
Recurrent and Bayesian Kernel Learning for Small

Data with Applications to Neuroimaging

by

Alex Lewandowski

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Mathematical and Statistical Sciences

University of Alberta

c⃝ Alex Lewandowski, 2018



Abstract

Gaussian processes are flexible probabilistic models for regression and clas-

sification. However, their success hinges on a well-specified kernel that can

capture the structure of data. For complex data, the task of hand crafting a

kernel becomes daunting. In this thesis, we propose new methods for Gaus-

sian process classification. In particular, we propose learning flexible kernels

that are parameterized by recurrent neural networks. Unlike previous work

in recurrent kernel learning, our recurrent kernels are learned through a scal-

able variational framework and applied to classification. We also investigate

methods to propagate the uncertainty of neural network parameters through

the Gaussian process. In doing so, we propose a novel use of batch normaliza-

tion that provides estimates of uncertainty for feed-forward and convolutional

neural networks. To evaluate our models, we simulate multivariate time-series

data with commonly observed phenomenon in neuroimaging data and com-

pare against two baselines: Gaussian processes and neural networks. We then

compare our model to the best performing baselines on common deep learning

benchmarks and real neuroimaging datasets. We find that our models provide

better predictions and estimates of uncertainty when sample sizes are small

and remains competitive at larger sample sizes.
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Chapter 1

Introduction

Machine learning methodology has long been rooted in classical statistical

and probabilistic models. As a result, classification models like support vector

machines and Gaussian processes have dominated the literature. Gaussian

processes in particular have been championed as a flexible tool for regres-

sion and classification, with modest computational costs [61]. A more recent

paradigm in machine learning is deep learning: the study and application of

neural networks. In recent years, deep learning has exploded due to its wide

spread success in various applications, especially in computer vision and nat-

ural language processing [32]. Common to all of the success stories however,

is massive amounts of data. While data may not be a problem in multimedia

based domains, where the internet can provide massive data, it becomes a

problem in more specialized domains like medicine. When only small amounts

of medical data is available, the application of neural network becomes suspect.

The early focus on simpler models was two fold: complicated models require

more data to be accurate and simpler models are easier to understand. While

these two concerns hold weight today, their importance in the machine learn-

ing community has diminished. Now, complex models can make use of large

amounts of raw data to make predictions in domains like natural language

processing and computer vision. Still, we use these concerns as motivating

research questions. First, can we learn complex models from limited data?

Second, can we reason about the uncertainties of complex models? Unfortu-

nately, neural networks alone have not answered these questions, so we search
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for alternatives.

Between classical probabilistic methods and deep learning there are two

middle grounds: Bayesian Deep Learning (BDL), where probabilistic methods

are used in service of neural networks, and Deep Bayesian Learning (DBL),

where neural networks are used in service of probabilistic models. When data

is limited, both BDL and DBL approaches are favoured over deep learning

methods [50, 56, 28]. The classic BDL example are Bayesian neural networks,

which are a valuable tool when data is limited due to the regularization they

provide, referred to as the Bayesian Occam’s razor [50]. Unfortunately, infer-

ence in Bayesian neural networks is still difficult and most research explores

methods to approximate the inference problem [30, 38]. Hence, BDL models

like Bayesian neural networks remain poorly understood compared to classical

probabilistic models like Gaussian processes.

We now turn to DBL, where neural networks are used as function approx-

imators in a well understood probabilistic model. These models are easier

to use compared to (Bayesian) deep learning models since they can rely on

properties of the well understood probabilistic model. For example, consider

the case of classification of red versus blue in Figure 1.1. The data is origi-

nally represented in Cartesian coordinates, and a naive probabilistic classifier

may struggle to learn a non-linear classifier to separate the red from the blue.

However, if we could use a neural network to learn a polar coordinates rep-

resentation, we would see that a linear classifier can separate red from blue.

Further, given the polar representation, we could use our naive probabilistic

model to provide uncertainty estimates of the classification results. While a

toy example, this demonstrates the power of an efficient representation. In

principle, any function can be used to obtain a new representation of the

data; common examples in the statistics literature include principle compo-

nents analysis and independent component analysis [9]. Neural networks are

a particular choice of function approximator because they can learn efficient

and hierarchical representations through gradient optimization. Hence, they

can be seamlessly paired with probabilistic models that are also trained with

gradient optimization.

In functional Magnetic Resonance Imaging (fMRI) data, we partition the

2



Figure 1.1: Two possible representations of the same problem. Left: Cartesian
coordinates, not linearly separable. Right: Polar coordinates, linear classifier can
achieve perfect accuracy.

subjects into classes that correspond to the presence versus absence of a dis-

ease. The task is then to infer the disease state of a subject given that subject’s

fMRI scan. The machine learning models that have been applied to classifi-

cation of fMRI data [59] tend to be simplistic and forgo flexible probabilistic

models like Gaussian processes [65]. Instead of a learned representation, they

leverage post-hoc representations like covariance structure [18]. While moder-

ately successful, this can be limiting, since there is no concrete evidence that

the brain encodes all disease information in the covariance structure. Hence,

there is no reason to believe that a fixed representation, like covariance struc-

ture, will generalize to other subjects or diseases. Instead, we want to learn a

representation of the data using a neural network, while simultaneously learn-

ing a classifier.

There has been recent interest in Gaussian processes with neural network

parameterized kernels; a DBL framework referred to as deep kernel learn-

ing [80, 78, 16, 14]. While the idea of “deep-ifying” and learning a kernel for

representation is not new [42, 5], only recently have they been trained end-to-

end. This is largely due to advances in inducing point [77] and variational [37]

methods that allow for scalable inference. However, current methods fail to

account for temporal dependencies and are unable to propagate the uncer-

tainty in neural network weights. Our model builds upon previous stochastic

variational deep kernel learning in two important ways. First, we propose
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using recurrent neural networks to learn temporal representations for Gaus-

sian process in a classification framework. Second, while the Gaussian process

in deep kernel learning can provide uncertainty estimates, the estimates fail

to account for uncertainty in the neural network parameters. We extend the

deep kernel learning to a BDL framework by accounting for the uncertainties

in the neural network representation. We show that our BDL and DBL models

perform well even when the dataset is small relative to the dimension of the

data.

The remainder of this thesis is structured as follows: Chapter 2 summarizes

background in machine learning, Gaussian processes, deep learning, approxi-

mate inference and neuroimaging. In particular, it aims to be a self contained

introduction to the pillars of our work: (Bayesian) deep learning and its need

for approximate inference. Next, Chapter 3 introduces deep kernel learning

and our extension to recurrent neural networks. We then discuss batch normal-

ization as a proxy for weight uncertainty in the context of deep neural network

kernels. In Chapter 4 we perform preliminary evaluation of our model based

on simulated multivariate time-series. We then extend this analysis to study

some common machine learning benchmarks, as well as an application to var-

ious fMRI datasets. Lastly, Chapter 5 provides a summary of the results and

a discussion on future work.

4



Chapter 2

Background

We will now cover the necessary machine learning background, as well as the

three pillars of this work: Gaussian processes, neural networks and approxi-

mate inference. While the material on Gaussian processes is important, the

central contribution of this thesis is a combination of neural networks and

approximate inference. Indeed, the motivation for this work is how to best

estimate a representation for a Gaussian process classifier and then reason

about the representation’s uncertainty. This is as opposed to quantifying the

uncertainty of a neural network that learns to directly output classification

labels. In some ways this can be easier: a Gaussian process is a probabilistic

model, so it can quantify its own uncertainty given the intermediate represen-

tation of the neural network output. In other ways, this is more difficult: the

interaction between the Gaussian process and neural network is not well un-

derstood. In addition, Gaussian process models require matrix inversions that

can incur a non-trivial overhead cost. The material is organized in the order

outlined above, which is also in an increasing order of importance. Lastly, we

will explore how these approaches have been used in the fMRI classification

literature.
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2.1 Machine learning methodology

For this section, we provide an introduction to machine learning while high-

lighting differences from statistics. Despite many seeing machine learning as a

sub-field of statistics, there is a large difference in terminology, as highlighted

in the translation table in [75]. Furthermore, machine learning differs from

statistics in its focus (ex. scalable algorithms, and likelihood-free approaches).

Hence, while machine learning deals with statistical problems such as param-

eter estimation, it is often dealt with approximately, or in models that are

atypical in the statistical literature. As a result, machine learning is both

more general (ex. search methods, reinforcement learning) and more specific

(ex. prediction models of regression and classification, without survey or sam-

pling design). Since this thesis is mainly concerned with Bayesian approaches,

we will outline the relevant statistical and machine learning tools below.

2.1.1 Terminology

Much of statistical and machine learning research is interdisciplinary, leading

to a confusion in terminology and model etymology. In machine learning,

models are trained as opposed to estimated, and the covariates are referred to

as features. These correspondences are exact, and the difference stems from

the perceived end goal of training an artificially intelligent agent on features

in a computer vision setting, as opposed to estimating the effect of covariates

in a model.

2.1.2 Bayesian methods

Bayesian methods treat unknown parameters as random, and hence require a

distributional assumption in the form of a prior [50]. It is important to note

that the true value of a parameter can still be fixed, even when the parameter

is treated like a random variable. In essence, the Bayesian method uses the

language of probability to quantify the parameter’s uncertainty and it is a

purely mechanical choice. The fact that the parameter is unknown implies

that we are uncertain of their value, where the degree of uncertainty depends

6



on the data that we observe.

In order to reason about the uncertainty of unknown parameters, we use

Bayes’ rule. For unknown variables z, and observations x, we write the poste-

rior as follows

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x, z)dz

.

In the above identity, we call p(z) the prior. Before seeing any data, we

may have reasons to believe that z follows some distribution due to intuition

or expert advice. The p(x|z) term is the likelihood, common to frequentist

statistics, which describes the behavior of our data. For example, Bernoulli

likelihood can be used for classification while a Gaussian likelihood can be

used for regression. Lastly, the p(x) term is for normalization and has an spe-

cific interpretation. Unfortunately, the p(x) term is often intractable. Hence,

one may employ methods of approximate inference to avoid calculating p(x)

directly.

An important property of likelihood-prior pair is conjugacy. Simply stated,

if a likelihood-prior pair are conjugate to each other, then the posterior distri-

bution belongs to a known family, with parameters depending on the prior and

likelihood. This is convenient since the parameters of the posterior distribution

can be computed in a straight-forward manner, given that the likelihood and

prior are conjugate to each other. When the distributions are non-conjugate,

the posterior must be dealt with on a case-by-case basis. Specifically, the

above integral must be evaluated or approximated for any non-conjugate pair,

which is often complicated and computationally challenging.

2.1.3 Stochastic gradient descent

While machine learning models have a variety of training methods, there has

been a large push for Stochastic Gradient Descent (SGD) methods. This is in

part due to the success of neural networks, which are fully differentiable and

most effectively optimized by SGD when the sample size is large [13]. Many

variants have been introduced, but we will only detail SGD in its most basic
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form. If we have data {xi}Ni=1 and a cost function, parameterized by θ, J(θ;x),

then we can optimize via SGD with learning rate α as follows: SGD has been

Algorithm 1 An algorithm to calculate the minimum of the cost function
J(·) via stochastic gradient descent. Convergence can be measured by a suffi-
ciently small difference between the objective function at different epochs, or
a sufficiently large number of iterations.

Input: data x, index set S ⊂ {1, . . . , N} of a mini-batch, learning rate α
Output: θ̂
function SGD(x, S, α)

init θ̂
while not converged do

Ex[∇J(θ;x)] ≈ 1
|S|

∑
i∈S∇J(θ;xi)] := ∇̂

θ̂ ← θ̂ − α∇̂
end while

end function

the biggest breakthrough in the training of neural networks. As neural net-

works and the data required to train them became larger, a need for working

on small partitions of the data (or mini-batches) became prominent. Stochas-

tic gradient descent uses the mini-batches to obtain estimates of gradients in

standard gradient descent. Still, the learning rates used in SGD remain an im-

portant hyper parameter, with no clear tuning process. To alleviate this issue,

the majority of current SGD research revolves around momentum optimization

which automatically and dynamically select the learning rates [63]. Unfortu-

nately, this introduces the momentum parameter that, like the learning rate,

needs tuning. This has led to adaptive methods of optimization [44, 82] which

can automatically tune both learning rate and momentum.

2.2 Gaussian processes

A Gaussian Process g ∼ GP (f |µ(·), k(·, ·)) is the infinite dimensional ana-

logue of a multivariate Gaussian distribution. Its defining property is that,

for any finite set of indices {i1, . . . , in} of the data x, we have that G =

8



{g(xi1), . . . , g(xin)} is distributed as an n-dimensional multivariate normal dis-

tribution. A Gaussian Process acts as a non-parametric prior over the space

of functions because its complexity grows with more data. That is, its co-

variance parameter, the (positive-definite) kernel function k, is evaluated at

more points as data is accumulated. Put another way, the covariance matrix

[K]ij = k(xi,xj), grows in size as we see more data. The mean function how-

ever, is usually assumed to be µ = 0 unless there is reason to believe a priori

otherwise. It is important to note that even with a prior mean function of

zero, the posterior mean is not necessarily zero. Much of this background can

be found in more detail in the standard GP reference [61].

To improve performance at scale, Gaussian processes can use a subsample

u of size m called inducing points, compared to the data x of size n, where

m << n [66]. This reduces the dimension of the associated kernel matrix in

some calculations from [Knn]ij = k(xi,xj) which is n×n to [Kmm]ij = k(ui,uj)

which ism×m. This can be taken a step further, where we call u pseudo-inputs

that have an associated distribution q(u) with parameters that we optimize.

In this case, we approximate the data by a sufficiently good coverage of smaller

points, usually from a clustering algorithm [72].

2.2.1 Kernels

The kernel function is the fundamental contributor to the characterization of

a Gaussian process. Formally, a kernel is a symmetric function defined on the

domain of inputs, so that if x ∈ X then k : X × X → R and for any n scalar

variables, a1, . . . , an ∈ R, and any n elements of X , x1, . . . ,xn we have the

positive-definite condition:

n∑
i=1

n∑
j=1

aiajk(xi,xj) ≥ 0

For arbitrary kernels k1, k2, non-negative scalars α ≥ 0 and function f we

have the following kernel properties:
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• additive combinations

k(xi,xj) = k1(xi,xj) + k2(xi,xj)

• multiplicative combinations:

k(xi,xj) = k1(xi,xj) · k2(xi,xj)

• scalar multiplication:

k(xi,xj) = αk1(xi,xj)

• function composition:

k(xi,xj) = k1(f(xi), f(xj))

While kernels can be hand-crafted for a specific application, they can also

be learned or estimated from the data. Hence, for complex tasks where the

kernel structure is not clear, it may be best to construct a kernel that is flex-

ible enough, using the properties outlined above. Some examples of common

covariance kernels for Gaussian processes are:

• the linear kernel

k(xi,xj) = xi
Txj

• the radial basis function kernel (also known as Gaussian kernel):

k(xi,xj) = e−
∥xi−xj∥

2

2σ2

• the minimum kernel, producing a Brownian motion [43]

k(xi,xj) = min(i, j)

10



We stress that a kernel can drastically change the behavior of a Gaussian

process [23]. For example, Gaussian processes with an RBF kernel can ap-

proximate any continuous function. Hence, the RBF kernel enforces a strict

smoothness assumption. However, other kernels like the minimum kernel can

force the Gaussian process to behave like Brownian motion which is almost

surely nowhere differentiable [62].

2.2.2 Classification

Gaussian process classification, similar to logistic regression, must use a specific

likelihood with support on the unit interval [0, 1]. For our purposes, we use a

probit likelihood, defined by an element-wise link function ϕ(x) = P (x < Z)

where Z ∼ N(0, 1). Logistic regression models also optimize this likelihood

with some linear parameterized function gβ(xi) = βxi such that

P (β|x,y) =
N∏

n=1

ϕ(gβ(xi))
yi [1− ϕ(gβ(xi)]

1−yi

For Gaussian process classification, we draw g ∼ GP(0,K) from a Gaussian

process prior with kernel K. However, the posterior of this Bayesian procedure

does not have an analytic form so we instead write the joint distribution as

P (K,x,y) = N (g|0,K)
N∏

n=1

ϕ(g(xi))
yi [1− ϕ(g(xi)]

1−yi (2.1)

where K is the Kernel matrix given by the observations and specifies the

covariance structure, i.e. [K]ij = k(xi,xj).

We emphasize the two main restrictions with Gaussian process classifi-

cation. First, inference is difficult due to the intractable integral required to

recover the posterior. This can be rectified with variational inference, which we

will detail in Section 2.4. Second, selecting an appropriate kernel is a laborious

task especially in fields with little established prior knowledge, such as neu-

roimaging. However, if we can devise a flexible enough kernel, it can discover

structure instead of having it specified directly to the kernel. This presents us
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with two new problems: uncertainty and regularization. It is unclear how to

incorporate the uncertainty of the neural network weights. Additionally, neu-

ral networks greatly increase the number of parameters in the model which

could potentially lead to over-fitting. However, we will show how incorporat-

ing uncertainty in neural network weights also leads to regularization.

2.3 Deep learning

Deep learning is a collection of models and methods involving neural networks

with many hidden layers. In the machine learning community, deep neural

networks have provided several success stories in supervised learning tasks

like classification and regression. More recently, they have been leveraged in

unsupervised learning tasks like generative modeling, which aim to estimate

distributions of data. In this section, we provide a primer on the following

common neural network architectures: feed forward, convolutional and re-

current. In addition, some material on Bayesian deep learning methods and

regularization will be covered, while a more technical discussion is deferred to

Chapter 3. More details on deep learning can be found in [32].

2.3.1 Feedforward neural networks

Feedforward neural networks, are defined by a number of layersH, a number of

neurons per layer {Nh}Hh=0 where N0 is the input dimension and NH is the out-

put dimension, an activation function r, and parameterized by a set of weight

matrices {Wh}Hh=1 and bias vectors {bh}Hh=1 such that Wh ∈ RNh−1×Nh and

bh ∈ R1×Nh . The activation function r is typically taken to be the Rectified

Linear Unit (ReLU), r(x) = max(0,x). Then, a feedforward neural network

f is given by the following recurrence relation:

h1 = r(W1x+ b1)

hh = r(Whhh−1 + bh) for h ≥ 2

f(x) = hH

12



Figure 2.1: Two possible representations of the same problem that are translation
invariant. Left: A cat left of center. Right: A cat right of center.

Figure 2.2: Two possible representations of the same problem that are not trans-
lation invariant. Left: A picture of a cat. Right: A deconstructed picture of a cat,
with separate sections translated separately.

where r is applied element-wise to the resulting vector. Unlike convolutional

and recurrent networks, feedforward models do not encode any specific struc-

ture, such as spatial or temporal dependencies.

2.3.2 Convolutional neural networks

Convolutional neural networks (CNN) are similar to feedforward neural net-

works, except they can encode spatial information via an additional “convo-

lution”. Intuitively, a convolution operation imposes translational invariance

on the model. For example, an image classifier will be indifferent to an image

that appears on the right or left.

To be concrete, we consider the input to be a gray-scale image represented

as a matrix I ∈ RL×W with length L and width W . Then, each layer h applies

a collection of eh matrices (referred to as filters), {Fh,e}ehe=1, to the image via
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the discrete convolution:

[Fh,e ∗ I]i,j =
∑
m

∑
n

[I]i,j[Fh,e]i−m,j−n

where m and n range over the admissible index values of the filter. Notice that

Fh,e ∗ I ∈ RL×W . We now define the notation that Fh,: ∗ I = {Fh,e ∗ I}ehe=1 ∈
RL×W×eh . That is, we stack the results of each convolution for every avail-

able filter matrix. Then the CNN f is defined by the recursive convolutional

relation:

h1 = r(F1,: ∗ I+ b1)

hh = r(Fh,: ∗ hh−1 + bh) for h ≥ 2

f(I) = hH

where r is again applied element-wise. The convolutional operator and hence

CNNs can be extended to multidimensional cases, such as video or fMRI.

2.3.3 Recurrent neural networks

Recurrent neural networks (RNN) are a class of neural networks that are

specialized to handle sequential data. Similar to hidden Markov models, RNNs

involve a hidden-state and an input at every time-step. However, the Markov

assumption of fixed lag dependence can be limiting when time dependencies

are unknown or unbounded. In fMRI for example, the presence of disease in an

individual at a particular time step yt can depend on all previous brain data,

measured by Blood-level-oxygen dependent (BOLD) levels xt. The most naive

application of a hidden Markov model would assume that the disease state

only depends on the time step directly before. While a toy example, picking

a fixed lag dependence in hidden Markov models is difficult. This difficulty is

exacerbated by the computational difficulty of longer range dependencies and

the impossibility of arbitrary length dependencies.

On the other hand, a recurrent neural network’s hidden state ht at time t

depends on all the states and inputs before t. This is shown by the equations
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that define an RNN f for an input x = {x1, . . . ,xT} with T total time steps,

at = b+Wht−1 +Uxt

ht = tanh(at)

ot = c+Vat

f(x) = oT

weight matrices {W,U,V} and bias terms {b, c}. Notice that the hidden state

ht is a function of the activation at, which again is a function of the previous

hidden state ht−1 and input xt. This allows RNNs to model arbitrarily long

dependencies in time. However, modeling very long range dependencies is still

computationally costly and difficult to optimize. Despite these issues, they are

extremely potent at modeling sequences [34].

One technical issue with recurrent neural networks is vanishing/exploding

gradients, which makes capturing long term dependencies difficult. RNNs can

be modified into Long-Short Term Memory (LSTM) models [40] or Gated

Recurrent Unit (GRU) [19], which fix this issue by including a potential to

“forget” irrelevant information and “reinforce” relevant information.

2.3.4 Bayesian neural networks

Neural networks can be made Bayesian, in the sense that we prescribe a prior

distribution on the parameters (weights). While the weights themselves do

not have any intrinsic meaning, the probabilistic tools provided by Bayesian

reasoning allows for an Occam’s razor effect via Bayesian modeling averag-

ing [50]. Bayesian model averaging, which is the result of integrating over

parameters, acts as an inherent regularization effect for the model class. If we

include uncertainty in the neural network weights, we are able to provide more

robust estimates with the posterior distribution over predictions. This line of

study is often to referred to as Bayesian deep learning.

More concretely, we consider a feedforward neural network with prior as-

sumptions on their weights, but without a bias term for notational convenience.

For layer h of a neural network, we have that the weightsWh follow some prior
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p(Wh), typically taken to be isotropic Gaussian. The network is then defined

recursively by an element-wise activation function r and an initial input x0.

Then the first layer is calculated as h1 = r(W1x0) and each subsequent layer

follows hh = r(Whhh−1) for h = 1, . . . , H. Of course, Bayesian inference in

this model is highly intractable due to the nonlinearities imposed by r.

Now, if we consider the model with unknown parameters W and observa-

tion pairs {x,y} then we can write the posterior as

p(W|x,y) = p(x,y|W)p(W)

p(x,y)

where p(W) is the prior distribution of all the weights, p(x,y) is the marginal

of the data and p(x,y|W) is the likelihood of the data. In particular, the

likelihood term is difficult to calculate because each weight Wh depends non-

linearly on the previous weight Wh−1, but must be integrated out. This makes

any attempt at inference extremely difficult.

The entire problem of Bayesian deep learning is then how to reason about

this uncertainty with the specific challenges that neural networks pose. There

are two main approaches to this: casting ad-hoc tricks in deep learning as

Bayesian inference [30, 45, 49] or developing methods that perform inference

explicitly or implicitly [33, 12, 38, 46, 26].

2.3.5 Training and regularization methods

Neural networks provide a compelling and flexible modeling framework. The

high degree of nonlinearity and non-convexity makes training difficult. As

a result, many auxiliary methods were developed to assist in the training

of neural networks. In this subsection, we will briefly outline the methods

that we make use of: norm regularization of weights, dropout, and batch

normalization.

2.3.5.1 Regularizing neural network weights with Lp–norm

Regularization can be imposed via an Lp norm on the weights similar to

LASSO or Ridge regression [32]. This is a simple but effective method to
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avoid overfitting. In essence, the regularized cost function Ĵ(w) of the neural

network, where the set of all weights is ω, includes a term ∥ω∥p in addition

to the original cost function J(ω). Hence, the penalized cost function can be

written as follows.

Ĵ(ω) = J(ω) + ∥ω∥p

There is little theoretical work on how exactly regularization effects the specific

magnitude of the weights. Still, the added regularization term prevents weights

from becoming too large and eases the optimization procedure.

2.3.5.2 Dropout

Regularization can also be induced by using dropout [67]: a pioneering regu-

larization technique for deep learning. Roughly speaking, dropout in neural

networks refers to the masking of individual neurons at the hidden layers (re-

placing neuron values with 0, with probability p). Hence, given a layer h with

Nh neurons, h = {h1, . . . , hNh}, we randomly set each hi to 0 with probability

p. This cleverly avoids overfitting by preventing any fixed subset of nodes

in a neural network from overfitting to the data. The intuition for why this

provides regularization is similar to the idea of ensemble modeling. That is,

for each instantiation of a neural network with dropout, the size of the neural

network is effectively reduced by the random zero masking. This encourages

a robust parameterization because of the possibility that any nodes can be

“turned off” in a neural network by being set to 0.

2.3.5.3 Batch normalization

Most recently, batch normalization was introduced as a method to enable even

larger learning rates. Batch normalization [41] refers to the normalization of

inputs at each layer h, ĥh = γh
hh−E[hh]√

Var[hh]
+ βh. When training is done over a

mini-batch of size B, x = h0 = {h0
i}Bi=1, then E[hh] ≈ µh = 1

B

∑B
i=1 h

i
h and√

Var[hh] ≈ σh =
√

1
B−1

∑B
i=1(h

i
h − µh)2. The intuition on why this works is

because it prevents hidden layers from drifting to arbitrarily large values, also

known internal covariance shift. The result is an improvement in convergence
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speed and testing performance [41]. [70] shows that batch normalization can

be interpreted as approximate variational inference on the weights of a deep

neural network. However, the exact way that batch normalization improves

neural network training is unclear.

2.4 Approximate inference

While Gaussian process classification is conceptually simple, the Bayesian in-

ference problem is still intractable. In these situations, we must settle for

approximate inference schemes which attempt to solve the intractable infer-

ence problem implicitly or through an auxiliary objective. There are two

main approaches: sampling based methods such as Markov chain Monte Carlo

(MCMC) or optimization based methods such as variational inference. Both

methods have their advantages, however modern Bayesian deep learning meth-

ods has embraced variational inference despite its issues. The reason is simple:

variational inference always terminates, giving a solution quickly [4].

The issue of convergence is a long standing issue with MCMC, where mixing

is impossible to diagnose. That is, it is impossible to tell whether an MCMC

based method has reached its steady state. Although MCMC is guaranteed to

return a correct answer eventually, there is no guarantee on when and it is very

difficult to tell if we achieved convergence [15]. The second issue, speed, can

seen as the curse of dimensionality in MCMC. It becomes harder to traverse a

high dimensional space with sampling methods, because we will be constantly

rejecting proposals, which are pivotal for the asymptotic unbiased and low

variance properties of MCMC.

2.4.1 Markov chain Monte Carlo

MCMC methods are sample based, meaning that they do not necessarily re-

cover a functional form for the distribution of interest [10, 3]. Instead, a

sequence of samples are taken and over time, the samples are guaranteed to

come from the distribution of interest. Put formally, we take successive {xi}Ti=1

where xi ∼ pt(·) form a Markov chain. Then, for some large T , the samples
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are guaranteed to come from the target distribution p(·). Hence, if we require
S samples from a distribution, we would take the last S samples, {xi}Ti=T−S.

Note that while you are guaranteed to converge to the target distribution

eventually there is no guarantee on when that occurs. In fact, it could take

arbitrarily long.

The simplest example of MCMC is Gibbs’ sampling, which we will briefly

review [17]. Consider an unknown joint distribution overD variables p(X1, . . . , XD),

of which we are able to sample from the conditionals pi = p(Xi|{Xj = xj}j ̸=i).

Then, using Gibbs’ sampling, we can obtain samples from the joint as follows

Algorithm 2 An algorithm to Gibbs sample a joint distribution p(x1, . . . , xD)
for a sample size of S

Input: S, {pi}Di=1

Output: x ∼ p(x1, . . . , xD)

function Gibbs(S, {pi}Di=1)

init T = 0

while not converged do

T ← T + 1

for i = 1:D do

xt
i ∼ p(xi|{Xj = xj}j ̸=1)

end for

end while

x = {xt
1, . . . , x

t
D}Tt=T−S

end function

While sampling is not an expensive task, the number of samples needed

to explore a high dimensional space becomes exponential [60]. Hence, naive

MCMC methods like Gibbs sampling are almost never used, and more ad-

vanced variants like Hamiltonian Monte Carlo can still struggle for the very

high dimensional spaces in neural networks [6].
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2.4.2 Variational inference

As we have seen, the Bayesian inference problem for Gaussian process classifi-

cation is computationally difficult due to intractable integrals. Moreover, this

problem exists in virtually any probabilistic model without conjugacy [11, 74].

When nonlinearities are introduced, as is the case with neural networks, the

problem becomes only more difficult.

Variational inference (VI) is used to approximate inference for probabilistic

models. The general idea is to bound a quantity of interest, say the marginal

likelihood of the data, with a metric like KL-divergence. Conventionally, this

will be a lower bound involving a simpler (proxy) distribution to approximate

the intractable solution. Then, we optimize the parameters of the proxy dis-

tribution to improve the bound, and hence improve our approximate solution.

The general recipe outlined earlier can be made specific, detailing the many

variants of VI, namely: Expectation Propagation [54], Variational Bayes [27],

and the Expectation Maximization [55] algorithm. Specifically, Variational

Bayes is a generalization of the Expectation Maximization algorithm, where

the latter computes only point estimates of the posterior [7]. Recall that in

Bayesian inference, the posterior of unknown variables z after seeing data x is

written as follows.

p(z|x) = p(x|z)p(z)
p(x)

In this case, the integral p(x) =
∫
p(x, z)dz is usually intractable, even with

approximations like quadrature [11]. Without the density of the posterior,

exact inference is clearly impossible. For the purpose of this review, we focus

on variational Bayes with KL-divergence, in which we seek to approximate an

unknown posterior p(z|x) with a simpler distribution qϕ(z), parameterized by

ϕ:

KL(qϕ(z)||p(z|x)) =
∫

qϕ(z) log
qϕ(z)

p(z|x)
dx

Notice, the measure of closeness KL(q||p) depends on p(z|x), the posterior
that we do not know and are trying to approximate. However, one can write

a lower bound on this quantity as follows.
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KL(qϕ(z)||p(z|x)) =
∫

qϕ(z) log
qϕ(z)

p(z|x)
dx

=

∫
qϕ(z) log qϕ(z)dx−

∫
qϕ(z) log p(z|x)dx

=

∫
qϕ(z) log qϕ(z)dx−

∫
qϕ(z) log p(z,x)dx+

∫
qϕ(z) log p(x)dx

= Eqϕ [log qϕ(z)]− Eqϕ [log p(z,x)] + log p(x)

Since log p(x) doesn’t depend on q, the optimization depends only on the so-

called “Evidence Lower BOund” or ELBO, Eqϕ [log qϕ(x)] − Eqϕ [log p(z,x)].

As the nomenclature suggests, the ELBO provides a lower bound on the “ev-

idence” p(x), since KL is a divergence and hence KL(qϕ||p) ≥ 0. This formu-

lation is the basis of most variational techniques. The general recipe involves

1) an assumed distribution family that is simple, 2) a lower bound on the

divergence of interest, which is constructed, 3) the inference problem becomes

optimization.

This differs significantly from other approximate inference methods, in-

cluding Monte Carlo sampling methods. Sampling based methods have the

benefit of asymptotic convergence, but lack a measure of convergence in finite-

time. On the other hand, variational methods have the benefit of modern

optimization methods, including convergence diagnosis. Moreover, stochastic

optimization provides an efficient way of dealing with high dimensions, while

sampling in high dimensions is limited by the curse of dimensionality. For these

reasons, variational inference is preferred over Monte Carlo methods despite

no asymptotic guarantees. Indeed, variational methods are typically biased as

the approximating family does not contain the distribution of interest.

Despite issues, variational methods are the dominant inference approach

to Gaussian processes classification [37]. Specifically, variational methods are

pervasive over MCMC due to scalability and ease of assessing convergence.

Scalability is the largest consideration, since parameter spaces tend to be large.

However, the difficulty of assessing whether a Markov chain has mixed is also

very challenging. Hence, while neither MCMC nor variational methods are
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p(z | x)

KL(qϕ ∥ p)

qϕ(z)

ϕinit

ϕ∗

Figure 2.3: An illustration of variational inference, the family of distributions q,
parameterized by ϕ, is optimized by minimizing the ELBO, which also minimizes
KL divergence between the target and the posterior. Figure inspired by [11]
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ideal, variational approaches address many of the challenges in machine learn-

ing. The largest issue with variational approaches is model misspecification

in the variational posterior. Put simply, variational methods approximate the

complicated posterior distribution with a simpler distribution and fit the sim-

plified model by optimizing its parameters.

2.5 Challenges in neuroimaging

Perhaps the biggest issue in fMRI analysis is the dimension of the data p

compared to the number of samples n. Gaussian processes are extremely

effective in scenarios with large p and relatively small n. However, Gaussian

processes are not widely used in the neuroimaging literature. This is possibly

due to the difficulty of modeling the complex spatial and temporal dynamics

of fMRI data. In contrast, Gaussian processes have been frequently applied to

data that is well understood [68].

The spatiotemporal intricacies of raw fMRI data, which corresponds to

a volume (L × W × H) over time T , are not well understood. This makes

designing a kernel for Gaussian processes challenging. Furthermore, Gaussian

process classification becomes increasingly cumbersome in multi-dimensional

settings (where the data is a tensor, similar to a matrix but with more than

two indices). While tensorized versions of Gaussian processes exist [84, 8, 69],

they are largely inefficient since they cannot leverage sparse representations

with inducing points. Alternatively, one could focus on structured Gaussian

Processes with specific kernels [64]. However, this would involve a specific

choice of kernel to combine information across dimensions.

2.5.1 Gaussian process classification

While Gaussian process are underutilized in fMRI, there have been attempts to

apply them. In the context of regression and classification, [51] used Gaussian

Processes to predict subjective pain intensity using whole-brain fMRI data.

In their analysis, they leveraged the fact that Gaussian processes operate on

the kernel matrix. They used a linear kernel on a “flatted” brain volume X,
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such that X has dimensions n × P where P = L ×W ×H × T . Then, their

analysis only considers the n × n matrix XXT . However, this throws away

all spatial and temporal information associated with the whole brain volume.

Moreover, a linear kernel is naive even in simple cases, since it assumes the data

separates linearly. Generally, Gaussian kernels or spectral mixtures therein,

are preferable to model arbitrary stationary covariance structures.

Using a functional connectivity approach, the authors [18] used Gaussian

Processes to classify Alzheimer patients using the empirical correlation matrix

associated with fMRI data. In a similar manner, the authors [51] throw away

spatial structure by only considering the covariance between predetermined

ROIs. While it could be surmised that the covariance between spatially close

ROIs would be high, it still presents an arbitrary simplification of an otherwise

rich data structure. In addition, the kernel considered is still linear or Gaussian

which may not be ideal in high dimensional spaces.

2.5.2 Classical methods

In contrast, Support Vector Machine (SVM) and Naive Bayes has seen much

use in neuroimaging research [59]. For one, SVM provides a clear objective

in maximizing the margin of the decision boundary. However, SVM fail to

account for uncertainty in the data and model since they are not probabilistic.

Furthermore, quadratic optimization is the dominant method of estimating

an SVM, which becomes difficult in the presence of large data. Like Gaus-

sian processes however, they require hand crafted representations of the data

through a kernel. Naive Bayes also allows for some of the probabilistic benefits

of Gaussian Processes, which enable interpretability. However, Naive Bayes

tends to perform worse classification performance compared to SVM. Lastly,

both SVM and Naive Bayes suffer from prescribed structure, instead of learn-

ing said structure from the data.

2.5.3 Neural network approaches

Neural networks have brought tremendous success to domains like computer

vision, where data is abundant. On the other hand, little research has ex-
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plored low data regimes with neural networks, such as those in health and

neuroimaging. Still, there have been some attempts and discussion on using

convolutional and feedforward neural networks [58, 53, 76]. Specifically, the

authors [65] proposed using a convolutional neural network to classify 28 dis-

eased patients versus 15 healthy subjects. They were able to achieve over 95%

classification accuracy using images alone. Importantly, the neural network

they used was pretrained on other visual data for classification and fine-tuned

for the specific fMRI task. In addition, they concatenate across the spatial

z and time t axes. This can make prediction difficult if the dependencies be-

tween the z and t axis are required to correctly classify diseased versus healthy

patients.

Additionally, [39, 36] investigate the spatiotemporal dynamics of fMRI us-

ing recurrent neural networks. Importantly, their work focuses solely on mod-

eling the dynamics, and not the predictive performance of their model. More

recently, long short-term memory networks (a variant of recurrent networks)

were used to identify Autism from resting state fMRI [24]. While this work

is close in scope, the authors use 539 subjects with autism, and 579 controls.

Notably, there have been no attempts at quantifying uncertainty nor using

recurrent neural networks for classification.
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Chapter 3

Recurrent and Bayesian Kernel

Learning

Recently, the field of machine learning has found tremendous success in the

use of neural networks for highly structured data. Neural networks, being ef-

ficient nonlinear function approximators, are able to learn representations of

data that assist in classification and regression tasks. While deep learning (the

study of neural networks) is an active area of research, there has been consid-

erably less interest in deep learning for small data. In this chapter, we develop

new methods that combine Gaussian processes with recurrent structure and

uncertainty quantification to classify limited but highly structured data.

Small data problems are often ignored in the deep learning literature. Af-

ter all, multimedia data like pictures and videos are easy to scrape from the

internet and sufficient to benchmark neural network models. As a result, deep

learning research tends to use readily available data and then explore perfor-

mance at scale. In fields like neuroimaging, data is small is relative to the

dimension of the data. Specifically, when the data dimension p is much larger

than the amount of data available, then we say that we are in a small data

regime, n ≪ p. These issues are well explored in the classic statistical liter-

ature with regularization methods like LASSO [71]. As discussed earlier, the

effect of Lp regularization on neural networks is not well understood. Bayesian

non-parametric models such as Gaussian processes are also effective on small
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datasets [35]. Unlike neural networks however, Gaussian processes are limited

by their kernel in their ability to capture complex nonlinear dependencies.

Revisiting the first question discussed in Chapter 1, “can we learn com-

plex models from limited data”, we leverage sequential structure to improve

performance for small (but sequential) data. Specifically, we propose a deep

Bayesian model based on recurrent neural networks as an extension to kernel

learning. Our model is able to capture temporal dependencies to effectively

reduce the dimensionality of the problem. Unlike classical Gaussian process

classification, our model uses recurrent neural networks, an expressive model

of sequential structure.

Now, revisiting the second question, “can we reason about the uncertainties

of complex models?”, we propose a new Bayesian deep learning approach that

uses batch normalization to quantify the uncertainty. While the Gaussian

process layer in deep kernel learning can provide uncertainty estimates at

test-time, the estimates fail to account for uncertainty in the neural network

weights. Further, deep kernel learning fails to propagate the uncertainty in

neural network weights during training. We propose using a “bootstrapped”

batch normalization procedure to regularize neural network models during

training, while also providing more robust uncertainty estimates at test-time.

We then explore this method through a proposed approximate probabilistic

model and offer a new interpretation to batch normalization.

As our two approaches show, the questions - “can we learn complex models

from limited data?” and “can we reason about the uncertainties of complex

models?” - are intimately related. In Section 3.1, we encode sequential struc-

ture through recurrent neural networks in a deep Bayesian model to learn from

limited data. In Section 3.2, we use our Bayesian deep learning procedure to

obtain better uncertainty estimates in a deep Bayesian model. In both cases,

we are leveraging Bayesian procedures. The only difference is whether it used

as a form of regularization (in Section 3.1), or as a framework for uncertainty

(in Section 3.2).

27



3.1 Going deeper with Gaussian processes

One way in which Gaussian processes can be made more complex is to compose

them, in a similar fashion to the composition of nonlinear functions in neu-

ral networks. Unlike convolutional or feed-forward layers however, Gaussian

processes must be integrated out.

Consider a hierarchical model of depth H in which the top most parent

g0 ∈ RD0 takes x as an input. Then, g0 is used as input to a Gaussian process,

g1 ∼ GP (0,Kθ1), g1 : RD0 → RD1 . This continues for each variable in the

hierarchy, where each variable also follow a Gaussian process gh ∼ GP (0,Kθh)

where gh : RDh−1 → RDh . We can then define G(x) = gH(· · · g1(g0(x))). That
is, the model is a composition of many Gaussian processes, or a deep Gaussian

process [21]. To make inference tractable, each Gaussian processes must be

integrated away. While this acts as a Bayesian Occam’s razor, the process is

computationally daunting.

Another way to incorporate the successes of deep learning is to parame-

terize kernels with neural networks. While some attempts have been made to

make kernels more flexible, such as spectral kernels [79], only recently have re-

searchers used deep neural networks in an end-to-end model [78, 80, 14, 16, 2].

Deep kernel learning [80, 78, 16, 2, 14] is the end-to-end learning of Gaus-

sian process kernels k : Rd × Rd → R composed with deep neural networks

fw : X → Rd where the neural network is parameterized by the set of all its

parameters, weights and biases w. As discussed in the Section 2.1.1, we can

compose a kernel with a function fw, a form of input embedding, such that

k̂(xi,xj) = k(fw(xi), fw(xj))

It is trivial to show that, for any valid kernel function k, k̂ = k ◦ fw is also a

valid kernel. Specifically, we can consider any deep neural network architecture

for f , such as feedforward or convolutional.

Then, we recall that the Gaussian process classification variational objec-

tive [37] can be written as:

log p(y) ≥ Eq(g)[log p(y|g)]−KL[q(u)||p(u)]
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where g is a Gaussian process. Recall that the inducing points u are essen-

tially batches of pseudo-inputs that we can sample from a distribution that we

choose, i.e. Gaussian q(u) = N (m,S) with mean m and covariance matrix S.

Then we have that,

q(g) = N (Am,Knn +A(S−Kmm)AT)

where A = KnmK
−1
mm and Knn denotes the covariance matrix given by the

kernel function evaluated at the data points, [Knn]ij = k(fw(xi), fw(xj)). Knm

is the covariance matrix given by the kernel function evaluate at the data

points with the inducing points, [Knm]ij = k(fw(xi), fw(uj)). Lastly, Kmm is

the covariance matrix given by the kernel function evaluated at the inducing

points, [Kmm]ij = k(fw(ui), fw(uj)).

Hence, if we write q(g) as
∫
q(g|u)q(u)du, we have an easy sampling mecha-

nism. We first sample u ∼ q(u) then sample g ∼
∫
q(g|u)q(u)du. We can then

evaluate Eq(g)[log p(y|g)] through either Monte-Carlo estimates or quadrature

noting that

p(y|g) =
N∏

n=1

(gn)
yn(1− gn)

1−yn

and that

p(u) = N (0,Kmm)

Then, the KL divergence term is between two normal distributions, which can

be calculated in closed form. Finally, because of our ability to sample, we can

calculate gradients through the Gaussian process likelihood function and the

neural network parameters to jointly optimize them.

3.1.1 Gaussian process classification with recurrent ker-

nels

As discussed in Section 3.1, the idea of “deep-ifying” kernels is not new [42, 5].

Unlike previous work in recurrent kernel learning [2], recurrent classification

is comparatively unexplored. To be concrete, we assume the data x has a

dimension of d and time-series of length T , or x ∈ Rd×T . Then a recurrent
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neural network, f performs the following recursive operation on the data x,

at = b+Wht−1 +Ux:,t

ht = tanh(at)

ot = c+Vat

f(x) = oT

That is, in a recurrent neural network, the data vector slice x:,t ∈ Rd is used as

a sequential input at each time point. This sequential nature allows us to learn

a representation for an arbitrarily complex autocorrelation structure. This is

then used as input to a Gaussian process with kernel function k as follows.

knew(x,x
′) = k(f(x), f(x′))

= k(c+V(b+Wht−1 +Ux:,t), c+V(b+Wht−1 +Ux′
:,t))

Since the Gaussian process classification problem is formulated as a variational

lower bound, the entire problem is differentiable and can be optimized with

stochastic gradient methods.

As an aside on Bayesian or stochastic neural networks, if fw is stochastic

and parameterized by w, then k(fw(x), fw(x)) is also a kernel. However, this

is only true if for every instance of fw(x), fw(x) is evaluated once and fixed

at a value fw to ensure symmetry of k(fw, fw). This becomes critical since

Bayesian deep learning methods inherently inject noise into neural networks

by considering the uncertainty of w, making fw(x) stochastic.

While the basic neural network structure is the same, recurrent connections

introduce a host of problems in the context of Bayesian learning. First and

foremost, since recurrent neural networks depend on the entire history, the

optimization method becomes quite costly. Often, the back-propagation step

must be truncated for some t < T . Rewriting the optimization objective in

terms of the weights and biases w = {W,V,U, c,b} of a recurrent neural

30



network, we have

Q(w) =
M∑
i=1

Eq(gi)[log p(yi|gi)]  
Ei

− 1

2
[log |K| − log |S| −M + tr(K−1S) +mTK−1m]  

L

where q(g) = N (Am,Knn +KnmK−1
mm(S−Kmm)(KnmK−1

mm)T) and q(gi) is

the marginal of q(g). Then, Eq(gi)[log p(yi|gi)] is an integral of one variable

that can be easily approximated through quadrature [37]. Now taking the

derivative w.r.t. w of the expected likelihood term Ei, we get

∂Ei

∂w
=

∂Ei

∂µ

∂µ

∂w
+

∂Ei

∂σ

∂σ

∂w

Importantly, ∂µ
∂w

and ∂σ
∂w

require computing derivatives of the kernel matrix

evaluated at different pairs of points. Hence, this is more costly than gradient

computation of a neural network that directly outputs the classification prob-

ability. However, both models are able to share weights, W,U,V, c,b, across

each time step. This greatly reduces the number of parameters and reduces

memory consumption. We hypothesize that this regularization in addition

to the inherent regularization provided by Bayesian inference with Gaussian

processes allows for good performance on small datasets.

3.2 Bayesian deep kernel learning for weight

uncertainty

In the Bayesian deep learning literature, uncertainty in neural network weights

is approached in one of two ways. One approach develops new training proce-

dures that facilitate approximate inference schemes on neural network weights [33,

12, 38, 46, 26]. The other reinterprets successful methods in the deep learning

literature as approximate inference [30, 45, 49].

More recently, batch normalization [41] has been reinterpreted as approxi-

mate variational inference [70]. In this work, we propose batch normalization

as a way of propagating uncertainty in deep kernel learning. We show that
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this formulation naturally corresponds to variational inference on the neural

network weights and we derive variance estimates that account for uncertainty

in the neural network weights.

3.2.1 The case for and against dropout

Dropout is a popular method of regularizing neural networks by randomly set-

ting values at each layer to 0, according to the dropout probability. This has

been interpreted as a form of approximate variational inference on the neu-

ral network weights [30], enabling uncertainty estimates. Moreover, dropout

has widespread use due to its intuitive implementation and computational

ease. Producing Monte Carlo dropout estimates is quite easy, which allows

practitioners to easily reason about the uncertainties of their neural network.

However, dropout as a Bayesian approximation is not well understood. There

are issues in that it does not account for additional uncertainties of influential

points, and poor uncertainty estimates with fixed p [57, 31].

While the use of dropout is less common now, it is still occasionally used

as a proxy for uncertainty. Still, dropout has its advantages in that it can be

easily applied to recurrent neural networks [81]. This is as opposed to batch

normalization, which introduces large overhead with little gain in comparison

to dropout [29]. Currently, there has been no investigation in the effect of

these different neural network architectures. In our informal study, dropout

decreased training and testing performance even for small dropout probabili-

ties and was catastrophic at higher dropout probabilities.

3.2.2 Batch normalized deep kernel learning

Batch normalization [41] refers to the normalization of inputs at each layer

h, ĥh = γh
hh−E[hh]√

Var[hh]
+ βh. When training is done over a mini-batch of size

B, x = h0 = {h0
i}Bi=1, then E[hh] ≈ µh = 1

B

∑B
i=1 h

i
h and

√
Var[hh] ≈ σh =√

1
B−1

∑B
i=1(h

i
h − µh)2. [70] shows that batch normalization can be interpreted

as approximate variational inference on the weights of a deep neural network.

We consider a batch normalized neural network fw where w is the set of
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all parameters, weights and biases of the neural network. Then, the Gaussian

process classification variational objective [37] can still be written as:

log p(y) ≥ Eq(u,w)[log p(y|u, w)]−KL[q(u, w)||p(u, w)]

Using the inequality log p(y|u, w) ≥ Ep(f |u,w) log(y|g)), we get that

log p(y) ≥ Eq(g)[log p(y|g)]−KL[q(u, w)||p(u, w)]

where we wrote q(g) =
∫
p(g|u, w)q(u, w)dudw =

∫
p(g|u, w)q(u|w)du q(w)dw.

We use the fact that q(g|w) =
∫
p(g|u, w)q(u|w)du = N (Am,Knn +A(S−Kmm)AT)

whereA = KnmK−1
mm andKnn denotes the covariance matrix given by the ker-

nel function evaluated at the data points, [Knn]ij = k(fw(xi), fw(xj)). Knm

is the covariance matrix given by the kernel function evaluate at the data

points with the inducing points, [Knm]ij = k(fw(xi), fw(uj)). Lastly, Kmm is

the covariance matrix given by the kernel function evaluated at the inducing

points, [Kmm]ij = k(fw(ui), fw(uj)). Then we are left with
∫
q(g|w)q(w)dw.

This is intractable in general, due to the nonlinearities used in deep neural

networks. However, under the stochastic sampling of mini-batches, we are

implicitly sampling from the weights w. Hence, batch normalization facili-

tates an easy way of sampling
∫
q(g|w)q(w)dw, by sampling mini-batches and

evaluating the kernel function given a mini-batch.

Turning our attention to the KL term, notice that KL[q(u, w)||p(u, w)] =
Eq(w)[KL[q(u|w)||p(u|w)]] + KL[q(w)||p(w)]. The first term is easy to eval-

uate, since it is implicitly evaluated in the sampling of mini-batches. The

second term, KL[q(w)||p(w)], poses an issue since we do not explicitly specify

a variational family q(w) over w. If we had this term, we would have a cor-

respondence between variational inference of the neural network weights, and

batch normalized training. In Section 3.2.2.1, we derive a candidate distribu-

tion for q(w) and show how this can be used to calculate the KL divergence.

The predictive distribution with weight uncertainty closely follows that

of [37]. If we want to predict a test point x∗, then we need the posterior of the
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Figure 3.1: By sampling a mini-batch, a neural network is implicitly sampled from
a distribution for that mini-batch. The effective value of the neural network weights
depends on the stochastic mini-batch statistics calculated at each layer of the neural
network.
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latent Gaussian process value f ∗.

p(f ∗|y) =
∫

p(f ∗|f,u, w)p(f,u, w|y)dfdudw

≈
∫

p(f ∗|f,u, w)p(f |u, w)q(u|w)q(w)dfdudw

= Eq(w)

[∫
p(f ∗|u, w)q(u|w)du

]
The mean and variance of f |w, denoted by µ2

w and σw, is tractable with respect

to the distribution p(f ∗|w) =
∫
p(f ∗|u, w)q(u|w)du for given w. Then by

sampling M mini-batches and denoting the effectively sampled weights as ŵi,

we get that

V ar(f ∗) = Ep(f∗|y)[(f
∗)2]− (Ep(f∗|y)[f

∗])2

=
1

M

M∑
i=1

[
Ep(f∗|ŵi)[(f

∗)2)
]
−

[
1

M

M∑
i=1

Ep(f∗|ŵi)[f
∗]

]2

=
1

M

M∑
i=1

[
σ2
ŵi

+ µ2
ŵi

]
−

[
1

M

M∑
i=1

µŵi

]2

3.2.2.1 Batch normalization as a variational approximation

Now, we return to the problem of defining a suitable distribution over the

weights q(w). This is defined implicitly by the batch normalization procedure.

In order to calculate the KL divergence KL(q(w)||p(w)) however, we derive

plausible distributions for q(w). Recall the equation for batch normalization,

where at each layer h we define the batch norm layer as follows

ĥh = BN(hh−1; γh, βh) = γh
g(hh−1)− E[g(hh−1)]√

Var[g(hh−1)]
+ βh

When training is done over a mini-batch of size B, x = h0 = {hi
0}Bi=1, then

E[hh] ≈ µh = 1
B

∑B
i=1 h

i
h and

√
Var[hh] ≈ σh =

√
1

B−1

∑B
i=1(h

i
h − µh)2.

Specifically, the batch norm layer can be inserted before or after nonlinear

function r. In the case that it is done before the activation, g(hh−1) = Whh−1.

The output for that layer is hh = r(ĥh), where r is the element-wise nonlin-
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earity. If done after the activation layer, then γh = 1 and βh = 0 can be fixed

and g(hh−1) = r(Whh−1). Moreover, hh = ĥh. We focus on the case where

batch norm is used before activation, as is done in [41].

Hence, we have that

ĥh = BN(hh−1; γh, βh) = γh
Whh−1 − E[Whh−1]√

Var[Whh−1]
+ βh

Consider the case where mini-batches are sampled stochastically. Hence,

the parameters depending on the data, µh and σh become random variables.

Now observe the following decomposition:

ĥh = BN(hh−1; γh, βh) = γh
Whh−1 − µh

σh

+ βh

Where the bias parameter is implicit in the weight matrix and augmenting the

data input by prepending a vector of 1s, i.e. W := [b,W] and h := [1,h].

Then, appealing to the central limit theorem for sampling distributions, we

can pick priors, µh ∼ N (µ∗
h, I) for some constant µ∗

h, and σ2 ∼ χ2(M −1), and

then we have that:

√
M − 1

Whh−1 − µh

σh

∼ T (M − 1)

where T is a student-T distribution. Then, including the trainable parameters

for the batch normalization layer we have that:

γh
Whh−1 − µh

σh

+ βh ∼
γh√
M − 1

T (M − 1) + βh

which is a location-scale student-T distribution. Independently, this can be

rewritten as a decomposition over the multiplicative and additive random vari-

ables.

BN(hh−1; γh, βh) = γh
Whh−1 − µh

σh

+ βh

=

[
γh

Whh−1

σh

]
+

[
βh − γh

µh

σh

]
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We can then rewrite the above expression in a tidier form

BN(hh−1; γh, βh) = Ŵhh−1 + b̂

where:

Ŵh = γh
W

σh

and

b̂h = βh − γh
µh

σh

Notably, since µh and σh are random, the corresponding weights (Ŵh) and

biases (b̂h) are also random. Hence, we can define a prior over Ŵh and b̂h by

defining priors over µl and σl. Again, we appeal to the central limit theorem

for sampling distributions and use the same priors: µh ∼ N (µ∗
h, I) for some

constant µ∗
h and σ2 ∼ χ2(M − 1),

Then we have that Ŵh ∼ scale-inv-χ2(M − 1, 1
γhW

) and b̂h ∼ βh −
γhnct(M − 1, µ∗

h) where nct is the non-central student-T distribution. With

these distributions, we can calculate the KL-divergence using Monte Carlo

sampling with rejection. However, it is important to note that the parameters

are not independent of each other. Still, this analysis shows how batch nor-

malized deep kernel learning provides an approximation to Bayesian learning

of the neural network parameters.

37



Chapter 4

Applications

In this chapter, we evaluate the two proposed models outlined in Chapter

3. First, we perform a simulation study to benchmark the performance of

standalone Gaussian process, neural network against our hybrid models. The

simulation study attempts to model time-series phenomena that occur in neu-

roimaging data. We specifically focus on how the covariance matrix of the

data generating process differs between our simulated “disease” patients and

healthy controls. This first step will provide insight on the performance of our

models, which we further investigate in Section 4.2.2 and 4.2.3.

Next we evaluate the uncertainty provided by the batch normalized kernels

for convolutional neural networks, as we outlined in Section 3.2. Specifically,

we compare the performance of deep kernel learning with and without neural

network kernels, and with and without batch normalization. Our experiments

are conducted on the MNIST (Modified National Institute of Standards and

Technology) [47] data set, which are 28× 28 gray-scale images of digits. This

dataset is regarded to be a standard benchmark in the machine learning com-

munity and will provide the baseline for non-temporal models.

Lastly, we apply the models discussed to real fMRI datasets and attempt

to classify dyslexia patients from healthy controls. That is, looking at resting-

state fMRI data alone, we attempt to diagnose each subject disease status.

Some challenges in neuroimaging are outlined before we describe the two

datasets that we investigate. In addition, we make use of a null dataset in

which all the patients are the healthy controls. This additional dataset helps

38



identify failure modes of our model, such as over-confidently extrapolating

from bad data.

For all of our real data analyses, we use a 5-fold cross validation process

to calculate the context specific loss (such as likelihood), as well as the error

and the accuracy in general. We aim to correctly classify diseased patients

from controls. Empirical performance is measured by calculating accuracy

and mean squared error (MSE) on a hold-out set {ytesti }ntest
i=1 of size ntest after

training on a set of size n, and producing a set of estimates {yestimate
i }ntest

i=1 .

MSE =
1

ntest

ntest∑
i=1

(ytesti − yestimate
i )2

ACC =
1

ntest

ntest∑
i=1

1ytesti =ytesti

where 1x=y = 1 if and only if x = y and 0 otherwise. For simulated data, the

process is not cross-validated and instead repeated 5 times, with 5 uniquely

generated data sets.

All of our implementations use Tensorflow [1] for neural network compo-

nents and GPflow [52] for Gaussian process components. Tensorflow is a com-

mon deep learning library that implements automatic differentiation and op-

timization methods for various neural network architectures. While GPflow is

a Gaussian process framework built on top of Tensorflow. All of our optimiza-

tions were done via the stochastic gradient descent optimizer ADAM [44] with

an informal search over learning rate, starting with the default of α = 0.001.

4.1 Data descriptions

4.1.1 Simulation data

The goal of this simulation is to see how the tuple of data dimension and sample

size, or (p, n), affects the results of the classification models. We hypothesize

that Gaussian processes work well out of the box while deep learning methods,

after fine-tuning, will outperform them as p increases relative to n. Finally,
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we hypothesize that our model is best suited in the case where n is much

smaller than p, n << p. We explore all combinations of n = {8, 16, 32.64} and
p = {10, 50, 100, 250, 500}.

We consider the baseline GP models: Gaussian process on estimated covari-

ance (Covariance-GP) and Gaussian process on the entire dataset (Reshape-

GP). We use an RBF kernel, after finding that standard kernel choices do not

have a large impact on the result.

For the baseline deep neural network models, we use both convolutional

(CNN) and recurrent neural networks (RNN). The convolutional model has

4 layers, with the following number of filters per layer: (64,32,16,2). Other

parameters relevant to Tensorflow are set to the default, including a kernel

size of 3. The recurrent neural network follows has two hidden layers, each

with 64 units. We also use GRU cells, which are a slightly modified but more

efficient and stable variant of LSTM. We also note that a dropout value of 0.5

was used in both neural network models to regularize them as discussed in

Section 2.3.5.2.

Lastly, we consider the following hybrid models: Gaussian process on esti-

mated covariance with a convolutional kernel (Deep-Covariance GP) as above

and Gaussian process on data with a recurrent kernel (Deep-GP). The deep

kernel is parameterized by the same parameters in both cases, to avoid any

confounding effects. Additionally, we use an RBF kernel similar to the stan-

dalone GP models describe earlier in this section.

We simulate a p-dimensional vector autoregressive, or VAR(1), process for

n controls and n diseased subjects, for a balanced study of a total 2n subjects.

We then explore the performance of the models outlined earlier under six dif-

ferent scenarios. First, we explore the null case where there is no difference in

the two data generating processes. Second, we generate two different covari-

ance matrices for the controls and diseased patients. Third, we use the same

covariance matrix but set more values to zero for diseased subjects, leading

to higher sparsity levels. Fourth, we use exactly the same covariance matrix

but use different AR coefficients for diseased and control subjects. Fifth, we

introduce a spike process in the form of a binomial distribution with different

activation levels (probability q) between diseased and control subjects.
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Specifically, a p-dimensional VAR(1) process is defined as

xt = axt−1 + ϵt

where for all t, xt ∈ Rp and ϵt is drawn from a zero-mean Gaussian distribution

ϵt ∼ N (0,K) with some p×p covariance matrix K. Notably, the noise process

ϵt is independent across time but specifies the covariance structure between

vector components xt = {xi
t}

p
i=1 at each time point.

Every model was trained for 1000 iterations, where the models using deep

neural networks took longer to converge for small p. For larger p, the Gaussian

processes were also slow to converge. The experiments were repeated twice and

the results were averaged together. We also note that the models do not make

a class decision. Instead, they report probabilities of disease for a better sense

of performance. This is more informative in evaluating the models, because it

shows when models “know what they don’t know”. For example, if a model

true for the diseased patient with probability of 0.51, the class decision is

correct but we should be skeptical of the model.

4.1.1.1 No difference between two groups

We first consider a null simulation, where each group is simulated from the

same p-dimensional V AR(1) process, with a coefficient of a = 0.95. The

randomly sampled covariance matrix K = ATA, where Ai,j ∼ N (0, 1).

4.1.1.2 Different covariance matrices

Next we consider a simulation, where each group has a different covariance

matrix for their p-dimensional V AR(1) process, with a coefficient of a = 0.95.

That is, we randomly sample two covariance matrices Kd = DTD and Kc =

CTC where Ci,j ∼ N (0, 1) and Di,j ∼ N (0, 1) independently.

4.1.1.3 Same covariance, but different sparsity levels

In this simulation, we use the same base covariance but randomly set some

entries to zero to vary sparsity levels. Hence, each group is simulated from a
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different p-dimensional V AR(1) process, with a coefficient of a = 0.95. The

covariance matrices Kd = DTD and Kc = CTC are randomly sampled where

Ai,j ∼ N (0, 1). Then, we obtain the covariance matrices C = Ai,jc and

D = Ai,jd where c ∼ Bernoulli(pc) and d ∼ Bernoulli(pd). Specifically, we set

pc = 0.05 and pd = 0.15.

4.1.1.4 Different AR coefficients

Next, we consider a null simulation, where each group is simulated from the

same p-dimensional V AR(1) process. The randomly sampled covariance ma-

trix K = ATA, where Ai,j ∼ N (0, 1), however their AR coefficients differ.

That is, each group follows a process defined by

xt = axt−1 + ϵt

where a = 0.95 for healthy controls and a = 0.85 for the diseased group.

4.1.1.5 Randomly occurring Bernoulli spikes

Lastly, we look at the case where each group is simulated from the same p-

dimensional V AR(1) process, but with different rates for an additive Bernoulli

term. The randomly sampled covariance matrixK = ATA are still distributed

as Ai,j ∼ N (0, 1). Instead, we have the following VAR(1) process:

xt = axt−1 + ϵt +B

where B ∼ Bernoulli(q), q = 0.6 for healthy controls and q = 0.4 for the

diseased group.

4.1.2 Machine learning data

We now turn our attention to a common machine learning benchmark. While

neural networks have a natural advantage over traditional models, these bench-

marks are pivotal to evaluate large sample size performance. Indeed, we would

like to produce a model that performs adequately in both large and small data
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scenarios, or at the very least a model that knows what it does not know.

4.1.2.1 MNIST data

We consider a binary classification task on the MNIST dataset between even

and odd digits, and benchmark deep kernel learning, with (DKL-BN) and

without batch normalization (DKL), against standalone deep neural networks

with (DNN-BN) and without (DNN) batch normalization. The neural network

architecture is the same for all models. However, deep kernel learning models

have a final Gaussian process layer, while deep neural networks have an extra

feed forward layer. Specifically, our convolutional model has 4 layers, with the

following number of filters per layer: (64,32,16,2). Other parameters relevant

to Tensorflow are set to the default, including a kernel size of 3.

4.1.3 fMRI data

Neuroimaging technology measures some proxy of neuronal activity, typically

in a noninvasive fashion. Functional Magnetic Resonance Imaging (fMRI) is

one type of technology that infers the Blood Oxygenated Level Dependent

(BOLD) signal. As a result, fMRI is able to identify areas of the brain that

have elevated activity, since brain activity requires a heightened level of oxy-

genation. Importantly, the BOLD signal is measured over time, where the

patient (the one undergoing the fMRI scan) may be asked to rest or to per-

form a task during this time [48].

In the earlier simulations, we noted how imperative recurrent and temporal

relations were in the study of time-series. Hence, we only use recurrent kernels

in the investigate of fMRI data. Unfortunately, the data from fMRI exper-

iments is even more higher dimensional than our simulations. Still,we hope

that the performance in low sample sizes in our simulations will translate to

real world data. In this situation, neural networks can overfit the data. How-

ever, recurrent models share most of their parameters across time and induce

temporal regularization, which should help prevent overfitting. Nonetheless,

we leverage our ability to use dropout in this model and set our dropout rate

at 0.5.
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One substantial issue with the use of recurrent neural networks is their

computational cost. Specifically, when used in the kernel of a Gaussian process,

their computational cost is becomes even larger. This is due to the inherent

recurrent connections. Although there is a large amount of parameter sharing,

taking the gradient becomes expensive for time-series with large T . While

there exists some mitigating approaches, these are not straight forward when

the RNN is used as input to a Gaussian process. However, we hope that

the performance gains for small n is worth the increased computational cost,

especially in fMRI where data is relatively scarce.

An additional metric that we use is the Receiving Operating Characteristic

(ROC). That is, given predictions from a model, the ROC measures how the

true and false positive rates relate to one another when the decision threshold

is varied. As noted earlier, the accuracy during training was measured using

a threshold of 0.5. Here, we will investigate a range of automatically chosen

thresholds. We do not average the ROC curves, instead we plot the ROC curve

for every fold in our cross validated results. Since uncertainty is of interest,

this shows the degree of variation between cross-validation folds.

As mentioned at the beginning of this chapter, all of our real data analyses

are cross-validated with 5 folds.

4.1.3.1 Null dataset

In this experiment, we attempt to classify patients based on preprocessed

fMRI data that has been mapped to an atlas. The data set [20] involves

45 patients, each of which were scanned for 285 time points with 31 regions

of interest (ROIs). This corresponds to the null dataset of an Alzheimer’s

study, where none of the patients have been diagnosed with the disease. Still,

we split the data in partitions of 20 which we label diseased and 25 which

we label controls. That is, 20 individuals that are actually healthy controls

are labeled as “diseased” patients. Hence, we are testing to see if our model

will over-confidently extrapolate small differences between the various healthy

controls.

Our data is in the form of a multi-dimensional array, or tensor X ∈
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R45×31×285 and a binary response vector of disease labels y ∈ {0, 1}45, with
1 being presence of the disease.

4.1.3.2 Dyslexia dataset

This dataset corresponds to an fMRI study on dyslexia [25] containing 9 con-

trols and 14 patients exhibiting dyslexia participated. The total number of

patients is then n = 23, with 11 ROIs and 200 time points. Hence, we have

a data tensor X ∈ R23×11×200 and a binary response vector of disease labels

y ∈ {0, 1}23, with 1 being presence of the disease.

4.2 Results

4.2.1 Simulation study

4.2.1.1 No difference between two groups

When there are no differences between two groups and the labels are random,

we want the MSE value to be at 0.25 with low variance. This is difficult for

more powerful models that extrapolate from small noisy differences between

the artificially created groups. From the results shown in Figure 4.1, we see

that the GP model indeed stays at an MSE value of 0.25. The other model,

Covariance-GP hovers between 0.25 and 0.3, which is a respectable level for

the null experiment. Both deep models perform poorly. The CNN model in

particular performs very poorly, as to be expected as convolutional models

are not well suited to time-series problems. We see that an increase in p for

fixed n = 8 results in a decrease in performance for the RNN, which is also

expected since deep models require data to train properly and perform best

when n >> p. Finally, we see that the deep GPs performs better as p increases.

While the Deep-Covariance-GP begins quite strongly but it begins to perform

worse as p increases.

Now referring to Figure 4.2 we see a similar trend that the GP-reshape

model consistently predicts disease with a probability of 0.5 even after 1000

iterations. The CNN continues to perform poorly but this time improves
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Figure 4.1: Mean Squared Error in the null case for Gaussian process, hybrid and
deep models with n = 8 and p = 10, 50, 100, 250, 500
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Figure 4.2: Mean Squared Error in the null case for Gaussian process, hybrid and
deep models with n = 16 and p = 10, 50, 100, 250, 500
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Figure 4.3: Mean Squared Error in the null case for Gaussian process, hybrid and
deep models with n = 32 and p = 10, 50, 100, 250, 500

as p increases, still staying behind the traditional GP models. The Deep-

Covariance-GP again stays very competitive and improves as p increases. This

time, RNN also improves as p increases and narrowly comes out on top. Inter-

estingly, the Deep Kernel GP sees a dip in performance at p = 50 but quickly

returns to form, still being outperformed by the Deep-Covariance-GP.

Lastly, we refer to Figure 4.3, where we again see that the traditional GP

models are not able to predict disease with any certainty, leaving it to a prob-

ability of 0.5 in all cases. This time, the CNN performs quite well, especially

as p increases. The deep GP is also able to make significant improvements

in accuracy as p increases. However, it is still beat by the deep kernel GP

on estimated covariance. The RNN again comes out on top, and is able to

improve as p increases. This trend continues, even for Figure 4.4, except for

48



Figure 4.4: Mean Squared Error in the null case for Gaussian process, hybrid and
deep models with n = 64 and p = 10, 50, 100, 250, 500
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RNN which begins to perform very poorly.

4.2.1.2 Different covariance matrices

Referring to Figure 4.5 we see that both traditional GP models have a difficult

time, and examining the model we see that the model consistently predicts

disease with a probability of 0.5. The CNN performs very poorly, as to be

expected because the strong inductive bias of convolution is not well suited

to the time domain of this dataset. We see that an increase in p for fixed

n = 8 results in a decrease in performance for the RNN, which is expected

since traditional deep models perform best when n >> p. Finally, we see that

the Deep kernel GP performs better as p increases. While the Deep Kernel

GP on estimated covariances begins quite strongly and stays consistent as p

increases.

Now referring to Figure 4.6 we see a similar trend that traditional GP

models consistently predict disease with a probability of 0.5 even after 1000

iterations. The CNN continues to perform poorly but this time improves as

p increases, still staying behind the traditional GP models. The deep kernel

Gaussian process on estimated covariances again stays very competitive and

improves as p increases. This time, RNN also improves as p increases and

narrowly comes out on top when p = 500. Interestingly, the Deep Kernel GP

sees a dip in performance at p = 50 but quickly returns to form, still being

outperformed by the deep kernel GP on estimated covariances.

Lastly, we refer to Figure 4.7 we again see that GP models stay at the null

MSE, predicting disease with a probability of 0.5 in all cases. The CNN is again

the worst performer, but is able to see gains as p increases. The deep kernel

GP is also able to make significant improvements in accuracy as p increases.

However, it is still beat by the deep kernel GP on estimated covariance. The

RNN again comes out on top, and is able to improve as p increases. This

continues, even for Figure 4.8.

We note that this experimental set-up heavily favors the covariance esti-

mation used in covariance-GP and deep-covariance-GP model. Simply put,

the only difference in the data is the covariance structure which the estimates
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Figure 4.5: Mean Squared Error in the case of differing covariance matrices for
Gaussian process, hybrid and deep models with n = 8 and p = 10, 50, 100, 250, 500
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Figure 4.6: Mean Squared Error in the case of differing covariance matrices for
Gaussian process, hybrid and deep models with n = 16 and p = 10, 50, 100, 250, 500
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Figure 4.7: Mean Squared Error in the case of differing covariance matrices for
Gaussian process, hybrid and deep models with n = 32 and p = 10, 50, 100, 250, 500

53



Figure 4.8: Mean Squared Error in the case of differing covariance matrices for
Gaussian process, hybrid and deep models with n = 32 and p = 10, 50, 100, 250, 500
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Figure 4.9: Mean Squared Error in the case of differing sparsity levels for Gaussian
process, hybrid and deep models with n = 8 and p = 10, 50, 100, 250, 500

will reflect. Hence, covariance-GP and deep-covariance-GP models will have

an easy time separating the space even with basic kernels.

4.2.1.3 Same covariance, but different sparsity levels

Referring to Figure 4.9 we see that all models tend towards the null result

for larger dimensions. The most consistent performer in this case is the deep

covariance GP, but its performance is worse than the null result as p increases.

Referring to Figures 4.10 and 4.11, we see that the null prediction beats

most of the other models. As n increases, the beginning performance improves

but it gradually performs worse until being worse than the null prediction.

This trend is finally overturned in Figure 4.12 where the deep covariance

GP is able to achieve respectable results for all values of p tested.
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Figure 4.10: Mean Squared Error in the case of differing sparsity levels for Gaus-
sian process, hybrid and deep models with n = 16 and p = 10, 50, 100, 250, 500

56



Figure 4.11: Mean Squared Error in the case of differing sparsity levels for Gaus-
sian process, hybrid and deep models with n = 32 and p = 10, 50, 100, 250, 500
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Figure 4.12: Mean Squared Error in the case of differing sparsity levels for Gaus-
sian process, hybrid and deep models with n = 64 and p = 10, 50, 100, 250, 500
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Figure 4.13: Mean Squared Error in the case of differing AR coefficients for Gaus-
sian process, hybrid and deep models with n = 8 and p = 10, 50, 100, 250, 500

This experiment is most relevant to the neuroimaging literature and de-

serves a deeper investigation. We plan on expanding this further in the future.

4.2.1.4 Different AR coefficients

Referring to Figure 4.13 we see that both traditional GP models are unable

to properly classify either controls or diseased patients. However, the other

models actually perform much worse, and worsen as p increases.

Referring to Figures 4.14 to 4.16, we see that for small dimension sizes,

the performance of most models is below the null baseline. However, their

performance greatly worsens as p increases. This may be the case of the

optimization requiring many more iterations for larger values of p, or the fact

that the model cannot capture the temporal dependence of the AR coefficient.
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Figure 4.14: Mean Squared Error in the case of differing AR coefficients for Gaus-
sian process, hybrid and deep models with n = 16 and p = 10, 50, 100, 250, 500
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Figure 4.15: Mean Squared Error in the case of differing AR coefficients for Gaus-
sian process, hybrid and deep models with n = 32 and p = 10, 50, 100, 250, 500
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Figure 4.16: Mean Squared Error in the case of differing AR coefficients for Gaus-
sian process, hybrid and deep models with n = 64 and p = 10, 50, 100, 250, 500
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4.2.1.5 Randomly occurring Bernoulli spikes

Now, referring to Figure 4.17 we see that the trend continues with traditional

GP models having a difficult time, with the reshape GP model not being able

to predict anything. As p increases, we see that the covariance GP also fails to

predict anything. Interestingly, the CNN begins to perform quite poorly but

improves as p increases. This is in contrast to RNN which begins to perform

quite well but worsens as p increases. Finally, we see that both Deep kernel

GP performs better as p increases. While the Deep-Covariance-GP performs

better overall, both models improve as p increases.

Referring to Figures 4.18 to 4.20, we see that as n increases, the covariance

GP performs better but worsens as p increases. In addition, the beginning

performance of the CNN worsens, but it still manages to improve as p increases.

The RNN on the other hand, improves greatly as n increases but is still beat

out by the deep kernel models, with both deep covariance GP and deep GP

edging each other out.

4.2.2 Machine learning benchmark

Figure 4.21 shows that DKL-BN is the best performer when n = 10 and

again when n = 50000. In Figure 4.21, we see that the size of the mini-batch

improves performance, partially due to the increased capacity of the inducing

variables as well as the reduction in covariate shift by batch normalization.

However, diminishing returns begin to occur when the mini-batch size is large

relative to the sample size.

Lastly, we look at a measure of uncertainty, which we define as the ambi-

guity of f , max
x

f(x)(1 − (f(x))). Then, a model’s most ambiguous point is

defined as argmax
x

f(x)(1 − (f(x))). In Figure 4.23 we take samples of most

ambiguous points. We see that DKL-BN has difficulty telling whether Fig-

ure 4.23 (left) is a 5 or a 6, and hence have difficulty determining if it is odd

or even. However, its prediction is 0.656 with a variance of 0.225, which is

a low confidence prediction of the correct classification: odd. Similarly for

Figure 4.23 (right), DKL cannot tell whether the digit is a 1 or a 2. Again,

DKL provides a prediction is 0.494 with a variance of 0.499, which is a very
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Figure 4.17: Mean Squared Error in the case of simulated spikes for Gaussian
process, hybrid and deep models with n = 8 and p = 10, 50, 100
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Figure 4.18: Mean Squared Error in the case of simulated spikes for Gaussian
process, hybrid and deep models with n = 16 and p = 10, 50, 100
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Figure 4.19: Mean Squared Error in the case of simulated spikes for Gaussian
process, hybrid and deep models with n = 32 and p = 10, 50, 100
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Figure 4.20: Mean Squared Error in the case of simulated spikes for Gaussian
process, hybrid and deep models with n = 64 and p = 10, 50, 100
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Figure 4.21: Accuracy for the Deep Kernel Learning (DKL) and Deep Neural
Network (DNN) models, with and without Batch Normalization (BN), as sample
size increases

low confidence prediction of the incorrect classification: even. In Table 4.1 we

see that DKL-BN is able to improve greatly over DKL case. That is, if we

take the most ambiguous point for one model and use the other model to eval-

uate it, we are able to compare the two models. We see that DKL-BN’s most

ambiguous point, evaluated with DKL, provides a higher confidence estimate

of the correct result. On the other hand, DKL-BN evaluated at DKL’s most

ambiguous point is able to provide the correct classification at a much higher

confidence. On average, DKL is only able to provide marginal improvement

over DKL-BN. However, DKL-BN is able to substantially improve predictive

accuracy and uncertainty estimates over DKL. That is, the on–average worst-

case performance is better with DKL-BN than it is on DKL.

4.2.3 fMRI experiments

4.2.3.1 Null dataset

We report the training testing loss, training and test errors, training and test-

ing accuracies as well as ROC curves below. Unsurprisingly, we find that in

68



Figure 4.22: Accuracy for DKL-BN for n = 1000 and n = 50000 as mini-batch
size increase

DKL-BN DKL
Mean Var Mean Var

Fig 2 (left) 0.656 0.225 0.732 0.195
Fig 2 (right) 0.917 0.075 0.494 0.499

Table 4.1: Mean prediction and variance estimated by both models under the
points with maximal ambiguity. Note: a mean and variance of 1.0 and 0 respectively
indicates that the MNIST digit is certainly odd

Figures 4.27 and 4.28the model is able to attain a low training error relatively

quickly. Furthermore, Figures 4.24 and 4.25 shows that our model has in-

deed converged. The low error rate on the training set is due to the model

capacity [83] of the recurrent neural network that learns the representation of

the data for the Gaussian process classifier. We see another story with the

testing error over time, which does not improve over the optimization process.

Interestingly, the log-likelihood of the testing data worsens initially but then

reaches a steady state. This may have been a result of a poor local minima

that was escaped by the stochastic gradient step. Lastly, we note that in Fig-

ures 4.29 and 4.30 the accuracy fluctuates similarly to the error rate described

earlier, with little improvement at the end.
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Figure 4.23: Samples of MNIST digits that maximize ambiguity for DKL-BN (left)
and DKL (right)

For the recurrent neural network model, the story is similar. Namely, the

optimization is stable and reaches a local minimum as evidenced by the smooth

plateau in Figure 4.26. However, the smoothness also translates to the training

plots of MSE in Figures 4.27 and 4.28 and accuracy in Figures 4.29 and 4.30.

That is, during the training process the recurrent neural network model does

not recognize that its input is randomly permuted data. This is only evidenced

by the testing plot in Figure 4.28 and Figure 4.30.

In short, we find that our model does not find non-existent differences

in randomly labelled data. Moreover, the optimization procedure does reach

a stable local minima. We now investigate the classification results on the

trained model through the ROC. That is, given predictions from a model, how

do the true and false positive rates relate to one another when the decision

threshold is varied. As noted earlier, the accuracy was based on a classifier

that used a threshold of 0.5. Here, we will investigate a range of thresholds

for each cross-validation step (without averaging).

Referring to Figure 4.31, we see that any choice of threshold may perform

well on one split of the data but perform worse on another. This demonstrates

that the model is not able to find a good way to classify this randomly per-

muted data. This is especially good, since the model does not seem to favor

positive or negative classifications, since there is an even split down the median
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Figure 4.24: Negative loglikelihood for our model trained on the null dataset with
5 fold cross validation

Figure 4.25: Negative loglikelihood for a Gaussian process trained and tested on
the null dataset with 5 fold cross validation
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Figure 4.26: Cross entropy for a recurrent neural network trained and tested on
the null dataset with 5 fold cross validation

Figure 4.27: Training mean squared error for our model, a Gaussian process and
a recurrent neural network trained on the null dataset
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Figure 4.28: Testing mean squared error for our model, a Gaussian process and a
recurrent neural network tested on the null dataset with 5 fold cross validation

Figure 4.29: Training accuracy for our model, a Gaussian process and a recurrent
neural network on the null dataset
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Figure 4.30: Testing accuracy for our model, a Gaussian process and a recurrent
neural network on the null dataset, with 5 fold cross validation

Figure 4.31: ROC curve for our model trained on the null dataset with 5 fold cross
validation
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Figure 4.32: ROC curve for a Gaussian process trained on the null dataset with
5 fold cross validation

Figure 4.33: ROC curve for a recurrent neural network trained on the null dataset
with 5 fold cross validation

75



Figure 4.34: Negative loglikelihood for our model trained and tested on the
dyslexia dataset with 5 fold cross validation

line. Hence our model is able to know what it doesn’t know. Surprisingly, the

same result holds true for the recurrent neural network model in Figure 4.33

and the Gaussian process model in Figure 4.32.

4.2.3.2 Dyslexia dataset

We again report the estimated likelihood, training and test errors, as well as

the classification results for the {true, false}×{positives, negatives}. Unlike

the Null data set, Figure 4.37 shows that the model is able to attain a low

training error quickly. The test curve given Figures 4.34 to 4.36 is also stable,

affirming that the model has indeed converged. We can see in Figures 4.37

and 4.38 that the test error is also relatively stable. The test accuracy of our

model, as seen in Figures 4.39 and 4.40, continues to increase as the training

accuracy also increase with each epoch.

Turning our attention to the recurrent models, we first notice how quickly

the model converges. In Figure 4.34, Figure 4.37 and Figure 4.39 we see that

there is a sharp increase in training performance at the very first epoch. How-

ever, this performance increase does not continue as training goes on indicating

that the model has overfit the relatively small sample size. Indeed, the test
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Figure 4.35: Negative loglikelihood for a Gaussian process trained and tested on
the dyslexia dataset with 5 fold cross validation

Figure 4.36: Cross entropy for a recurrent neural network trained and tested on
the dyslexia dataset with 5 fold cross validation
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Figure 4.37: Training mean squared error for our model, a Gaussian process and a
recurrent neural network trained on the dyslexia dataset with 5 fold cross validation

Figure 4.38: Testing mean squared error for our model, a Gaussian process and a
recurrent neural network trained on the dyslexia dataset with 5 fold cross validation
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Figure 4.39: Training accuracy for our model, a Gaussian process and a recurrent
neural network on the dyslexia dataset, with 5 fold cross validation

Figure 4.40: Testing accuracy for our model, a Gaussian process and a recurrent
neural network on the dyslexia dataset, with 5 fold cross validation
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Figure 4.41: ROC curve for our model trained on the dyslexia dataset with 5 fold
cross validation

performance in Figure 4.38 and Figure 4.40 wavers as the epochs continue

unlike our model which smoothly increases over time.

Summarizing our results so far, we find that the recurrent model overfits

very easily. This is despite the fact that both models are equally “deep” since

they share the same neural network configuration. We investigate our results

further by looking at the ROC curve for each cross validated fold, without any

averaging.

Referring to Figure 4.41, we see that our model is able to classify the

data nearly perfectly. That is, the data is pushed to relatively close 0 or 1

and correctly classified. Normally, this result would be suspect. However,

since the test size is quite small its not out of the ordinary to achieve perfect

classification on a specific fold. Indeed, we see that for one fold the model

performs best at a specific threshold.

This result is in contrast to the recurrent model in Figure 4.43. As before,

the model is not able to find a good way to classify this randomly permuted

data. This is especially bad, since there is an even split down the median line.

That is, the recurrent model overfits the data despite having the same initial

configuration as our Gaussian process model.
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Figure 4.42: ROC curve for a Gaussian process trained on the dyslexia dataset
with 5 fold cross validation

Figure 4.43: ROC curve for a recurrent neural network trained on the dyslexia
dataset with 5 fold cross validation
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Chapter 5

Discussion

5.1 Summary

In this thesis, we proposed two extensions to stochastic variational deep ker-

nel learning for Gaussian processes. The primary motivation for this work was

to learn an effective intermediate representation for Gaussian process classi-

fication. Our first extension broadened the family of neural networks under

consideration, while our second extension used Bayesian methods to quantify

the uncertainty of the intermediate representation. As a result, the models

proposed in this thesis are well equipped to handle data sets with small n and

large p, such as those in neuroimaging.

In our first contribution, we developed kernels parameterized by a recur-

rent neural network which are simultaneously trained with Gaussian processes

using stochastic variational inference. We investigated not only the inference

problem of Gaussian process classification with recurrent kernels, but also

the computational bottleneck inherent to our model. Returning to the first

question described in Chapter 1, “can we learn complex models from lim-

ited data?”, we showed that the Bayesian regularization of Gaussian processes

allows us to apply recurrent neural networks even when sample sizes are low.

Second, we investigated the use of batch normalization, instead of dropout,

to provide uncertainty estimates in neural network parameterized kernels. This

novel approach to uncertainty quantification implicitly approximates a dis-
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tribution of neural networks. While batch normalization defines an implicit

method of uncertainty quantification, it performed well empirically. Return-

ing to the second question described in Chapter 2, “can we reason about the

uncertainties of complex models?”, we showed that a Bayesian interpration

of batch normalization allows us to recover uncertainty estimates, even when

other approaches like dropout fail.

Empirically, our simulation studies indicated that our recurrent model is

able to maintain better classification accuracy than competing models as the

dimension p increased while keeping n fixed. For real data, we found similar re-

sults on the MNIST dataset where the performance of our convolutional model

was much better for small n but this gain diminished as n increased. Lastly, in

the neuroimaging dataset we demonstrated that our recurrent model is robust

to the null case and does not extrapolate from non-existent differences. More-

over, our recurrent model was able to greatly out perform a recurrent neural

network of the same configuration when classifying dyslexia patients versus

healthy controls.

In conclusion, we found that combining probabilistic models with neural

networks leads to very strong empirical performance in domains where data

is small relative to its dimension. Moreover, both Bayesian deep and deep

Bayesian approaches should be applied and studied more generally, as uncer-

tainty quantification is always beneficial when computational resources allow

for it. To this end, we hope work in this field culminates in a cohesive theory

at the interface of neural networks and Bayesian inference.

5.2 Future work

In the future, we would like to outfit a deep kernel with both convolutional

and recurrent neural networks to capture the spatiotemporal regularities in

neuroimaging data. Specifically, we could use a convolutional neural network

on raw fMRI data, which is then fed into a recurrent neural network to learn

temporal structure. Lastly, the recurrent neural network would provide the

encoding for the Gaussian process to perform classification. As a result, we

would be able to study the effectiveness of atlases as a representation for
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classification in fMRI studies by comparing them to the atlases generated by

the convolutional-recurrent kernel on raw fMRI. While this could combine

the strengths of both of our methods, it would also be very computationally

challenging.

Another approach could compose multiple Gaussian process with neural

network kernels. This would merge the existing works on deep kernel learn-

ing [80] and deep Gaussian processes [21]. The tractability of this remains

unclear, since deep Gaussian processes are complex even for simple kernels.

Doubly stochastic inference approaches could be useful in this regard, as they

capture the uncertainties inherent in Monte Carlo sampling from a distribution

which stochastically depends on another variable [73].

Lastly, we would like to explore alternatives to KL-based variational in-

ference. While mini-batch training with stochastic gradients has been limited

to KL-based variational inference, recent work has explored an upper bound

minimization approach. This new approach uses a different divergence mea-

sure [22], but achieves better error rates and more accurate uncertainty es-

timates. In addition, they claim that their proposed upper bound objective

is more stable for Gaussian process classification. Hence, it is worth explor-

ing whether our Bayesian deep kernel learning model would benefit from the

approximate inference scheme in [22].
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