLS while retaining its benefits,

and can be implemented to scale with the availability of computational resources.

Contribution 2: An empirical evaluation of OOVI with linear function approximation

that compares it with other online control algorithms, and evaluates (1) the benefits of

replay updates, (2) the importance of the two sources of epistemic uncertainty it estimates,

and (3) its sensitivity to the availability of data for planning purposes.

6.1 Limitations of UCLS

In Chapter 3, Section 3.4, we reviewed the three attributes we would like in a control al-

gorithm. They are: (1) propagation of uncertainty, (2) the function-space being used is

amenable to sample-efficient learning, and (3) the optimal value function q∗ is within the set

of functions considered by the exploration strategy of the online control algorithm. While

71

the first two attributes were incorporated with reasonable solution strategies described in

Chapter 4 and Chapter 5, the third attribute remains, and is crucial to promote learning

near-optimal behaviour. In particular, although the performance of our proposed control

algorithm, UCLS, was shown to be empirically promising in the linear function approxima-

tion setting, it is unclear whether it learns near-optimal behaviour, in general, outside the

set of experiments tested.

As UCLS may not satisfy the third desirable attribute, it is possible that the regret bound

presented by the Optimistic Values Theorem, Theorem 4.2.1, does not apply to it. In this

case, UCLS violates Assumption 1 of Optimistic Values Theorem – Expected Optimism.

Assumption 1 utilizes the estimates q̃t, which are defined as q̃t = q̂t + ût. While satisfying

Assumption 3 – Convergent Action-Values – which UCLS does, an algorithm can satisfy

Assumption 1 with the aid of the confidence interval radius term, ût. For effective explo-

ration, this confidence interval term that estimates the epistemic uncertainty, ût, typically

needs to incorporate two sources of information. They are:

1. in-sample epistemic uncertainty - that estimates any uncertainty with respect to the

data seen – the visited parts of the MDP, and

2. out-of sample epistemic uncertainty - that estimates any uncertainty with respect to

any data not seen – the unvisited parts of the MDP.

While UCLS utilizes a heuristic for ensuring effective out-of sample epistemic uncertainty,

it also conflates the two sources of information into a single term. This makes it hard to

verify if UCLS satisfies Assumption 1.

Arguably, to improve sample-efficiency of online learning, it is necessary to incorporate

planning strategies. The simplest form of planning updates rely on utilizing transition tuples

of the form < st, at, st+1, rt+1, γt+1 >. If the algorithm is designed to learn a model, then

such transition tuples can be sampled from the model. But, learning effective models in the

approximation case is a hard problem and an active area of research. Alternatively, more

simplistically, if storage complexity of an algorithm is not a concern, then one could use

an experience replay buffer. The buffer is essentially a part of the available storage in the

algorithm that is used for saving the transition tuples experienced online. Transition tuples

can then be sampled from this experience replay buffer to simulate an experience which

the agent can utilize for planning updates. These planning updates can be used to improve

both value estimation, and uncertainty estimation. But UCLS’ exploration strategy is not

compatible with such planning updates.

72

Algorithm property Learning problem

Representation Model? Finite-horizon Discounted Average-reward

Tabular Yes UCRL, PSRL, MBIE, UCRL, UCRL2,
UCRL2, REGAL MORMAX, OIM REGAL , R-max, E3

No RLSVI DQL, MBIE-EB
Linear No LSVI-UCB, ELEANOR DGPQ, ? FOPO

Table 6.1: A table summarizing approaches to sample-efficient online control in the vari-
ous online reinforcement learning settings. The table also categorizes them based on two
properties – the representation space they are designed for, and whether they are model-
based or not. All finite-horizon algorithms and average-reward algorithms have associated
regret bounds, whereas the discounted algorithms have associated PAC sample complexity
guarantees. The red box highlights the category of problem setting for which proposing an
algorithm is the focus of the rest of this chapter.

UCLS’ exploration strategy is designed to be effective when the algorithm utilizes only

the incremental online samples to learn. This is because UCLS maintains both in-sample

and out-of-sample epistemic uncertainties through the term ût, and UCLS’ in-sample epis-

temic uncertainties reflect uncertainties with respect to its value estimates. If one were to

improve in-sample epistemic uncertainty estimation using replay with the term ût – it can

rapidly reduce to 0 if the algorithm happens to have accurate value estimates for any evalu-

ated policy πt. This, in-turn, leads to a lack of effective out-of-sample epistemic uncertainty,

and consequently, failure of effective directed exploration. Therefore, there is a need for an

exploration strategy which improves upon UCLS, by being effective under sample-efficient

planning strategies such as replay, while maintaining the desirable attributes of UCLS, such

as, its in-sample epistemic uncertainty estimation component.

6.2 An Overview of Online Control Algorithms

In control, the goal of an agent is to maximize some form of long-term reward accumula-

tion (Puterman, 2014). When the interaction cycle between the agent and the environment

is of a fixed length, the goal can be modelled as maximizing the cumulative sum of re-

wards – giving us finite-horizon RL. Otherwise an agent can either optimize infinite-horizon

long-term cumulative discounted reward for a subset of the states in the MDP – giving us

discounted-reward RL, or infinite-horizon average reward for all states in the MDP – giving

us average-reward RL.

We will now review online control algorithms that have theoretical guarantees for these

problem settings. In particular, we identify the assumptions behind these methods, and the

73

central ideas that allow for these theoretical guarantees, so as to develop a new algorithm

inspired by these theoretically-sound ideas. Table 6.1 provides a categorization of existing

algorithms for value-based online control with both tabular and linear representations. The

algorithms are also classified based on whether they are model-based or model-free.

Tabular Representations: Early work in the area of online control algorithms focused

on the average-reward setting, the foundational ideas from which are still the basis of new

algorithms in the approximation setting. Some model-based algorithms such as E3 (Kearns

and Singh, 2002), and R-max (Brafman and Tennenholtz, 2003) assume the existence of

a highly rewarding reachable state, called the“Garden of Eden” state, and utilize counts of

visitation for exploration, whereas, other algorithms uch as UCRL (Auer and Ortner, 2006),

UCRL2 (Jaksch et al., 2010), and REGAL (Bartlett and Tewari, 2012) utilize confidence

intervals. The latter methods are also designed for MDPs with increasing difficulty of

transition dynamics – unichain, communicating, and weakly communicating, respectively.

For discounted problems, inspired by confidence intervals of UCRL, Strehl and Littman

(2008) proposed MBIE, whereas inspired by R-max, Szita and Szepesvari (2010) proposed

MORMAX. Additionally, Szita and Lorincz (2008) introduced OIM based on the principle

of optimistic initialization. Both MORMAX and OIM incorporate the idea of “Garden of

Eden” state to induce out-of-sample epistemic uncertainty. As these methods are all model-

based, extracting a policy relies on using the extended value iteration algorithm (Strehl and

Littman, 2008; Jaksch et al., 2010) in its planning phase.

To avoid the expensive planning necessary in model-based algorithms, some break-

through model-free algorithms were proposed for discounted MDPs. DQL (Strehl et al.,

2006) utilizes optimistic initialization for inducing out-of-sample epistemic uncertainty. It

also tracks visitation times and update flags, which helps ensure that updates made to the

value functions are based on well-estimated targets, therefore stabilizing learning. Addi-

tionally, Strehl and Littman (2008) propose MBIE-EB — a model-free extension to MBIE,

where EB stands for Exploration Bonus. The algorithm augments the reward function with

bonuses that encourage exploration, and are inversely proportional to visitation counts.

Confidence-interval based average-reward algorithms described above can also be adapted

to the finite-horizon problem setting (Neu and Pike-Burke, 2020). While these methods

utilize frequentist confidence intervals, Bayesian model-based methods are explored by Os-

band et al. (2013) in PSRL, whereas Bayesian model-free methods are explored by Osband

et al. (2016b) in RLSVI. Additionally, Bayesian RLSVI, along with ideas for exploration

based on MBIE’s exploration bonuses discussed previously, have motivated many model-

74

free approaches to exploration in the deep reinforcement learning setting (Osband et al.,

2016a; Ostrovski et al., 2017; Osband et al., 2018).

These many algorithms have been designed with different theoretical goals. The fre-

quentist methods of both finite-horizon and average-reward settings are designed to min-

imize regret — the difference between the optimal policy’s performance and the online

policy’s performance. On the other hand, Bayesian algorithms are designed to minimize

Bayesian regret — the difference between the performance of the optimal policy condi-

tioned on the seen data and the online policy’s performance. Other algorithms have been

designed to be PAC-MDP — that is, algorithms which produce policies that are Probably

Approximately Correct in the MDP, within a polynomial, in the parameters of the MDP,

number of steps.

Linear Function Approximation: The algorithms discussed so far have been designed

for tabular representations, but, arguably, tabular representations are data inefficient. A

widely used, and well-studied approximator is the linear approximator. For such an approx-

imator to be effective it is crucial that the representations they build on facilitate learning.

To characterize this facilitation it is necessary to define properties of these representations

(Zanette et al., 2020). Here, the most widely used assumptions about the representations for

a given MDP, in decreasing order of generality, are: (i) the representation can represent Q∗

– realizability, (ii) the representation has low error w.r.t. the Bellman optimality operator –

low inherent Bellman error, and (iii) the dynamics of the MDP are linear in the represen-

tation – linear MDP. Below we briefly present these assumptions and discuss algorithms

built on them.

First, while the realizability assumption is the most general, it is also the hardest as-

sumption to design sample-efficient algorithms under – even for the non-online (batch)

setting (Xie and Jiang, 2020). To the best of our knowledge, existing online algorithms

have only been proposed under stronger assumptions.

Second, the assumption of low inherent Bellman error was originally proposed in the

setting where the model is available, by Munos and Szepesvári (2008). Zanette et al. (2020)

adapted it to the online finite-horizon setting and developed a sample-efficient online algo-

rithm. Intuitively, the low inherent Bellman error assumption states that the approximation

space, under the representation used, has low projection error for the value functions gen-

erated by the Bellman optimality operator T . For a general online setting with a single

75

learner, if the goal is to learn w ∈ W ⊂ Rd, the inherent Bellman error can be evaluated as

sup
w′∈W

inf
w∈W

sup
(s,a)∈(S×A)

|φ(s, a)>w − (Tqw′)(s, a)|,

where, (Tqw′)(s, a) = R(s, a) + Es′∼P (s,a,.)

[
γ(s, a, s′) max

a′
(qw′)(s

′, a′)
]
,

and, (qw′)(s
′, a′) = φ(s′, a′)>w′.

Given, w ∈ W , the corresponding approximate values for (S × A) will be qw, where

qw ∈ Q ⊂ Rn, and n denotes the number of state-action pairs. If the inherent Bellman

error is equal to 0, then for any q ∈ Q, Tq ∈ Q. In general, if the inherent Bellman error

of the approximation class is small, then any error propagated with repeated applications

of the Bellman operator will be bounded, and the algorithm will not be prone to divergence

online.

Third, is the linear MDP assumption introduced by Jin et al. (2019) for the finite-horizon

setting. This is a stronger assumption that expects the MDP’s dynamics, P and R, to be

linear in the representation. If we assume the dynamics are the same at every step of the

horizon they can be written as

P (s, a, s′) = φ(s, a)>µ(s′), and, R(s, a) = φ(s, a)>θr,

where, µ : S → Rd is an unknown representation for the states,

and, θr ∈ Rd is an unknown vector.

If this assumption is satisfied, the value of all policies π are representable (Zanette et al.,

2020).

Sample-Efficient Linear Function Approximation for Finite-Horizon RL: Sample-

efficient finite-horizon algorithms have been proposed under the last two assumptions. As

the problem is finite-horizon, these algorithms treat the learning problem at each step of

the horizon as an independent linear regression problem. Under the linear MDP assump-

tion, Jin et al. (2019) introduce LSVI-UCB, whereas under the low inherent Bellman error

assumption, Zanette et al. (2020) introduce ELEANOR.

At each step of the horizon, to induce optimism, LSVI-UCB uses bonuses correspond-

ing to the linear estimators’ uncertainty for state-action representations at the next step of

the horizon; these bonuses are also called local bonuses (Neu and Pike-Burke, 2020). This

strategy is effective under the linear MDP assumption.

These local bonuses can be non-linear in the representations and are therefore not com-

patible with the more general low inherent Bellman error assumption. ELEANOR uses a

76

different strategy to estimate bonuses for inducing optimism; the bonuses it uses are also

called global bonuses (Neu and Pike-Burke, 2020). In this strategy the most optimistic pol-

icy, and the corresponding value function are computed by taking into account the complete

dynamics of the finite-horizon problem. The variables in this optimization include both the

value function parameters, and the bonus parameters. This explicit method of computing

bonuses is crucial for inducing optimism that is both compatible with this more general as-

sumption, and capable of inducing effective exploratory behaviour. But, due to the explicit

optimization objective, it is a difficult algorithm to implement currently.

Sample-Efficient Linear Function Approximation for Average-Reward RL: Inspired

by the linear MDP assumption, Wei et al. (2020) propose an algorithm called FOPO for the

average-reward case. As an average-reward learning problem does not consist of a finite

number of steps like finite-horizon problems, the algorithm is designed to update the online

policy only when the visitation structure of the representation space being used changes

significantly — that is, it depends on the determinant of the online covariance matrix. All

analysis, in both the finite-horizon algorithms described previously and the average-reward

algorithm FOPO, focus on the regret experienced by the algorithms.

Sample-Efficient Linear Function Approximation for Discounted-Reward RL: For

the discounted setting, Grande et al. (2014) introduce the algorithm DGPQ, that can be

considered a linear function approximation algorithm. It extends DQL to the approximation

setting utilizing two different approximators: (1) a non-parametric Gaussian Process to

measure in-sample epistemic uncertainty, and (2) a set of linear basis vectors to promote

out-of-sample epistemic uncertainty, and therefore optimism, in the value estimates. The

algorithm has PAC guarantees, but is computationally expensive because it relies on GPs.

Additionally it requires an effective kernel for the Gaussian Process, and an effective basis

for the optimistic out-of-sample epistemic uncertainty estimates. Therefore, there is still a

need for an effective, computationally tractable algorithm in discounted MDPs with linear

function approximation.

6.3 Online Optimistic Value Iteration

One approach to ensuring systematic exploration with model-free algorithms is to initial-

ize the agent’s value estimates to be optimistic. This can be achieved by initializing the

state-action value function to predict the maximum possible value, or higher, in all state-

action pairs. The initialization can be done either by regressing towards such a target with

77

uniformly sampled state-action pairs, or by naively initializing the value function param-

eter’s components to be high if the features can be guaranteed to be always positive. But

such optimistic initialization, along with being incompatible with non-stationary problems,

does not consider the information present in aliasing caused by the function approximator

used. Any information based on the aliasing structure can help improve sample efficiency

of online exploration significantly, and is therefore useful from an exploration perspective.

Further, it is unclear how one would maintain such initialized optimism without overwriting

the initialization with estimates based on experienced data.

While these are the limitations of optimistic initialization if it were to be the sole strat-

egy for effective exploration, it encodes a desirable quality that has been at the centre of

successful approaches to effective exploration in tabular state-spaces: the ability to incor-

porate out-of-sample epistemic uncertainty. Incorporating out-of-sample epistemic uncer-

tainty promotes only first visits in state-action space. But it does not necessarily encourage

the right consequent visits. Consequent visits can be sample-efficient if they are guided by

the confidence of the agent in its estimates. Therefore, in-sample epistemic uncertainty can

be estimated and used to guide consequent visits.

In model-free algorithms, where the agent is learning without utilizing a model, there

are a few avenues to estimate confidence-intervals for the action values. While some ap-

proaches maintain a distribution over plausible optimal value functions themselves, like

RLSVI (Osband et al., 2016b), Bootstrap DQN (Osband et al., 2016a) and Randomized Pri-

ors (Osband et al., 2018), others estimate the uncertainty in the current value estimates with

respect to the current policy being followed. Tang et al. (2020) estimate a non-parametric

upper-bound for the estimate at any state-action pair by assuming that the function class

considered is Lipschitz continuous, whereas Kumaraswamy et al. (2018) estimate a para-

metric uncertainty to quantify a confidence-interval around estimated action-values, and

(ODonoghue et al., 2017) propagate uncertainty based on visitation in feature-space. Re-

gardless of the specific approach to quantify uncertainty in value estimates, the estimated

uncertainties can be utilized to guide online exploratory behaviour.

In order to capture the two sources of information for effective exploration in the

sample-efficient online setting, we propose to utilize three different estimators –

1. value function estimator, w - the regular value function estimator that is used by the

agent for decision making online.

2. in-sample epistemic uncertainty estimator, we-in - an epistemic uncertainty estimator

78

Notation Description

πx denotes a policy greedy in values estimated using parameters x
π the target policy, πwo

w parameters used for estimating the approximate value function for policy π
wo intermediate parameters used to estimate an optimistic value function for policy πw
π(x,y) denotes a policy greedy in values estimated using parameters x

plus values estimated using parameters y
µ the behaviour policy, π(w,we-out)

we-in parameters used for estimating in-sample epistemic uncertainty in estimates of w for policy π
we-out parameters used for estimating out-of sample epistemic uncertainty
qx values estimated using parameters x
Tπxy applying the Bellman operator using policy πx with the targets designed using y
T 0
πxy applying the Bellman operator using policy πx with the targets designed using y and 0 reward

Table 6.2: A table summarizing the notation used in the OOVI pseudocode, Algorithm 8.

that can be used for estimating in-sample epistemic uncertainty in the value estimates

of w.

3. out-of-sample epistemic uncertainty estimator, we-out - the estimator that is initialized

to be optimistic in order to promote out-of-sample epistemic uncertainty.

Given this architecture demarcating the three estimators and their specific goals with respect

to effective online exploration, we propose an algorithm built on this separation that is

compatible with replay called Online Optimistic Value Iteration (OOVI).

Algorithm 8 Online Optimistic Value Iteration (OOVI)

1: B ← [∅], w ← 0, we-in ← 0, we-out ← vmax with respect to S , β ← in-sample
epistemic uncertainty scaling parameter

2: .µ(φs,·)← π(w,we-out)

3: φs,· ← initial state-action features, for any action
4: a← µ(φs,·)
5: repeat
6: Take action a and observe φs′,· and r, and γ
7: Store [φs,a, r, γ,φs′,·] in B
8: Update wo to estimate Tπwqo, where qo includes we-in

9: π ← πwo

10: Update w to estimate Tπqwo

11: Update we-in to estimate uncertainty in w’s estimates for π
12: Update we-out to estimate T 0

πwqwe-out

13: a← µ(φs′,·), and φs,a ← φs′,a

14: until agent finishes interaction with environment

79

6.3.1 Outline of OOVI

OOVI is built on the framework described previously, with specific choices for (1) esti-

mating the two estimators – we-in and we-out, and (2) a 2-stage value iteration update that

incorporates the estimated we-in to promote optimistic values and guide online exploration.

Table 6.2 provides a description of the notation used by OOVI. The pseudocode using

this notation for OOVI is provided in Algorithm 8. As OOVI is compatible with replay, we

can use two different policies in the algorithm – (1) a policy that drives the learning updates,

called the target policy, denoted by π, and (2) a policy that drives the behaviour of the agent

online, called the behaviour policy, denoted by µ.

A brief overview of OOVI is as follows. The algorithm estimates the values wt+1 for

the policy πt+1, the target policy for timestep t. The policy πt+1 is greedy in optimistic

values that are obtained via the parameters wo
t . wo

t is an intermediary set of parameters

that incorporates any in-sample epistemic uncertainty estimated by we-in
t . The epistemic

uncertainty estimates reflect the uncertainty of value estimates made by the previous value

function wt, for the target policy in timestep t−1, πt. The behaviour policy, µt+1 is greedy

with respect to the more optimistic values that includes both estimates of wt+1 and the out-

of-sample epistemic uncertainty we-out
t+1 , which is also tracked online. This is necessary in

order to promote behaviour that visits parts of the state-space that are not visited yet, and

therefore, are not accounted for by the in-sample epistemic uncertainty estimator we-in
t .

To explain the algorithm more clearly, we now go over the pseudocode of OOVI. At

every timestep t, OOVI makes the following updates.

[Lines 8, 9 and 10]: These lines together estimate a value function wt+1 for the new tar-

get policy πt+1. This policy is greedy in the value function that incorporates any in-sample

epistemic uncertainty estimated by we-in
t . Estimating this new value function requires two

main steps and an intermediate assignment step for the new target policy, πt+1. It also re-

quires an intermediate set of parameters which we will denote by wo. The parameters wo
t

dictate the new policy πt+1.

[Line 8]: In step one, wo
t incorporates any in-sample epistemic uncertainty that ex-

ists for policy that is greedy in wt, denoted by πwt . This is done by updating towards

Tπwtqo which uses either (1) upper-confidence bound, or (2) Thompson sampling (Thomp-

son, 1933) to incorporate the epistemic uncertainty.

(Tπwtqo)(s, a) = R(s, a) + Es′∼P (s,a,.),a′∼πwt (s′,.)
[
γ(s, a, s′)(qo)(s

′, a′)
]
,

80

where, if using upper-confidence bound

(qo)(s
′, a′) = φ>s,aw + β ∗ |φ(s′, a′)>we-in|,

else, with Thompson sampling is

(qo)(s
′, a′) = N (φ>s,aw, β ∗ |φ(s′, a′)>we-in|).

If we use Thompson sampling to estimate qo, then along with (s′, a′) the estimate itself is

a random variable, sampled from the distribution N (φ>s,aw, β ∗ |φ(s′, a′)>we-in|).

[Line 9]: This line just assigns the new target policy, πt+1 as the policy that is greedy

in the estimates of value function with parameters wo
t , the optimistic value function.

[Line 10]: Then in step two, a new value function for πt+1, wt+1, is estimated by using

Tπt+1qwo
t
. The targets are designed by utilizing value function estimates with parameters

wo, denoted by qwo .

[Line 11]: Any in-sample epistemic uncertainty in we-in
t for the values estimated by wt

has been incorporated into wo
t in Line 8. The following policy evaluation step in Line 10 re-

sults in an estimate, wt+1, of the parameters for the value function of the target policy πt+1.

Therefore, it is necessary to re-estimate any in-sample epistemic uncertainty in the values

estimated by wt+1. OOVI does so by utilizing the linear complexity strategy described in

Section 4.2.3 of Chapter 4.

Simplistically, this epistemic uncertainty estimation involves learning a value function,

utilizing the parameters we-in. This value function uses the temporal difference errors in the

values estimated by w as the reward, instead of the real reward obtained from the environ-

ment. Given a transition tuple < si, ai, si+1, ri+1, γi+1 >, the temporal difference error in

the values estimated by w for a policy π is

δi+1 = ri+1 + γi+1φ(si+1, ai+1)>w − φ(si, ai)
>w,

where ai is sampled based on policy π, the value function of which is estimated by w. These

temporal difference errors are used as reward to estimate the parameters we-in. Therefore,

given wt+1, the estimated value function for πt+1, we-in
t+1 estimates any in-sample epistemic

uncertainty.

[Line 12]: Finally, it is necessary to decay away any out-of-sample epistemic uncer-

tainty that has been accounted for by the in-sample epistemic uncertainty estimates. As

any in-sample epistemic uncertainty is incorporated in the value function wt+1, the out-of

81

sample epistemic uncertainty is decayed away with respect to the policy greedy in it, de-

noted by πwt+1 . Therefore, at timestep t, we-out
t+1 is estimated by updating we-out

t towards

T 0
πwt+1

qwe-out defined as

(T 0
πwt+1

qwe-out
t

)(s, a) = Es′∼P (s,a,.),a′∼π(s′,.)

[
γ(s, a, s′)(qwe-out

t
)(s′, a′)

]
.

[Line 2]: Given these sequence of updates, the behaviour, µt+1, is designed to be greedy

with respect to the sum of values estimated by wt+1 and we-out
t+1 , π(wt+1,we-out

t+1). This is

because over timesteps, any in-sample epistemic uncertainty is incorporated in w, requiring

any exploratory behaviour to be driven by its estimates combined with any remaining out-

of-sample epistemic uncertainty, estimated by we-out.

6.3.2 Ideas Incorporated in OOVI

With the main components of OOVI described, we will now describe the key ideas that

aided its design.

Out-Of-Sample Epistemic Uncertainty in OOVI: The core contribution of out-of-

sample epistemic uncertainty estimator, we-out, for driving exploratory behaviour cannot

be learned from data experienced – it needs to be anticipated. Many tabular state-space

algorithms achieve this by utilizing the idea of “Garden of Eden State”, for instance MOR-

MAX (Szita and Szepesvari, 2010). OOVI uses such a strategy, by regressing we-out to a

high value vmax with respect to the input space S .

Using the regression strategy is different from initializing the parameters of we-out to

vmax. Specifically, for linear representations, regressing with respect to the underlying

state-space used ensures the out-of-sample epistemic uncertainty utilizes the generalization

structure of the representation space. If the generalization structure uses the linear repre-

sentation space non-uniformly, regressing can ensure the induced out-of-sample epistemic

uncertainty is with respect to the underlying MDP states. Additionally for both linear and

non-linear representations, such a regression based initialization strategy ensures that high

values are associated with all parts of the underlying state space, which may not necessarily

be true without regression as the features can be both positive and negative.

In-Sample Epistemic Uncertainty in OOVI: To estimate in-sample epistemic uncer-

tainty in the model-free case, OOVI utilizes the replay compatible strategy proposed in

Section 4.2.3 of Chapter 4. These in-sample epistemic uncertainty estimates can be used

with Thompson sampling to provide stochastically optimistic values for state-action pairs

(Osband et al., 2016b). This strategy introduces a parameter β that helps controls the scale

82

of in-sample epistemic uncertainty utilized to promote optimistic estimates.

Optimistic Value Iteration: In general, in the online scenario the agent is interested

in satisfying two different goals: (1) learning the optimal policy’s value function, and (2)

learning good exploratory behaviour that aids in learning the optimal policy’s value func-

tion. If the algorithm incorporates off-policy learning strategies the agent can utilize two

different policies to achieve these goals. The first is called the target policy, denoted by π,

whose goal is learning the optimal policy’s value function. And the second is called the

behaviour policy, denoted by µ, whose goal is to effectively explore the domain. And in the

online setting, once the exploration goals of the domain are met by µ, the online behaviour

should naturally transition to the learned π, with or without an explicit policy switch.

In order to define what the target policy π should be for OOVI, let us consider what the

estimates for timesteps t and t + 1 would correspond to. In both the timesteps we would

estimate the uncertainty in the values estimated by w, corresponding to target policy π,

using we-in. we-in
t estimated for wt with respect to πt in timestep t, is overwritten by we-in

t+1

estimated for wt+1 with respect to πt+1 in timestep t+1. Therefore, there is a need to carry

forward any information present in we-in
t before it is overwritten.

In order to carry forward this information, we utilize an intermediate set of parame-

ters denoted by wo. wo
t+1 is a value function that essentially incorporates any uncertainty

present in wt, as evaluated by we-in
t , to estimate an upper-bound value function for the

greedy policy dictated by wt. We call wo
t+1 the optimistic value function as it incorpo-

rates any in-sample epistemic uncertainty in we-in
t that is relevant to the greedy policy in

wt. Now, this optimistic value function wo
t+1 dictates the target policy πt+1. πt+1 can be

a completely greedy or a soft improvement over wo and is used to evaluate a new value

function wt+1 and any uncertainty around its estimates in we-in
t+1.

This sequence of updates over time-steps dictates how the agent learns the optimal

value function for any given experience. If any estimated in-sample epistemic uncertainty

in we-in is not relevant with respect to the underlying greedy policy dictated by w, this is

not incorporated in wo, and consequently is not the focus of the target policy π which aims

to learn the optimal value function.

As the value estimates include the in-sample epistemic uncertainty components, the

behaviour policy µt+1 can be greedy with respect to the estimates of wt+1 and we-out
t+1 .

Here, the out-of-sample epistemic uncertainty of we-out
t is decayed to estimate we-out

t+1 based

on the greedy policy of wt+1. This choice is made as in the absence of any out-of-sample

epistemic uncertainty that is the policy that the behaviour would naturally follow.

83

Additionally, as we-out decays to 0, the behaviour would naturally follow the greedy

policy induced by w, the target policy. This behaviour may further generatxe data to re-

duce any incorporated epistemic uncertainty, before transitioning to greedy behaviour with

respect to learned optimal value function.

Assumptions about the Function Approximator in OOVI: As OOVI is based on off-

policy learning and does not use any additional strategies to mitigate variance issues in

off-policy scenario (Ghiassian et al., 2018), it is necessary that the learning updates made

by OOVI are stable online. Towards this end, we make two assumptions about the function

space that will be used by OOVI.

First, it is desirable that the function space used by OOVI has Low Inherent Bellman

Error (LIBE), where Inherent Bellman error (Munos and Szepesvári, 2008) of a linear func-

tion space is defined as follows:

η = sup
w′∈W

inf
w∈W

sup
(s,a)∈(S×A)

|φ(s, a)>w − (Tqw′)(s, a)|,

where, (Tqw′)(s, a) = R(s, a) + Es′∼P (s,a,.)

[
γ(s, a, s′) max

a′
(qw′)(s

′, a′)
]
,

and, (qw′)(s
′, a′) = φ(s′, a′)>w′.

If the function space has LIBE, then η ≤ ε, where ε denotes the worst case approximation

error for the function space. While the greedy Policy Improvement operator here incor-

porates the expected discounted next state value, Zanette et al. (2020) adapt the definition

to the online setting in finite-horizon MDPs, where the expectation in the definition is re-

placed by the samples experienced online. Such a similar modification can be considered

here, except for the discounted setting. Any function space, whether linear or not, has an

associated Inherent Bellman Error. In this work we assume this is low, although we do not

explicitly utilize the associated η value pertaining to the function space in our algorithm.

The second assumption we make about the function space used by OOVI is as follows.

Under function approximation in the model-free case, encouraging first-visits to unknown

parts of the MDP corresponds to maintaining sufficient out-of-sample epistemic uncertainty

in the corresponding parts of the representation space. Maintaining such effective out-of-

sample epistemic uncertainty can be challenging if the approximation space generalizes

aggressively between states too much. Therefore, such an endeavour to maintain effective

out-of-sample epistemic uncertainty, and explore effectively, can benefit from using local

representations. Therefore, OOVI is designed to be used with representations that have low

inherent Bellman error for the MDP, while encoding good locality information.

84

6.4 Evaluation of OOVI

In this section we explore the following aspects of OOVI empirically: (1) general online

performance as compared to other online control algorithms, (2) the advantage of more

replay updates, (4) the utility of the each source of epistemic uncertainty used by OOVI,

and (3) the sensitivity of OOVI to the size of the online buffer used.

We compare OOVI to RLSVI (Osband et al., 2016b), Randomized Prior for Bootstrap-

DQN (denoted henceforth by BSP, for Bootstrap DQN with Prior) (Osband et al., 2018),

and UBE (ODonoghue et al., 2017). All the algorithms are replay compatible algorithms

that utilize a form of uncertainty to drive exploratory behaviour online. RLSVI and BSP

utilize a Bayesian approach to exploration; the former utilizing Bayesian linear regression

to estimate uncertainty, and the latter an ensemble to estimate uncertainty. UBE estimates

uncertainty by utilizing a Bellman-style update for propagating local variance estimates. We

also compare OOVI to variants of UCLS, which are not replay compatible but can utilize

traces, as this can help us evaluate the utility of replay vs. traces. In-depth descriptions

of each algorithm can be found in Appendix C.3, and implementation details, along with

sweep details can be found in the Appendix C.4.

We utilize the same domains as in Chapter 4 — Sparse Mountain Car, Puddle World

and River Swim — with the key difference being the representations used. As we would

like representations that have Low Inherent Bellman Errors (LIBE), we use learned sparse

representations, representations that are produced by SR-NN with the learning objective

being next state and reward prediction. The policies used to generate the training data

for SR-NN are competitive hand-coded policies in all the domains. To promote LIBE we

utilize stochastic versions of the domains first, along with a deterministic version of Sparse

Mountain Car, which is the original form of the domain (Sutton and Barto, 2018). We use

representations of 256 dimension in all domains, a real valued sparse vector produced by

SR-NNs. More details about the experimental setup for learning representations can be

found in Appendix C.4.

6.4.1 Evaluating Online Performance

We investigate a learning regime similar to Chapter 4 – the agent is allowed a fixed budget

of interaction steps with the environment. As our goal is to evaluate the effectiveness of the

exploration strategy, we do not use cutoffs in the episodic problems. We utilize a budget

of 100k steps. RLSVI’s weights are recalculated using all experienced transitions at the

85

200 800 2 4 10
Episodes Steps (x*10^4)

300

100

150

4 4

3

1

0
50 150 400

Episodes

Sparse Mountain Car Puddle World River Swim

Steps per
Episode

Negated
Total

Reward
x*10^3

Total
Reward

10^x

OOVI

UBE

RLSVI
BSP

2

OOVI

UBE

OOVI

UBE

RLSVI

BSP

Figure 6.1: Learning performance in the three stochastic domains comparing OOVI to other
online control algorithms. In the first two plots lower y-axis is better, and in the last higher
y-axis is better. The experiments are run with a fixed budget of steps with no episode
cutoffs. The x-axis for the episodic domains is chosen based on the median number of
episodes completed. This leads to the confidence intervals towards the end of the learning
curves being larger as data from fewer runs is available for computing these statistics.

4

1

0
0 100 400

Episodes

Puddle World

Negated
Total

Reward
x*10^3

OOVI

UBE

OOVI+

Figure 6.2: Learning performance comparing UBE to a version of OOVI with more replay
updates. OOVI with more replay updates is plotted with a dashed line and denoted by
OOVI+. OOVI is also visualized to contrast the benefit of more replay updates.

beginning of an episode in Puddle World and Sparse Mountain Car, and every 5,000 steps in

River, similar to BSP’s learning schedule. All algorithms utilize an online buffer the size of

the experiment, unless specified otherwise. The parameters for OOVI and the competitors

are selected from a large parameter sweep which averages over 3 runs. OOVI uses 10

planning steps in all the experiments unless specified otherwise. The results shown here are

averaged over 50 independent runs for the best parameter configuration. The shaded region

represents 95% confidence interval. The range of the x-axis, if episodic, reflects the median

number of episodes completed across runs, leading to statistics later in the experiment being

average over fewer runs, and consequently larger confidence intervals.

Comparing to other control algorithms: Our first experiment compares OOVI to

other control algorithms. Figure 6.1 shows the results for online performance. In all three

domains OOVI is either competitive with the other control algorithms, or outperforms the

86

200 1000 2 4 10
Episodes Steps (x*10^4)

225

75

125

5
4

3

4

1

0 200 500
Episodes

Sparse Mountain Car Puddle World River Swim

Steps per
Episode Negated

Total
Reward
x*10^3

Total
Reward

10^xOOVI
UCLS

UCLS-L
2

OOVI

UCLS

UCLS-L
OOVI

UCLS

UCLS-L

Figure 6.3: Learning performance in the three stochastic domains comparing OOVI to vari-
ants of UCLS: quadratic complexity UCLS and linear complexity UCLS-L. UCLS variants
with solid lines incorporate traces with λ = 0.9, whereas the dotted line variants do not.
UCLS (with traces) goes on to finish about 750 episodes in Puddle World, whereas UCLS-L
(with traces) finished about 1750 episodes.

algorithms. In Sparse Mountain Car OOVI outperforms the other algorithms whereas in

Puddle World UBE outperforms OOVI significantly. OOVI’s poor performance can pos-

sibly be attributed to the algorithm requiring more planning updates. Therefore, a version

with more planning updates, denoted by OOVI+, is evaluated in Figure 6.2 and it matches

up to the performance of UBE. Both RLSVI and BSP fail to finish a single episode in Pud-

dle World. In River Swim OOVI outperforms all the algorithms by a large margin. RLSVI,

BSP and UBE discover the upstream reward but experience a large regret online.

Comparing to UCLS variants: Our next experiment compares OOVI to variants of

UCLS from Chapter 4. Specifically, we compare to both UCLS and UCLS-L. While OOVI

utilizes off-policy replay to improve sample-efficiency, the on-policy, incremental algo-

rithms like UCLS utilize traces. Therefore, here we compare to two variants of UCLS and

UCLS-L: (1) with λ = 0.9 (with traces), and (2) with λ = 0.0 (without traces).

Figure 6.3 shows the results for online performance of all the UCLS variants and OOVI.

There is no statistical difference between all the variants of UCLS and OOVI. Both UCLS

and UCLS-L with traces outperform OOVI in Puddle World, whereas the without traces

versions perform poorly, with UCLS-L without traces failing. In Riverswim both vari-

ants of UCLS-L and UCLS with traces performs similar to OOVI, whereas UCLS without

traces performs poorly. UCLS-L consists of two step-sizes that can independently control

the mean and epistemic uncertainty update rate, thereby possibly aiding UCLS-L retain its

out-of-sample epistemic uncertainty longer. In general, UCLS and UCLS-L with traces (de-

noted by solid lines) always outperform or similarly, to their no traces counterparts (denoted

by dashed lines).

87

50 350
Episodes

5

0

1

Deterministic Sparse Mountain Car

Steps per
Episode
(x*100)

OOVI

UCLS

UCLS-L

Figure 6.4: Learning curves comparing all the online control algorithms, variants of UCLS,
and OOVI in Deterministic Sparse Mountain Car. The online control algorithms RLSVI,
BSP, and UBE, along with UCLS variants with λ = 0 are not visible as they fail to finish
any episodes and learn in this domain.

Exploration in Hard Deterministic Problems: As the reward is sparse in Sparse

Mountain Car (1 upon reaching the goal, 0 otherwise), it is surprising that all algorithms

finish the first episode early in Figure 6.1(left). This is possibly because the domain is

stochastic, unlike the classic version which is deterministic, making it easier for all algo-

rithms. Therefore we experiment with the classic version of Sparse Mountain Car here,

using representations that are re-learned with respect to the deterministic dynamics. Fig-

ure 6.4 shows the performance of all the algorithms, including UCLS variants for com-

pleteness. Other online control algorithms and UCLS variants without traces fail to finish

episodes in the domain, whereas UCLS with with traces performs better than OOVI. The

deterministic nature of the domain along with UCLS’ summarized model information may

help maintain more accurate estimates of epistemic uncertainty, aiding in the above perfor-

mance. OOVI with more planning updates should obtain the same benefit. Nonetheless,

the main take away of the experiment is that OOVI’s exploration strategy is more viable in

deterministic hard exploration problems when compared to other control algorithms.

These results indicate that OOVI is a competitive online algorithm, whose directed ex-

ploration strategy is promising to tackle hard exploration problems. While some parameters

of OOVI have been swept, some of its parameters like number of planning steps and size

of the online buffer have not. These parameters can be tuned in a domain specific manner

to improve online performance. Next, we evaluate how changing these parameters impacts

the performance of OOVI.

88

200 800 2 4 10
Episodes Steps (x*10^4)

225

75

125

5
4

3

4

1

0 100 400
Episodes

Sparse Mountain Car Puddle World River Swim

Steps per
Episode Negated

Total
Reward
x*10^3

Total
Reward

10^x

10 planning

30 planning

2
10 planning

10 planning

30 planning

30 planning

100 400
Episodes

5

0

1

Deterministic Sparse Mountain Car

Steps per
Episode
(x*100)

10 planning

30 planning

Figure 6.5: Learning curves evaluating the benefit of increasing replay in all the domains
for OOVI. 10 planning denotes OOVI with 10 replay steps, whereas 30 planning denotes
OOVI with 30 replay steps. In the first three plots lower y-axis is better, and higher y-axis
is better in last.

200 800
Episodes

250

75

125

5

4

1

0 200 600
Episodes

Sparse Mountain Car Puddle World

Steps per
Episode Negated

Total
Reward
x*10^3

OOVI
OOVI (IN)

OOVI (OUT)

OOVI

OOVI (IN)

OOVI (OUT)

50 300
Episodes

5

1

4
4

3

2 4 10
Steps (x*10^4)

Deterministic Sparse Mountain Car River Swim

Steps per
Episode
(x*10^3)

OOVI

OOVI (OUT)
OOVI

OOVI (IN)

OOVI (OUT)
Total

Reward
10^x

2

OOVI (IN) important OOVI (OUT) important

Figure 6.6: Learning curves evaluating the importance of the two different epistemic un-
certainty components used by OOVI. OOVI (IN) represents version of OOVI utilizing only
in-sample epistemic uncertainty, whereas OOVI (OUT) represents version of OOVI with
only out-of-sample epistemic uncertainty.

6.4.2 Evaluating the Benefit of Replay Updates in OOVI

In this section we explore if more replay updates can benefit OOVI. The increase of replay

should would improve the estimation of all the parameters – wo, w, we-in, and we-out –

leading to better online sample-efficiency. In the previous experiments we used 10 replay

steps, but in this section we increase it to 30 and evaluate how this impacts performance.

The results comparing OOVI with 10 planning steps to OOVI with 30 planning steps

are presented in Figure 6.5 for all the four domains including the deterministic version of

Sparse Mountain Car (shown on the extreme left of the plot). With more planning steps the

online performance of OOVI improves across all the domains. Although more replay steps

can be computationally expensive, implementation of OOVI can be parallelized to improve

the time complexity of utilizing more replay steps.

6.4.3 Evaluating OOVI’s Epistemic Uncertainty Components

OOVI utilizes two different components to promote online exploration – we-in to estimating

in-sample epistemic uncertainty, and we-out for estimating out-of-sample epistemic uncer-

89

tainty. In this section we evaluate the role of each component to promote effective ex-

ploratory online behaviour in the domains experimented. We do so by experimenting with

two versions of OOVI – (1) OOVI (OUT) - a version of OOVI that utilizes only the out-

of-sample epistemic uncertainty component, and (2) OOVI (IN) - a version of OOVI that

utilizes only the in-sample epistemic uncertainty component.

We hypothesize that different epistemic uncertainty components play a significant role

in these domains. In Sparse Mountain Car and Puddle World, which are uniformly stochas-

tic domains, in-sample epistemic uncertainty may play a more significant role. Alterna-

tively, in Deterministic Sparse Mountain Car, where the domain is deterministic, out-of-

sample epistemic uncertainty may play a more significant role. And likewise, in River

Swim, where the transition dynamics are stochastic but skewed towards the downstream

less rewarding region of the chain-like domain, out-of-sample epistemic uncertainty may

be more important.

The results for the experiments are shown in Figure 6.6. While OOVI (IN) improves

marginally over OOVI in Sparse Mountain Car, it improves significantly in Puddle World,

indicating that the out-of-sample epistemic uncertainty provided by we-out can likely be

decayed more aggressively in this domain for this representation. Alternatively, OOVI (IN)

experiences higher online regret compared to OOVI in River Swim and fails to finish any

episodes in Deterministic Sparse Mountain Car.

6.4.4 Evaluating OOVI’s Sensitivity to the Size of the Online Buffer

In this section we explore the sensitivity of OOVI to the size of the online buffer. As more

data offers a better coverage of the dynamics of the problem, it should likely also improve

estimation of all the parameters in OOVI – wo, w, we-in, and we-out. Therefore, here we

hypothesize that a decrease in the online buffer size should degrade online performance.

In the previous experiments OOVI stored all the data experienced online (100% data).

Here we compare it to using a circular buffer that retains only 10% of the online data.

The results are shown in Figure 6.7. While the online performance does degrade in Sparse

Mountain Car and Puddle World as hypothesized, surprisingly it improves in Deterministic

Sparse Mountain Car and River Swim.

This improvement in performance is possibly because the 10% online buffer concen-

trates updates rapidly decaying out-of-sample epistemic uncertainty more aggressively, and

estimating in-sample epistemic uncertainty towards the on-policy distribution. Therefore, if

true, with a smaller buffer, for example 1% buffer, the online performance should improve.

90

200 800 2 4 10
Episodes Steps (x*10^4)

225

75

125

7
4

3

6

1

0 50 175
Episodes

Sparse Mountain Car Puddle World River Swim

Steps per
Episode Negated

Total
Reward
x*10^3

Total
Reward

10^x

100% data

10% data

2

100% data

100% data

10% data

10% data

50 300
Episodes

5

0

1

Deterministic Sparse Mountain Car

Steps per
Episode
(x*100) 100% data

10% data

Figure 6.7: Learning curves evaluating OOVI’s sensitivity to the size of the online buffer.
100% data denotes a buffer of size 100k, equal to the length of the experiment. 10% data
denotes a buffer of size 10k.

5 10 40
Steps (x*10^3)

4

River Swim

3

100% data

10% data

1% data

50 300
Episodes

5

0

1

Deterministic Sparse Mountain Car

Steps per
Episode
(x*100)

100% data

10% data

1% data Total
Reward

10^x

Figure 6.8: Learning curves evaluating OOVI’s online performance with respect to smaller
buffers in two domains. 100% data utilizes all the data experienced online, whereas 10%
data utilizes a circular buffer of 10k, and 1% data utilizes a circular buffer of 1k.

Figure 6.8 shows that 1% buffer does improve over 10% buffer in both Deterministic Sparse

Mountain Car and River Swim. It is possible that a more extreme version OOVI which uti-

lizes only online samples may improve performance further. Such a version would be more

similar to UCLS, except differing in their approach to estimating optimistic values.

Overall these results show OOVI can be sensitive to the size of the online buffer –

in domains where out-of-sample. epistemic uncertainty is critical, smaller buffers may

improve online performance.

6.5 Summary

This chapter provided an overview of online control algorithms and key ideas that make

them effective. Then, to address the limitation of UCLS it proposes a new algorithm called

OOVI. OOVI utilizes the different parameters to estimate the two sources of epistemic

uncertainty: in-sample and out-of-sample. It incorporates these uncertainty estimates to

guide on-policy control by utilizing a modified value iteration style update. The proposed

algorithm is empirically evaluated by comparing to other online exploration algorithms

that utilize uncertainty to guide exploration, and other properties of the algorithm are also

explored.

91

Chapter 7

Perspectives and Future Work

In this chapter, we summarize the main contributions of this thesis, and discuss their limi-

tations. We provide some directions for future work which we think will be beneficial for

sample-efficient online reinforcement learning, before concluding.

7.1 Summary of Contributions

This thesis set out to answer the following question:

How should an agent incorporate directed exploration and representation learn-
ing to improve the sample efficiency of online reinforcement learning under
linear function approximation?

In the end, this dissertation presents a partial answer to this ambitious question, while mak-

ing progress in three key areas. First, we provide a scalable approach to estimate value

uncertainty. These value uncertainty estimates are derived for the LSTD(λ) algorithm and

provide high-probability finite-sample bounds for the optimal values. Second, we provide

an approach to offline representation learning that improves the sample-efficiency of online

reinforcement learning under linear function approximation. The representations learned

are shown to also aid online exploration. Third, we provide online control algorithms that

incorporate directed exploration strategies for improving sample-efficiency. One is an in-

cremental on-policy algorithm that utilizes a heuristic for effective exploration, while the

second incorporates a more principle approach to effective exploration and improves upon

the first by being compatible with planning updates. Next, we summarize these key contri-

butions in more detail.

Value Uncertainty Estimation

Propagation of uncertainty in the approximation setting has been an open research question

for many years. Though various promising approaches have made progress by making

92

assumptions about the stochastic structure of the environment, or the representation space

used, these assumptions may not be valid generally in environments and representations

used in practice. In this thesis, we present a scalable approach to propagate uncertainty

under simpler assumptions, like the invertibility of a covariance matrix. Our approach is

promising because it provides high-probability finite-sample bounds with respect to the

optimal value of any policy under linear function approximation.

Additionally, as the uncertainty estimates are derived for the LSTD(λ) algorithm, they

are compatible with traces, retaining the sample-efficiency benefits of the policy evaluation

algorithm. These value uncertainty estimates have been used to guide online exploration

effectively under the generalized policy iteration framework in two algorithms proposed

here. We present a quadratic complexity confidence-bound, and a more computationally

scalable linear complexity confidence-bounds. The linear complexity bound, while more

computationally efficient, retains the utility of the quadratic-complexity bound for directing

online exploration.

Representations for Online Sample-Efficiency

Arguably, before the recent success of reinforcement learning with neural networks, suc-

cessful applications of online reinforcement learning were limited to representations which

encoded locality, such as tile-coding. As online reinforcement learning algorithms utilize

bootstrapping, locality is crucial to good learning targets and improve sample-efficiency.

We provide a simple strategy to learn representations that encode this property using neural

networks. Motivated by the successful hand-designed representation tile-coding, we utilize

sparsity as a surrogate for locality.

We show that the learned representations, SR-NNs, improves sample-efficiency of on-

line reinforcement learning algorithms when compared to other representations that have

the same representational capacity. This is possible because SR-NNs reduce interference in

bootstrap learning targets. Our experiments also show that the locality encoded by SR-NNs

is also useful to guide online exploration.

Directed Exploration for Online Sample-Efficiency

Directing effective exploration while optimizing behaviour online involves two critical

goals: (1) visiting parts of the space which the agent is uncertain about, and (2) visiting

parts of the space an agent does not know about. This thesis presents a heuristic strat-

egy, and a more principled approach, to incorporate these goals in the online reinforcement

93

learning setting. The heuristic is used to design an on-policy directed exploration algorithm

that is compatible with traces, called UCLS. The framework is used to design an algorithm

called OOVI that is replay-compatible, providing online sample-efficiency by incorporating

planning updates.

UCLS is an algorithm that adapts the LSTD algorithm to the control setting by incor-

porating its uncertainty estimates for addressing goal (1), and a heuristic for addressing

goal (2). We demonstrate that UCLS improves upon other algorithms that estimate value

uncertainty to drive online exploration. OOVI utilizes the proposed uncertainty estimation

procedure to estimate in-sample epistemic uncertainty that addresses goal (1), and it utilizes

an optimistic initialization based component for effective out-of-sample epistemic uncer-

tainty to address goal (2). The algorithm can be parallelized with more compute to scale

in sample-efficiency benefits. Extensive empirical comparison to algorithms with similar

goals shows that OOVI’s design, which explicitly accounts for the two goals of exploration,

is indeed more effective in hard exploration microworlds.

7.2 Limitations and Future Work

In this section we look at the limitations of the contributions, and present some directions

for future work that can improve upon these limitations and explore promising research

directions.

λ-returns and Variance Issues in the Off-Policy Case

An important goal while designing OOVI was to maintain compatibility with planning, as

planning is key for improving sample-efficiency. Another approach to improve sample-

efficiency, which we have not used with OOVI, are λ-returns. Our uncertainty estimation

algorithm is compatible with traces which are used to estimate λ-returns, but OOVI utilizes

single-step targets where λ = 0.

In general, off-policy value estimation is a problem that is susceptible to high variance

issues. Additionally, while sample-efficiency of learning can be improved via λ-returns, the

utilization of traces in the off-policy case can exacerbate this issue if the behaviour policy is

very different from the target policy. But, algorithms like Tree-Backup (Precup, 2000) can

be used to alleviate the issue.

Tree-Backup cannot be integrated with OOVI trivially. First, the target policy and the

behaviour policy in OOVI are constantly changing. Second, the policies considered cur-

rently are deterministic, which can exacerbate variance issues. Therefore, incorporating

94

traces through smart variance-reduction strategies such as Tree-Backup may not be suffi-

cient. An avenue to explore for incorporating traces effectively may be utilizing target poli-

cies that are soft-improvements, rather than greedy improvements, along with behaviour

that is stochastic with respect to the estimated optimistic values. This can possibly reduce

the number of planning steps needed, while providing additional online sample-efficiency

benefits.

Theoretical Challenges

Optimistic Values Theorem was an important motivation that served the design of UCLS.

Although motivated by it, a limitation of UCLS was highlighted in Chapter 6, as follows.As

UCLS utilizes a heuristic strategy to promote out-of-sample epistemic uncertainty, it is

possible that it does not satisfy the assumptions made by the theorem, making the optimality

of the policy learned by UCLS unclear. OOVI was designed to address this limitation, along

with being an algorithm that is compatible with planning.

UCLS uses q̂(S,A) as the value estimates, and û(S,A) as the uncertainty estimates.

The uncertainty estimates û(S,A) are solely required to characterize both out-of-sample

and in-sample epistemic uncertainty, and consequently, for providing any necessary opti-

mism. In order to improve upon UCLS, OOVI utilizes an explicit (1) out-of-sample epis-

temic uncertainty estimator to promote optimism with respect to the unvisited parts of the

MDP, ûo(S,A), and (2) an in-sample epistemic uncertainty estimator ûi(S,A) to account

for any uncertainty in the visited parts of the MDP. The estimates made by ûi(S,A) are

incorporated in its value estimator q̂(S,A), to promote partially optimistic value estimates,

making it different from UCLS. q̂(S,A) are then combined with the ûo(S,A) estimates to

provide the complete optimistic value estimates.

Therefore, the Optimistic Values Theorem, which provides a motivational regret bound

for the setup used by UCLS, cannot be directly applied to OOVI (as OOVI utilizes a

value estimator q̂(S,A) that incorporates some degree of optimism). Consequently, de-

spite promising empirical results, there is still a need for some theoretical characterization

of the policies learned by OOVI.

Online Representation Learning

In general, it is difficult to learn representations that lend themselves to effective linear

value estimation. The representations used in this thesis were effective because they were

trained using data generated by reasonable policies in each environment. But designing

95

reasonable policies for effective offline representation learning is challenging in and of

itself. Therefore, it is necessary that either the representation learning strategies used are

online, or the value functions utilize non-linear approximators, which can be more powerful

when the representations used are not effective under linear approximation.

The proposed strategy for representation learning, SR-NN, is a strategy that utilizes a

stationary policy. While the representations produced by it are effective for online reinforce-

ment learning, where a policy is constantly changing, learning an effective representation

with SR-NN can be hard in the online case. This hypothesis is based on preliminary exper-

iments where such a strategy fails to be effective. A possible reason for this failure is that

the proposed regularizer is not easy to optimize under a changing data distribution. Addi-

tionally, we show that the representations produced by SR-NNs, which are the last hidden

layer of an offline trained neural network, are effective for providing stable bootstrap targets

in the case of linear function approximation. But it is possible that an online representation

learning component, or a non-linear value function approximator, may need more aggres-

sive locality enforcing regularizers, possibly in all the intermediate layers. Another simple

avenue to use SR-NNs effectively in the online case may be to interleave representation

learning and reinforcement learning itself — where during representation learning the pol-

icy is fixed — but the schedule for interleaving such a procedure, and its sample-efficiency

is unclear.

Effectiveness Under Non-Linear Approximation

This thesis is focused on the linear function approximations setting. But as discussed in

the previous section, naturally, the next step is exploring OOVI with a non-linear function

approximator. There are two key challenges to such an extension: (1) initializing and main-

taining effective out-of-sample epistemic uncertainty, and (2) ensuring function spaces with

low-inherent Bellman error.

I believe addressing both the challenges requires non-linear networks that encode lo-

cality. While locality is important for initializing and maintaining effective out-of-sample

epistemic uncertainty, the reason I believe it is also important for promoting function spaces

with low inherent Bellman error is as follows. If a representation does encode locality, it

can improve the sample-efficiency of online reinforcement learning, reducing the magni-

tude of errors experienced online. The magnitude of errors experienced online has a direct

relationship to the magnitude of the inherent Bellman error. Therefore, enforcing locality

in a non-linear approximator may be key to addressing both the challenges. Nonetheless,

96

the fundamental question remains: how do we train non-linear approximators during online

reinforcement learning to encode locality? This is an interesting direction for future work.

7.3 Summary

This thesis identifies key ideas necessary for directed exploration and sample-efficient on-

line learning under linear function approximations, and proposes solutions which incorpo-

rate them. This chapter closed this thesis by summarizing the key contributions, discussing

their limitations, and proposing some interesting directions for future research.

97

Bibliography

Abbasi-Yadkori, Y. and Szepesvari, C. (2014). Bayesian optimal control of smoothly pa-
rameterized systems: The lazy posterior sampling algorithm. In Uncertainty in Artificial
Intelligence.

Ahmad, S. and Hawkins, J. (2015). Properties of Sparse Distributed Representations and
their Application to Hierarchical Temporal Memory.

Auer, P. and Ortner, R. (2006). Logarithmic online regret bounds for undiscounted rein-
forcement learning. Advances in Neural Information Processing Systems.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with bregman
divergences. Journal of Machine Learning Research.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chad-
wick, M. J., Degris, T., Modayil, J., et al. (2018). Vector-based navigation using grid-like
representations in artificial agents. Nature.

Bartlett, P. L. and Tewari, A. (2012). Regal: A regularization based algorithm for reinforce-
ment learning in weakly communicating mdps. arXiv preprint arXiv:1205.2661.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on
reinforcement learning. CoRR.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016). Unifying count-based exploration and intrinsic motivation. Advances in Neural
Information Processing Systems.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Bertsekas, D. P. (1983). Distributed asynchronous computation of fixed points. Mathemat-
ical Programming.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena Scien-
tific.

Boyan, J. A. (2002). Least-squares temporal difference learning. Machine Learning.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal differ-
ence learning. Machine Learning.

Brafman, R. and Tennenholtz, M. (2003). R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. The Journal of Machine Learning Research.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random net-
work distillation. arXiv preprint arXiv:1810.12894.

98

Choshen, L., Fox, L., and Loewenstein, Y. (2018). DORA the explorer: Directed outreach-
ing reinforcement action-selection. CoRR.

Cover, T. M. (1965). Geometrical and Statistical Properties of Systems of Linear Inequali-
ties with Applications in Pattern Recognition. IEEE Trans. Electronic Computers.

Földiák, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biolog-
ical Cybernetics.

French, R. M. (1991). Using semi-distributed representations to overcome catastrophic
forgetting in connectionist networks. In Annual Cognitive Science Society Conference.

Ghiassian, S., Patterson, A., White, M., Sutton, R. S., and White, A. (2018). Online off-
policy prediction. arXiv preprint arXiv:1811.02597.

Ghiassian, S., Rafiee, B., Lo, Y. L., and White, A. (2020). Improving performance in
reinforcement learning by breaking generalization in neural networks. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In
International Conference on Artificial Intelligence and Statistics.

Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y. (2009). Measuring invariances
in deep networks. In Advances in Neural Information Processing Systems.

Grande, R., Walsh, T., and How, J. (2014). Sample efficient reinforcement learning with
gaussian processes. In International Conference on Machine Learning.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In IEEE International Conference
on Computer Vision.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning,
lecture 6a, overview of mini-batch gradient descent.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for reinforcement
learning. The Journal of Machine Learning Research.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2019). Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388.

Jong, N. and Stone, P. (2007). Model-based exploration in continuous state spaces. Ab-
straction, Reformulation, and Approximation.

Jung, T. and Stone, P. (2010). Gaussian processes for sample efficient reinforcement learn-
ing with rmax-like exploration. In Machine Learning: ECML PKDD.

Kaelbling, L. P. (1993). Learning in embedded systems. MIT press.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research.

Kakade, S., Kearns, M., and Langford, J. (2003). Exploration in metric state spaces. In
International Conference on Machine Learning.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In Proceedings of the19th International Conference on Machine Learning.

Kallenberg, L. (2011). Markov decision processes. Lecture Notes. University of Leiden,
pages 2–5.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press.

99

Kearns, M. J. and Singh, S. P. (2002). Near-optimal reinforcement learning in polynomial
time. Machine Learning.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Konidaris, G., Osentoski, S., and Thomas, P. (2011). Value function approximation in rein-
forcement learning using the fourier basis. In Twenty-fifth AAAI conference on artificial
intelligence.

Kumaraswamy, R., Schlegel, M., White, A., and White, M. (2018). Context-dependent
upper-confidence bounds for directed exploration. Advances in Neural Information Pro-
cessing Systems.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. The Journal of
Machine Learning Research.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In World Wide Web Conference.

Li, L., Littman, M. L., and Mansley, C. R. (2009). Online exploration in least-squares policy
iteration. In International Conference on Autonomous Agents and Multiagent Systems.

Liu, V., Kumaraswamy, R., Le, L., and White, M. (2019). The utility of sparse representa-
tions for control in reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2018). Count-based exploration with
the successor representation. CoRR.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A laplacian framework for
learning representation and control in markov decision processes. Journal of Machine
Learning Research.

Makhzani, A. and Frey, B. (2013). k-sparse autoencoders. arXiv preprint arXiv:1312.5663.

Makhzani, A. and Frey, B. (2015). Winner-take-all autoencoders. In Advances in Neural
Information Processing Systems.

Martin, J., Sasikumar, S. N., Everitt, T., and Hutter, M. (2017). Count-based exploration in
feature space for reinforcement learning. In International Joint Conference on Artificial
IntelligenceI.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist Net-
works: The Sequential Learning Problem. Psychology of Learning and Motivation.

Meuleau, N. and Bourgine, P. (1999). Exploration of multi-state environments - local mea-
sures and back-propagation of uncertainty. Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. nature.

Moerland, T. M., Broekens, J., and Jonker, C. M. (2017). Efficient exploration with double
uncertain value networks. In Advances in Neural Information Processing Systems.

Munos, R. (2003). Error Bounds for Approximate Policy Iteration.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research.

Neu, G. and Pike-Burke, C. (2020). A Unifying View of Optimism in Episodic Reinforce-
ment Learning. arXiv.org.

100

Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes.

Nikolov, N., Kirschner, J., Berkenkamp, F., and Krause, A. (2018). Information-directed
exploration for deep reinforcement learning. CoRR.

Nouri, A. and Littman, M. L. (2009). Multi-resolution exploration in continuous spaces. In
Advances in Neural Information Processing Systems.

ODonoghue, B., Osband, I., Munos, R., and Mnih, V. (2017). The uncertainty bellman
equation and exploration.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research.

Ortner, R. and Ryabko, D. (2012). Online regret bounds for undiscounted continuous rein-
forcement learning. In Advances in Neural Information Processing Systems.

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized Prior Functions for Deep
Reinforcement Learning. NeurIPS.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016a). Deep exploration via boot-
strapped dqn. In Advances in Neural Information Processing Systems.

Osband, I., Russo, D., and Van Roy, B. (2013). (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems.

Osband, I. and Van Roy, B. (2017). Why is posterior sampling better than optimism for
reinforcement learning? In International Conference on Machine Learning.

Osband, I., Van Roy, B., and Wen, Z. (2016b). Generalization and exploration via random-
ized value functions. In International Conference on Machine Learning.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-based
exploration with neural density models. In International Conference on Machine Learn-
ing.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. L. (2008). An analysis of
linear models, linear value-function approximation, and feature selection for reinforce-
ment learning. In Proceedings of the 25th international conference on Machine learning.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning. PMLR.

Pazis, J. and Parr, R. (2013). Pac optimal exploration in continuous space markov decision
processes. In AAAI Conference on Artificial Intelligence.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour,
T., Abbeel, P., and Andrychowicz, M. (2017). Parameter space noise for exploration.
arXiv.org.

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Quian Quiroga, R. and Kreiman, G. (2010). Measuring sparseness in the brain: Comment
on bowers (2009).

Ratitch, B. and Precup, D. (2004). Sparse distributed memories for on-line value-based
reinforcement learning. In Machine Learning: ECML PKDD.

101

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-
encoders: Explicit invariance during feature extraction. In Inter. Conf. on Machine Learn-
ing.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems.
University of Cambridge, Department of Engineering Cambridge, UK.

Russo, D. and Roy, B. V. (2014). Learning to optimize via information directed sampling.
CoRR.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science.

Singh, S. P., Jaakkola, T. S., Littman, M. L., and Szepesvari, C. (2000). Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine Learning.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research.

Strehl, A. and Littman, M. (2004). Exploration via model based interval estimation. In
International Conference on Machine Learning.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). Pac model-free
reinforcement learning. In International Conference on Machine Learning.

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based Interval Estimation
for Markov Decision Processes. Journal of Computer and System Sciences.

Sutton, R., Szepesvári, C., Geramifard, A., and Bowling, M. (2008). Dyna-style planning
with linear function approximation and prioritized sweeping. In Conference on Uncer-
tainty in Artificial Intelligence.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. Advances in neural information processing systems, pages 1038–
1044.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. P. (2012). Dyna-style
planning with linear function approximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285.

Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Algorithms for Reinforce-
ment Learning.

Szita, I. and Lorincz, A. (2008). The many faces of optimism. In International Conference
on Machine Learning.

Szita, I. and Szepesvari, C. (2010). Model-based reinforcement learning with nearly tight
exploration complexity bounds. In International Conference on Machine Learning.

Tang, Z., Feng, Y., Zhang, N., Peng, J., and Liu, Q. (2020). Off-policy interval estimation
with lipschitz value iteration. CoRR.

Tange, O. (2021). Gnu parallel 20210622 (’protasevich’).

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program, achieves master-
level play. Neural computation.

102

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25.

van Seijen, H. and Sutton, R. (2015). A deeper look at planning as learning from replay. In
International Conference on Machine Learning.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning.

Wei, C.-Y., Jafarnia-Jahromi, M., Luo, H., and Jain, R. (2020). Learning infinite-
horizon average-reward mdps with linear function approximation. arXiv preprint
arXiv:2007.11849.

White, M. (2017). Unifying task specification in reinforcement learning. In International
Conference on Machine Learning.

White, M. and White, A. (2010). Interval estimation for reinforcement-learning algorithms
in continuous-state domains. In Advances in Neural Information Processing Systems.

Xie, T. and Jiang, N. (2020). Batch Value-function Approximation with Only Realizability.
arXiv.org.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E. (2020). Learning Near Opti-
mal Policies with Low Inherent Bellman Error. arXiv.org.

103

Appendix A

Incremental Control with Policy
Evaluation Uncertainty Estimates
Appendix

A.1 Comparing UCLS and DGPQ

We include plots showing best and worst runs for UCLS and DGPQ — the two closest

competitors — to show the variance of each algorithm Figure A.1. While UCLS exhibits

relatively high variance in Sparse Mountain Car, DGPQ exhibits high variance across all

the domains.

A.2 Issues with LSTD for control

Although LSTD is a policy evaluation algorithm, it has been used successfully in many

control problems. Here, we explore why it has been successful in this setting.

LSTD is a more data-efficient algorithm than its incremental counterpart TD, and typi-

20 40 140Episodes

Steps per
Episode

(2^x)

7

8

11

DGPQ

Best Run

Worst Run

6

8

13

Negated
Total

Reward
(2^x)

Episodes100 200 500

DGPQ

Best Run

Worst Run

2

5

Steps (x*10^4)1 2 5
1

DGPQ
Best Run

Worst Run

Total
Reward
(10^x)

Steps per
Episode
(x*10^3)

4

2

10

10 20 50Episodes

Best Run

Worst Run

UCLS

Episodes500 2000

UCLS

Best Run

Worst Run

20

40

100

Negated
Total

Reward

2

5

Steps (x*10^4)1 2 5
1

UCLS

Best Run

Worst Run

Total
Reward
(10^x)

Figure A.1: Learning curves comparing best and worst runs for DGPQ and UCLS. DGPQ
is the top row, whereas UCLS is the bottom row. From left to right: Sparse Mountain Car,
Puddle World, River Swim.

104

-500

-50

-150

Cumulative
reward

-400

-400

-300

20 40 50 150 450EpisodesEpisodes

-100

100

Cumulative
reward

LSTD-in-C

LSTD-in-F
Best runs

Worst run

74-8 η-value (2^x)

0

-3

-9

Average
cumulative

reward
per run
(10^3)

LSTD-in-F

LSTD-in-C

LSTD-out-C

LSTD-out-F

a b c

Figure A.2: Learning performance in Mountain Car for LSTD-in and LSTD-out with η
kept constant through learning and η fading with time. η kept constant is denoted by (-C),
and η fading with time is denoted by (-F). (a) Early learning curves for LSTD-in. This plot
does not include LSTD-out as it performed too poorly to be visible. (b) Learning curves
for LSTD-in with best and worst runs. LSTD-in-C’s worst run performed too poorly to be
visible. (c) Parameter sensitivity for both variants LSTD-in and LSTD-out to η/ηr.

cally performs quite well in policy evaluation. This is primarily due to TD only using each

sample once for a stochastic update with a tuned stepsize parameter. In the case of control,

LSTD performs surprisingly well without ε-greedy exploration and lack of an optimism

strategy. We highlight here the inadvertent use of the regularization parameter as a form of

optimism for LSTD in control, and empirically show when this strategy fails leading us to

UCLS as a sound approach in using LSTD in control.

In practice, the inverted matrix A−1 is often directly maintained using a Sherman-

Morrison update, with a small regularizer η added to the matrix A to guarantee invertibility

(Szepesvári, 2010).

There are two objectives that can be solved when dealing with an ill-conditioned system

Aw = b. The most common is to use Tikohonov regularization solving, referred to here

as LSTD-out:

min
w
‖Aw − b‖22 + ηr‖w‖22.

Another approach is to solve the system:

min
w
‖(A + ηI)w − b‖22.

The second approach is implicitly what is solved when a Sherman-Morrison update is used

for A−1, with a small regularizer η added to the matrix A to guarantee invertibility. This

approach is referred to here as LSTD-in. When η = 0, both approaches are solving ‖Aw−

b‖22, which may have infinitely many solutions if A is not full rank. While the Tikohonov

regularization strategy is more common, the second approach is useful for enabling use of

the incremental Sherman-Morrison update to facilitate maintaining A−1 directly.

105

Another choice in regularizing the ill-conditioned system is in how η decays over time.

A small fixed η can be used as a constant regularizer, even as the number of samples in-

creases, because the true A may be ill-conditioned. However, more regularization could

also be used at the beginning and then decayed over time. The incremental Sherman-

Morrison update implicitly decays η proportionally to 1/t.

s E[R] = 2,V[R] ≈ 28E[R] = 1,V[R] = 0

Figure A.3: One-state world, where the optimal action (right) has high-variance; the reward
here is uniformly sampled from within the set {−5,−2, 2, 5, 10}. LSTD, with ε = 0 and η
large, fails in this world, unlike the cost-to-goal problems.

We conducted an empirical study using LSTD without an ε-greedy exploration strategy

in two domains: Mountain Car and a new One-State world. One-State world—depicted in

Figure A.3—simulates a typical setting where sufficient exploration is needed: one outcome

with low variance and lower expected value and one outcome with high variance and higher

expected value. For an algorithm that does not explore sufficiently, it is likely to settle on

the suboptimal action, but more immediately rewarding low-variance outcome. This world

simulates a larger continuous navigation task from White and White, 2010. We include

results for both systems described above and consider a fading version (shown by -F) or a

constant regularization parameter (shown by -C).

Figure A.2 shows results for the four different LSTD strategies in Mountain Car. The

Tikohonov regularization, with ηr, is unable to learn an optimal policy in this domain,

whereas with either constant or fading η, the agent can learn an optimal policy. This is

surprising, considering we use neither randomized exploration nor optimistic initialization.

The parameter sensitivity curve, shown in Figure A.2(c), indicates η and ηr needs to be

sufficiently large as time passes in order to find an optimal policy.

Next, we show that neither regularization strategy with fading η is effective in the One-

State world. The optimal strategy is to take the Right action, to get an expected reward

of 2 under a higher variance for obtaining rewards. All of the LSTD variants fail for this

domain, because η no longer plays a role in encouraging exploration. To verify that a

directed exploration strategy helps, we experiment with ε-greedy exploration, with ε = 0.1,

decayed by a factor of 0.2 every 100 steps (shown in Figure A.4). With ε-greedy, and small

106

η-value (10^x) 32-3 -2

90

70

10

% optimal
behaviour

Optimistic initialization
LSTD-in-F(ε=0.1)

LSTD-in-F(ε=0.0)

LSTD-out-F(ε=0.1)

LSTD-out-F(ε=0.0)

Figure A.4: η-sensitivity in 1-State world with various LSTD updates. Sarsa with optimistic
initialization α = 0.001 is used as a baseline. The y-axis represents percentage optimal
behaviour, where optimal behaviour is choosing to go right, in 20k steps (averaged over 30
runs). Sarsa with optimistic initialization is highly sensitive to the step-size chosen. With
other stepsizes (not shown in figure), it reduces its values too quickly, and fails a significant
percentage of the time. The best stepsize is chosen here to show near-optimal performance
is possible in the domain.

values of ηr and η, the policy converges to the optimal action, whereas it fails to with higher

values of ηr and η.

These results suggest that η’s role in exploration has obscured our understanding of

how to use LSTD for control. LSTD, with sufficient optimism does seem to reach optimal

solutions, and unlike Sutton et al. (2008), we did not find any issues with forgetting. This

further explains why there have been previous results with small ε for LSTD in cost-to-goal

problems, that nonetheless still obtained the optimal policy (van Seijen and Sutton, 2015).

Therefore, in developing UCLS, we more explicitly add optimism to LSTD, and ensure η

is strictly used as a regularization parameter (to ensure well-conditioned updates).

107

A.3 Details about Other Algorithms

A.3.1 Bootstrapped Upper-Confidence Bounds (UCBootstrap)

The strategy for action selection which utilizes bootstrapped confidence intervals, as pro-

posed by White and White (2010), is given in Algorithm 9. This action selection strategy

can be used in conjunction with any learning algorithm to guide on-policy control. The

algorithm requires a window of recent w’s. The window can be maintained with a circular

queue. The window is updated after each learning step of the main algorithm, resulting

in a new wt in the queue. The original UCBootstrap paper proposed both a global and

a sparse updating mechanism, where only the global approach was theoretically justified.

The sparse mechanism was used to reduce the number of parameters stored, particularly

by taking advantage of tile-coding representations. We found in our experiments that the

global approach worked just as well as the sparse approach, and so we include only the

simpler, theoretically justified algorithm.

Algorithm 9 UCBootstrap(φs,·) select action from state features φs,· at time t
l = block length, B = number of bootstrap resamples, w = number (window) of value
functions weights to store and confidence level α
examples: l = 10, B = 50, w = 100, α = 0.05

M ← bw/lc . num of length l blocks to sample with replacement and concatenate
for each action a do

QN ← {w>t−wφs,a, . . . ,w>t−1φs,a}
Q̄N ← mean(QN) . The mean value for this (s, a), given the window of recent

weights
Blocks =

{
{[QN [0], . . . , QN [l-1]}, {[QN [1], . . . , QN [l]},

. . . , [QN [w-l], . . . , QN [w-1]]
}

for all i = 1 to B do
for all j = 1 to M do

A∗j ← random block from Blocks (chosen with replacement)

A← (A∗1, A
∗
2, . . . , A

∗
M) . Concatenate blocks

T ∗i = 1
lM

∑lM
k=1A[k] . ith bootstrap estimate is the mean of the M concatenated

blocks
T ← sort({T ∗1 , . . . , T ∗B}) . ascending order
j ← bBα2 + α+2

6 c . j is the position of the critical samples to help estimate the
continuous sample quantile

r ← Bα
2 + α+2

6 − j . r is the remainder
T ∗α/2 ← (1− r)T ∗j + rT ∗j+1 . the α/2 sample quantile
ua ← 2Q̄N − T ∗α/2

a = argmaxa∈A ua
return a

108

A.3.2 Delayed Gaussian Process Q-Learning (DGPQ)

Another approach to exploration is found in a model-free algorithm using gaussian pro-

cesses named Delayed-GPQ (DGPQ) (Grande et al., 2014). The pseudocode for DGPQ is

in Algorithm 10.

Algorithm 10 DGPQ(k(·, ·), d(·, ·), LQ, Env,A, Rmax, s0, γ, σ
2, σ2

tol, ε)

k(·, ·), d(·, ·) are typically the RBF w/ bandwidth = σ2 and euclidean distance respectively.
LQ correlates with exploration.
A is the set of possible actions.
γ is the discount factor.
σ2
tol is the tolerance of induced variance of using a new point to update a GP

Q̂(s, a)
def
= min(
Vmax,

min
(si,a)∈Q̂a.BV

{[µ̂i + LQd((s, a), (si, a))]}

)
for a ∈ A do

Q̂a.BV = ∅
GPa = GP.init(µ = Rmax

1−γ , k(·, ·))

for t ∈ [0, T] do
at = argmax

a
Q̂(s, a)

//take action at in state st, observe (st+1, rt)
(st+1, rt) = Env(st, at)
qt = rt + γmax

a
Q̂(st+1)

σ2
1 = GPat .variance(st)

//If the new sample is not well covered by GPat
if σ2

1 > σ2
tol then

GPat .update(st, qt)

σ2
2 = GPat .variance(st)

//If theGPat now well covers a previously unknown state and the new approximation
is 2ε less than what is found in Q̂ (i.e. is a less optimistic estimate).

if
{
σ2

1 > σ2
tol ≥ σ2

2

}
and{

Q̂at(st)−GPat .mean(st) > 2ε
}

then
µ = GPat .mean(st) + ε
Q̂at .BV.add((st, at), µ)
for ((sj , at), µj) ∈ Q̂at .BV do

if µj ≤ µ+ LQd((st, at), (sj , at)) then
Q̂at .BV.delete(((sj , at), µj))

//To prevent slow learning or halted learning reset the current GPs and initialize
to the current estimates.

∀a ∈ A,GPa = GP.init(µ̂ = Q̂a, k(·, ·))

109

A.3.3 Least Squares Policy Iteration - Rmax (LSPI-Rmax)

LSPI-Rmax Li et al. (2009) combines LSPI Lagoudakis and Parr (2003) with Rmax Braf-

man and Tennenholtz (2003) for online control in continuous state-spaces. Exploration is

encouraged by determining the knowness of a transition, utilizing kernels. LSPI algorithm

is designed for a batch setting, where the LSTD solution is computed in closed form for

staged batches of data. However, because it accumulates optimistic values, it can be simply

converted into an online algorithm using incremental updates to the matrix A and b, as

done in Li et al. (2009). We summarize this extension in pseudocode as Algorithm 11.

Until states become known, the algorithm estimates action-values that predict the max-

imum possible return; once a state becomes known, it starts to use actual rewards sampled

from the environment. To estimate the knowness of a state under function approximation,

we use feature counts. Each state has a set of active features; the active feature with the

minimum count reflects an upper bound on the number of times that this state has been

seen. Once a states active features have been seen frequently enough, it becomes known.

110

Algorithm 11 Incremental LSPI-Rmax(m)
A← 0, b← 0, e← 0, w← 0,
B← I, c← 0
η = 10−4, β = 0.001, λ = 0, Gmax = rmax/(1 − γ) if continuing or γ 6= 1, else
Gmax = rmaxh for a predicted maximum episode length (e.g., h = 10000).
φs,· ← initial state-action features, for any action
a← greedy action according to value estimates given by φ>s,aw
repeat

Take action a and observe φs′,· and r, and γ
a′ ← greedy action according to value estimates given by φ>s′,a′w
e← γλe + φs,a
if IsKnown(s, a) then

if IsKnown(s′) then
A← (1− β)A + βe(φs,a − γφs′,a′)>
b← (1− β)b + βre

else
A← (1− β)A + βφs,aφ

>
s,a

b← (1− β)b + β(r + γGmax)φs,a

else
A← (1− β)A + βφs,aφ

>
s,a

b← (1− β)b + βGmaxφs,a

for ∀ã ∈ A\a do
if !IsKnown(s, ã) then

A← (1− β)A + βφs,ãφ
>
s,ã

b← (1− β)b + βGmaxφs,ã

c← c + φs,a

α = min
{

1.0, 0.01
||A||2F ||φs,a||

2
2+1.0

}
B← B− αA(A>Bφs,a − φs,a)φ

>
s,a

w← w + (B + ηI)(b−Aw)
φs,a ← φs′,a′ and a← a′

until agent done interaction with environment

Algorithm 12 IsKnown(s, a)
// Uses the minimum count of the features for a state, to decide if s, a is known
// If a not given, sums over all a
m = 5
if a not given then

f ←
∑

a c(φs,a) ∈ Rd
else

f ← c(φs,a) ∈ Rd

if min(f) > m then
return “Known”

else
return “Not Known”

111

A.3.4 Randomized Least Squares Value Iteration (RLSVI)

RLSVI (Osband et al., 2016b) is an algorithm that maintains a distribution over the possible

value functions. The value functions are assumed to be linearly parametrized. While the

main algorithm proposed uses a finite-horizon assumption, a modified version proposed in

the Appendix of the paper does not, and this is the version used in the experiments here.

The pseudocode is provided here for completeness in Algorithm 14.

Algorithm 13 ComputeVF(s1, a1, . . . , sT , aT , θt, λ > 0, σ > 0, γ)

// Estimate posterior mean θ̄t+1, and posterior variance Σt+1 with Bayesian Linear re-
gression
// Sample θt+1 from the distribution

A←

φ
>
s1,a1
...

φ>sT ,aT


bi ←

{
ri + γmaxaφsi+1,.θt+1, if si is not terminal
ri, otherwise

θ̄t+1 ← (A>A + λσ2I)−1A>b
Σt+1 ← σ2(A>A + λσ2I)−1

Sample θt+1 ∼ N (θ̄t+1,Σt+1)
return θt+1

Algorithm 14 RLSVI
w← 0, γf ← γ, λ > 0, σ > 0
φs,· ← initial state-action features, for any action
a← greedy action according to value estimates given by φ>s,aw
repeat

Take action a and observe φs′,· and r, and γ
Store s, a, s′, r
if γ == 0 then

w← ComputeVF(s1, a1, . . . , sT , aT , θt, λ, σ, γf)

a′ ← greedy action according to value estimates given by φ>s′,a′w
until agent done interaction with environment

112

A.4 Experimental Details

The parameters for UCLS are fixed. The parameters for other algorithms based on LSTD –

UCBootstap, LSPI-Rmax – and the linear complexity algorithms – Optimistic Initialization,

ε-greedy – are swept in the following range:

η ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000},

α ∈ {0.00078125, 0.0015625, 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8},

rmax ∈ {0, 1, 10, 100, 1000, 10000},

ε ∈ {0.01, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60},

λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91,

0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0}.

The parameters for RLSVI are swept in the range:

λ ∈ {0.01, 0.1, 1, 10, 100},

σ ∈ {0.01, 0.1, 1, 10, 100}.

The parameters for DGPQ are swept in the range:

σ2 ∈ [0.001, 0.5],

σ2
tol ∈ [0.01, 0.1],

ε ∈ [0.01, 0.1],

LQ ∈ [1, 20].

113

Appendix B

Representations for Online Control
Appendix

B.1 More Results

B.1.1 Control Curves

We perform the evaluation of sparsity inducing networks with Sigmoid activation. Figure

B.7 shows the performance of Sarsa(0) with representations learned by different networks.

k-sparse and WTA performs well in Puddle World, however, none of these representations

are effective across all domains.

The learning curves for various k-sparse networks with distributional regularizers are

in Figure B.8. It suggests that k-sparse (ReLU+k+SKL) provides no improvement over just

using distributional regularizer for ReLU activation (SR-NN).

B.1.2 Activation Heatmaps

The activation heatmaps for randomly selected neurons (excluding dead neurons) in Moun-

tain Car with different regularization stratergies are shown in Figure B.1, and with differnt

Distributional Regularization designs are shown in Figure B.2. Heatmaps for sparsity induc-

ing networks with ReLU activations and Sigmoid activation, for Mountain Car and Puddle

0.0 0.47 0.135 0.33 0.0 0.75 0.0 0.48 0.0 2.5

SR-NN l2-NN l1-NN Dropout-NN NN

Figure B.1: Heatmaps of activations comparing SR-NN to different regularization strategies
and NN in Mountain Car.

114

0.0 0.47 0.0 0.26 0.0 0.14 0.0 0.18

ReLU+SKL ReLU+KL Sigmoid+SKL Sigmoid+KL

Figure B.2: Heatmaps of activations with different Distributional Regularizers in Mountain
Car.

0.0 2.6 0.0 1.35 0.0 1.6 0.0 0.65

k-sparse-NN WTA-NN l1R-NN l2R-NN

MC

0.0 2.1 0.0 0.9 0.0 0.05 0.0 0.22

PW

ReLU

0.0 0.0003 0.0 0.0250.0 1.0 0.0 0.65

l1R-NN l2R-NNk-sparse-NN WTA-NN

MC

0.00001 0.00004 0.001 0.0060.0 0.8 0.0 0.22

PW

Sigmoid

Figure B.3: Heatmaps of activations for nodes from other networks which aim to generate
sparse representations (ReLU and Sigmoid activation).

115

Mountain Car Puddle World
SR-NN 16.8 8.8
`2-NN 112.3 111.5
`1-NN 109.5 142.5

Dropout-NN 72.5 31.2
NN 106.5 54.0

ReLU+KL 36.8 71.4
SIG+SKL 256.0 256.0
SIG+KL 256.0 256.0

k-sparse-NN 36.6 61.8
WTA-NN 24.8 6.5
`2R-NN 30.0 3.8
`1R-NN 10.5 0.4

Table B.1: Activation overlap in Mountain Car and Puddle World. The numbers are the
average overlap over all pairs of selected states.

World are shown in Figure B.3.

B.1.3 Activation Overlap

We show the overlap of representations learned by different networks in Table B.1 for

Mountain Car and Puddle World. `2R-NN and `1R-NN have low overlap values. How-

ever, the regularizers tend to push many neurons to be activated for a really small region to

reduce penalty as shown in Figure B.3. SR-NN, on the other hand, learns a more distributed

representation.

B.2 Experimental Details

In general, we advocate for learning the representation incrementally, for the task faced by

the agent. However, for our experiments, we learned the representations first to remove

confounding factors. We detail that learning regime here.

The problem of learning a good representation φθ(s, a) in the case of finite actions

can be transformed to learning a good representation of the form φθ(s), and using that to

represent the action-value function as:

Q̂w,θ(s, a)
def
= φθ(s)>wa.

Here, φθ(s) is the linear representation of the state s, which is used in conjunction with the

linear predictor wa to estimate action-values for action a across the state space. Under a

116

given policy, like the action-values Qπ(s, a), corresponding state-values, V π(s), are:

V π(s)
def
= E[Gt|St = s],

where, Gt = Rt+1 + γt+1Gt+1.

An easy objective to train connectionist networks with simple backpropagation is the Mean

Squared Temporal Difference Error (MSTDE) Sutton (1988). For a given policy, the MSTDE

is defined as: ∑
s∈S

d(s)E[δ2
t |St = s],

where, δt
def
= Rt+1 + γt+1φθ(St+1)>wv − φθ(St)

>wv.

Here, d denotes the stationary distribution over the states induced by the given policy, and

θ and wv are parameters that can be estimated with stochastic gradient descent. Therefore,

given experience generated by a policy that explores sufficiently in an environment, a strong

function approximator (a dense neural network) can be trained to estimate useful features,

φθ(s). These features can then be used for estimating action-values in on-policy control

for learning the (close-to) optimal behaviour policy in the environment.

Representation Learning Data

In Mountain Car, we use the standard energy pumping policy with 10% randomness. In

Puddle World, by a policy that chooses to go North with 50% probability, and East with

50% probability on each step. The data in Acrobot is generated by a near-optimal policy.

In Catcher, the agent chooses to move toward the apple with 50% probability, and selects a

random action with 50% probability on each step; and gets only 1 life in the environment.

Tile Coding

We compare to Tile Coding (TC) representation, a well-known sparse representation, as

the baseline. TC uses overlapping grids on the observation space, to convert a continuous

space to a discrete dimensional space. The representations generated by it are sparse and

distributed based on a static hashing technique. We experiment with several configurations

for the fixed representation, particularly with grid-sizes(N) in {4, 8, 16} and number of

tilings (D) in {8, 16, 32}. We use a hash size of 8192, which is significantly larger than the

largest feature size of 256, as used in the other learned representation models we compare

to. The results shown in Figure 5.3 are for the best configuration of the static tile-coder

after a sweep.

117

Te
st

in
g

RM
SE

 (s
ol

id
) Training loss (dashed)

Mountain Car Puddle World

Acrobot Catcher

Training epoch

SR-NN l2-NN l1-NN Dropout-NN NN

Figure B.4: Learning curves during the training of neural networks with different regular-
ization methods.

Te
st

in
g

RM
SE

 (s
ol

id
) Training loss (dashed)

Mountain Car Puddle World

Acrobot Catcher

Training epoch

 ReLU+SKL ReLU+KL SIG+SKL SIG+KL

Figure B.5: Learning curves during the training of neural networks with different distribu-
tional regularizers.

118

Te
st

in
g

RM
SE

 (s
ol

id
) Training loss (dashed)

Mountain Car Puddle World

Acrobot Catcher

Training epoch

 l2R-NN l1R-NN k-sparse-NN WTA-NN

Figure B.6: Learning curves during the training of neural networks with different sparsity
inducing approaches.

Training neural networks

Architecture and optimizer: We used neural networks with two hidden layers. The first

layer 32 hidden units. The second layer, which is the representation layer used for predic-

tion, has 256 units. We optimized the neural network weights using Adam optimization

(Kingma and Ba, 2014) with a batch size of 64. The neural network weights are initialized

based on He initialization (He et al., 2015). That is, the neural networks weights are ini-

tialized with zero-mean Gaussian distribution with variance equals to 2/nl, where nl is the

number of input nodes for layer l.

Representation hyperparameters: The range of grid search for the representation

hyperparameters are as follows:

λKL ∈ {0.1, 0.01, 0.001},

β ∈ {0.05, 0.1, 0.2},

λNN for `1 and `2 ∈ {0.1, 0.01, 0.001, 0.0001},

dropout probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

k for k-sparse ∈ {16, 32, 64, 128},

k for WTA ∈ {6.25%, 12.5%, 25%, 50%}.

Algorithmic choices: For k-sparse networks, only the top-k hidden units in the rep-

resentation layer are activated. We also use scheduling of sparsity level described in the

119

original paper Makhzani and Frey (2013). If used in conjunction with a distributional reg-

ularizer, the top-k nodes are chosen before application of the distributional regularizer. For

dropout, given the form of the supervision goal (MSTDE), the same dropout mask is chosen

to generate the representation for both states St+1 and St1 – this preserves dropouts role as

regularizer w.r.t. the target, and promotes diversity in learning.

Grid search evaluation metric: The learned representations are then used for on-

policy control in Sarsa(0) with fixed ε = 0.1. The value function for Sarsa is initialized

with zero-mean Gaussian distribution with small variance. For sparse representations, we

use semi-gradient Sarsa with step decay learning rate. For dense representations, we use

adaptive learning rate method RMSprop (Hinton et al., 2012). The initial learning rate for

Sarsa(0) is swept in the set:

α0 ∈ {0.1, 0.04, 0.01, 0.004, 0.001, 0.0004, 0.0001}.

All the sweeps for selecting the representation learning hyper-parameters across domains

use 50 epochs and 10 runs.

Grid search exploration algorithms: The learned representations are used with online

control algorithms UCLS and RLSVI. The parameters of UCLS and RLSVI are swept in

the following range:

p Thompson sampling ∈ {1.0, 0.1, 0.01},

p UCB ∈ {0.1, 0.5, 0.9},

regularization parameter η ∈ {1e− 0, 1e− 1, 1e− 2},

step-size α ∈ {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}.

Learning curves: The chosen hyper-parameters are used to train a good representation

(saturated testing loss – 100 epochs for Acrobot, and 50 epochs for other domains), follow-

ing which it is used for on-policy control with Sarsa(0). While the control performance is

focused on in the main paper, the learning curve during the representation training phase

is shown in Figures B.4, B.5 and B.6. The metric on the y-axis is the Root Mean Squared

Error (RMSE), which is evaluated as follows:

RMSE =

√∑
φ∈Xtest

(V̂ (φ)− V ∗(φ))2

Xtest
,

1We have experimented with different dropout masks for St+1 and St, and the result suggests that it is not
able to learn good representations even for prediction across all domains.

120

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher
-400

-800

10050 10050 10050 1000500

Episode number

-200

-600

-500

-1000

-2

-6

NN l2R-NN l1R-NN k-sparse-NN WTA-NN

Figure B.7: Learning curves for Sarsa(0) comparing various sparsity inducing networks
with Sigmoid activation.

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

-50

-200

-200

-600

50

0

10050 10050 10050 1000500

Episode number

-150

-250

SR-NN ReLU+k+SKL Sigmoid+k+SKL ReLU+k+KL Sigmoid+k+KL

Figure B.8: Learning curves for Sarsa(0) comparing various variants of distributional regu-
larizers with k-sparse.

where, Xtest is the set of test states for which the representations have been extracted, V̂ (φ)

is the estimated value of state φ and V ∗(φ) is the true value of state φ computed using

Monte Carlo rollouts. The number of test states are 5000 for benchmark domains and 1000

for Catcher. Most algorithms converge to a good solution within 50 epochs in Mountain

Car, Puddle World and Catcher, and 100 epochs in Acrobot as shown in the curves. The

curves are for representation purposes and only averaged over 5 runs. All learning curves

for Sarsa(0) are averaged over 30 runs, and are plotted with exponential moving average

(β = 0.1).

121

Appendix C

Directed Exploration in
Sample-Efficient Online Control
Appendix

C.1 Confidence Intervals for Value Estimates

In the problem of online value-based model-free control in reinforcement learning, we are

interested in estimating the value function of the optimal policy π∗, as this value function

can be used to guide behaviour that is optimal. But, for learning such a value function

online we need to ensure effective exploration.

In online tabular model-based RL, effective exploration is achieved by utilizing policies

which implement the idea of optimism in the face of uncertainty (OFU). A predominant

approach to do so is by using confidence intervals. Algorithms construct confidence inter-

vals around transition/reward dynamics parameters, and find the most optimistic MDP in

this confidence set. For such an MDP the optimal policy’s value function is obtained. This

complete procedure of finding the optimal value function for the most optimistic MDP in

the set is called the extended value iteration algorithm. The behaviour is then greedy with

respect to the value estimates of this optimistic optimal value function (called so, as it is

optimal for an optimistic MDP). Because we are in the tabular setting, there are no poli-

cies whose value functions cannot be represented. And as the confidence intervals shrink,

the behaviour improves – and the agent gradually transitions from exploring, to balancing

exploration-exploitation, to exploiting.

Now, arguably, learning confidence intervals for model-based strategies in the approx-

imation setting is a hard problem. Therefore, from here on, we consider the case where

an agent learns confidence intervals directly for the value estimates learned by the agent in

the approximation setting. As discussed before for such confidence intervals to be effec-

122

tive they need to include two components: (1) out-of-sample epistemic uncertainty, and (2)

in-sample. epistemic uncertainty. To derive such confidence intervals, simplistically, we as-

sume the agent has infinite memory and can store all the transition tuples it has experienced

online.

Ignoring how the confidence intervals for value estimates are derived, one can define an

optimistic policy using them. A straightforward way to do so is a policy that acts greedily

with respect to the optimistic value estimates – the upper-bound value estimates with respect

to the estimated values and the confidence intervals. The value function of this policy

can be learned by using these optimistic value estimates as the target with the Bellman

optimality operator. But in the online approximation setting with limited data, depending

on the generalization structure of the function approximator, such a naive strategy can lead

to erroneous updates. Further, recovering from such erroneous updates can be hard, given

the online nature of the algorithm. Therefore, it is necessary to define assumptions under

which such a strategy can be used. The two assumptions relevant here are that of (1) linear

MDP, and (2) low inherent Bellman error.

Linear Regression: In regression the errors in learning are due to two sources: (1) the

bias of the approximation, and (2) the variance of the targets. The bias of the approximation,

also called the approximation error, can be reduced by increasing the approximation power

of the function class used. The variance of the targets, also called estimation errors, can

be reduced by increasing the number of samples used to estimate the target. In linear

approximation the class of functions is defined by the representation basis.

In the online case both approximation and estimation errors are controlled by the distri-

bution of the data available – more samples can reduce the estimation errors of the targets,

whereas the distribution of samples influences the approximation error. From the perspec-

tive of online RL, where samples are of the form < φs,a, r, γ,φs′,. >, the estimation error

is controlled by the number of samples with transition tuples conditioned on (s, a), and the

approximation error is controlled by the distribution of Πφ, the projection operator defined

by the distribution of (s, a).

C.1.1 Optimism with Linear MDP

If we denote the value function estimated at time t as wt, the value function of an improved

policy can be computed as wt+1 = ΠφTπqwt . Here π can be a greedy or soft improvement

with respect to values of wt.

123

For any state-action pair, the target to be estimated by wt+1 is equal to

E[r|s, a] + E[φ′>wt|s, a],

where expectations are with respect to the dynamics of the MDP and the greedy policy with

respect to wt.

If the MDP is linear in the approximation used — it is a linear MDP — then

E[r|s, a] = φ(s, a)>θr,

E[φ′>wt|s, a] =
∑

(s′,a′)∈(S×A)

P (s, a, s′)π(s′, a′)φ(s′, a′)>wt

=
∑

(s′,a′)∈
(S×A)

φ(s′, a′)>µ(s′)π(s′, a′)φ(s′, a′)>wt.

Therefore, the best w ∈ W with respect to (s, a) corresponds to

w = θr +
∑

(s′,a′)∈(S×A)

µ(s′)π(s′, a′)φ(s′, a′)>wt.

As a result, for any (s, a) there exists a w ∈ W that can estimate its value accurately.

Further, this remains true even if there are any estimation errors due to a lack of transition

samples conditioned on (s, a).

Now, if we include non-linear components to provide optimistic targets for evaluating

an optimistic policy – that is, wt+1 = ΠφTπqwt,Ut , where (qwt,Ut)(s
′, a′) = φ(s′, a′)>wt+√

φ(s′, a′)>U−1
t φ(s′, a′). With a similar procedure, the best w ∈ W with respect to (s, a)

corresponds to

w = θr +
∑

(s′,a′)∈(S×A)

µ(s′)π(s′, a′)

(
φ(s′, a′)>wt +

√
φ(s′, a′)>U−1

t φ(s′, a′)

)
.

Again, this remains true even if there are any estimation errors.

Therefore, for every (s, a) there is a value function inW , even under estimation errors,

that can accurately represent any evaluated target. Further, the optimistic bonuses do not

have to linear in the features. With the approximation weighting defined in Πφ, wt+1 ∈ W

can be estimated effectively. This is the assumption used for designing the LSVI-UCB

algorithm (Jin et al., 2019), and the reason for its efficient online guarantees when the

assumption is satisfied.

124

C.1.2 Optimism with Low Inherent Bellman Error

The target with non-linear bonuses for a given (s, a) pair, without any assumptions would

equal

E[r|s, a] +
∑

(s′,a′)∈(S×A)

P (s, a, s′)π(s′, a′)

(
φ(s′, a′)>wt +

√
φ(s′, a′)>U−1

t φ(s′, a′)

)
.

Let ot(s
′, a′) = φ(s′, a′)>wt +

√
φ(s′, a′)>U−1

t φ(s′, a′) denote the optimistic targets,

and let o ∈ Rn be the optimistic target vector with components corresponding to (s, a)

pairs. If o = Φw, for some w ∈ W , then the optimistic targets are representable with

w ∈ W . Therefore, under the low inherent Bellman error assumption, the expected error is

bounded. If there are any estimation errors, as the expected error is bounded, they will be

small and well-behaved as more of the space is explored. If there is no such w ∈ W , and o

is used as the optimistic target, then any error due to estimation in o can amplify depending

on the approximation weighting. This process can lead to uncontrollable errors, resulting

in poor behaviour, and/or even divergence.

Therefore, it is necessary to use optimistic targets that can be represented with some

w ∈ W with the low inherent Bellman Error. In order to do so, the algorithm Eleanor

(Zanette et al., 2020) proposes an optimization objective that jointly optimizes over the

value function and confidence interval parameters. The result is an optimistic value function

that guides online behaviour.

C.1.3 Optimism in OOVI

The objective proposed by Eleanor provides an optimistic value function, wt+1 along with

confidence interval radius ut that was utilized to estimate wt+1. The uncertainty estimates

are: (1) policy-independent and based on the dynamics across all the horizons, and (2)

linear in the representations used.

The epistemic uncertainty estimates derived in Chapter 4 take into account the dynamics

of the discounted MDP, but are with respect to the policy at time-step t, πt. They are

therefore limited as: (1) they do not include the anticipatory component, and (2) they are

non-linear in the representations used.

Comparing to optimism in UCLS: As discussed in Chapter 6, UCLS’ exploration

strategy is not compatible with planning updates. This is because UCLS’ exploration strat-

egy is designed to maintain optimism through confidence interval radius ût, which with

planning updates can result in fast decay of anticipatory optimism, and therefore poor

125

exploration. OOVI rectifies this by (1) splitting the two optimism components into two

independent learners, (2) introducing updates that retain estimated in-sample epistemic un-

certainty under planning before they are replaced by an improved policy’s uncertainty, and

(3) decaying out-of-sample epistemic uncertainty proportional to policies estimated. This

strategy for learning, along with behaviour that is greedy in the optimistic value estimates

made by w, combined with the out-of-sample value estimates of we-out — where w retains

the in-sample epistemic uncertainties of the previously evaluated policies — results in di-

rected exploration that is compatible with sample-efficient planning strategies. A drawback

of OOVI is that it cannot easily be cast under the Optimistic Values Theorem framework.

C.2 Confidence Intervals for Value Functions

Confidence intervals can also be over value functions, instead of over value estimates, as

utilized by RLSVI (Osband et al., 2016b), and BSP (Osband et al., 2018). While RLSVI is

a finite-horizon algorithm with theoretical guarantees for tabular MDPs, it differs from the

OFU strategies discussed in the previous section based on the following: it utilizes OFU in

the value function space .

RLSVI maintains confidence intervals over value function parameters, and utilizes Thomp-

son sampling to sample value functions from the space. As the space of value functions is

expected to contain q∗, this strategy explores utilizing optimism directly in the value func-

tion space. This is different from approaches that utilize OFU by learning optimistic value

estimates via bonuses.

A key advantage may be that strategies that rely on optimism in value function space

do not have to be limited by the generalization structure of the approximation space being

used as they do not utilize possibly non-representable bonuses to implement the principle

of OFU. On the other hand, because the value functions are sampled, it may be necessary

to utilize the sampled value function for a significant number of steps to have effective

directed exploration. In finite-horizon problems where the length of an interaction cycle is

well-defined, a sampled policy can be used for this length. But it is unclear how one would

faithfully and effectively implement such a strategy in discounted MDPs.

126

C.3 Details about Other Algorithms

C.3.1 Randomized Prior for Bootstrap DQN (BSP)

An approach to exploration that is designed to extend Bayesian Linear Regression from the

context of RLSVI with linear value functions, to the deep reinforcement learning setting is

the algorithm called BSP (Osband et al., 2018). The pseudocode for BSP is in Algorithm 15.

Algorithm 15 Randomized Prior for Bootstrap DQN (BSP)

1: K = number of ensembles, µ = mean, λ = scale
2: wi ← 0, pi ← 0, and Bi ← [∅], ∀i ∈ {1, . . . , N}
3: n← U [0,K], chosen ensemble
4: .π(φs,.)← maxa∈Aφ>s,aw + φ>s,ap
5: φs,· ← initial state-action features, for any action
6: a← π(φs,·)
7: repeat
8: Take action a and observe φs′,· and r, and γ
9: for all i = 1 to K do

10: if U(0, 1) < 0.5 then
11: Store [φs,a, r, γ,φs′,·] in Bi
12: for all i = 1 to K do
13: D ← sampled minibatch from Bi
14: Optimize wi with semi-gradients to minimize∑

D(r + γmaxa′∈A(wi,pi)(φs′,.)− (wi,pi)(φs,a))
2

15: if γ == 0 then
16: n← U [0,K], chosen ensemble
17: a← π(φs′,·), and φs,a ← φs′,a
18: until agent finishes interaction with environment

127

C.3.2 Uncertainty Bellman Equation (UBE)

An approach to exploration that is designed to propagate uncertainty via a Bellman Equa-

tion style update is called UBE (ODonoghue et al., 2017). The pseudocode for UBE is in

Algorithm 16.

Algorithm 16 Uncertainty Bellman Equation (UBE)

1: λ = scale, β = Thompson sampling hyper-parameter
2: w← 0, u← 0, Σa ← λI, B ← [∅]
3: .π(φs,.)← maxa∈AN (φ>s,aw, β ∗ N (0,

√
φ>s,au))

4: φs,· ← initial state-action features, for any action
5: φs ← initial state features
6: a← π(φs,·)
7: repeat
8: Take action a and observe φs′,· and r, and γ
9: Store [φs,a,φs, r, γ,φs′,·] in Bi

10: a′ ← π(φs′,·)
11: y ← φ>s Σaφs + γ2φs′,a′

>u
12: Update u to minimize (y − φs,a

>u)2 with semi-gradients
13: D ← sampled minibatch from B
14: Optimize w with semi-gradients to minimize∑

D(r + γmaxa′∈Aw>φs′,. −w>φs,a)
2

15: Σa ← Σa − (Σaφs,aφ
>
s,aΣa)/(1 + φ>s,aΣaφs,a)

16: a← a′, and φs,a ← φs′,a′

17: until agent finishes interaction with environment

128

C.4 Experimental Details

Representation learning parameters: For learning the representation with SR-NN we

use mini-batch training with a minibatch size of 64. We use an online buffer of size 1000.

The neural network is a two-layer network of size [32,256] resulting in a 256 dimensional

representation. We sweep over using and not using a bias in the network. The network is

trained to predict next state and reward. The weight of SR-NN loss, its sparsity coefficient,

and the weights of the state and reward prediction losses are swept in the following set:

λSKL ∈ {0.001, 0.01, 0.1},

β ∈ {0.05, 0.1, 0.2},

λS ∈ {1.0, 1.5, 2.0, 2.5, 3.0},

λR ∈ {1.0, 0.1, 0.01}.

Parameter sweep: The relevant parameters for all algorithms are swept in the follow-

ing set for 3 runs:

p, Thompson sampling ∈ {1.0, 0.1, 0.01},

p, UCB ∈ {0.1, 0.5, 0.9},

regularization parameter λ ∈ {1e− 0, 1e− 1, 1e− 2},

step-size α ∈ {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1, 2e− 1},

variance scaling parameter β ∈ {1e− 0, 1e− 1, 1e− 2}.

we-out of OOVI is initialized to estimate 100 as the out-of-sample epistemic uncertainty

with respect to the underlying state-space.

129

	Table of Contents
	Introduction
	Objective
	Approach
	Contributions
	Overview
	Summary

	Background
	Reinforcement Learning
	Discounted Reinforcement Learning
	Markov Decision Processes
	Types of Discounted Environments

	Value Functions
	Function Approximation
	Linear Function Approximation

	Policy Evaluation
	Temporal Difference Learning
	Least Squares Temporal Difference Learning

	Policy Iteration
	Other MDP Related Details
	Types of MDPs
	Types of Learning Problems in MDPs

	Summary

	Exploration in Reinforcement Learning
	The Exploration-Exploitation Trade-Off
	Directed Exploration in Tabular State-Spaces
	Directed Exploration in Continuous State-Spaces
	Desiderata for Directed Exploration
	Summary

	Incremental Control with Policy Evaluation Uncertainty Estimates
	Confidence Intervals for LSTD()
	Linear Complexity Confidence Intervals for LSTD()

	On-Policy Control
	Optimistic Values Theorem
	UCLS: Control with LSTD using Upper-Confidence Bounds
	UCLS-L: Estimating Upper-Confidence Bounds for Linear TD in Control

	Evaluation of UCLS
	Online Performance
	Sensitivity to p and Benefits of Contextual Uncertainty

	Summary

	Representations for Online Control
	Locality in Control
	Distributional Regularizes for Sparsity
	The Utility of Sparsity for Control
	Evaluation of Distributional Regularizers
	Comparing KL to Set KL
	Comparing Sigmoid to ReLU
	Comparing to Other Sparse Representation Learning Strategies

	Sparsity and Exploration Algorithms
	Summary

	Directed Exploration in Sample-Efficient Online Control
	Limitations of UCLS
	An Overview of Online Control Algorithms
	Online Optimistic Value Iteration
	Outline of OOVI
	Ideas Incorporated in OOVI

	Evaluation of OOVI
	Evaluating Online Performance
	Evaluating the Benefit of Replay Updates in OOVI
	Evaluating OOVI's Epistemic Uncertainty Components
	Evaluating OOVI's Sensitivity to the Size of the Online Buffer

	Summary

	Perspectives and Future Work
	Summary of Contributions
	Limitations and Future Work
	Summary

	Bibliography
	Incremental Control with Policy Evaluation Uncertainty Estimates Appendix
	Comparing UCLS and DGPQ
	Issues with LSTD for control
	Details about Other Algorithms
	Bootstrapped Upper-Confidence Bounds (UCBootstrap)
	Delayed Gaussian Process Q-Learning (DGPQ)
	Least Squares Policy Iteration - Rmax (LSPI-Rmax)
	Randomized Least Squares Value Iteration (RLSVI)

	Experimental Details

	Representations for Online Control Appendix
	More Results
	Control Curves
	Activation Heatmaps
	Activation Overlap

	Experimental Details

	Directed Exploration in Sample-Efficient Online Control Appendix
	Confidence Intervals for Value Estimates
	Optimism with Linear MDP
	Optimism with Low Inherent Bellman Error
	Optimism in OOVI

	Confidence Intervals for Value Functions
	Details about Other Algorithms
	Randomized Prior for Bootstrap DQN (BSP)
	Uncertainty Bellman Equation (UBE)

	Experimental Details

