This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 110Machine learning
- 10Artificial intelligence
- 5Reinforcement learning
- 4Natural language processing
- 3Data mining
- 3Game theory
- 4Hindle, Abram
- 4Mark A. Lewis
- 4Russell Greiner
- 3Noonari, Juned (Supervisor)
- 3Pouria Ramazi
- 2Fan, Chengkai
- 84Graduate and Postdoctoral Studies (GPS), Faculty of
- 84Graduate and Postdoctoral Studies (GPS), Faculty of/Theses and Dissertations
- 7Master of Science in Internetworking (MINT)
- 7Master of Science in Internetworking (MINT)/Capstone Projects & Reports (Master of Science in Internetworking (MINT))
- 5Biological Sciences, Department of
- 5Biological Sciences, Department of/Journal Articles (Biological Sciences)
- 84Thesis
- 9Report
- 5Article (Published)
- 5Article (Draft / Submitted)
- 3Conference/Workshop Poster
- 3Research Material
-
Fall 2014
In the face of an overwhelmingly information intensive Internet, searching has become the most important way to locate information efficiently. Current searching techniques are able to retrieve relevant data, however, personalization techniques are still needed to better identify different user...
-
Fall 2015
Polarity classification in text is the problem of automatically detecting the general opinion of textual data. Analyzing the general opinion toward a topic of interest is important for different audiences, such as companies, politicians or even regular users. On the other hand, the availability of...
-
Fall 2009
Understanding biochemical reactions inside cells of individual organisms is a key factor for improving our biological knowledge. Signaling pathways provide a road map for a wide range of these chemical reactions that convert one signal or stimulus into another. In general, each signaling pathway...
-
2021-10-01
Pouria Ramazi, Mélodie Kunegel-Lion, Russell Greiner, Mark A. Lewis
Planning forest management relies on predicting insect outbreaks such as mountain pine beetle, particularly in the intermediate‐term future, e.g., 5‐year. Machine‐learning algorithms are potential solutions to this challenging problem due to their many successes across a variety of prediction...
-
2003
Greiner, Russell, Wishart, David, Eisner, Roman, Lu, Z., Lu, Paul, Macdonell, Cam, Poulin, B., Szafron, Duane, Anvik, J.
Technical report TR03-14. Identifying the destination or localization of proteins is key to understanding their function and facilitating their purification. A number of existing computational prediction methods are based on sequence analysis. However, these methods are limited in scope, accuracy...
-
Fall 2009
This thesis addresses the challenge of prognosis, in terms of survival prediction, for patients with Glioblastoma Multiforme brain tumors. Glioblastoma is the most malignant brain tumor, which has a median survival time of no more than a year. Accurate assessment of prognostic factors is critical...
-
Public Health Applications Using Big Data and Machine Learning Methods: Name- and Location-based Aboriginal Ethnicity Classification and Sentiment Analysis of Breast Cancer Screening in the United States Using Twitter
DownloadFall 2017
Applications using big data and machine learning techniques are transforming how people live in the 21st century, however they are generally underutilized in public health compared to other domains. We proposed and conducted two independent studies to investigate how big data and machine learning...
-
Fall 2018
Gaussian processes are flexible probabilistic models for regression and classification. However, their success hinges on a well-specified kernel that can capture the structure of data. For complex data, the task of hand crafting a kernel becomes daunting. In this thesis, we propose new methods...
-
Spring 2015
This dissertation explores regularized factor models as a simple unification of machine learn- ing problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized...