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ABSTRACT
Motivation: Identifying the destination or localization

of proteins is key to understanding their function and
facilitating their purification. A number of existing
computational prediction methods are based on
sequence analysis. However, these methods are
limited in scope, accuracy and most particularly
breadth of coverage. Rather than using sequence
information alone, we have explored the use of
database text annotations from homologs and machine
learning to substantially improve the prediction of
subcellular location.

Results: We have constructed five machine-learning
classifiers for predicting subcellular localization of
proteins from animals, plants, fungi, Gram-negative
bacteria and Gram-positive bacteria, which are 81%
accurate for fungi and 92% to 94% accurate for the
other four categories. These are the most accurate
subcellular predictors across the widest set of
organisms ever published. Our predictors are part of
the Proteome Analyst (PA) web-service.

Availability:
 http://www.cs.ualberta.ca/~bioinfo/PA/Sub
 http://www.cs.ualberta.ca/~bioinfo/PA
Supplementary Information:
  http://www.cs.ualberta.ca/~bioinfo/PA/Subcellular
Contact: bioinfo@cs.ualberta.ca

INTRODUCTION
High-throughput sequencing technology has made it possible
for many laboratories to sequence the genomes of new
organisms.  There are more than 1200 genome sequences
deposited in public databases (EBI, 2003).  Given the size
and complexity of these data sets, most researchers are
compelled to use automated annotation systems to identify
or classify individual genes and proteins.  As part of this
annotation process, a number of systems have been

developed that support automated prediction of subcellular
localization, based on amino acid sequence information.
There are three basic approaches. One approach is based on
amino acid composition, using artificial neural nets (ANN)
such as NNPSL (Reinhardt and Hubbard, 1998), or support
vector machines (SVM) like SubLoc (Hua and Sun, 2001).
A second approach uses the existence of peptide signals,
which are short sub-sequences of approximately 3 to 70
amino acids to predict specific cell locations, such as
TargetP (Emanuelsson, et al., 2000). A third approach, such
as the one used in LOCkey (Nair and Rost, 2002),  is to do a
similarity search on the sequence, extract text from
homologs and use a classifier on the text features. Some
tools, like PSORT (Nakai and Kanehisa, 1992; Horton and
Nakai, 1997), combine a variety of individual predictors.
Many tools, like SubLoc, PSORT, and TMHMM (Krogh et
al. , 2001), are available for public use on the web.
Unfortunately, most tools accept only a single sequence at a
time, with TMHMM being a notable exception.
Emanuelsson (2002) provides a good survey of these tools.

Better Accuracy and Coverage are Needed
There are two limitations to current techniques. The ffirst

is the limited accuracy of the predictors, especially for some
organelles. The second is limited coverage. The term
coverage can be used in three ways: location coverage,
sequence coverage and taxonomic coverage. All three kinds
of coverage are limited in current tools.

First, location coverage defines the sub-regions (nuclear,
cytoplasmic, extracellular, etc.) in the cell that are supported
by a predictor. Most existing tools limit the location
coverage to just membranes or just a few organelles.

Second, given a training/test set, sequence coverage is
defined as the ratio of sequences for which a prediction is
made to the total number of sequences of interest. For
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example, the LOCkey dataset consists of 3146 labeled
sequences from Swiss-Prot and the predictor obtained an
accuracy of .87 on a subset of 1161 sequences (coverage =
.37). Sequence coverage can be measured on one organism
(1-organism sequence coverage) or multi-organisms. The 1-
organism measure is important for high-throughput
prediction for newly sequenced organisms.

Third, taxonomic coverage measrues the range of
organisms for the predictor such as: animal, green plant,
Gram-negative bacteria, etc. Most existing predictors have
only been evaluated on a limited number of sequences from
a specific taxonomic category of organism (for example, just
Gram-negative bacteria or just green plants).

Table 1 lists some predictors and gives a measure of
accuracy and the kind of technique employed. It also
provides an informal indication of combined sequence
coverage and taxonomic coverage. Unfortunately, no
standardized sequence coverage ratios have been published
for these predictors.

Using Classifiers for Prediction
This paper describes a novel classification technique for
predicting subcellular localization (Lu, 2003). This
technique is used in our publicly available web-based
Proteome Analyst (PA). Two tools are available for
subcellular localization – a simple tool (PA-SUB) that only
predicts subcellular localization (http://www.cs.ualberta.ca/
~bioinfo/PA/Sub) and a more comprehensive tool that
predicts subcellular localization along with other
annotations, including general function (http://www.cs.
ualberta.ca/~bioinfo/PA). The second tool also allows a user
to build a custom classifier from custom training data.

A controlled vocabulary or ontology is required for
subcellular localization. In fact, since cell structure varies
across organisms, several ontologies are required and PA
supports five: animal, plant, fungi, Gram-negative bacteria
(GN) and Gram-positive bacteria (GP), which are based on
the PSORT ontologies. Among them, PSORT
(bacteria/plants), PSORT II (animals/yeast) (Nakai, 2000)
and PSORT-B (GN bacteria) provide a set of predictors over
the same classes of organisms as PA. However, PSORT and
PSORT II are older systems with poor accuracy, whereas
PSORT-B is a newer system with much better accuracy
(Gardy et al., 2003).

In general, a classifier takes a query instance, described by
a set of feature-value pairs, and returns one of a fixed
number of labels (Mitchell, 1997).  In PA, each query
instance is a primary sequence that is BLASTed against the
Swiss-Prot database to obtain a set of homologs. Each
feature of the query instance is a Boolean value
corresponding to the presence or absence of a token (word or
phrase) from certain fields of the homologous sequences’
Swiss-Prot database entries.

Table 1. Acc(uracies) and informal sequence/taxonomic coverage

of current subcellular localization predictors. Gram-negative

bacteria and Gram-positive bacteria are denoted GN and GP

respectively.

Name Acc Coverage Technique
PSORT-B .75 1443 GN bacterial combination
LOCkey .87 1161 assorted homology

.91 291 prokaryoticSubLoc

.79 2427 eukaryotic
AA composition

.85 940 plantTargetP

.90 2738 non-plant
signal prediction

.93 16284 animal

.93 3420 plant

.81 2104 fungal

.92 3218 GN bacterial

Proteome
Analyst

.94 1571 GP bacterial

homology and
machine learning

We use a machine learning (ML) algorithm to learn a
mapping from the features of a query instance to the
appropriate subcellular localization label for that instance. A
common technique is to apply a ML algorithm to a set of
labeled training items to produce a classifier. In our case,
each training item consists of a primary protein sequence
and the ontological label it has been assigned by an expert.
Each training instance is first BLASTed against Swiss-Prot to
identify its features in the same manner as query instances.
Features are not provided in the training set – they are
computed automatically from Swiss-Prot data.

In this paper, we use three different sources for labeled
training data: Swiss-Prot database entries that have
unambiguous subcellular localization annotations (26,458
sequences), a subset of the Swiss-Prot database developed
for LOCkey (3146 sequences) and the set of GN bacteria
sequences (1443) used in PSORT-B. These three data sets
are used to evaluate the PA classifiers. However, a PA user
can also create a custom subcellular localization classifier
using custom training data, by simply uploading a file of
labeled training sequences (Szafron et al., 2003b). No
programming is required.

In the context of PA, transparency is the ability to provide
formally-sound and intuitively-simple reasons for each
prediction (Szafron et al., 2003a). PA bases its predictions
on well-understood concepts of conditional probabilities. Its
explanations are presented as stacked bar-graphs that clearly
display the evidence for each prediction.

Contributions
This paper describes a new subcellular localization
prediction technique that makes the following scientific
contributions:

1) This new machine learning technique makes the most
accurate subcellular localization predictions over the
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broadest range of organisms (animals, plants, fungi,
GN bacteria and GP bacteria) of all subcellular
localization prediction techniques published to date.

2) This technique is publicly available as a high-
throughput web-based tool in Proteome Analyst.

3) Proteome Analyst provides the first explanation
facility for subcellular localization predictions.

4) Proteome Analyst can be used to easily create new
subcellular classifiers using custom training data,
without any programming.

SYSTEMS AND METHODS
The Prediction Process
PA predicts the subcellular localization of a query protein
sequence using its primary sequence and the organism
taxonomic category: animal, plant, fungi, GN bacteria, GP
bacteria. Here is the five-step prediction process used by PA.

P1. The primary sequence of the query protein is
BLASTed against the Swiss-Prot database and a set of
homologous sequences is selected.

P2. Potential features are computed by extracting text
from the Swiss-Prot records of the best homologs. A
feature has the value true if a token representing that
feature is extracted and false if no such token is
extracted.

P3. The user-provided taxonomic organism category is
used to select one of five pre-built Naïve Bayes
classifiers (Duda and Hart, 1973): animal, plant, fungi,
GN bacteria, GP bacteria.

P4. The features are used by the appropriate classifier to
compute the probability of each label in the ontology
of that classifier. The label with the highest probability
is considered the primary location for the protein.

P5. The user can view a graphical explanation of the
prediction (Szafron et al., 2003a).

We use the GP bacterial protein Exodeoxyribonuclease
from Streptococcus pneumoniae (EXOA_STRPN) as an
example. If this organism was newly sequenced, its proteins
would not appear in Swiss-Prot. Therefore, we removed all
EXOA_STRPN entries from our Swiss-Prot database for this
demonstration. We experimented with many variations of
steps P1 (homolog selection) and step P2 (feature
extraction), as described in the Discussion Section. In this
Section, we describe only the best configuration. We select
up to three homologs with the lowest BLAST E-values that
are less than 0.001.

Fig. 1  shows three homologs of our query protein
sequence. For feature selection, we obtained the best results
using phrases extracted from selected fields of the Swiss-
Prot homologs. Specifically, we extracted each semi-colon
delimited phrase from the Swiss-Prot KEYWORD field of
each selected homolog, as well as all InterPro numbers from
the DBSOURCE field. Finally, we checked for the inclusion

of a pre-defined set of phrases in the SUBCELLULAR
LOCALIZATION subfield of the COMMENT field. For
ease of reference in this paper, we will denote these fields
by: KWORD, IPR and SCELL respectively. This set of
phrases forms the potential feature set. The Discussion
Section describes alternative feature definition strategies that
produced less accurate classifiers.

After computing the potential feature set, we remove all
ubiquitous phrases like: “complete proteome”, that are
contained in a stop-word list (van Rijsbergen, 1979). For
example, Fig. 2 shows the potential feature set for the
demonstration query sequence (EXOA_STRPN) that were
extracted from the top three homologs. They appear under
the heading “Unique Tokens Extracted for Protein #6”.

Our classifiers remove other poorly-discriminating
features as well. When PA builds a classifier, it actually
learns the best set of features to use. This process of feature
selection is a standard ML technique for improving accuracy
(Kohavi and John, 1997). In fact, the five classifiers (animal,
plant, fungi, GN bacteria and GP bacteria) use different
machine-learned feature sets. Fig. 2 shows the features that
were actually used by the GP bacteria classifier to classify
the demonstration sequence (EXOA_STRPN). They appear
under the heading “Relevant Tokens for Protein #6”. For
example, the features ipr003034 and polymorphism appear
in the “Unique Tokens” list, but are not used by the
classifier, so they are not in the “Relevant Tokens” list.

PA uses a Naïve Bayes classifier, which generates a
probability for each label. Fig. 3 shows the probabilities of
each of the GP bacteria labels for the demonstration
sequence (EXOA_STRPN) as shown in PA.

Fig. 1. The Swiss-Prot homologs of EXOA_STRPN from BLAST.

Fig. 2. The features for EXOA_STRPN extracted by PA.

Fig. 3. PA predicted subcellular locations for EXOA_STRPN.
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Table 2. Confusion matrix for the PA Gram-positive classifier,

trained on Swiss-Prot data. The ontological labels are:

cyt(oplasmic), (cell) wal(l), mem(brane), and ext(racellular). N.P.

represents no prediction, ASum and PSum are the sums of the

actual and predicted labels, respectively. cov is sequence coverage.

The superscripts: TP – true positive, TN – true negative, FP – false

positive and FN – false negative are relative to the mem(brane)

label and are used in the text for illustration, along with the bolded

entries. 

† 

R , 

† 

P  and 

† 

S  denote overall sensitivity (recall), precision

and specificity respectively.

predicted label Æ

actualØ cyt wal mem ext N.P. ASum cov sensitivity

cyt 881TN 0TN 13FP 26TN 10TN 930 .989 .947

wal 1TN 16TN 0FP 1TN 1TN 19 .947 .842

mem 8FN 1FN 291TP 17FN 23FN 340 .932 .856

ext 4TN 2TN 8FP 217TN 21TN 252 .917 .861

PSum 894 19 312 261 55 1541 .964

† 

R =.912

precision .985 .842 .933 .831

† 

P =.945

specificity .979 .998 .983 .966

† 

S =.978

Building a Classifier
A classifier must be trained (built) before it can be used. PA
uses labeled training data to build a simple Naïve Bayes
classifier using these basic steps:

B1. Each labeled training instance consists of a primary
sequence and a label from the ontology of the
classifier being built.

B2. The primary sequence of each training instance is run
through steps P1 and P2 described in the previous
Section to produce a set of potential features.

B3. A set of sufficient statistics, c+
ij and c-

ij, are computed
for the set of training instances, where c+

ij is the
number of training sequences that were labeled by
label j with Fi = true, and c-

ij, is the number of training
sequences that were labeled by label j with Fi = false.

B4. A Naïve Bayes classifier is built using these sufficient
statistics.

In fact, as mentioned earlier, we modify this basic process
by using feature selection (Kohavi and John, 1997) to
improve the accuracy. After building and computing the
accuracy using all of the potential features, we remove the
5% of the features that have the lowest information content.
The information content (information gain) of a feature is a
measure of the amount that a feature contributes to
classifications in general (Mitchell, 1997). For example, if a
feature appears in every training instance, it is useless in
discriminating between labels and its information content is
zero. On the other hand, a feature that appears in all training
instances that have a single label and no training instances
with any other labels is very good for discriminating the one
label. Therefore, it has high information content. After

removing this 5% of low information content features, we
build a second classifier, and measure its accuracy. We then
remove another 5% of low information content features and
continue in this way until we have computed the accuracy of
20 different classifiers with 0%, 5%, 10%, … 95% of the
original features removed. We identify the threshold that
produced the classifier with the highest accuracy. The most
accurate classifiers for subcellular localization typically had
75%-80% of the least discriminating features removed.

Classifier Evaluation
To compare classifiers, it is important to define the
evaluation criteria precisely. Most techniques start with a
confusion matrix or contingency table (van Rijsbergen
1979). Table 2 shows the confusion matrix for the PA GP
bacteria classifier trained on Swiss-Prot data.

We will use Table 2 to illustrate our evaluation techniques.
Each entry in Table 2 represents the number of sequences in
the test set whose actual label is the row label and whose
predicted label is the column label. For example, the number
of sequences with actual label mem(brane) that were
incorrectly predicted as ext(racellular) is 17. The ASum
column indicates the number of test sequences whose actual
label is specified by the row label. For example, 340
sequences were actually labeled mem(brane). The PSum row
indicates the number of test sequences whose predicted label
is specified by the column label. For example, 312
sequences had predicted label, membrane.

Various statistics can be computed from a confusion
matrix to evaluate a classifier. In this paper we will use four
standard statistics: specificity, precision, sensitivity and
recall (the last two are identical). Given a confusion matrix
M  and a set of labels {Li}, the standard definitions (van
Rijsbergen, 1979) (Altman and Bland, 1994) of these
statistics are as follows.

The precision for each label Li is Pi defined by:

† 

Pi =
TP

TP + FP
= M ii M ki

k=1

n

Â = M ii PSumi  

Here, n is the number of training instances, true positives
(TP) is the number of labels correctly predicted as Li, which
were actually labeled Li. The false positives (FP) is the
number of labels incorrectly predicted as Li that were
actually not labeled as Li. For example, consider the label
mem(brane) in Table 2. The TP and FP counts are denoted
by superscripts, where there is a single count for TP, but the
three FP entries must be summed. From Table 2, we have TP
= 291 and FP = 13+0+8 = 21. Therefore, the precision for
membrane is: P(mem) = 291/(291+21) = 291/312 = .933.

The specificity for each label Li is Si defined by:

† 

Si =
TN

TN + FP
=

sum - ASumi - PSumi + M ii
sum - ASumi

 

Here, true negatives (TN) is the number of labels correctly
predicted as not Li, that were actually not labeled Li and sum
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is the total number of sequences (1541 in Table 2). For
example, in Table 2, the TN and FP counts for the label
mem(brane) are denoted by superscripts, where the
superscripted numbers must be summed. We have TN =
881+0+26+10+1+16+1+1+4+2+217+21 = 1180 and FP
=  13+0+8 = 21. The specificity of label mem(brane) is:
S(mem) = 1180/(1180+21) = 1180/1201 = .983.

The sensitivity or recall for each label Li is Ri defined by:

† 

Ri =
TP

TP + FN
= M ii M ij

j=1

n +1

Â = M ii ASumi

Here, false negatives (FN) is the number of labels incorrectly
predicted as not L i that were actually labeled Li. For
example, consider the label mem(brane) in Table 2. The TP
and FN counts are denoted by superscripts, where the FN
superscripted numbers must be summed. From Table 2, we
have TP = 291 and FN = 8+1+17+23 = 49. Note that the
FN number includes the no prediction (N.P.) column as well.
Therefore, the sensitivity (recall) of label mem(brane) is:
R(mem) = 291/(291+49) = 291/340 = .856.

The precision and specificity statistics favor conservative
predictors that make no prediction when there is doubt about
the correctness of a prediction, while the sensitivity (recall)
statistic favors liberal predictors that make a prediction if
there is a chance of success. For example, if two predictions
are changed from “no prediction” to a prediction, where one
is correct and the other is incorrect, then TP increases by 1,
FP increases by 1, TN decreases by 1 and FN decreases by 1.
Therefore, the precision and specificity numbers both
decrease, but the sensitivity (recall) increases:

† 

ˆ P i =
TP +1

TP +1+ FP +1
<

TP
TP + FP

ˆ S i =
TN -1

TN -1+ FP +1
<

TN
TN + FP

ˆ R i =
TP +1

TP +1+ FN -1
>

TP
TP + FN

Information retrieval papers report precision and recall,
while bioinformatics, medical and machine learning papers
tend to report specificity and sensitivity. We include all of
them. However, specificity is not as informative as precision
for multi-labeled (non-binary) classifiers. We also include
sequence coverage, which is the ratio of sequences for which
a prediction was made to the total number of sequences in a
specific class. For example, in Table 2, the coverage of
mem(brane) is (340 – 23) / 340 = .932.

An overall version of each statistic is computed as a
weighted average. For the overall sensitivity (recall) the
weights are the number of sequences with each actual label
(ASumi), and we also refer to it as the accuracy, A:

† 

A = R =
ASumiRi

i=1

n

Â

sum
=

ASumi
M ii

ASumi

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

i=1

n

Â

sum
=

M ii
i=1

n

Â

sum

For example, in Table 2, the overall sensitivity (accuracy) is
A = 

† 

R = (881+16+291+217)/1541 = .912.
The overall precision and overall specificity are weighted

averages over the predicted labels (columns):

† 

P =
PSumiPi

i=1

n

Â

sum - PSumn +1
=

M ii
i=1

n

Â

sum - PSumn +1

S =
PSumiSi

i=1

n

Â

sum - PSumn +1

 

For example, the overall precision and overall specificity of
the classifier in Table 2 are 

† 

P = (881+16+291+217)/(1541-
55) = .945 and 

† 

S  = .978  respectively. The overall coverage
is a weighted average of the label coverage, so 

† 

C = .964.
There are many different ways to organize test sets and we

compute two different kinds of confusion matrices. Our first
technique is a standard machine learning technique called 5-
fold cross validation (Mitchell, 1997). Each set of labeled
training instances is “randomly” divided into five groups (G1

… G5), while keeping the number of training instances with
each label approximately the same in each training group.
Then, five different classifiers are constructed (C1 … C5),
where Ci uses all of the training instances from all of the
groups except Gi. Next, a confusion matrix is computed for
each of the five classifiers, Ci, using the sequences in group
Gi (that were not used in its training) as test data. The final
confusion matrix is then computed by summing the entries
in all of the confusion matrices. In our application, there is
one important modification that is necessary to ensure
“fairness” of the evaluation. Our features are obtained by
extracting them from Swiss-Prot homologs. Before
searching for homologs, we remove the Swiss-Prot entries of
each of the test sequences. This simulates the situation where
the test sequences correspond to newly sequenced proteins
that would not appear in the Swiss-Prot database. We used
the 5-fold cross-validation accuracy to build the feature
selection filter described in the previous section. A second
technique for computing a confusion matrix is to build a
single classifier from all training data except the sequences
from one specific organism. This 1-organism classifier is
then applied to the specific organism and a confusion matrix
is constructed. This simulates the situation in which a
classifier is used to predict the subcellular locations of all
sequences in a newly sequenced organism. In this case, for
fairness, all Swiss-Prot entries for that specific organism are
removed from the Swiss-Prot database.

After the evaluation is complete, we build a final classifier
using all of the training instances. This final classifier
typically has better accuracy than any of the five classifiers
built during 5-fold cross-validation.
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Table 3. Statistics for the PA animal classifier: count, spec(ificity),

prec(ision) and sens(itivity), as well as the 1-organism statistics for

Bos taurus (Bovine). The ontological labels are: nuc(lear),

mit(ochondria), cyt(oplasmic), ext(racellular),  gol(gi),

pe(ro)x(isomal), end(oplasmic reticulum), lys(osomal) and

mem(brane).

5-fold cross-validate 1-organism: BOVINE
location

count spec prec sens count spec prec sens

nuc 2846 .996 .979 .905 47 1.000 1.000 .894

mit 1194 .998 .973 .970 145 .993 .972 .952

cyt 1845 .981 .866 .919 84 .983 .878 .940

ext 3943 .991 .972 .927 197 .991 .974 .964

gol 167 .996 .723 .892 7 .996 .667 .857

pex 103 .999 .909 .971 4 .999 .800 1.000

end 457 .996 .868 .952 14 .996 .824 1.000

lys 170 .998 .861 .947 12 .997 .857 1.000

mem 4820 .981 .957 .938 218 .986 .966 .917

Overall 15549 .988 .946 .929 728 .990 .950 .941

Table 4. Statistics for the PA green plant classifier. See Table 3 for

abbreviations. Additional labels are chl(oroplast) and vac(uole).

The 1-organsim is Zea mays.

5-fold cross-validate 1-organism: MAIZE
location

count spec prec sens count spec prec sens

nuc 168 .999 .988 .964 16 1.000 1.000 1.000

mit 307 .992 .926 .935 19 .986 .900 .947

cyt 447 .987 .923 .960 36 .992 .971 .917

ext 127 .996 .887 .866 6 .981 .667 1.000

gol 35 .998 .850 .971 2 1.000 1.000 1.000

chl 1899 .973 .980 .959 69 .979 .969 .913

pex 29 .999 .993 .966 1 .994 .500 1.000

end 64 .998 .903 .875 6 1.000 1.000 1.000

vac 82 .997 .870 .817 2 .994 .667 1.000

mem 135 .992 .805 .733 9 .987 .600 .333

Overall 3293 .982 .951 .939 728 .987 .926 .904

Table 5. Statistics for the PA fungi classifier. See Table 3 and Table

4 for abbreviations. The 1-organism is Neurospora crassa.

5-fold cross-validate 1-organism: NEUCR
location

count spec prec sens count spec prec sens

nuc 621 .975 .933 .833 11 1.000 1.000 1.000

mit 406 .977 .888 .744 45 .976 .976 .889

cyt 395 .949 .786 .808 15 .958 .824 .933

ext 171 .993 .914 .871 2 1.000 1.000 1.000

gol 52 .991 .689 .808 0 1.000 0/0 0/0

pex 64 .993 .786 .859 0 1.000 0/0 0/0

end 64 .993 .750 .656 1 1.000 1.000 1.000

mem 302 .989 .932 .861 12 .987 .917 .917

vac 19 .996 .600 .632 1 1.000 1.000 1.000

Overall 2094 .975 .871 .811 87 .978 .940 .908

Table 6. Statistics for the PA Gram-negative bacteria classifier. See

Table 2 for abbreviations. Additional ontological labels are: inn(ner

membrane), per(iplasmic), (cell) wal(l) and out(er membrane). The

1-organism is Haemophilus influenzae.

5-fold cross-validate 1-organism: HAEIN
location

count spec prec sens count spec prec sens

cyt 1861 .989 .992 .955 73 1.000 1.000 1.000

ext 253 .986 .838 .858 15 .990 .929 .867

per 385 .986 .898 .873 7 .991 .875 1.000

inn 432 .993 .958 .951 5 1.000 1.000 .800

wal 46 .999 .956 .935 0 .983 0/0 0/0

out 197 .996 .938 .919 15 1.000 1.000 .800

Overall 3174 .990 .959 .934 115 .990 .964 .922

Table 7. Statistics for the PA Gram-positive bacteria classifier. See

Table 3 and Table 6 for abbreviations. The 1-organism is

Streptomyces coelicolor.

5-fold cross-validate 1-organism: STRCO
location

count spec prec sens count spec prec sens

cyt 930 .982 .988 .948 37 1.000 1.000 1.000

wal 19 .997 .750 .789 0 0/0 0/0 0/0

ext 252 .967 .841 .881 6 1.000 1.000 1.000

mem 340 .982 .929 .853 9 1.000 1.000 .889

Overall 1541 .980 .946 .914 52 1.000 1.000 .981

RESULTS
Proteome Analyst Accuracy
Table 3 to Table 7 show the statistics for the five classifiers
we built using training instances from the Swiss-Prot
database. The training sets are publicly available (PA-SUB,
2003), along with the confusion matrices that were used to
compute these statistics. Each training set contains a set of
sequences in FastA format that includes the correct label
(from Swiss-Prot), the organism tag, the organism name,
Swiss-Prot taxonomy information and the primary sequence.

These classifiers show excellent 5-fold cross validation
and 1-organism statistics over all ontological classes.
However, some small training and test sets produce poor
results, such as the precision (.600) for the 19 training/test
instances of vacuolar in the fungi classifier (Table 5).

We performed additional experiments to compare our
work with similar systems. To compare PA to LOCkey (Nair
and Rost, 2002), we constructed two custom subcellular
localization classifiers using their ontology and training data.
The LOCkey paper contains a confusion matrix for a Swiss-
Prot data-set with 1162 training instances. Table 8 shows the
five-fold cross-validation specificity, precision and recall,
computed from their confusion matrix and from a PA
classifier we built using their training data and ontology.
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Table 8. A comparison of the statistics of a PA classifier built using

the LOCkey 1161 sequence training data with the statistics

produced by the LOC(Key) classifier on the their training data. See

Table 3 and Table 4 for the ontological label abbreviations.

specificity precision sensitivity
location count

LOC PA LOC PA LOC PA
mit 190 .945 .993 .763 .964 .795 .979
ext 334 .947 .975 .879 .937 .953 .973
nuc 352 .926 .985 .850 .965 .971 .929
chl 94 .979 .997 .718 .966 .609 .894
cyt 136 .970 .973 .656 .804 .428 .846
end 14 .993 1.000 .200 1.000 .154 .500
lys 7 .999 .999 0.000 .833 .000 .714
gol 22 .998 .999 .895 .944 .810 .773
pex 8 1.000 1.000 0.000 1.000 0.000 .375
vac 4 1.000 1.000 0.000 1.000 0.000 .250

Overall 1161 .945 .983 .815 .936 .815 .912

Our specificity, precision and sensitivity results are
consistently better than the LOCkey results, except for
sensitivity on the golgi class. Our accuracy (overall
sensitivity) is almost 10% better at .912 versus .815. Even
though our approaches are similar, there are two reasons for
these accuracy differences. First, we are using a different
classifier technology – Naïve Bayes versus an ad-hoc
method. Second, we are using different Swiss-Prot database
fields (including the IPR field). Their paper does not include
a confusion matrix or accuracy statistics, for 100% coverage
of a larger 3146 sequence set, other than to indicate that the
accuracy is less than the .815 accuracy of their 34%
coverage classifier. On this larger set (100% coverage), we
achieved an accuracy (overall sensitivity) of .889 (PA-SUB,
2003).

We also built a custom classifier for GN bacteria using the
reliable PSORT-B GN bacteria data (Gardy et al., 2003) as a
training set. Table 9 shows the five-fold cross-validation
precision and sensitivity (recall) presented in their paper and
the same statistics computed from a PA classifier built using
the PSORT-B training data and ontology. They do not report
specificity, so it is not in Table 9. Note that our Swiss-Prot
GN bacteria ontology has one extra label, (cell) wal(l),
which they include in the ext(racellular) class. To compare
our technique more directly with theirs, we did not include a
(cell) wal(l) label in the classifier we built from their data.
The PA approach is very different than the PSORT-B
approach, since PA uses a simple Naïve Bayes classifier and
features extracted from Swiss-Prot homologs, while PSORT-
B uses a set of six sequence-based models. Nevertheless, PA
produces results that are somewhat better for sensitivity and
accuracy, and very close in precision. Furthermore, the PA
technique produces excellent results for animals, plants,
fungi and GP bacteria (with different classifiers of course).

Table 9. A comparison of the statistics of a PA classifier built using

the PSORT-B training data with the statistics produced by the

PSORT-B predictor, built from the same training data. See Table 5

for the ontological label abbreviations.

precision sensitivity
location count

PSORT-B PA PSORT-B PA
cyt 252 .976 .947 .694 .853
inn 308 .967 .965 .787 .906
per 264 .919 .915 .576 .860
out 378 .988 .986 .903 .947
ext 241 .944 .876 .700 .880

Overall 1443 .965 .943 .748 .895

Note that 139 out of 1443 training sequences in the
PSORT-B training data have two labels. To accommodate
double-labels in our Naïve Bayes classifier, we transformed
each training instance that had two labels into two training
instances, one with each label. Since we are comparing with
the PSORT-B classifier (Gardy et al., 2003), we followed
their lead during predictor evaluation and counted a
prediction as correct if it predicted either of the two labels.
As a final test, we applied our full Swiss-Prot trained GN
bacteria classifier to the PSORT-B test set and obtained an
accuracy of .869 (Lu, 2003) (PA-SUB, 2003).

Sequence Coverage
If PA is applied to an entire organism, there will be some
sequences without homologs, so no features can be extracted
and used by the classifier. In some cases, even though
homologs are found, there will be no relevant tokens in the
FUNCTION, IPR and SCELL fields used by PA to construct
features. We call such sequences excluded sequences and PA
makes no subcellular localization prediction for excluded
sequences. Excluded sequences are the only ones that reduce
the coverage of PA classifiers. To gain an appreciation for
the PA subcellular localization sequence coverage on
various organisms, we used the PA classifiers to classify all
of the sequences in several organisms as shown in Table 10.
A more complete table is online (PA-SUB, 2003).

Before running PA on an organism, we removed all of the
sequences for that organism from Swiss-Prot, so that no
exact sequence matches would be found. Of course, for these
tests, we cannot report accuracy, since we do not know the
“correct” subcellular localization for many of them. The
organisms use the animal, plant, fungi, GN bacteria and GP
bacteria classifiers respectively. Each was selected since its
complete proteome is publicly available. We are currently
developing pattern recognition and discovery software that
can be used to extract local features from excluded
sequences so that the coverage may approach 100%.
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Table 10. Sequence coverage of the PA classifiers on some fully

sequenced organisms. The count is the total number of genetic

sequences for the organism. An exclude(d) sequence is one for

which PA was unable to find at least one homolog whose E-value

was less than .001 that contained at least one relevant feature. The

cov(erage) is the ratio of all non-excluded sequences from an

organism to the total number of sequences from that organism.

organism class count exclude cov
M. musculus animal 27754 7099 .745
A. thaliana plant 26032 10043 .600
S. pombe fungi 5007 1023 .787
B. subtilis GP bact. 4098 1346 .672
P. aeruginosa GN bact. 5557 1355 .756

Table 11 The accuracy of PA Gram-negative classifiers that use

different homolog selection techniques, different Swiss-Prot fields

and different feature extraction techniques.

PSI-BLAST
iterations

top
homologs

KWORD IPR SCELL acc

1 3 phrase yes phrase .934
1 3 phrase yes no .924
1 3 phrase no phrase .934
1 3 no no phrase .922
2 3 phrase yes phrase .932
1 2 phrase yes phrase .935
1 4 phrase yes phrase .936
1 3 words yes words .929

DISCUSSION
Extracting Ontological Labels for Training
Sequences
We selected all mature sequences (≥ 40 amino acids) from
the Swiss-Prot database and tried to extract their ontological
labels. Although the Swiss-Prot database contains a
subcellular localization field, this field does not contain a
single ontological label for each sequence. Therefore, we
had to construct a parser that extracted a simple ontological
label, when possible. Here are the rules that our parser uses
to label potential training sequences:

1) See if the field contains one of the ontological labels.
If it does not, the sequence is rejected as a training
sequence.

2) If it contains more than one ontological label, it is also
rejected, unless one label is an organelle and the other
is membrane.

3) If it contains an ontological label, but also contains the
phrase “potential” or “by similarity” it is rejected if
the number of training sequences with that label is
high. However, if the number of training sequences

with that label is small (< 1.5% of the total number of
training instances), it is accepted.

4) If the ontological label is “cell wall” and the phrase
contains the word “attached”, it is rejected.

Steps 2, 3 and 4 require some explanation. For step 2, it is
common to describe a protein as being in a membrane of a
specific organelle. In this case, the correct label is the
organelle. In Step 3, we want to reject any annotations that
contain words like “potential “ or “by similarity”. However,
for ontological labels with low numbers of training
instances, we found that accepting “higher risk” annotations
is necessary to obtain enough training data so that the
classifiers have good accuracy. Note that we followed the
PSORT-B lead of including any sequences that contain the
phrase “cell wall” in the extracellular class for the plant and
fungi ontologies, since the Swiss-Prot data is not very
accurate in these cases. For Step 4, we found many Swiss-
Prot SCELL annotations for proteins that are not in the cell
wall, which contain the phrase “attached to the cell wall”.

Selecting Homologs and Extracting Features
We experimented with many different implementations of
the five-step prediction process described earlier in this
paper. For step 1, we used PSI-BLAST instead of BLAST
and varied the number of iterations. Second, we varied the
number of homologs whose features were extracted. The
highest accuracies were obtained by using one iteration of
PSI-BLAST (so we reverted to BLAST). There is not much
difference between using the top two, three or four homologs
(whose E-values were smaller than 0.001), so we decided to
pick three, while we investigate this further.

For step 2, we varied the Swiss-Prot fields that we used to
extract features. We used combinations of the KEYWORD
field (KWORD), the InterPro numbers from the
DBSOURCE field (IPR), and the SUBCELLULAR
LOCALIZATION subfield of the COMMENT field
(SCELL). We also varied the way we parsed the fields to
extract features. For example, we tried stemming (Jurafsky
and Martin, 2000) on the KWORD field so that the words:
“vacuole” and “vacuoles” are the same. We also tried
treating semi-colon delimited phrases like: “Purine
biosynthesis” as a single feature versus two separate features
in the KWORD field. The best results were obtained by
using semi-colon delimited phrases without stemming. For
the SCELL, we tried using all individual words as features
and we tried using a fixed set of pre-defined phrases (PA-
SUB, 2003). The pre-defined phrase approach worked the
best. Table 11 shows accuracy results for some of our
experiments.

Notice from Table 11 that using the SCELL, IPR and
KWORD fields of the Swiss-Prot database gives the best
prediction results, although the IPR field is the least
important for predicting subcellular localization. Therefore,
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the better accuracy of PA compared to LOCkey cannot be
attributed only the inclusion of the IPR field. The NB
classifier accounts for most of the improvement over
LOCkey.  However, there is hope that IPR numbers may be
useful for some localizations. A domain projection technique
based on SMART domains (Schultz et al., 2000), which are
included in Interpro, has been somewhat successful in
identifying the labels: extracellular, cytoplasmic and nuclear
(Mott et al., 2002). In addition, we have found that using the
IPR number is very significant for general function
prediction and other specialized predictors we have
constructed using PA, like K+-ion channel protein
classification (Szafron et al., 2003b).

Selecting a Classifier Technology
For step 3, we varied the kinds of classifiers. Table 12 shows
a summary of results (PA-SUB, 2003) for Naïve Bayes
(NB), Artificial Neural Nets (ANN), Support Vector
Machines (SVM) and three nearest neighbor classifiers
(1NN, 3NN and 5NN). For a k-nearest neighbor predictor,
after BLASTing for homologs, we ignored all Swiss-Prot
fields except for the SCELL field. The k homologs with the
smallest E-values ( < 0.001), that had a non-empty SCELL
field voted for a subcellular localization label, based on their
own field label. In the case of a tie, the homolog with the
smallest BLAST E-value won.

As shown in Table 12, the NB accuracy is better than any
of the k-nearest neighbor classifiers, but is inferior to the
ANN and SVM classifiers by 1% - 4 %. However, it is very
difficult to explain the predictions of ANN and SVM
classifiers, so we feel that this small decrease in accuracy is
more than compensated by the ability to explain the
predictions to users. Explanation is an important factor in
getting users to trust predictors (Szafron et al., 2003a).

The explain mechanism of PA allows users to review the
evidence used by a classifier to make a prediction. For
example, both the NB and ANN classifiers predict that the
Gram-negative protein OMP1_CHLMU is an outer
membrane protein, even though Swiss-Prot 41 SCELL entry
is CELL WALL SURFACE. However, the PA explain
mechanism for NB classifiers allow the user to view the
evidence, while there is no way to do this in an ANN
classifier. Fig. 4 shows part of an explain page for the
O M P 1 _ C H L M U  classification. Each horizontal bar
represents the evidence for a particular location on a
logarithmic scale. Each sub-bar with different shading
indicates the evidence due to the existence of a single feature
(porin, outer membrane, ipr000604, integral membrane
protein, and transmembrane). In PA, these sub-bars are
different colors, but have been represented by different
shadings in this paper. The long white bar represents the
accumulated evidence of the other features that are not
currently displayed (“Reduced Residual”).

Table 12. A comparison of the accuracy of Naïve Bayes (NB),

artificial neural nets (ANN), Support Vector Machines (SVM), and

three nearest neighbor classifiers (1NN, 3NN and 5NN) on the five

Swiss-Prot datasets, the LOCkey dataset and the PSORT-B dataset.

Category NB ANN SVM 1NN 2NN 3NN
animal .929 .883 .956 .910 .919 .919
plant .939 .971 .947 .900 .912 .911
fungi .811 .856 .814 .726 .772 .752
GP bact .914 .949 .898 .812 .845 .843
GN bact .934 .956 .939 .868 .899 .892
LOCkey .912 .943 .924 .720 .763 .768
PSORT-B .895 .927 .888 .615 .652 .653

Fig. 4 Part of the PA explain page for protein OMP1_CHLMU.

PA contains a mechanism for changing the five features
that are displayed and the remaining features that are
combined into the white bar (“Reduced Residual”). Notice
that the evidence for label “outer membrane” over “cell
wall” is overwhelming. Even though a PA-NB classifier and
a PA-ANN classifier both predicted outer membrane, the
advantage of using an NB classifier instead of an ANN
classifier is the existence of this explanation facility. Note
that in the revised Swiss-Prot version 42 database that will
be released in September 2003, the SCELL entry of this
protein is changed to outer membrane to match the PA
prediction. Although the explanation mechanism of PA was
not used to influence this annotation change, it could have
been used in this way.

A complete description of the PA explanation facility is
beyond the scope of this paper. However, Fig. 5 shows one
more PA screen that can be used to view prediction
evidence. This screen shows relative evidence from the most
important features, in selecting between the predicted class
(in this case, outer membrane) and any other class of interest
(in this case, cell wall). The darker bars indicate evidence for
outer membrane and the lighter bars indicate evidence for
cell wall. The (P) notation indicates that a token for that
feature was present in the query sequence (OMP1_CHLMU)
and an (A) indicates that the token for that feature was
absent. We believe that the convenience and power of the
PA Naïve Bayes explanation facility is worth the loss of a
few percentage points of precision accuracy that might be
gained by using an ANN or SVM classifier.
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Fig. 5 Viewing feature contributions to a PA prediction.

It is also possible to use multiple classifier technologies
and to report a consensus, although we are not currently
using this approach. It is not clear how the explanation
facility would fit with such an approach.
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