
Regularized factor models

by

Martha White

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Martha White, 2014

Abstract

This dissertation explores regularized factor models as a simple unification of machine learn-

ing problems, with a focus on algorithmic development within this known formalism. The main

contributions are (1) the development of generic, efficient algorithms for a subclass of regularized

factorizations and (2) new unifications that facilitate application of these algorithms to problems

previously without known tractable algorithms. Concurrently, the generality of the formalism is

further demonstrated with a thorough summary of known, but often scattered, connections between

supervised and unsupervised learning problems and algorithms.

The dissertation first presents the main algorithmic advances: convex reformulations of non-

convex regularized factorization objectives. A convex reformulation is developed for a general

subset of regularized factor models, with an efficiently computable optimization for five different

regularization choices. The thesis then describes advances using these generic convex reformula-

tion techniques in three important problems: multi-view subspace learning, semi-supervised learn-

ing and estimating autoregressive moving average models. These novel settings are unified under

regularized factor models by incorporating problem properties in terms of regularization. Once ex-

pressed as regularized factor models, we can take advantage of the convex reformulation techniques

to obtain novel algorithms that produce global solutions. These advances include the first global es-

timation procedure for two-view subspace learning and for autoregressive moving average models.

The simple algorithms obtained from these general convex reformulation techniques are empirically

shown to be effective across these three problems on a variety of datasets.

This dissertation illustrates that many problems can be specified as a simple regularized factor-

ization, that this class is amenable to global optimization and that it is advantageous to represent

machine learning problems as regularized factor models.

ii

Acknowledgements

I cannot give enough thanks to my two amazing advisors, Michael Bowling and Dale Schuurmans.

They have spent countless hours discussing research and life with me, and it has been immeasurably

important to me.

I would like to thank the Department of Computing Science and everyone in it. Many people,

still at the department or now scattered across the world, have made my PhD more full and created

an amazing environment for research.

I would like to thank NSERC, Alberta Innovates, the Killam Program and the University of

Alberta for funding throughout my PhD. Without their generous support of this research, it could

not have occurred.

Finally, I would like to thank my husband, Adam White, my partner in research and life.

Table of Contents

1 Introduction 1
1.1 Objective . 2
1.2 Approach . 3
1.3 Contributions . 4
1.4 Overview . 5

2 Background: regularized factor models 8
2.1 Why regularized factor models? . 9

2.1.1 Different choices for the distribution parameters 11
2.2 Bregman divergences and exponential family distributions 12

3 Preliminary insights: supervised and unsupervised learning using factor models 16
3.1 Supervised learning using factor models . 16

3.1.1 Linear forward prediction . 17
3.1.2 Linear forward-reverse prediction connection 19
3.1.3 Generalized forward-reverse connection 20
3.1.4 Case studies . 22

3.2 Unsupervised learning as factor models . 24
3.2.1 Forward-reverse prediction for unsupervised learning 25
3.2.2 Case studies . 25

3.3 Previous frameworks and unifications . 32
3.4 Summary table . 35
3.5 Summary . 36

4 Convex formulations for regularized factor models 37
4.1 Why not use expectation-maximization? . 38
4.2 Convex matrix factorization formulation for norm regularizers 40
4.3 Computationally practical special cases . 43

4.3.1 Recovery algorithms . 47
4.4 Summary . 50

5 Subspace learning and sparse coding using regularized factor models 52
5.1 Convex sparse coding . 53
5.2 Convex subspace learning . 55
5.3 Convex multi-view subspace learning . 58
5.4 Experimental results for convex multi-view subspace learning 62
5.5 Summary . 66

6 Semi-supervised learning using regularized factor models 67
6.1 Theoretically sound standard semi-supervised learning 69

6.1.1 Variance reduction using unlabeled data 70
6.1.2 Algorithms for semi-supervised classification and regression 72
6.1.3 Experimental results . 75

6.2 Convex representation-imputed semi-supervised learning 78
6.2.1 Convex reformulation . 79
6.2.2 Experimental results . 81

6.3 Summary . 85

iv

7 Autoregressive moving average models using regularized factor models 86
7.1 Background . 87
7.2 Regularized ARMA modeling . 90
7.3 Efficient parameter estimation . 91
7.4 Identifiability and optimal parameter recovery . 93
7.5 Computational complexity . 93
7.6 Experimental evaluation . 94

7.6.1 Synthetic experiments . 97
7.6.2 Experiments on real time series . 97
7.6.3 Investigating the moving average component 97

7.7 Summary . 98

8 Perspectives and future work 100
8.1 Research directions . 101

8.1.1 What cannot be represented as a regularized factor model? 101
8.1.2 Computational challenges . 103
8.1.3 Theoretical challenges . 104

8.2 Summary . 105

Bibliography 106

A Background information 115
A.1 Generalized eigenvalue problems . 115
A.2 Relationship between regularization and constraints 116

A.2.1 Lagrangian, strong duality and the KKT conditions 116
A.2.2 General set constraints . 118

A.3 Bregman divergence properties . 119

B Generalized forward-reverse connection 121
B.1 Proof of Theorem 1 . 121
B.2 Kernelization, regularization, and instance weighting 122

B.2.1 Simplifications for least-squares losses 125

C Unsupervised learning algorithms 126
C.1 Linear representation learning . 126

C.1.1 Probabilistic latent semantic indexing . 126
C.1.2 Partial least squares . 126
C.1.3 Independent component analysis . 127

C.2 Graph-based techniques . 128
C.2.1 Isomap . 128
C.2.2 Laplacian eigenmaps . 128
C.2.3 Locally linear embeddings . 129
C.2.4 Metric multi-dimensional scaling . 129
C.2.5 Ratio cut . 129
C.2.6 Projection algorithms . 129

C.3 Linear clustering . 130
C.4 Generalized clustering . 131

C.4.1 Exponential family k-means clustering 131
C.4.2 Generalized normalized cut . 132
C.4.3 Linde-Buzo-Gray algorithm . 132
C.4.4 Information theoretic clustering and Information bottleneck 132

D Convex factorization appendix 134
D.1 Preliminaries . 134
D.2 Proof of Theorem 2 . 135
D.3 Proof of Theorem 7 . 136
D.4 Derivation of the boosting recovery algorithm . 138

D.4.1 Characterizing the recovery set . 139
D.4.2 Boosting procedure . 141

v

D.4.3 Solving the weak oracle problem . 142

E Efficient training for multi-view subspace learning 143

F Semi-supervised learning appendix 144
F.1 Algorithms for clustering . 144
F.2 Bregman divergences for standard semi-supervised learning 147

G Autoregressive Moving Average Models 149
G.1 Proof of Lemma 1 and 4 . 149
G.2 Proof of Theorems 9 and 10 . 150
G.3 Generalizations for regularized ARMA modeling 150
G.4 Details for the algorithms and experiments . 152

G.4.1 Generating stable synthetic ARMA models 152
G.4.2 Imputing future innovations efficiently . 153
G.4.3 Forecasting in ARMA models . 153

vi

List of Tables

6.1 Average transductive error of semi-supervised regression techniques on synthetic dataset,
with (n, k, tu) and tl = 20, over 50 splits of the data. 76

6.2 Average transductive error of semi-supervised regression techniques on a variety of real
datasets, over 50 splits of the data. 76

6.3 Average transductive percent misclassification error of semi-supervised classification tech-
niques on synthetic data, given (n, k, tu) and tl = 10, over 20 splits. Euclidean, Sig-
moid and Softmax correspond to objectives with identity, sigmoid and softmax transfers.
Hard/Soft Cluster Sigmoid NC is Bregman normalized cut with a sigmoid transfer. 77

6.4 Average transductive percent misclassification error of semi-supervised classification tech-
niques on real-world datasets over 50 splits. Euclidean, Sigmoid and Softmax correspond
to objectives with identity, sigmoid and softmax transfers. Hard/Soft Cluster Sigmoid NC
is Bregman normalized cut with a sigmoid transfer. LINK and SetStr have k = 2. 77

6.5 Minimum objective values in Equation (6.7) obtained by the training methods on six data
sets. The objective values is always the lowest for S-RFM, though sometimes the alternator
and the staged algorithms achieve this global minimum. When ALT or STAGE obtain the
minimum error, however, their runtime is always worse than the runtime for S-RFM to
obtain the same solution. 83

6.6 Average test (transductive) classification error of semi-supervised techniques on a variety
of real datasets and one synthetic dataset (± standard deviation). 84

7.1 For each dataset, the first column contains the test MSE (with standard error in
parentheses) and the second the percentage of trials that were stable. The stability
is evaluated using a threshold: eigenvalues < 1+ ε = 1.01. The method(s) with
the most t-test wins with significance level of 5% is(are) bold for each dataset.
Stable rates are key for iterated prediction performance; large MSE is mainly due to
unstable trials. 95

7.2 As in Table 7.1, test MSE and stability are reported, now on two real datasets. . . . 95

A.1 Detailed information about exponential family distributions and their associated
transfers and Bregman divergences. Each distribution is a natural exponential fam-
ily: pF (z|θ) = exp(z′θ − F (θ))p0(z). The minimization over the Bregman di-
vergence can be simplified because terms only dependent on z can be dropped in

the minimization: minθ − ln pF (zi|θ) = minθDF (θ|f−1(z)) = minθ F (θ) −
F (f−1(z))−f(f−1(z))′(θ−z) = minθ F (θ)−z′θ. The goal is to learn f(θ) ≈ z.

For example, for data x, the goal may be to learn Ŵ such that f(Ŵx) ≈ f(Wx) =
y. Note that for the tables in (Banerjee et al., 2005), F = ψ. 120

F.1 Transfer functions with their inverses and potential functions. 148

vii

List of Figures

2.1 Two Bregman divergences with different transfer functions. The function pictured
is the potential function, F . The Bregman divergence corresponds to the difference
between the value at the point, ẑ, and the first order Taylor expansion around z
(a) For the identity transfer, f(z) = z, the Bregman divergence corresponds to the
Euclidean loss. (b) For the logarithmic transfer shifted by 1, f(z) = z log(z), the
Bregman divergence corresponds to the relative entropy or normalized KL-divergence. 13

3.1 (a) Transformed space using linear kernel. The new feature representation for x ∈ R
2 is a

3-dimensional vector that consists of the distances to the given samples, x1,x2,x3. (b) The
Fenchel conjugate, F ?, which is the potential function for the reverse prediction problem.
Intuitively, the value of the Fenchel conjugate at a point y is the intercept of the line with
slope y that is tangent to F , which must be unique in this case by the strict convexity of F . 20

4.1 Norms and their duals, where the norm value is shown for all x = (x1, x2) such that
‖x‖p = 1. (a) `p norms. The dual of the `1 norm is `∞ and the dual of the `2 norm is itself.
(b) The general relationship between the norm and its dual in `p spaces (here for p = 8). . 41

5.1 Values for various norms on matrices with subspace or sparsity properties. In both graphs,
the norm values are scaled to between 0 and 1, so that the trend can be compared. The ma-
trices are generated with independent entries in N (0, I). (a) The values are averaged over
1000 random matrices in R

50×30 with an increasing number of zeroed rows. To compare
the subspace properties of the norms, the norm value is compared to the value on randomly
zeroing the same number of entries, rather than rows. The `0 and `1 are both above 1 in
all cases, having a lower value for zeroing sparsely rather than zeroing an entire row. The
`2 and `10 norm both are lower than 1 after the first 12 and 4 rows are zeroed, respectively.
When the relative value is lower than 1, the norm value is lower for matrices where the
entire row is zeroed rather than just an equivalent number of entries sparsely zeroed. This
result suggests that as p gets larger, this property is further enforced. The `2 norm, in fact,
appears to have mixed properties: it prefers sparsity for more dense matrices, and zeroing
rows for less dense matrices. (b) The values are averaged over 1000 random matrices with
an increasing number of zeroed entries, rather than entire rows. 56

5.2 Different dependency relationships between views. Dark grey means the variable is ob-
served. (a) Single-view Representation: Each view has its own latent representation, such
as is typical in standard single-view subspace learning and sparse coding. (b) Multi-view
Shared Latent Representation: This structure indicates a shared latent representation that
makes the viewsX1, . . . , Xm conditionally independent. In practice, this structure typically
underlies algorithms that attempt to recover Xi using the factorization CiΦ. (c) Multi-view
with Private and Shared Information: In addition to the conditional independence struc-
ture, the explicit private information is used to describe certain algorithms that explicitly
learn Pi or parameters for Pi. In Figure (b), these quantities are implicitly the remain-
ing noise after obtaining CiΦ. Probabilistic PCA, on the other hand, explicitly learns the
parameter σi for Pi ∼ N (0, σiI). 59

viii

5.3 The d-separation rules for causal graphs (Geiger et al., 1990). (a) If X2 is observed (i.e.
given), then X3 is independent of X1 (i.e. d-separated). If X2 is not observed, then X3 is
dependent on X1 (i.e. d-connected). (b) Same as Head-to-Tail. (c) If X2 is not observed
(i.e. not given), then X3 is independent of X1 (i.e. d-separated). If X2 is observed, then
X3 is dependent on X1 (i.e. d-connected). Note that for (c), X2 can also be indirectly
observed through a descendant. If there was a node, A, such that X2 → A, and A was
observed, then X1 and X3 would be dependent. 60

5.4 Comparison between LSL and MSL on synthetic datasets with changing α, n = m = 20
and 10 repeats. (a) LSL often gets stuck in local minima, with a significantly higher objec-
tive than MSL. (b) For small α, LSL is significantly slower than MSL. They scale similarly
with the number of samples (c) Runtimes of SSL and MSL for training and recovery with
α = 10−3. For growing sample size, n = m = 20. MSL-R stands for the recovery
algorithm. The recovery time for SSL is almost 0, so it is not included. 64

5.5 Reconstruction of a noisy image with 5% or 10% noise. LSL performs only slightly
worse than MSL for larger noise values: a larger regularization parameter is needed
for more noise, resulting in fewer local minima (as discussed in Figure 1). Con-
versely, SSL performs slightly worse than MSL for 5% noise, but as the noise in-
creases, the advantages of the MSL objective are apparent. 65

6.1 Reverse loss decomposition for an identity transfer, making the corresponding Breg-
man divergence a least squares loss. In this case, for x̂ = Cy the supervised re-
construction of x using the given label y and x∗ = Cφ∗, satisfies ‖xi − x̂i‖2 =
‖xi − x∗

i ‖2 + ‖x̂i − x∗
i ‖2, by the Pythagorean theorem. The generalization of this

result beyond the squared norm to general Bregman divergences is given in Theorem 8. 71

7.1 Graphical models depicting the dependence structure of two widely-used temporal
models. (a) An ARMA(1, 2) model, where the straight down (red) arrows corre-

spond to parameter B(0), the two angled (blue) arrows are B(1) and the longest

(green) arrow is B(3). These arrows repeat for x4,x5, (b) A latent state-space
model. These models are equivalent if the state-space model is in observability
canonical form (Benveniste et al., 2012, Sec. 6.2.1). Distinct methods are used for
estimation in each case depending on whether the variables are discrete or continuous. 88

7.2 Cumulative test MSE in log scale on two real-world datasets. Each model is iterated for (a)
40 and (b) 60 steps, respectively. AR (BIC) appears to perform a strong 1-step prediction,
but then quickly degrades in performance, indicating the importance in selecting a good lag
length for AR. HSE-HMM is unstable for CAC, but performs reasonably for Atlantic. The
best performing methods are N4SID, AR(AICc), and RARMA. In both, RARMA has the
lowest error for predictions up to a horizon of 30. 96

7.3 Runtimes for an increasing number of samples, where the parameters of the multivariate
series are n = 9 and p = q = 3. The method-of-moments approaches are the fastest and
appear to be less affected by increasing number of samples. The maximum likelihood ap-
proaches, however, are comparable, with EM-Kalman affected most by the increase in sam-
ples. Interestingly, the gap between RARMA and ARMA decreases as samples increase,
and remains parallel with the simpler AR implementation. 96

7.4 The relative error is reported between RARMA(p, q) and the RARMA(p,0) and RARMA(p+
q,0): err(RARMA(q = 0)) / err(RARMA(q > 0)). The plot is symmetric, where at 4,
RARMA(p, q) has 4x lower error (good), and at 0.25, has 4x higher error (bad). The dimen-
sion is set to n = p and 50+p+q training samples. The x-axis shows increasing lag and the
y-axis increasing moving average variance. As the variance is increased beyond exp(−3),
using the mean as a predictor begins to outperform all three methods. For (a) and (b), the
comparison is with respect to forecasting accuracy for a horizon of 10, measured with `1
error. For (c) and (d), the comparison is with respect to the `1 error between the recovered
A parameters and the true parameters, cut-off at p for RARMA(p + q, 0). Interestingly, it
appears that the accuracy of A is not crucial for forecasting performance, as RARMA(p, q)
outperforms RARMA(p, 0) for most reasonable innovation variance in terms of forecasting
error, but not in terms of accuracy of the underlying A. 99

ix

List of Notations

R
+ The set of all non-negative real numbers, including infinity: [0,∞] . 7

≡ Indicates that two optimizations have equivalent solution sets: if
argminθ f(θ) = argminθ g(θ), then write minθ f(θ) ≡ minθ g(θ) 7

∇ The gradient operator. 7

∂ The subgradient operator. 7

† The pseudo-inverse of a matrix. 7

F A strictly convex potential function that defines a natural exponential family distribution,
pF (z|θ) = exp(z′θ − F (θ))p0(z). 12

f A transfer function, f = ∇F , for a given potential function F , that is used to define the
corresponding Bregman divergence DF (ẑ||z) = F (ẑ)− F (z)− f(z)′(ẑ− z). 12

L(·, X) A generic loss function for a given data matrix, X . 38

‖x‖ A generic norm on a vector x (norms are always convex). 38

‖y‖∗ The conjugate norm: ‖y‖∗ = max‖x‖≤1 x
′y, where ‖x‖∗∗ = ‖x‖.38

‖x‖p A p-norm, 1 ≤ p ≤ ∞, ‖x‖p = (
∑

i |xi|p)1/p with ‖x‖∗p = ‖ · ‖q for 1
p + 1

q = 1. 38

‖X‖ A generic matrix norm on X (norms are always convex). 38

‖Y ‖∗ Conjugate norm of ‖X‖, where ‖Y ‖∗ = max‖X‖≤1 tr(X
′Y) and ‖X‖∗∗ = ‖X‖. 38

‖X‖(p,q) The induced (p, q) norm on X: ‖X‖(p,q) = max‖z‖p≤1 ‖Xz‖q, defined in (Horn and

Johnson, 1990, §5.6). 38

‖X‖(C,�) The generalized induced norm onX: ‖X‖(C,�) = maxz∈C ‖Xz‖� for any bounded closed

set C ⊂ R
n such that span(C) = R

n (see Lemma 3) . 38

‖X‖sp The spectral norm: ‖X‖sp = ‖X‖(2,2) = σmax(X) . 38

‖X‖tr The trace norm or nuclear norm, conjugate of the spectral norm: ‖X‖tr =
∑

i σi(X). . 38

‖X‖F The Frobenius norm: ‖X‖F =
√

tr(X ′X) =
√

∑

i σ
2
i (X). 38

‖X‖r,s The block norm, ‖X‖r,s = (
∑

i(
∑

t |Xij |r)
s
r)

1
s .38

‖X‖∗r,s Conjugate of block norm: ‖X‖∗r,s = ‖X‖r∗,s∗ such that 1
r + 1

r∗ = 1
s + 1

s∗ = 1. . . 38

x

Chapter 1

Introduction

Statistical machine learning involves learning functional relationships using sampled data from a

population. For example, one might be interested in predicting energy output from a solar panel

based on current weather information, i.e., finding a function f from input variables to target vari-

ables. Typically, we cannot iterate the entire space of possible input and output variables; rather

we obtain samples from that space to learn an approximate functional relationship that generalizes

to unseen instances. In addition to predictive functions, another goal may be to extract structure,

such as mapping instances to groups or finding novel representations, such as lower-dimensional

manifolds.

Due to the ubiquitous need for analyzing gathered data in a wide variety of fields, statistical ma-

chine learning algorithms have been repeatedly reinvented, often with slightly different perspectives

or procedural approaches. For example, several multiple linear regression techniques were intro-

duced separately but are all equivalent, including simultaneous linear predictions and redundancy

analysis in psychology and reduced rank regression in statistics. As another example, several graph-

based dimensionality-reduction techniques were introduced separately, including Isomap, Laplacian

eigenmaps and locally linear embeddings; these techniques, however, are actually variants of kernel

principal components analysis. This proliferation of techniques has led to difficulties in understand-

ing, particularly in terms of algorithm selection and interpreting algorithm properties. Moreover,

algorithmic advances are slowed by repeated development, and generalizations to novel settings can

be unclear when the algorithm is coupled with the specific problem setting.

In recent years, there has been a focus on understanding connections between these algorithms

in a unified way. Many pairwise connections have been recognized, such as the connection between

principal components analysis and k-means clustering (Jong and Kotz, 1999) or the connection

between canonical correlation analysis and linear discriminant analysis (Bach and Jordan, 2006). In

addition, there have been several unification formalisms proposed, namely as generalized eigenvalue

1

problems (Borga et al., 1997; Kokiopoulou et al., 2011), least-squares optimizations (De la Torre,

2012) and generalized linear model optimizations (Gordon, 2003; Banerjee et al., 2005; Singh and

Gordon, 2008). A common theme among many of the unifications is obtaining a factorization: a

basis C and representation Φ that best explains the dataX , typically in the relationshipX = f(CΦ)

for some transfer function f .

A unified view of matrix factorization was recently introduced by Singh and Gordon (2008) that

encompasses many of these previous formalisms. This view encompasses many algorithms, includ-

ing non-negative matrix factorization, principal components analysis, probabilistic latent semantic

indexing and Bregman co-clustering to name a few and facilitated the development of a general

Newton projection algorithm. In this thesis, I propose to explore a modest generalization to this

formalism, which I call regularized factor models. Though there are more general unifications,

described in Section 3.3, I propose to explore this unifying formalism because it

1. reduces the number of modeling choices to a small set of choices

2. appears to unify a large section of machine learning algorithms, despite its simplicity

3. is amenable to efficient optimization for several important cases

4. has an intuitive maximum likelihood interpretation; and

5. provides transparent assumptions on the data and problem properties.

1.1 Objective

This thesis aims to further understanding on the following question:

What unifications and algorithmic development for statistical machine learning prob-

lems can be achieved under regularized factor models?

Unification under regularized factor models should have the focus of separating the problem

from the algorithm. Often, the problem and algorithmic solution can be conflated, and a focus on

unifying under a formalism with precise modeling choices promotes a clear separation. This sepa-

ration enables clear extensions on the problem, as well as clarifying assumptions behind previous

algorithms and when they transfer to new settings. The objective is not necessarily to champion reg-

ularized factor models as a “theory of everything”, but rather to promote useful insights into how to

set modeling choices for new problems and exploit clear connections to extend or reuse algorithms

to solve those problems.

2

My focus in terms of algorithmic development is finding principled techniques that are guar-

anteed to find global solutions to the specified problem. Without guarantees, tuning parameters

and interpreting results can be difficult. For example, one could run an algorithm for a range of

meta-parameters (such as regularization parameters); if the algorithm is not guaranteed to return

global solutions, returning instead local minima or ad hoc solutions, it is not possible to distinguish

if the differing solutions are due to the change in meta-parameter setting or from different local min-

ima. To make precise problem specifications practically useful, guarantees that the problem can be

solved are essential. Though precise problem specifications often make their own approximations

to the true problem, one can more clearly identify the modeling choices that are inaccurate or are

relaxations, whereas it is often difficult to interpret the consequence of local solutions.

1.2 Approach

An important factor in our approach for algorithmic advances under regularized factorization is a

focus on convex reformulations. Convex optimizations guarantee that all local minima are actually

global minima: if an efficient descent approach is available, then a global solution to the specified

objective can be obtained. The approach centers around identifying non-convex objectives that can

be transformed in to convex objectives. This approach benefits from the fact that with proper choices

in problem specification we need not lose any modeling power but gain in terms of optimization.

Though convex reformulations are not the only approach for obtaining global solutions, (1) they

enable generalization, in that one reformulation insight extends to many settings, due to properties

of convex functions and (2) there are many algorithms for solving convex optimization problems,

adding another level of versatility.

To enable further unification, I shift focus to incorporating more problem properties in terms

of regularization. Many previous algorithms did not use regularization, but rather focus on data

re-weighting and kernelization to obtain useful properties. A modern approach is to incorporate

structure using regularizers, such as the `1 regularizer for sparsity. In addition to generalizing the en-

codable structure, there are also useful distributional properties encoded by the regularizers. Finally,

this shift is not only key for incorporating novel problem settings, including multi-view subspace

learning, semi-supervised learning and autoregressive moving average models, but also for enabling

algorithmic advances. In particular, norm-based regularizers are convex, making them amenable to

convex reformulation techniques.

3

1.3 Contributions

The key contributions of this dissertation are the following.

Convex formulations for regularized factor models. I have co-developed a convex reformula-

tion for a general subset of regularized factor models with an efficiently computable optimization

for five cases. The five cases are for different regularization and constraint set choices; the remain-

ing modeling choices remain general, where any convex loss function can be used. The approach

involves deriving an induced norm on a joint variable, given the regularizers chosen for the regu-

larized factor model. In certain cases, a closed form recovery procedure of the factorized variables

from the joint variable is provided. For the other cases, a generic boosting strategy is given. This

work was published in a refereed conference proceeding (Zhang et al., 2011).

A tractable formulation of multi-view subspace learning. This thesis illustrates that multi-

view subspace learning, including canonical correlation analysis, can be cast as a regularized factor

model, and shows that the problem can be convexly reformulated. This contribution improves upon

the above work for the partitioned (2, 1)-block norm, and provides an improved boosting recovery

algorithm. In addition to a careful analysis in terms of runtimes, and objective values on synthetic

data, improved performance is achieved over the state-of-the-art in image denoising. This work was

published in a refereed conference proceeding (White et al., 2012).

A formulation of semi-supervised learning with a theoretical justification for the addition of

unlabeled data. This thesis establishes a connection between supervised and unsupervised learn-

ing through the use of regularized factor models. This connection is exploited to develop a prin-

cipled semi-supervised learning algorithm for which we can make a variance reduction argument.

An experimental analysis reveals the usefulness of selecting modeling choices under a unified reg-

ularized factor model formalism, which benefits from obvious extensions and enables a surprising

level of generality in problem properties using only choices of kernels, instance weights and non-

linear transfers. This work was published first for least-squares losses (Xu et al., 2009) and then

generalized to Bregman divergences (White and Schuurmans, 2012).

A tractable formulation of semi-supervised learning. This thesis contributes a convex refor-

mulation for a different form of semi-supervised learning. This form consists of simultaneously

learning a new representation for the input data and using that new representation to predict the

labeled data. This reformulation is similar to the convex reformulation for multi-view learning, but

4

with a different form for the two views. The experimental results indicate that this convex semi-

supervised learning algorithm outperforms four other semi-supervised learning algorithms on six

real datasets. This work was published in a refereed conference proceeding (Zhang et al., 2011).

A tractable maximum likelihood estimation algorithm for autoregressive moving average mod-

els. Finally, this thesis illustrates that with a small relaxation, we could exploit the distributional

assumptions behind certain regularizers to derive a convex reformulation of autoregressive moving

average models. In particular, this work tackles high-dimensional vector time series using autore-

gressive moving average models for multi-step forecasting, which has been under-explored due to

difficulties in algorithm development and iterated prediction. Empirical results on a broad range

of algorithms from time series and subspace identification indicate that the proposed approach pro-

duces more stable forecasts and is significantly faster than many previous approaches. This work

will appear in a refereed conference proceeding (White et al., 2015).

1.4 Overview

This thesis is structured to first describe regularized factor models then useful background concepts

for supervised and unsupervised learning, while illustrating how they are regularized factor models.

Then, convex reformulation approaches are described followed by three chapters using the refor-

mulations to obtain important algorithmic advances in subspace learning, semi-supervised learning

and autoregressive moving average models, respectively.

Chapter 2 - Background: regularized factor models

This chapter presents background on regularized factor models. In particular, it first explains the

maximum likelihood approach underlying regularized factor models and justifies the choice of fac-

torizing for finding a unifying theory. Then exponential family distributions and Bregman diver-

gences are introduced, and the connection between them explained.

Chapter 3 - Preliminary insights: supervised and unsupervised learning using factor mod-

els

This chapter describes how both supervised learning and unsupervised learning can be represented

as a regularized factorization. This chapter contains some small contributions to unifying super-

vised and unsupervised learning. The primary goal, however, is to introduce standard constructs in

machine learning, such as kernels and instance weighting, as well as to illustrate that many classi-

cal problems and algorithms in supervised and unsupervised learning are unified under regularized

5

factor models. The in-depth analysis on several supervised and unsupervised learning algorithms

gives more intuition on how to represent machine learning problems as regularized factorizations.

The chapter concludes with a discussion of previous unification frameworks.

Chapter 4 - Convex formulations for regularized factor models

This chapter describes how to tackle the regularized factorization optimization by using convex

reformulations. The general reformulation approach is described, where the product Z = CΦ

is directly learned by characterizing the induced norm on Z given constraints and regularizers on

C and Φ. Then, a convex reformulation is given for a general class of regularized factor model

problems. Finally, though the induced norm may exist and be convex for the general class, it is

not always practical to compute. Therefore, we also provide five cases where the induced norm is

practically computable, which are useful for finding tractable formulations for the problems in the

following three chapters.

Chapter 5 - Subspace learning and sparse coding using regularized factor models

This chapter presents three important unsupervised learning problems that can be convexly refor-

mulated: sparse coding, single-view subspace learning and multi-view subspace learning. The regu-

larized factor models objective defined for each of the problems is first motivated for each problem;

then the solution approaches described in Chapter 4 are applied to solve each of these objectives.

The chapter concludes with an empirical study showing the advantages of the convex multi-view al-

gorithm over the (suboptimal) alternating solver and over formulating the problem as a single-view

subspace learning problem.

Chapter 6 - Semi-supervised learning using regularized factor models

This chapter describes my algorithmic contributions to semi-supervised learning for the two typical

approaches to semi-supervised learning: using unlabeled data to improve weights learned directly

on the input data and using unlabeled data to learn a new representation and learn weights on that

“improved” representation using only the labeled data. I first illustrate that the forward-reverse pre-

diction equivalence that enables supervised learning to be formalized as a regularized factor model

that facilitates the development of a principled semi-supervised learning algorithm. In particular,

it is principled because the unlabeled data reduces the variance of the error estimate, indicating

provable benefits of the addition of unlabeled data. Then, I provide a convex semi-supervised learn-

ing algorithm for the second type of semi-supervised learning, using the advances in Chapter 4.

Experimental analysis is provided for both semi-supervised learning approaches.

6

Chapter 7 - Autoregressive moving average models using regularized factor models

This chapter describes a novel global maximum likelihood algorithm for autoregressive moving av-

erage models. A similar approach to previous convex reformulations is given; however, the approach

is re-derived for non-i.i.d. data and for the case that the desired distribution is only parametrized by

the factor weights, rather than by both weights and factors. Finally, an experimental analysis is

given versus non-convex autoregressive moving average solutions and recent method-of-moments

algorithms for state-space models.

Chapter 8 - Perspectives and future work

This work concludes with a broader perspective on the impacts of the research and a discussion of

important research directions.

7

Chapter 2

Background: regularized factor models

In this chapter, we discuss how the objective of maximum likelihood and maximum a posterior

(MAP) estimation leads to the regularized factor models objective:

min
C∈C⊂Rn×k

min
Φ∈F⊂Rk×T

L (CΦ ; X) +Rk(C,Φ) (2.1)

where

1. X ∈ R
n×T is the data matrix with T samples of an n-dimensional vector,X = [X:1, . . . , X:T].

2. C ⊂ R
n×k is the set from which the basis C is chosen.

3. F ⊂ R
k×T is the set from which the representation Φ is chosen.

4. L(·, X:t) is any convex loss function in the first argument, where for convenience, the loss is

overloaded for all the data: L(·, X) : Rn×T → R.

5. k ∈ {1, 2, . . .} is the dimension of the representation, and can be infinite; typically, this value

is fixed a priori, but in general, need not be and can be controlled by the regularizer.

6. Rk : C × F → R
+ is the regularizer on the factors. This regularizer might be additively

decomposable into two separate regularizers, RC,k : Rn×k → R
+ on the basis and RΦ,k :

R
k×T → R

+ on the representation.

The above optimization assumes the regularizer weights are part of the regularizer function. Certain

regularizers can be cast as constraints and vice versa; this equivalence is discussed in Appendix A.2.

Both regularizers and constraint sets are included in the loss since for most situations this relation-

ship is ambiguous and there is not a clear preference for one or the other.

The specification of this optimization is simple, with only two choices that can be modified

to produce different problems: the choice of convex loss on the multiplication of the factors, CΦ,

8

and the choice of constraints and regularizers on C and Φ that imposes certain properties on these

factors. Interestingly, however, as I will show in this thesis, the variability in these two choices

encompasses a large number of problems in machine learning and provides a simple, unified way to

examine both the problem and potential algorithms. Before getting into specific problem instances

in later chapters, in this chapter I will give some intuition for why this simple objective has such

expressive power. Simultaneously, mathematical notation and distributional assumptions required

for the remainder of the thesis will be introduced and explained.

2.1 Why regularized factor models?

In this section, we see how the regularized factor models optimization is obtained from the gen-

eral problem of maximizing the likelihood of parameters, given data, and the ubiquitous goal in

many fields of finding “explanatory” factors. Assume that you have a data matrix, X ∈ R
n×T ,

with T samples of n-dimensional vectors X:t with density p(X:t|θ) for some unknown parameters

θ. For example, if the data contains the heights and weights of T patients in a hospital, then we

might believe that each patient’s height and weight X:t ∈ R
2 is drawn from a Gaussian distribution

parameterized by unknown mean µ and unknown covariance Σ in height and weight.

A general approach to finding these parameters is to select the parameters that maximize the

likelihood of the data:

max
θ

p(X:1, . . . , X:T |θ).

If the data is i.i.d.1 as is typically assumed, then we can rewrite this optimization as:

max
θ

log p(X:1, . . . , X:T |θ) = max
θ

log (p(X:1|θ) · · · p(X:T |θ)) ≡ −min
θ

T
∑

t=1

log p(X:t|θ)

where≡means that the argmax = argmin, though the objective values themselves may not equal.2

A more general goal than maximizing the likelihood of the data is to maximize the posterior proba-

bility of the parameters given the data, i.e. the maximum a posterior (MAP) estimate:

max
θ

p(θ|X:1, . . . , X:T) = max
θ

p(X:1, . . . , X:T |θ)p(θ) ≡ min
θ
−

T
∑

t=1

log p(X:t|θ)− log p(θ)

using Bayes’ rules for the first equality. The density p(θ) specifies the prior on θ. The MAP estimate

is equivalent to maximizing likelihood if a non-informative (i.e., uniform) prior is assumed on θ;

otherwise, the prior enables known or desired properties to be specified on the unknown parameters.

1In Chapter 7, we discuss the change in this maximization if the data is temporally related; the remaining analysis

carries through simply, since we still obtain densities over each sample, X:t.
2Note also that maxθ p(X:1, . . . , X:T |θ) ≡ maxθ log p(X:1, . . . , X:T |θ) because log is a monotonically increasing

function on [0, 1], giving equivalent argmax solutions.

9

For certain distributions and priors, the negative log of the density has a nice form in this opti-

mization. Arguably the most common distribution assumed on the data is the Gaussian distribution,

which results in the simple Euclidean, least-squares loss:

min
θ
−

T
∑

t=1

log p(X:t|µ,Σ = I) ≡ min
θ

T
∑

t=1

‖X:t − θ‖22.

Though this prototypical loss is often chosen to facilitate optimization, many other distributions

similarly result in convex losses. Convex losses are preferable as they guarantee that all local min-

ima are actually global minima; non-convex losses, on the other hand, are prone to local minima and

there is no guarantee on how close any such local minimum is to the true solution of the objective.

Importantly, for the general class of exponential family distributions, the negative log of the density

has a convex form, called a Bregman divergence. The unit-variance Gaussian distribution is an ex-

ample of an exponential family, with a corresponding Bregman divergence equal to the Euclidean

loss. Other notable exponential family, Bregman divergence pairs include the Poisson distribution

and unnormalized KL-divergence; the Bernoulli distribution and log-loss; and the multinomial dis-

tribution, generalized to continuous values between [0, 1] and the relative entropy. See Section 2.2

for how to obtain this equivalence between maximizing likelihood of exponential families and min-

imizing Bregman divergences, as well as a more complete table of exponential families and their

Bregman divergences in Table A.1.

The second component of the MAP optimization is the prior; to maintain a convex optimization,

the prior density on θ should be log-concave. A function is log-concave if the logarithm of the

function is concave; therefore, the negative log is convex. The set of log-concave distributions is

large, including any exponential family distribution and convolutions of log-concave distributions.

See Section A.2 for the connection between regularizers and constraints.

Putting these components together, for exponential family density on X:t, corresponding Breg-

man divergence L, and convex regularizer R(θ) = − log p(θ), we obtain the following MAP opti-

mization:

min
θ
−

T
∑

t=1

log p(X:t|θ)− log p(θ) ≡ min
θ

T
∑

t=1

L (θ ; X:t) +R(θ) = min
θ
L (θ ; X) +R(θ)

where for simplicity of notation, we overload L to also mean the sum over all samples. If θ = C

only, then we get traditional, fixed size parameters; if θ = CΦ, then our parameters change with

the number of samples.

The remaining question is the form of the distribution parameters. Theoretically, this form is

not limited to any class; in practice, however, we consider simpler forms that are amenable to opti-

mization and, in some cases, amenable to interpretation. Interestingly, across fields as different as

10

psychometrics, product management and natural language processing with varying terms such as

factor analysis, representation learning and latent variable models, the parameter for the distribution

is often considered to consist of a weighting, C, of k factors, φt ∈ R
k for each data point X:t. As-

suming this form, the distribution can be parameterized in two ways: by both the weighting and the

factors θ = (C,Φ) or solely by the weighting θ = C. For the majority of the thesis, I assume that

θ = (C,Φ); Section 2.1.1 and Chapter 7 includes a discussion on choosing a parametrization that

consists only of the weightings, θ = C, and shows that we can arrive at the same parametrization

θ = (C,Φ) by maximizing over the “nuisance” parameter Φ rather than marginalizing.

For the joint prior p(θ = (C,Φ)), a natural goal is to specify separate properties on the basis

and representation. In general, for regularized factor models, we simply assume that Rk(C,Φ) =

− log p(C,Φ). If we assume, however, that C and Φ are independent a priori, then p(C,Φ) =

p(C)p(Φ). The log-likelihood then separates into two functions, since log p(θ) = log(p(C)p(Φ)) =

log p(C) + log p(Φ) where now RC,k(C) = − log p(C) and RΦ,k(Φ) = − log p(Φ). It may also

be possible that log p(C,Φ) is separable, even if C and Φ are not independent, again allowing sep-

arate properties to be placed on the two free variables. If joint properties are desired, typically the

properties would be on the product, p(CΦ).

The resulting MAP optimization now becomes

min
θ
−

T
∑

t=1

log p(X:t|θ)− log p(θ) ≡ min
C∈Rn×k

min
Φ∈Rk×T

L (CΦ ; X) +RC,k(C) +RΦ,k(Φ). (2.2)

We can see, therefore, that if the problem requires explanatory factors and a maximum likelihood

approach, the regularized matrix factorization loss aptly defines the objective. In Section 3.2, we see

that many unsupervised learning problems can be cast as a regularized factor models. Moreover, in

the following Chapters 5, 6 and 7, I present algorithmic advances for several machine learning prob-

lems that are encompassed by this objective, namely, multi-view subspace learning, semi-supervised

learning and autoregressive moving average models.

2.1.1 Different choices for the distribution parameters

So far, we have assumed that θ = (C,Φ); it is also valid, however, to assume that the distribution is

parameterized only by the weights C. As we will see is the case for autoregressive moving average

models in Chapter 7, the goal is to parametrize by only C, but conditioning on the factors Φ makes

the distribution simpler to optimize. Since the distribution p(X|C) can be difficult to handle in the

optimization (see Section 7.1 for an example), we want to write the optimization still in terms of

the simpler p(X|C,Φ). This conditioning enables the application of the expectation-maximization

algorithm, which introduces the variable Φ by marginalizing over it, as in the next lemma.

11

Lemma 1. For an auxiliary density q(·) over Φ, and entropy H(q(·)), it follows that

log p(X|C) = log

∫

p(X,Φ|C) dΦ = max
q(·)

∫

q(Φ) log p(X,Φ|C) dΦ+H(q(·)).

The proof is given in Appendix G.1.

The maximum likelihood problem can now be re-expressed as

min
C

min
{q(·)}

−
∫

q(Φ) log p(X,Φ|C) d(Φ)−H(q(·))− log p(C), (2.3)

where in a standard EM algorithm, the M step would consist of optimizing C given {q(·)}, and the

E step would consist of (implicitly) optimizing {q(·)} given C (Neal and Hinton, 1998).

A standard variant of the log likelihood in (2.3) can then be obtained simply by dropping the

entropy regularizer H(q(·)). This modification leads to the minimization selecting a Dirac delta

distribution on Φ that selects the minimum Φ and a far simpler formulation, sometimes known as

“hard EM” or “Viterbi EM” (Brown et al., 1993):

min
C

min
Φ
− log p(X,Φ|C)− log p(C) = min

C
min
Φ
− log p(X|Φ, C)− log p(Φ|C)− log p(C)

= min
C

min
Φ
− log p(X|Φ, C)− log p(C,Φ).

The above follows from the chain rule which states that P (X,Y) = P (X|Y)P (Y), giving the

decomposition p(X,Φ|C) = p(X|Φ, C)p(Φ|C) and p(Φ|C)p(C) = p(C,Φ).

Even for this different parametrization, therefore, using this entropy simplification, we arrive

at the same optimization as when we assumed that the parameters contained both weightings and

factors, θ = (C,Φ). Throughout the text, therefore, we focus on this setting; in Chapter 7, this

choice will be discussed again when the data is not i.i.d.

2.2 Bregman divergences and exponential family distributions

Another important modeling choice is the loss function between the factors CΦ and X . In this sec-

tion, I describe the relationship between Bregman divergences and exponential family distributions

that enables intuitive choices of loss functions. In addition to the choice of transfer for the Bregman

divergence/exponential family, in Section 3.2, I describe some additions to these loss functions, in-

cluding kernels and instance weighting, that further clarify possible modeling choices for the loss

function in regularized factor models. The reader who is already familiar with Bregman divergences

can safely skip this section.

Under maximum likelihood, a distribution over the data is chosen with unknown parameters,

where the goal is to learn those parameters. Despite the fact that often Gaussian distribution are

12

DF (ẑ∥z)=F (ẑ)−F (z)− f (z)T (ẑ−z)

DF (ẑ∥z)=
1

2
∥ẑ−z∥2

f (z)=∇ F (z)

F (z)=
1

2
z
T
z , f (z)=z

(a) Euclidean loss

DF (ẑ∥z)= ẑ log
ẑ

z
− ẑ+z

F (z)=z log z , f (z)=log z+1

(b) Relative entropy loss

Figure 2.1: Two Bregman divergences with different transfer functions. The function pictured is the

potential function, F . The Bregman divergence corresponds to the difference between the value at

the point, ẑ, and the first order Taylor expansion around z (a) For the identity transfer, f(z) = z,

the Bregman divergence corresponds to the Euclidean loss. (b) For the logarithmic transfer shifted

by 1, f(z) = z log(z), the Bregman divergence corresponds to the relative entropy or normalized

KL-divergence.

chosen for p(X|θ), the set of distributions that result in convex optimizations is actually much

more general, i.e., exponential family distributions. This generality allows both different data

properties to be expressed, such as skew or heavy-tailedness, as well as different non-linear transfers

to be applied to the factorization explaining the data. Below, I describe how exponential family

distributions have a corresponding convex loss, called a Bregman divergence, and explain how this

connection also enables non-linear transfers. Table A.1 describes properties of different exponential

family distributions and lists their corresponding Bregman divergence.

For any strictly convex differentiable potential function F : Rk → R, where f = ∇F is the

associated transfer function, the Bregman divergence between two vectors, ẑ and z is given by

DF (ẑ||z) = F (ẑ)− F (z)− f(z)′(ẑ− z).

Intuitively, the Bregman divergence is the difference between F at ẑ and the first order Taylor

expansion around z evaluated at ẑ. This divergence, therefore, measures the remaining difference

of Taylor order two and higher. For example, for F (z) = 1
2z

′z, the remainder after differencing

F (ẑ) and its first order Taylor expansion is the second order 1
2(ẑ−z)′g(F)(z)(ẑ−z) = 1

2‖ẑ−z‖22
since the Hessian g(F)(z) = I and any higher order derivatives are zero. Figure 2.1 illustrates this

intuition for two common Bregman divergences.

Bregman divergences have many useful properties as a loss, including

13

i) Coincidence axiom: DF (ẑ||z) = 0⇔ ẑ = z

ii) Non-negativity: DF (ẑ||z) ≥ 0

iii) Convexity: DF is convex in the first argument

iv) Linearity: For strictly convex, differentiable potential functions F1 and F2, then

DF1+αF2 = DF1 + αDF2

Bregman divergences encompass a wide range of losses, including least squares (identity trans-

fer), cross entropy or unnormalized KL-divergence (sigmoidal transfer) and relative entropy or KL-

divergence (softmax transfer) (Kivinen and Warmuth, 2001).

I now show the connection to natural exponential family distributions, arising from the fact that

exponential families are similarly defined using a potential function F .

Definition 1. An exponential family distribution has probability density function (or probability

mass function for discrete distributions) defined as

p(z|θ) = exp(T (z)′η(θ)− F (θ))p0(z)

for given functions η, T, F and p0. A natural exponential family distribution or regular exponen-

tial family distribution has η and T as identity functions,

pF (z|θ) = exp(z′θ − F (θ))p0(z)

Regular exponential family distributions are a general class of distributions with useful prop-

erties. A few distributions, such as the Beta distribution and the lognormal distribution, are expo-

nential family but not regular exponential family distributions. Many distributions, however, are

regular exponential family distributions, including the Gaussian, gamma, chi-square, beta, Weibull,

Bernoulli and Poisson distributions; see Table A.1 for a more complete list of regular exponential

family distributions and their properties.

The connection between Bregman divergences and regular exponential family distributions be-

comes clear when maximizing the likelihood of data. If the function F defining the regular expo-

nential family is a strictly convex, differentiable function, then

min
θ
− log pF (z|θ) = min

θ
− log p0(z)− z′θ + F (θ) . by definition

≡ min
θ
−z′θ + F (θ) .− log p0(z) does not affect the min

≡ min
θ
F (θ)− z′θ − F (z) + zf−1(z) .−F (z) + zf−1(z) (2.4)

= min
θ
F (θ)− F (z)− z′(θ − f−1(z)) does not affect the min

= min
θ
DF (θ || f−1(z)) . by definition

14

Similarly, the KL-divergence between two natural exponential family distributions with the same

potential but different parameters, pF (·|θ1) and pF (·|θ2), can be represented as a Bregman diver-

gence between their parameters: KL(pF (·|θ1)||pF (·|θ2)) = DF (θ2 || θ1). See Banerjee et al.

(2005, pg. 1741) for more details.

Surprisingly, every regular exponential family distribution has a strictly convex, differentiable

F function, giving the relationship in (2.4). In fact, a bijection has been established between regular

exponential families and regular Bregman divergences (Banerjee et al., 2005), defined below. This

link corresponds to the fact that F is often called the log-normalizer or log-partition function.

Definition 2. A continuous function g : Θ → R
+ is an exponentially convex function iff it is a

Laplace transform of a nonnegative finite measure. Examples include exp(ax + bx2), (exp(x) −
1)/x, x−n and sinh(x)/x (Ehm et al., 2003). For g an exponentially convex function on an open set

Θ such that F (θ) = ln(g(θ)) is strictly convex, then DF is called a regular Bregman divergence.3

(Banerjee et al., 2005, Theorem 6) There is a bijection between regular exponential families and

regular Bregman divergences.

Therefore, for any regular exponential family, there is a corresponding unique regular Bregman

divergence that is guaranteed to be convex in its first argument. This property of regular exponential

family distributions will be crucial for developing tractable algorithms to learn the parameters θ.

3Originally in (Banerjee et al., 2005), they define the regular Bregman divergence to be the conjugate Bregman

divergence, DF∗ , which is described in Section 3.1. From Lemma 2, these two are interchangeable, and so both can be

defined as regular Bregman divergences.

15

Chapter 3

Preliminary insights: supervised and un-

supervised learning using factor models

This chapter provides required background on supervised and unsupervised learning used in the

remainder of the thesis, as well as describing several small contributions I have made to these fields.

The goal of this chapter is to illustrate that supervised learning and unsupervised learning can both

be represented as regularized factor models, introducing also standard constructs in machine learn-

ing, such as kernels and instance weighting. The developments in this chapter elucidate that many

classical problems and algorithms in supervised and unsupervised learning are unified under regular-

ized factor models; this unification is mostly achieved through different choices of losses, instance

weights and kernels. The following chapters expand this set, by focusing on different regularization

choices. The preliminary insights developed in this chapter both clarify how later problems can be

represented as regularized factor models, and introduces the reverse-prediction framework that en-

ables the development of a principled semi-supervised learning algorithm in Chapter 6. The chapter

concludes with a discussion on previous unification frameworks, which is more clearly presented

after understanding how problems and algorithms are unified under regularized factor models.

3.1 Supervised learning using factor models

Supervised learning is a fundamental machine learning problem: given pairwise data, infer a func-

tion from an input vector to an output or target vector. Learning is executed on labeled data: pairwise

examples of input vectors and the desired output value (i.e., supervisory signal) are used to inter-

polate a function. This section illustrates that supervised learning can actually be formulated as a

regularized factor model, where the representation Φ is set to the target labels and only the basis C

is optimized for the factorization CΦ.

The key behind establishing this formulation is through the connection between forward pre-

16

diction and reverse prediction. In linear forward prediction, given input data X and target labels

Y , the goal is to learn weights W such that WX ≈ Y . In linear reverse prediction, the (somewhat

counterintuitive) goal is to learn weights C such that CY ≈ X . Interestingly, a one-to-one mapping

betweenW andC can be established, meaning that one can equivalently choose between the typical

forward prediction optimization or the reverse prediction (regularized factorization) optimization.

In addition to novel insights, this connection also enables the development of a novel principled

semi-supervised learning algorithm, described in Chapter 6.

The connection between forward and reverse prediction is first described for the simpler least-

squares (Gaussian) setting, and then extended to general exponential families. The goal of this

section is not only to describe supervised learning as a regularized factor model, but also to introduce

the reader to many standard techniques in supervised and unsupervised learning, such as kernels and

instance weighting, that will be useful for later developments.

3.1.1 Linear forward prediction

Assume we are given input data as a matrix X ∈ R
n×T , where each column is an n-dimensional

instance.1 Assume we are given a k × T matrix of prediction targets Y . For example, the data

matrix X may have n attributes for T patients, where there might be one prediction target k = 1,

such as patient weight (regression problem), a yes or no if the patient will survive cancer treatment

(hard classification), or the probability of developing diabetes (soft classification). Regression and

classification problems can be represented similarly, with additional constraints for classification.

For hard classification, Y ∈ {0, 1}k×T such that 1Y = 1 (a single 1 in each column). For soft

classification, Y ∈ [0, 1]k×T such that 1Y = 1 (each column sums to 1). Throughout, we assume

that the data, X , has been centered, i.e. X = X̃ − 1
T (
∑T

t=1 X̃:t)1
′ for the original data X̃ .

A common form of supervised learning is to find a k×nmatrixW such thatWX ≈ Y , obtained

by minimizing the least squares loss, which is the squared Frobenius norm ‖ · ‖F (i.e., maximizing

likelihood of X assuming each sample X:t is Gaussian distributed):

min
W

T
∑

t=1

‖WX:t − Y:,t‖22 = min
W
‖WX − Y ‖2F = min

W
tr
(

(WX − Y)′(WX − Y)
)

. (3.1)

This convex minimization is easily solved to obtain the global minimizer W = Y X†, for X† =

X ′(XX ′)−1 the pseudo-inverse of X , assuming that X is full rank and n ≤ T to ensure the inverse

1 Though it is typical in supervised learning to have instances as rows rather than columns, the analysis is equivalent

and clarifies the connection to unsupervised learning, where instances are often viewed as columns.

17

of XX ′ exists. To see why, first expand

tr
(

(WX − Y)′(WX − Y)
)

= tr
(

X ′W ′WX
)

− tr
(

X ′W ′Y
)

− tr
(

Y ′WX
)

+ tr
(

Y ′Y
)

= tr
(

X ′W ′WX
)

− 2 tr
(

X ′W ′Y
)

+ tr
(

Y ′Y
)

.

Using the circular property of trace, tr(X ′W ′Y) = tr(Y ′WX), and gradients of the trace norm2,

∇tr
(

(WX − Y)′(WX − Y)
)

= 2WXX ′ − 2Y X ′ = 0

=⇒ W = Y X ′(XX ′)−1 = Y X†

where the gradient is with respect to W and XX ′ is invertible because T ≥ n and rank(X) = n.

The result can then be used to make predictions on test data via ŷ = Wx, where for classification,

ŷ can be thresholded or learning can be done with a sigmoidal transfer discussed in Section 2.2.

Linear least squares can be extended to incorporate regularization, kernels and instance weight-

ing. Regularization is a general tool in supervised learning to reduce overfitting to the training data

and a priori enforce properties on the learned models, such as sparsity (see Sections 2.1 and 5.2).

Some regularizers permit a closed form solution, such as ridge regularization

min
W

tr
(

(WX − Y)′(WX − Y)
)

+ α tr
(

WW ′) (3.2)

yielding the altered solution W = Y X ′(XX ′ + αI)−1 since ∇ tr(WW ′) = 2W . The regularizer

weight, α > 0, controls the influence of the regularizer. General regularization functions R do

not permit a closed form solution; however, if the regularizer has a subgradient, ∂R(W), then

the optimization can be solved with a (non smooth) optimization method, using the subgradient

∇tr ((WX − Y)′(WX − Y)) + α∂R(W) = 2WXX ′ − 2Y X ′ + α∂R(W).

Kernels map the data into a new space using similarities between nonlinearly transformed data

points; learning in the kernel space is a linear learning problem, but corresponds to non-linear learn-

ing in the original space. More formally, a kernel function Kx : Rn → R, from a Reproducing

Kernel Hilbert Space, returns a similarity measure from a given point, x. Common examples in-

clude the linear kernel, Kx(y) = xTy, the Gaussian kernel, Kx(y) = exp(−||x− y||22/2σ2), and

a polynomial kernel, Kx(y) = (xTy + c)d. The kernel matrix, which summarizes the similari-

ties between the data points Kij = K(xt,xj), K � 0, replaces the data matrix, where the new

features are distances (see Figure 3.1(a)), given certain conditions are met under the representer

theorem (Kimeldorf and Wahba, 1971).

For a least-squares loss, a kernelized version of (3.2) can be easily derived from the identity

X ′(XX ′ + αI)−1 = (X ′X + αI)−1X ′, since this implies the solution of (3.2) can be expressed

2See (Petersen, 2004) for useful matrix inequalities and operations.

18

as W = AX ′ for A = Y (X ′X + αI)−1. By learning A instead of W , the input data X need

only appear in the problem through the inner product matrix X ′X ∈ R
T×T . Once the input data

appears only as inner products, positive definite kernels can be used to obtain non-linear prediction

models (Schölkopf and Smola, 2002). For least squares, the kernelized training problem can then

be expressed as a loss on A with tr ((AX ′X − Y)′(AX ′X − Y)) + α tr (AX ′XA′); in general,

for K some implicit feature representation of X ′X , such as a Gaussian kernel, we get

min
A

tr
(

(AK − Y)′(AK − Y)
)

+ α tr
(

A′AK
)

. (3.3)

It is easy to verify that A = Y (K + αI)−1 is the global minimizer. Given this solution, test

predictions can be made via ŷ = Ak where k corresponds to the implicit inner products X ′x.

Finally, we can consider adding instance weighting to the loss. To express weighting, let

Λ ∈ R
T×T be a diagonal matrix of strictly positive instance weights. Then the previous training

problem can be expressed as

min
A
‖(AK − Y)Λ‖2F + α tr

(

A′AK
)

= min
A

tr((AK − Y)′(AK − Y)Λ2) + α tr
(

A′AK
)

with the optimal solution A = Y Λ(KΛ + αI)−1.

3.1.2 Linear forward-reverse prediction connection

The previous results can all be replicated in the reverse direction, where one attempts to predict

inputs X from targets Y . In particular, given optimal solutions to reverse prediction problems, the

corresponding forward solutions can be recovered exactly. Although reverse prediction might seem

counterintuitive, it plays a central role in casting supervised learning as a regularized factor model

and later unification with unsupervised training principles that enables development of a principled

semisupervised learning formulation in Chapter 6.

For reverse linear least squares, we seek an n× k matrix C that minimizes

min
C

tr
(

(X − CY)′(X − CY)
)

. (3.4)

This minimization can be easily solved to obtain the global solution C = XY † = XY ′(Y Y ′)−1.

Interestingly, as long as X has full rank, n, the forward solution to (3.1) can be recovered from the

solution of (3.4).3 In particular, from the solutions of (3.1) and (3.4) we obtain the identity that

WXX ′ = Y X ′ = Y Y ′C ′, hence

W = Y Y ′C ′(XX ′)−1. (3.5)

3 If X is not rank n, we can drop dependent columns.

19

x → [K (x , x
1
) K (x , x

2
) K (x , x

3
)] '

 = [5 2 3] '

x

x
2

x
3 x

1

5

3

2

(a) Kernel transformation

F (z)

z

F
*(y)

F
*(y)=supz y

T
z−F (z)

(b) Fenchel conjugate

Figure 3.1: (a) Transformed space using linear kernel. The new feature representation for x ∈ R
2 is a 3-

dimensional vector that consists of the distances to the given samples, x1,x2,x3. (b) The Fenchel conjugate,

F ?, which is the potential function for the reverse prediction problem. Intuitively, the value of the Fenchel

conjugate at a point y is the intercept of the line with slope y that is tangent to F , which must be unique in

this case by the strict convexity of F .

Once we add ridge regularization to the forward prediction problem, invertibility is assured and

the forward solution can always be recovered from the reverse without any additional assumptions.

For example, the optimal solution to the regularized problem (3.2) can always be recovered from

the solution to the plain reverse problem (3.4) by using the straightforward identity that relates their

solutions, W (XX ′ + αI) = Y X ′ = Y Y ′C ′, allowing one to conclude that

W = Y Y ′C ′(XX ′ + αI)−1.

Similarly, the kernelized reverse loss corresponds to

min
B

tr
(

(K −BY)′(K −BY)
)

=⇒ A = Y Y ′B′(K + αI)−1K−1

and the instance-weighted reverse loss is

min
B

tr((K −BY)′(K −BY)Λ2) =⇒ A = Y ΛY ′B′(KΛ + αI)−1.

I describe these derivations in Appendix B.2.

Therefore, for all the major variants of supervised least squares, one can solve the reverse prob-

lem and use the result to recover a solution to the forward problem.

3.1.3 Generalized forward-reverse connection

The connection between forward and reverse prediction can be extended beyond Gaussian distribu-

tions and least-squares losses to regular exponential family distribution and Bregman divergences.

20

Recall from 2.4 that maximizing likelihood of a regular exponential family corresponds to mini-

mizing a regular Bregman divergence, maxθ pF (z|θ) ≡ minθDF (θ || f−1(z)). In this setting,

θ =WX:t and z = Y:t, giving the generalized forward loss

L (WX ; Y) =

T
∑

t=1

DF (WX:t || f−1(Y:t))

=

T
∑

t=1

F (WX:t)− F (f−1(Y:t))− Y ′
:t(WX:t − f−1(Y:t)) (3.6)

The goal is to learn W such that f(WX:t) ≈ Y:t, using the forward prediction minimization

min
W

L (WX ; Y) = min
W

T
∑

t=1

F (WX:t)− Y ′
:tWX:t.

We derive the reverse loss using the notion of dual Bregman divergences; to do so, we need the

following definitions. For a strictly convex potential F : Rn → R, its Fenchel conjugate is

F ?(y) = sup
z

z′y − F (z).

Intuitively, as shown in Figure 3.1(b), the value of the Fenchel conjugate at a point y is the intercept

of the line with slope y that is tanget to F , which must be unique in this case by the strict convexity

of F . The associated transfer function, f? = ∇F ?, satisfies f? = f−1 (see proof of Lemma 2 in

Appendix A.3).

The corresponding reverse loss for the transfer, f , can therefore be written

R(X,CY) = DF ?(CY ||f(X)) =

T
∑

t=1

F ?(CY:t)− F ?(f(X:t))−X ′
:t(CY:t − f(X:t)) (3.7)

yielding the corresponding reverse loss minimization

min
C

R(X,CY) ≡ min
C

T
∑

t=1

F ?(CY:t)−X ′
:tCY:t. (3.8)

As before, one can establish a unique correspondence between the optimal solutions to the

forward training problem (3.6) and reverse training problem (3.8). In the general setting, there is

no longer a clear closed-form mapping. Implicitly, however, such a one-to-one mapping still exists

between the minimizers of the forward and reverse prediction problems: givenC∗, one can uniquely

recover W ∗ and vice versa.

Theorem 1 (Forward-Reverse Equivalence). Given an n × T input matrix X and a k × T output

matrix Y , such that T > rank(X) = n and T > rank(Y) = k, there exist unique global minimizers

W ∗ = argmin
W

DF (WX||f−1(Y)) (3.9)

C∗ = argmin
C

DF ?(CY ||f(X)) (3.10)

where f(W ∗X)X ′ = Y X ′ = Y f−1(C∗Y)′. (3.11)

21

Proof Sketch: [Full proof in Appendix B.1]

The uniqueness of the minimizers results from the fact that F is strictly convex, making G(·) =

F (·X) strictly convex and so the optimization minW G(W) therefore has a unique minimum.

For the correspondence, since W ∗ and C∗ are global minimizers of L(WX,Y) and R(X,CY):

d

dW
L(W ∗X,Y) = (f(W ∗X)− Y)X ′ = 0 (k × n)

d

dC
R(X,C∗Y) = (f?(C∗Y)−X)Y ′ = 0 (n× k)

=⇒ f(W ∗X)X ′ = Y X ′ and f?(C∗Y)Y ′ = XY ′

=⇒ f(W ∗X)X ′ = Y f?(C∗Y)′

�

As with least-squares losses, we can extend the optimization to include regularizers, kernels and

instance weighting; these generalizations are described in Appendix B.2.

3.1.4 Case studies

In this section, I illustrate that two supervised learning algorithms, reduced rank regression and

linear discriminant analysis, are related to unsupervised learning, specifically canonical correlation

analysis. This connection is established using the reverse prediction formulation of supervised

learning, i.e., using the factorization perspective of supervised learning. The goal of this section

is to illustrate that viewing supervised learning as a regularized factor model elucidates interesting

connections, further emphasized in the next section where many unsupervised learning problems

can be represented as regularized factor models.

Reduced rank regression

For the above analysis, we have assumed thatX and Y are full rank, with the assumption that depen-

dent rows can be dropped to obtain linearly independent features and targets. In practice, however,

it may be desirable to automatically select a subset of rows or reduce the dimension, particularly in

cases where the data is high dimensional. One possible approach is to use a dimensionality reduc-

tion technique to first reduce the dimension of X and Y ; however, this two-staged process means

the choice of lower-dimensional manifold is not influenced by the regression problem.

Reduced rank regression4 attempts to deal with this problem by restricting the rank of the

weights in the regression: ‖Y −WX‖2F such that rank(W) = k′ < k. To enforce this restric-

tion, W is often factored into two matrices, W = AB such that A ∈ R
k×k′ and B ∈ R

k′×n, giving

4Note that reduced rank regression is also called simultaneous linear predictions and redundancy analysis (van der

Burg and de Leeuw, 1990).

22

the optimization

min
A,B
‖Y −ABX‖2F = min

A,B:B′B=I
‖Y −ABX‖2F (3.12)

since we can rescale A to AUΣ given singular value decomposition B = UΣV ′ and set B = V ′,

which satisfies B′B = I . The naive algorithm would be to alternate between minimizing A and

B, which would result in local minima. Fortunately, however, there is a well-known solution to

the reduced rank regression problem, where B is the eigenvectors for the generalized eigenvalue

problem BXY ′Y ′X = ΛBXX (van den Wollenberg, 1977).

Below, I show a new derivation that relates reduced rank regression to this generalized eigen-

value problem, using reverse prediction. By recognizing that BX is full-rank, we can equivalently

consider the reverse prediction problem, CY ≈ BX .

Proposition 1. Reduced rank regression for Y such that Y ′(Y Y ′)−1Y = Y ′Y is a reverse predic-

tion optimization,

argmin
B

min
A
‖Y −ABX‖2F = argmin

B:B′B=I
min
C
‖CY −BX‖2F . (3.13)

Moreover, this optimization gives the same solution as canonical correlation analysis.

Proof: The closed form solution for C is C = BXY ′(Y Y ′)−1. The optimization simplifies to

min
B:B′B=I

∥

∥BXY ′(Y Y ′)−1Y −BX
∥

∥

2

F
= min

B:B′B=I

∥

∥

∥
BX

[

Y †Y − I
]∥

∥

∥

2

F
.

Since

[

Y †Y − I
] [

Y †Y − I
]′

= Y †Y Y †Y − 2Y †Y + I = Y †Y − 2Y †Y + I = I − Y †Y

we obtain

min
B:B′B=I

∥

∥

∥BX
[

Y †Y − I
]∥

∥

∥

2

F
= min

B:B′B=I
tr(BX(I − Y †Y)X ′B′)

= min
B:B′B=I

tr(BXX ′B′)− tr(BXY †Y X ′B′)

= max
B:B′B=I

tr(BXY †Y X ′B′)− tr(BXX ′B′)

which is a well-known generalized eigenvalue problem, for eigenvalues Λ and eigenvectors B:

B(XY †Y X ′) = ΛB(XX ′) (Kokiopoulou et al., 2011). Notice that XY †Y X ′ is actually several

covariance matrices, i.e., (XY ′)(Y Y)−1(Y X ′). So, B has the same solution it would for CCA,

without requiring that XX ′ be invertible.

Now, since we assumed that Y is restricted to the set of targets that satisfy Y ′(Y Y)−1Y = Y ′Y ,

we get that for these Y , B is the solution of the generalized eigenvalue problem BXY ′Y ′X =

ΛBXX , which is the solution to reduced rank regression. �

23

Linear discriminant analysis

Linear Discriminant Analysis (LDA) (Fisher, 1938) is a classification algorithm that computes a

linear transformation of input data X maximizing the Euclidean distance between the means of the

classes and minimizing the within-class variance for class indicator matrix Y ∈ {0, 1}, ∑j Yij =

1). LDA has actually been shown to be an instance of reduced-rank regression (De la Torre, 2012),

re-weighted by the number of samples in a class, (Y Y ′)−1/2, giving

min
A,B

∥

∥

∥
(Y Y ′)−1/2(Y −ABX)

∥

∥

∥

2

F

Notice that Ỹ = (Y Y ′)−1/2Y satisfies the conditions of Proposition 1. Therefore, letting A ab-

sorb the re-weighting, Ã = (Y Y ′)−1/2A, shows that LDA is equivalent to a reverse prediction

optimization

argmin
B

min
A

∥

∥

∥(Y Y ′)−1/2(Y −ABX)
∥

∥

∥

2

F
= argmin

B
min
A

∥

∥

∥Ỹ − (Y Y ′)−1/2ABX
∥

∥

∥

2

F

= argmin
B

min
Ã

∥

∥

∥
Ỹ − ÃBX

∥

∥

∥

2

F

= argmin
B:B′B=I

min
C
‖CY −BX‖2F

and so is equivalent to canonical correlation analysis. LDA has also previously been shown to be an

instance of CCA using a different analysis than the one above (Bach and Jordan, 2006).

3.2 Unsupervised learning as factor models

Unsupervised learning is a foundational problem in machine learning and statistics, encompassing

problems as diverse as clustering, dimensionality reduction, system identification, and grammar

induction. Unlike supervised learning, the goal in unsupervised learning is to learn with unlabeled

data, i.e., with no given targets. For example, classical methods such as principal components

analysis and k-means clustering are derived from principles for re-representing the input data, rather

than minimizing prediction error on any associated output variables.

In this section, we see that a surprising number of unsupervised learning problems are actually

regularized factor models. These connections have been noticed several times; I discuss these pair-

wise connections and unification frameworks in the next section. In this section, to develop a sense

for these connections, I give three case studies unified under regularized factor models in my own

work: generalized kernel principal components analysis (White and Schuurmans, 2012), canonical

correlation analysis (White et al., 2012) and normalized cut (Xu et al., 2009). I provide a summary

table of the remaining unsupervised learning algorithms that can be viewed as a regularized factor-

24

ization, to the best of my knowledge; more details on each is given in the Appendix C, including

references to the papers that originally proved the connection.

3.2.1 Forward-reverse prediction for unsupervised learning

Unsupervised learning can be framed similarly to supervised learning, but with an outer minimiza-

tion that must also impute the unknown targets (labels). Using the forward loss, however, is prob-

lematic; to see why, consider the forward loss

min
W∈Rk×n,Φ∈Rk×T

‖WX − Φ‖2F

where now Φ are the unknown targets, since we are not given Y . As before, each k-dimensional

column corresponds to a sample. Unlike supervised learning, however, forward prediction for unsu-

pervised learning is vacuous. For any given W , Φ can be set to Φ = WX , giving the optimal error

of zero. Thus, the standard forward view has no ability to distinguish between alternative parameter

matrices W .

Similarly, for prediction with Bregman divergences, the forward minimization

min
W,Φ

DF (WX || f−1(Φ)) = 0

since for any W , we can set Φ = f(WX). Therefore, unlike supervised learning which can be

formulated as either forward or reverse prediction, unsupervised learning must be framed in terms

of reverse prediction, i.e., as regularized factor models.

3.2.2 Case studies

In this section I present three derivations showing that three varied unsupervised learning algorithms

can be viewed as regularized factorization. A summary table is included in Section 3.4 for the many

other unsupervised learning algorithms that can be so formulated, with more detailed information

about each in Appendix C.

Exponential family PCA

For intuition, I first show this result for standard principal components analysis (PCA).

Proposition 2. Principal components analysis solves a regularized factor model with a least-

squares loss and no constraints or regularizers

min
C∈Rn×k

min
Φ∈Rk×T

‖X − CΦ‖2F = min
C∈Rn×k

min
Φ∈Rk×T

tr
(

(X − CΦ)′(X − CΦ)
)

(3.14)

25

Proof: Because we have a closed form solution C = XΦ†, from the solution of (3.4), we get

argmin
Φ∈Rk×T

min
C∈Rn×k

‖X − CΦ‖2F = argmin
Φ∈Rk×T

tr
(

(I − Φ†Φ)′X ′X(I − Φ†Φ)
)

= argmin
Φ∈Rk×T

tr
(

(I − Φ†Φ)X ′X
)

(3.15)

where the second equivalence follows from the fact that Φ†Φ is symmetric and (I − Φ†Φ)(I −
Φ†Φ)′ = I − 2Φ†Φ+ Φ†ΦΦ†Φ = I − Φ†Φ. Now we can obtain an equivalent maximization

(3.15) = argmin
Φ∈Rk×T

tr
(

X ′X
)

− tr
(

Φ†ΦX ′X
)

= argmax
Φ∈Rk×T

tr
(

Φ†ΦX ′X
)

.

Using the singular value decomposition of Φ, Φ = UΣV ′ for U ′U = I , V ′V = I and Σ diagonal,

then

Φ† = Φ′(ΦΦ′)−1 = V ΣU ′(UΣV ′V ΣU ′)−1 = V ΣU ′(UΣ2U ′)−1 = V ΣU ′UΣ−2U ′ = V Σ−1U ′

=⇒ Φ†Φ = V Σ−1U ′UΣV ′ = V V ′

allowing the optimization variable to be simplified with an added constraint

max
Φ∈Rk×T

tr
(

Φ†ΦX ′X
)

= max
Φ∈Rk×T :Φ′Φ=I

tr
(

Φ′ΦX ′X
)

.

The well-known solution to this maximization is given by the top k eigenvectors of X ′X (Overton

and Womersley, 1993), which is equivalent to the right singular vectors of X = UΣV ′. Corre-

spondingly, C = XΦ† = UΣV ′V ′ = UΣ. �

This same observation has been made in the statistics literature (Jong and Kotz, 1999); we

extend it also to kernel PCA.

Proposition 3. Kernel principal components analysis solves a regularized factor model for a ker-

nelized least-squares loss and no constraints or regularizers

min
B∈RT×k

min
Φ∈Rk×T

‖K −BΦ‖2F (3.16)

Proof: From (Schölkopf et al., 1997), kernel PCA consists of finding the eigenvectors of K. We

know that the solution to minB∈RT×k minΦ∈Rk×T ‖K −BΦ‖2F is the top k eigenvectors ofK ′K =

K2 from Proposition 2. Moreover, K2 has the same eigenvectors as K since K = QΛQ′ gives

K2 = QΛ2Q′. �

Exponential family PCA generalizes PCA from a Gaussian assumption on the data to any ex-

ponentially family distribution (Collins et al., 2002). Originally, exponential family PCA was intro-

duced as the optimization

min
C

min
φ
− log(pF (x|Cφ)) ≡ min

C
min
φ
DF (x||f−1(Cφ)) (3.17)

26

where Cφ is the parameter for the distribution, which corresponds to the projection into the lower-

dimensional subspace, since C ∈ R
n×k has k < n.

Notice that the optimization on DF (x||f−1(θ)) is not necessarily convex, as Bregman diver-

gences are only guaranteed to be convex in the first argument (see Section 2.2 for more on Bregman

divergences). In the following, I show that exponential family PCA is an instance of regularized

factorization, framed now as a convex optimization.

Lemma 2. With ŷ = f(ẑ) and y = f(z),

DF (ẑ||z) = DF ?(y||ŷ). (3.18)

Proof Sketch: [Full proof in Appendix A.3]

The result mainly follows from the connection between F ? and F . Since F ?(y) = maxz z
′y −

F (z), we can solve for the maximum z to obtain

d

dz
= y −∇F (z) = y − f(z) = 0 =⇒ z = f−1(y)

giving

F ?(y) = f−1(y)′y − F (f−1(y))

The remainder of the proof uses this equivalence to rewrite DF ? in terms of F and f−1 = f?. �

Proposition 4. Exponential family PCA solves a regularized factor model with a regular Breg-

man divergence loss, DF ? (corresponding to a regular exponential family distribution), and no

constraints or regularizers

min
C∈Rn×k

min
Φ∈Rk×T

DF ?(CΦ||f(X)) (3.19)

Proof: From Banerjee et al. (2005) and the summarized discussion in Section 2.2, we know that

minimizing the log likelihood for regular exponential families corresponds to minimizing a regular

Bregman divergence, giving the minimization in (3.17). This is not a convex minimization, but

using Lemma 2, we convert the minimization to a dual space,

DF ?(CΦ||f(X)) = DF (f
−1(f(X))||f−1(CΦ))

= DF (X||f−1(CΦ))

because (F ?)? = F . Therefore, (3.19) is equivalent to the loss solved by exponential family PCA.

�

Moreover, based on the kernel extensions for generalized reverse prediction given in Appendix B.2,

one can extend exponential family PCA to kernel exponential family PCA.

27

Proposition 5. Kernel exponential family PCA solves a regularized factor model with regular

Bregman divergence, DF ? , and no constraints or regularizers

min
Φ∈Rk×T

min
B∈RT×k

DF ?(CΦ||f(K)) (3.20)

This optimization reduces to kernel PCA in (3.16) for a Gaussian exponential family distribution.

Proof: The kernelized reverse optimization follows from Appendix B.2. For completeness, I show

the second statement, even though it follows simply from the fact that a Gaussian exponential family

corresponds to a least-squares Bregman divergence. The potential (or cumulant) for a Gaussian

distribution is F ?(x) = 1
2x

′x, giving ∇F ?(x) = x, where f?(x) = ∇F ?(x). Recall that f? = f−1

and so f(x) = x; therefore, we obtain

DF ?(Cφ || k) = F ?(Cφ)− F ?(f(k))− f?(f(k))′(Cφ− k)

=
1

2
φ′C ′Cφ− 1

2
k′k− k′(Cφ) + k′k

=
1

2
φ′C ′Cφ− k′(Cφ) +

1

2
k′k =

1

2
‖Cφ− k‖2

giving

min
C,Φ

DF ?(CΦ ||K) = min
C,Φ

T
∑

i=1

DF ?(CΦ:i ||K:i) = min
C,Φ

1

2

T
∑

i=1

‖CΦ−K‖2F .

From Proposition 2, the solution to this optimization is the top k eigenvectors ofK ′K = K2, which

are the same as the eigenvectors for K, since K = QΛQ′ giving K2 = QΛ2Q′. �

Canonical correlation analysis

Canonical correlation analysis (CCA) (Hotelling, 1936), is typically expressed as the problem of

projecting two views X1 and X2 so that the correlation between them is maximized (Hardoon et al.,

2004): maxu,v corr(u
′X1, v

′X2). Assuming the data is centered (i.e. X11 = 0 and X21 = 0), the

sample covariance of X1 and X2 is given by X1X1
′/T and X2X2

′/T respectively. CCA can then

be expressed as an optimization over matrix variables U ∈ R
n×k and V ∈ R

m×k (De Bie et al.,

2005),

max
U,V

tr
(

U ′X1X2
′V
)

s.t. U ′X1X1
′U = V ′X2X2

′V = I. (3.21)

The closed form solution for U is the top k eigenvectors of

(

X1X1
′)−1 (

X1X2
′) (X2X2

′)−1 (
X2X1

′)

and the canonical variables (or directions) are U ′X1.

28

Although not clear from this classical formulation (3.21), CCA can be expressed by a generative

model: given a latent representation, φj , the observations xj = C(1)φj + εj and yj = C(2)φj +νj

are generated by a linear mapping plus independent zero mean Gaussian noise, ε ∼ N(0,Σx),

ν ∼ N(0,Σy) (Bach and Jordan, 2006). We further clarified this connection to regularized fac-

torization (White et al., 2012); to the best of my knowledge, this formulation of CCA given in

Proposition 6 had not previously been shown 5.

Proposition 6. Canonical correlation analysis solves a regularized factor model with no con-

straints or regularizer and least squares loss with normalized data matrices, Z̃=

[

(X1X1
′)−

1
2X1

(X2X2
′)−

1
2X2

]

(C,Φ) = argmin
C∈R(n1+n2)×k,Φ∈Rk×T

‖Z̃ − CΦ‖2F (3.22)

where C =
[

C(1)

C(2)

]

. In terms of classical CCA, U = (X1X1
′)−

1
2 C(1) and V = (X2X2

′)−
1
2 C(2)

provide an optimal solution to (3.21), implying C(1)′C(1) = C(2)′C(2) = I is satisfied in the

solution to (3.22).

Proof: To show that (3.21) and (3.22) have equivalent solutions we exploit some developments

from Sun et al. (2011). Let N = (X1X1
′)−

1
2 and M = (X2X2

′)−
1
2 , hence

Z̃Z̃ ′ =

[

I NX1X2
′M

MX2X1
′N I

]

.

First consider (3.21). Its solution can be characterized by the maximal solutions to the generalized

eigenvalue problem (De Bie et al., 2005):

[

0 X1X2
′

X2X1
′ 0

] [

u

v

]

= λ

[

X1X1
′ 0

0 X2X2
′

] [

u

v

]

,

which, under the change of variables u=Na and v=Mb, is equivalent to

≡
[

0 X1X2
′M

X2X1
′N 0

] [

a

b

]

= λ

[

N−1 0
0 M−1

] [

a

b

]

≡
[

0 NX1X2
′M

MX2X1
′N 0

] [

a

b

]

= λ

[

I 0
0 I

] [

a

b

]

≡ Z̃Z̃ ′
[

a

b

]

= (λ+ 1)

[

a

b

]

where shifting the eigenvalues by 1 from adding an identity matrix to both sides on the last line did

not change the eigenvectors. By setting
[

A
B

]

to the top k eigenvectors of Z̃Z̃ ′ one can show that

U = NA and V =MB provides an optimal solution to (3.21) (De Bie et al., 2005).

5 (Long et al., 2008) gave a similar but not equivalent formulation to (3.22), due to the lack of normalization.

29

By comparison, for (3.22), an optimal Φ is given by Φ = C†Z̃, where C† denotes pseudo-

inverse. Hence
argmin

C
min
Φ
‖Z̃ − CΦ‖2F = argmin

C
‖(I − CC†)Z̃‖2F .

From the same analysis as in Proposition 2, we know that this optimization corresponds to

max
C:C′C=I

tr(CC ′Z̃Z̃ ′).

where the solution is given by the top k eigenvectors of Z̃Z̃ ′ (Overton and Womersley, 1993), i.e.,

the left singular vectors of Z̃ = UΣV ′. Correspondingly, Φ = C†Z̃ = U ′UΣV ′ = ΣV ′. �

Corollary 1. The joint generalized eigenvalue problem S1X1X2
′S′

2C
(1) = C(1)Λ and S2X2X1

′S′
1C

(2) =

C(2)Λ, for S1 and S2 invertible and S1X1X2
′S′

2 diagonalizable, is a regularized factor model:

(C,Φ) = argmin
C∈R(n1+n2)×k,Φ∈Rk×T

∥

∥

∥

∥

[

S1X1

S2X2

]

− CΦ
∥

∥

∥

∥

2

F

(3.23)

IfX1 = X2 and S1 = S2, this reduces to one eigenvalue decomposition, S1X1X1
′S′

1C
(1) = C(1)Λ.

There are several advantages to having a regularized factorization view of CCA. First, as we will

see in Section 5.3, CCA is the classical formulation of two-view subspace learning; this connection,

therefore, enables clear extensions to two-view learning by using different modeling choices in the

regularized factor model. Second, reduced-rank regression algorithms can be cast as CCA with the

input data as one view and the output data (targets) as the other view, as described in Section 3.1.4.

This combined goal of unsupervised, dimensionality reduction on one view (the input data) and

supervised regression on the other view will also be useful for formulating semi-supervised learn-

ing convexly in Chapter 6. Finally, for generalizing the loss, there is a distinct advantage to the

formulation in (3.22) over the generalized eigenvalue formulation or the one introduced for reduced

rank regression in Section 3.1.4. The CCA formulation in (3.22) naturally enables the least-squares

loss to be generalized to any Bregman divergence, DF ?(CΦ||f(Z̃)), where convexity is maintained

since a Bregman divergence is guaranteed to be convex in the first argument. This extension is not

obvious for generalized eigenvalue problems or for Equation (3.13), since DF ?(CX2||f(BX1)) is

not convex in terms of B.

Normalized cut (spectral clustering)

Spectral clustering algorithms, such as normalized cut, were introduced with the intuition that the

eigenvectors of an adjacency graph could enable points to be partitioned (Dhillon et al., 2004).

Below, we show that normalized cut solves a regularized factor model. As far as I know, this con-

nection has not been previously realized. These results simplify some of the connections observed

30

in (Dhillon et al., 2004; Chen and Peng, 2008; Kulis et al., 2009) relating k-means to normalized

cut, but generalizes them to relate to supervised least squares and regularized factor models.

Proposition 7. Normalized cut solves a regularized factor model with a constraint set on Φ,

F = {Φ ∈ {0, 1}k×T , 1Φ = 1}, no constraints on C, no regularizers and an instance-weighted

normalized kernel least squares loss for kernel K ≥ 0 and normalizer Λ = diag(1K):

min
Φ∈{0,1}k×T ,1Φ=1

min
C

∥

∥(KΛ−2 − CΦ)Λ
∥

∥

2

F
(3.24)

Proof: Let K̃ = KΛ−2 be the normalized kernel, then
∥

∥(KΛ−2 − CΦ)Λ
∥

∥

2

F
= tr

(

Λ(K̃ − CΦ)′(K̃ − CΦ)Λ
)

= tr(ΛK̃K̃Λ)− 2 tr(ΛK̃CΦΛ) + tr(ΦΛ2K̃C)

=⇒ −K̃Λ2Φ′ + CΦΛ2Φ′ = 0

=⇒ C = K̃Λ2Φ′(ΦΛ2Φ′)−1

We can plug this solution back in and obtain

tr
(

(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)K2(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)Λ2
)

.

Now we can further simplify

(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)Λ2(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)′

= Λ2 − 2Λ2Φ′(ΦΛ2Φ′)−1ΦΛ2 + Λ2Φ′(ΦΛ2Φ′)−1ΦΛ2Φ′(ΦΛ2Φ′)−1ΦΛ2

= Λ2 − 2Λ2Φ′(ΦΛ2Φ′)−1ΦΛ2 + Λ2Φ′(ΦΛ2Φ′)−1ΦΛ2

= Λ2 − Λ2Φ′(ΦΛ2Φ′)−1ΦΛ2

giving

tr
(

(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)K̃2(I − Λ2Φ′(ΦΛ2Φ′)−1Φ)Λ2
)

= tr
(

(I − Φ′(ΦΛ2Φ′)−1ΦΛ2)K̃2Λ2
)

and simplifying the optimization to

argmin
Φ

min
C

∥

∥(KΛ−2 − CΦ)Λ
∥

∥

2

F
= argmin

Φ
tr
(

(I − Φ′(ΦΛ2Φ′)−1ΦΛ2)K̃2Λ2
)

= argmin
Φ

tr(K̃2Λ2)− tr
(

Φ′(ΦΛ2Φ′)−1ΦΛ2K̃2Λ2
)

= argmax
Φ

tr
(

(ΦΛ2Φ′)−1ΦΛ2K̃2Λ2Φ′
)

= argmax
Φ

tr
(

(ΦΛ2Φ′)−1ΦΛ(Λ−1K2Λ−1)ΛΦ′) .

Finally, equivalently, we can solve for Φ̃ = ΦΛ, giving

argmax
Φ̃

tr
(

(Φ̃Φ̃′)−1Φ̃(Λ−1K2Λ−1)Φ̃′
)

31

where the solution is the top k eigenvectors of Λ−1K2Λ−1 and so equivalently of
√
Λ−1K2Λ−1 =

Λ−1/2KΛ−1/2, which is the same as the solution to normalized cut (Dhillon et al., 2004).

For completeness, I also show the original way that this connection was illustrated (Xu et al.,

2009). Using the standard transformation C = XB, used in Appendix B.2.1 to indicate that for the

least-squares setting we can factor out one of the kernel matrices to obtain a simplified reverse loss,

we obtain the loss:
min

Φ∈{0,1}k×T ,1Φ=1
min
B

tr
(

(XΛ−1 −XBΦ)′(XΛ−1 −XBΦ)Λ
)

(3.25)

= min
Φ∈{0,1}k×T ,1Φ=1

min
B

tr
(

(Λ−1 −BΦ)′K(Λ−1 −BΦ)Λ
)

(3.26)

For any Φ, the inner minimization can be solved to obtain B = Φ′(ΦΛΦ′)−1. Substituting back

into the objective and reducing yields

min
Φ:Φ∈{0,1}k×T ,1Φ=1

tr
(

(Λ−1 − Φ′(ΦΛΦ′)−1Φ)′K(Λ−1 − Φ′(ΦΛΦ′)−1Φ)Λ
)

(3.27)

= min
Φ:Φ∈{0,1}k×T ,1Φ=1

tr
(

(Λ−1 − Φ′(ΦΛΦ′)−1Φ)K
)

(3.28)

The first term is constant and can be altered without affecting the minimizer, hence (3.28) is equiv-

alent to min
Φ:Φ∈{0,1}k×T ,1Φ=1

tr (I)− tr
(

Φ′(ΦΛΦ′)−1ΦK
)

(3.29)

= min
Φ:Φ∈{0,1}k×T ,1Φ=1

tr
(

(ΦΛΦ′)−1Φ(Λ−K)Φ′) (3.30)

Xing and Jordan (2003) have shown that with Λ = diag(1K), Λ−K is the Laplacian and (3.30) is

equivalent to normalized cut. �

These simple connections are important both algorithmically and theoretically. For example, see

(Dhillon et al., 2004) for a discussion on using spectral clustering to initialize k-means and using

simpler k-means algorithms to avoid expensive eigenvector computations for spectral clustering.

Moreover, we can now extend normalized cut to general Bregman divergences with instance weights

Λ = diag(1K). Weighting with the kernel matrix intuitively places the most representative points

as cluster centers, since the error is high for classifying those points incorrectly; the sum of edge

weights across cuts in the adjacency graph, therefore, should be correspondingly low. This extension

indicates how a unified formalism is not only powerful for relating known algorithms but also for

producing novel algorithms. The unified framework makes algorithmic gaps clear; without the

unification, the idea of a generalized version of normalized-cut was not clear. See Appendix C.4.2

for more on this generalization.

3.3 Previous frameworks and unifications

There have been several investigations into the relationships between statistical machine learning

algorithms, particularly through eigenvalue decomposition and under least-squares optimizations. I

32

will first describe these simpler frameworks and then discuss generalized frameworks.

Eigenvalue-decomposition frameworks unify algorithms as instances of a generalized eigen-

value decomposition. Borga et al. (1997) showed that PCA, partial least squares, CCA and reduced-

rank regression are all instances of a generalized eigenproblem, with different focuses on variance,

covariance and correlation. Weiss (1999) unified three image segmentation algorithms, includ-

ing normalized cut, as eigenvalue problems. Yan et al. (2007) unified dimensionality reduction

techniques, including PCA, locality preserving projections, Isomap, and linear discriminant anal-

ysis, under a graph embedding formalism that reduces to a generalized eigenvalue computation.

Kokiopoulou et al. (2011) provided an extensive unification of dimensionality reduction techniques

as constrained trace maximizations, corresponding to generalized eigenvalue problems, including

Laplacian eigenmaps, orthogonal neighbourhood preserving projections, Isomap and metric multi-

dimensionsal scaling. Liski et al. (2013) introduced a formalism called supervised invariant coordi-

nate selection that again consists of a generalized eigendecomposition, unifying linear discriminant

analysis, canonical correlation analysis, sliced inverse regression, sliced average variance estimate,

directional regression, and principal Hessian directions. From Corollary 1, many of these algo-

rithms correspondingly solve a regularized factor model, since generalized eigenvalue problems

can be written as a regularized factorization;6 if a generalized eigenvalue problem satisfies the con-

ditions of Corollary 1, it is included in the Summary table in Section 3.4.

Least-squares frameworks, like the regularized factor models formalism, attempt to unify al-

gorithms under a least-squares loss with different settings, such as different kernels and instance

weighting. De la Torre (2012) related several component analysis techniques, including PCA, lin-

ear discriminant analysis, CCA, Laplacian eigenmaps, locality preserving projections, local linear

embeddings, neighbourhood preserving embeddings, and normalized cut as particular instances

of least-squares weighted kernel reduced rank regression. This framework is similar to least-

squares regularized factor model, with a focus, however, of regressing onto output targets. Roweis

and Ghahramani (1999) unified probabilistic PCA, mixture-model clustering, vector quantization,

Kalman filter models and hidden Markov models under linear dynamical systems. A linear dy-

namical system is a factored system, but with a temporal connection between the latent variables:

Φt = AΦt−1 + ηt

Xt = CΦt + νt

for zero-mean noise variables ηt ∼ N (0, Q) and νt ∼ N (0, R) with covariance matrices Q and R.

For the non-temporal setting, such as probabilistic PCA, they simply remove the temporal structure

6This connection to least-squares is also noted by Sun et al. (2009a), for a smaller set than in Corollary 1

33

by setting A = 0 and so making Φt = ηt. The resulting formulation is very similar to a regularized

factor model, but with the variance of ηt explicitly learned. Though this temporal factored analysis

is more general, and may be an interesting direction for unification in the future, the basic, non-

temporal factorization merits further understanding before moving on to this more complicated

formalism. Moreover, this work did not provide new algorithms, whereas several algorithms have

been developed while considering the simpler class of regularized factor models Singh and Gordon

(2008).

Generalizations to Bregman divergences have also been explored as unifying formalisms,

relaxing the least-squares (Gaussian) assumption to enable more general losses (distributions). Gor-

don (2003) introduced generalized2 linear2 models ((GL)2M), where for three link functions f , g,

and h, the goal is to learn C and Φ such that X = f(g(C)h(Φ)). This formalism generalizes

beyond regularized factor models, enabling further unification including independent component

analysis. The optimization of (GL)2Ms, however, is much more difficult. Singh and Gordon (2008)

moved away from this more general formulation and proposed almost exactly the same regularized

factor models optimization, but with a focus on weighted Bregman divergences instead of general

losses. Under this formalism, they unified several of the algorithms listed in the summary table

in Section 3.4 and, importantly, provided new optimization algorithms for these problems with a

useful generic Newton-update algorithm. Banerjee et al. (2005) discuss the unification of several

clustering algorithms under Bregman information, connecting these approaches to rate distortion

theory. Though similar, this approach uses general Bregman divergences to generalize properties of

the optimization but to learn the linear factorization X ≈ CΦ. Buntine and Jakulin (2006) unifies

several algorithms for discrete data as discrete component analysis, including discrete independent

component analysis, latent Dirichlet allocation and probabilistic latent semantic indexing.

Pairwise connections have also previously been observed, without a focus on a unifying for-

malism. Some of these include the connection between PCA and k-means (Jong and Kotz, 1999);

k-means and normalized cut (Dhillon et al., 2004; Chen and Peng, 2008; Kulis et al., 2009); CCA

and LDA (Bach and Jordan, 2006); correspondence analysis and latent class analysis (van der Hei-

jden et al., 1999); and non-negative matrix factorization and probabilistic latent semantic analy-

sis (Gaussier and Goutte, 2005).

These unifications facilitate a broader understanding of the properties of a wide range of learning

techniques. In addition to elucidating connections between algorithms, it also highlights the utility

in separating the problem from the algorithm. By focusing on this unified optimization with different

modeling choices, we will see useful advances in generic convex reformulation techniques in the

next chapter that enable important advances in statistical machine learning problems.

34

3.4 Summary table

If the entry is empty, this specifies no regularization and no constraints. The hard clustering set is

Chard= {Φ∈{0, 1}k×T,1Φ = 1} .

ALGORITHM LOSS CONSTRAINTS &

REGULARIZERS

CCA (PROP. 6)

≡ ORTHONORMAL PLS

∥

∥

∥

[

(X1X1
′)−1X1

(X2X2
′)−1X2

]

− CΦ
∥

∥

∥

2

F

INFORMATION THEORETIC

CLUSTERING (APP. C.4.4)

DF (x || Cφ) WITH

F (x) =
∑n

i=1 x(i) logx(i)− 1′x
CHARD

ISOMAP

(APP. C.2.1)

‖K − CΦ‖2F
K = −1

2(I − ee′)S(I − ee′)
WITH Si,j = ‖X:i −X:j‖

K-MEANS CLUSTERING

(APP. C.3, PROP. 11)

‖X − CΦ‖2F CHARD

K-MEDIANS CLUSTERING

(SEE SINGH AND GORDON 2008)

‖X − CΦ‖1,1 CHARD

LAPLACIAN EIGENMAPS ≡
KERNEL LPP (APP. C.2.2)

‖K − CΦ‖2F FOR K = L†

LINDE-BUZO-GRAY (APP. C.4.3) DF (x||Cφ)= x
Cφ − log x

Cφ − 1
WITH F = − logx

CHARD

LOCALLY LINEAR

EMBEDDINGS (APP. C.2.3)

‖K − CΦ‖2F
K = (I − ee′)K̃(1− ee′) WITH

K̃ = (λMAX(M)I −M)

MAXIMUM MARGIN MATRIX

FACTORIZATION

(SEE SINGH AND GORDON 2008)

∑R−1
r=1

∑

ij:Xij 6=0

HINGE(CΦ− BIASi,r)

Xij ∈ {0, . . . , R}
BIASi,r IS PER-ROW BIAS TERM

Rk(C,Φ)
= tr(CΦ′)
FAST MMMF:
1
2(‖C‖

2
F + ‖Φ‖2F)

METRIC MULTI-DIMENSIONAL

SCALING (APP. C.2.4)

‖K − CΦ‖2F
FOR ISOTROPIC KERNEL K

NONNEGATIVE MATRIX

FACTORIZATION

‖X − CΦ‖2F C > 0
Φ > 0

NORMALIZED-CUT (PROP. 7)
∥

∥(Λ−1X − CΦ)Λ1/2
∥

∥

2

F
CHARD

PARTIAL LEAST SQUARES

(APP. C.1.2)

‖XY ′ − CΦ‖2F

PCA (PROP. 2) ‖X − CΦ‖2F
EXP. FAMILY PCA (PROP. 4) DF ∗(CΦ||f−1(X))

KERNEL PCA (PROP. 3) ‖K − CΦ‖2F
SPARSE PCA (SECTION 5.1) ‖X − CΦ‖2F RΦ,k(Φ) = `0(Φ)

PROBABILISTIC LATENT

SEMANTIC INDEXING (APP. C.1.1)

‖X − CΦ‖2F C > 0
Φ > 0

RATIO CUT (APP. C.2.5) ‖K − CΦ‖2F FOR K = L†

35

3.5 Summary

This chapter demonstrated the generality of regularized factor models, despite the simplicity of

the formalism. Supervised learning and unsupervised learning were both cast as regularized factor

models, with many different algorithms obtained depending on simple modeling choices, such as

instance weighting, choice of kernel function and choice of loss function. This generality serves

to motivate further algorithmic development for this class of problems, discussed in the next chap-

ter. Moreover, more problems are unified under regularized factor models in Chapters 5 to 7 us-

ing different choices of regularizers. Finally, the connection between supervised and unsupervised

learning established in this chapter enables the formulation of a principled semi-supervised learning

algorithm in Section 6.1.

36

Chapter 4

Convex formulations for regularized fac-

tor models

In this chapter, I discuss how to reformulate a subclass of regularized factorization problems so that

they are globally solvable (Zhang et al., 2011; White et al., 2012). The previous discussion focused

on how to formalize problems as a regularized factor model whereas the next important question is

how to actually solve the regularized factorization optimization. A natural solution approach is to

use alternating descent approaches that alternate between the basis C and representation Φ. Though

this can be effective, these non-convex alternations can lead to local minima and are often slow,

which I discuss further in Section 4.1. If the problem can be formulated convexly, however, then we

are guaranteed to converge to the global solution, regardless of initial settings. To date, the class of

convexly reformulated matrix factorizations consists of norm regularizers on Φ and closed bounded

sets on C, which is quite general; the set of tractably computable reformulations, however, remains

quite small, as discussed in Section 4.3. As we will see in following chapters, this small but useful

set enables convex reformulations and efficient solutions of some important problems.

There are two key components to the reformulation: 1) relaxing the hard rank constraint that

a priori specifies k, the dimension of Φ ∈ R
k×T , and 2) obtaining a regularizer directly on the

low rank approximation, Z = CΦ, induced by the chosen regularizers on Φ and C. The rank is

instead determined by the optimization, where the variable Φ ∈ R
∞×T has rank controlled by the

optimization zeroing out many rows.

The main contribution of my work on convex matrix factorization is the second component of

the reformulation: a characterization of the induced norm on Z = CΦ given the chosen regularizer

on Φ. In particular, I provide an efficiently computable induced norm by restricting the class of

regularizers on Φ to lp-norms: { || · ||p,1 | 1 ≤ p ≤ ∞}. I use these convex solution approaches

to tractably solve several important machine learning problems in later chapters, namely subspace

37

learning, semi-supervised learning and autoregressive moving average models.

Contributions:

Contribution 1. The most general set of choices, to date, for regularizers on the factors C and Φ

that enables a convex reformulation of regularized factor models (Zhang et al., 2011). Previous re-

formulations were restricted to a row regularizer on the representation, Φ, and a column regularizer

on the basis, C (Bach et al., 2008). I describe the more general set in Section 4.2.

Contribution 2. The most complete set of efficiently computable induced norms for the convex

reformulation (Zhang et al., 2011; White et al., 2012). In particular, the first work (Zhang et al.,

2011) extended beyond the previously known efficiently computable induced norms `1 and `2 to

any `p norm on Φ and a partitioned constraint set on C. Moreover, the second work (White et al.,

2012) further simplified the computation of the induced norm with a partitioned constraint set into

an efficient line search over a weighted trace norm.

Contribution 3. A simple boosting algorithm for recovering solutions to the original problem from

the convex reformulation, with a particularly efficient form for the `2 norm on Φ and partitioned

constraints on C (White et al., 2012). The joint work (Zhang et al., 2011) also provides a closed

form recovery for `p norms on Φ with an `1 norm on C and a closed form recovery for an `1 norm

on Φ with a partitioned constraint set on C (see Proposition 8) for both of these novel closed form

recoveries). Previous work was limited to a closed form recovery for `2 regularizers on both C and

Φ and a closed form recovery for `1 on Φ (Bach et al., 2008).

4.1 Why not use expectation-maximization?

A natural question is why focus on convex reformulations when an expectation-maximization or

alternating approach can be used. In fact, because global training procedures were generally not

known for settings other than PCA, many regularized factorization algorithms were developed as

alternating minimizations (Jenatton et al., 2010; Bradley and Bagnell, 2008; Elad and Aharon, 2006;

Zou et al., 2006). The general expectation-maximization approach for matrix factorization is sum-

marized in Algorithm 1, with both a hard Viterbi-EM step if Φ is part of the parameters θ for the

distribution P (X|θ) or a standard “expectation” step which computes the loss for θ by marginaliz-

ing out Φ. The approach is intuitive and simple, and an argument could be made that the effort in

finding convex reformulations is not worthwhile.

There are four main issues, however, with this non-global approach. First, finding local minima

means we are not actually finding a solution to the specified objective. The global minima are the

38

Algorithm 1 Generic Expectation-Maximization for Factorized Models

Input: X , k and loss L
1: Initialize C and Φ randomly, or with some prior information

2: L (CΦ ; X) = − logP (X|C,Φ)
3: while change in L (C ; X) > tolerance do

4: Hard E-Step: If Φ part of parameters θ:

5: Φ = argminΦ L (CΦ ; X)
6: L (C ; X) = L (CΦ ; X)
7: Marginal E-Step: If Φ not part of parameters θ (i.e., unobserved latent data):

8: P (X:t|C) =
∫

P (X:t,φt|C)dφt =
∫

P (X:t|φt, C)P (φt|C)dφt

= maxq(·)
∫

q(φt)p(X:t,φt|C)dφt +H(q(·))
9: L (C ; X) = −∑T

t=1 logP (X|C)
10: M-Step: C = argminC L (C ; X)
11: end while

set of solutions to the objective. Local minima may not correspond to this set and so may not satisfy

the properties specified by the objective. Second, algorithms that result in local minima can be

very difficult to tune. Parameter settings can be changed, and the algorithm re-run; improvement

in results, however, cannot be attributed to the parameter change, but rather could also be due to

finding a different, better local minimum. This lack of controlled experimentation makes it difficult

to select parameters, engineer useful features or understand the outcome from a given algorithm.

Third, local minima also confound the validity of the objective. A specified objective may not

properly enforce desired properties; if the objective is globally solvable, however, a vacuous or

inappropriate objective can be discovered. For example, we demonstrate in Section 5.1 that, contrary

to popular belief, the typical sparse coding optimization (Olshausen and Field, 1997) does not result

in overcomplete codes. This insight results from the convex reformulation of the problem, that

gives an exact solution for the sparse coding optimization. Local solvers, however, did not find

the global, trivial vector-quantization solution, but rather spurious solutions that made it difficult to

recognize the true outcome of the objective. Finally, alternating solutions are typically found to be

slow (Redner and Walker, 1984). Computational gains have been reported numerous times from

simple convex relaxations or reformulations of the problem (Cheng et al., 2013), and also in our

own work shown in the empirical results over the next few chapters.

To find a convex reformulation, the only relaxation that is required is to relax the rank constraint.

Instead of specifying k before the optimization, k is allowed to be arbitrarily large, with the chosen

regularizers controlling the dimension. In this way, the optimization selects the appropriate rank for

the problem. Though this can be described as relaxing the rank constraint, it can actually be seen as

a useful way to avoid specifying the unknown rank a priori. In later chapters, we will see some of

the effects of this “relaxation”, particularly for subspace learning and sparse coding.

39

4.2 Convex matrix factorization formulation for norm regularizers

The approach to the following convex reformulations consists of two important steps:

1. A change of variables to Z = CΦ, instead of optimizing for C and Φ directly.

2. A characterization of the induced norm ||| · ||| : R
n×T → R on Z that corresponds to the

regularizers chosen on Φ and C.

The difficulty is in the characterization of the induced regularizer on Z. For any regularizers on

C and Φ, the corresponding regularizer on their product is not obvious, nor is it obvious that such

an induced regularizer exists. To date, the regularization choices that result in known induced

regularizers on Z are mostly restricted to norm regularizers. A norm R : F → R is a function that

satisfies

1. R(aφ) = |a|R(φ)

2. R(φ1 + φ2) ≤ R(φ1) +R(φ2)

3. R(φ) = 0 then φ = 0

Two key reasons that norm regularizers are so convenient are that 1) norms are convex and 2)

for a general class (described in Theorem 2) of norms on Φ, a corresponding induced norm |||Z|||
for the product, Z = CΦ, is both guaranteed to exist and to be convex. Since the induced norm is

guaranteed to be convex, the resulting loss with regularizer |||Z||| is also guaranteed to be convex. The

induced norm, however, is not guaranteed to be efficiently computable. An important exploration,

therefore, is to determine which induced norms can be computed efficiently, which we discuss

further in Section 4.3.

In the joint work (Zhang et al., 2011; White et al., 2012), we generalized the class of regularizers

on Φ to any { || · ||p,1 | 1 ≤ p ≤ ∞} and any bounded closed set C ⊂ R
n for C:i ∈ C such that

span(C) = R
n. This set includes any column norm regularizer on C, i.e., C:i ∈ C = {c ∈

R
n | ‖c‖ ≤ β}. The set of allowable regularizers on Φ has since been generalized to include

any row norm regularizer, ‖Φ‖�,1; to the best of my knowledge, this is the most general class of

convex reformulations of regularized factorization to date. Compared to (Bach et al., 2008), which

allowed any row norm regularizer on Φ, this formulation is more general by allowing C:i ∈ C for

any bounded closed C.

Lemma 3. For any bounded closed set C ⊂ R
n such that span(C) = R

n, and any vector norm

‖z‖�, the definition ‖X‖(C,�) = maxz∈C ‖Xz‖� establishes a norm on X .

40

where the min and max are swapped by showing that we satisfy Slater’s condition, meaning

strong duality holds (Boyd and Vandenberghe, 2004, §5.2.3).

2. Using norm duality, giving ‖Φ‖�,1 = max
V :‖V ‖�∗,∞≤1

tr(V ′Φ), and algebraic simplifications, we

obtain

(4.4) = max
Γ:‖C′Γ‖�∗,∞≤1

tr(Γ′Z).

3. By the definition of the norm in Lemma 3, we get that

min
C∈C∞

max
Γ:‖C′Γ‖�∗,∞≤1

tr(Γ′Z) = max
Γ:‖Γ′‖(C,�∗)≤1

tr(Γ′Z)

4. Finally, again by norm duality, max
Γ:‖Γ′‖(C,�∗)≤1

tr(Γ′Z) = ‖Z ′‖∗(C,�∗).

Therefore, minC∈C∞ minΦ:CΦ=Z ‖Φ‖�,1 = ‖Z ′‖∗(C,�∗), obtaining the desired result. �

This theorem encompasses a surprising number of settings, due to the generality of the loss

function and constraints on C and Φ, as we will see in its application to important problems over the

next several chapters. The loss function can easily accommodate missing entries in X by restricting

the loss evaluation to observed entries (Srebro et al., 2004). This theorem also applies to having a

hard constraint on Φ and the norm regularizer on C, simply by taking transposes, as shown in the

following corollary. Interestingly, therefore, at least one of the factors can be constrained at a given

time, though potentially enforcing hard constraints on both simultaneously will lose the ability to

obtain a convex reformulation.

Corollary 2. For vector norm ‖ · ‖�, and any bounded closed set F ⊂ R
T such that span(F) = R

T

min
Φ∈F∞⊆R∞×T

min
C

L(CΦ;X) + α‖C ′‖�,1 = min
Z
L(Z;X) + α‖Z‖∗(C,�∗). (4.5)

Proof: Take the data matrix to be X ′ ∈ R
T×n and C∞ = F∞′ ⊂ R

T×∞. Then, we can apply our

convex reformulation to obtain

min
C∈C∞

min
Φ

L(CΦ;X ′) + α‖Φ‖�,1 = min
Z

L(Z;X ′) + α‖Z ′‖∗(C,�∗).

The solution to this convex optimization gives Z ′ for X and Z = (Z ′)′ = (CΦ)′ = Φ′C ′. Let

C̃ = Φ′, Φ̃ = C ′, Z̃ = Z ′ and L̃(Z,X) = L(Z ′, X ′). Then, since the loss remains convex in X

42

even on the transposed matrix,

min
Φ̃∈F∞⊆R∞×T

min
C̃

L̃(C̃Φ̃;X) + α‖C̃ ′‖�,1 = min
Φ̃′∈C∞

min
C̃

L̃(C̃Φ̃;X) + α‖C̃ ′‖�,1

= min
C∈C∞

min
Φ

L(ΦC;X ′) + α‖Φ‖�,1
= min

Z
L(Z;X ′) + α‖Z ′‖∗(C,�∗)

= min
Z
L̃(Z ′;X) + α‖Z ′‖∗(C,�∗)

= min
Z̃
L̃(Z̃;X) + α‖Z̃‖∗(C,�∗).

�

4.3 Computationally practical special cases

Theorem 2 and Corollary 2 captures a wide range of formulations, including standard sparse coding

and sparse PCA (Bradley and Bagnell, 2009; Bach et al., 2008; Zou et al., 2006), as we discuss in

the next chapter. For (4.2) to admit an efficient global optimization procedure, however, the induced

norm ‖Z ′‖∗(C,�∗) must be efficiently computable for given Z. Unfortunately, although the induced

norm is convex, it is not always efficiently computable (Hendrickx and Olshevsky, 2010; Steinberg,

2005). In particular, it is not known if this norm is efficiently computable for the mixed regular-

izers considered in (Bach et al., 2008; Bradley and Bagnell, 2009; Zou et al., 2006); hence these

previous works had to introduce relaxations, heuristic basis generators, or alternating minimization,

respectively.

Nevertheless, we will see that there remain many important and useful cases where ‖Z ′‖∗(C,�∗)
can be computed efficiently. Bach et al. (2008) showed the induced norm can be efficiently com-

puted for l1 and l2 norms on Φ and C. We generalize these results to include efficient closed form

induced norms for lp regularizers and for a block constraint C, where the top and bottom partition

of C can be constrained separately. The following theorems indicate five cases where the induced

regularizer has a closed form, making it amenable to practical application.

Theorem 3. For regularizer ‖Φ‖2,1 and constraint set C2 = {c : ‖c‖2 ≤ 1}, the induced norm on

Z is ‖Z ′‖∗(C2,2) = ‖Z‖tr.

Proof: ‖Z ′‖(C2,2) = max‖c‖2≤1 ‖Z ′c‖2 = ‖Z ′‖sp by definition. Since the dual of the spectral

norm is the trace norm, we have ‖Z ′‖∗(C2,2) = ‖Z
′‖∗sp = ‖Z ′‖tr. �

Theorem 4. For regularizer ‖Φ‖p,1 and constraint set C1 = {c : ‖c‖1 ≤ 1} the induced norm on

Z is ‖Z ′‖∗(C1,p∗) = ‖Z‖p,1.

43

Proof: We simply need to show that ‖Y ‖∗(1,r) = ‖Y ′‖r∗,1 for any 1 ≤ r ≤ ∞, 1
r +

1
r∗ = 1.

‖Y ‖∗(1,r) = max
C:‖C‖(1,r)≤1

tr(C ′Y) . by definition

= max
C:‖C:t‖r≤1

∑

t

C ′
:tY:t . because ‖C‖(1,r) = max

t
‖C:t‖r (Steinberg, 2005, §1.3.1)

=
∑

t

‖Y:t‖r∗ . by Hölder’s inequality, for the extremal equality case

= ‖Y ′‖r∗,1.

Therefore, ‖Z ′‖∗(C1,p∗) = ‖Z
′‖∗(1,p∗) = ‖Z‖p,1. �

Theorem 5. For regularizer ‖Φ‖1,1 and constraint set Cq = {c : ‖c‖q ≤ 1} the induced norm on

Z is ‖Z ′‖∗(Cq ,∞) = ‖Z ′‖q,1.

Proof:

‖Z ′‖∗(Cq ,∞) = ‖Z ′‖∗(q,∞) = ‖Z‖∗(1,q∗) . because ‖Y ′‖(q∗,p∗) = ‖Y ‖(p,q) (Steinberg, 2005, §1.2.2)

= ‖Z ′‖q,1 . because ‖Y ‖∗(1,r) = ‖Y ′‖r∗,1 shown in Theorem 4.
�

Theorem 6. For regularizer ‖Φ‖1,1 and Cq1q2 =
{

c =
[

c(1)

c(2)

]

: ‖c(1)‖q1 ≤ β1, ‖c(2)‖q2 ≤ β2
}

the

induced norm on Z is

‖Z ′‖∗(Cq1q2 ,∞) =
∑

t

max

(

1

β1
‖Z(1)

:t‖q1 ,
1

β2
‖Z(2)

:t‖q2
)

.

Proof: Let Γ be the dual variable, which is of the same size as Z. First, we determine the dual

norm on Z, which simplifies

‖Γ′‖(Cq1q2 ,∞) = max
c∈Cq1q2

‖Γ′c‖∞ = max
c∈Cq1q2

max
t

Γ′
:tc

= max
t

max
c(1):‖c(1)‖q1≤β1

max
c(2):‖c(2)‖q2≤β2

[

c(1)
′
Γ(1)

:t + c(2)
′
Γ(2)

:t

]

= max
t

[

max
c(1):‖c(1)‖q1≤β1

c(1)
′
Γ(1)

:t + max
c(2):‖c(2)‖q2≤β2

c(2)
′
Γ(2)

:t

]

= max
t

[

max
c(1):‖c(1)‖q1≤1

β1c
(1)′Γ(1)

:t + max
c(2):‖c(2)‖q2≤1

β2c
(2)′Γ(2)

:t

]

. change of variables

= max
t

[

β1‖Γ(1)
:t‖q∗1 + β2‖Γ(2)

:t‖q∗2
]

. by norm duality.

With this form for the dual norm, we can compute the norm on Z more easily, because the

dual of the max-norm is the 1-norm. Therefore, the inner sum becomes a max and the outer max

becomes a sum. To simplify notation, let At,i = βi‖Γ(i)
:,t ‖q∗i , giving A ∈ R

T×2. Then

‖Γ′‖(Cq1q2 ,∞) = max
t
β1‖Γ(1)

:t‖q∗1 + β2‖Γ(2)
:t‖q∗2 = max

t
[At,1 +At,2] = ‖A‖∞,1

44

and

‖Z ′‖∗(Cq1q2 ,∞) = max
Γ:(maxt β1‖Γ(1)

:t‖q∗1+β2‖Γ(2)
:t‖q∗2)≤1

tr(Γ′Z)

= max
A:‖A‖∞,1≤1

max
Γ:βi‖Γ(i)

:,t ‖q∗i ≤At,i

∑

t,i

Γ(i)′
:,tZ:,t

= max
A:‖A‖∞,1≤1

∑

t,i

max
Γ:‖Γ(i)

:,t ‖q∗i ≤1

At,i

βi
Γ(i)′

:,tZ:,t

= max
A:‖A‖∞,1≤1

∑

t,i

At,i

βi
max

‖Γ(i)
:,t ‖q∗i ≤1

Γ(i)′
:,tZ:,t . by norm duality

= max
A:‖A‖∞,1≤1

∑

t,i

At,i

βi
‖Z:,t‖qi

= max
A:‖A‖∞,1≤1

∑

t,i

At,iBt,i . for Bt,i =
1

βi
‖Z(i)

:,t ‖qi

= max
A:‖A‖∞,1≤1

∑

t,i

tr(A′B) = ‖B‖1,∞ . by norm duality

=
∑

t

max

(

1

β1
‖Z(1)

:t‖q1 ,
1

β2
‖Z(2)

:t‖q2
)

�

Theorem 7. For regularizer ‖Φ‖2,1 and C2,2 = {c =
[

c(1)

c(2)

]

: ‖c(1)‖2 ≤ β1, ‖c(2)‖2 ≤ β2} the

induced norm on Z is ‖Z ′‖∗(C2,2,2) = max
0≤η≤1

‖E−1
η Z‖tr,

where

Eη :=

[

β1/
√
η In 0

0 β2/
√
1− η In

]

.

Moreover
∥

∥E−1
η Z

∥

∥

tr
is concave in η over [0, 1], enabling an efficient line-search for the norm.

Proof Sketch: [Full proof in Appendix D.3] The proof consists of

1. characterizing the norm ‖Γ‖(C2,2,2) = minρ≥0 ‖Eβ2
1/(β

2
2ρ+β2

1)
Γ‖sp

2. characterizing the conjugate norm of ‖Γ‖(C2,2,2)

‖Z‖∗(C2,2,2) = max
Γ:‖Γ‖(C2,2,2)≤1

tr(Γ′Z) = max
ρ≥0
‖E−1

β2
1/(β

2
2ρ+β2

1)
Z‖sp

3. finally re-parametrizing with ρ =
β2
1(1−η)

β2
2η

to get Eβ2
1/(β

2
2ρ+β2

1)
= Eη for 0 ≤ η ≤ 1.

�

As we will see in later chapters, the (2, 1)-block norm is generally useful because it controls

the rank of k; otherwise, the factorization might not be particularly meaningful. This norm controls

the rank by pushing as many rows to zero as possible, while only smoothing the columns (Argyriou

et al., 2008). This property is further justified in the next chapter in Section 5.2.

45

These proofs extend to a few other cases due to three equivalent formulations for the induced

norm (Bach et al., 2008). From Equations 2,3 and 4 in (Bach et al., 2008), we know that the induced

norm on Z can be written in several ways given the norm regularizers on the columns of C, ‖C:i‖C ,

and the rows of Φ, ‖Φi:‖R. We let |||Z||| = ‖Z ′‖∗C,�∗ represent the induced norm on Z when the

context is clear. Then

|||Z||| = min
C,Φ:Z=CΦ

1

2

k
∑

i=1

(‖Φi:‖2R + ‖C:i‖2C) (4.6)

= min
C,Φ:Z=CΦ

k
∑

i=1

‖Φi:‖R‖C:i‖C (4.7)

= min
C,Φ:Z=CΦ, ∀i ‖C:i‖C=1

k
∑

i=1

‖Φi:‖R (4.8)

= min
C,Φ:Z=CΦ, ∀i ‖Φi:‖R=1

k
∑

i=1

‖C:i‖C . (4.9)

The step between (4.7) and (4.8) is clear sinceC and Φ can be rescaled asC:i/‖C:i‖C and Φi:‖C:i‖C ,

making ‖C:i‖C = 1 in (4.7). Similarly, by rescaling with ‖Φi:‖R, we can get the equivalence be-

tween (4.7) and (4.9). The tricky step is the second one, showing (4.6) = (4.7). Take si =
‖Φi:‖R
‖C:i‖C .

Then, since Z = CΦ = C diag(s) diag(s−1)Φ, we can take the minimum of (4.6) and rescale to

obtain

|||Z||| = |||C diag(s) diag(s−1)Φ||| = 1

2

k
∑

i=1

(‖Φi:/si‖2R + ‖siC:i‖2C) for all s = [s1, . . . , sk].

Therefore, the original minimization could have any s scaling

|||Z||| = min
C,Φ:Z=CΦ

1

2

k
∑

i=1

(‖Φi:/si‖2R + ‖siC:i‖2C)

including for si =
‖Φi:‖R
‖C:i‖C , giving

|||Z||| = min
C,Φ:Z=CΦ

1

2

k
∑

i=1

(‖Φi:/si‖2R + ‖siC:i‖2C)

= min
C,Φ:Z=CΦ

1

2

k
∑

i=1

(‖Φi:‖R‖C:i‖C + ‖C:i‖C‖Φi:‖R)

= min
C,Φ:Z=CΦ

k
∑

i=1

‖Φi:‖R‖C:i‖C .

Notice, however, that any recovered Φ and C may not be equivalent between the three formulations,

as seen in Section 7.4. (4.9) was not originally in (Bach et al., 2008), but clearly follows from (4.7).

46

As before, this induced norm |||Z||| is only convex when k → ∞, where the regularizer implicitly

controls the size of k. These equivalences give the following corollary.

Corollary 3. The following result from Theorems 3-7, respectively.

‖Φi:‖R = ‖Φi:‖2, ‖C:i‖C = ‖C:i‖2 7→ |||Z||| = ‖Z‖tr (4.10)

‖Φi:‖R = ‖Φi:‖1, ‖C:i‖C = ‖C:i‖q 7→ |||Z||| = ‖Z ′‖q,1 (4.11)

‖Φi:‖R = ‖Φi:‖p, ‖C:i‖C = ‖C:i‖1 7→ |||Z||| = ‖Z‖p,1 (4.12)

‖Φi:‖R = ‖Φi:‖1, ‖C:i‖C = max(‖C(1)
:i‖q1 , ‖C(2)

:i‖q2)

7→ |||Z||| =
∑

t

max

(

1

β1
‖Z(1)

:t‖q1 ,
1

β2
‖Z(2)

:t‖q2
)

(4.13)

‖Φi:‖R = ‖Φi:‖2, ‖C:i‖C = max(‖C(1)
:i‖2, ‖C(2)

:i‖2)

7→ |||Z||| = max
0≤η≤1

∥

∥E−1
η Z

∥

∥

tr
. (4.14)

4.3.1 Recovery algorithms

Once the global Z has been computed, the original factors C and Φ may be desired as well. In cer-

tain settings, such as transductive learning, Z may be all that is required; for many cases, however,

the original goal was to explicitly find factors C and Φ, rather than just their product.

For certain regularization choices, there is a closed form recovery ofC and Φ, which we provide

in the next proposition. For other situations, we have developed a general boosting algorithm that

enables the columns and rows of C and Φ, respectively, to be generated iteratively and reweighted

untilCΦ = Z. The boosting procedure requires an efficient approach to generate these columns and

rows; fortunately, for the above closed form formulations, these “oracle” directions that guarantee

improvement in the solution are known. We present the general algorithm in Algorithm 2, and the

oracle in Algorithm 3, which is the same for both the Frobenius norm case and for the (2, 1)-block

norm. The resulting rescaling, however, is different and is given in Algorithms 5 and 6.

Proposition 8. Given optimal Z, there is a closed form recovery of the optimal C and Φ for the

following four cases.

1. For ‖Φ‖2,1, C2 = {c : ‖c‖2 ≤ 1}, giving |||Z||| = ‖Z‖tr, the recovery requires a simple

singular value decomposition: Z = UΣV ′ gives C = U and Φ = ΣV ′.

2. For ‖Φ‖2F , ‖C‖2F , giving |||Z||| = ‖Z‖tr, the recovery requires a simple singular value de-

composition: Z = UΣV ′ gives C = U
√
Σ and Φ =

√
ΣV ′.

3. For ‖Φ‖1,1, Cq = {c : ‖c‖q ≤ 1}, giving |||Z||| = ‖Z ′‖q,1, the recovery is

C = [Z:,1/‖Z:,1‖q, . . . , Z:,T /‖Z:,T ‖q] and Φ = diag(‖Z:,1‖q, . . . , ‖Z:,T ‖q).

47

Algorithm 2 Generic Boosting Recovery Algorithm)

Input: Z, induced norm ||| · |||, Oracle algorithm and Rescaling algorithm

Output: C,Φ such that CΦ = Z
1: l(M): return ‖Z −M‖2F // define boosting loss

2: C = [], Φ = [] // Initialize C and Φ to empty matrices

3: s = |||Z|||
4: Z = Z/s // The solution is properly rescaled after the procedure

5: M0 = 0 // matrix of all zeros the same size as Z
6: while l(Mk−1) < tolerance, for k = 1, 2, . . . do

7: // Weak learning “oracle” step: Greedily pick (ck,φk)
8: (ck,φk) = OracleAlgorithm(Z, Mk−1)

9: // “Totally corrective” step: Reweight the generated bases

10: µ(k) = argmin
µ≥0,

∑
i µi=1

l
(k
∑

i=1
µiciφ

′
i

)

11: Mk =
k
∑

i=1
µ
(k)
i ciφ

′
i.

12: end while

13: // Set scales to preserve constraint/regularizer equivalence to |||Z|||
14: (s1, s2) = RescalingAlgorithm(sZ,µ)
15: C = [c1, . . . , ck] diag(s1)
16: Φ = diag(s2)[φ1; . . . ;φk].
17: return (C,Φ)

4. For ‖Φ‖1,1, Cq1,q2 = {c : ‖c(1)‖q1 ≤ β1, ‖c(2)‖q2 ≤ β2}, giving

|||Z||| =∑tmax
(

1
β1
‖Z(1)

:t‖q1 , 1
β2
‖Z(2)

:t‖q2
)

, the recovery is

Φt,t = max
(

1
β1
‖Z(1)

:t‖q1 , 1
β2
‖Z(2)

:t‖q2
)

and C = ZΦ−1.

Proof: For 1, clearly CΦ = Z and, since V is orthogonal, making (V:,i)
′V:,i = 1

‖Φ‖2,1 =
k
∑

i=1

‖ΣiiV:,i‖2 =
k
∑

i=1

Σii‖V:,i‖2 =
k
∑

i=1

Σii

√

(V:,i)′V:,i =
k
∑

i=1

Σii = ‖Z‖tr

For 2, again CΦ = Z and, since the Froebnius norm is invariant under transformation by an orthog-

onal matrix V
1

2
(‖Φ‖2F + ‖C‖2F) =

1

2
(
∥

∥

∥

√
Σ
∥

∥

∥

2

F
+
∥

∥

∥

√
Σ
∥

∥

∥

2

F
) = tr(Σ) = ‖Z‖tr

For 3, again CΦ = Z since the normalization is removed in the product, and

‖Φ‖1,1 = ‖ diag(‖Z:,1‖q, . . . , ‖Z:,T ‖q)‖1,1 =
T
∑

t=1

‖Z:,t‖q = ‖Z ′‖q,1

For 4, the procedure is the same as for 3. �

For other convex reformulations, there is no closed form recovery. For this situation, we provide a

boosting procedure which consists of the following four steps, summarized in Algorithm 2:

48

Recovery boosting algorithm given column norm ‖ · ‖C and row norm ‖ · ‖R :

1. Normalize Z such that |||Z||| = 1; after recovering C and Φ, we rescale using the original |||Z|||.
2. For any matricesC and Φ, we can writeC = [c1, . . . , ck] diag(s1) and Φ = diag(s2)[φ1; . . . ;φk]

for ‖ci‖C = 1 and ‖φi‖R = 1 and scale vectors s1, s2 ≥ 0. This representation simplifies genera-

tion of C and Φ.

3. Generate unit vectors and scales to optimize l(M) = ‖Z −M‖2F , i.e.,

min
C,Φ
‖Z − CΦ‖2F = min

c1,c2,...,s1,s2,φ1,φ2,...,s2
‖Z − CΦ‖2F

in a repeated two step boosting approach, starting with M0 = 0:

3.1 Weak learning “oracle” step: greedily pick

(ck,φk) ∈ argmin
‖c‖C=1,‖φ‖R=1

〈

∇l(Mk−1), ckφ
′
k

〉

In general, the oracle will be different for different norms ‖ · ‖C and ‖ · ‖R. If they are both the

`2 norm, for example, then the oracle step can be computed efficiently by using the top singular

vectors of the residual R = Z −Mk−1 = ∇l(Mk−1)

argmax
‖c‖2=1,‖φ‖2=1

c′Rφ =⇒ c = U:,1,φ = V:,1 for R = UΣV ′.

To see why, we can write the Lagrange equation which ensures that c and φ are unit vectors:

c′Rφ− λ1c′c− λ2φ′φ, for Lagrange multipliers λ1 and λ2. Taking the gradient with respect to c

and φ and setting the gradients to zero to obtain the optimal unit vectors, we get the two equations:

Rφ = 2λ1c =⇒ c′Rφ = 2λ1c
′c = 2λ1

R′c = 2λ2φ =⇒ φ′R′c = 2λ2φ
′φ = 2λ2

This implies that σ1 = 2λ1 = 2λ2, giving Rφ = σ1c and R′c = σ1φ, which by definition are

the left and right singular vectors of R. For `2 norms, however, we have a closed form recovery;

this approach is only useful if a complete SVD needs to be avoided. In Algorithm 3, we provide an

oracle for the partitioned case which does not have a closed form recovery.

3.2 “Totally corrective” step:

µ(k) = argmin
µ≥0,

∑
i µi=1

l
(

k
∑

i=1

µiciφ
′
i

)

→ Mk =
k
∑

i=1

µ
(i)
i ciφ

′
i.

Notice that the scales are reoptimized after each basis is added, meaning that bases that are not

as useful will have their scale set to zero. This procedure will find a Mk satisfying ‖Z −Mk‖2F < ε

withinO(1/ε) iterations (Shalev-Shwartz et al., 2010, Theorem 2.7), since the `2-norm is 1-smooth.

49

4. Set C = [c1, . . . , ck] diag(s1) and Φ = diag(s2)[φ1; . . . ;φk], where the scales s1 and s2 are

determined according to the chosen constraints and regularizers to ensure the joint regularizer |||Z|||
equals the corresponding regularizer(s) for C and Φ. For example, if the optimization constrains C

in the set ‖c‖C ≤ 1, then the scale should all be placed on Φ: s1 = 1 and s2 = |||Z|||µ, giving

‖Φ‖R = ‖ diag(s2)[φ1; . . . ;φk]‖R = |||Z|||
k
∑

i=1

µi‖[φ1; . . . ;φk]‖R = |||Z|||
k
∑

i=1

µi = |||Z|||

since
∑k

i=1 µi = 1 by the constraints in step 3.2. See Algorithms 5 and 6 for two rescalings.

Algorithm 3 Oracle for |||Z||| = max0≤η≤1 ‖E−1
η Z‖tr

Input: Z,Mk−1

Output: c,φ, as new column and row to add to C,Φ respectively

1: // Note that this oracle uses a different loss function, l, which should be used in place of the

2: // l in Algorithm 2; see Appendix D.4 for derivation of the following oracle

3: [U,∼, V] = svd(E−1
η Z)

4: Γ = E−1
η UV ′

5: l(M): return ‖MΓ− Z‖2F
6: // Compute the matrix where 〈R, cc′〉 = 0

7: ρ = (1−η)β1

ηβ2
2

8: λ1 = 1/(β21 + β22ρ)
9: λ2 = λ1ρ

10: R = λ1I + λ2I − ΓΓ′

11: N = Algorithm 4 (R) // Orthonormal basis of nullspace(R)

12: N1 = N(1 : n1, :), N2 = N((n1 + 1) : (n1 + n2), :) // the two partitions of N
13: [V,Σ] = eigs(β22N

′
1N1 − β21N ′

2N2)
14: Q = 2(Z −Mk−1Γ)Γ

′

15: T = V ′N ′QNV
16: // Line search over τ over convex function λmax which gives maximum eigenvalue

17: [f,g] = λloss(τ):
18: [λ,v] = λmax(T − τΣ)
19: f = λ
20: g = −Σv2

21: [τ , f] = lbfgs(λloss, τinit = 0) // Apply your favourite non-smooth optimizer

22: // Now recover c

23: G = Algorithm 4 (fI + τΣ− T) // Orthonormal basis of nullspace(fI + τΣ− T)

24: [λ,v] = eigs(G′ΣG)

25: c = G v

26: return (c, c)

4.4 Summary

This chapter presented the main algorithmic advances for solving regularized factor models. The

approach consists of finding a convex reformulation of biconvex objectives, which is not jointly

50

Algorithm 4 Orthonormal basis of nullspace

Input: R
Output: N orthonormal basis of the nullspace of R

1: [∼,Σ, V] = svd(R)
2: r = count(Σ > 1e− 4) // rank of R

3: N = V (:, (r + 1) : n− r) // Last n− r columns where V has n columns

4: return N

Algorithm 5 Rescaling for ‖Φ‖R = ‖Φ‖2,1, C = {c =
[

c(1)

c(2)

]

: ‖c(1)‖2 ≤ β1, ‖c(2)‖2 ≤ β2}
Input: Z,µ
Output: s1, s2 such that |||Z||| = ‖Φ‖R = ‖Φ‖2,1

1: s1 = 1

2: s2 = |||Z|||µ
3: return (s1, s2)

Algorithm 6 Rescaling for ‖Φ‖R = ‖Φ‖2F , ‖C:i‖C = max
(

∥

∥C(1)
:i

∥

∥

2

2
,
∥

∥C(2)
:i

∥

∥

2

2

)

Input: Z,µ

Output: s, s2 such that |||Z||| = 1
2 ‖diag(s2)Φ‖

2
F + 1

2

∑k
i=1max

(∥

∥

∥c(1)is
(1)
i

∥

∥

∥

2
,
∥

∥

∥c(2)is
(2)
i

∥

∥

∥

2

)

1: for i = 1, . . . , k do

2: s
(1)
i =

√

|||Z|||µi/
∥

∥c(1)i
∥

∥

2

2

3: s
(2)
i =

√

|||Z|||µi/
∥

∥c(2)i
∥

∥

2

2

4: s2 =
√

|||Z|||µ
5: end for

6: return (s, s2)

convex in the factors. The main difficulty is in finding the induced norm on the joint variable,

Z = CΦ, given the chosen regularizers and constraints sets on C and Φ. This chapter presented five

cases with computationally efficient induced norms. These cases are used for developing algorithms

for several problems in the next three chapters, with an empirical investigation for each setting. A

great opportunity remains, however, in finding convex, efficiently computable reformulations for

more general settings that encompass clustering and mixture model problems.

This work has focused on convex reformulations to solve regularized factor models globally;

there are, however, other approaches to obtaining global solutions. Recently, there has been sev-

eral theoretical and empirical demonstrations that alternating descent for certain biconvex problems

results in global solutions (Journée et al., 2010; Jain et al., 2013; Jain and Dhillon, 2013; Agarwal

et al., 2013; Mirzazadeh et al., 2014). These works make the use of regularized factor models more

promising, suggesting that a broader class of regularized factorization can be solved globally. I

discuss other potential computational advances for regularized factor models in Section 8.1.2.

51

Chapter 5

Subspace learning and sparse coding us-

ing regularized factor models

Data representations are fundamental to machine learning. Expressing complex data objects, such

as documents or images, as feature vectors—e.g. as bags of words, vectors of Fourier or wavelet

coefficients, or indicators of nearest prototypes—can reveal important structure in a data collection,

as well as in individual data items. Feature representations do not only facilitate understanding,

they enable subsequent learning. For any particular application, however, often one does not know

which representation to use.

Automatically discovering useful features from data has been a long standing goal of machine

learning research. Current feature discovery methods have already proved useful in many areas of

data analysis, including text, image, and biological data processing. These methods differ primarily

in the properties sought in any new data representation. Some approaches seek a low dimensional

representation, such as principal components analysis (PCA) and modern variants (Van der Maaten

and Hinton, 2008; Weinberger and Saul, 2006). Others seek a representation where features behave

independently, such as independent components analysis (ICA) (Comon, 1994); or where the new

feature vectors are sparse, such as sparse coding or vector quantization (Olshausen and Field, 1997).

Still others seek a representation that captures higher level, abstract features of the data that are

invariant to low level transformations, such as in deep learning (Hinton, 2007).

In each case, one key issue is whether an optimal feature representation can be recovered ef-

ficiently. The lack of an optimal feature discovery method can hamper the practical applicability

of a principle—relegating its use to an artform. Globally solvable criteria such as PCA, by con-

trast, enjoy widespread use despite the numerous shortcomings, arguably because users need not

understand the workings of any solver—it is sufficient to understand the principle being optimized.

Recently, the development of sparsity inducing regularizers has made great inroads in achieving

52

globally solvable forms of training. Indeed, convex reformulations have recently had a significant

impact on many areas of machine learning, including multitask learning (Argyriou et al., 2008),

collaborative filtering (Candes and Recht, 2009; Srebro et al., 2004), and nonlinear dimensionality

reduction (Weinberger and Saul, 2006).

In this chapter, I discuss how the advances in convex formulations of regularized factor models

can be used to solve three representation learning problems: sparse coding, single-view subspace

learning and multi-view subspace learning. In each section, an objective is defined for each problem

and a subsequent convex reformulation given. The chapter concludes with an empirical investigation

into the advantages of a convex formulation of multi-view subspace learning, both on synthetic data

and real image data.

Contributions:

Contribution 1. A clear demonstration that sparse coding using the typical `1 regularizer has a

convex reformulation approach, but that the solution is a trivial form of vector quantization, both

for unsupervised and semisupervised learning (Zhang et al., 2011). This result shows that, contrary

to popular opinion, `1 regularization does not lead to over-complete bases and suggests that, unless

the rank of the representation is fixed smaller than the input dimension, the `1 relaxation from `0 is

inadequate. This result was also noted in (Bach et al., 2008), but only for unsupervised learning.

Contribution 2. First global two-view subspace learning algorithm for general convex reconstruc-

tion losses (White et al., 2012). In particular, we also provide important efficiency improvements

for both the convex optimization and for the recovery to make the two-view subspace learning al-

gorithm more practical.

Contribution 3. An empirical comparison of the convex multi-view subspace learning algorithm to

single-view subspace learning and to local solutions for multi-view subspace learning on a variety of

datasets (White et al., 2012). This empirical investigation indicates both the usefulness of explicitly

treating multiple views separately (rather than concatenated as a single view) and the importance of

formulations that obtain global solutions for representation learning.

5.1 Convex sparse coding

In sparse coding, the goal is to learn a sparse representation Φ ∈ R
k×T for input data matrix

X ∈ R
n×T , with a dictionary C such that X ≈ CΦ. This goal was introduced (Olshausen and

Field, 1997) based on a neural justification that images are represented by a small number of active

53

code elements; since then, sparse coding has seen widespread use in signal processing and image

processing.

The desired regularizer for this problem is the `0 regularizer, which counts the number of non-

zero entries in a vector. Unfortunately, this regularizer is not convex. Instead, a convex proxy that

is typically used instead is ‖Φ‖1,1, which encourages entry-wise sparsity in Φ (Mairal et al., 2008;

Lee et al., 2009; Jenatton et al., 2010). I further justify this choice in Figure 5.1(b).

We can also evaluate this regularizer choice in terms of the prior chosen on Φ. This regularizer

corresponds to independent zero-mean Laplace distributions on each entry with diversity parameter

= 1/α. This Laplace distribution is highly peaked around zero, with heavy tails, giving a prior that

favours zero-valued entries in Φ:

− log p(Φ) =
k
∑

i=1

T
∑

t=1

− log pLaplace(Φi,t|µ = 0, b = 1/α)

= −
k
∑

i=1

T
∑

t=1

log

(

1

2b
exp

(−|Φi,t|
b

))

=
k
∑

i=1

T
∑

t=1

log(2/α) + α|Φi,t|.

Since the constant is ignored in the optimization, we getRΦ,k(Φ) = α
∑k

i=1

∑T
t=1 |Φi,t| = α‖Φ‖1,1.

There is rarely any prior information about C, so one might assume that a uniform (non-

informative) prior is acceptable. Notice, however, that the factorization Z = CΦ is invariant to

reciprocal rescalings of C and Φ. To avoid degeneracy, therefore, we constrain each column C:i to

the bounded closed convex set Cq = {c : ‖c‖q ≤ 1}, giving C ∈ Ck.

The resulting sparse coding problem is

min
C∈Ck

q

min
Φ

L (CΦ ; X) + α‖Φ‖1,1.

where approximation error is measured with any loss function L(Z;X) that is convex in its first ar-

gument (such as the Bregman divergences described in Section 2.2). From Theorem 5, we know that

this can be solved globally and efficiently if we relax the rank constraint and allow the optimization

to chose rank k. This results in the following convex optimization

min
C∈C∞

q

min
Φ

L (CΦ ; X) + α‖Φ‖1,1 = min
Z

L(Z;X) + α‖Z ′‖q,1.

The optimal dictionary and sparse representation can be recovered from the optimal Z, accord-

ing to Proposition 8 as

C = [Z:,1/‖Z:,1‖q, . . . , Z:,T /‖Z:,T ‖q]

Φ = diag(‖Z:,1‖q, . . . , ‖Z:,T ‖q).

54

Given a test point x, one can recover φ = argminφ L (Cφ ; x) + α‖φ‖1, yielding a sparse

representation in terms of the training observations.

This convex formulation leads to an important insight: the solution is not over-complete, con-

trary to common intuition. That is, we obtain a simple form of vector quantization that memorizes

the (normalized) observations and codes the training data by a scaled indicator vector; an outcome

also witnessed by (Bach et al., 2008). This property is an inherent weakness of ‖·‖1,1 regularization

that does not appear to be widely appreciated. One might hope, however, that if the problem was

more constrained, the solution would not be an (overfit) memorization of the data and we might re-

gain the useful properties of the `1 regularizer. In Section 6.2.1, I show that even adding supervised

information does not improve generalization; that is, surprisingly, semi-supervised sparse coding

does not appear to sufficiently constrain the problem. Another strategy is to use mixed regularizers,

such as including a `2 regularizer on Φ (Bach et al., 2008); unfortunately, already such a simple ad-

dition results in a non-convex objective. Understanding how to effectively formulate convex sparse

coding, therefore, remains an important, outstanding problem.

5.2 Convex subspace learning

Subspace learning, also typically referred to as dimensionality reduction, is a fundamental problem

in representation learning. Re-expressing high-dimensional data in a low dimensional representation

has been used to discover important latent information about individual data items, visualize entire

data sets to uncover their global organization, and even improve subsequent clustering or supervised

learning (Lee and Verleysen, 2010). Classically, convex subspace learning had been achieved using

principal components analysis; generalizations to other (robust) losses, however, resulted in non-

convex optimizations until the introduction of convex regularizers to impose the low-rank structure,

described below.

To find a lower dimensional representation, Φ, such that rank(Φ) = k < n, we need a prior on

Φ that reduces the number of rows of Φ. A widely used regularizer that is believed to encourage

entire rows Φi: to be zero is the (2, 1)-block norm, ‖Φ‖2,1 (Argyriou et al., 2008). To further justify

this choice of regularizer, we look at the underlying prior on Φ and find that it is in fact a Laplacian

distribution across samples (White et al., 2015). As discussed before, the Laplacian distribution is

peaked at zero, with heavy tails, encouraging zero entries; intuitively, therefore, it makes sense that

the (2, 1)-block norm encourages the entire row to equal zero. First, the connection to Laplacian

priors is described; then a simple experiment is included to show that the (2, 1)-block norm does in

fact push entire rows to zero.

There are several multivariate extensions of Laplace distributions; we choose a multivariate

55

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

Increasing number of zeroed rows

R
e

la
ti
v
e

 n
o

rm
 v

a
lu

e

`0
`1
`1.5
`2
`2.5
`5
`10
`50

(a) Subspace properties

0 50 100 150 200
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Increasing number of zeroed entries

N
o

rm
 v

a
lu

e

`50
`10
`5
`2.5
`2
`1.5
`1
`0

(b) Sparsity properties

Figure 5.1: Values for various norms on matrices with subspace or sparsity properties. In both graphs, the

norm values are scaled to between 0 and 1, so that the trend can be compared. The matrices are generated

with independent entries in N (0, I). (a) The values are averaged over 1000 random matrices in R
50×30 with

an increasing number of zeroed rows. To compare the subspace properties of the norms, the norm value is

compared to the value on randomly zeroing the same number of entries, rather than rows. The `0 and `1 are

both above 1 in all cases, having a lower value for zeroing sparsely rather than zeroing an entire row. The `2
and `10 norm both are lower than 1 after the first 12 and 4 rows are zeroed, respectively. When the relative

value is lower than 1, the norm value is lower for matrices where the entire row is zeroed rather than just an

equivalent number of entries sparsely zeroed. This result suggests that as p gets larger, this property is further

enforced. The `2 norm, in fact, appears to have mixed properties: it prefers sparsity for more dense matrices,

and zeroing rows for less dense matrices. (b) The values are averaged over 1000 random matrices with an

increasing number of zeroed entries, rather than entire rows.

Laplace, parametrized by a mean, µi, and scatter matrix Σi, with the convenient pdf (Arslan, 2010):

pL(Φi,:|µi,Σi) =
|Σi|−1/2

2Tπ
T−1
2 Γ(T+1

2)
e−
√

(Φi,:−µi)Σ
−1
i (Φi,:−µi)′ .

Assuming µ = 0 and Σ = I , we get the following negative log-likelihood of the Laplace prior

across samples

− log pL(Φi,:|µi = 0,Σi = I) =

1

2
log (|Σi|) + T log(2) +

T − 1

2
log(π) + log Γ

(

T + 1

2

)

+

√

(Φi,: − µi)Σ
−1
i (Φi,: − µi)′

=⇒ min
Φ

k
∑

i=1

− log pL(Φi,:|µi = 0,Σi = I) = min
Φ

k
∑

i=1

√

Φi,:Φ′
i,: = min

Φ
‖Φ‖2,1.

To test the appropriateness of the (2, 1)-block norm we examine the norm values of random Φ

matrices, with increasing number of zero rows in Figure 5.1(a) and increasing number of sparse

entries in Figure 5.1(b). For Figure 5.1(a), if the y-value is less than 1, then the norm is smaller

if entire rows are zeroed, as opposed to zeroing the same number of entries randomly; see the

caption for a more detailed description of the experiment. We can see that many of the norms do not

56

immediately prefer zeroing entire rows; however, after a threshold of zeroed rows is reached, then

the preference switches. The larger the p, the more quickly the preference to zero rows is reached.

The `0 and `1 norms, however, never fall below 1. Therefore, we can see that to obtain subspace

learning, selecting p ≥ 2 is preferable. The `2 norm is often preferable since it already exhibits

these desirable properties, but has better numerical stability. For sparsity, we can see that the trend

for `1 is equivalent to `0; for p > 1, however, the preference for sparsity decreases with increasing

p.

As we can see, therefore, an appropriate loss for subspace learning is

min
C∈Ck

2

min
Φ

L (CΦ ; X) + α ‖Φ‖2,1

where, as with sparse coding, the columns of C:i ∈ C2 = {c : ‖c‖2 ≤ 1} must be constrained to

some set to avoid degeneracy. Since the (2, 1)-block norm zeros out rows, we do not have to fix k a

priori, allowing the optimization to instead impute the rank. Now we can apply Theorem 3 to get a

convex reformulation

min
C∈C∞

2

min
Φ

L (CΦ ; X) + α ‖Φ‖2,1 = min
Z

L (Z ; X) + α ‖Z‖tr .

From Proposition 8, given optimalZ with singular value decompositionZ = UΣV ′, we can recover

globally optimal C = U and Φ = ΣV ′. The solution satisfies rank(B) = rank(Φ) = rank(Z);

thus, even though we allowed C ∈ C∞2 , the dimension is implicitly and efficiently controlled by

reducing the rank of Z via trace norm regularization. Though we arrived at this regularizer differ-

ently, the trace norm has already widely been used as a convex relaxation of rank in low rank matrix

recovery (Candes and Recht, 2009; Salakhutdinov and Srebro, 2010), because ‖X‖tr is the convex

envelope of rank(X) over the set {X : ‖X‖sp ≤ 1} (Recht et al., 2010).

For new data points, Xnew, we can easily find its lower-dimensional representation Znew =

CΦnew using the learned basis weights, C

min
Φnew

L (CΦnew ; Xnew) + α ‖Φnew‖2,1

which is convex in Φnew for a fixed C. Therefore, this view of subspace learning enables both a

convex reformulation as well as a simple out-of-sample approach.1

Interestingly, we can also extend this convex subspace formulation to remove sparse noise in

X , generalizing the robust subspace learning formulations of (Candes and Recht, 2009; Xu et al.,

1Note that the solutions are different for computing the m samples jointly in Φnew = [φ1, . . . ,φm] versus optimizing

each φt independently. This difference results from the fact that the (2, 1)-block norm couples instances across time.

More practically, this coupling is evident in the gradient computation, where ∂ ‖Φ‖2,1 /∂Φjt = (
∑k

i=1 Φit)
−1/2Φjt.

For other regularizers, such as the Frobenius norm regularizer or (1, 1)-block norm regularizer, optimizing independently

versus jointly is equivalent.

57

2010). In Corollary 4, the `1 regularizer is used directly on a sparse noise matrix, S, and so does

not result in the same vector quantization properties as the sparse coding matrix factorization in the

previous section.

Corollary 4 (Convex robust subspace learning).

min
C∈C∞

2

min
Φ

min
S
L (CΦ+ S ; X) + α‖Φ‖2,1 + β‖S‖1,1

= min
Z

min
S
L (Z + S ; X) + α‖Z‖tr + β‖S‖1,1.

This objective can be globally optimized by alternating between Z and S, because they interact

additively rather than multiplicatively in the loss. Therefore, the objective is jointly convex in Z

and S. Using the singular value decomposition, Z = UΣV ′, we can again see that the recovery is

C = U and Φ = UΣ since ‖Φ‖2,1 = tr(Σ) = ‖Z‖tr, regardless of the shift by S.

5.3 Convex multi-view subspace learning

Modern data is increasingly complex, with increasing size and heterogeneity. For example, mul-

timedia data analysis considers data objects (e.g. documents or webpages) described by related

text, image, video, and audio components. Multi-view learning focuses on the analysis of such

multi-modal data by exploiting its implicit conditional independence structure. For example, given

multiple camera views of a single object, the particular idiosyncrasies of each camera are generally

independent, hence the images they capture will be conditionally independent given the scene. Sim-

ilarly, the idiosyncrasies of text and images are generally conditionally independent given a topic.

The goal of multi-view learning, therefore, is to use known conditional independence structure to

improve the quality of learning results. Figure 5.2 indicates the different independence assumptions

between single-view learning and multi-view learning. To formally explain this structure, Fig-

ure 5.3 contains the well-known d-separation rules for graphical models. The tail-to-tail rule in Fig-

ure 5.3(b) indicates that, for the multi-view model in Figure 5.2(b), any two views are conditionally

independent given the latent node. In addition to this theoretical conditional independence structure,

empirically respecting the split between views has been shown to improve performance (Nigam and

Ghani, 2000).

Classically, multi-view subspace learning has been achieved by an application of canonical

correlation analysis (CCA) (Hardoon et al., 2004; De Bie et al., 2005). Recall from Proposition 6 in

Section 3.2.2, that CCA is actually equivalent to the regularized factorization

(C,Φ) = argmin
C,Φ

∥

∥

∥

∥

[

(X1X1
′)−1/2X1

(X2X2
′)−1/2X2

]

− CΦ
∥

∥

∥

∥

2

F

58

Φ

X

(a)

Φ

X1 X2 Xm

. . .

(b)

Φ

X1 X2 Xm

P2P1 Pm

. . .

(c)

Figure 5.2: Different dependency relationships between views. Dark grey means the variable is observed.

(a) Single-view Representation: Each view has its own latent representation, such as is typical in standard

single-view subspace learning and sparse coding.

(b) Multi-view Shared Latent Representation: This structure indicates a shared latent representation that

makes the views X1, . . . , Xm conditionally independent. In practice, this structure typically underlies algo-

rithms that attempt to recover Xi using the factorization CiΦ.

(c) Multi-view with Private and Shared Information: In addition to the conditional independence structure,

the explicit private information is used to describe certain algorithms that explicitly learn Pi or parameters

for Pi. In Figure (b), these quantities are implicitly the remaining noise after obtaining CiΦ. Probabilistic

PCA, on the other hand, explicitly learns the parameter σi for Pi ∼ N (0, σiI).

with the solution satisfying C(1)′C(1) = C(2)′C(2) = I . One can see, therefore, that this formu-

lation respects the conditional independence of the separate views: given a latent representation

φj , the reconstruction losses on the two views cannot influence each other, since the reconstruction

models C(1) and C(2) are individually constrained. By contrast, in single-view subspace learning,

X = [X1;X2] are not normalized (shown in Proposition 2 for PCA), and so the concatenated C(1)

and C(2) are constrained as a whole. Consequently, C(1) and C(2) must then compete against each

other to acquire magnitude to explain their respective “views” given φj (i.e. conditional indepen-

dence is not enforced). Such sharing can be detrimental if the two views really are conditionally

independent given φj .

Despite its elegance, a key limitation of CCA is its restriction to a squared loss under a particular

normalization. Many successes have been achieved in using CCA to recover meaningful latent

representations in a multi-view setting (Dhillon et al., 2011; Lampert and Kromer, 2010; Sigal

et al., 2009). Such work has also been extended to probabilistic (Bach and Jordan, 2006) and sparse

formulations (Archambeau and Bach, 2008). CCA-based approaches, however, only admit efficient

global solutions when using the squared-error loss (i.e. Gaussian models), while extensions to robust

models have had to settle for approximate solutions (Viinikanoja et al., 2010).

In this section, I derive a convex formulation for generalized multi-view subspace learning for

two views, X1 ∈ R
n1×T and X2 ∈ R

n2×T (White et al., 2012). To the best of my knowledge, this

59

X
1

X
2

X
3

(a) Head-to-Tail

X
1

X
2

X
3

(b) Tail-to-Tail

X
1

X
2

X
3

(c) Head-to-Head

Figure 5.3: The d-separation rules for causal graphs (Geiger et al., 1990). (a) If X2 is observed (i.e. given),

then X3 is independent of X1 (i.e. d-separated). If X2 is not observed, then X3 is dependent on X1 (i.e.

d-connected). (b) Same as Head-to-Tail. (c) If X2 is not observed (i.e. not given), then X3 is independent

of X1 (i.e. d-separated). If X2 is observed, then X3 is dependent on X1 (i.e. d-connected). Note that for

(c), X2 can also be indirectly observed through a descendant. If there was a node, A, such that X2 → A, and

A was observed, then X1 and X3 would be dependent.

is the first global algorithm for multi-view subspace learning. An extension to more than two views

remains future work, though recent results suggest this extension may require a relaxation (Zhang

et al., 2012).

Similarly to single-view subspace learning, the relaxed-rank optimization for two-view subspace

learning is

min
C(1),C(2),Φ

L

([

C(1)

C(2)

]

Φ ;

[

X1

X2

])

+ α‖Φ‖2,1, s.t., for C =

[

C(1)

C(2)

]

, C:i ∈ C for all i

(5.1)

where

C :=

{[

c(1)

c(2)

]

: ‖c(1)‖2 ≤ β1, ‖c(2)‖2 ≤ β2
}

. (5.2)

Recall from Section 5.2 that the (2, 1)-block norm regularizer ‖Φ‖2,1 =
∑

i ‖Φi,:‖2 encourages

rows of Φ to be sparse. Again, C must be constrained; otherwise ‖Φ‖2,1 can be pushed arbitrarily

close to zero simply by re-scaling Φ/s and Cs (s > 0) while preserving the same loss. In this case,

however, the two dictionaries C(1) and C(2) must be constrained separately in order to maintain the

graphical model structure in Figure 5.2.

We can again exploit the general convex reformulation techniques developed for regularized

factor models to get the first convex two-view subspace learning optimization for general convex

losses. Using Theorem 7, we obtain the equivalent convex optimization

(5.1) = min
Z
L
(

Z ;
[

X1
X2

])

+ α max
0≤η≤1

∥

∥E−1
η Z

∥

∥

tr

where

Eη :=

[

β1/
√
η In1 0
0 β2/

√
1− η In2

]

.

60

The loss, L, can be viewed as a sum of separate matching losses: L (CΦ ; Z) = DF ∗
1
(C(1)Φ;X1)+

DF ∗
2
(C(2)Φ;X2). The understanding of the relationship between transfers/losses and distributions

described in Section 2.2, therefore, naturally extends to the multi-view setting.

This formulation can be further improved for an efficient implementation. Though 5.1 is convex,

naively applying a gradient descent approach and computing the subgradients for η and Z for the

trace norm is computationally inefficient. First, since η is not involved in the reconstruction loss, L,

we can move the maximum over η left:

(5.1) = min
Z

max
0≤η≤1

L
(

Z ;
[

X1
X2

])

+ α
∥

∥E−1
η Z

∥

∥

tr
.

Then, we can swap the max and min due to strong convexity (Rockafellar, 1970, Cor. 37.3.2),

(5.1) = max
0≤η≤1

min
Z
L
(

Z ;
[

X1
X2

])

+ α
∥

∥E−1
η Z

∥

∥

tr

to get an equivalent concave-convex maxi-min problem. Next, the change of variables, Q = E−1
η Z,

leads to an equivalent but computationally more convenient formulation:

(5.1) = max
0≤η≤1

min
Q

L
(

EηQ ;
[

X1
X2

])

+ α ‖Q‖tr . (5.3)

The transformation does not affect the concavity of the problem with respect to η (see Appendix E).

The crucial improvement from this slight change is that the inner minimization in Q is a standard

trace-norm-regularized loss minimization problem, which has been extensively studied in the matrix

completion literature (Ma et al., 2011; Cai et al., 2010; Zhang et al., 2012). The concave outer

maximization is defined over a scalar variable η, hence simple line search can be used to solve the

problem, normally requiring at most a dozen evaluations to achieve a small tolerance. Thus we have

achieved an efficient, globally solvable formulation for two-view subspace learning that respects

conditional independence of the separate views.

The training procedure consists of two stages: first, solve (5.3) to recover η and Q, which

allows Z = EηQ to be computed; then, recover the optimal factors Φ and C (i.e. C(1) and C(2))

from Z. Chapter 4 provides a simple and efficient boosting procedure for recovering C and Φ from

Z, in Algorithm 2 with oracle in Algorithm 3. Pseudocode summarizing this procedure is given in

Algorithm 7. Notice that when β1 = β2 = β and η = 0.5, equally weighting the two views, (5.3)

reduces to single-view subspace learning:

min
Q

L
(

EηQ ;
[

X1
X2

])

+ α ‖Q‖tr = min
Q

β√
0.5

L
(

Q ;
[

X1
X2

])

+ α ‖Q‖tr

= min
Z
L
(

Z ;
[

X1
X2

])

+
α
√
0.5

β
‖Z‖tr .

61

Algorithm 7 Convex two-view subspace learning

Input: X1, X2, α, β1, β2
Output: Z,C,Φ

1: Initialize η = 0.5 // or another random value η ∈ (0, 1)

2: Initialize Q = Eη

[

X1
X2

]

=
[√

η/β1 X1√
1−η/β2 X2

]

3: // Define the inner function we want to minimize

4: [f,g] = InnerLoss(Q, η):

5: [U,Σ, V] = svd(Q)
6: v1 = β1/

√
η

7: v2 = β2/
√
1− η

8: f = L
([

v1Q(1)

v2Q(2)

]

;
[

X1
X2

])

+ α sum(diag(Σ))

9: g = ∇L1(v1Q
(1), X1)v1 +∇L2(v2Q

(2))v2 + αUV ′

10: // Define the line search function we want to minimize

11: [f,g] = OuterLineSearch(η):

12: // Apply your favourite non-smooth optimizer to find the inner solution

13: [Q,f] = lbfgs(InnerLoss(·, η), Q)

14: v1 = β1/
√
η

15: v2 = β2/
√
1− η

16: ∇G1 = L1(v1Q
(1), X1)

17: ∇G2 = L2(v2Q
(2), X2)

18: dv1 = −β1η−3/2/2
19: dv2 = β2(1− η)−3/2/2
20: g= dv1sum(sum(Q(1) ◦G1)) + dv2sum(sum(Q(2) ◦G2))
21: // Apply your favourite optimizer to the line search; save resulting minimum Q
22: [η,Q] = lbfgs(OuterLineSearch, η)

23: Z = EηQ =
[

β1/
√
η X1

β2/
√
1−η X2

]

24: // Now recover the optimal C and Φ using boosting

25: (C,Φ) = Algorithm 2(Z, ‖Eη·‖tr, Oracle Alg 3, Rescaling Alg 5)

26: return Z,C,Φ

5.4 Experimental results for convex multi-view subspace learning

This section describes an experimental evaluation of the multi-view latent representation learning

algorithm (White et al., 2012). I first describe the algorithms that were compared and then present

results in two empirical settings: synthetic data (to compare optimization quality and runtime) and

image denoising on a face image dataset.

Comparative Training Procedures

Below we compare the proposed global learning method, Multi-view Subspace Learning

(MSL), against two benchmark competitors.

Local Multi-view Subspace Learning (LSL) An obvious competitor is to solve (5.1) by alter-

nating descent over the variables: optimize Φ with C(1) and C(2) fixed, optimize C(1) with C(2) and

62

Φ fixed, etc. This is the computational strategy employed by Quadrianto and Lampert (2011); Jia

et al. (2010). Since C(1) and C(2) are both constrained and Φ is regularized by the (2,1)-block norm

which is not smooth, we optimized them using the proximal gradient method (Beck and Teboulle,

2009).

Single-view Subspace Learning (SSL) Single-view learning can be cast as a relaxation of

(5.1), where the columns of C =
[

C(1)

C(2)

]

are normalized as a whole, rather than individually for

C(1) and C(2):

min
{Φ,C:‖C:,i‖2≤

√
β1

2+β2
2}
L
(

CΦ ;
[

X1
X2

])

+ α‖Φ‖2,1

= min
{Φ,C:‖C:,i‖2≤1}

L
(

CΦ ;
[

X1
X2

])

+ α(β1
2 + β2

2)−
1
2 ‖Φ‖2,1

= min
Z
L
(

Z ;
[

X1
X2

])

+ α(β1
2 + β2

2)−
1
2 ‖Z‖tr. (5.4)

Equation (5.4) follows from the analysis in the previous section on single-view subspace learning

and matches the formulation given in (Candes et al., 2011). To solve (5.4) when α is large, we used

a variant of the boosting algorithm (Zhang et al., 2012), due to its effectiveness when the solution

has low rank. When α is small, making the rank regularizer not as influential in the optimization, we

switch to the alternating direction augmented Lagrangian method (ADAL) (Goldfarb et al., 2010)

which does not include the trace norm in all iterations. This hybrid choice of solver is also applied

to the optimization of Q in (5.3) for MSL. For the single-view approximation, once an optimal Z

is achieved, the corresponding C and Φ can be recovered by a singular value decomposition: for

Z = UΣV ′, set C = (β1
2 + β2

2)
1
2U and Φ = (β1

2 + β2
2)−

1
2ΣV ′ (see Proposition 8).

Model specification Since all datasets have sparse noise, L1,1 loss is an appropriate choice for L:

L
([

C(1)

C(2)

]

Φ ;
[

X1
X2

])

= ‖C(1)Φ−X1‖1,1 + ‖C(2)Φ−X2‖1,1.

For computational reasons, we used a smoothed version of the L1,1 loss (Goldfarb et al., 2010),

which uses `2 for matrix entries near zero:

L1,1,σ(X) =
∑

i

∑

j

{ |Xij | − σ
2 if |Xij | ≥ σ

X2
ij/(2σ) if |Xij | < σ

Comparing optimization quality

We compared the optimization quality and speed of MSL, LSL and SSL on synthetic data.

Dataset: The synthetic dataset is generated as follows. First, we randomly generate a k-by-ttr

matrix Φtr for training, a k-by-tte matrix Φte for testing, and two basis matrices, C(1) (n-by-k)

63

0 200 400 600 800 1000 1200
0.5

1

1.5

2

2.5

Number of Samples

O
b
je

c
ti
v
e
 V

a
lu

e
 R

a
ti
o
 L

S
L
:M

S
L

Objective LSL:MSL For Varying

α=1e-4

α=1e-3

α=1e-2

α=1e-1

α=1

α

(a) Objectives for LSL:MSL

0 200 400 600 800 1000 1200
−1000

0

1000

2000

3000

4000

5000

Number of Samples

R
u
n
ti
m

e
 R

a
ti
o
 L

S
L
:M

S
L

Training Runtime LSL:MSL For Varying

α=1e-4

α

α=1e-3

α=1e-2

α=1e-1

α=1

(b) Runtimes for LSL:MSL

0 200 400 600 800 1000
0

2

4

6

8

10

Runtime on Synthetic Data

Number of Samples/Features

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

SSL

MSL

MSL−R

(c) Runtimes for SSL and MSL

Figure 5.4: Comparison between LSL and MSL on synthetic datasets with changing α, n = m = 20 and

10 repeats. (a) LSL often gets stuck in local minima, with a significantly higher objective than MSL. (b) For

small α, LSL is significantly slower than MSL. They scale similarly with the number of samples (c) Runtimes

of SSL and MSL for training and recovery with α = 10−3. For growing sample size, n = m = 20. MSL-R

stands for the recovery algorithm. The recovery time for SSL is almost 0, so it is not included.

and C(2) (m-by-k), by (i.i.d.) sampling from a zero-mean unit-variance Gaussian distribution. The

columns of C(1) and C(2) are then normalized to ensure that the Euclidean norm of each is 1. Then

we set

X1tr = C(1)Φtr, X2tr = C(2)Φtr, X1te = C(1)Φte, X2te = C(2)Φte.

Next, we add noise to these matrices, to obtain X̃1tr, X̃2tr, X̃1te, X̃2te. Following (Candes et al.,

2011), we use sparse non-Gaussian noise: 5% of the matrix entries were selected randomly and

replaced with a value drawn uniformly from [−M,M], where M is 5 times the maximal absolute

entry of the matrices.

Comparison: We first compare the optimization performance of MSL (global solver) versus LSL

(local solver). Figure 5.4(a) indicates that MSL consistently obtains a lower objective value, some-

times by a large margin: more than two times lower for α = 10−4 and 10−3. As α increases,

the difference shrinks, suggesting that more local minima occur in the higher rank case (a large α

increases regularization and decreases the rank of the solution). In the following experiments on

denoising image datasets, we will see that the lower optimization quality of LSL and the fact that

SSL optimizes a less constrained objective both lead to noticeably worse denoising performance.

Second, we compare the runtimes of the three algorithms. Figure 5.4(b) presents runtimes for

LSL and MSL for an increasing number of samples. Again, the runtime of LSL is significantly

worse for smaller α, as much as 4000x slower; as α increases, the runtimes become similar. This

result is likely due to the fact that for small α, the MSL inner optimization is much faster via the

ADAL solver (the slowest part of the optimization), whereas LSL still has to slowly iterate over the

64

Clean

20 40 60 80 100

20

40

60

80

100

Noisy : 5%

20 40 60 80 100

20

40

60

80

100

SSL

20 40 60 80 100

20

40

60

80

100

LSL

20 40 60 80 100

20

40

60

80

100

MSL

20 40 60 80 100

20

40

60

80

100

Noisy : 10%

20 40 60 80 100

20

40

60

80

100

SSL

20 40 60 80 100

20

40

60

80

100

LSL

20 40 60 80 100

20

40

60

80

100

MSL

20 40 60 80 100

20

40

60

80

100

Figure 5.5: Reconstruction of a noisy image with 5% or 10% noise. LSL performs only slightly

worse than MSL for larger noise values: a larger regularization parameter is needed for more noise,

resulting in fewer local minima (as discussed in Figure 1). Conversely, SSL performs slightly worse

than MSL for 5% noise, but as the noise increases, the advantages of the MSL objective are apparent.

three variables. They both appear to scale similarly with respect to the number of samples.

For SSL versus MSL, we expect SSL to be faster than MSL because it is a more straightforward

optimization: the SSL objective has the same form as the inner optimization of the MSL objective in

(5.3) overQ (with a fixed η). Figure 5.4(c), however, illustrates that this difference is not substantial

for increasing sample size. Interestingly, the recovery runtime seems independent of dataset size,

and is instead likely proportional to the rank of the data. MSL scales similarly with increasing

features as with increasing samples, requiring only about a minute for 1000 features.

Comparing denoising quality

Next we compare the denoising capabilities of the algorithms on a face image dataset.

Datatset: The image dataset is based on the Extended Yale Face Database B (Georghiades et al.,

2001). It contains grey level face images of 28 human subjects, each with 9 poses and 64 lighting

conditions. To construct the dataset, we set view-one to a fixed lighting (+000E+00) and view-two

to a different fixed lighting (+000E+20). We obtain a pair of views by randomly drawing a subject

and a pose (under the two fixed lightings). The underlying assumption is that each lighting has its

own set of bases (C(1) and C(2)) and each (person, pose) pair has the same latent representation for

the two lighting conditions. All images are down-sampled to 100-by-100, meaning n = m = 104.

We kept one view (view-one) clean and added pixel errors to the second view (view-two). We

randomly set 5% of the pixel values to 1, motivated by the types of noise typical for images, such

65

as occlusions and loss of pixel information from image transfer. The goal is to enable appropriate

reconstruction of a noisy image using another view.

Comparison: We compared the reconstructions, Z(1)
te and Z(2)

te, with the clean data, X1te and

X2te, in terms of the signal-to-noise ratio:

SNR(Z(1)
te, Z

(2)
te) =

(

‖X1te‖2F + ‖X2te‖2F
)/

(

∥

∥

∥X1te − Z(1)
te

∥

∥

∥

2

F
+
∥

∥

∥X2te − Z(2)
te

∥

∥

∥

2

F

)

.

We cross-validated over α ∈ {10−4, 10−3, 10−2, 10−1, 0.5, 1} according to the highest signal-to-

noise ratio on the training data. We set β2 = β1 = 1 because the data is in the [0, 1] interval.

In Figure 5.5, we can see that MSL outperforms both SSL and LSL on the face image dataset for

two noise levels: 5% and 10%. MSL had on average a 10x higher SNR than SSL and significantly

different objective values. SSL had higher reconstruction error on the clean view-one (10x higher),

lower reconstruction error on the noisy view-two (3x lower) and a higher representation norm (3x

higher). The noisy view-two likely skewed the representation, due to the joint rather than separate

constraint as in the MSL objective.

5.5 Summary

This chapter illustrated that the previous convex reformulations could be effectively applied to both

single-view and multi-view subspace learning. Experimental results indicated that the algorithms

developed using convex reformulations outperformed the local alternating algorithms, both in terms

of objective values and in computational efficiency. The multi-view structure, encoded by the par-

titioned constraints and weighted trace norm, was shown to improve denoising of images over the

single-view structure, given availability of multiple views of the images.

This chapter explored the idea that problem properties can be nicely captured using regularizers.

To this point, most unsupervised learning algorithms encoded different properties using different

losses, kernels and instance weights (see the table in Section 3.4). In this chapter, the subspace and

sparsification properties of convex `p norms, from p = 1 to p = 50 were explored, indicating that

`1 closely matches the sparsity properties of `0 and that as p increases, the regularizer prefers lower

rank Φ. The difference between single-view and multi-view learning was encoded by different

choices of regularizer on Z = CΦ. Finally, for least-squares losses, closed form solutions were

possible with a hard rank constraint; for general losses, however, the use of a regularizer is key for

obtaining convex reformulations. Using regularization to restrict the rank, therefore, enabled convex

subspace learning with a robust loss. Overall, from the applications described in this chapter, we saw

that using regularization is useful in terms of placing priors on the parameters, encoding properties

that may not be related to a known prior and enabling subspace learning with general losses.

66

Chapter 6

Semi-supervised learning using regular-

ized factor models

The goal of semi-supervised learning is to improve supervised prediction performance by using

unlabeled data. Typically, there is much more unlabeled data available than labeled data; it can

be unclear, however, how to use this unlabeled data to improve supervised learning. In particular,

given the diversity of supervised and unsupervised training principles, it is often unclear how they

can best be combined. There remains a proliferation of proposed approaches (Zhu, 2006) with

no theoretical guarantees that exploiting unlabeled data will even avoid harm (Ben-David et al.,

2008; Li and Zhou, 2011; Nadler et al., 2009). Although some unification can be achieved between

supervised and unsupervised learning in a pure probabilistic framework (Bishop, 2006), here too

it is not known which unifying principles are appropriate for discriminative models, and a similar

diversity of learning principles exists (Smith and Eisner, 2005; Corduneanu and Jaakkola, 2006).

The dominant approaches consist of

i) using a supervised loss with an unsupervised loss regularizer, including many graph-based

methods (Belkin et al., 2006; Corduneanu and Jaakkola, 2006; Zhou and Schölkopf, 2006);

ii) combining self-supervised training on the unlabeled data with supervised training on the la-

beled data (Cristianini, 2003; Joachims, 1999);

iii) training a joint probability model generatively (Bishop, 2006; Druck and McCallum, 2010;

Nigam et al., 2000);

iv) co-training (Blum and Mitchell, 1998); and

v) using unsupervised training on the entire dataset to learn new features for supervised train-

ing on the labeled set, such as sparse features (Lee et al., 2009) or lower-dimensional fea-

tures (Pereira and Gordon, 2006; Rish et al., 2008).

67

These dominant approaches can be generally categorized into two types of semi-supervised

learning. In the first, which I will call standard semi-supervised learning, the goal is to learn

weights directly on the given data using both labeled and unlabeled data. Canonical examples

of this approach are co-training (Blum and Mitchell, 1998) and transductive support vector ma-

chines (Joachims, 1999); from above, they also include approaches (i)-(iv). In the second, which

I will call representation-imputed semi-supervised learning, a new representation is learned using

the unlabeled data. Simultaneously, that “better” representation is used to facilitate learning on

the small amount of labeled data. A simple example of this approach is a two-staged learning ap-

proach, such as applying PCA to the dataset of concatenated inputs for the labeled and unlabeled

datasets, extracting features for the labeled dataset and finally performing supervised learning on

these features. This category corresponds to the above work in (v).

In this chapter, we see how using regularized factor models promotes algorithm development

for both of these semi-supervised learning approaches. The forward-reverse prediction formalism

enables development of a principled standard semi-supervised learning algorithm, where the unla-

beled data reduces the variance of the error estimate, indicating provable benefits of the addition of

unlabeled data. Interestingly, we currently only have such a guarantee for this first form of semi-

supervised learning, facilitated by the fact that the supervised and unsupervised losses are combined

as comparable reverse prediction losses. For the second form, where the unlabeled data is used to

learn a new representation that is then used for supervised prediction problem, there does not yet

appear to be such guarantees because the training principles between the labeled and unlabeled data

are quite different (i.e. a reverse loss and a forward loss). The second form of semi-supervised

learning, however, is amenable to convex reformulation, whereas the first form does not yet appear

to be. Combined, they provide two different semi-supervised learning approaches with two useful,

but distinct, guarantees.

Contributions:

Contribution 1. The first semi-supervised learning objective for which we can show that unlabeled

data can produce a lower variance estimate of performance, and otherwise does not harm learning

performance over strictly using supervised learning. In particular, the objective decomposes into

two expectations; the approximation of one of these expectations is improved with more unlabeled

data, resulting in a reduced variance estimate. This objective and proof were first developed for

least-squares losses (Xu et al., 2009), and later generalized to any Bregman divergence (White and

Schuurmans, 2012). This guarantee is possible due to using a reverse loss (i.e., regularized factor

model loss) for the supervised learning component.

68

Contribution 2. An approximation to the principled semi-supervised objective that enables the de-

velopment of novel non-linear semi-supervised k-means and mixture-model clustering algorithms

(White and Schuurmans, 2012). These algorithms extend previous unsupervised linear Bregman

clustering algorithms (Banerjee et al., 2005). I present an empirical demonstration that the general-

ity of modeling choices under regularized factor models facilitates novel extensions on widely used

algorithms, such as generalizations to normalized cut, and generally enables superior performance.

Contribution 3. A convex representation-imputed semi-supervised learning algorithm (Zhang et al.,

2011) using the convex reformulations from Chapter 4. This reformulation is similar to the two-view

formulation, with the inputs X as one view and the targets Y as the other view. The only previous

convex formulation (Goldberg et al., 2010) uses a transductive dimensionality reduction formulation

that 1) does not enable extraction of the representation Φ nor the prediction model and 2) cannot

enforce individual constraints on the supervised and unsupervised parts of the model.

Contribution 4. An empirical demonstration that the convex semi-supervised learning algorithm (Zhang

et al., 2011) improves upon 1) the previous convex algorithm (Goldberg et al., 2010), due to the im-

portance of the partitioned constraints and 2) alternating and staged solvers for a similar objective.

6.1 Theoretically sound standard semi-supervised learning

Despite their long parallel history, the principles that underly unsupervised learning are often dis-

tinct from those underlying supervised learning. The lack of a unification between supervised and

unsupervised learning might not be a hindrance if the two tasks are considered separately, but for

semi-supervised learning one is forced to consider both together. There has been some theoretical

investigation into using unlabeled data to reduce the hypothesis space for supervised learning (Bal-

can and Blum, 2005); this theoretical understanding, however, can be difficult to generalize. Instead,

the literature relies on intuitions like the “cluster assumption” and the “manifold assumption” to pro-

vide helpful guidance (Belkin et al., 2006), but these have yet to lead to a general characterization

of the potential and limits of semi-supervised learning.

Using regularized factor models, however, the disparity between supervised and unsupervised

learning can be overcome to develop a natural principle for semi-supervised learning. Recall from

Sections 3.1 and 3.2 that both supervised and unsupervised learning problems can be represented

as regularized factor models. Consequently, one can perform semi-supervised learning in a unified

way using a reverse loss for both labeled and unlabeled data:

min
C∈C

min
Φ∈F

DF ?(CYl||f(Xl))/Tl + µ DF ?(CΦ||f(Xu))/Tu. (6.1)

69

Here (Xl, Yl) andXu denote the labeled and unlabeled data, Tl and Tu denote the respective number

of examples, the parameter µ trades off between the two losses and Φ denotes the labels to impute

for the unlabeled data.

Despite the simplicity of the objective in Equation (6.1), it has not apparently been investigated

in the literature previously. This could be due to the fact that it has been typical to combine a forward

loss on the labeled data and a reverse loss (or regularizer) on the unlabeled data (Belkin et al., 2006;

Kulis et al., 2009; Zhou et al., 2004). The use of a reverse loss on the supervised component

is a simple proposal, but enables a decomposition into a loss that depends on the input data and

a loss that depends on the output data. This resulting decomposition enables variance reduction

with the addition of auxiliary unlabelled data. The objective in (6.1) is a close approximation,

inspired by this theoretical analysis, but more straightforward to optimize. In the next section, we

describe this principled objective and variance reduction argument, showing also that (6.1) is a

closely related objective. Section 6.1.2 then presents algorithms to solve Equation (6.1) for semi-

supervised classification and regression. This section concludes with an empirical demonstration

indicating the advantages of this reverse prediction semi-supervised approach, including improved

performance from the diversity of available modeling choices under regularized factor models.

6.1.1 Variance reduction using unlabeled data

When using semi-supervised learning, it is important to consider whether adding unlabeled data

improves performance. In the following, I derive a principled objective for semi-supervised learning

that decomposes into a sum of two independent losses: a loss defined on the labeled and unlabeled

parts of the data, and another, orthogonal loss defined only on the unlabeled parts of the data.

Given auxiliary unlabeled data, one can then reduce the variance of the latter loss estimate without

affecting the former, hence achieving a variance reduction over using labeled data alone.

Definition 3 (Affine set). A set Ω is affine if for any x1, . . . ,xn ∈ Ω and a1, . . . , an ∈ R, we have
∑n

i=1 aixi ∈ Ω. Every affine set is convex.

Definition 4 (Generalized Pythagorean Theorem). (Murata et al., 2004) For x1,x2 ∈ X and Ω an

affine set, let

PΩ(x) = argmin
ω∈Ω

DF (ω||x)

be the Bregman projection, then

DF (x1||x2) = DF (x1||PΩ(x2)) +DF (PΩ(x2)||x2).

70

obtain an improved solution. For large amounts of unlabeled data, the simpler semi-supervised

learning loss in (6.1) closely approximates (6.2), but introduces a bias due to double counting the

unlabeled loss. Directly optimizing (6.2), however, is problematic due to the fact that the parameters

are in the second argument of the Bregman divergence. We therefore opt for the close approximation

in (6.1) to a theoretically sound objective.

If we only want to consider convex rather than affine sets, the Generalized Pythagoras Theorem

changes to an inequality on the losses

DF (x1||x2) ≥ DF (x1||PΩ(x2)) +DF (PΩ(x2)||x2).

Unfortunately, this inequality does not provide any guarantees for unlabeled data. It may instead be

possible to generalize beyond affine sets using the cosine law, which applies to any sets.

Definition 5 (Cosine Law). For x1,x2,x3 ∈ X for any X ⊂ R
n, then

DF (x1 || x2) = DF (x1 || x2) +DF (x3 || x2)− (x1 − x3)
′(∇F (x2)−∇F (x3))

If this extra term (x1−x3)
′(∇F (x2)−∇F (x3)) is zero, then we obtain the same variance reduction

argument. In general, the cosine law might enable a similar variance reduction argument if specific

properties of the convex set and transfer are known that enable the extra term to be bounded.

6.1.2 Algorithms for semi-supervised classification and regression

This formulation for standard semi-supervised learning results in interesting theoretical insights;

unfortunately, it is unclear how to take advantage of the convex reformulation techniques for this

objective. Instead, we develop classification and regression algorithms by alternating between opti-

mizing Φ andC in Equation (6.1). Though this approach deviates from the focus on global solutions,

the algorithms themselves are quite simple and efficient and enables us to explore this regularized

factorization objective with interesting theoretical properties.

The semi-supervised regression algorithm is given in Algorithm 12 and the semisupervised

classification algorithms in Algorithm 10 and 11. The regression algorithm simply uses an off-the-

shelf optimizer (like limited memory BFGS) to alternate between optimizing Φ and C according

to the objective provided in Equation 6.1. The classification algorithm, however, requires a more

careful treatment due to the constraints. To develop this algorithm, we first start in the unsupervised

setting, giving Algorithm 8 and 9, and then extend to semi-supervised learning in Algorithm 10 and

Algorithm 11.

For discrete variable, Φ ∈ {0, 1}k×T , Banerjee et al. (2005) show that the optimization for

Bregman clustering can be simplified to a simple k-means algorithm. Using a similar insight, we

72

can formulate a correspondingly efficient form of Bregman divergence clustering that incorporates

a non-linear transfer between CΦ and Y :

DF ?(CΦ||f(X)) = DF (X||f?(CΦ)) = DF (X||f?(C)Φ) (6.3)

=⇒ min
Φ∈F

min
C∈Dom(f?)

DF ?(CΦ||f(X)) = min
Φ∈F

min
M∈Dom(f)⊂Rn×k

DF (X||MΦ) (6.4)

= min
Φ∈F

min
M∈Dom(f)

T
∑

j=1

∑

i:Φij=1

DF (X:,j ||M:,iΦ) (6.5)

= min
Φ∈F

k
∑

i=1

1

Φi,:1

∑

j:Φij=1

Xi:. (6.6)

The proof for the simplification of the inner maximization is given in Appendix F.1. Algorithm 8

illustrates the modified Bregman clustering algorithm which now permits non-linear transfers. The

derivation for soft constraints, Φ ∈ [0, 1]k×T , is given in Appendix F.1, with extensions to the semi-

supervised setting. The clustering algorithms could similarly incorporate kernels; for brevity, using

kernels is only demonstrated for the semi-supervised regression algorithm.

Algorithm 8 Non-linear Bregman Hard Clustering

Input: X , k, DF

Output: reverse model C and hard clusters Φ
1: Initialize M (e.g. k randomly selected columns from X)

2: while (change in DF (X||M)) > tolerance do

3: E-Step: ∀t ∈ {1, . . . , T} :
4: Φjt = 1 for j = argminiDF (X:t||Mi:)
5: M-Step: ∀i ∈ {1, . . . , k} :
6: Mi: =

1
Φi:1

∑

t:Φit=1X:t

7: end while

8: // W could now also be computed, such as with minW DF ?(XW || f(Φ))
9: return C = f(M), Φ

Algorithm 9 Non-linear Bregman Mixture Models

Input: X , k, DF and smoothness parameter ρ; as ρ→∞, becomes a hard clustering algorithm

Output: reverse model C and soft clusters Φ
1: Initialize M (e.g. k randomly selected columns from X)

2: err(M,p) = −∑t log (
∑

i pi exp(−ρDF (X:t||Mi:)))
3: while (change in err(M,P)) > tol do

4: E-Step: Φit = pi exp[−ρ(DF (X:t||Mi:)]
5: Φ:t = Φ:t/

∑

iΦit //normalize Φ
6: M-Step: M = diag(Φ1)ΦX ′

7: p = 1
T Φ1

8: end while

9: return C = f(M), Φ

73

Algorithm 10 Reverse Semi-supervised Hard Clustering

Input: Xl, Xu, Yl,µ, DF , where Yl ∈ {0, 1}k×T

Output: C, Y
1: Y = [Yl 0]
2: X = [Xl Xu]
3: Initialize M (e.g. k randomly selected columns of X or with Algorithm 8)

4: err(M,Y) =
∑ 1

Tl

∑Tl
t=1DF (X:t||M(i:Yit=1),:)) +

µ
Tu

∑Tl+Tu

t=Tl+1DF (X:t||M(i:Yit=1),:))
5: while (change in err(M,Y)) > tolerance do

6: E-Step: ∀t ∈ {Tl + 1, . . . , Tl + Tu}
7: Y:t = 0 // clear current label for sample t
8: Yjt = 1 for j = argminiDF (X:t||Mi:)
9: M-Step: ∀i ∈ {1, . . . , k}

10: Mi: =
1

Yi:1

∑

t:Yit=1X:t

11: end while

12: return C = f(M), Y

Algorithm 11 Reverse Semi-supervised Soft Clustering

Input: Xl, Xu, Yl ∈ [0, 1]k×Tl , forward loss DF , unsupervised-weighting parameter µ and

smoothness parameter ρ, where as ρ→∞, this algorithm becomes a hard clustering algorithm

Output: C, Y
1: λ = [1 µ] // weighting on samples

2: Initialize M (e.g. k randomly selected columns of X or with Algorithm 9)

3: p = 1/k
4: Y = [Yl 0]
5: X = [Xl Xu]
6: err(M,p) = −∑t log (

∑

i pj exp(−ρλDF (X:t||Mi,:)))
7: while (change in err(M,p)) > tolerance do

8: E-Step: ∀t ∈ {Tl + 1, . . . , Tl + Tu}
9: ∀i ∈ {1, . . . , k} :

10: Φi,t = pi exp(−ρµ(DF (X:t||Mi,:))
11: Φ:t = Φ:t/

∑

iΦi,t // normalize to ensure sums to 1

12: Y = [Yl Φ]
13: M-Step: ∀i ∈ {1, . . . , k}
14: M = diag(Y 1)Y X ′

15: p = 1
tY 1

16: end while

17: return C = f(M), Y

74

Algorithm 12 Reverse Semi-supervised Regression

Input: Xl, Xu, Yl,µ, DF , DF ? , α, kernel

Output: forward model A, basis B and imputed outputs Y
1: // Reasonable options for parameters are α ≤ 0.1 and kernel(X,X) = X ′X
2: λ = [1 µ] // weighting on samples

3: X = [Xl Xu], K = kernel(X,X)
4: Initialize Φ and B, likely randomly or using initial supervised model only on labeled data

5: err(B,Φ) = λDF ?(B [Yl Φ] || f(K))
6: while (change in err(B,Φ)) > tolerance do

7: B = argminB err(B,Φ)
8: Φ = argminΦ err(B,Φ)
9: end while

10: Y = [Yl Φ]
11: // Using the imputed targets, compute the corresponding forward solution

12: A = argminADF (AK || f−1(Y)) + α tr(A′AK)
13: return A,B, Y

6.1.3 Experimental results

In this section, we explore two main points: (1) the utility of non-linear transfers, and (2) the general

performance of our principled semi-supervised algorithm. Synthetic data with specific transfers is

used to assess the importance of having the correct transfer function. Results are also reported on

real-world data. I report transductive error as some competitors are solely transductive.

Regression Experiments: For regression, synthetic data is generated with three transfer func-

tions: (i) Y = WX , (ii) Y = (WX)3 and (iii) Y = exp(WX). The data is generated in reverse

with Y and C generated from N (0, I) and X set to X = f−1(CY+noise). I also report results on

three UCI datasets: kin-32fh (n = 34, k = 1), puma-8nm (n = 8, k =1) and California housing (n = 5,

k = 1). I compare again transductive regression (Cortes and Mohri, 2007) and supervised (kernel)

least-squares as a baseline comparison. Limited memory BFGS is used to optimize the objectives.

Parameters are tuned using transductive error on a portion of the unlabeled data for each algo-

rithm on each dataset. In practice, parameters are usually tuned using cross-validation on only

labeled examples; this approach, however, can have confounding effects due to the lack of la-

beled data for evaluation. Using only a subset of the unlabeled data reduces overfitting, while

enabling more accurate parameter selection for each algorithm. I tuned the trade-off parameter

µ ∈ {1e-3, 1e-2, 1e-1} (above µ = 1, performance degrades). For transductive regression, we

tuned over λ, C1 and C2 and fixed r as recommended in their chapter. All algorithms were tuned

over using no kernel, a linear kernel and Gaussian kernels with widths in {0.01, 0.1, 1, 5, 10}.
The results in Tables 6.1 and 6.2 clearly indicate that using the correct transfer function is cru-

cial to performance. For each of the synthetic datasets, optimizing with the transfer used to generate

75

SYN-GAUSS SYN-CUBED SYN-EXP

N=30, K=5, Tu = 200 N=20, K=3, Tu = 200 N=5, K=2, Tu = 200

SUP-KERNEL 2e-14 ± 4.4e-15 0.246 ± 0.030 408 ± 116.9

TRANS-REG 3E-06 ± 8.9E-07 0.244 ± 0.030 1039 ± 136.2

SEMI EUC 6e-31 ± 8.9e-32 0.120 ± 0.003 1423 ± 95.61

SEMI CUBED 1.91 ± 0.752 3e-5 ± 2.6e-06 348.1 ± 34.03

SEMI EXP UNSTABLE UNSTABLE 1.7e-4 ± 0.000

Table 6.1: Average transductive error of semi-supervised regression techniques on synthetic dataset, with

(n, k, tu) and tl = 20, over 50 splits of the data.

KIN-32FH PARKINSONS CALHOUSING

N=34, K=1, Tu =100, Tl = 20 N=9, K=1, Tu =200, Tl = 10 N=5, K=1, Tu =300, Tl=50

SUP-KERNEL 0.305± 0.010 89.89 ± 2.951 134.2 ± 1.721

TRANS-REG 0.327 ± 0.009 98.19 ± 3.630 119.6 ± 4.758

LAP-RLS 0.199 ± 0.005 75.02 ± 0.9897 127.3 ± 1.486

SEMI EUC 0.269 ± 0.006 79.03 ± 1.391 134.7 ± 1.635

SEMI CUBED 0.185 ± 0.004 213.8 ± 67.05 131.8 ± 1.721

SEMI EXP 0.186 ± 0.004 UNSTABLE 147.5 ± 2.269

Table 6.2: Average transductive error of semi-supervised regression techniques on a variety of real datasets,

over 50 splits of the data.

the synthetic data performs statistically significantly better than the other algorithms and objec-

tives, verifying our expectations. The synthetic results for the exponential transfer are particularly

illustrative: errors are amplified for non-exponential data, but are much lower for exponential data.

These insights and properties transfer to performance on real datasets. On the kin-32fh dataset,

using an exponential transfer considerably improved performance. This surprising improvement

likely occurred because the kin-32fh outputs were all positive and the exponential transfer enforces

Yij ∈ R
+. On the mainly linear simulated robot-arm dataset, puma-8nm, the three linear approaches

are comparable. The highly nonlinear California housing dataset, however, illustrates some interest-

ing phenomena. First, the addition of kernels is important for modeling: the transductive regression

algorithm leverages the wide range of kernels well for modeling (as reducing the number of widths

causes it’s performance to degrade below supervised learning). Second, the nonlinear cube trans-

fer performed the best out of the three transfers, suggesting that having a range of transfers can

positively impact performance.

Though omitted for brevity, running the algorithms using only supervised data resulted in sig-

nificantly lower performance, particularly for the non-identity transfers. For example, for kin-32fh,

the solely supervised solution with an exponential transfer obtained an error of 0.358 ± 0.016 and

76

the cubed transfer an error of 0.299± 0.010 and a less pronounced difference of 0.304± 0.010 for

the identity transfer.

SYN-GAUSS SYN-SIGMOID SYN-SOFTMAX

N=30, K = 5, Tu =100 N=10, K=3, Tu =100 N=10, K = 3, Tu =100

SUP-KERNEL 0.188 ± 1.73E-3 0.290 ± 1.99E-4 0.440 ± 2E-4

LGC 0.445 ± 2.06E-3 0.520 ± 4.98E-5 0.541 ± 5E-4

LAPSVM 0.072 ± 1.56E-3 0.045 ± 1.49e-4 0.540 ± 1E-4

LAPRLSC 0.063 ± 9.95E-5 0.050 ± 3.36e-10 0.549 ± 0.001

HARD-CLUSTER EUCLIDEAN 0.027 ± 2.99e-4 0.056 ± 5.47E-4 0.413 ± 0.002

HARD-CLUSTER SIGMOID 0.144 ± 9.62E-4 0.056 ± 5.97E-4 0.479 ± 0.001

HARD-CLUSTER SOFTMAX 0.165 ± 1.46E-3 0.055 ± 2.49E-4 0.391 ± 0.003

HARD-CLUSTER SIGMOID NC 0.067 ± 5.64E-4 0.055 ± 2.49E-4 0.430 ± 0.004

SOFT-CLUSTER EUCLIDEAN 0.034 ± 9.62e-4 0.049 ± 5.54e-4 0.414 ± 0.001

SOFT-CLUSTER SIGMOID 0.057 ± 5.98E-4 0.043 ± 3.87e-4 0.530 ± 1E-4

SOFT-CLUSTER SOFTMAX 0.428 ± 6.91E-3 0.045 ± 2.81e-4 0.358 ± 0.005

SOFT-CLUSTER SIGMOID NC 0.056 ± 7.77E-4 0.044 ± 3.94e-4 0.448 ± 0.001

Table 6.3: Average transductive percent misclassification error of semi-supervised classification techniques

on synthetic data, given (n, k, tu) and tl = 10, over 20 splits. Euclidean, Sigmoid and Softmax correspond

to objectives with identity, sigmoid and softmax transfers. Hard/Soft Cluster Sigmoid NC is Bregman nor-

malized cut with a sigmoid transfer.

YEAST LINK SETSTR

N=8, K = 10, Tu =200, tl = 10 N=1051, Tu = 200, tl = 10 N=15, Tu =400, tl = 50

SUP-KERNEL 0.528 ± 0.007 0.207 ± 0.029 0.501 ± 0.007

LGC 0.527 ± 0.006 0.150 ± 0.008 0.476 ± 0.014

LAPSVM 0.643 ± 0.005 0.136 ± 0.011 0.479 ± 0.009

LAPRLSC 0.515 ± 0.007 0.144 ± 0.016 0.504 ± 0.012

HARD-CLUSTER EUCLID 0.487 ± 0.005 0.130 ± 0.007 0.481 ± 0.019

HARD-CLUSTER SIGMOID 0.634 ± 0.006 0.130 ± 0.007 0.445 ± 0.015

HARD-CLUSTER SFTMAX 0.609 ± 0.004 0.134 ± 0.007 0.503 ± 0.017

HARD-CLUSTER SIG NC 0.581 ± 0.006 0.130 ± 0.007 0.510 ± 0.018

SOFT-CLUSTER EUCLID 0.564 ± 0.007 0.105 ± 0.007 0.489 ± 0.013

SOFT-CLUSTER SIGMOID 0.606 ± 0.012 0.193 ± 0.030 0.481 ± 0.019

SOFT-CLUSTER SFTMAX 0.555 ± 0.007 0.231 ± 0.027 0.481 ± 0.019

SOFT-CLUSTER SIG NC 0.502 ± 0.007 0.114 ± 0.006 0.480 ± 0.014

Table 6.4: Average transductive percent misclassification error of semi-supervised classification techniques

on real-world datasets over 50 splits. Euclidean, Sigmoid and Softmax correspond to objectives with identity,

sigmoid and softmax transfers. Hard/Soft Cluster Sigmoid NC is Bregman normalized cut with a sigmoid

transfer. LINK and SetStr have k = 2.

Classification Experiments: Synthetic data was generated with three transfer functions:

(i) Y =WX , (ii) Y = (1+ exp(−WX))−1 (sigmoid) and (iii) Y = exp(WX)(1T exp(WX))−1

77

(softmax). The data was generated by selecting uniformly random classes for Y and drawing C

from a Gaussian distribution for the identity transfer and from a uniform distribution for sigmoid

and softmax, with rows of C and the noise normalized for softmax. For sigmoid and softmax,

X = f−1((1 − σ)CY + σ·noise). I also tested on three real datasets: the Yeast dataset with (n=8,

k=10), LINK, a WebKB dataset with (n=1051, k=2), and SetStr, a semi-supervised benchmark

dataset with (n = 15, k=2).

I compare to three semi-supervised algorithms: learning with local and global consistency

(LGC) (Zhou et al., 2004), Laplacian SVMs (Sindhwani et al., 2005) and Laplacian regularized

least squares (RLSC) (Sindhwani et al., 2005). The Bregman hard and soft-clustering objectives

are tested for a variety of transfer functions, kernels and instance weights. I tuned the trade-off

parameter, µ ∈ {1e-3, 1e-2, 1e-1} and soft-clustering parameter, ρ ∈ {1, 10, 50, 100, 200}. For

LGC, I tuned the smoothness parameter α ∈ {1e-5, 1e-3, 0.1, 0.5}. For the Laplacian algorithms,

I set γA = 1e-6 and γI = 0.01 and tuned the Laplacian degree in {1, 2, 5} and number of nearest

neighbours in {5, 20}. All algorithms were tuned over no kernel, a linear kernel and a Gaussian

kernel with widths in {0.01, 0.1, 1, 5, 10}.
As with regression, the transfer has an impact on performance (Tables 6.3 and 6.4). Though all

algorithms performed well on the Gaussian data, we can see that the incorrect sigmoidal and soft-

max transfers did decrease performance. We see a corresponding result for the synthetic sigmoidal

and softmax data. Interestingly, for the sigmoidal transfer on the Yeast and LINK datasets, the nor-

malized cut extension improved performance. Moreover, it seems to be the case that the normalized

cut extension performs better with the soft-clustering algorithm rather than the hard-clustering al-

gorithm. On the three real-world datasets, it is interesting that there is no obvious trend of hard

over soft-clustering or one transfer over another. On Yeast, hard-clustering with an identity transfer

(Euclidean loss) performs the best; on LINK, soft-clustering with a euclidean transfer performs the

best; and on SetStr, hard-clustering with a sigmoidal transfer performs the best. Overall, we can see

that the variety of options available under regularized factor models enables us to tailor our objec-

tive to the given data. Using prior knowledge alongside empirical selection of transfers, prediction

accuracy can be dramatically improved.

6.2 Convex representation-imputed semi-supervised learning

In this second semi-supervised learning formulation, the unlabeled data is used to learn a “better”

representation; that representation can then be used to improve learning on the small, labeled dataset.

A more useful representation would constitute one that improves prediction accuracy, improve gen-

eralization and/or speeds learning on the labeled data. Properties of representations that intuitively

78

promote these three goals are lower-rank features, sparse features, and local features; as such, these

properties are widely sought in representation learning. As discussed in Chapter 5, however, there

is a lack of theoretical development on the precise meaning of a “better” representation. It is more

difficult, therefore, to gauge the effect of the unlabeled data on supervised learning performance and

we can no longer guarantee that unlabeled data does not actually harm performance. In practice,

however, despite the lacking theoretical support, representation-imputed semi-supervised learning

has been shown to provide significant increases in prediction performance (Pereira and Gordon,

2006; Rish et al., 2008; Lee et al., 2009).

As with standard semi-supervised learning, solving representation-imputed semi-supervised

learning optimizations has been an important computational challenge. Many previous formula-

tions use local training methods, including staged training procedures that separate the unsupervised

from the supervised phase (Lee et al., 2009) and alternating iterative algorithms for semi-supervised

dimensionality reduction (Rish et al., 2008; Pereira and Gordon, 2006). More recently, a convex for-

mulation (Goldberg et al., 2010) was developed for transductive dimensionality reduction; though

an important advance, this formulation 1) is limited to the transductive setting and so does not enable

extraction of the representation Φ nor the prediction model and 2) cannot enforce individual con-

straints on the supervised and unsupervised parts of the model. In the following sections, I present

the first convex formulation for representation-imputed semi-supervised learning that enables both

of these properties, and conclude with an empirical demonstration.

6.2.1 Convex reformulation

Consider a setting where we are given an n× Tu matrix of unlabeled data Xu, an n× Tl matrix of

labeled data Xl, and a r × Tl matrix of target values Yl. We would like to learn a k × (Tl + Tu)

representation matrix Φ = [Φl,Φu] and an n × k basis dictionary C(1) such that X=[Xl, Xu] can

be reconstructed from X̂ = C(1)Φ, while simultaneously learning an r × k prediction model C(2)

such that Yl can be reconstructed from Ŷl = C(2)Φl. Let Lu

(

C(1)Φ ; X
)

and Ls

(

C(2)Φl ; Yl
)

denote unsupervised and supervised losses respectively, which we assume are convex in their first

argument. To avoid degeneracy we impose the constraints C(1)
:j ∈ C(1) and C(2)

:j ∈ C(2) for

bounded closed sets C(1) and C(2).
To formulate this joint training problem convexly, we can notice that this problem is similar

to the two-view learning problem from Section 5.3, with input data as one view and targets as the

other. In this setting, however, the corresponding instances of the second view are not available for

the unlabeled data. The loss, therefore, has to be carefully expressed to ensure that (1) the labeled

views are matched and (2) the targets for the unlabeled data can be inputted. The general semi-

79

supervised learning problem is expressed in the next proposition; specific choices of regularizers

are discussed after this general result.

Proposition 9 (Convex representation-imputed semi-supervised learning). For bounded closed sets

C(1) and C(2) such that span(C(1)) = R
n and span(C(2)) = R

r, convex loss L, and assuming desired

representation properties are specified by the norm ‖ · ‖�,1, representation-imputed semi-supervised

learning can be formulated as a convex optimization:

min
C(1)∈C(1)∞

min
C(2)∈C(2)∞

min
Φl,Φu

Lu

(

C(1)[Φl,Φu] ; X
)

+ Ls

(

C(2)Φl ; Yl

)

+ α‖[Φl,Φu]‖�,1 (6.7)

= min
C∈C∞

min
Φ

L

(

CΦ ;

[

Xl Xu

Yl 0

])

+ α‖Φ‖�,1 (6.8)

= min
Z
L

(

Z ;

[

Xl Xu

Yl 0

])

+ α‖Z ′‖∗(C,�∗), (6.9)

where C =

[

C(1)

C(2)

]

, Z = C[Φl,Φu], C = C(1) × C(2) and

L
(

Z ;
[

Xl Xu
Yl 0

])

= Lu

(

Z(1:n),: ; [Xl Xu]
)

+ Ls

(

Z(n+1:2n),(1:Tl) ; Yl
)

.

Proof: The proof of this proposition follows immediately from Theorem 2, since if C(1) and C(2)

are bounded closed sets that span R
n and R

r, then C = C(1) × C(2) is also closed and bounded with

span(C) = R
n+r. �

The optimization in (6.7) is a regularized factor model, where the data is now a block matrix

including both the input data and target data as shown in (6.8). The resulting Z from optimizing

(6.8) will be a transductive matrix completion solution, where the part of Z corresponding to the

missing labels Yu (set to zero in the loss for the missing entries) will correspond to the predicted

targets for the unlabeled data. Note that the combined loss L ignores the difference between 0 and

the corresponding component of Z; otherwise, it would skew learning to push Z to equal zero for

those entries. This loss that ignores a component of Z is still convex, with a zero gradient value for

the components of Z corresponding to the zero entries.

Unlike previous staged training procedures (Lee et al., 2009) and alternating minimizations

(Rish et al., 2008; Pereira and Gordon, 2006) that separate the unsupervised from the supervised

phase, Proposition 9 provides a jointly convex formulation that allows all components to be trained

simultaneously. As before, however, not every choice of C and ‖Φ‖�,1 will result in an efficiently

computable optimization and recovery procedure. From Section 4.3, we know that there are two

settings where the formulation is efficient for a partitioned constraint on C: 1) a (1,1)-block norm,

‖Φ‖1,1, imposing sparse structure on Φ and 2) a (2,1)-block norm, ‖Φ‖2,1, pushing entire rows of

Φ to zero to obtain a lower-dimensional representation.

80

Sparse Coding Semi-supervised Formulation: From Theorem 6, we know that for

‖Φ‖1,1, C(1) = {c(1) : ‖c(1)‖q1 ≤ β1}, C(2) = {c(2) : ‖c(2)‖q2 ≤ β2}

we obtain the efficiently computable induced norm

‖Z ′‖∗
(C(1)×C(1),∞)

=
∑

t

max

(

1

β1
‖Z(1)

:t‖q1 ,
1

β2
‖Z(2)

:t‖q2
)

.

Moreover, from Proposition 8, we know that C and Φ can be recovered from the optimal Z as

Φt,t = max(‖Z(1)
:t‖q1 , 1

β2
‖Z(2)

:t‖q2) and C = ZΦ−1. Unfortunately, as in the unsupervised case,

we reach the conclusion that ‖Φ‖1,1 regularization leads to a trivial form of vector quantization, and

does not impose interesting structure on the representation.

Subspace Learning Semi-supervised Formulation: Fortunately, the situation for subspace learn-

ing is more interesting. If instead we choose

‖Φ‖2,1, C(1) = {c(1) ∈ R
n : ‖c(1)‖2 ≤ β1}, C(2) = {c(2) ∈ R

n : ‖c(2)‖2 ≤ β2}

we get induced norm

‖Z ′‖∗
(C(1)×C(2),2)

= max
0≤η≤1

‖E−1
η Z‖tr

where

Eη :=

[

β1/
√
η In 0

0 β2/
√
1− η In

]

.

This setting provides a novel and effective convex formulation of representation-imputed semi-

supervised learning with dimensionality reduction. There are several ways to optimize this objec-

tive. To date, the most efficient way is to use the procedure described for multi-view subspace

learning, which solves the same optimization. Using the semisupervised target,
[

Xl Xu
Yl 0

]

, in the

objective in Algorithm 7, instead of
[

X1
X2

]

, therefore, gives an efficient solution method for convex

subspace semi-supervised learning. In the following experiments, before this more efficient solution

approach was known, we originally solved the dual of the problem, and then recovered optimal Z

to the primal problem (Zhang et al., 2011); the resulting solutions, however, are equivalent.

6.2.2 Experimental results

Algorithms: To evaluate the proposed convex representation-imputed semi-supervised learning

method (which I call S-RFM for semi-supervised regularized factor models), we compared its per-

formance to two local and one convex approach respectively: alternation (ALT), staged-alternation

81

(STAGE) and a transductive matrix completion method (Goldberg et al., 2010). In the alternating

approach, two of the three variables, C(1), C(2),Φ, are fixed and the other optimized, repeating op-

timization over each variable until convergence. In the staged-alternator, the optimizer alternates

between C(1) and Φ until convergence and then optimizes the prediction model, C(2). Note that the

staged-alternator is the approach taken by Lee et al. (2009); however, we included their implemen-

tation in the results for completeness.1 The implementation of the transductive matrix completion

method follows the settings outlined by Goldberg et al. (2010). Though this method is convex, the

formulation does not provide extraction of the representation Φ nor the prediction model C(2)—

instead it only recovers the analog of Z containing transductive predictions on the unlabeled data.

Moreover, it cannot enforce individual constraints on the unsupervised and supervised parts of the

model, C(1) and C(2) respectively.

Datasets: We investigated six classification datasets: (i) A synthetic dataset with features and

labels generated analogously to Goldberg et al. (2010), which contains 20 features and 400 samples.

The rank of the generated feature matrix is 4, and zero mean independent Gaussian noise with

variance σ2 = 0.1 was added to the features. (ii) A UCI dataset, Wisconsin Breast Cancer (WBC),

which contains 10 features and 683 samples.2 (iii) A UCI dataset, Ionosphere, which contains 34

features and 351 samples.3 (iv) Three semi-supervised learning benchmark datasets, BCI, COIL and

g241n, which collectively contain 1500 samples, with 117, 241 and 241 features respectively.4 For

experiments on transductive learning, we randomly selected from each dataset Tl examples as the

labeled data and Tu examples as the unlabeled data. Both Tl and Tu are reported in Table 6.6. Then

we measured the transductive classification error on the Tu examples, and this error was further

averaged over runs on five different random choices of the Tl and Tu examples.

Parameter selection: Because the algorithms are similar, with the same parameters, cross valida-

tion on such a small number of labeled samples results in artificially large differences. To mitigate

this problem, therefore, we focus the comparison on the best possible performance of each algorithm

across a range of parameter settings.

Comparison 1: Optimization We first investigated the differences in objective values, by setting

the loss functions and parameters to common choices across the algorithms. In particular, we set the

supervised loss to the least-squares loss, the unsupervised loss to the logistic loss, and the regularizer

1 http://www.eecs.umich.edu/∼honglak/softwares/fast sc.tgz
2

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
3 http://archive.ics.uci.edu/ml/datasets/Ionosphere
4 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

82

Method
µ = 10 µ = 0.1

α = 0.02 runtime (sec) α = 0.02 runtime (sec)

COIL

S-RFM 0.70 156 0.6809 93

ALT 0.72 2084 0.6951 3439

STAGE 30.052 94 0.6934 597

WBC

S-RFM 1.13 27 0.6711 4

ALT 1.14 292 0.6796 872

STAGE 1.19 166 06981 163

BCI

S-RFM 0.69 43 0.6483 12

ALT 0.69 288 0.6534 528

STAGE 0.74 105 0.6936 158

IONOSPHERE

S-RFM 0.78 75 0.6434 5

ALT 0.78 167 0.6477 320

STAGE 0.84 71 0.6946 103

G241N

S-RFM 0.70 111 0.6809 94

ALT 2.17 1886 0.6966 3782

STAGE 30.54 81 0.6934 568

SYNTHETIC

S-RFM 0.90 15 0.6503 4

ALT 0.90 155 0.6556 384

STAGE 0.94 83 0.6956 128

Table 6.5: Minimum objective values in Equation (6.7) obtained by the training methods on six data sets. The

objective values is always the lowest for S-RFM, though sometimes the alternator and the staged algorithms

achieve this global minimum. When ALT or STAGE obtain the minimum error, however, their runtime is

always worse than the runtime for S-RFM to obtain the same solution.

83

COIL WBC BCI

(n=241, Tl=10, Tu=100) (n=10, Tl=10, Tu=50) (n=117, Tl=10, Tu=200)

ALT 0.464 ± 0.036 0.388 ± 0.156 0.440 ± 0.028

STAGED 0.476 ± 0.037 0.200 ± 0.043 0.452 ± 0.041

LEE 0.414 ± 0.029 0.168 ± 0.100 0.436 ± 0.093

GOLDBERG 0.484 ± 0.068 0.288 ± 0.105 0.540 ± 0.025

S-RFM 0.388 ± 0.043 0.134 ± 0.072 0.380 ± 0.069

IONOSPHERE G241N SYNTHETIC

(n=34, Tl=10, Tu=300) (n=241, Tl=10, Tu=100) (n=20, Tl=40, Tu=360)

ALT 0.457 ± 0.075 0.478 ± 0.053 0.464 ± 0.019

STAGED 0.335 ± 0.050 0.484 ± 0.050 0.417 ± 0.035

LEE 0.350 ± 0.042 0.452 ± 0.073 0.411 ± 0.027

GOLDBERG 0.338 ± 0.053 0.524 ± 0.022 0.496 ± 0.018

S-RFM 0.243 ± 0.042 0.380 ± 0.036 0.341 ± 0.013

Table 6.6: Average test (transductive) classification error of semi-supervised techniques on a variety of real

datasets and one synthetic dataset (± standard deviation).

to ‖Φ‖2,1. S-RFM used L-BFGS to optimize the objective. For the local optimization methods

ALT and STAGE a projected gradient method was used to enforce norm constraints on C(1) and a

constrained optimization was used for the infinity norm on C(2). To evaluate optimization quality,

we fixed β1 = β2 = 1, α = 0.02 and modified the weight µ ∈ {0.1, 10} on the unlabeled data loss,

Lu (· ; X). Two thirds of the examples were used as labeled data while the rest used as unlabeled

data. Table 6.5 shows that S-RFM outperforms the non-convex approaches in terms of both the

objective value attained and the training cost on all the data sets. Interestingly, ALT and STAGE

occasionally find a solution that is very close to the global optimum.

Comparison 2: Transductive error We evaluated the transductive generalization error for the

classification datasets attained by the different methods. In this case, we considered different choices

for the loss functions, and report the results for the best, using either a soft-margin support vector

machine (hinge loss) or smooth logistic loss for the prediction model; and either projecting or not

projecting C(1) and C(2) in the local optimization methods. Limited memory BFGS was used in all

cases with a smooth loss function, excluding LEE which uses a conjugate gradient method with a

smooth ε-L1 regularizer. In Table 6.6, the best results for the alternators were obtained with a hinge

loss with an unprojected optimization.

One can see that in every case S-RFM is either comparable to or outperforms the other com-

petitors. Surprisingly, though the approach developed by Goldberg et al. (2010) is the most similar

to S-RFM, it performs noticeably worse than S-RFM. ALT performs poorly for WBC and Iono-

sphere; one possible reason is that the mixed supervised classification and unsupervised regression

84

losses create poor local minima. This suggests that for an alternating minimization approach, sep-

arating the problem into a factorization step and a classification learning step is more appropriate.

We can also see that LEE often performs better than STAGE, despite having the same objective; this

result is likely due to optimizations in their code, such as the smoothed sparse regularizer.

6.3 Summary

This chapter explored the impacts of representing two types of semi-supervised learning as regu-

larized factor models. For the first type, standard semi-supervised learning, representing both the

supervised and unsupervised components as regularized factorizations (i.e., with reverse prediction)

enabled the development of a principled algorithm with variance reduction guarantees. For the sec-

ond type, representation-imputed semi-supervised learning, representing the problem as a two-view

regularized factorization enabled a convex reformulation.

In addition to the contributions to semi-supervised learning, this chapter illustrated the useful-

ness of the myriad of options under Bregman divergences. The experimental results for standard

semi-supervised learning illustrated that kernels, instance weighting, and different transfers all im-

pacted performance, without knowing a priori which choices would give the best performance.

Given the possible combinations, the standard semi-supervised learning algorithm easily outper-

formed competitors. Nevertheless, these diverse choices do not yet appear to be widely exploited;

improving the understanding and use of these modeling options could significantly impact perfor-

mance of many machine learning algorithms.

85

Chapter 7

Autoregressive moving average models us-

ing regularized factor models

A central problem in applied data analysis is time series modeling—estimating and forecasting

a discrete-time stochastic process—for which the autoregressive moving average (ARMA) and

stochastic ARMA (Thiesson et al., 2012) are a fundamental model. An ARMA model describes

the behavior of a linear dynamical system under latent Gaussian perturbations (Brockwell and

Davis, 2002; Lütkepohl, 2007), which affords intuitive modeling capability, efficient forecasting

algorithms, and a close relationship to linear Gaussian state-space models (Katayama, 2006, pp.5-

6).

Unfortunately, estimating the parameters of an ARMA model from an observed sequence is a

computationally difficult problem: no efficient algorithm is known for computing the parameters

that maximize the marginal likelihood of the observed data in an ARMA, stochastic ARMA or

linear Gaussian state-space model. Consequently, heuristic local estimators are currently deployed

in practice (Hannan and Kavalieris, 1984; Durbin, 1960; Bauer, 2005; Lütkepohl, 2007; Thiesson

et al., 2012), none of which provide a guarantee of how well the globally optimal parameters are

approximated. For estimating linear Gaussian state-space models, it has been observed that local

maximization of marginal likelihood tends to find local optima that yield poor results (Katayama,

2006, Sec. 1.3).

In response to the difficulty of maximizing marginal likelihood, there has been growing interest

in method of moments based estimators for state-space models, which offer both computationally

efficient estimation strategies and sound consistency properties (Andersson, 2009; Hsu et al., 2012;

Anandkumar et al., 2012). For ARMA models, the most applicable such estimators are the subspace

identification methods for estimating state-space models (Katayama, 2006; Moonen and Ramos,

1993; Van Overschee and De Moor, 1994; Viberg, 1995; Song et al., 2010; Boots and Gordon,

86

2012). Unfortunately, the statistical efficiency of moment matching generally does not match that

of maximum likelihood, which is known to be asymptotically efficient under general conditions

(Cramér, 1946, Chapter 33). In fact, there is evidence suggesting that the statistical efficiency of

current moment matching estimators is quite weak (Foster et al., 2012; Zhao and Poupart, 2014).

In this chapter, I develop a tractable approach to maximum likelihood parameter estimation for

stochastic multivariate ARMA models. To efficiently compute a globally optimal estimate, we re-

expressed the problem as a regularized loss minimization and then exploit the convex reformulation

approaches developed in Chapter 4. Although there has been recent progress in global estimation

for ARMA, such approaches have either been restricted to single-input single-output systems (Shah

et al., 2012), estimating covariance matrices for scalar ARMA (Wiesel et al., 2013) or using AR

to approximate a scalar ARMA model (Anava et al., 2013). By contrast, the approach developed

in this chapter offers the first efficient maximum likelihood based approach to estimating the pa-

rameters of a stochastic multivariate ARMA(p, q) model. This convex optimization formulation is

general, enabling generalized distributional assumptions and estimation on multivariate data, which

has been much less explored than scalar ARMA. An experimental evaluation demonstrates that the

globally optimal parameters under the proposed criterion yield superior forecasting performance to

alternative estimates, including local minimization of the same criterion, local heuristics for ARMA

estimation, and moment-based estimation methods for state-space models.

Contributions:

Contribution 1. The first global maximum-likelihood-based approach for estimating autoregressive

moving average models, using a tight relaxation on the original problem (White et al., 2015). The

idea is to relax the hard constraint requiring the Φ to exactly equal the residual errors: the stochastic

ARMA setting. Then, by characterizing the structure of an ARMA model, including the Gaussian

assumption on the innovations, as a regularized objective, we can use the advances developed in

previous chapters to obtain a convex reformulation, which we call regularized ARMA (RARMA).

Contribution 2. An empirical evaluation that compares to three method-of-moments approaches

and three maximum likelihood approaches, on synthetic and real data that indicates that the simple

RARMA estimation approach is efficient and outperforms the state-of-the-art in forecasting.

7.1 Background

An ARMA model is a simple generative model of the form depicted in Figure 7.1(a), where the

innovation variables, εt ∈ R
k, are assumed to be i.i.d. Gaussian, N (0,Σ), and the observable

87

ε1 ε2 ε3

x1 x2 x3

(a)

s1 s2 s3

x1 x2 x3

(b)

Figure 7.1: Graphical models depicting the dependence structure of two widely-used temporal mod-

els. (a) An ARMA(1, 2) model, where the straight down (red) arrows correspond to parameterB(0),

the two angled (blue) arrows are B(1) and the longest (green) arrow is B(3). These arrows repeat

for x4,x5, (b) A latent state-space model. These models are equivalent if the state-space model

is in observability canonical form (Benveniste et al., 2012, Sec. 6.2.1). Distinct methods are used

for estimation in each case depending on whether the variables are discrete or continuous.

variables, xt ∈ R
n, are assumed to be generated by the linear relationship

xt =

p
∑

i=1

A(i)xt−i +

q
∑

j=1

B(j)εt−j + εt. (7.1)

An ARMA(p, q) model is thus parameterized byA(1), ..., A(p) ∈ R
n×n, B(1), ..., B(q) ∈ R

n×k, and

a positive semi-definite matrix Σ; which we simply collect as θ = ({A(i)}, {B(i)},Σ).1

One classical motivation for ARMA models arises from the Wold representation theorem (Wold,

1938), which states that any stationary process can be represented as an infinite sum of innovations

plus a deterministic process that is a projection of a current observation onto past observations:

xt = p(xt|xt−1, . . .) +
∑∞

j=0B
(j)εt−j . Thus the autoregressive component of an ARMA model is

often motivated as a more parsimonious representation of this Wold representation (Scargle, 1981).

Time series models are used primarily for forecasting: Given an ARMA model with parame-

ters θ, the value of a future observation xT+h can be predicted from an observed history x1:T by

evaluating E[xT+h|x1:T ,θ]. The key advantage of ARMA is that such forecasts can be computed

efficiently; see Appendix G.4.3 for additional details.

Although forecasting is efficient, the problem of estimating the parameters of an ARMA model

raises significant computational challenges, which provides the main focus of this chapter. To begin,

consider the marginal log-likelihood of an observed history x1:T given a set of parameters θ:

log p(x1:T |θ) =

T
∑

t=1

log p(xt|x1:t−1,θ). (7.2)

1 Note that we use the term ARMA to include vector ARMA, with no restriction to scalar time series.

88

Despite the fact that the conditional expectation E[xt|x1:t−1,θ] can be computed efficiently, the

quantity log p(xt|x1:t−1,θ) is not concave in θ (Mauricio, 1995; Lütkepohl, 2007, Sec. 12.2-3),

which suggests that maximizing the marginal likelihood is a hard computational problem. An-

other source of difficulty is that ARMA is a latent variable model, hence marginalizing over the

unobserved innovations ε1:T might also be problematic. Given innovations ε1:T = [ε1, . . . , εT],

however, p(xt|x1:t−1, ε1:t−1,θ) is a simple Gaussian with mean

µt =
∑p

i=1A
(i)xt−i +

∑q
j=1B

(j)εt−j (7.3)

and covariance Σ. To obtain such a simplified form, we will first characterize the entire data

likelihood in terms of the innovations which enables application of the widely used expectation-

maximization algorithm. This result parallels Lemma 1; however, we repeat it for this non-i.i.d.

setting for clarity.

Lemma 4. For an auxiliary density q(·) over ε1:T , and entropy H(q(·)), it follows that (proof given

in Appendix G.1):

log p(x1:T |θ) = log

∫

p(x1:T , ε1:T |θ) dε1:T = max
q(·)

∫

q(ε1:T) log p(x1:T , ε1:T |θ) dε1:T +H(q(·)).

(7.4)

The maximum likelihood problem can now be re-expressed as minθ min{q(·)}− log p(x1:T |θ)
where in a standard EM algorithm, the M step would consist of optimizing θ given {q(·)}, and the

E step would consist of (implicitly) optimizing {q(·)} given θ (Neal and Hinton, 1998). A standard

variant of the log likelihood in (7.4) can then be obtained simply by dropping the entropy regularizer

H(q(·)). This leads to the minimization selecting a Dirac delta distribution on ε1:T and a far simpler

formulation, sometimes known as “hard EM” or “Viterbi EM” (Brown et al., 1993):

min
θ

min
ε1:T
− log p(x1:T , ε1:T |θ)

= min
θ

min
ε1:T
−

T
∑

t=1

[

log p(εt|x1:t, ε1:t−1,θ) + log p(xt|x1:t−1, ε1:t−1,θ)
]

. (7.5)

This formulation suggests an approach where one successively imputes values ε1:T for the un-

observed innovation variables, then optimizes the parameters. Interestingly, p(εt|x1:t, ε1:T−1,θ)

is a Dirac delta distribution; εt must be the residual, εt = xt − µt, otherwise the loss becomes

unbounded. This distribution, therefore, imposes a constraint on the minimization. To maximize

89

likelihood under this constraint, we optimize

min
θ,ε1:T :

εt=xt−µt

−
T
∑

t=1

log p(xt|,x1:t−1, ε1:t−1,θ) . µt =

p
∑

i=1

A(i)xt−i +

q
∑

j=1

B(j)εt−j (7.6)

= min
θ,ε1:T :

εt=xt−µt

T

2
log((2π)n|Σ|) + 1

2

T
∑

t=1

∥

∥

∥
Σ−

1
2 (xt − µt)

∥

∥

∥

2
. (7.7)

Unfortunately, this optimization raises an important challenge. Due to the direct interaction

between Σ, B and ε1:T the final form of the problem (7.7) is still not convex in the parameters

θ and ε1:T jointly. A typical strategy is therefore to first estimate the innovations ε1:T directly

from data, for example by using the errors of a learned autoregressive model, then observing that

with the innovation variables fixed and Σ approximated from the innovations, the problem becomes

convex in θ (Hannan and Kavalieris, 1984; Lütkepohl, 2007). Another more contemporary approach

is to convert the ARMA model into a state-space model (see Figure 7.1(b)) and then solve for

parameters in that model using system identification approaches (Bauer, 2005). Though this has

been an important advance for efficient ARMA estimation, these approaches still result in local

minima.

7.2 Regularized ARMA modeling

To develop a likelihood based criterion that admits efficient global optimization, we begin by con-

sidering a number of extensions to the ARMA model. First, notice that the ARMA model in (7.1)

can be equivalently formulated by introducing a B(0) and taking εt ∼ N (µ = 0,Σ = I), giving

B(0)εt ∼ N (0, B(0)B(0)′).

Second, following (Thiesson et al., 2012) an independent noise term ηt can be added to (7.1) to

obtain the stochastic ARMA model

xt =

p
∑

i=1

A(i)xt−i +

q
∑

j=0

B(j)εt−j + ηt. (7.8)

A key challenge in estimating the parameters of a classical ARMA model (7.1) is coping with

the deterministic constraint that ηt = 0, which forces the innovations εt to match the residuals

(7.7). The stochastic ARMA model (7.8) relaxes this assumption by allowing ηt to be generated by

a smooth exponential family distribution, such as ηt ∼ N (0, Qt) for covariance Qt; a smaller Qt

yields a closer approximation to the original ARMA model. Thiesson et al. (2012) have shown that,

for Qt = σI , expectation-maximization (EM) updates are only meaningful for σ > 0; for σ = 0,

EM stops after one iteration. EM is not however guaranteed to find a globally optimal parameter

estimate for the stochastic ARMA model. A key advantage of this model, however, is that it allows

90

a convenient re-expression of the marginal log-likelihood (7.6) by applying the chain rule in the

opposite order for xt and εt:

(7.6) = min
θ

min
ε1:T
−

T
∑

t=1

[

log p(xt|x1:t−1, ε1:t,θ) + log p(εt|x1:t−1, ε1:t−1,θ)
]

= min
θ

min
ε1:T
−

T
∑

t=1

[

log p(xt|x1:t−1, ε1:t,θ) + log p(εt|θ)
]

,

since εt is independent of past innovations and data without xt. Furthermore, p(εt|θ) = p(εt) since

the covariance was moved into B(0) to make εt ∼ N (0, I), yielding

−
T
∑

t=1

log p(εt) =
nT

2
log(2π) +

1

2

T
∑

t=1

‖εt‖22 =
nT

2
log(2π) +

1

2
‖E‖2F (7.9)

for E = ε1:T . The constant is ignored in the optimization.

Third, rather than merely consider a maximum likelihood objective, we can consider the max-

imum a posteriori (MAP) estimate given by the introduction of a prior log p(θ) over the model

parameters θ = (A,B,Σ). Since the parameters A and B do not typically have distributional

assumptions, we view the choice of priors rather as regularizers:

− log p(θ) = − log p(A)− log p(B) = R(A) +G(B),

for convex functionsR andG. Any convex regularizer onA is acceptable. The choice of regularizer

on B is more subtle, since for any s, BE = (Bs−1)(sE): G(B) is required to prevent B from being

scaled up, pushing ‖E‖2F to zero. We consider G(B) = ‖B‖2F for B = [B(0); . . . ;B(q)], which

effectively controls the size of B and, importantly, also results in a global reformulation given in

Theorem 9.

Finally, as noted, we can consider any natural exponential family distribution for ηt rather than

merely assuming Gaussian. The negative log-likelihood for such a distribution corresponds to a

regular Bregman divergence (see Appendix G.3), allowing one to write the final estimation criterion

in terms of a convex loss function L(·|xt) as

min
A,B,E

T
∑

t=1

L
(

p
∑

i=1

A(i)xt−i +

q
∑

j=0

B(j)εt−j

∣

∣

∣ xt

)

+ α
(

‖E‖2F +G(B)
)

+ γR(A), (7.10)

for regularization parameters α and γ.

7.3 Efficient parameter estimation

Although L is convex in its first argument, the regularized criterion (7.10) is not jointly convex due

to the coupling between B and E . However, using the insights from Chapter 4, we can reformulate

(7.10) as a convex optimization.

91

For fixed autoregressive parameters, A, let LA,t(z) = L(z +
∑p

i=1A
(i)xt−i | xt) + γR(A),

which is still convex in z.2 By introducing the change of variables, Z = BE , the optimization over

B and E given A can be written as

min
A,B,E

T
∑

t=1

LA,t

(

q
∑

j=0

B(j)E:,t−j

)

+ α
(

‖E‖2F +G(B)
)

(7.11)

= min
A,Z

T
∑

t=1

LA,t

(

q
∑

j=0

Z
(j)
:,t−j

)

+ α min
B,E

BE=Z

(

‖E‖2F +G(B)
)

. (7.12)

This objective can be re-expressed in a convex form since

|||Z||| = min
B,E:BE=Z

(

‖E‖2F +G(B)
)

(7.13)

defines an induced norm on Z for two settings of G(B) described in Theorems 9 and 10 below,

which rely on Theorem 3, Theorem 7 and Corollary 3 from Chapter 4. Therefore, (7.12) can be

equivalently expressed as:3

T
∑

t=1

L
(

p
∑

i=1

A(i)xt−i +

q
∑

j=0

Z
(j)
:,t−j

∣

∣

∣
xt

)

+ α|||Z|||+ γR(A).

We can alternate between A and Z to obtain a globally optimal solution, then recover B and E from

Z. Proofs for the following two theorems are provided in Appendix G.2.

Theorem 9. The regularized ARMA(p, q) estimation problem for G(B) = ‖B‖2F is equivalent to

(7.11) = min
A,Z

T
∑

t=1

LA,t

(

q
∑

j=0

Z
(j)
:,t−j

)

+ 2α ‖Z‖tr

with a singular value decomposition recovery: Z = UΣV ′ giving B = U
√
Σ and E =

√
ΣV ′.

The estimation problem is more difficult with the second choice of regularizer; to get an exact

formulation, we need to restrict q = 1, giving Z =
[

B(0)

B(1)

]

E .

Theorem 10. The regularized ARMA(p, 1) estimation problem for G(B) = maxj=0,...,q

∥

∥B(j)
∥

∥

2

F
is

equivalent to

(7.11) = min
A,Z

T
∑

t=1

LA,t

(

q
∑

j=0

Z
(j)
:,t−j

)

+max
0≤η≤1

∥

∥

∥
E−1η Z

∥

∥

∥

tr
(7.14)

where Eη :=
[

1/
√
η In 0

0 1/
√
1−η In

]

. Moreover
∥

∥E−1
η Z

∥

∥

tr
is concave in η over [0, 1], enabling an

efficient line-search.

2 Proved in Lemma 12, Appendix G.2 for completeness
3 Proved in Corollary 6, Appendix G.2 for completeness.

92

7.4 Identifiability and optimal parameter recovery

One desirable ideal for estimation is identifiability: being able to “identify” parameters uniquely.

For a strictly convex loss function, L, the convex regularized ARMA optimization in (7.14) produces

a unique moving average variable, Z. This identifiable matrix is sufficient for correctly estimating

the autoregressive parameters for the ARMA model, which can be all that is required for forecasting

in expectation.

It might be desirable, however, to recover the factors B and E to gain further insight into the

nature of the time series. Unfortunately, unlike Z, the factors that satisfy BE = Z are not unique.

Worse, if one simply recovers any B and E that satisfies BE = Z, the recovered innovations E need

not be Gaussian distributed. This issue can be addressed via a careful recovery procedure that finds

a particular pair B and E with the same regularization penalty as Z. Let

Factors(Z)=
{

(B, E) : BE = Z and G(B) + ‖E‖2F = |||Z|||
}

This set of solutions satisfies the desired distributional properties, but is invariant under scaling and

orthogonal transformations: for any (B, E) ∈ Factors(Z), (i) for s = G(B)/ ‖E‖F , (B(1/s), sE) ∈
Factors(Z) and (ii) for any orthogonal matrix P ∈ R

k×k, (BP,P ′E) ∈ Factors(Z) since the Frobe-

nius norm is invariant under orthogonal transformations. When G(B) = ‖E‖F , a solution from

Factors(Z) can be computed from the singular value decomposition of Z, as shown in Theorem 9.

For G(B) = maxj
∥

∥B(j)
∥

∥

2

F
, the boosting procedure in Algorithm 2 with rescaling Algorithm 6 can

be used; see Appendix G.3 for a discussion on obtaining Laplacian instead of Gaussian innovations,

which involves instead using a (2, 1)-block norm on E and Algorithm 5 for rescaling.

7.5 Computational complexity

The overall estimation procedure is outlined in Algorithm 13 for the simpler regularizer, ‖B‖2F ; the

approach is similar for the other regularizer, but with an outer line search over η. The computational

complexity is governed by the matrix multiplication to compute the autoregressive and moving

average components, and by the use of the singular value decomposition. The matrix multiplication

forAXp isO(Tpn2), which dominates the cost of computing the autoregressive loss, corresponding

to ARloss in Algorithm 13. For the moving average loss, MALoss in Algorithm 13, the thin SVD

of Z ∈ R
qn×T has complexity O(Tq2n2) and the multiplication of UV ′ is also O(Tq2n2). Thus,

each call to ARloss is O(Tpn2) and each call to MAloss is O(Tq2n2). The initial solution of A,

which involves solving a basic vector autoregressive model, is i1O(Tpn2) where i1 is the number of

iterations which is typically small. For i2 the number of iterations then between A and B: RARMA

93

Algorithm 13 RARMA(p, q)

Input: X, p, q, α, γ
Output: A,B, E

1: Xp = history(X, p) = [Xp:t; . . . ;X1:t−p]
2: [f,g] = MAloss(Z,A):

3: [U,Σ, V] = svd(Z)
4: Y = AXp +

∑q
j=1 Z(j : n(j + 1)− 1, :)

5: f = L(Y ;X) + α sum(diag(Σ))
6: g = repmat(∇Y L(Y ;X), q, 1)

7: // Zero out unused parts of Z
8: for j = 1, . . . q, g(j :n(j+1), (t−j+1): t) = 0
9: g = g +αUV ′

10: [f,g] = ARloss(A,Z):

11: Y = AXp +
∑q

j=1 Zj:n(j+1)−1,:

12: f = L(Y ;X) + αR(A)
13: g = (∇Y L(Y ;X))Xp + γ∇R(A)
14: Initialize Z = 0, A = 0

15: // Apply your favourite optimizer to the AR search

16: A = lbfgs(ARloss(·, Z), A)

17: // Iterate between A and Z
18: [A,Z] = iterate(ARloss, MAloss, A, Z)

19: // Recover the optimal B and E
20: [U,Σ, V] = svd(Z)
21: B = UΣ1/2, E = Σ1/2V ′

Return: A,B, E

cost = VAR cost + i2(O(Tpn2)+O(Tq2n2)) = (i1+i2)O(Tpn2)+i2O(Tq2n2) ≈ O(T (p+q2)n2).

7.6 Experimental evaluation

In this section, regularized ARMA is compared to a wide range of time series methods for the

task of forecasting future observations on both synthetic and real-world data. As discussed in Ap-

pendix G.4.3, forecasts are performed using available innovations for the first q steps, and afterwards

only the autoregressive parameters. In the final section, there is also a comparison on estimating the

underlying autoregressive parameters of RARMA using q = 0 versus q > 0.

Several algorithms are compared: MEAN, which uses the mean of the training sequence as

the prediction, a popular subspace identification method (N4SID) (Van Overschee and De Moor,

1994), expectation-maximization to learn the parameters for a Kalman filter (EM-Kalman), Hilbert

space embeddings of hidden Markov models (HSE-HMM) (Song et al., 2010; Boots and Gordon,

2012) 4, maximum likelihood estimation of vector AR (AR), the Hannan-Rissanen method for

4In addition to the two method-of-moments approaches, N4SID and HSE-HMM, we tried a third state-space tech-

nique (Anandkumar et al., 2012), with no previous published empirical demonstrations. It performed poorly and so is

94

Table 7.1: For each dataset, the first column contains the test MSE (with standard error in paren-

theses) and the second the percentage of trials that were stable. The stability is evaluated using a

threshold: eigenvalues < 1+ε = 1.01. The method(s) with the most t-test wins with significance

level of 5% is(are) bold for each dataset. Stable rates are key for iterated prediction performance;

large MSE is mainly due to unstable trials.

ALGORITHM N6-P2-Q2 N9-P3-Q3 N12-P3-Q3 N15-P3-Q3 N12-P4-Q4

MEAN 2.85(0.13) 1.00 6.64(0.27) 1.00 12.5(0.44) 1.00 21.2(1.06) 1.00 6.81(0.19) 1.00

N4SID 3.23(0.21) 1.00 6.82(0.3) 1.00 12.9(0.58) 1.00 24.7(1.46) 1.00 6.85(0.19) 1.00

EM-KALMAN 4.27(0.3) 0.97 11.7(1.17) 0.94 19(1.19) 0.95 32.8(3.03) 0.89 15.9(1.45) 0.88

HSE-HMM 13.5(12.8) 0.95 1070(1469) 0.95 353(514) 0.95 2017(3290) 0.95 31.8(28.6) 0.91

AR(AICC) 1.83(0.29) 0.96 8.99(2.38) 0.88 16.9(2.69) 0.84 80.2(24.7) 0.69 24.8(29.6) 0.69

AR(BIC) 1.67(0.25) 0.97 6.42(1.27) 0.91 10.7(1.22) 0.93 34(5.2) 0.85 5.25(0.54) 0.82

ARMA(AICC) 1.63(0.2) 0.98 4.93(0.62) 0.93 8.52(0.73) 0.96 27.7(3.64) 0.86 5.49(0.48) 0.88

ARMA(BIC) 1.68(0.25) 0.98 4.81(0.58) 0.95 8.4(0.59) 0.97 29.4(5.76) 0.91 5.26(0.48) 0.97

RARMA 1.29(0.08) 1.00 4.1(0.3) 0.97 7.49(0.41) 0.99 15.7(0.92) 0.98 4.69(0.21) 0.99

Table 7.2: As in Table 7.1, test MSE and stability are reported, now on two real datasets.

ALGORITHM CAC ATLANTIC

MEAN 4.92(0.17) 1.00 5.03(0.39) 1.00

N4SID 2.6(0.35) 1.00 2.1(0.98) 1.00

EM KALMAN 2.43(0.26) 1.00 2.33(0.66) 1.00

HSE-HMM 7637(1433) 0.88 1.63(0.53) 1.00

AR(AICC) 1.71(0.31) 1.00 0.85(0.37) 1.00

AR(BIC) 3.00(0.27) 1.00 2.99(0.81) 1.00

ARMA(AICC) 101(42.9) 1.00 6.8(2.85) 1.00

ARMA(BIC) 107(49.3) 1.00 6.8(2.85) 1.00

RARMA 1.53(0.27) 1.00 0.8(0.35) 1.00

ARMA (ARMA-HR) (Hannan and Kavalieris, 1984) and global estimation of regularized ARMA

(RARMA). We also compared to local alternation of the RARMA objective (7.11); for both the

best and worst random initializations, however, the results were always worse that global RARMA,

slower by more than an order of magnitude and often produced unstable results. Therefore, these

local alternator results are omitted, with the focus instead on the comparison between the RARMA

objective and the other approaches. The HR method is used for the ARMA implementation, because

a recent study (Kascha, 2012) shows that HR is reasonably stable compared to other vector ARMA

learning algorithms. A third step was added for further stability, in which the A(i) are re-learned

from the observations with the MA component (from the second step) removed. The built-in Matlab

omitted.

95

0 5 10 15 20 25 30 35 40 45
−1

0

1

2

3

4

5

Prediction Horizon

C
u

m
u

la
ti
v
e

 l
o

g
 M

S
E

MEAN
N4SID
EM−Kalman
HSE−HMM
AR(AICc)
AR(BIC)
ARMA(AICc)
ARMA(BIC)
RARMA

(a) CAC.

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

4

5

6

Prediction Horizon

C
u
m

u
la

ti
v
e
 l
o
g
 M

S
E

MEAN
N4SID
EM−Kalman
HSE−HMM
AR(AICc)
AR(BIC)
ARMA(AICc)
ARMA(BIC)
RARMA

(b) Atlantic.

Figure 7.2: Cumulative test MSE in log scale on two real-world datasets. Each model is iterated for (a)

40 and (b) 60 steps, respectively. AR (BIC) appears to perform a strong 1-step prediction, but then quickly

degrades in performance, indicating the importance in selecting a good lag length for AR. HSE-HMM is

unstable for CAC, but performs reasonably for Atlantic. The best performing methods are N4SID, AR(AICc),

and RARMA. In both, RARMA has the lowest error for predictions up to a horizon of 30.

120 150 180 210 240 270 300 330 360
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T

S
e

c
o

n
d

s

N4SID

EM−Kalman

HSE−HMM

AR

ARMA

RARMA

Figure 7.3: Runtimes for an increasing number

of samples, where the parameters of the multi-

variate series are n = 9 and p = q = 3. The

method-of-moments approaches are the fastest

and appear to be less affected by increasing num-

ber of samples. The maximum likelihood ap-

proaches, however, are comparable, with EM-

Kalman affected most by the increase in sam-

ples. Interestingly, the gap between RARMA

and ARMA decreases as samples increase, and

remains parallel with the simpler AR implemen-

tation.

implementations were used for AR and N4SID.

The lag parameters p and q were selected according to standard criteria in time series. For AR

and ARMA-HR, the parameters p and q are chosen using BIC and AICc, and reported separately

due to interesting differences in their performance. For N4SID, the built-in Matlab implementation

chose the best order. For RARMA, because of the temporal structure in the data, parameters were

chosen by performing estimation on the first 90% of the training sequence and evaluating model

performance on the last 10% of the training sequence. Euclidean loss is used as the loss function L

for RARMA, to make it more comparable to the other methods; other (robust) losses would likely

give a greater advantage and are easily incorporated due to the generality of RARMA.

96

7.6.1 Synthetic experiments

Synthetic data sets are generated from an ARMA(p, q) model. An ARMA model is called unstable

if the spectra of the AR matrices exceeds the unit circle on the complex plane (Lütkepohl, 2007);

intuitively, iterating a dynamics matrix A = UΣV ′ that has any Σ(i, i) > 1 for t steps, At =

UΣtV ′, is expansive. See Appendix G.4.1 for details about the procedure for generating stable

ARMA models. For each (p, q, n) configuration, 100 data sequences are generated, each with 300

samples partitioned into 200 training points followed by 100 test points.

Table 7.1 shows the results, including the test mean squared error (MSE) and the stability rates

over all trials. RARMA with global optimization is among the best models on each data set in terms

of MSE. Learning is generally more difficult as the dimension increases, but RARMA performs

well even when most algorithms fail to beat the baseline (MEAN) and maintains a reasonably stable

rate. Figure 7.3 illustrates a runtime comparison, in CPU seconds. The synthetic model is fixed to

n = 9 and p = q = 3, with an increasing number of training points. RARMA is comparable to

other methods in terms of efficiency and scales well with increasing number of samples T .

7.6.2 Experiments on real time series

To see how our method performs on real-world data, we experimented on two real-world datasets

from IRI 5. These climate datasets consist of monthly sea surface temperature on the tropical Pacific

Ocean (CAC) and the tropical Atlantic Ocean (Atlantic). The area size of CAC is 84× 30 with 399

points, while the area of Atlantic is 22× 11 with 564 points. We use the first 30× 30 locations for

CAC and the first 9× 9 locations for Atlantic. These areas are further partitioned into grids of size

3 × 3 and vectorized to obtain observations xt ∈ R
9. The data for each location is normalized to

have sample mean of zero and sample standard deviation of one in the experiments. The first 90%

of the sequence is used as training set, the last 10% as the test set.

Table 7.1 shows the test MSE and Figure 7.2 shows the cumulative MSE in log scale. As in the

synthetic experiments, RARMA is consistently among the best models in terms of MSE. Moreover,

when examining iterated forecasting accuracy in Figure 7.2, RARMA is better for early predictions

(about the first 30 predictions) on the real datasets.

7.6.3 Investigating the moving average component

The final comparison is an investigation into the importance of the moving average component, ver-

sus simply using an AR model. RARMA(p, q) is compared to RARMA(p, 0) and RARMA(p+q, 0)

for two settings: recovering the true autoregressive parameters, A, and accuracy in forecasting. The

5http://iridl.ldeo.columbia.edu/SOURCES/

97

same code is run for all three methods, simply with different p, q settings. The comparison is over in-

creasing lag and increasing variance of the moving average component. The results are presented in

Figure 7.4. The heat map presents the relative error between RARMA(p, q) and both RARMA(p, 0)

and RARMA(p+q, 0); values greater than 1 indicate superior performance for RARMA(p, q).

These results indicate three interesting phenomena. First, including the moving average compo-

nent significantly improves performance. As the variance reached levels where the mean began to

outperform all three techniques, the models with q=0 were slightly more stable. Second, RARMA

with q > 0 performs noticeably better for forecasting but typically performed about the same or

worse for extracting the underlying autoregressive parameters. This result is counter to the expec-

tation that a more accurate A directly results in improved forecasting performance and suggests

that, if the ultimate goal is forecasting, we need not focus so strongly on identification as is typi-

cally done in empirical work for ARMA. Interestingly, as p, q increase, RARMA(p+ q,0) becomes

the dominant method for obtaining the underlying parameters, despite the fact that only the first p

components of the learnedA are used. Finally, often when RARMA(p, 0) performed poorly in fore-

casting, RARMA(p+q, 0) performed well, and vice versa. The fact that RARMA(p, q) performed

comparably to the best of the two suggests that that the moving average component improves ro-

bustness. Importantly, because vector ARMA models can now be solved globally, there is little

disadvantage in using this more powerful model, and strong benefits in some cases.

7.7 Summary

This chapter tackled a long-standing problem in time series modeling: tractable maximum likeli-

hood estimation of multivariate ARMA models. The approach involves three key components: (1)

estimating stochastic ARMA models, which relaxes the requirement that the innovations exactly

equal the residuals, (2) characterizing the independent Gaussian structure of the innovations using a

regularizer and (3) developing a theoretically sound convex reformulation of the resulting stochastic

multivariate ARMA objective. Solving this convex optimization is efficient, guarantees global so-

lutions and outperformed previous ARMA and state-space methods in forecasting on synthetic and

real datasets.

These results suggest stochastic regularized ARMA is a promising direction for time series

modeling, over conventional (deterministic) ARMA. Stochastic ARMA is similarly motivated by

the Wold representation, but is amenable to optimization, unlike deterministic ARMA. Moreover,

the regularized ARMA objective facilitates development of estimation algorithms under generalized

innovations. Though the focus in this work was on a convex formulation for Gaussian innovations,

it extends to Laplacian innovations for a (2, 1)-block norm regularizer. Advances in optimizing

98

structured norm objectives could result in important advances in global estimation of regularized

ARMA models for novel innovation properties.

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)(10,10)

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Increasing (p,q) values

L
o
g
 o

f
m

o
v
in

g
 a

v
e
ra

g
e
 v

a
ri
a
n
c
e

< 0.25

0.5

1

2

> 4

(a) Forecasting accuracy for RARMA(p, 0)

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)(10,10)

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Increasing (p,q) values

L
o

g
 o

f
m

o
v
in

g
 a

v
e

ra
g

e
 v

a
ri
a

n
c
e

< 0.25

0.5

1

2

> 4

(b) Forecasting accuracy for RARMA(p+ q, 0)

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)(10,10)

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Increasing (p,q) values

L
o

g
 o

f
m

o
v
in

g
 a

v
e

ra
g

e
 v

a
ri
a

n
c
e

< 0.25

0.5

1

2

> 4

(c) Parameter recovery for RARMA(p, 0)

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)(10,10)

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Increasing (p,q) values

L
o
g
 o

f
m

o
v
in

g
 a

v
e
ra

g
e
 v

a
ri
a
n
c
e

< 0.25

0.5

1

2

> 4

(d) Parameter recovery for RARMA(p+ q, 0)

Figure 7.4: The relative error is reported between RARMA(p, q) and the RARMA(p,0) and RARMA(p +
q,0): err(RARMA(q = 0)) / err(RARMA(q > 0)). The plot is symmetric, where at 4, RARMA(p, q) has 4x

lower error (good), and at 0.25, has 4x higher error (bad). The dimension is set to n = p and 50 + p + q
training samples. The x-axis shows increasing lag and the y-axis increasing moving average variance. As the

variance is increased beyond exp(−3), using the mean as a predictor begins to outperform all three methods.

For (a) and (b), the comparison is with respect to forecasting accuracy for a horizon of 10, measured with

`1 error. For (c) and (d), the comparison is with respect to the `1 error between the recovered A parameters

and the true parameters, cut-off at p for RARMA(p + q, 0). Interestingly, it appears that the accuracy of A
is not crucial for forecasting performance, as RARMA(p, q) outperforms RARMA(p, 0) for most reasonable

innovation variance in terms of forecasting error, but not in terms of accuracy of the underlying A.

99

Chapter 8

Perspectives and future work

This dissertation set out to address the question

What unifications and algorithmic development for statistical machine learning prob-

lems can be achieved under regularized factor models?

This dissertation only provides a partial answer to such an ambitious question. In terms of unifica-

tion, a modest understanding has been added to a growing literature that seeks to unify problems

and connect algorithms. The most novel additions are formulating semi-supervised learning as

two different regularized factorization and formulating estimation of autoregressive moving aver-

age models as a regularized factorization. For algorithmic development, the focus has been on using

regularization to encode structure and convex reformulations to obtain global solutions. Combining

the novel insights developed in this dissertation with previous work, the resulting partial answer

is that regularized factor models (1) greatly simplify the interpretation of many machine learning

algorithms as the maximum likelihood estimation of a factorization of the data, (2) but are still

simple enough to simultaneously facilitate algorithmic development, such as in the form of convex

reformulations.

In the long-term, however, I hope to say something stronger about using these models for pro-

moting precise problem specification and for directing algorithmic development. For example, there

is a clear connection between the number of clusters for hard or soft clustering, the latent dimension

in dimensionality reduction and the hidden state dimension in time series models; these connections

can give insight into specifying this problem property. Other model classes have been crucial for

algorithm development, such as semidefinite programming and linear programming. Regularized

factor models (RFMs) could be a class of models for the machine learning community that enable

similar benefits, but with a greater focus on unification.

This view may be ambitious, but I believe that it is an apt time to explore such general for-

malisms that successfully balance both optimization and generalization. This class deviates from

100

previous optimization formalisms in that only a subset of problems in the class can be currently

solved. The expectation, however, is that we can slowly make progress on solving others, while

maintaining useful connections. It moves away from the extremes of usual formalisms: either

the problem specification has known solutions (e.g., linear programs) or favours universality (e.g.,

graphical models or maximum likelihood). The area in-between these extremes may have been less

explored because it is conceptually more difficult to deal with this lack of precisely defined opti-

mization properties. I believe, however, that if we can find a balance between these two extremes,

it will be beneficial for the advancement of algorithmic development in machine learning and for

reducing the barrier to entry for those outside the community.

8.1 Research directions

There are many avenues to explore for regularized factor models, particularly in terms of represen-

tational power, computational challenges and theoretical questions.

8.1.1 What cannot be represented as a regularized factor model?

Though an impressive number of problems can be reformulated as a regularized factorization, there

are many important settings not covered by these models. In this section, I discuss a few of these

settings, with a focus on those that are promising extensions to regularized factor models.

The most similar, but importantly different, missing formulation are probabilistic approaches,

such as probabilistic PCA and factor analysis. Recall that a typical goal in single-view problems

is to learn C and Φ such that X:,t = f(CΦ:,t) + ηt, where the noise ηt is characterized by the

chosen exponential family. Probabilistic approaches learn both C,Φ and the parameters for the

distribution on the noise, such as the covariance R in the case ηt ∼ N (0, R). Probabilistic PCA,

factor analysis and gaussian mixture models have all been shown to be an instance of probabilistic,

Gaussian regularized factor models (Roweis and Ghahramani, 1999). For example, factor analysis

corresponds to X:,t = CΦ:,t + ηt, ηt ∼ N (0, R), such that R is diagonal. Though this appears

to add another parameter to the problem, there is in fact a clear connection to the regularization

parameter. Consider probabilistic PCA, where the covariance is simply assumed to be a fixed vari-

ance for each dimension, σ2, giving the maximum likelihood solution ΦC = U(Σ − σ2I)V ′ for

X = UΣV ′ (Tipping and Bishop, 1999). This solution corresponds to the solution of the minimiza-

tion 1
2 ‖X − CΦ‖

2
F + σ2 ‖CΦ‖tr [Theorem 2.1](Cai et al., 2010). Adding an outer minimization

over the regularization parameter in the regularized factorization optimization, therefore, would re-

sult in probabilistic PCA. Conversely, the maximum likelihood solution for σ (Tipping and Bishop,

1999, Equation 8) could be used to set the regularization parameter. This direction, therefore, is

101

useful both for meta-parameter selection and incorporating a broader class of problems.

Tensor factorizations are another potential generalization for regularized factor models. A ma-

trix is a 2-D tensor, encoding number of samples cross number of attributes; a tensor generalizes

this to multiple dimensions, enabling multiple views, locations and time slices of data as well as

other modes found in realistic scenarios, such as trials, task-conditions and subjects. Tensor decom-

positions and factorizations are not new, having been introduced in 1927 and used quite extensively

in psychometric and chemometrics (Cichocki et al., 2009). In addition to this empirical understand-

ing, a recent focus in computational fields, like signal processing and machine learning, has eluci-

dated important algorithmic questions to advance the practicality of these methods on large modern

datasets and so make it a potentially practical extension. Unfortunately, many problems that are

feasible for matrices have been shown to be NP-hard for tensors (Hillar and Lim, 2013); to extend

to tensors, therefore, it seems likely that a feasible avenue is to explore approximate solutions.

In addition to the “can we do it” question, we might also ask “is it really necessary” to extend

regularized factor models to tensors. Matrices are much simpler to deal with than tensors. More-

over, results comparing single-view and multi-view learning in Section 5.4 indicated that in many

situations, single-view learning performed almost as well as multi-view learning, despite the fact

that structure information was ignored. Despite these facts, tensors have clear advantages. First,

tensors are more compact than matrices. For example, unfolding a 10 × 10 × 10 tensor creates a

1000× 10 matrix: algorithms that reduce tensor dimensions much more quickly reduce the dataset

size than those reducing dimension on the unfolded matrix. Second, algorithmic development en-

coding structure through constraints is limited. The multi-view work in Section 5.3 emulated a 3-D

tensor, with the third dimension restricted to two views, using constraints on the matrix to create two

partitions. This approach, however, is cumbersome and difficult to scale to higher order structure.

In fact, we may find that higher-order structure is required to see significant improvements over the

flat, single-view concatenation.

Finally, regularized factor models do not explicitly model hierarchical structure, such as is the

case for (deep) neural networks. A single layer in a neural network, which consists of the map-

ping from a hidden layer to output, is a regularized factorization: f(CΦ) ≈ Y . A one-layer neural

network could be seen as a two-view regularized factorization, as in reduced rank regression or

semi-supervised learning. One view corresponds to the input, X , the other to the output, Y , with

hidden layer Φ; the model learned for X , however, is in terms of reverse prediction rather than

forward prediction. It is not obvious, however, how to extend beyond one layer and maintain a class

amenable to optimization. Better understanding how to solve a simple one-layer neural network,

which likely involves further insights from the forward-reverse prediction framework, is an impor-

102

tant step for understanding if regularized factor models can be reasonably extended to include a

hierarchy.

8.1.2 Computational challenges

A major theme of this thesis was a focus on obtaining convex reformulations, to ensure both efficient

solvers and global solutions. There are, however, many remaining open questions about improving

computational complexity and obtaining global guarantees for new settings.

Developing incremental algorithms for regularized factor models is crucial for making these

approaches applicable to datasets of modern sizes. Though many of the solvers were an efficient

minimization of a regularized loss, the algorithms presented are all inherently batch algorithms. As

the data size T grows, the algorithm complexity on each step grows linearly in T . An incremen-

tal algorithm that processes one sample at a time avoids this issue, instead having computational

complexity per step dependent only on the dimension of the data. The overall runtime to process

all samples will still depend on T , but we avoid the need to fit all data into memory and perform

expensive gradient computations on all samples. Bousquet and Bottou (2008) have shown both em-

pirically and theoretically that stochastic gradient algorithms (incrementally processing data) can

more quickly reach a solution with low expected cost than second-order batch methods. In addition

to speed, incremental methods can also reduce the risk of overfitting.

Another important direction is to better understand the subset of regularized factor models that

can be convexly reformulated. This direction requires more insight into the relationship between

the chosen regularizers on C and Φ and the resulting induced norm on Z = CΦ. Several of the

reformulations presented in this work relied on relatively simply knowledge of dual norms; the par-

titioned reformulations, however, were quite complex. In general, there is no obvious way to obtain

a closed form to the minimization |||Z||| = minΦ,C
∑∞

i=1 ‖C:,i‖2C + ‖Φi,:‖2R for any column and

row regularizers ‖ · ‖C and ‖ · ‖R. A numerical approach for obtaining the induced norm, or some

approximation of it, would make these reformulations much more widely applicable. A numerical

approach would also make it simpler to incorporate constraints on Φ and C, which complicate the

derivation of a closed-form induced norm. If exact, closed-form solutions are desired, product dis-

tributions may provide a more intuitive recipe for obtaining the induced norm. Product distribution

characterize the distribution of the product of two random variables. Because the regularizers on C

and Φ specify the distribution on those variables, there may be a way to characterize the distribution

of their product, Z = CΦ, and so obtain regularizer R(Z) = − log p(Z).

Another important avenue is to explore what regularized factorization can be solved globally,

even if we do not have a convex reformulation. Zhang et al. (2012) introduced a boosting approach

103

to optimizing regularized factor models, that iteratively generates rows and columns of C and Φ,

similar to the boosting recovery algorithm in Algorithm 2. This boosting algorithm directly learns

C and Φ, rather than Z, and is guaranteed to find a global solution under reasonable requirements.

This approach, however, still requires an oracle to determine a descent direction, which appears

to be tied to knowledge of the induced norm on Z and so does not expand the set of globally

solvable regularized factorization. In certain settings, local alternation is guaranteed to find a global

solution under reasonable initialization, such as in low-rank matrix completion (Jain et al., 2013;

Jain and Dhillon, 2013) and in sparse coding (Agarwal et al., 2013). This work was inspired by

the empirical success of local alternation in practice, such as the effectiveness of matrix completion

for the Netflix challenge and wide-spread use of sparse coding for image and speech analysis. For

the case where a global solver is known, global convergence of the local alternator was empirically

confirmed in a trace-norm regularized alignment score model objective (Mirzazadeh et al., 2014).

Better understanding the convergence properties of alternation in biconvex objectives, and further

exploring biconvex optimization strategies (cf. (Gorski et al., 2007, Section 4.2)), could better

elucidate new global optimization techniques for regularized factor models.

8.1.3 Theoretical challenges

An important question is understanding the theoretical utility of these factorized representations.

Though in practice unsupervised learning has been shown to be useful, there is little theoretical

understanding on the impacts of these new representations on prediction performance. There are

several hypotheses, such as the manifold hypothesis, which states that the data is concentrated on

a lower-dimensional manifold, and the predictive representation hypothesis, which states that rep-

resentations using predictions about possible future experience give good generalization. There is

some theoretical work on “learning to learn” or bias learning based on generalization properties of

the learned representation. For example, the general principle behind multi-task learning is that the

sample complexity for prediction is lower when training and using a shared representation (Bax-

ter, 1995). Some classes of representations are known to have important representability properties.

Two-layer neural networks (for a sufficiently large hidden layer) can represent any function (Barron,

1993; Andoni et al., 2014). Fourier basis functions can be used to represent any square-integrable

function. Taylor series can be used to approximate functions that are infinitely differentiable in a

neighbourhood around a point. Kernel-based approaches rely on the fact that any function in a re-

producing kernel Hilbert space can be represented as an (infinite) weighted sum of kernel functions

using Mercer’s theorem; or, more practically, on the representer theorem stating that the function in

the hypothesis class that minimizes empirical risk can be represented as the weighted sum of kernel

104

distances on the training points (Argyriou et al., 2009). To the best of my knowledge, however,

there are no such theoretical results on using subspace representations. A theoretical investigation

into if PCA improves sample complexity for a predictor is a plausible first step in understanding the

usefulness of factorized representations.

The convergence properties of problems with two interacting parameters has been much less

explored than for the single parameter setting, such as in supervised learning. Gribonval et al.

(2013) recently characterized the sample complexity of various matrix factorization problems, as

a factor of

√

log T
T . For the setting where we can solve this matrix factorization, including those

described in Chapter 4, this result correspondingly indicates consistency as T →∞. This analysis,

however, applies only to the Euclidean loss setting; an interesting next step is to extend these finite

sample error bounds to general convex losses.

The connection between forward and reverse prediction enabled important algorithmic insights

for semi-supervised learning, but remains imprecise. The main issue is that for any forward regular-

izer, any reverse regularizer can be chosen and a forward-reverse equivalence obtained. Currently,

the connection is obtained under hard EM, where the entropy regularizer is dropped for both the

forward and reverse problems (see Appendix B.2). Because the entropy regularizer affects the

choice of prior on the forward and reverse variables, this approximation likely results in this lack of

precision on the specification of regularizers. Understanding the effects of the entropy regularizer

appears to be the key component for better elucidating the connection between forward and reverse

prediction. As mentioned earlier, this understanding is also key for understanding how to formalize

a one-layer neural network as a regularized factor model.

8.2 Summary

This dissertation develops global solution techniques for regularized factor models and incorporates

novel problem setting under regularized factor models. The central component of the algorithmic

development is a general convex reformulation procedure that involves characterizing an induced

norm on the joint variable, and then recovering the original factors either in closed form or with a

boosting procedure. These algorithmic developments are then used to advance estimation in sub-

space learning, semi-supervised learning and auto-regressive moving average models, with empir-

ical demonstrations of the advantages of the resulting simple algorithms. The results in this thesis

further advocate for regularized factor models as a unified formalism for both future algorithm de-

velopment and problem specification.

105

Bibliography

Agarwal, A., Anandkumar, A., Jain, P., and Netrapalli, P. (2013). Learning sparsely used overcomplete

dictionaries via alternating minimization. arXiv.org, 1310.7991v2.

Akaho, S., Kiuchi, Y., and Umeyama, S. (1999). MICA: multimodal independent component analysis. In

Proceedings of the International Joint Conference on Neural Networks, pages 927–932.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012). A method of moments for mixture models and hidden

Markov models. arXiv.org, 1203.0683v3.

Anava, O., Hazan, E., Mannor, S., and Shamir, O. (2013). Online learning for time series prediction.

arXiv.org, 1302.6927v1.

Andersson, S. (2009). Subspace estimation and prediction methods for hidden Markov models. The Annals

of Statistics, pages 4131–4152.

Andoni, A., Panigrahy, R., Valiant, G., and Zhang, L. (2014). Learning polynomials with neural networks.

Proceedings of the 31st International Conference on Machine Learning, pages 1908–1916.

Archambeau, C. and Bach, F. (2008). Sparse probabilistic projections. In Advances in Neural Information

Processing Systems, pages 73–80.

Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multi-task feature learning. Machine Learning,

73(3):243–272.

Argyriou, A., Micchelli, C., and Pontil, M. (2009). When is there a representer theorem? Vector versus

matrix regularizers. Journal of Machine Learning Research, 10:2507–2529.

Arslan, O. (2010). An alternative multivariate skew Laplace distribution: properties and estimation. Statisti-

cal Papers, pages 865–887.

Bach, F. and Jordan, M. I. (2006). A probabilistic interpretation of canonical correlation analysis. Technical

Report 688, Berkeley.

Bach, F., Mairal, J., and Ponce, J. (2008). Convex sparse matrix factorizations. arXiv.org, 0812.1869v1.

Balcan, M.-F. and Blum, A. (2005). A PAC-style model for learning from labeled and unlabeled data. In

Proceedings of the 18th Annual Conference on Learning Theory (COLT), pages 111–126.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with Bregman divergences. Journal

of Machine Learning Research, 6:1705–1749.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Transactions on Information Theory, 39(3):930–945.

Bauer, D. (2005). Estimating linear dynamical systems using subspace methods. Econometric Theory, 21(01).

106

Baxter, J. (1995). Learning internal representations. In Proceedings of the International Conference on

Learning Theory, pages 311–320, New York, New York, USA. ACM Press.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric framework for

learning from labeled and unlabeled examples. Journal of Machine Learning.

Ben-David, S., Lu, T., and Pal, D. (2008). Does unlabeled data provably help? Worst-case analysis of

the sample complexity of semi-supervised learning. In Proceedings of the 21st Annual Conference on

Learning Theory, pages 33–44.

Benveniste, A., Metivier, M., and Priouret, P. (2012). Adaptive Algorithms and Stochastic Approximations.

Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of

the llth Annual Conference on Learning Theory, pages 92–100.

Boots, B. and Gordon, G. (2012). Two-manifold problems with applications to nonlinear system identifica-

tion. In Proceedings of the 29th International Conference on Machine Learning, pages 623–630.

Borga, M., Landelius, T., and Knutsson, H. (1997). A unified approach to PCA, PLS, MLR and CCA.

Technical report, Linköping University.

Bousquet, O. and Bottou, L. (2008). The tradeoffs of large scale learning. In Advances in Neural Information

Processing Systems, pages 161–168.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Bradley, D. M. and Bagnell, J. A. (2008). Differential sparse coding. In Advances in Neural Information

Processing Systems.

Bradley, D. M. and Bagnell, J. A. (2009). Convex coding. In Uncertainty and Control, pages 83–90. AUAI

Press.

Brand, M. (2003). Continuous nonlinear dimensionality reduction by kernel eigenmaps. In Proceedings of

the 18th International Joint Conference on Artifical Intelligence, pages 547–554.

Brockwell, P. J. and Davis, R. A. (2002). Introduction to Time Series and Forecasting. Springer.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of statistical

machine translation: parameter estimation. Computational Linguistics, 19(2):263–311.

Buntine, W. and Jakulin, A. (2006). Discrete Component Analysis. In Subspace, Latent Structure and Feature

Selection, pages 1–33. Springer Berlin Heidelberg, Berlin, Heidelberg.

Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.

SIAM Journal on Optimization, 20(4):1956–1982.

Candes, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis? Journal of the

ACM, 58:1–37.

Candes, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of

Computational Mathematics, 9(6):717–772.

Chen, H. and Peng, J. (2008). 0-1 semidefinite programming for graph-cut clustering: modelling and approx-

imation. Data mining and mathematical programming, 45:15–40.

107

Cheng, H., Zhang, X., and Schuurmans, D. (2013). Convex relaxations of Bregman divergence clustering. In

Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pages 162–171.

Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S. (2009). Nonnegative Matrix and Tensor Factorizations:

Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley.

Collins, M., Dasgupta, S., and Schapire, R. E. (2002). A generalization of principal component analysis to

the exponential family. In Advances in Neural Information Processing Systems, pages 617–624.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3):287–314.

Corduneanu, A. and Jaakkola, T. (2006). Data dependent regularization. Semi-Supervised Learning, pages

163–182.

Cortes, C. and Mohri, M. (2007). On transductive regression. In Advances in Neural Information Processing

Systems, pages 305–312.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press.

Cristianini, N. (2003). Convex methods for transduction. In Advances in Neural Information Processing

Systems, pages 73–80.

De Bie, T., Cristianini, N., and Rosipal, R. (2005). Eigenproblems in pattern recognition. In Handbook

of Geometric Computing: Applications in Pattern Recognition, Computer Vision, Neuralcomputing, and

Robotics, pages 129–170.

De Bie, T. and De Moor, B. (2002). On two classes of alternatives to canonical correlation analysis, using

mutual information and oblique projections. In Proceedings of the 23rd Symposium on Information Theory.

De la Torre, F. (2012). A least-squares framework for component analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(6):1041–1055.

Dhillon, I., Guan, Y., and Kulis, B. (2004). Kernel k-means: spectral clustering and normalized cuts. In Pro-

ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 551–556.

Dhillon, P. S., Foster, D., and Ungar, L. (2011). Multi-view learning of word embeddings via CCA. In

Advances in Neural Information Processing Systems, pages 199–207.

Ding, C., Li, T., and Peng, W. (2006). Nonnegative matrix factorization and probabilistic latent semantic

indexing: equivalence, chi-square statistic, and a hybrid method. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 342–348.

Druck, G. and McCallum, A. (2010). High-performance semi-supervised learning using discriminatively

constrained generative models. In Proceedings of the 27th International Conference on Machine Learning,

pages 319–326.

Durbin, J. (1960). The fitting of time-series models. Revue de l’Institut International de Statistique, 28:233–

244.

Ehm, W., Genton, M. G., and Gneiting, T. (2003). Stationary covariances associated with exponentially

convex functions. Bernoulli, 9(4):607–615.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned

dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745.

Eustaquio, R. G. and Karas, E. W. (2008). Constraint qualifications for nonlinear programming. Federal

University of Parana.

108

Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals of Eugenics, 8(4):376–386.

Foster, D. P., Rodu, J., and Ungar, L. H. (2012). Spectral dimensionality reduction for HMMs. arXiv.org.

Gaussier, E. and Goutte, C. (2005). Relation between PLSA and NMF and implications. In Proceedings

of the 28th Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 601–602.

Geiger, D., Verma, T., and Pearl, J. (1990). Identifying independence in Bayesian networks. Networks,

20(5):507–534.

Georghiades, A., Belhumeur, P., and Kriegman, D. (2001). From few to many: Illumination cone models for

face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23:643–660.

Goldberg, A., Zhu, X., Recht, B., and Xu, J. (2010). Transduction with matrix completion: Three birds with

one stone. In Advances in Neural Information Processing Systems, pages 757–765.

Goldfarb, D., Ma, S., and Scheinberg, K. (2010). Fast alternating linearization methods for minimizing the

sum of two convex functions. SIAM Journal on Optimization.

Gordon, G. (2003). Generalized2 Linear2 Models. In Advances in Neural Information Processing Systems,

pages 593–600.

Gorski, J., Pfeuffer, F., and Klamroth, K. (2007). Biconvex sets and optimization with biconvex functions: a

survey and extensions. Mathematical methods of operations research, pages 373–407.

Gribonval, R., Jenatton, R., Bach, F., Kleinsteuber, M., and Seibert, M. (2013). Sample complexity of

dictionary learning and other matrix factorizations. arXiv.org, 1312.3790v1.

Ham, J., Lee, D. D., Mika, S., and Schölkopf, B. (2004). A kernel view of the dimensionality reduction of

manifolds. In Proceedings of the 21st International Conference on Machine Learning, pages 47–54.

Hannan, E. J. and Kavalieris, L. (1984). Multivariate linear time series models. Advances in Applied Proba-

bility, 16:492–561.

Hardoon, D. R., Szedmak, S. R., and Shawe-taylor, J. R. (2004). Canonical correlation analysis: An overview

with application to learning methods. Neural Computation, 16(12):2639–2664.

He, X. and Niyogi, P. (2004). Locality preserving projections. In Advances in Neural Information Processing

Systems, pages 153–160.

Hendrickx, J. M. and Olshevsky, A. (2010). Matrix p-norms are NP-hard to approximate if p 6= 1, 2,∞.

SIAM Journal on Matrix Analysis and Applications, 31(5):2802–2812.

Hillar, C. J. and Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal of the ACM, 60(6):1–39.

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10):428–

434.

Hochreiter, S. and Schmidhuber, S. (1999). Source separation as a by-product of regularization. In Advances

in Neural Information Processing Systems, pages 459–465.

Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis. Cambridge University Press.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28:321–377.

Hsu, D., Kakade, S., and Zhang, T. (2012). A spectral algorithm for learning Hidden Markov Models. Journal

of Computer and System Sciences, pages 1460–1480.

109

Hyvärinen, A., Hurri, J., and Hoyer, P. O. (2009). Natural Image Statistics. A probabilistic approach to early

computational vision. Springer, London.

Jain, P. and Dhillon, I. S. (2013). Provable inductive matrix completion. arXiv.org, 1306.0626v1.

Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization.

In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 665–674, New York,

New York, USA. ACM Press.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal methods for sparse hierarchical dictio-

nary learning. In Proceedings of the 27th International Conference on Machine Learning, pages 487–494.

Jia, Y., Salzmann, M., and Darrell, T. (2010). Factorized latent spaces with structured sparsity. In Advances

in Neural Information Processing Systems, pages 982–990.

Joachims, T. (1999). Transductive inference for text classification using support vector machines. In Pro-

ceedings of the 16th International Conference on Machine Learning, pages 200–209.

Jong, J. C. and Kotz, S. (1999). On a relation between principal components and regression analysis. The

American Statistician, 53(4):349–351.

Journée, M., Bach, F., Absil, P. A., and Sepulchre, R. (2010). Low-rank optimization on the cone of positive

semidefinite matrices. SIAM Journal on Optimzation, 20(5):2327–2351.

Kascha, C. (2012). A comparison of estimation methods for vector Autoregressive Moving-Average Models.

Econometric Reviews, 31(3):297–324.

Katayama, T. (2006). Subspace Methods for System Identification. Springer.

Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathe-

matical Analysis and Applications, 33(1):82–95.

Kivinen, J. and Warmuth, M. K. (2001). Relative loss bounds for multidimensional regression problems.

Journal of Machine Learning Research, 45(3):301–329.

Kokiopoulou, E., Chen, J., and Saad, Y. (2011). Trace optimization and eigenproblems in dimension reduction

methods. Numerical Linear Algebra with Applications, pages 565–602.

Kulis, B., Dhillon, I., and Mooney, R. (2009). Semi-supervised graph clustering: a kernel approach. Journal

of Machine Learning Research, 74:1–22.

Lampert, C. H. and Kromer, O. (2010). Weakly-paired maximum covariance analysis for multimodal dimen-

sionality reduction and transfer learning. In European Conference on Computer Vision, pages 566–579.

Lee, H., Raina, R., Teichman, A., and Ng, A. (2009). Exponential family sparse coding with applications to

self-taught learning. In Proceedings of the 21st International Joint Conference on Artificial Intelligence,

pages 1113–1119.

Lee, J. A. and Verleysen, M. (2010). Nonlinear Dimensionality Reduction. Springer.

Li, Y. and Zhou, Z. (2011). Towards making unlabeled data never hurt. In Proceedings of the 28th Interna-

tional Conference on Machine Learning, pages 1081–1088.

Liski, E., Nordhausen, K., and Oja, H. (2013). Supervised invariant coordinate selection. Statistics, pages

1–21.

Long, B., Yu, P. S., and Zhang, Z. M. (2008). A general model for multiple view unsupervised learning. In

Proceedings of the SIAM International Conference on Data Mining, pages 822–833.

110

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer.

Ma, S., Goldfarb, D., and Chen, L. (2011). Fixed point and Bregman iterative methods for matrix rank

minimization. Mathematical Programming, 128:321–353.

Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach, F. R. (2008). Supervised dictionary learning. In

Advances in Neural Information Processing Systems, pages 1033–1040.

Mauricio, J. A. (1995). Exact maximum likelihood estimation of stationary vector ARMA models. Journal

of the American Statistical Association, pages 282–291.

Mirzazadeh, F., Guo, Y., and Schuurmans, D. (2014). Convex co-embedding. In Proceedings of the 28th

AAAI Conference on Artificial Intelligence, pages 1989–1996.

Moonen, M. and Ramos, J. (1993). A subspace algorithm for balanced state space system identification.

IEEE Transactions on Automatic Control, 38(11):1727–1729.

Murata, N., Takenouchi, T., Kanamori, T., and Eguchi, S. (2004). Information geometry of U-Boost and

Bregman divergence. Neural Computation, 16(7):1437–1481.

Nadler, B., Srebro, N., and Zhou, X. (2009). Semi-supervised learning with the graph laplacian: the limit of

infinite unlabelled data. Advances in Neural Information Processing Systems, pages 1330–1338.

Neal, R. M. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other

variants. Learning in Graphical Models, pages 355–368.

Nigam, K. and Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. In Proceedings

of the 9th International Conference on Information and Knowledge Management, pages 86–93.

Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. (2000). Text classification from labeled and unlabeled

documents using EM. Journal of Machine Learning, 39:103–134.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed

by V1? Vision Research, 37(23):3311–3325.

Overton, M. L. and Womersley, R. S. (1993). Optimality conditions and duality theory for minimizing sums

of the largest eigenvalues of symmetric matrices. Mathematical Programming, 62(1-3):321–357.

Pataki, G. (1998). On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal

eigenvalues . Mathematics of Operations Research, 23(2):339–358.

Peng, J. and Wei, Y. (2007). Approximating K-means- type clustering via semidefinite programming. SIAM

Journal on Optimization, pages 186–205.

Pereira, F. and Gordon, G. (2006). The support vector decomposition machine. In Proceedings of the 23rd

Internal Conference in Machine Learning, pages 689–696, New York, New York, USA. ACM Press.

Petersen, K. B. (2004). The matrix cookbook. Technical University of Denmark.

Petz, D. (1994). A survey of certain trace inequalities. Functional analysis and operator theory, pages

287–298.

Phatak, A. and de Hoog, F. (2002). Exploiting the connection between PLS, Lanczos methods and conjugate

gradients: alternative proofs of some properties of PLS. Journal of Chemometrics, 16(7):361–367.

Quadrianto, N. and Lampert, C. H. (2011). Learning multi-view neighborhood preserving projections . In

Proceedings of the 28th International Conference on Machine Learning, pages 425–432.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations

via nuclear norm minimization. Siam Review, 52(3):471–501.

111

Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. Siam

Review, 26(2):195–239.

Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., and Gordon, G. J. (2008). Closed-form supervised dimen-

sionality reduction with generalized linear models. In Proceedings of the 25th international conference on

Machine learning, pages 832–839, New York, New York, USA. ACM Press.

Rockafellar, R. (1970). Convex Analysis. Princeton U. Press.

Rosipal, R. and Krämer, N. (2006). Overview and recent advances in partial least squares. In Subspace,

Latent Structure and Feature Selection, pages 34–51.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation,

11(2):305–345.

Salakhutdinov, R. and Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the

weighted trace norm. In Advances in Neural Information Processing Systems, pages 2056–2064.

Scargle, J. D. (1981). Studies in astronomical time series analysis. The Astrophysical Journal Supplement

Series, pages 835–853.

Schölkopf, B. and Smola, A. (2002). Learning with kernels: support vector machines, regularization, opti-

mization, and beyond. MIT Press.

Schölkopf, B., Smola, A., and Müller, K.-R. (1997). Kernel principal component analysis. In Artificial Neural

Networks—ICANN’97, pages 583–588. Springer-Verlag, Berlin/Heidelberg.

Shah, P., Bhaskar, B. N., Tang, G., and Recht, B. (2012). Linear System Identification via Atomic Norm

Regularization. arXiv.org, 1204.0590v1.

Shalev-Shwartz, S., Srebro, N., and Zhang, T. (2010). Trading accuracy for sparsity in optimization problems

with sparsity constraints. SIAM Journal on Optimization, pages 2807–2832.

Sigal, L., Memisevic, R., and Fleet, D. J. (2009). Shared kernel information embedding for discriminative

inference . In IEEE Conference on Computer Vision and Pattern Recognition, pages 2852–2859.

Sindhwani, V., Niyogi, P., and Belkin, M. (2005). Beyond the point cloud: from transductive to semi-

supervised learning. In Proceedings of the 22nd international conference on Machine learning, pages

824–831.

Singh, A. P. and Gordon, G. J. (2008). A unified view of matrix factorization models. In Machine Learning

and Knowledge Discovery in Databases, pages 358–373. Springer Berlin Heidelberg, Berlin, Heidelberg.

Smith, N. and Eisner, J. (2005). Contrastive estimation: training log-linear models on unlabeled data. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 354–362.

Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. (2010). Hilbert space embeddings of hidden

Markov models. In Proceedings of the 27th International Conference on Machine Learning, pages 991–

998.

Srebro, N., Rennie, J., and Jaakkola, T. (2004). Maximum-margin matrix factorization . In Advances in

Neural Information Processing Systems, pages 1329–1336.

Steinberg, D. (2005). Computation of matrix norms with applications to robust optimization. PhD thesis,

Technion.

Sun, L., Ji, S., and Ye, J. (2009a). A least squares formulation for a class of generalized eigenvalue problems

in machine learning. In Proceedings of the 26th International Conference on Machine Learning, pages

1–8. ACM Press.

112

Sun, L., Ji, S., and Ye, J. (2011). Canonical correlation analysis for multilabel classification: a least-squares

formulation, extensions, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(1):194–200.

Sun, L., Ji, S., Yu, S., and Ye, J. (2009b). On the equivalence between canonical correlation analysis and or-

thonormalized partial least squares. In Proceedings of the 21st International Joint Conference on Artificial

Intelligence, pages 1230–1235.

Thiesson, B., Chickering, D. M., Heckerman, D., and Meek, C. (2012). ARMA time-series modeling with

graphical models. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages

552–560.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis. Journal Royal Statis-

tical Society B, 61(3):611–622.

van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis.

Psychometrika, 42(2):207–219.

van der Burg, E. and de Leeuw, J. (1990). Nonlinear redundancy analysis. British Journal of Mathematical

and Statistical Psychology, pages 217–230.

van der Heijden, P. G. M., Gilula, Z., and van der Ark, L. A. (1999). An extended study into the relationship

between correspondence analysis and latent class analysis. Sociological Methodology, 29:147–186.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning,

pages 2579–2605.

Van Overschee, P. and De Moor, B. (1994). N4SID: Subspace algorithms for the identification of combined

deterministic-stochastic systems. Automatica, 30(1):75–93.

Viberg, M. (1995). Subspace-based methods for the identification of linear time-invariant systems. Automat-

ica, 31(12):1835–1851.

Viinikanoja, J., Klami, A., and Kaski, S. (2010). Variational Bayesian mixture of robust CCA models. In

Machine Learning and Knowledge Discovery in Databases, pages 370–385. Springer Berlin Heidelberg.

Wang, C. and Mahadevan, S. (2009). Manifold alignment without correspondence. In Proceedings of the

21st International Joint Conference on Artificial Intelligence, pages 1273–1278.

Wegelin, J. A. (2000). A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block

case. Technical report.

Weinberger, K. Q. and Saul, L. K. (2006). Unsupervised learning of image manifolds by semidefinite pro-

gramming. International Journal of Computer Vision, pages 77–90.

Weiss, Y. (1999). Segmentation using eigenvectors: a unifying view. In Proceedings of the 7th IEEE Inter-

national Conference on Computer Vision, pages 975–982.

White, M. and Schuurmans, D. (2012). Generalized optimal reverse prediction. In Proceedings of the 15th

International Conference on Artifical Intelligence and Statistics, pages 1305–1313.

White, M., Wen, J., Bowling, M., and Schuurmans, D. (2015). Optimal estimation of multivariate ARMA

models. In Proceedings of the AAAI Conference on Artificial Intelligence, page To appear.

White, M., Yu, Y., Zhang, X., and Schuurmans, D. (2012). Convex multi-view subspace learning. In Advances

in Neural Information Processing Systems, pages 1673–1681.

Wiesel, A., Bibi, O., and Globerson, A. (2013). Time varying autoregressive moving average models for

covariance estimation. IEEE Transactions on Signal Processing, 61(11):2791–2801.

113

Williams, C. K. I. (2002). On a connection between kernel PCA and metric multidimensional scaling. Ma-

chine Learning, 46(1/3):11–19.

Wold, H. (1985). Partial least squares. Encyclopedia of statistical sciences.

Wold, H. O. A. (1938). A Study in The Analysis of Stationary Time Series. Almqvist & Wiskell.

Xing, E. P. and Jordan, M. I. (2003). On semidefinite relaxations for normalized k-cut and connections to

spectral clustering. Technical Report UCB/CSD-03-1265, Berkeley.

Xu, H., Caramanis, C., and Sanghavi, S. (2010). Robust PCA via outlier pursuit. In Advances in Neural

Information Processing Systems, pages 2496–2504.

Xu, L., White, M., and Schuurmans, D. (2009). Optimal reverse prediction: a unified perspective on super-

vised, unsupervised and semi-supervised learning. In Proceedings of the 26th International Conference

on Machine Learning, pages 1137–1144.

Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., and Lin, S. (2007). Graph embedding and extensions:

A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(1):40–51.

Zhang, X., Yu, Y., and Schuurmans, D. (2012). Accelerated training for matrix-norm regularization: A

boosting approach. In Advances in Neural Information Processing Systems, pages 2906–2914.

Zhang, X., Yu, Y., White, M., Huang, R., and Schuurmans, D. (2011). Convex sparse coding, subspace

learning, and semi-supervised extensions. In Proceedings of the 25th AAAI Conference on Artificial Intel-

ligence, pages 567–573.

Zhao, H. and Poupart, P. (2014). A sober look at spectral learning. arXiv.org, 1406.4631v1.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2004). Learning with local and global

consistency. In Advances in Neural Information Processing Systems, pages 321–328.

Zhou, D. and Schölkopf, B. (2006). Discrete Regularization. In Semi-Supervised Learning, pages 237–249.

MIT Press.

Zhu, X. (2006). Semi-supervised learning literature survey. Technical report, University of Wisconsin-

Madison.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational

and Graphical Statistics, 15:262–286.

114

Appendix A

Background information

A.1 Generalized eigenvalue problems

The eigenvalue decomposition for a square, diagonalizable matrix A ∈ R
n×n is A = QΛQ−1

giving Aqi = λiqi for Q = [q1, . . . ,qn]. For a symmetric matrix A, Q is orthogonal, giving

A = QΛQ′ with QQ′ = Q′Q = I . This eigenvalue decomposition corresponds to the following

optimization (Kokiopoulou et al., 2011):

max
V ′V=I

tr(V ′AV) = tr(Q′AQ) = tr(Λ) =
∑

i

λi.

The generalized eigenvalue problem is the solution to the equation Aq = λBq for some matrix B.

For a symmetric A, the generalized eigenvalue decomposition A = BQΛQ′ corresponds to

max
V ′BV=I

tr(V ′AV) = tr(Q′AQ) = tr(Λ) =
∑

i

λi.

Note that if B in the generalized eigenvalue problem is invertible, then we can always do a standard

eigenvalue decomposition on B−1A.

The singular value decomposition is related to the eigenvalue decomposition in that for the

singular value decomposition X = UΣV ′ which has orthogonal U and V and diagonal Σ, the

corresponding eigenvalue decomposition for X ′X and XX ′ respectively are

X ′X = V ΣU ′UΣV ′ = V Σ2V ′

XX ′ = UΣV ′V ΣU ′ = UΣ2U ′

Only square, diagonalizable matrices have an eigenvalue decomposition; any matrix, however, has

a singular value decomposition. Since any real, symmetric matrix is diagonalizable, we know that

X ′X and XX ′ are both diagonalizable and so have an eigenvalue decomposition.

115

When minimizing rather than maximizing the above trace, the solution corresponds to the min-

imum eigenvalues of the generalized eigenvalue problem. For B = I , this minimization is also

equivalent to obtaining the maximum eigenvalues of the pseudo-inverse matrix:

min
V ′V=I

tr(V ′AV) = max
V ′V=I

tr(V ′A†V)

This is because for singular value decomposition of a matrix X = UΣV ′, the pseudo-inverse has

the decomposition X† = V Σ−1U ′, since it satisfies the four properties of a pseudo-inverse

1. (XX†)′ = UΣ−1V ′V ΣU ′ = UΣ−1ΣU ′ = UΣΣ−1U ′ = UΣV ′V Σ−1U ′ = XX†

2. (X†X)′ = V ΣU ′UΣ−1V ′ = V Σ−1ΣV ′ = V Σ−1U ′UΣV ′ = X†X

3. XX†X = UΣV ′V Σ−1U ′UΣV ′ = UΣΣ−1ΣV ′ = UΣV ′ = X

4. X†XX† = V Σ−1U ′UΣV ′V Σ−1U ′ = V Σ−1ΣΣ−1U ′ = V Σ−1U ′ = X†

Therefore, the eigenvalue decomposition of A† similarly has the inverse eigenvalues.

A.2 Relationship between regularization and constraints

In some settings, there are nice relationships between regularization and constraints. In the convex

reformulations, we take advantage of these relationships. Often there is an advantage to enforcing

constraints as regularizers, since constrained optimization can be more difficult. In this section, I

quickly summarize these connections, to make the optimization choices in this thesis more clear.

A.2.1 Lagrangian, strong duality and the KKT conditions

In certain situations, we can take an equality and inequality constrained optimization and convert

it into a regularized problem (see (Boyd and Vandenberghe, 2004, Chapter 5) for more detailed

information). Assume the goal is to optimize

min
x: g(x)≤0, h(x)=0

L(x)

where L : Rn → R is a loss function, g : Rn → R
cg is a vector-valued function of cg inequality

constraints and h : Rn → R
ch is a vector-valued function of ch equality constraints. Notice that

if h(x) = c for some vector, then we can define h̃(x) = h(x) − c and enforce h̃(x) = 0 and

similarly for g. Assume also that the constrained optimization has a solution, i.e.,
(
⋂cg

i=1 domgi
)

∩
(
⋂ch

i=1 domhi) ∩ domL is non-empty. Define the Lagrange function

Λ(x,λ,ν) = L(x) + λ′g(x) + ν ′h(x) = L(x) +

cg
∑

i=1

λigi(x) +

ch
∑

i=1

νihi(x)

116

where λ ≥ 0 and ν are called the dual variables or Lagrange multiplier vectors associated with

the original constrained optimization. To obtain an equivalence, we first need to discuss the dual

problem and strong duality.

The Lagrange dual problem associated with the original primal problem consists of the follow-

ing optimization:

max
λ≥0, ν

R(ν,λ) where R(ν,λ) = inf
x

Λ(x,ν,λ)

Since the Lagrange dual function R gives a lower bound on the optimal value to the primal problem

for each pair (ν,λ), the dual optimization can be interpreted as finding the best lower bound for

the primal problem using the Lagrange dual function. Interestingly, regardless of if L is convex, the

dual R is concave in ν and λ, making the dual problem a convex optimization, since the objective

is concave and the constraint is convex.

Using the max-min inequality, we automatically obtain the weak-duality property

sup
λ≥0, ν

R(ν,λ) = sup
λ≥0, ν

inf
x

Λ(x,ν,λ) ≤ inf
x

sup
λ≥0, ν

Λ(x,ν,λ) = inf
x: g(x)≤0, h(x)=0

L(x).

The optimization with the supremum and infimum swapped corresponds to the original primal prob-

lem because the inner supremum forces the outer optimization to choose x that satisfies the con-

straints; otherwise, the loss becomes unbounded.

To obtain strong duality, we need this inequality to be an equality which is often called the

strong max-min property or the saddle-point property. This equality is obtained only under certain

conditions, called constraint qualifications. An example of a widely used constraint qualification is

Slater’s condition, which requires that for convex L and linear equality constraints, h(x) = Ax−c,

there exists x such that Ax = c and gi(x) < 0 for all i = 1, . . . , cg. This conditions equates

to requiring that x is strictly feasible: the inequality constraints must be able to be satisfied as

strict inequalities. If Slater’s condition holds, then strong duality is obtained. For other constraint

qualifications, including simplifications to Slater’s condition under certain assumptions, see (Boyd

and Vandenberghe, 2004, Section 5.2.3) and (Eustaquio and Karas, 2008).

When strong duality is known to hold for the problem, then an equivalence can be obtained

between the constrained primal problem and the regularized (dual) problem. Let x∗ and (ν∗,λ∗)

be the primal and dual optimal points respectively, with zero duality gap (i.e., assuming that strong

duality holds and so the optimal values for the primal and dual problems are equal). Therefore, the

gradient of the Lagrangian must be zero at x∗:

∇L(x∗) +
cg
∑

i=1

λi∇gi(x∗) +
ch
∑

i=1

νi∇hi(x
∗) = 0

117

giving

g(x∗) ≤ 0

h(x∗) ≤ 0

λ∗ ≥ 0

∀i = 1, . . . , cg, λ∗
igi(x

∗) = 0

∇L(x∗) +
cg
∑

i=1

λi∇gi(x∗) +
ch
∑

i=1

νi∇hi(x
∗) = 0

which are called the KKT conditions. These KKT conditions can often be used to facilitate solving

the primal problem, either by providing an analytic solution or by simplifying the optimization.

Therefore, given strong duality and a solution to the Lagrange function, we know that using

the regularizer weights (λ∗,ν∗) gives a regularized problem that is equivalent to the original con-

strained optimization. Even under weak duality, we know that there are (λ∗,ν∗) that give the closest

regularized problem to the original constrained problem. Without a characterization of the duality

gap, however, it is difficult in this case to say exactly how the two problems relate.

A.2.2 General set constraints

Set constraints that place Φ ∈ F or C ∈ C are not typically thought of as priors; to maintain the

density interpretation, we turn to the Dirac delta distribution. There is not a well-defined density p

for the Dirac delta, since it puts infinite weight on a set of measure zero. Instead, the Dirac delta is

usually defined as the limit of the following function

δa(x) =
1

a
√
π
exp(−x2/a2).

If we take the negative logarithm of this function, and remove constants which would not be used

in the minimization, we obtain Ra(x) = x2

a2
. For x = 0, we get Ra(x) → 0 as a → 0. For any

other x, we get Ra(x) → ∞ as a → 0. We can generalize this notion to any set using an indicator

function, 1F : Rk×T → {0, 1}:

1F (Φ) :=

{

1 if Φ ∈ F
0 otherwise

Again, RΦ,k(Φ) ≡ − log(1F (Φ)) = 0 if Φ ∈ F and otherwise is ∞. Therefore, the loss is

dominated by the prior, unless the variables are in the pre-specified set.

Viewing hard set constraints as regularizers, however, does not appear to give any gains and

simply obfuscates the problem. Therefore, we keep both constraint sets C and F and regularizers

RC,k and RΦ,k in the formulation of regularized factor models.

118

A.3 Bregman divergence properties

The following is a well-known property of Bregman divergences. It is useful to enable either DF or

DF ? to be used, since Bregman divergences are only guaranteed to be convex in the first argument.

Lemma 2 With ŷ = f(ẑ) and y = f(z),

DF (ẑ||z) = DF ?(y||ŷ). (A.1)

Proof: Recall that F ?(y) = maxz z
′y − F (z), and solving for the maximum z we obtain

d

dz
= y −∇F (z) = y − f(z) = 0 =⇒ z = f−1(y)

giving

F ?(y) = f−1(y)′y − F (f−1(y)) (A.2)

Now notice that, for H(f) the Hessian of f

∇F ?(y) = H(f−1)(y)′y + f−1(y)−H(f−1)(y)′∇F (f−1(y))

= f−1(y) +H(f−1)(y)′y −H(f−1)(y)′f(f−1(y))

= f−1(y) +H(f−1)(y)′y −H(f−1)(y)′y

= f−1(y)

= f?(y)

Now we can rewrite DF ?(y||ŷ) in terms of F and f−1 = f?

DF ?(y||ŷ) = F ?(y)− F ?(ŷ)− f?(ŷ)′(y − ŷ)

= f−1(y)′y − F (f−1(y))− f−1(ŷ)′ŷ + F (f−1(ŷ))− f−1(ŷ)′(y − ŷ)

= f−1(y)′y − F (f−1(y)) + F (f−1(ŷ))− f−1(ŷ)′y

Finally, recall that ŷ = f(ẑ) and y = f(z), giving us

DF ?(y||ŷ) = f−1(y)′y − F (f−1(y)) + F (f−1(ŷ))− f−1(ŷ)′y

= f−1(f(z))′f(z)− F (f−1(f(z))) + F (f−1(f(ẑ)))− f−1(f(ẑ))′f(z)

= z′f(z)− F (z) + F (ẑ)− ẑ′f(z)

= F (ẑ)− F (z)− f(z)′(ẑ− z)

= DF (ẑ||z)

�

119

EXPONENTIAL FAMILY DENSITY p(z|θ)
= exp(〈z,θ〉 − F (θ))p0(z)

TRANSFERS f(θ) ≈ z

LOSS = minθ F (θ)− z′θ

BERNOULLI

z∈{0, 1}BINARY OUTCOME

θ ∈ [0, 1], θ = ln q
1−q

q PROBABILITY OF 1

p(z|q) = qz(1− q)1−z

µ = q p(z|θ) = exp(θz)
1+exp(θ)p0(z)

LOGISTIC LOSS

F (θ) = ln(1 + exp(θ))
f(θ) = (1 + exp(−θ))−1

f(θ) = q
SIGMOIDAL TRANSFER

BERNOULLI, n-D z∈{0, 1}n,
θ ∈ [0, 1]n

p(z|q) =∏i q
zi
i (1− qi)

1−zi

p(z|θ) = exp(θ′z)
1+exp(θ)p0(z)

F (θ) = 1′ ln(1+ exp(θ))
f(θ) = (1 + exp(−θ))−1

BINOMIAL z∈{0, . . . , N}
SUCCESSES IN N TRIALS

θ ∈ [0, N], θ = ln q
1−q

p(z|q) =
(

N
z

)

qz(1− q)1−z

µ = Nq
p(z|θ) = exp(θz)

1+exp(θ)p0(z)

F (θ) = N ln(1 + exp(θ))
f(θ) = N(1 + exp(−θ))−1

f(θ) = Nq

EXPONENTIAL

z ∈ R
+

θ = −λ < 0

p(z|θ) = −θ exp(θz) ITAKURA-SAITO DISTANCE

F (θ) = − ln(−θ)
f(θ) = −θ−1

GAMMA

k > 0 SHAPE PARAMETER

θ = −β < 0 RATE PARAMETER

k = 1 IS EXPONENTIAL DIST.

p(z|θ) = −θk exp(zθ)p0(z)
p0(z) = Γ(k)−1zk−1

exp(−F (−θ)) = −θk
MODELS WEIGHT TIMES

F (θ) = −k ln(−θ)
f(θ) = −kθ−1

GAUSSIAN

FOR MEAN θ = µ

AND COVARIANCE Σ

p(z|θ)=C exp(−1
2MD(θ))

WHERE

MD(θ) = (z−θ)′Σ−1(z−θ)
AND C = (2π)−n/2|Σ|−1/2

F (z) = 0.5z′Σ−1z

f(z) = Σ−1/2z

LEAST-SQUARES Σ = I : 1

2
‖θ − z‖2F

MAHALANOBIS DIST: 0.5MD(θ)

MULTINOMIAL

N > 0 NUMBER OF TRIALS

z ∈ N
n , n EVENTS

zj FREQ. OF EVENT j

p(z|q) = N !∏n
j=1 zj !

∏n
j=1 q

zj
j

θ = [ln(q1

qn
, . . . , qn−1

qn
), 0]

F (θ) = N ln(1′ exp(θ))

f(θ)=N exp(θ)/(1′ exp(θ))

1′ exp(θ) = 1 +
∑n−1

j=1 exp(θi)
SOFTMAX TRANSFER

POISSON

z ∈ N, Z= # OF EVENTS THAT

OCCURRED IN INTERVAL

θ ∈ N AVERAGE # OF EVENTS

p(z|θ) = θ2 exp(−θ)/z!
UNNORMALIZED KL-DIVERGENCE

F (θ) = θ ln(θ)− θ
f(θ) = ln(θ)

WEIBULL

z = xk FOR SOME k > 0
θ = −λk < 0
λ SCALE, 1/λ RATE

p(z|θ) = −θ exp(zθ)p0(z)
p0(z) = xk−1

k = 1 IS EXPONENTIAL DIST.

MODELS TIME TO FAILURE

F (θ) = − ln(−θ)
f(θ) = −θ−1

Table A.1: Detailed information about exponential family distributions and their associated transfers

and Bregman divergences. Each distribution is a natural exponential family: pF (z|θ) = exp(z′θ −
F (θ))p0(z). The minimization over the Bregman divergence can be simplified because terms only

dependent on z can be dropped in the minimization: minθ − ln pF (zi|θ) = minθDF (θ|f−1(z)) =
minθ F (θ)−F (f−1(z))− f(f−1(z))′(θ− z) = minθ F (θ)− z′θ. The goal is to learn f(θ) ≈ z.

For example, for data x, the goal may be to learn Ŵ such that f(Ŵx) ≈ f(Wx) = y. Note that

for the tables in (Banerjee et al., 2005), F = ψ.

120

Appendix B

Generalized forward-reverse connection

B.1 Proof of Theorem 1

Theorem 1 [Forward-Reverse Equivalence] Given a n×T input matrixX and a k×T output matrix

Y , such that T > rank(X) = n and T > rank(Y) = k, there exist unique global minimizers

W ∗ = argmin
W

DF (WX||f−1(Y))

C∗ = argmin
C

DF ?(CY ||f(X))

where f(W ∗X)X ′ = Y X ′ = Y f−1(C∗Y)′.

Proof: Let F be a strictly convex function with Dom(F) = {WX : W ∈ R
k×n}, with any full

rank X (i.e., X such that W1X 6= W2X for W1 6= W2). Then G = F (·X) has Dom(G) = R
k×n

(which is convex). For W1,W2 in Dom(G) such that W1 6=W2

G(λW1 + (1− λ)W2) = F ((λW1 + (1− λ)W2)X) = F (λW1X + (1− λ)W2X)

< λF (W1X) + (1− λ)F (W2X) because F is strictly convex and W1X 6=W2X .

= λG(W1) + (1− λ)G(W2)

Therefore, G is strictly convex. The optimization minW G(W) therefore has a unique mini-

mum. Notice that we can always linearize X , W and Y to make sure we are working with vectors.

For the relation, since W ∗ and C∗ are global minimizers of L(WX,Y) and R(X,CY),

d

dW
L(W ∗X,Y) = (f(W ∗X)− Y)X ′ = 0 (k × n)

d

dC
R(X,C∗Y) = (f∗(C∗Y)−X)Y ′ = 0 (n× k)

=⇒ (f(W ∗X)− Y)X ′ = ((f∗(C∗Y)−X)Y ′)′

=⇒ f(W ∗X)X ′ − Y X ′ = Y f∗(CY)′ − Y X ′

=⇒ f(W ∗X)X ′ = Y f∗(C∗Y)′
�

121

Although in general the relationship between W ∗ and C∗ is implicit, in some cases an explicit

conversion can be recovered.

Corollary 5. If X ∈ R
T×T has full column rank, rank(X) = T , then

W ∗ = f−1(Y f−1(C∗Y)′X ′−1)X−1.

Though this is a restrictive requirement, this corollary can be useful for identifying a closed-

form mapping for when using kernels, since the kernel is often a square, full-rank matrix.

B.2 Kernelization, regularization, and instance weighting

As in the least-squares setting, the equivalence between forward and reverse prediction is preserved

after adding kernels, regularizer and/or instance weighting, due to the relationship (3.11).

We start with regularization, since it is a key component of our regularized factor models Recall

that the regularizer corresponds to a prior on the parameters, in this case, p(W) and p(C). One

would expect that there is a strict relationship between the priors on W and C: intuitively a chosen

prior on W should narrow the space of allowed priors on C. Instead, we find that, in fact, a unique

W corresponds to a set of possible C which can have any prior.

To see why this is the case, first notice that

P (X,Y) =

∫

P (X,C|Y)P (Y)dC

P (X,Y) =

∫

P (Y,W |X)P (X)dW

As in Lemma 1, we can again represent this integral as an entropy regularized maximization,

max
q(·)

∫

q(W)P (Y,W |X)P (X)dW +H(q(·)) = max
q(·)

∫

q(C)P (X,C|Y)P (Y)dC +H(q(·)).

If we again drop the entropy regularizer, then we obtain the forward and reverse losses, because

max
q(·)

∫

q(W)P (Y,W |X)P (X)dW = max
C

P (Y,W |X)P (X) = max
C

P (Y |X,W)P (W |X)P (X)

Alternatively, if we could assume that P (X,W |Y,C) = P (X|Y,C) and P (Y,C|X,W) =

P (Y |X,W), then we would obtain the following equalities.

P (X,W, Y,C) = P (X,W |Y,C)P (Y,C) = P (X|Y,C)P (Y,C)

P (X,W, Y,C) = P (Y,C|X,W)P (X,W) = P (Y |X,W)P (X,W)

Therefore, we obtain

P (X|Y,C)P (Y,C) = P (Y |X,W)P (X,W).

122

Now notice that P (X,W) = P (W |X)P (X) = P (W)P (X) if the prior on W is not influenced

by X . Similarly, P (Y,C) = P (C)P (Y). As described in Section 2.1, the goal is to mini-

mize the negative log likelihood. Since − logP (X|Y,C) = DF ?(CY ||f(X))+ constants and

− logP (Y |X,W) = DF (WX||f−1(Y))+ constants, we get

min
W

DF (WX||f−1(Y))− log p(W) ≡ min
C

DF ?(CY ||f(X))− log p(C)

where logP (X) and logP (Y) are dropped since they do not affect the minimization.

Given the optimal W for a chosen forward prior, therefore, there exists a unique C for all

possible priors that satisfies the reverse optimization. For example, assuming independent priors

on C and Y , if one adds a convex, differentiable regularizer, R : Rn×k, to the forward training

problem,

argmin
W

DF (WX||f−1(Y)) + αR(W) (B.1)

then for any prior p(C), we immediately obtain the solution equivalence

f(W ∗X)X ′ + α∇R(W ∗) = Y f−1(C∗Y)′ −∇ log p(C∗) (B.2)

using the same approach to get the equality in (3.11). The choice of regularizer/prior on W , there-

fore, does not restrict the choice of priors on C.

One way to obtain a unique equivalence between regularized forward and reverse prediction

problems is to impose a constraint on the recovery of W from C and vice versa. A reasonable con-

straint on the equivalence is to choose the prior such thatDF (XW
∗||f−1(Y)) = DF ?(Y C∗||f(X)),

since we may want equal weight on the main loss and equal weight on the regularizers. In this set-

ting, given W ∗, we can obtain a unique equivalence using the optimization

min
C:log p(C)=log p(W ∗)

DF ?(Y C||f(X))

assuming that − log p(C) is a convex regularizer. In general, however, the relationship between

these priors remains an important open problem. The selection of the priors for the forward and

reverse problems is likely tied to the entropy regularizer in the formulation that maximizes over the

priors q(W) and q(C), but requires further investigation.

Second, re-expressing the training problem in a reproducing kernel Hilbert space (RKHS) is

an important extension: kernels increase modeling power and enable a large, even infinite num-

ber of features 1. However, from the representer theorem (Kimeldorf and Wahba, 1971), the

regularized loss (B.1) must admit an RKHS embedding provided the regularizer is of the form

R = Ω(h(WW ′)) for a function h that is matrix nondecreasing (Argyriou et al., 2009).2 This

1Note that one cannot simply incorporate a kernel into a non-linear transfer function: inner products, for example, are

not invertible.
2 A function h is matrix non-decreasing if M � N implies h(M) ≥ h(N) for M � 0 and N � 0.

123

form incorporates many useful regularizers, including the commonly used Frobenius norm, ‖W‖2F ,

and trace norm (aka nuclear norm), ‖W‖tr. Thus, Wx can be represented as
∑

t αtk(xt,x) for

some given values {x1, . . . ,xm}. For a least squares regularizer, for example, since the form of

W = AX ′, the kernelized form of Equation (B.1) becomes

argmin
A
DF (AK||f−1(Y)) + α tr(A′AK). (B.3)

Using the corresponding reverse lossDF ?(BY ||f(K)) with regularizersR(A) = − log p(A)G(B) =

− log p(B), we obtain the equivalence

f(A∗K)K +∇R(A) = Y f−1(B∗Y)′ +∇G(B). (B.4)

A closed form recovery is simple for the case that ∇R(A) = 0. Since K is invertible, we can use

Corollary 5 to obtain the recovery A = f−1((Y f−1(B∗Y)′ +∇(B))K−1)K−1, or if∇G(B) = 0,

A = f−1(Y f−1(B∗Y)′K−1)K−1. This setting,∇R(A) = 0, arises for kernel PCA, for example 3.

Finally, instance weights can be incorporated while still preserving unique forward-reverse so-

lution correspondences. The Fenchel dual of Fλ(z) = λF (z) for weight λ > 0 is given by

F ?
λ (y) = max

z
z′y − Fλ(z) = max

z
z′y − λF (z) = λmax

z
z′(y/λ)− F (z) = λF ?(y/λ).

The corresponding gradients are fλ(x) = λf(x) and f?λ(y) = f−1(y/λ). Despite the modified

conjugates, the reverse problem simplifies to adding instance weights to the original reverse loss.

To illustrate, consider an instance-weighted version of the forward loss minimization problem

min
W

t
∑

t=1

λtDF (WX:,t||f−1(Yt)) = min
W

T
∑

t=1

λt
[

F (WX:,t)− F (f−1(Y:,t))− Y ′
:,t(WX:,t − f−1(Y:,t))

]

= min
W

T
∑

t=1

λt
[

F (WX:,t)− Y ′
:,tWX:,t

]

= min
W

t
∑

t=1

DFλt
(WX:,t||f−1

λt
(λtYt)).

Using the above identity, we conclude that the corresponding reverse loss can be expressed

DF ∗

λt
(λtCYt||fλt(X:,t))

= λtF
?(λtCYtλ

−1
t)− λtF ?(λtf(X:,t)λ

−1
t)− f−1(λtf(X:,t)λ

−1
t)(λtCYt − λtf(X:,t))

= λtF
?(CYt)− λtF ?(f(X:,t))− λtf−1(f(X:,t))(CYt − f(X:,t)).

3As described in the Appendix B.2.1, this can be derived differently for least-squares losses, with a different mini-

mization, but results in the same solution

124

Since minimizing DF ∗

λt
is equivalent to minimizing the instance-weighted reverse loss λtDF ? ,

min
C

t
∑

t=1

DF ∗

λt
(λtCYt||fλ(X:,t)) = min

C

t
∑

t=1

λt
[

F ?(CYt)−X ′
:,tCYt

]

= min
C

t
∑

t=1

λtDF ?(CYt||f(X:,t))

the forward-reverse solution equivalence is retained for instance-weighting.

B.2.1 Simplifications for least-squares losses

The reverse losses given in Section 3.1.2 arise immediately by selecting the identity transfer in the

previous section. For example, for an identity transfer, we obtain A∗K(K + α) = Y Y ′(B∗)′.

We can, however, take advantage of some simplifications for least-squares losses to avoid some

of the kernel inversions by considering a slightly modified reverse loss. The below are the losses

considered in the first reverse prediction work (Xu et al., 2009).

For least-squares losses, the reverse solutions always have the form C = XB. For example,

B = Y † for minC tr ((X − CY)′(X − CY)) which has solution C = XY †. Thus, a different

kernelized training problem corresponding to (3.4) is given by

min
B

tr
(

(X −XBY)′(X −XBY)
)

= min
B

tr
(

(I −BY)′K(I −BY)
)

(B.5)

where K corresponds to X ′X in some feature representation. It is easy to verify that the global

minimizer is given by B = Y †. The forward solution can again be recovered from the reverse

solution. Using the identity arising from the solutions of (3.3) and (B.5),A(K+αI) = Y = Y Y ′B′,

A = Y Y ′B′(K + αI)−1.

Given the diagonal weighting matrix Λ, the weighted problem is

min
B

tr
(

Λ(I −BY)′K(I −BY)
)

where B = ΛY ′(Y ΛY ′)−1 is the global minimizer. Since A(KΛ + αI) = Y Λ = (Y ΛY ′)′B′, the

forward solution can be recovered by

A = Y ΛY ′B′(KΛ + αI)−1.

125

Appendix C

Unsupervised learning algorithms

This appendix contains a list of unsupervised learning algorithms that are regularized factor

models, in addition to independent components analysis which is closely related. These sections

are mainly meant as a quick reference and summary of a large literature, often opting for citations

to original proofs rather than recreating them here.

C.1 Linear representation learning

Linear representation learning techniques consist of using a Euclidean loss, either with or with-

out kernels. These algorithms constitute many of the classical unsupervised learning algorithms.

Algorithms using general Bregman divergences are discussed in the next section.

C.1.1 Probabilistic latent semantic indexing

Ding et al. (2006) showed that probabilistic latent semantic indexing is optimizing the same objec-

tive as non-negative matrix factorization.

C.1.2 Partial least squares

Partial Least Squares (PLS), also called projection to latent structures, maximizes the covariance

between two spaces (Wold, 1985), as opposed to the correlation maximized in CCA. Orthonormal

PLS is equivalent to CCA because correlation and covariance are equivalent for normal vectors (Sun

et al., 2009b); see (Wegelin, 2000, Table 2) for a thorough comparison between PLS and CCA.

PLS attempts to find the eigenvectors of (De Bie et al., 2005)

[

0 XY ′

Y X ′ 0

][

C(1)

C(2)

]

=

[

C(1)

C(2)

]

Λ

126

Therefore, the PLS objective can be solved by simply taking the SVD of XY ′ or equivalently by

obtaining the eigenvectors of XY ′Y X ′. Partial least squares algorithms, however, rarely outright

solve this system, but rather use an iterative deflation approach. Consequently, though the first

eigenvector found is the same, solutions found by PLS are slightly different. For example, the PLS

conjugate gradient optimization produces slightly different dictionaries that have empirically been

shown to produce a closer fit (Phatak and de Hoog, 2002). This corresponds to a similar result

that states that the columns of C produced by PLS form the basis of a Krylov space (Rosipal and

Krämer, 2006), which is the objective of conjugate gradient algorithms.

C.1.3 Independent component analysis

The goal of independent component analysis (ICA) is to decompose the signal x ∈ R
n into a linear

combination of independent source signals, φ1, . . . ,φn:

min
C,Φ
||X − CΦ|| where row Φi,: is independent of row Φj,: for all i, j.

Typically, to ensure that the signals are independent, it is assumed that Φ = WX and higher order

statistics (such as the kurtosis or contrast criteria) of WX are minimized (Comon, 1994). For ex-

ample, for X = UΣV ′, the kurtosis of WZ for Zi,: = Ui,:/(Ui,:1)
2 is minimized: minW (WZ)4.

For Gaussian data, ICA and PCA are equivalent because kurtosis is zero: independence and uncor-

relatedness are equivalent (Hyvärinen et al., 2009). By extending ICA to two data sets (Akaho et al.,

1999; De Bie and De Moor, 2002), we get a similar extension on CCA which incorporates higher

order statistics (as opposed to just correlation, which is a second order statistic).

Because the problem of enforcing independence of the rows of Φ can be encoded differently,

there is not one unique optimization for ICA. The typical optimization is to find de-mixing matrix

W ∈ R
n×n such that Φ = WX such that WX has independent rows. Gordon (2003) showed

that ICA is an instance of generalized2 linear2 models under a Bregman divergence with identity

transfer and an additional transfer on the representation

‖C arctanh(Φ)−X‖2F .

A flat minimum search algorithm, which consists of a multi-layer loss and regularizer that prefers

low network complexity, was empirically shown to select independent source signals (Hochreiter

and Schmidhuber, 1999). Another obvious option is to use kurtosis as a regularizer on Φ; optimizing

such a regularizer, however, would be non-trivial.

127

C.2 Graph-based techniques

Many nonlinear manifold learning techniques can be viewed as kernel PCA,and so as a regularized

factor models. The main difference is in their selection of an effective distance measure, i.e., kernel.

C.2.1 Isomap

Let Si,j = ‖X:i−X:j‖ be the matrix of squared distances between points and e = T−1/2[1, . . . , 1]′

is the uniform vector of unit length. Ham et al. (2004) showed that Isomap is kernel PCA, with

the kernel K = −1
2(I − ee′)S(I − ee′). Therefore, the objective of Isomap is to minimize

L (CΦ ; X) = ‖K − CΦ‖2F and Isomap is one algorithm to minimize this loss.

C.2.2 Laplacian eigenmaps

Let L ∈ R
T×T be the generalized graph Laplacian, which depends on the chosen adjacency matrix,

i.e., either having indicators for adjacency

Li,j =



















−1 if i is a neighbour of j
∑

k 1(k is a neighbour of i) if i = j

0 otherwise

or Gaussian drop-off

Li,j =



















− exp(−‖xi − xj‖2 /(2σ2)) if i is a neighbour of j
∑

k is a neighbour of i exp(−‖xi − xk‖2 /(2σ2)) if i = j

0 otherwise

for some parameter σ > 0. Ham et al. (2004) showed that Laplacian eigenmaps is kernel PCA, with

the kernel K = L†. Therefore, the objective of Laplacian eigenmaps is to minimize L (CΦ ; X) =

‖K − CΦ‖2F and Laplacian eigenmaps can be considered as one algorithm to minimize this loss.

The choice of this kernel can be viewed as visitation frequencies or commute times, i.e., Kij is the

expected time spent in node j starting from node i (Ham et al., 2004).

Kernel locality preserving projections has also been shown to be equivalent to Laplacian eigen-

maps (He and Niyogi, 2004). In addition, generally if the span of X is invariant under the nor-

malized Laplacian matrix, then locality preserving projections is equivalent to Laplacian eigen-

maps (Kokiopoulou et al., 2011, Proposition 6.4). Finally, Brand (2003) has also illustrated that

several nonlinear dimensionality reduction techniques can be viewed as using different choices of

kernel, incorporating additional algorithms like charting and automatic alignment.

128

C.2.3 Locally linear embeddings

Let W ∈ R
T×p be the weight matrix where the ith row contains linear coefficient to optimally

reconstruct xi from its p nearest neighbours and W1 = 1. Let M = (I −W ′)(I −W). Then, for

e = T−1/2[1, . . . , 1]′ the uniform vector of unit length and λmax(M) the maximum eigenvalue of

M , locally linear embeddings (LLE) is kernel PCA, with the kernel K = (I − ee′)(λmax(M)I −
M)(I − ee′) (Ham et al., 2004).

In certain situations, neighbourhood preserving projections is equivalent to LLE; see (Kokiopoulou

et al., 2011, Proposition 6.4). As with locality preserving projections, kernel neighbourhood pre-

serving projections is euivalent to LLE (Kokiopoulou et al., 2011, Proposition 7.3).

C.2.4 Metric multi-dimensional scaling

Metric multi-dimensional scaling has been shown to be equivalent to kernel PCA (Williams, 2002),

when the kernel function k(x,y) is isotropic, meaning it depends only on ‖x − y‖. Therefore,

kernelized unregularized factor models with an isotropic kernel, K(x,y) = g(‖x − y‖) for some

function g, and loss L (CΦ ; X) = ‖K − CΦ‖2F is equivalent to metric multi-dimensional scaling.

C.2.5 Ratio cut

Ratio cut is similar to normalized cut, except that it does not normalize the data with Λ = diag(1K).

It is therefore equivalent to a standard eigenvalue problem (rather than a generalized one), where

the solution is k eigenvectors corresponding to the minimum eigenvalues of the graph Laplacian,

L = Λ − K. Correspondingly, the solution corresponds to the top k eigenvectors of the pseudo-

inverse matrix, L†, meaning it is kernel PCA with K = L† (Kokiopoulou et al., 2011, Proposition

7.4). Therefore, ratio cut is equivalent to Laplacian eigenmaps.

C.2.6 Projection algorithms

There are several algorithms that can be viewed as a projections of the previous algorithms. Locality

preserving projections is a projected version of Laplacian eigenmaps; it computes the minimum

eigenvalue of the generalized eigenvalue problemXLX ′v = λXDX ′v (Kokiopoulou et al., 2011).

Neighbourhood preserving projections is a projected version of LLE; it computes the minimum

eigenvalue of the generalized eigenvalue problemXLX ′v = λXDX ′v (Kokiopoulou et al., 2011).

Manifold alignment without correspondence (Wang and Mahadevan, 2009) is equivalent to locality

preserving projections, with Z =
[

X 0
0 Y

]

.

These algorithms can be written as regularized factor models, simply using the trace norm loss

and including XDX ′ = I as a constraint. This view, however, does not gain further insight into

129

representing the problems with known distributional properties, i.e., with Bregman divergences.

The connection would be obtained if the generalized eigenvalue problem could be written as a

least-squares optimization, for more general cases than in Corollary 1.

C.3 Linear clustering

Clustering can also be thought of as a factorization, where the representation Φ corresponds to the

unknown clusters and the basis C corresponds to the means. Each cluster can be considered an

explanatory factor, with different constraints on the factors and on their weights, C. In classifica-

tion, recall that the rows in the target label matrix, Y , indicate the class label of the corresponding

instance. If the target labels are missing, we would like to guess a label matrix Φ that satisfies the

same constraints, namely that Φ ∈ {0, 1}t×k and Φ1 = 1.

Proposition 10. K-means clustering solves a constrained factorization with a least-squares loss

and F = {Φ ∈ {0, 1}k×T , 1Φ = 1},

min
Φ:Φ∈{0,1}k×T ,1Φ=1

min
C

tr
(

(X − CΦ)′(X − CΦ)
)

(C.1)

Proof: The closed form solution for C given Φ is C = XΦ†, giving

(C.1) = min
Φ:Φ∈{0,1}k×T ,1Φ=1

tr
(

(I − Φ†Φ)′X ′X(I − Φ†Φ)
)

This loss is a sum of squares of the difference X(I − Φ†Φ) = X − XΦ′(ΦΦ′)−1Φ. To interpret

this difference matrix: 1

1. XΦ′ is a n× k matrix where column i is the sum of rows in X that have class i in Φ:

(XΦ′):,i =
∑

j∈{1,...,T}, s.t.Φi,j=1

X:,j

2. The diagonal matrix ΦΦ′ contains the count of ones in each row of Φ; therefore (ΦΦ′)−1 is a

diagonal matrix of reciprocals of row counts.

3. Combining facts 1 and 2 shows that C = XΦ′(ΦΦ′)−1 is a n × k matrix whose column i is

the mean of the columns in X that correspond to class i in Φ.

4. Finally, CΦ = XΦ′(ΦΦ′)−1Φ is a n × T matrix where column i contains the mean corre-

sponding to class i in Φ.

1These observations draw on some insights from Peng and Wei (2007).

130

Therefore,X−XΦ′(ΦΦ′)−1Φ is a n×T matrix of columns fromX with the mean column for each

corresponding class subtracted. The problem (C.1) can now be seen to be equivalent to assigning k

centers, encoded by C = XΦ′(ΦΦ′)−1, and assigning each column in X to a center, encoded by Φ,

so as to minimize the sum of the squared distances between each column and its assigned center. �

The intuition behind this view of k-means clustering is that the representation, Φ, is the cluster

index and the dictionary C is the means of those clusters. The new representation for X , therefore,

can be seen as the mean of its cluster or even its cluster index, depending on if Φ or CΦ is used as

the new representation.

Proposition 11. Kernel k-means clustering solves a constrained factorization with a kernelized

least-squares loss and F = {Φ ∈ {0, 1}k×T , 1Φ = 1},

min
Φ:Φ∈{0,1}k×T ,1Φ=1

min
C

tr
(

(K − CΦ)′(K − CΦ)
)

C.4 Generalized clustering

C.4.1 Exponential family k-means clustering

Banerjee et al. (2005) generalized the centroid-based hard clustering problem to clustering using

any Bregman divergence. In Proposition 12, we show that Bregman clustering solves a regularized

factorization, despite the fact that Banerjee et al. (2005) reach this generalization using the idea of

Bregman information rather than reverse prediction or regularized factor models.

Proposition 12. Clustering with Bregman divergences solves a constrained factorization withF =

{Φ ∈ {0, 1}k×T , 1Φ = 1}, any Bregman divergence and non-transfered CΦ:

min
Φ:Φ∈{0,1}k×T ,1Φ=1

min
C

DF ∗(f(CΦ)||f(X)) (C.2)

Proof: For F = {Φ ∈ {0, 1}k×T , 1Φ = 1}, k-means clustering with Bregman divergences was

framed under the minimization minΦ∈F minC DF (X||CΦ) (Banerjee et al., 2005). Thus, we can

apply the same argument as in Proposition 4. �

This formulation of Bregman clustering, however, only permits linear transfers: X ≈ CΦ,

learned under a Bregman divergence. Using insights from reverse prediction, the clear extension

that incorporates non-linear transfers is the optimization

min
Φ:Φ∈{0,1}k×T ,1Φ=1

min
C

DF ∗(CΦ||f(X)). (C.3)

An algorithm for this modification on Bregman clustering is given in Chapter 6, Algorithm 8, with

derivation in Appendix F.1.

131

Banerjee et al. (2005) also proposed an algorithm for Bregman mixture models, i.e., soft clus-

tering where the constraint Φ ∈ {0, 1}k×T is relaxed to Φ ∈ [0, 1]k×T . This optimization, how-

ever, and corresponding simplification do not correspond exactly to a factorization. Rather, the

expectation-maximization objective is tackled, which is related to the hard clustering regularized

factor model as a smoothness parameter ρ→∞. Roweis and Ghahramani (1999) also showed that

mixture model clustering and factor analysis are related. Based on the discussion in Section 8.1.1, to

incorporate mixture model clustering into regularized factor models, likely a regularizer on Φ will

need to be considered. In Appendix F.1, we illustrate that the expectation-maximization objective

provides an upper bound on our reverse prediction objective, and use that to derive a a non-linear

Bregman mixture model algorithm similar to that of Banerjee et al. (2005). This algorithm is given

in Chapter 6, Algorithm 9.

C.4.2 Generalized normalized cut

As with exponential family PCA, one can add regularization, kernels and instance weights to Breg-

man divergence clustering. For example, by adding instance weights Λ = diag(K1), we obtain a

novel algorithm that generalizes normalized cut to Bregman divergences. With an identity transfer

function (producing a least-squares matching loss), this algorithms reduces to normalized cut.

Proposition 13. Bregman normalized cut solves a constrained factorization with

F = {Φ ∈ {0, 1}k×T , 1Φ = 1} and Λ = diag(K1) instance-weighted Bregman divergence for

positive definite K

min
Φ∈{0,1}k×T ,1Φ=1

min
C

DFΛ
(ΛX || f−1(CΦ)) = min

Φ∈{0,1}k×T ,1Φ=1
min
C

T
∑

t=1

λtDF ∗(CΦ:,t || f(λtX:,t)).

C.4.3 Linde-Buzo-Gray algorithm

Banerjee et al. (2005) showed that the Linde-Buzo-Gray algorithm, used in speech coding, is an

instance of Bregman clustering with Bregman divergence equal to the Itakura-Saito distance. This

distance is often chosen for speech data because speech power spectra follow exponential densities

p(x) = λ exp(−λx). Therefore, we get that Linde-Buzo-Gray algorithm is a constrained regular-

ized factorization with non-transfered CΦ and F (x) = − log(x) giving an exponential distribution

on the data p(X) = λ exp(−λx) and Bregman divergence equal to the Itakura-Saito distance.

C.4.4 Information theoretic clustering and Information bottleneck

Banerjee et al. (2005) showed that information-theoretic clustering is a subset of Bregman hard

clustering algorithms, with Bregman divergence equal to KL-divergence. If the hard clustering is

132

relaxed to soft clustering, then the optimization is equal to the expectation-maximization algorithm

on a mixture of multinomials. This soft clustering formulation corresponds to the information bot-

tleneck. Banerjee et al. (2005, Theorem 7 and 8) also showed that a large class of rate distortion

problems could be represented as a Bregman soft clustering problem, with a β-weighted Bregman

divergence, or equivalently with potential function βF for the trade-off parameter β in rate distor-

tion problems.

133

Appendix D

Convex factorization appendix

D.1 Preliminaries

The following known results are useful for the proofs in the remainder of Appendix D.

Lemma 5. For Z ∈ R
n×m, ‖Z‖∗�,1 = ‖Z‖�∗,∞ = maxi∈{1,...,n}(‖Z‖∗�).

Proof: This conjugate norm follows from (Bradley and Bagnell, 2009, Lemma 3), where we can

stack Z into a column vector, set the indices si ∈ I to correspond to the rows i, the norm ‖ · ‖si =
‖ · ‖� and the outer norm to correspond to ‖ · ‖1. �

Throughout the proofs, we commonly use the fact that most convex optimization problems sat-

isfy strong duality. As discussed in Section A.2.1, if Slater’s condition, strong duality is guaranteed.

The following known theorem gives another setting where strong duality holds.

Theorem 11 ((Rockafellar, 1970, Cor. 37.3.2)). For any function L : X × Y → R, if L(·,y) is

convex for any y ∈ Y , L(x, ·) is concave for any x ∈ X , Y is finite-dimensional, convex and closed,

X is convex and one of X or Y is compact, the strong duality holds, i.e.,

inf
x∈X

sup
y∈Y

L(x,y) = sup
y∈Y

inf
x∈X

L(x,y)

Orthonormal bases and the singular value decomposition: The row-space, column-space and

null-space of a matrix A ∈ R
m×n can be characterized by the singular value decomposition. Recall

that the row-space of A is the set of all possible linear combinations of the rows of A; the column-

space of A is the set of all possible linear combinations of the columns of A; and the null-space of

A is the set of all orthogonal vectors (the orthogonal complement to the row-space of A).

row(A) = {v ∈ R
n : there exists u such that v = A>u}

col(A) = {u ∈ R
m : there exists v such that u = Av}

null(A) = {v ∈ R
n : Av = 0}.

134

The matrix A can be seen as a linear transformation taking v from the row-space of A to a vector

u = Av in the column-space of A.

The SVD relates the orthogonal basis of the row-space of A with the orthogonal basis of the

column-space of A. For k = max(m,n) and r = rank(A) ≤ min(m,n), the svd is A = UΣV ′,

with Σ ∈ R
m×n, Σii > 0 for i ≤ r, zero elsewhere; orthonormal U = [u1, . . . ,um] ui ∈ R

m; and

orthonormal V = [v1, . . . ,vn], for vi ∈ R
n. This gives AV = UΣV V ′ = UΣ. We can therefore

characterize the orthonormal basis of col(A) as [u1, . . . ,ur], the orthonormal basis of row(A) as

[v1, . . . ,vr] and the orthonormal basis of null(A) as [vr+1, . . . ,vn].

D.2 Proof of Theorem 2

Theorem 2 For any vector norm ‖ · ‖� with conjugate ‖ · ‖�∗ , and any bounded closed set C ⊂ R
n

such that span(C) = R
n and C ∈ C∞ indicating that C has an unrestricted number of columns,

min
C∈C∞

min
Φ

L(CΦ;X) + α‖Φ‖�,1 (4.1)

= min
Z

L(Z;X) + α‖Z ′‖∗(C,�∗) (4.2)

with ‖Z ′‖∗(C,�∗) = max
‖Y ‖(C,�∗)≤1

tr(Y ′Z ′) for induced norm ‖Y ‖(C,�∗) = max
z∈C
‖Y z‖�∗ defined in Lemma 3.

Proof:
(4.1) = min

Z
min
C∈C∞

min
Φ:CΦ=Z

L(Z;X) + α‖Φ‖�,1
= min

Z
L(Z;X)+α min

C∈C∞
min

Φ:CΦ=Z
‖Φ‖�,1. (D.1)

Consider the inner minimization in (D.1). Fix any Z, k ∈ N and C ∈ Ck, and introduce Lagrange

multiplier Γ for constraint CΦ = Z

min
Φ:CΦ=Z

‖Φ‖�,1=min
Φ

max
Γ
‖Φ‖�,1+tr(Γ′(Z−CΦ)). (D.2)

If C does not span the columns of Z, then the constraint CΦ = Z is infeasible, and (D.2) is

unbounded; hence such a C cannot participate in a minimum of (D.1) and so any C selected in

(D.1) must span the columns of Z. Given such a C, a feasible Φ exists, meaning Slater’s condition

is satisfied and strong Lagrange duality holds (Boyd and Vandenberghe, 2004, §5.2.3). We can

therefore swap the min and max:

(D.2) = max
Γ

min
Φ
‖Φ‖p,1 + tr(Γ′(Z−CΦ)). (D.3)

135

Since the dual norm of ‖ · ‖�,1 is ‖ · ‖�∗,∞ by Lemma 5, by norm duality:

(D.3) = max
Γ

min
Φ

max
‖V ‖�∗,∞≤1

tr(V ′Φ)+tr(Γ′(Z−CΦ)) . strong duality holds so swap min and max

= max
Γ

max
‖V ‖�∗,∞≤1

min
Φ

tr(Γ′Z)+tr(Φ′(V−C ′Γ)) . because tr(AB) = tr(BA) = tr(A′B′)

= max
‖V ‖�∗,∞≤1

max
Γ:C′Γ=V

tr(Γ′Z) . by eliminating Φ

= max
Γ:‖C′Γ‖�∗,∞≤1

tr(Γ′Z) . by substituting V = C ′Γ.

Therefore, we have established

(D.1) = min
Z
L(Z;X)+α min

C∈C∞
max

Γ:‖C′Γ‖�∗,∞≤1
tr(Γ′Z) . by simplifying (D.2)

= min
Z
L(Z;X) + α max

Γ:‖Γ′‖(C,�∗)≤1
tr(Γ′Z) . by definition of ‖ · ‖(C,�∗) in Lemma 3

= min
Z

L(Z;X) + α‖Z ′‖∗(C,�∗) . by norm duality.
�

D.3 Proof of Theorem 7

The proof follows from the two lemmas, 6 and 7.

Lemma 6. For ‖Φ‖2,1, C2,2 = {c =
[

c(1)

c(2)

]

: ‖c(1)‖2 ≤ β1, ‖c(2)‖2 ≤ β2} ⊂ R
n1+n2 ,

‖Z‖∗(C2,2,2) = max
0≤η≤1

‖E−1
η Z‖tr where Eη :=

[

β1/
√
η In−1 0

0 β2/
√
1− η In2

]

.

Proof: As a preliminary, note that C2,2 is bounded and closed set with span(C2,2) = R
n1+n2 for

c(1) ∈ R
n1 and c(2) ∈ R

n2 , and so satisfies the conditions of Theorem 2. Therefore, ‖Z ′‖∗(C2,2,2) =
minC∈C∞

2,2
minΦ:CΦ=Z ‖Φ‖�,1 defines a norm on Z.

Step 1: Characterize the dual norm as

‖Γ‖(C2,2,2) = min
ρ≥0
‖DρΓ‖sp where Dρ =

[

√

β21+β
2
2ρ In1 0

0
√

β22+β
2
1/ρ In2

]

. (D.4)

We will use two diagonal matrices, I1 = diag([1n1 ;0n2]) and I2 = diag([0n1 ;1n2]). Starting with

the definition,

‖Γ‖(C2,2,2) = max
{c:‖c(1)‖2=β1, ‖c(2)‖2=β2}

‖c′Γ‖2

we get

‖Γ‖2(C2,2,2) = max
{c:‖c(1)‖2=β1, ‖c(2)‖2=β2}

c′ΓΓ′c . replace Φ = cc′ (D.5)

= max
{Φ:Φ�0,rank(Φ)=1 tr(ΦI1)≤β2

1 , tr(ΦI2)≤β2
2}

tr(ΦΓΓ′) . drop the rank constraint

= max
{Φ:Φ�0, tr(ΦI1)≤β2

1 , tr(ΦI2)≤β2
2}

tr(ΦΓΓ′).

136

We can drop the rank constraint using the fact that when maximizing a convex function, one of the

extreme points in the constraint set {Φ : Φ�0, tr(ΦI1)≤β21, tr(ΦI2)≤β22} must be optimal and is

known to have rank at most one in this case (Pataki, 1998).

Next, form the Lagrangian

L(Φ;λ1, λ2,Λ) = tr(ΦΓΓ′) + tr(ΦΛ) + λ1(β
2
1 − tr(ΦI1)) + λ2(β

2
2 − tr(ΦI2))

where λ1 ≥ 0, λ2 ≥ 0 and Λ � 0. The primal variable Φ can be eliminated by formulating the

equilibrium condition ∂L/∂Φ = ΓΓ′+Λ−λ1I1−λ2I2 = 0, which implies ΓΓ′−λ1I1−λ2I2 � 0.

Therefore, we achieve the equivalent dual formulation

(D.5) = min
{λ1≥0, λ2≥0,Λ�0}

max
Φ

L(Φ;λ1, λ2,Λ) = min
{λ1≥0, λ2≥0, λ1I1+λ2I2�ΓΓ′}

β21λ1 + β22λ2. (D.6)

Now observe that for λ1 ≥ 0 and λ2 ≥ 0, the relation ΓΓ′ � λ1I1 + λ2I2 holds if and only if

Dλ2/λ1
ΓΓ′Dλ2/λ1

�Dλ2/λ1
(λ1I1+λ2I2)Dλ2/λ1

= (β21λ1+β
2
2λ2)I , i.e., iff the maximum eigen-

values of Dλ2/λ1
Γ are less than or equal to β21λ1 + β22λ2. Therefore,

(D.6) = min
{λ1≥0, λ2≥0, ‖Dλ2/λ1

Γ‖2sp≤β2
1λ1+β2

2λ2}
β21λ1+β

2
2λ2 (D.7)

The third constraint must be met with equality at the optimum due to continuity; otherwise, we

would be able to further decrease the objective, which contradicts optimality. A standard compact-

ness argument would establish the existence of minimizers. We finally obtain

(D.7) = min
λ1≥0,λ2≥0

‖Dλ2/λ1
Γ‖2sp = min

ρ≥0
‖DρΓ‖2sp.

Step 2 Show that ‖Z ′‖∗(C2,2,2) = maxρ≥0 ‖D−1
ρ Z‖tr.

‖Z‖∗(C2,2,2) = max
Γ:‖Γ‖(C2,2,2)≤1

tr(Γ′Z) . by definition

= max
ρ≥0

max
Γ:‖DρΓ‖sp≤1

tr(Γ′Z) . using (D.4): ‖Γ‖(C2,2,2) = min
ρ≥0
‖DρΓ‖sp

= max
ρ≥0

max
Γ̃:‖Γ̃‖sp≤1

tr(Γ̃′D−1
ρ Z) . change of variables Γ̃ = DρΓ

= max
ρ≥0
‖D−1

ρ Z‖tr . because trace norm is conjugate of spectral norm.

Step 3 Re-parametrize with ρ =
β2
1(1−η)

β2
2η

, with 0 ≤ η ≤ 1 for ρ ≥ 0.

Because
β2
1

β2
2ρ+β2

1
=

β2
1

β2
2

β21(1−η)

β22η
+β2

1

=
β2
1

β2
1(

(1−η)
η

+1
=

β2
1

β2
1(

(1−η)
η

+1
= η, we get

Eη = Dβ21(1−η)

β22η

and Dρ = E β21
β22ρ+β21

and so max
ρ≥0
‖D−1

ρ Z‖tr = max
0≤η≤1

‖E−1
η Z‖tr.

�

137

Lemma 7. h(η) := ‖E−1
η Z‖tr is concave in η over [0, 1].

Proof: Expand h(η) into

h(η) =

∥

∥

∥

∥

∥

∥





√

η
β2
1
Z(1)

√

1−η
β2
2
Z(2)





∥

∥

∥

∥

∥

∥

tr

=tr
(

√

η

β21
Z(1)′Z(1)+

1−η
β22

Z(2)′Z(2)
)

where tr(
√·) means summing the square root of the eigenvalues (i.e. a spectral function).

Denote A = Z(1)′Z(1) and B = Z(2)′Z(2). To show h(η) is concave, we need to use the

following trace convexity theorem (Petz, 1994, Proposition 2): Let f : [0,∞) 7→ R be a concave

(convex) function, then tr(f(M)) is concave (convex) on the positive semi-definite matrices M .

Here f(M) means applying l to the eigenvalues of M . In our case, take f(x) =
√
x which is

concave on [0,∞). Then for any z1, z2 ∈ (0, 1) and α1, α2 > 0 with α1 + α2 = 1, we have

h(α1η1 + α2η2) = tr

[

(

(α1η1 + α2η2)A+
1− (α1η1 + α2η2)

β2
B

)1/2
]

= tr

[

(

α1(η1A+
1− η1
β2

B) + α2(η2A+
1− η2
β2

B)

)1/2
]

≥ α1 tr

[

(η1A+
1−η1
β2

B)1/2
]

+α2 tr

[

(η2A+
1−η2
β2

B)1/2
]

= α1h(η1) + α2g(η2),

where the ≥ used the trace convexity theorem. So g is concave.

Notice that ‖D−1
ρ Γ‖tr is only quasi-concave (which is why the change of variables is needed),

because it is the composition of the concave function, h(η) and the quasi-concave linear-fractional

transformation, η(ρ) =
β2
1

β2
2ρ+β2

1
. �

D.4 Derivation of the boosting recovery algorithm

Once an optimal reconstruction Z is obtained, we need to recover the optimal factors C and Φ that

satisfy

CΦ = Z ‖Φ‖2,1 = ‖Z‖∗(C2,2,2) and C:,i ∈ C2,2 for all i. (D.8)

The strategy will be to first recover the optimal dual solution Γ given Z, then use Γ to recover Φ and

C. Given Γ and possible set of recovery dictionaries C(Γ), the recovery problem will be reduced

to finding a vector µ and matrix C such that µ ≥ 0, C:,i ∈ C(Γ) for all i, and C diag(µ)C ′Γ = Z.

Then, the derivation of the oracle for generating c and µ in a boosting algorithm is described, as

well as a simplification of C(Γ) that makes the oracle more efficient.

138

D.4.1 Characterizing the recovery set

From Lemma 6, we know that the regularizer on Φ can be expressed in terms of Γ:

min
{C:,i∈C2,2
Φ:CΦ=Z}

‖Φ‖2,1 = ‖Z ′‖∗(C2,2,2) = max
{Γ:‖DρΓ‖sp≤1}

tr(Γ′Z) = max
{Γ:‖Γ̃‖

sp
≤1}

tr(Γ̃′D−1
ρ Z) = max

ρ≥0

∥

∥D−1
ρ Z

∥

∥

tr

For an optimal ρ and Z, Γ that satisfies ‖DρΓ‖sp = 1 and tr(Γ′Z) =
∥

∥D−1
ρ Z

∥

∥

tr
is the correspond-

ing optimal Γ. Let UΣV ′ be the SVD of D−1
ρ Z and set Γ = D−1

ρ UV ′. Then Γ satisfies

‖DρΓ‖sp =
∥

∥DρD
−1
ρ UV ′∥

∥

sp
=
∥

∥UV ′∥
∥

sp
= 1 . because U and V are orthonormal

tr(Γ′Z) = tr(V U ′D−1
ρ Z) = tr(U ′(UΣV ′)V) . because tr(ABC) = tr(BCA) = tr(CAB)

= tr(Σ) = ‖D−1
ρ Z‖tr.

Given such an optimal Γ, can characterize an optimal solution (C,Φ) using the set

C(Γ) := arg max
c∈C2,2

‖Γ′c‖ =
{

c =

[

c(1)

c(2)

]

: ‖c(1)‖ = β1, ‖c(2)‖ = β2, ‖Γ′c‖ = 1

}

. (D.9)

Theorem 12. For a dual optimal Γ, (C,Φ) solves recovery problem (D.8) if and only if C:,i ∈ C(Γ)

and Φi,: = ‖Φi,:‖2C ′
:,iΓ, such that CΦ = Z.

Proof: “ =⇒ ” If (C,Φ) solve the recovery problem (D.8) thenCΦ = Z and ‖Φ‖2,1 = ‖Z‖∗(C2,2,2),
giving

‖Φ‖2,1 = ‖Z‖∗(C2,2,2) = tr(Γ′Z) = tr(Γ′CΦ) =
∑

i

Φi,:Γ
′C:,i. (D.10)

Now, for any C:,i ∈ C2,2, we have

‖Γ′C:,i‖2 ≤ 1 . because ‖Γ′C:,i‖2 ≤ max
c∈C2,2

‖Γ′c‖2 = ‖Γ‖(C2,2,2) ≤ 1

Φi,:Γ
′C:,i = ‖Φi,:Γ

′C:,i‖2 ≤ ‖Φi,:‖2‖Γ′C:,i‖2 ≤ ‖Φi,:‖2.

Therefore,
∑

i ‖Φi,:Γ
′C:,i‖ ≤

∑

i ‖Φi,:‖2 = ‖Φ‖2; but we also know that for optimal (C,Φ),
∑

i ‖Φi,:‖2 =
∑

i ‖Φi,:Γ
′C:,i‖ ≤ ‖Φi,:‖2‖Γ′C:,i‖2. Therefore, ‖Γ′C:,i‖2 = 1 and

Φi,:Γ
′C:,i = ‖Φi,:‖2 =⇒ Φi,:Γ

′C:,iC
′
:,iΓ = ‖Φi,:‖2C ′

:,iΓ =⇒ Φi,:‖Γ′C:,i‖2 = ‖Φi,:‖2C ′
:,iΓ.

Therefore, C:,i ∈ C(Γ) and Φi,: = ‖Φi,:‖2C ′
:,iΓ.

“ ⇐= ” On the other hand, if ‖Γ′C:,i‖2 = 1 and Φi,: = ‖Φi,:‖2C ′
:,iΓ such that Z = CΦ, then

we have ‖Z‖∗(C2,2,2) =
∑

i ‖Φi,:‖2, implying the optimality of (C,Φ). �

We can further simplify this recovery set, which will be useful for generating c ∈ C(Γ). In

fact, its dual problem has been stated in (D.6). Once we obtain the optimal ρ, it is straightforward

to backtrack and recover the optimal λ1 and λ2 in (D.6), because ρ = λ2/λ1 and β21λ1 + β22λ2 =

‖DρΓ‖2sp = 1, giving λ2 = ρλ1 and λ1 = 1/(β21 + ρβ22).

139

Theorem 13. Given R = λ1I1 + λ2I2 − ΓΓ′ for dual optimal Γ and optimal Lagrange multipliers

λ1, λ2, r = rank(R), N =
[

N1
N2

]

∈ R
n×(n−r) an orthonormal basis of the null-space of R and

eigen-decomposition UΣU ′ = β22N
′
1N1 − β21N ′

2N2, then

C(Γ) =
{

NUv : v′Σv = 0, ‖v‖2 = β21 + β22

}

. (D.11)

Proof: C(Γ) is the set of optimal solutions to

max
c∈C2,2

∥

∥Γ′c
∥

∥ (D.12)

with an equivalent dual problem (D.6) described above:

max
c∈C2,2

∥

∥Γ′c
∥

∥ = min
{λ1≥0, λ2≥0, λ1I1+λ2I2�ΓΓ′}

β21λ1 + β22λ2.

By the KKT conditions (Rockafellar, 1970, §28), c is an optimal solution to (D.12) if and only if

∥

∥

∥
c(1)
∥

∥

∥
= β1,

∥

∥

∥
c(2)
∥

∥

∥
= β2, (D.13)

〈

R, cc′
〉

= 0, where R = λ1I1 + λ2I2 − ΓΓ′ � 0. (D.14)

First, (D.14) holds iff c is in the null space of R. To enforce this constraint, let R = Ũ Σ̃V ′ and use

standard orthonormal basis for the null-space, {vr+1, . . . ,vn} (see end of Appendix D.1). Define

c = Nα, where N = [vr+1, . . . ,vn] =

[

N1

N2

]

, α ∈ R
n−r. (D.15)

Second, (D.13) is satisfied iff

0 = β22

∥

∥

∥
c(1)
∥

∥

∥

2
− β21

∥

∥

∥
c(2)
∥

∥

∥

2
= α′ (β22N

′
1N1 − β21N ′

2N2

)

α (D.16)

β21 + β22 = ‖c‖2 . (D.17)

Now we simplify using several linear transformations. Perform eigen-decomposition UΣU ′ =

β22N
′
1N1 − β21N ′

2N2, where Σ = diag(σ1, . . . , σn−r), and U ∈ R
(n−r)×(n−r) is orthonormal. Let

v = U ′α. Therefore, we get new conditions on v to satisfy the conditions (D.13) and D.14 on c,

c = Nα = NUv . by (D.15), making c satisfy (D.14)

α′UΣU ′α = v′Σv =
∑

i

σiv
2
i = 0 . iff (D.16) (D.18)

β21 + β22 = ‖c‖2 = v′U ′N ′NUv = v′v . iff (D.17), jointly satisfying (D.13). (D.19)

In summary, c = NUv satisfies (D.12) for the following set

C(Γ) = {NUv : v satisfies (D.18) and (D.19)} =
{

NUv : v′Σv = 0, ‖v‖2 = β21 + β22

}

.
�

Summary: given Γ, the recovery problem (D.8) has been reduced to finding a vector µ and matrix

C such that µ ≥ 0, C:,i ∈ C(Γ) for all i, and C diag(µ)C ′Γ = Z.

140

D.4.2 Boosting procedure

In this section, we demonstrate how to incrementally recover µ and C. Denote the range of

C diag(µ)C ′ by the set

S := {∑i µicic
′
i : ci ∈ C(Γ),µ ≥ 0} .

which is the conic hull of possibly infinitely many rank one matrices {cc′ : c ∈ C(Γ)}. By

Carathéodory’s theorem (Rockafellar, 1970, §17), any matrix M ∈ S can be written as the conic

combination of finitely many rank one matrices of the form {cc′ : c ∈ C(Γ)}. Conceptually,

therefore, the recovery problem has been reduced to finding a sparse set of non-negative weights,

µ, over the set of feasible basis vectors, c ∈ C(Γ).

To find these weights, we use a totally corrective “boosting” procedure that is guaranteed to

converge to a feasible solution. Consider the following objective function for boosting

l(M) = ‖MΓ− Z‖2F , where M ∈ S.

Note that l is clearly a convex function in M with a Lipschitz continuous gradient. Theorem 12

proves that an optimal recovery of corresponds precisely to those M ∈ S such that l(M) = 0. The

idea behind totally corrective boosting is to find a minimizer of l (i.e., optimal recovery) incremen-

tally. After initializing M0 = 0, we iterate between two steps:

1. Weak learning step: find

ck ∈ argmin
c∈C(Γ)

〈

∇l(Mk−1), cc
′〉 = argmax

c∈C(Γ)
c′Qc, (D.20)

where Q = −∇l(Mk−1) = 2(Z −Mk−1Γ)Γ
′.

2. “Totally corrective” step:

µ(k) = argmin
µ:µi≥0

f
(

∑k
i=1 µicic

′
i

)

, (D.21)

Mk =
∑k

i=1 µ
(k)
i cic

′
i.

Three key facts can be established about this boosting procedure: (i) each weak learning step

can be solved efficiently; (ii) each totally corrective weight update can be solved efficiently; and

(iii) l(Mk) ↘ 0, hence a feasible solution can be arbitrarily well approximated. (ii) is immediate

because (D.21) is a standard quadratic program and (iii) has been proved in (Zhang et al., 2012).

Only (i) deserves some explanation. We derive an efficient algorithm for the oracle in the next

subsection, using the simplified recovery set C(Γ).

141

D.4.3 Solving the weak oracle problem

The weak oracle needs to solve

max
c∈C(Γ)

c′Qc,

where Q = −∇l(Mk−1) = 2(Z −Mk−1Γ)Γ
′. By (D.11), this optimization is equivalent to

max
c∈C(Γ)

c′Qc = max
v:v′Σv=0, ‖v‖2=β2

1+β2
2

v′Tv . where T = U ′N ′QNU

= max
v:v′v=1,v′Σv=0

v′Tv

= max
Φ�0,tr(Φ)=1,tr(ΣΦ)=0

tr(TΦ) . if we let Φ = vv′

= min
τ,ω:τΣ+ωI−T�0

ω . by using the Lagrange dual

= min
τ∈R

λmax(T − τΣ) . where λmax is the maximum eigenvalue.

Since λmax is a convex function over real symmetric matrices, the last line search problem is convex

in τ , hence can be solved globally and efficiently.

Given the optimal τ and the optimal objective value ω, the optimal v can be recovered using

a similar approach used to simplify the set C(Γ). Let the null space of ωI + τΣ − T be spanned

by N̂ = {n̂1, . . . , n̂s}. Then find any α̂ ∈ R
s such that v := N̂α̂ satisfies ‖v‖2 = β21 + β22 and

v′Σv = 0. The complete algorithm is given in Algorithm 3.

142

Appendix E

Efficient training for multi-view subspace

learning

We show that the change of variables, Q = EηZ, does not affect the concavity of the inner opti-

mization in the maximin problem (5.3). Let X =
[

X1
X2

]

. To show that the change of variables does

not affect the concavity of the function g(η) = minQ L(EηQ;X) + α ‖Q‖tr, let Q∗
η be optimal for

the given η: Q∗
η = argminQ L(EηQ;X) + α ‖Q‖tr. Correspondingly let Z∗

η = EηQ
∗
η. Then

g(tη1 + (1− t)η2) = L(Etη1+(1−t)η2Q
∗
tη1+(1−t)η2

;X) + α
∥

∥

∥
Q∗

tη1+(1−t)η2

∥

∥

∥

tr

= L(Z∗
tη1+(1−t)η2

;X) + α
∥

∥

∥
E−1

tη1+(1−t)η2
Z∗
tη1+(1−t)η2

∥

∥

∥

tr

≥ L(Z∗
tη1+(1−t)η2

;X) + . because
∥

∥E−1
η Z

∥

∥

tr
is concave in η

tα
∥

∥

∥
E−1

η1 Z
∗
tη1+(1−t)η2

∥

∥

∥

tr
+ (1− t)α

∥

∥

∥
E−1

η2 Z
∗
tη1+(1−t)η2

∥

∥

∥

tr

= t
[

L(Z∗
tη1+(1−t)η2

;X) + α
∥

∥

∥
E−1

η1 Z
∗
tη1+(1−t)η2

∥

∥

∥

tr

]

+

(1− t)
[

L(Z∗
tη1+(1−t)η2

;X) + α
∥

∥

∥
E−1

η2 Z
∗
tη1+(1−t)η2

∥

∥

∥

tr

]

≥ t argmin
Z

[

L(Z;X) + α
∥

∥E−1
η1 Z

∥

∥

tr

]

+

(1− t) argmin
Z

[

L(Z;X) + α
∥

∥E−1
η2 Z

∥

∥

tr

]

= t
[

L(Z∗
η1 ;X) + α

∥

∥E−1
η1 Z

∗
η1

∥

∥

tr

]

+ (1− t)
[

L(Z∗
η2 ;X) + α

∥

∥E−1
η2 Z

∗
η2

∥

∥

tr

]

= tg(η1) + (1− t)g(η2).

Therefore, g(η) is concave in η.

Notice, however, that the new optimization no longer satisfies strong duality, and the max and

min can no longer be swapped: for any fixed Q, the maximum η is 0 or 1 to send the loss to infinity.

This means that g(η) is concave in η, but L(EηQ;X) + α ‖Q‖tr (without the min over Q) is not.

143

Appendix F

Semi-supervised learning appendix

This appendix contains the derivation of the hard and soft clustering algorithms for unsupervised

and semi-supervised learning. The last section contains explicit derivations of the forward and

reverse loss functions for the transfers used in the semi-supervised learning experiments.

F.1 Algorithms for clustering

Hard clustering: To obtain Algorithms 8 and 10, we prove the following lemmas.

Lemma 8. For Y ∈ {0, 1}k×T , 1Y = 1,

DF ?(CY ||f(X)) = DF (X||f?(CY)) = DF (X||f?(C)Y)

Proof: From Lemma 2, we know that DF (X||f?(CY)) = DF ?(CY ||f(X)). Because Y ∈
{0, 1}k×T and Y 1 = 1, we can see that CY simply selects columns of C, i.e. if there is a one

at position 1 ≤ i ≤ k, then column i in C is selected. Therefore, f?(CY) = f?(C)Y and we

conclude that DF (X||f?(CY)) = DF (X||f?(C)Y). �

We can now optimize over M for DF (X||MY). We can further simplify this objective, due to the

fact that Y is discrete.

Lemma 9. For a given Y ∈ {0, 1}k×T , 1Y = 1, X ∈ Dom(f) and class i,

argmin
M∈Dom(f)

∑

t:Yit=1

DF (X:t||M:i) =
1

Yi:1

∑

t:Yit=1

X:t

144

Proof: Let ni be the number of instances with class i and m =M:i ∈ R
n.

1

ni

∑

t:Yit=1

DF (X:t||m) =
1

ni

∑

t:Yit=1

F (X:t)− F (m)− f(m)>(X:t −m)

= F̄ − 1

ni

∑

t:Yit=1

F (m)− f(m)>
1

ni

∑

t:Yit=1

(X:t −m) . F̄ =
1

ni

∑

t:Yit=1

F (X:t)

= F̄ − F (m)− f(m)>(x̄−m) . x̄ =
1

ni

∑

t:Yit=1

X:t

= F̄ − F (x̄) +DF (x̄||m) . DF (x̄||m) = F (x̄)− F (m)− f(m)>(x̄−m)

Therefore, we get

min
m∈Rn×k

∑

t:Yit=1

DF (X:t||m) = min
m∈Rn×k

niF̄ − niF (x̄) + niDF (x̄||m) = min
m∈Rn×k

DF (x̄||m).

Since the Bregman divergence is guaranteed to be greater than or equal to zero, the minimum value

for DF (x̄||m) is zero, obtained by setting m = x̄. Therefore, for each instance t, the optimal

setting for the inner minimization of M:i =
1
ni

∑

t:Yit=1X:t. �

From Lemmas 8 and 9, we obtain get the simplifications used in Equations (6.4) and (6.6) for

Bregman hard clustering with non-linear transfers.

min
Φ∈F

min
C∈Dom(F ?)

DF ?(CΦ||f(X)) = min
Φ∈F

min
M∈Dom(f)⊂Rn×k

DF (X||MΦ)

= min
Φ∈F

min
M∈Dom(f)

k
∑

i=1

∑

t:Φit=1

DF (X:t||M:i)

= min
Φ∈F

k
∑

i=1

1

Φi:1

∑

t:Φit

X:t

Soft clustering: To obtain Algorithms 9 and 11, we will first prove the following lemma to char-

acterize the optimization.

Lemma 10. For Y ∈ [0, 1]k×T , 1Y = 1,

min
C∈Rn×k

T
∑

t=1

DF (X:t||f−1(CY:,t)) ≤ min
M∈Dom(f)

T
∑

t=1

k
∑

i=1

YitDF (X:t||M:i)

145

Proof: First, by the convexity of the Bregman divergence in the first parameter,

T
∑

t=1

DF (X:t||f−1(CY:t)) =

T
∑

t=1

DF ?(CY:t||f(X:t)) . from Lemma 2

=
T
∑

t=1

DF ?

(

k
∑

i=1

C:,iYit

∣

∣

∣

∣

∣

∣
f(X:t)

)

≤
T
∑

t=1

k
∑

i=1

YitDF ?(C:i||f(X:t)) . because convex in first parameter

=
T
∑

t=1

k
∑

i=1

YitDF (X:t||f−1(C:i)) and Y:t1 = 1, Yit ≥ 0 for all i, t

�

Now we can characterize the mixture model clustering optimization. We simplify the inner opti-

mization first, assuming a fixed outer Φ ∈ F :

min
C∈Rn×k

T
∑

t=1

k
∑

i=1

DF (X:t||f−1(CΦ:t))

≤ min
M∈Dom(f)

T
∑

t=1

k
∑

i=1

DF (X:t||M:i)Φit . by Lemma 10 (F.1)

≡ min
M∈Dom(f)

−
T
∑

t=1

log

(

k
∑

i=1

pi exp(−DF (X:t||M:i))

)

. from Section 5 (Banerjee et al., 2005).

We can also add a smoothness parameter ρ, because ρDF (X:t||M:i) is still a convex loss function.

We obtain the final optimization

min
p≥0,1p=1

min
M∈Dom(f)

T
∑

t=1

− log

(

k
∑

i=1

pi exp(−ρDF (X:t||M:i))

)

(F.2)

where as ρ→∞, the objective approaches the hard clustering objective. Note that the ρ parameter

only influences the update for Φ; the update for M is unaffected by ρ.

Finally, in Lemma 11, we prove that the inner minimization over M simplifies to an expectation

and we get the updates shown in Algorithm 9.

Lemma 11. For a given Y ∈ [0, 1]k×T , 1Y = 1, X ∈ Dom(f) and any ρ > 0,

argmin
M∈Dom(f)

−
T
∑

t=1

log

(

k
∑

i=1

pi exp(−ρDF (X:t||M:i))

)

=

{

M:i =
1

Yi:1

T
∑

t=1

YitX:t

}

Proof: From (F.1), we know that

argmin
M∈Dom(f)

−
T
∑

t=1

log

(

k
∑

i=1

pi exp(−ρDF (X:t||M:i))

)

= argmin
M∈Dom(f)

T
∑

t=1

k
∑

i=1

YitDF (X:t||M:i).

146

Fix class i. Then, using a similar argument as in Lemma 8, we will see that the optimal solution for

M:i will be the mean vector, x̄ = (Yi:1)
−1
∑T

t=1 YitX:t.

(Yi:1)
−1

T
∑

t=1

YitDF (X:t||m)

= (Yi:1)
−1

T
∑

t=1

Yit[F (X:t)− F (m)− f(m)>(X:t −m)] . let F̄ = (Yi:1)
−1

T
∑

t=1

YitF (X:t)

= F̄ − (Yi:1)
−1

T
∑

t=1

YitF (m)− f(m)>(Yi:1)
−1

T
∑

t=1

Yit(X:t −m)

= F̄ − F (m)− f(m)>(x̄−m) . as (Yi:1)
−1

T
∑

t=1

Yit and x̄ = (Yi:1)
−1

T
∑

t=1

YitX:t

= F̄ − F (x̄) +DF (x̄||m) . DF (x̄||m) = F (x̄)− F (m)− f(m)>(x̄−m).

Therefore, we get

min
m∈Rn×k

T
∑

t=1

YitDF (X:t||m) = min
m∈Rn×k

(Yi:1)
−1F̄ − (Yi:1)

−1F (x̄) + (Yi:1)
−1DF (x̄||m)

= min
m∈Rn×k

DF (x̄||m)

which has solution m = x̄ = (Yi:1)
−1
∑T

t=1 YitX:t, completing the proof. �

Semi-supervised extensions: The semi-supervised forms of these algorithms arise simply from

modifying the M-Step to use both the imputed and given labels. The E-step remains unchanged, but

is implicitly affected by the fact that the choice of M is influenced by the labeled data.

F.2 Bregman divergences for standard semi-supervised learning

This section includes explicit derivations of the potential functions and transfers used for the stan-

dard semi-supervised learning experiments. Note that softmax is not invertible: for ξ(z) = ez/(1>ez),

ξ(z) = ξ(z− z1) for any scalar z. If we add the restriction that zk = 0, then we obtain invertibility

(formally shown in the below proposition).

Proposition 14 (Softmax Invertibility). Let ξ(z) = ez/(1>ez). The inverse map for ξ : (Rk−1, 0)→
Sk with Sk = {y : y ≥ 0, y>1 = 1} exists and is ξ−1(y) = ln(y)− ln(yk)1

Proof: Define a function g : Sk → (Rk−1, 0) as g(y) = ln(y)− ln(yk)1. Notice that this function

is well-defined on Sk and the range is a subset of (Rk−1, 0) because the last element is always

147

zeroed by g. Take any z ∈ (Rk−1, 0). Then,

g(ξ(z)) = ln(ξ(z))− ln(ξk(z))1

= ln(ez/(1>ez))− ln(e0/(1>ez))1

= ln

(

ez

1>ez

)

+ ln

(

(

1

1>ez

)−1
)

1

= ln

(

ez

1>ez
◦ (1>ez)

)

. where ◦ is component-wise multiply

= ln(ez) = z

Since g · ξ is the identity and the inverse function is unique, we know that ξ−1 = g. �

Table F.1: Transfer functions with their inverses and potential functions.

f(x) f−1(y) F (x) F ?(y)

IDENTITY x x x2/2 y2/2

SIGMOID σ(x) =(1 + e−x)−1 ln(y/(1− y)) 1′ ln(1+ ex) y ln(y/(1− y)) + 1 ln(1− y)

SOFTMAX ξ(x) = ex/1′ex ln(y)− ln(yk)1 ln(1′ex) [ln(y)− ln(yk)1]y − ln(1′(y − yk1))

EXP ex ln(y) 1′ex [ln(y)− 1]y′

CUBE x3 x1/3 1′x4/4 y1/3y′ − 0.25y4/31

148

Appendix G

Autoregressive Moving Average Models

G.1 Proof of Lemma 1 and 4

Proof: A standard argument follows (Neal and Hinton, 1998). First note that a lower bound on

log p(x1:T |Θ) can be easily obtained:

log p(x1:T |Θ) = log

∫

p(x1:T , ε1:T |Θ) dε1:T

= log

∫

q(ε1:T)
p(x1:T , ε1:T |Θ)

q(ε1:T)
dε1:T for any density q(·), q(ε1:T) > 0 everywhere

≥
∫

q(ε1:T)

(

log
p(x1:T , ε1:T |Θ)

q(ε1:T)

)

dε1:T by Jensen’s inequality (since log is concave)

=

∫

q(ε1:T) log p(x1:T , ε1:T |Θ) dε1:T −
∫

q(ε1:T) log q(ε1:T) dε1:T

=

∫

q(ε1:T) log p(x1:T , ε1:T |Θ) dε1:T +H(q(·)). (G.1)

It remains to show that the maximization of the lower bound attains the original value; that is:

log p(x1:T |Θ) = max
q(·)

∫

q(ε1:T) log p(x1:T , ε1:T |Θ) dε1:T +H(q(·))

over densities q(·). This can be verified merely by choosing the particular density q(ε1:T) =

p(ε1:T |x1:T ,Θ) and verifying that

(G.1) =

∫

p(ε1:T |x1:T ,Θ) log p(x1:T , ε1:T |Θ) dε1:T −
∫

p(ε1:T |x1:T ,Θ) log p(ε1:T |x1:T ,Θ) dε1:T

(G.2)

=

∫

p(ε1:T |x1:T ,Θ) log
p(x1:T , ε1:T |Θ)

p(ε1:T |x1:T ,Θ)
dε1:T

=

∫

p(ε1:T |x1:T ,Θ) log p(x1:T |Θ) dε1:T

= log p(x1:T |Θ)

∫

p(ε1:T |x1:T ,Θ) dε1:T

= log p(x1:T |Θ), (G.3)

149

implying that the upper bound can always be attained by q(ε1:T) = p(ε1:T |x1:T ,Θ). �

G.2 Proof of Theorems 9 and 10

Lemma 12. Given a convex loss function L(·,x) and convex regularizer R(·) with γ ≥ 0, the

following loss is convex in Z for all xt ∈ R
n

LA





q
∑

j=0

Z(j)
:,t−j ,xt



 = L





q
∑

j=0

Z(j)
:,t−j ,+

p
∑

i=1

A(i)xt−i,xt



+ γR(A)

Proof: Let gt((Z,A)) =
∑q

j=0 Z
(j)
:,t−j +

∑p
i=1A

(i)xt−i. We need to show that L(gt((Z,A)),xt)

is convex for any xt.

1. Clearly gt((Z,A)) is convex in (Z,A), because it is a linear function of the two variables.

2. Since L(·,xt) is convex, and the composition of two convex functions is convex, then

L(gt(·),xt) is convex. �

Corollary 6. The parameter estimation problem with a convex regularizer R(·) on the autoregres-

sive parameters, A,

min
A

min
Z

T
∑

t=max(p,q)

L

(

Z
(j)
:,t−j +

p
∑

i=1

A(i)xt−i,xt

)

+ α|||Z|||+ γR(A) (G.4)

is jointly convex in A and Z for α, γ ≥ 0.

Now, since LA,t(·) is convex, we know that we can apply Corollary 3 from Chapter 4.

G.3 Generalizations for regularized ARMA modeling

There are several clear generalizations to ARMA models that are important for practical applica-

tions. These include the addition of exogenous input variables (ARMAX), the generalization to

non-stationary series (ARIMA) and generalizing the set of possible regularizers chosen on εt. This

section describes these three extensions.

Regularized ARMAX models We can trivially add exogenous variables because, like the autore-

gressive component, they are included in the loss additively:

L





p
∑

i=1

A(i)xt−i +

q
∑

j=0

Z
(j)
:,t−j +

s
∑

i=1

C(i)ut−i ; xt





where ut ∈ R
d is an input control vector or exogenous vector. As with the autoregressive compo-

nent, we can add a convex regularizer onC ∈ R
n×ds to avoid overfitting. The resulting optimization

is an alternation over the three parameters, A, Z and C.

150

Regularized ARIMA models This generalization is similarly simple, because an autoregressive

integrated moving average, ARIMA(p,d,q), model is simply an ARMA(p,q) model of the time series

differenced d times. Differencing is a form of taking the derivative, with the assumption that the

time lag is appropriately small. As a result, the more times the differencing is applied, the more

likely we are to reach a stationary distribution.

Regularized ARMA models with different regularizers The convex formulation for RARMA

was completed under a Frobenius norm regularizer on εt, to encode the typical Gaussian prior on the

innovations. This distribution, however, can be changed to ‖E‖2,1 based on the discussion before

Corollary 3. Below, we show that this block 2, 1-norm corresponds to assuming a prior on the

innovations that is a Laplacian distribution across time.

There are several multivariate extensions of Laplace distributions; we choose a multivariate

Laplace, parametrized by a mean, µi, and scatter matrix Σi, with the convenient pdf (Arslan, 2010):

pL(Ei,:|µi,Σi) =
|Σi|−1/2

2Tπ
T−1
2 Γ(T+1

2)
e−
√

(Ei,:−µi)Σ
−1
i (Ei,:−µi)′

As before, where the covariance was pushed into the B parameters, we assume µ = 0 and Σ = I ,

giving

− log pL(Ei,:|µi,Σi) =

1

2
log (|Σi|) + T log(2) +

T − 1

2
log(π) + log Γ

(

T + 1

2

)

+

√

(Ei,: − µi)Σ
−1
i (Ei,: − µi)′

=⇒ min
E

k
∑

i=1

− log pL(Ei,:|µi = 0,Σi = I) = min
E

k
∑

i=1

√

Ei,:E ′i,: = min
E
‖E‖2,1

We can now simplify the relationship between the hidden variables because this multivariate

Laplace distribution decomposes nicely into the multiplication of a scalar gamma-distributed vari-

able, Si ∼ G(t+1
2 , β = 1

2) the covariance matrix Σ ∈ R
t×t and independent, standard normal

variables, εi ∼ N (0, I) (Arslan, 2010):

Ei,: =
√

SiΣεi where pSi(s) =
1

Γ(t+1
2)2

t+1
2

s
t−1
2 exp

(

−s
2

)

.

Interestingly, this makes the connection with the Frobenius norm formulation more clear, since once

the scale is fixed, we have independent innovations. The scalar across time acts like a shared scale

on the covariance of the innovations.

In general, there are potentially many other distributional assumptions we can make on the inno-

vation variables that could be efficiently solvable, depending on advances in convex reformulations

of matrix factorization.

151

Algorithm 14 ARMA synthetic data generation

Input: p, q, dimension of series n, number of samples T
Output: A, B, x1, . . . ,xT

1: m← n/p // Size of partition in x

2: s← 0.999 // Scale s < 1
3: τ ← 3 // Permutation period

4: for i = 1 : p do

5: d← [] // Eigenvalues of permutation matrix Ã(i)

6: if m is odd then

7: d← s
8: count← count +1

9: end if

10: while count < m do

11: dnew← exp(2π
√
−1/τ)

12: d← [d dnew conj(dnew)]

13: v1 ← randn(p, 1),v1 ← randn(p, 1)
14: V = [V, v1 +

√
−1v2, v1 −

√
−1v2]

15: count← count +2

16: end while

17: A(i) = 0

18: A(i)
(ip+1:ip+m),(ip+1:ip+m) = real(V DV −1)

19: end for

20: B ← randn(qn, n)
21: B:j ← B:j/

∑qn
i=1B

2
ij

22: // Simulate data from generated A, B and E
23: (x1, . . . ,xT)← simulate(A,B, E)
24: return A,B, (x1, . . . ,xT)

G.4 Details for the algorithms and experiments

G.4.1 Generating stable synthetic ARMA models

For the autoregressive part, we need to choose the parameters A(i) carefully, otherwise the system

will be unstable and the generated sequences will diverge (Lütkepohl, 2007). For vector ARMA in

particular, there are not many approaches to generating stable ARMA models and most experiments

involve small, known systems. We use an approach where each A(i) acts as a permutation matrix

on a sub-part of x. The observation x is partitioned into p sub-vectors of size m = n/p. Each A(i)

permutes the ith block in x, with a slow decay for numerical stability. Therefore, A(i) has zeros in

entries corresponding to blocks 1, . . . , i − 1 and i + 1, . . . , n and a slowly decaying permutation

matrix at row and columns entries ip + 1 to ip + m. This permutation matrix is generated using

randomly generated orthonormal vectors v and diagonal D, and the conjugates of each eigenvalue

and eigenvector, to give Ã(i) = V DV −1. The decaying rate s0 is set to 0.999 for numerical sta-

152

bility and the period of the permutation matrix determine by τ . See Algorithm 14 for the complete

generation procedure. The initial x−p, . . . ,x0 are sampled from the unit ball in R
n.

For the moving average part, the entries of B(j) and εt are drawn from standard normal,

N (0, I). The matrix B is normalized to have unit variance.

G.4.2 Imputing future innovations efficiently

In practice, parameters A and B are typically learned on training data x1, . . . ,xt−1 and then fixed.

Given these fixed parameters and the imputed ε1, . . . , εt−1, we may wish to impute innovation

variables for future data, xt:

min
ε:,t

L





p
∑

i=1

A(i)xt−i +

q
∑

j=1

B(j)εt−j +B(0)εt,xt



+
α

2
‖ε1:t‖2F

= min
εt

L





p
∑

i=1

A(i)xt−i +

q
∑

j=1

B(j)εt−j +B(0)εt,xt



+
α

2





k
∑

i=1

t−1
∑

j=1

ε2i,j + ε2i,t





= min
εt

L





p
∑

i=1

A(i)xt−i +

q
∑

j=1

B(j)εt−j +B(0)εt,xt



+
α

2
‖εt‖22

This procedure was not necessary for these prediction experiments; however, it could be useful

for predictions that are updated over time.

G.4.3 Forecasting in ARMA models

A main use of ARMA models is for forecasting, once the model parameters have been estimated.

In particular, given the parameters, Θ, we would like to predict the value of a future observation,

xt+h, given observations of a history x1, . . . ,xt. Under the Gaussian assumption (and exponential

family distributions more generally, see Appendix G.3) the optimal point predictor, x̂t+h, is given

by the conditional expectation

x̃t+h = E[xt+h|x1, . . . ,xt,Θ], (G.5)

which can be easily computed from the observed history and the parameters. To understand ARMA

forecasting in a little more detail, first consider the one step prediction case. If the innovation

variables are included in the observed history, then the one step conditional expectation is easily

determined to be

x̂t+1 = E[xt+1|x1, . . . ,xt, ε1, . . . , εt,Θ] =

p
∑

i=1

A(i)xt+1−i +

q
∑

j=1

B(j)εt+1−j . (G.6)

153

For the h step forecast, since the expected innovations for xt+1, . . . ,xt+h−1 are zero given previous

innovations, we obtain

x̂t+h = E[xt+h|x1, . . . ,xt, ε1, . . . , εt,Θ] =

p
∑

i=1

A(i)x̂t+h−i +

q
∑

j=h

B(j)εt+h−j (G.7)

where for h > q, the moving average term is no longer used, and x̂t+h−j = xt+h−j for t+h−j ≤ t.
If, however, the innovation variables ε1, . . . , εt are not observed, then xt+1 becomes dependent

on the entire history x1, . . . ,xt. The one step conditional expectation then becomes

x̃t+1 = E[xt+1|x1, . . . ,xt,Θ] =

p
∑

i=1

A(i)xt+1−i +

q
∑

j=1

B̃
(j)
(t) ε̃t+1−j (G.8)

where ε̃t = xt − x̃t, and the B̃
(j)
(t) can be efficiently computed, recursively, from the previous B̃

(k)
(n)

and the original parameters; see for example (Brockwell and Davis, 2002, Sec. 3.3) for details. This

leads to the optimal h step predictor that can be efficiently computed using the same recursively

updated quantities

x̃t+h = E[xt+h|x1, . . . ,xt,Θ] =

p
∑

i=1

A(i)x̃t+h−i +
t+h−1
∑

j=h

B̃
(j)
(t+h−1)ε̃t+h−j . (G.9)

154

	Introduction
	Objective
	Approach
	Contributions
	Overview

	Background: regularized factor models
	Why regularized factor models?
	Different choices for the distribution parameters

	Bregman divergences and exponential family distributions

	Preliminary insights: supervised and unsupervised learning using factor models
	Supervised learning using factor models
	Linear forward prediction
	Linear forward-reverse prediction connection
	Generalized forward-reverse connection
	Case studies

	Unsupervised learning as factor models
	Forward-reverse prediction for unsupervised learning
	Case studies

	Previous frameworks and unifications
	Summary table
	Summary

	Convex formulations for regularized factor models
	Why not use expectation-maximization?
	Convex matrix factorization formulation for norm regularizers
	Computationally practical special cases
	Recovery algorithms

	Summary

	Subspace learning and sparse coding using regularized factor models
	Convex sparse coding
	Convex subspace learning
	Convex multi-view subspace learning
	Experimental results for convex multi-view subspace learning
	Summary

	Semi-supervised learning using regularized factor models
	Theoretically sound standard semi-supervised learning
	Variance reduction using unlabeled data
	Algorithms for semi-supervised classification and regression
	Experimental results

	Convex representation-imputed semi-supervised learning
	Convex reformulation
	Experimental results

	Summary

	Autoregressive moving average models using regularized factor models
	Background
	Regularized ARMA modeling
	Efficient parameter estimation
	Identifiability and optimal parameter recovery
	Computational complexity
	Experimental evaluation
	Synthetic experiments
	Experiments on real time series
	Investigating the moving average component

	Summary

	Perspectives and future work
	Research directions
	What cannot be represented as a regularized factor model?
	Computational challenges
	Theoretical challenges

	Summary

	Bibliography
	Background information
	Generalized eigenvalue problems
	Relationship between regularization and constraints
	Lagrangian, strong duality and the KKT conditions
	General set constraints

	Bregman divergence properties

	Generalized forward-reverse connection
	Proof of Theorem 1
	Kernelization, regularization, and instance weighting
	Simplifications for least-squares losses

	Unsupervised learning algorithms
	Linear representation learning
	Probabilistic latent semantic indexing
	Partial least squares
	Independent component analysis

	Graph-based techniques
	Isomap
	Laplacian eigenmaps
	Locally linear embeddings
	Metric multi-dimensional scaling
	Ratio cut
	Projection algorithms

	Linear clustering
	Generalized clustering
	Exponential family k-means clustering
	Generalized normalized cut
	Linde-Buzo-Gray algorithm
	Information theoretic clustering and Information bottleneck

	Convex factorization appendix
	Preliminaries
	Proof of Theorem 2
	Proof of Theorem 7
	Derivation of the boosting recovery algorithm
	Characterizing the recovery set
	Boosting procedure
	Solving the weak oracle problem

	Efficient training for multi-view subspace learning
	Semi-supervised learning appendix
	Algorithms for clustering
	Bregman divergences for standard semi-supervised learning

	Autoregressive Moving Average Models
	Proof of Lemma 1 and 4
	Proof of Theorems 9 and 10
	Generalizations for regularized ARMA modeling
	Details for the algorithms and experiments
	Generating stable synthetic ARMA models
	Imputing future innovations efficiently
	Forecasting in ARMA models

