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L ABSTRACT

Genetic learning systems are a form of automated discovery system that emulate natural processes of
evolution. These systems have recently seen growing research interest'and a wide variety of applications.
A genetic leamning system is comprised of a classifier system-based performance system and genetic
algorithm-based learning mechanism.

Classifier systems are a form of rule-based production system incorporating a simplified répresenta-
tiorf scheme. However, the apparent simplicity of these systems is misleading. It is shown that certain limi-
tations in the expressiveness of the classifier representation can create the potential for a combinatorial
e n in the number of classifiers needed to represent solutions to problems. This is especially prob-

lefmatic because the genetic algorithm does not discover multiple classifier solutions in an effective manner.
The factors that.contribute to this inability are examined.

Genetic leaning systems must always balance the competing.needs of creating new classifiers and
exploiting the current classifier population. The "2-Armed Bandit Problem” expresses this fundamental
exploration/exploitation tradeoff in its basic form. From a careful examination’3df this problem, a new -

“selection techinique is developed from statistical principles. This "likelihood-based” approach demonstrates -

superior convergence properties over the traditional "economics-based” approach. Experimental results

show that many of the traditional weaknesses of economncs based selection procedures are overcome by . .

thxs new procedure
-The result of this research is a domain- mdependem leaming systcm that demonstrates a number of
advamagcs over uadmonal genetic learning systems.

\ P
1y ’ ' -
H



Acknowledgements

,

, I would like to thank Jonathan Schaeffer, my supervisor, for his guidance, support, and optimism.
Jonathan’s help and encouragement contributed a great deal to the timely completion of this thesis research.

1 would also like to thank the niembers of the examining committee: Renee Elio, Hong Zhang, and

* Curtis Strobeck for their helpful comments and suggestions. This thesis has benefited considerably from
* their valuable input. Lo '

~

Special thanks 10 Ursula Maydell for her help during the completion of the final draft of this thesis.

-

i



¢
< "Table of Cohignts
P B \
Chapter : \ ) = e Page.
Chapter 1: INMTOAUCHON .....vcoevvveeeeveeeeeeeer e reeerees e RPN et s sa st srasesaen aans 1
Chapter2: An Overview of Classifier Systems and Genetic AIZOTIAMS ......ocoiiieiceereeieeesscsesrssioreeerns 10
2.1. Classifier SYSEMS ......eooeerverveerereircesirennenn, crerennerernns ieveensenernnans et e s nntens . 10
2.2, Gcn_etic‘Afgoritlms ........................................... ereserre e ah s e sh e s e b e s en et e et e s st st eserteanns 16
2.2.1. GENEliC OPEIALOIY ..ocvereeerrerercteeeerereseeeecee e eseeesenssesessnenss ereeereseasesasensraos e sensesenoeemre et e enens 17
2.2.2. Selection Processes ................ SOV 19
2.2.3. Feedback and FItNESS ........cccceecreiicinrninieierenisaniesstessssssssstess sesossvosessssnsssss sossmsrsesssassossmessssenes 21
2.2.4. The Bucket Brigade Algonlhm ................................................................................................. 23
2.2.5. PerfOIManCe .......covvevomrevenererernresesennsnens . P O 24
2.2.6. External Parameters ..........c......... iyl eestsnessnss s s st et 25
Chapter 3: Difficulties with Classifier REPreseniations .............oc.vccieeceeecevererecseeeressessmssssessestossssesssessens 27
3.1. Human Factors ‘\\ ........................ ereerereenereesersraerresaan - vt s s nasenes 28
3.2. Attribute-Value REPIESLNMALON ..ottt iscses s b esn et e ses e sases s sesstessnes 28
33 I]lcgal PAUEIMS ..ottt sttt et ens s ss e e ertes st es st st ot s e ens s et et se e resememenean 28
34, Cl&sxﬁer Expressibility ‘ ............................................................................................ 31
3.4.1. DISJUNCHON «..c.eermeuirretreeireenniiriniieesessescsete st sesessssesssessasssssssssscsnossens .................................... 31
3.4.2. POSition DEPENAENt SEMANLICS .............ovvereoeeeeeeeesseeeeresssesmssssesssesemeeessessesssoeessssssessmeseeesessnns . 34
3.4.3. Multiple Conditions and ParaMeLeriZation .........o.c.eeeeivseuseversiesseesseersnsioeesesmesssssssessssssrsssossnst 37
3.5. Remarks R RNG: NSO ......... 38
" Chapter 4: Discovering Classifier Solutions with Genetic AIZORAMS .........cccoeeueinreereereereeereereseessrensnnn 40
4.1, CONVEIZENICE .euvrveernivrissmeresnesssensssnnessesesssasssassesssseressesssnsssesessesssssenessees R IO 41
B T s YA 43 .
4.3, INAEPENACIICE ..ottt s s e s s s shtes et e esaes e see s sesesssse s seaes 45
4.4. Discovering Chains 46
4.4.1. Sparse Feedback ’ 47
" 4.4.2. Classifier INErdependenCe ..........cccouveueuiesreersiessssecsaesesssesesessesssesssmsossseeseseeeesmsesssssssessassesss 49
A5 REMAIKS oottt sttt et s e s b be s bt srn e bt e 51
52
53
36
61

5 33. Convergence and Finite Optimality
534 A',Fast Algon\'uhm~ for the 2ABP

S e e ee e oo 67

. vii

..................



. Iy
- - [
oy 53.5. Generalization: The K-Afmed Bandit Problem

5.4. Evaluating Fitness .................bevvoeenoviee, Lo S 80 -

5.5. REMALKS ....ccorevenresersrsessnesses e eveesenes s S i - 86

- Chapter 6: Implementation and Expenmental Results o N _ ' ' .

6.1. Credit Assignment ...... eeeierenaenraseseasnas 87

6.1.1. Bernoulli Trial Sets ......................... ST v e et S 88

- " 6.1.2. Parallel Testing ... eeeeemeeees e e seeee e et 89

' 6.1.3. Limitations .............sevcc, s s bt N e 90

6.1.4. Multidimensional Feedback .......... A S .90

6.2. Selection Algorithms - . ' 91

6.2.1. Conflict Resolution n91

6.2.2. Reproducnon ............................................ . 92

' 6.2.3. EXUNCHON oot @ 93

6.3. TlC Tac-Toe Legal Move Expenmems . conene o 94

6.4, Extcnsxons e e s rab b e et et e st ¥ 98

6.4.1. Ubiquity. . ' ' ‘ . 98
6.4.2. Dominance . 101

-~ 64, 3,} Sub—Populauon Scparauon 104

Chaptcr’7 ConcIudmg Remarks ., 107

References ....... e freerrerernnnienes Lo 112

~Appendix 1: Procedures for the ZABP and KABP Expenments 114

Appendix 2: Procedures for the Tic- Tac-'roe Legal Move EXpenmcms ) 116

. - 2
%
Y
viii e



€ ~ -
v ' N ‘ 5 {
List of Tables - -
4
Table IR M : Page
6.1 Legal Move Experiment with ECONOMIC SEIECHON .....vcevuvuusmrereereeessensnnnrssessesssssssssssseesesssessnnonas 96
6.2 Legal Move Experiment with Likelihood SElECHON ........hocecvreireeee e se e e e eeens 9 )
6.3 Legal Move Experiment with UbiqQuity BIas ........ovveeveeeeeeeeerreseeesceseecesensessessions v sa e 100
6.4 Legal Move Expetiment with DOMINANCE BIaS «.........v..eeveeeeereeeseeneseesseeseseeesessseseeeeseessseseesessn 103
6.5 Legal Move Experiment with Sub-POPUIAUONS «........eorvveeereeeeeeereeeesessree, N P
. ( - )
N
o

-



Figure ) . .
5.1 2ABP Experiment with Economic Selection ..
5.2 2ABP Experiment with Likelihood Selection

5.7 2ABP Time Dependence Experiment with Economic Selection
.8 2ABP Time Dependence Experiment with-Likelihood Selection

6.1 Legal Mave Experiment - Econo'mic vs. Likelihood ...................

6.2 Legal Move Experiment - Likelihood vs. Ubiquity

6.4 Legal Move Experiment - Dominance vs. Sub-Populations

- .
I
;
.
{. ’ vb N
~
N
¢
s
< .
el
_I -
= \7 "
T
<
X
A

6.3 Legal Move Experiment - Ubiquity v.s,'Dominal}cc ....................

B e
S
-
7
N
J "
. ‘
B
.
”
A
r.
<



Vi o ' Chapter 1

_ Introduction -
w = : ! )

Génetic aIgorithms have recently become an expanding area of research into computational models
of leammg and adaptauoo As the name suggests these Team mg models* are inspired by natural processes

of evolution. The idea that dommn-mdependent machme leammg systems could be synthesrzed from some _\ .

<

. of the basic pnncxples of populauon genetics is one that has tecently gamed mcreasmg auenuon This
. approach saw development mtd’ its first pracucal forms wrth the early mvesugauons of John Holland who
]

“laid manyof the basic mathematical foundauons and justifications underlying the basrc learning techniqué

N_— ‘[Holm S . . S | ™~
v~ ‘ B \ ; . , ) \ ' ‘
Althou'gh these learning algotithi..s were intended for application in a wide range of machine learning

N -

.problems, until recently. their use was restricted predortinantly to funCtion/co'inatorial optimization
3
; problems However with the recent advent of classifier systems, more substantial learning prob}ems have -

~

been tackled [H}IN86 Hol86] Classrﬁer systemgs are-a: sunple form of rule-based production system that
ns

are well suited for m_dmpulat.lon by geneuc algonthms. As such, classifier systems provide genetic leammg
N .
systems wrth a computauonal component 10 serve as a task performance system. The genetic a]gonthm

N

.. mampulates the structures of this performance system in an attempt 1o 1mprove its- capabrhues in the task

A

N ‘ .
domain. It is, thxs form of domam~mdependent machm {mming system, comprised of a classiﬁer based
performance system and. a*g’eneue algonthm based adap ve component, that is the object of mvesugauon

- of this thesis. ‘ : - ; A

An.inwiguing aspect of these genetic leamning systems is that they often begin with a tabula rasa.

a\’l‘hat is, ng domain specnﬁc knowledge is possessed by the system before the leammg task begins® In this

>

s -

respect genetic algorithms can{e thought of as black box learning algorithms.

Black Box Learning Systerns '

LA black box learning system can be best thought of as an autonomous adaptive agent situated in an

x I



)

environment, The cnvuonment cou]d'be in a number of states; some of which tend to be beneﬁmal to lhe
agem, and others which u-,nd to be to the agent’s detriment. Here the learning task belongs solely to the
black box, it must autonomously determine courses of action which will place lhe envuonmcnt mcreasmgly .
into states which are to its benefit whlle avoxdmg demmemal statcs A key feature of black box adaptxve
agems is that they may begin the leammg task wnth a minimum of domam dependcm information. This
mnounum amount of information is characterized by the m;nxmal requirements of the agent-environment

coupling that still allow for the agent to demonstrate adaptive behavior in the environment.

. The agent must possess perceptual capabilities in the environment.

. The agent must possess effective behavioral capabilities in the environment.

. -, L .
. The environment must periodically provide the agent with feedback that somehow indicates the

~ 4

benefit or detriment that the current state holds for the agent.

"

An agent that is not.able to sense relevant aspects of Lhe'env@ronmental states it encounters will not
be-able to distinguish those states where a course of action might lead to a beneficial situation from those
] states where that same course of action will lead o ; dcm'men;al situation. Without adequaie perceptual |
capabilities, an agent is afforded no basis upon which decisions abo;t the desirability of different courses of
action io take in particular simationo could be made. Such an agent, if unz{ble to distinguish those states
when a parucular course of action is desirable from those states where it is not, has no opportunity to adapt

its decxsxons in a manner that would Improve its performance in the environment.

‘An agent, that cannot affect the environment, even minimally, to the extent that it can tend to avoid

_detrimental states and attain beneficial states, is afforded no opportunity to improve its performance, even if

it can dlsungulsh desuable from undesirable states. If none of the agent s available acuons can influence
A

the fature proportion of beneﬁcml and demmemal states it will encounter, then itis pomtless for the agent

0 attempt to adapt its behavior.

- v . ‘
Feedback is the only mechanism throug> which a black box learning system can differentiate the



benefits of the various states of the environment, consequently \allowing the system to differentiate the
benefits of various. actions in pardculﬁ states basec‘i upon dlc desirability of the states that result. Without
feedback, the adaptive agent is left with no way to distinguish the desirability. of one action fr;)m any
another. In which case, it would not matter to the agent which of the alternate possiblt; actions is taken in
any barﬁcular sitnation. With no way Lo‘evaluale its choices, a leamning system has no opportunity to
modify its performance in anything other than a random, meaningless way. Ultimately, feedback defines

the goals-of the black box leaming system; states to attain or avoid, conditions to maintain or prevent. |

‘Beyond the specification of the agent-environment coupling, any further information we provide the
i

black box would be considered unnecessary (but, perhaps, useful) knowledge. Clearly, by providing the

adaptive system with additional knowledge we*can aid the leamning process a great deal. However, a black

box adaptive system must always be able to, in principle, learn in the absence of such superfluous informa-
tion. The Wholc point behind black box léaming systems is that we are not required to give them domain-

dependent knowledge in order for such a system to learn (beyond simply connecting the system to the task

environment). .

The specification of the coupling between a black box adaptive agent and an environment character-

izes \precisely how, in practice, genetic learning systems are actually applied to particular task domains:

. An input language is defined and an input interface mechanism is constructed which encodes infor-
. M
mation from the environment into the internal langﬁage of the machine.

e An output language is defined and an output interface is constructed which interprets the output

lahguage rvducing the specified behaviors in the environment.

.+ " The pay T values are prescribed, for each environmental state. These predefined values are intended
to somehow express the degree of benefit or detriment the various environmental states hold for the
genetic learning system. Whenever a new state is reached in the environment, the appropriate payoff

value is presented to the system as feedback.



- Why sldmdy black box learning system,v.’?'; A recent UGld in Al research has been the ‘criticism of .

domain- mdcpendem, "weak" methods as bemg xmpracucal for mosl mteresung problems favoring mstead

a more domam-dependem, knowledge intensive approach. Howcvex Holland has clalmed that the domain
of appllcabxllty of weak leammg methods may have bcen undercsumated and that it is much larger than i«

usually believed [Hol86). Acmally, ‘domain- mdependem (black box) learnmg algonlhms appear to be an

Pl

important area of research for a number of other reasons as well. ,
The specification of situating-a black box leaming algorithm in an environment is an abstract descrip-
tion that encapsulates a‘general class of machine leaming problems. The black box learning problem

describes a form of machine learning problem where there is ‘rlo teacher to imelli'gem.lyb guide the training
regimen, or provide the learning mechanisr.n‘with hints or-partial solutions. This class of problems com-
monly referred to as léaming without' a teacher, unsupervised learning, learning by experimentation, ol
' automateo discoyery. The advantage gained in studying _such’a simply described, abstract problem is lhz;t
any results or insights achieved will have a wide lange of applicability to a number of dlﬂicult machine

leaming problems.

A diﬁioulty with studying knowlcdge intensive learning methods is that one loses sight of the leam-
ing algorithm itself. Il is certain that a greater quanlg or quality of knowledge will greatly improve the
perfonnancc of any search process. But, improving the knowledge prov1ded to a learning system tends to

obscure the issue of the effectiveness of the learning algorithm itself. Is it adequate? Can it be improved?

,‘ What are its weaknesses? The black box learning problem focuses directly upon the abstract learing algo-

»

rithm itgclf. - - y

A related problem in machine learning. research is that we am'often unable to effectively compare
diﬂ"erenil learning algoﬁmms. That is, given that we have some partlculz;r domain’ in mind, how can we
decide whether one leafning algon'thm A actually performs better than another algorithm B? The largest

obstacle in the way of conducting a fair comparison is the fact that two algorithms may possess differing

levels of a priori knowledge of the domain. Clearly, by allowing'algorilhm A 10 possess more information

<
¢



than alg(IJrithmB initially, we may be simplifying A’s problem a great deal relative 1o B's. 'I‘hu:. wé could -
“-not necessanly attribute ah}" a;dvantage in A's’performaqce smcdy to .’lhe algorithms themselves, There is
nofeasxbié\way t‘o;gc‘)mpAa;rcv.the pcrformance of the m"o algérithfﬁs tﬁat begin wit: iifferem‘amoums -of _
domain ;f)eciﬁc kno"u;léd'ge.' SO’ wey'musrl\ensiﬁé "Lﬁa'r'tﬁke“ t‘wo'comlv)cting"t‘néthods negin with iden{ié}zl

amounts of initial domain specific knowledge. But, this 100 can become quite difficult once we consider the .

particular domain or, perhaps, which is superior in general, ’

A most‘impox Lint issue: in machiné learning research is the question of how do we get'machines to
solve prob?éms that we do not already knqw the answers 1o (i.e, automated discovery)? Leamning machines_
must eventually deél.with sifuations where we have no background knowledge to provide. Evena learning

“system that has l;een given a wealth of d(;main knowledge at the outset of its task will find, as it adapts to
the task "ddmain, that this original knowledge is no longer effective in guiding the le«’g.rning process [Len83].‘
Regardless of ‘the approach taken ‘towards constructing ‘lcar_ning macixines, ultimately, in interesting

domdins, the machine will have to deal with a‘blacks box learning problem in the sense that it will have no ¢

priori domain knowledge that continues to effectively aid the search effort. -

-

Learning Through Interaction with an Environment




1. . The cnvmonment provides the agent wnh a sumulus (The agem Aacquires an internal description of

“

o . T -

the current state of the en ronment) ¢ . @
2 ﬁe agent respdhds with some behavior. o o LY
30 ‘_;I“lle envirorrrrrent édSs’ibl'y ehariges state. \ ' ' o ‘ ' .
4.. - The envmonment may provide ale agent with feedback that mdrcates Lhe beneﬁt (or detrime ) to u{e_‘ . '

\
agent of lhe currem state of the environment’

o One particular.fonn,of black box leaming sys.cm is considered throughout this thesis — the genedc
learning system. The adaptwe behavior of a genem, leamung system anempts 10 capture a number o )

abs' .t principles aboul how leaming should occur\wuhm this framework.

kirst of-all, it is important to realize that the (only measure of success or failure availableto the leamn-
ing system is feedback — positive feedback rndiez;ﬁng a beneﬁ_cial situatiqn and‘xfegatrve feedback iﬁdicz;x-
ing a detrimental situation. Thus, the goals of an adaptive ager;l must be to maximize the level of positive
feedback antained and minimize the level of negative feedback. To this end, geneue leammg systems mcor-
porate a simple pohcy o , -

T

. Avoid repeating'actjons in states where negative feedback was the result. .

. Strengthen the tendency to repeat actions in states where positive feedback was the result.

However, thxs policy considers only a simplified scenario. What happens if feedback i is received only afLer '

a long sequence of action has been perfonned”
. Not only should an adaptive agent appropriately strengthen (or weaken) the acti% that immediately

precedes a feedback event, but it should also strengthen those actions that have "set the stage” for the

N

execution of this final action.

By employing such a policy, genetic learning systems attempt to discover beneficial sequences of behavior.

An important feature of genetic kleéming ‘systen;s is that, ;;eriodjcally, they will undertake novel
courses of action. Sometimes the system may abandon a well established pattern of behavior in an attempt

y



'to discover a more proﬁtable course of acuan ThlS prevents the system fmm becommg "stuck in a Tut" -

where it w1ll perpetually pursue the same medlocre pattem of behavnor Thxs capablllty also allows geneuc

learning systems to deal with novel situation’s: If the system does not know what to do, it will try some-

thing.

ST . g . . o

[

- Whenever a genetic learning system endeavois to -undertake a: novel course of action, rarely does it

attempt an entirely arbitrary action. That is, given some situation, a genetic leaming system may try an
K - . .
action that is similar to one that was successful in the same situation, or it may u;&anaction_ ‘that was suc-

.cessful in a similar situation.

- ool . )
‘At}i‘myone time, there may be ‘a number of actions the leammg system may wish to take. Smce itis.

- assumed that Mstem can only perform one acuon at a-time, each of the currently conﬂrcung acnons

must compete for the right to be executed. Through this process of compeuuon, well estabhshed, success-

. ful acuons can be favored wrthout totally ruling out the possrbxlny of attemptmg noﬂ:l l‘ehavroxs A sur--

vival of the ﬁttest pohcy is instituted that removes from consrderauon the least succbssful acn(#ls and .

preserves the. most successful actlons for future compeuuons ‘Through tlus process of conunually trymg

. novel pattems of behavror and throwmg out unsuccessful acuons a geneue leamtng system is conslantly :

.....

attempting 10 dlscover and maintain proﬁtable patterns of behavror thus lmprovmg its performance in the"

taskdomaln o o ‘ - .- C .

L . . L. o

bS

'Object'ives_a?nd Overv'-iew R s ' . s

The development of genetic leammg systems mcorporaung a classifier system as the performance"

.
/

.
componem and a geneuc algonthm as the adaptwe mechamsm consutute a major dlrecuon in the ddvelop-
ment of blacle box learnmg techmques Although the many mmgumg 1deas and potenuals of geneuc leam

ing systems have been well wntten about (HHNBS, Hol86], the scope of actual succcssfu.l unplememahoﬁs

remain charactensucally hmxted to domams such- as funcuqn/combmatonal opnmxzatwn or srmphﬁed .

machine leammg problems [Gr687b] Certamly, any domam mdependent, "weak leammg method wrll'

0
PN
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v

: ‘ex“pen'cnce growing perfohnance diﬁicu]ties as the scope of the domain is scaled up, but the question still
remams can the performance of genetic learning systems on machine learning problems be improved i ina

way that docs not resort to adding domain- dependent knowledge" . A

The general ObjeC[lVC of this thesis is to attempt 10 improve upon the basnc capablhtxes of the tradi-

uonal genetic leamtng System as a black box adaptwe agent. Towards this end, the approach taken is two-

- foid: S ] | o
. T‘hrough careful eiar_r_tinarion of some of the exisdng mechanisms and re-analysis of the ftmdaméntal

prodesses. /,
. ‘Through the construcuon of computauonal systems and empirical test.
’ ) A

The ﬁrst aspect of genetic learning systems to be mvesugated is the classifier system formalism w.at

I

compnses the perfcln'nance system Upon ex,ammauon of the representational paradxgm underlying these
Systems a numlx',r of subtle, weaknesses are e;(posed the most serious of these being the limited expressive-

ness of the! representauon Thesc weaknesses and lumtauons present a number of serious difficulties to the -
t

geneuc algonthm compnsmg thc adapuve component of the learning system Unfonunately. completely

~

sausfymg soJuuons o these partmular problems still elude genenc algonthm researchers.

S

L Thc second aspect of geneuc learning systems to be mvegngated is the genetic algorithm itself, The

' geneuc algonthm is constructed from a number of evaluatxon and selection mechanisms that have been

'tradmonally based upon an econ'omtc metaphor However, a careful examination of these mechanisms

: “_‘ reveals a number of weaknesses in the approach The fundamental selection problem is then reconsidered

©

.1n its- abstract fo‘rm. From this analysis, new evaluation and selection-techniques are suggestad that are

* shown to overcome the weakn of the previous techniques in a series of empirical tests.

. Finally, an lmplementauon of a complete genetic learning system is constructed, incorporating }he
I3
- ‘results and suggestxons from these-i mvesugauons A series of empirical tests are presented illustrating the

pesformang/- ﬂlprovements that are_ reeltzed with the mtroducu'on of the reconstructed mechanisms. A few
: T

>
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other small improvements are investigated and demonstrated as well. «

~
&

‘ The purposé of this research is not 10 invc'sﬁgaie or explore genetic pﬁn;iples for théir own sake, in a
computational manner 6r oLheﬁvise. Rather, the overall go;\ls andLobjecn'v ¢s are o construct an effective,
- efficient black box learning mechanism, regardless of how this méy be achieved. The approach taken her.
merely draws it;s inspiration from the natural processes of évoluﬁon and pripciplcs of population genetics.

If, for the sake of improving the performance of the learning system, the analogy with natural processes

should be violated in some wa¥, so be it.

»

~ Before commencing wih{c"_l;l/vesdgat.ion and analysis that leads (hopefully) t an improved black
bo»x’learning system, the §udclme and operation of genetic algorithms and classifier systems are first intro-

duced and described in some detail.

Eind
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Chapter 2

An Overview of Classifier Systems and Genetic Algorithms );’ g

'

: b
It hhd been mentioned previously that two distinct components normally compnse a genetic learning

sysLem the task performance system, a role most. often filled by a classifier system and the learning

‘ mechanism, a genetic algorithm. The classifier system is the cornponent that inlcracts wiLh the task

environment: receiving sensory input, respondmg with some acuon and recenvmg feedback The genetic

»

algomhm has no direct connection to the extemal envuonmem but rather it operates smcdy by mampulat-

‘ing the structures of the classifier system in an attempt Lo improve its performance at the dgmain task.

Since it is easiest to understand and explam Lhe behavior of genetic algonthms in terms of the{reﬂ"ects upon

5 - ”~

a perfgrmance system, a survey and descnphon of classifier systems is presented ﬁrst This is followed by

a survey land description of geneuc algorithms and how they go about manipulating and modifying the per-
c ’ §

N

formance characteristics of classifier systems.

2.1. Classiﬁer Systems

, EN ' , .
Classifier systems arg most often used as the performance component of .a -genetic learning system.

However, they aee entirely programmable, computationally universal systemns in their own right. That is,

one canimplement arbitmry applieaﬁons with a classifier system.

Classxﬁer systems are a form of rule—based producuon system [For81] A producuon System typi-

cally consists of two main components a working memory, and a production memory (each production

* consisting of a condxuon and.action part). The characteristic execution cycle of a producuon system has

three phasas: * »
. 4 A

L. Mach: Match the conditions of the productions to the elements from the current worki \memory.

1

. Save all successful matches in the conflict set.

[

S 2 _Conflict Resolution: Choose one of .the matehes from-the conflict set according to some predefined

conflict resolution policy.

10
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3. Execution: Execute the action specified by the matched production. This may result in elements
being added to or deleted from the working memory, as well as messages printed and 2xtegnal sub-

routines calléd"

-

The structure and behavior of a classifier system is distinct from that of a typical production system
in a .number‘of ways. Specifically, classifier systems utilize a modified e;ecudon cycle and a radically
diffcrg:m representational paradigm. In a classifier system the working memory is called the message list
and the pr';ducﬁon memory is called the classifier base. A classifier system i%?bmpn‘sed oi four main com-.

ponents: a message list, a classifier base, (ﬁ input interface, and an output interface,
Messages

The working memory elements of a classifier system are called messages. Messages are reprcsemed/

f i)
by strings of fixed length & from the alphabet {0, 1}.
P2 . -

Example

L

A simple conceptualization of a classifier system to play tic-tac-toe would represent the entire

AN

current st.avte of the tic—tac—toe’ board as a éingle input message. The contents of the squares
can be represéntcd using 2 bits. For example, each of the pbssible ma{ks X, Oand B (blank) could
‘ be representcd By,the pattems: B = 00, X = 01, O = :10 Thus, an input message would be
*i8 bir. loﬁg. (Notice the the pattern 11 has no ‘meaninig in‘ lhié case.)> For ex;—nplé. the message
010010000110000000 would denote the following board cbnﬁgumtjon where the squares are

J
address€d left to right, top to bottom:

X | B 0
B | X 0 '
3 B B B

N
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. Classifiers .
. .
~o

The productions of a classifier system are called classifiers. Each classifier consists of a condition

and action part: condition — action. Both the condition and action parts are represented by

«

strings of fixed length £ from the alphabet (0,1, #}. A classifier’s condition string can "match” a partic-

ular message string under the following conditions:
- When the condition string containsa 0 in position i the message must containa 0 in position ;.

* |, Whenthe condition string containsa 1 in position i the message must containa 1 in position ;.

. ‘When the condition string contains a # in position i the message may contain eithera 0 ora 1 in )

position i . In condition strings the # symbol is referred o as a "don’t care".

- 4

Example

) ,
> The classifier #10#% — ##11 would mza\Ech each of the message strings 0100, 1100, 0101,
w, — X

and 1101..

Upo'n execution the only action a classifier may take is to post a message to the message list. The rhessage

to be posted is constructed from the classifier’s action string as follows: | -

. When the action string contains a 0 in position i the new message will containa 0 in position { .

-

. When the action string contains a 1 in position i the new message will containa 1 in position i .
0 =3 ’ . . . . .
. When the action string contains a # in position i the new message will contain whatever the mes-

sdge that matched the condition stridg contained in position i, In action strings the # symbol is

referred to as a "pass through". ' . . S

Example

. Given the classifier #10# — ##11 and the messages 0100, 1101, the match with 0100
would produce the new message 0114, and the match with 1101 would produce the new message

1111.



/) column, where the squares are addressed as follows:

v,

v \ .
Example T -7

Classifiers for a tic-tac-toe domain could have a condition string with 18 bits (corresponding
to the length of the messages described earlier) to match against board configuration messages.
Thesé classifiers also require an action string in&icating which square to i)lace a mark into (for sim-
})ﬁcity, we will assume that the classifier system a]ways i)lays X andAthcvopponcm plays 0). The

first 4 bits of the action string would be the address of the square (the rest of the action string will be

- ignored). The first 2 bits of the action string specifying the row and the second 2 bits specifying the

0,1

0,0 0,2 '
1,0 1,4 | 1,2
2,0 | 2,1 ] 2,2

Giveﬁ such a construction, a classifier which encodes the rule if every square is b]_ank. then place an
X in the center square would be expressed by:
000000000000000000 — '0101.
(Strictly speaking, the éondition and éc;ion strings are the same length, but fc.>r the sake of brevity in
the examples, this shorter néml%on is preferred.)
Environmental{nterface{ _‘

- N i - <

The input interface connects the classifier system perceptually to an external environment. The input
interface takes stimuli from the envirownd constructs the messages that represent those stimuli inter-
B . '/’v o
nally. The output interface connects the classifier system behaviorally to an extemnal environment. The -

output interface takes those messages from the messaée list which represent actions to be effected and per-

forms those actions in the external environment.

sl



Extensions
. ~z
There are a number of extensions to the basxc classifier system fonnahsm which are often utilized in

practice. These extensions increase xhe expressive power of classifiers by mtroducmg negated conditions

and multiple conditions.  «,... *

<

R ' N

C13581ﬁer sysr.ems often mclude provisions for.the negation of con%uon smngs A class1ﬁer with a
negated condition string can be execuled only if no message exists in the currem message list L?at can
match the unnegated form of the condition string. A negated condition string is indicated by preﬁxmg it

Y -
witha "~ " symbol.

Example
Consider the ciassiﬁer -#10# — 0011, Such a classifier could not be matched in any execution
cycle where the message list contained any of the messages 0100, 010 1, 1100,6r 1101.
Often classifier systems ailow for classiﬁers that contain multiple conditions. Here, the condition

. partofa classﬁier 1s represented by a list of condition strings, each of which is a (potenually negated) string

of fixed length k from the alphabet {0, 1, #}. Each of the individual condmon strings can be matched to

/S a message as described previously. The entire condition of a classifier can be matched only when all of the ™

condition strings makmg up the condition can be matched. When a muluple condxuoned classxﬁer is to be
executed, nonnally the message matching the ﬁrst unnegated condition string is used by the pass Lhrough"

mechamsm 10 construct the new message.

Example ‘ : ) .

Consider the classifier O##0, 1#%1,~-#10% — ##11 and a message list containing only the -

et

messages 0110 and 1001. Here the classifier would be able to match and it would produce the

new message 0111s However, if. we were lo add the message 0101 to the original messages lxst,

the classifier would no longer be able to match and no new message could be produced

ax,
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The execution cycle of a classiﬁer'system lypicaiiy has 5 phases:

S .

1.  Post all messages from the input interface to the current message list. ,
2. Record all possible matches between the classifiers in‘,the c_léssiﬁerbase and the messages from. the
current message list. - ' ' I - , -

3. - Select somej subset of the recorded matches.” For each of these selected matches, generate a message

~ for the new messaée list. /
4. Replace the current message list-with the new message list.

/
~ .. . ¢

5. Process tlie new message list‘lhr‘ough the output interface, performing any specified externaj ections.

There are important diﬁ”erences'between the execution cycles‘ of classifier systems and production

/ Ird

systems The classifier “system’s execution cycle provides for the possxbxlny of execug;ng muluple' e

1 . : "\, -

classifiers mone cycle, in parallel ThlS possﬂnlny is facumted wuhm the classhﬁer system framework by

the limitation imposed upon classxﬁer actons —(h since. the only action classifiers are capable ,of is 10 posta

v

meSsage to the new message list, classifier actions do not interfere with one anoiher. Holland makes a
strong case for the desuabllny of what he terms massive parallelism as an eﬁ”ecuve method for mp\resenung
mental models" in a rule-based system [HHN86] Another key dx{ference from production systems is that

messages are not persnslem from cycle to cycle. In a typical product}on system the work-mg memory el_e- o

P

A

ments can or(ly be removed Ltlrough an explicit action iniLiaLed by the RHS (right hand side) of some pro-
ducuon rule (or programmer intervention) [For81]. If cenam messages are requlred to be present over a

~ number of cycles they must be explicitdy and repeatedly remstated by some parucular classxﬁer

An important feature of classrﬁers is that thexr action stnngs do not necessarily have to‘encode an

extemal acuon If the messages constructed by one classxﬁer match - the eondxuon string of another

N ,
classifier, the two classifiers are sald to be coupled. 1t is quite possxble to have the 0utput interface ignore :

many types of messages found on the mcssage list. Thus long chains of cla551ﬁer execuuons may be con-

structed Lhrough couplirg before any extemal action is effected.’
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Holland states that arbitrary finite state machines can be realized by a classifier system and that,

furthermore, by making use of coupling and internal recodings that classifier syétems are capable of per-
. . ' ®

forming recursive ope:..ucns :pon messages. It is claimed that, hence, there are classifier systems which

i

are computatio_nally universal [Hol86]. ' ' [ i

v

2.2. Genetic Algorithms

Strictly speaking, classifier systems, by themselves, do not posses any inherent adaptive capabiliﬁcé.

[
v

A genetic leémim system requires the presence of an adaptive component beyond the basic performance
system. This role is filled by a genetic algorithm. The structure and behavior of a genetic algorithm canbe

best understood by describing how it manipulates a classifier system in an altsrﬁpt to improve its task per-

formance.

As the name suggests, the operation of a gen't_atic algorithm is modeled after some of the processes ;;f
_ population genetics. Fer this persbechve we view the classifier base as a population of classifiers, each
* classifier representing a-genoljpe currently bresenl gn the popula;ion. Through interaction with an environ-
mém,ihe classi.ﬁers will tend. to display various levels of fitness. Adaptive behavior is then .achiéved
through the applicat’ .n of a rep(odﬁcdve process: d;e gehetic algorit};m periodically exaniines the ciassiﬁer
base, selects "fit" classifiers, and creatc; offspring by applying genetic operalors to lhése,parent classifiers.
Threse n_e;v classifiers do not replace their parents in the population, but rather, they replace the weak
members of the population. The main idea is that thro;xgh these pfocesses 6f competition, repreduction and

sWivaI of the fittest the overall performance of the classifier system can be improved.

Genetic algorithms serve as a heuristic search procedure which is used, in some sense, to optimize the

classifier base. The basic algorithm behaves as a stochastic generate and test Pprocedure, generating random

[N v

classifiers and then testing and evaluating them in the external environment. Thus, the spacé of possible

classifiers js searched stochastically in an amampi to discover the "best set"” of classifiers to use.
Genetic algorithms are incorporated into the basic classifier system framework by adding a genetic

T
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search éycle 1o the end of the basic 5-phase execution cycle described previously. The genetic search cycle

operates as follows:

1. Choose a genetic operator.

-

2, Select one or more classifiers from the current classifier base to serve asthe parents for the reproduc-

tive process. (The exact number of parents to select depends upoh the genetic operator that is to be

applied.)
3. Apply the genetic operator to the parent glassiﬁel:(s) to create one or more offspring classifiers.

4. Select @ number of classifiers from the guﬁ"r/c}t\glassiﬁer base equal 10 the number of newly created
) " . :

/!
offspring. ’

5. Replace these selected classifiers in the population with the new offspring classifiers.

This genetic search cycle may be performed deterministically on every k th cycle, or intermittently on

random cyaés. Within a particular execution cycle, the genetic search cycle may be executed repeatedly,

utilizing various genetic operators. -

2.2.1. Genetic Operators

Within L}Je framework of a genetic algorithm the genetic operators serve as the search operators for

the.classifier space. A wide assortment of different genetic operators appear in a number of different

genetic learning systems, however, two genetic operators in particular are the most commonly used: cross-

over and mutation.

.-
¥

The crossover operator Laxes two parent classifiers and constructs two offspring classifiers by swap-
ping contiguous segments of the parents. The: crossover operator is the most important of the genetic

operators. Through the recombination effects of this operator, genetic élgorithms behave more subtly than

“random search with preservation of the best" [Hol86]. Contrary to a commonly held view, genetic algo- -

rithms operate mainly through a récombination process and less so through mutation processes.  An in

depth aualysis of adaptive behavior under crossover leads one. 1o view successful genotypes (in this case

~
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lassifiers) as composed of a number of useful building blocks. Through the process of repeatedly applying
rossover operations to successful classifiers an implicit, efficient search for optimal combinations of the

 suce sssful building blocks is being performed (Hol75, Hol86).

Example C#104 o ¥#11 _crossover #H¥¥ 5 1111
O##1 — 11## 0101 > ###+

The mutation operator takes a single parent classifier and constructs a single offspring classifier by
randomly changmg characters at randomly selected positions of the parent. The main unportance of the

'nutauon operator is to keep diversity in the population, and to prevent premature convergence to a sub-

7
optimal solution [Bak85]..- )

Example #10# — ##11 mutation #¥10#% > 0#11

. . ) 12
Another two less common, but important, genetic operators are inversion and cover.

* The inversion operator takes a single parent classifier and constructé a single bffspring Classifier by

reversing a randomly selected contiguous segrhient of the parent while mamtatmng the same meaning of

the parent.” That is, the semantics of the bit positions move along with the values of the positions. L.

It

this operator requires that the meamngs of the bit positions be explicated and moved 'accordingly, thus'

"adding a cbmplication to the basic definition and use of a classifier. The idea behind the inversion operator

is that it will move co-adapted sets of loci closer toget> -, thus decreasing the likelihood that they would be
y . .

split up dttring crossover. £ ‘

Actually, u;)e of the inversion operator in practice is qunte rare. Itis thought that i mversron rs of more
use when the classifiers are longer and that their usefulness will grow when larger 1mplementauons are
attempted [Hol75]. Another view is that, presently, most genetic algorithms converge before the effects of

» .

inversion can be felt [Gre87a], and that when more difficult problems are tackled the inversion operator

‘may become important.
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Example #10# — ##11 inversion T H10# o #¥1#1

The cover operator takes a single méssage and constructs a random offspring classifier whose condi-
tion is guaranteed to match that message. The use of a cover operator arose oui of investjga-tions with
working 'systcms [Rio86]. Generally speaking, most genetic learning systems begin wit‘p a randon
classifier population. In practice, given non-trivial do_mains‘ it is quite likely (at least iniLiélly) that mes-
' sages will be encountered that will not match any of ?hé classifiers in the population. When this situation is
encountered we are at'an impasse, there is no way for the c’lassiﬁer system to regpond t‘.o the env'uonrﬁem.

The cover operatoris applied in such cases, allowing progress to continue. Normally, this of)erator i rrig-

gered, meaning that it only executes when the triggeging condition is met.

Example . ‘ 0101 cover 01#% — 0014

Most of these search operators (except cover) are, in reality, incorporating a domain independent
search heuristic something like the following: If some classifier demonsirates good performance then a

similar classifier z"s likely to exhibit good performance as well and, perhaps, it may demonstrate even better

performance.

2.2.2. Selection Processes -

Selection processes are an important component of genetic algorithms that arise in a number of

different comexts.\Spcciﬁcally. selection processes are wtilized for: conflict resolution, classifier reproduc-
v ’ :
tion, and classifier extinction.

Conflict Resolution

¢ .*

In the conflict resolution phase of the execution cycle we are faced with the situation of having to

" choosing one of the successful classifier matches for execution (or possibly a subset of these matches). The

simplest selection algorithm utilized for conflict resoluton chooses the ;'best" classifier (or best subset)

fro.a the set of matched classifiers [Hol85, Hol86] almough. stochastic selection prdcesses are more conm-

B

N
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monlj used [De85,Rio86j. The stochastic selection algorithm for conflict resolution chéoses one\»of the
matched classifiers (or some subset) at random. Typically, a conflict resolution selection procedure exploits
the fact that classifiers exhibit different levels of fitness and generality. The choice is biased by favoring
"strong” clfassiﬁers with a high level of fitness over "weak" classiﬁero with a low level of ﬁﬁ”ﬁ%ss. and by

favoring specific classifiers over general classifiers [(Hol85, Hol86].

Clearly, we want dxselcct the fittest classifiers in an attempt to demonstrate a high level of perfor-
mance. Giving a selection bias to stronger classifiers, without totally conﬁmrtung to their selecuon as in the
stochastic selecuon procedure, provides us with a mechamsm that explons the immediately useful
knowledge expressed by these strong classifiers without preventing the further invesLigaLion of untried

classifiers. (How this is to be accomplished in an efficient and effective manner is the topic of a later

chapter.)

The rationale for giving a selection bias to specific classifiers over more general classifiers is that the
- more specific a classifier is the more likely it is to be relevant to the situation at hand. The ulumaLe intent
of this bias is for the aulomatrc‘emergencc of default hierarchies, having general "default" classifiers super-
ceded l;y specific "exception” classifiérs in conflict resolution. In féct. moemergence of these types of

default structures has been obsérved in working systems (for example Goldberg $ gas pipeline conLroIIer

described in [HHNS86)).

Reproduction & : 4

The process of c‘las,siﬁer reproduction requires that we select classifiers from the current classifier

3

population to act as Lhe progenitors for a new generaUOn of offspring classifiers. The selection algomhm
9

uulrzed for reproduction involves a random choxce of one or more classifiers from the current populauon

However, this random choice also is biased, favoring "strong" classrﬁers over "weak" classrﬁers The -

intention here is clear: by selecting fit parents we are making the broad assumption lhat the offspring are

likely to be fit as well, more so than if we ad selected unfit progenitors. The hope is that some of these
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offspring will be, prue s, even more /ﬁl than their parents: An extensive mathematical analysis of the

adaptive behax’{ior of a classifier population under this reproductive schcme, utilizing the crossover operator

is provided in [Hol75]} where Holland shows an expected exponential increase in the representation of fit
s

building blocks in the population. : s

o

Extinction

In practice, classifier systems are 'implemenlcd almost universally under the assumption of a fixed

size population of classifiers [De87]. Given such a restriction it is clear that for each new classifier we wish
to introduce we must remove some other classifier from the current classifier population to make way for its

\

insertion. It is obvious that the selection alg.oriLhm we use for this process of chassifier extinction shoﬁld
tend 10 select the "weakest" classifiers from the population, thus insu’tutring a survival bf the fittest mech;n-
ism. That is, we warf to be careful not to remove the classifiers that ha\}eAdemons.traLed (or may potentially
demonstrate)ra high level of fitness in the environment. It is important to point out that barent classifiers
a;e not normally replaced in the population by their offspring. Usually, the consequences ofiremoving fit
parents fmm th classifier population are a rapid and severe deterioration of overall clzissiﬁg:r system perfor-

mance. Most often, for this selection procedure, just a simple deterministic choice of the "worst” classifier

suffices.

-

2.2.3. Feedback and Fitness

All of the basic meéhénisms comprising a geneltic algorithm have béen built upon the notion that the
classifiers possesses some degree of fitness in the environment. An important question is how do we arrive
at a measure of a cla‘ssiﬁerzis fitness through observation of its behavior? The answer to ’this question really
depends upon the nature of the machine-environment relauonshlp However, gwen Lhc specific such rela-
tionship under consideration throughout this thesis (recall dlscussxon about * black box" learning algorithms

in chapter 1) the problem becomes, more simply, that of u-anslalihg environmental feedback into a measure

of a classifier’s Qbserved fitness.
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Holland makes strong use of an economic analogy o tackle this plroblenl [l-lolBS Hol86].
Holland s economic model, a classifier is glven a property called its strenglh A classxﬁer S strength is an
estimate ofsits actual ﬁmess in the environment, larger values indicating a high degree of observed ﬁmess
" smaller values’ indicating a low degree of observed fimess. Upon creation, each classifier i is given an initial

v strength (this initial valué can be arrived at in a number of ways: constant initial strength, ayerage of

parent’s strengths, etc.). These strengths are then modified in two ways: Lhrough environmental feedback

3

and through the conflict resolution process.

N
\s

- When the classifier system effects some behav1or in the environment, ll]>envu‘onmem may rovxde
Lhe system with feedback. In Holland’s model feedback takes the form of a non- negauve payoff value
This p@yoﬁ" is shared equally amongst all of the classnﬁers that were execuled in the immediately preceding

‘ execuuon cycle the portions being added to the strenths of th ammpaung classxﬁers The lgasxc idea is

that a classnﬁer whose action Lcnds to result in large payoﬂ’s from the environment w1ll gain a hlgh strength -

' value. .This gain in strength w1ll in turn, increase the likelihood that that classifier w1ll be selected in future'
conﬂlct resoluuon phases and, hence, be executed more often. Thus, while the clasSLﬁer continues to suc-

cessfully receive payoff from the environment, it will experience a rapid, non-lmear growth in strenth

Recall that in the conﬂl‘ct resolution phase of the geneuc leammg system execunon cycle the selec-"
‘tion process 1s supposed to consider both the ﬁmess and generality of the classnﬁers Within Holland's

framework the strength of a classifier serves as the estimate of its fitness. Holland uullzes a syntacuc meas-

4 B
AN

ure of classifier specificity. The measure of a classnﬁel' s speciﬁcity is arrived at simply by counting the
number of non-# symbols in the condition part. The selecLion algorithm utilizes a‘bidding procedure:
. ' ) ) .
| LetS(C.1) be the sirength of lassifior C at ime ¢.
. Let R(C) be the specificity of classifier C . |

R (C) = the number of non-# symbols in C's condition part.

i

. Let ¢ be some constant between 0 and 1 (c is called the bid constant).
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. Then when mégl:ﬁ’tion part of classifier C is matched, it makes a bid:.

Bid(C.t) = c R(C)S(C)

In each execution cycle the highest bidder (or some highest set of bidders) is selected for execution.

This bidding formula exhibits the trade-off between strength and specificity discussed earlier.

An imporiam aspect of Holland's:bidding scheme is that the winning bi(gders .havc their bids sub-
tracted from their erengl}rs. So classifiers lo‘se strength whenever they are executed, but they may rchain .
strength whenever tlreir execution results in payoff from the environment. Thus, rrlose classiﬁers ;vhose
execution results in smaller payoffs, on average than Lhc bids they pay will diminish in strength ultxmately
1o the point where they may be deleted from Lhe classifier population. A classnﬁer whose execuuon results ,
-+ on average, in larger payoffs than the bids paid will gain strength rapidly. This growth in strength results in
an increased likelihood Limt the classifier will be selected as a progenitor for future generations and, hence,

rhe building blocks comprising its structure will increase their representation in the overall population.

2.2.4. The Bucket Brigade Algorithm

'Holland has actually considered a number of complications that a learning system .may faée and the
resulting impact upon adaptive behavior. In a classifier system, for instance, many‘class‘iﬁers may operate
in combination to achieve a desired effect. Also, given complex environments, the classifier system may
not r;ceive environmerual feedback after each individual behavior. In such cases certain classifiers rrlay be‘

' valuable to the system because they "set the stage” for other classifiers whose execution results in direct
feedback from the environrnent. For example, in the game of checke rs the classifier that executes a tri-
| p.lé jumr) will surely receive rarge amounts of payoff, but what of the previously executed classiﬂers that
’created the situation that allowed ,lhe triple jump to occur? 'Ihe problem of deciding which of any early act-
ing cla531ﬁers should be given the credit for semng the stage for later, more overﬂy successful classifiers is

known as the credit assignment problem (Hol85, Hol86, Sam63]. The bucket brigade algorithm addresses

thrs issue by adjusting the strengths of the classifiers as they are activated, improving ‘the estimate of Lhe
. '( I
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classifier’s ﬁmcss within the contexts in which it is invoked. This algorithm involves only a slight altera-

tion to the bidding procedure outlined previously:

'/All classifiers executed in the previous execution cycle who posted a message that was matched by

e the winning bidders in the present cycle are each paid an equal share of the winning bid:

[Hol85 Hol86). o N

The behavior of the bucket brigade algorithm is best explained through an economic analogy: The
algorilhrh behaves as a comﬁlex economy operau'ng among the population of classifiers. Each classifier C
pays out its strength to its suppliers — those classifiers who send messages to which C may respond. Each
classifier C receives payments of strength from its cOnsumers — those classifiers which are enabled by C s

messages. Clearly, if a classnﬁer receives more than it pays out, it will acquire a profit and, hence increase

in strength.

a
fa

‘Centain classifiers achieve system goals directly and are rewarded by the environment. Any lines of
economi¢ exchange within the populanon which lead to lhese overtly rewarding behaviors may become
ultimately profitable and the classxﬁers involved will flourish. Any classifiers not belonging to any such
profiable lines of exchange will ultimately lose their strength and, perhaps, be replaced in the classu"ler
population. N | -

g :
Thus, the bucket brigade algorithm effectively reward?ihoce classifiers which set the stage for tﬁe

allammem of overall system goals, while punishing those classifiers which do not.

2.2.5. Performance

"The basic principle behind the adaptive capabilities of genetic learning systems is the notion that

stronger classifiers encode building blocks that provide for behaviors in the environment that lead 0 a
v ' Lo

greater likelihood of successfully achieving the system’s goals. Due to competition for execution, repro-

duction, and suw}val, the weak classifiers will eventually "die" and, consequently, their deleterious building . '

blocks removed from the population. Strong classifiers will flourish and generate an increasing proportion
‘ “
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of the offspring. Thus, the p;)pulation will come to contain a higher proportion. of successful building
blocks. 'Ihel-reproductive process exploits these succ;:ssful building blocks to rapidly discover the best
combinations for constructing successful classifiers, Consequently, the population will come to contain a
higher proportion of successful classifiers and, accordingly, the overall performance of the system will
improve. ' ¥ |
. »

Notice that, in practice, when implementing a genetic learning system (or any adaptive system) for
some application environment, the actual payoff values o be given for particular behavi'ors in particular
environmental states must be specified a priori. From the classifier system’s point of view the feedback it
réceives from the environment is the direct and only measure of its performance. The genetic algorithm, in

executing its stochastic search through the classifier space, is attempting to increase the level of payoff it

obtains from the environment. Thus, for the process of increasing environmental payoff (the classifier

u

, . . . . . S &
system’s point of view) to reflect in corresponding increases in application performance (the system

designer’é point of view), the feedback mechanisms and payoff values must be formulated such that the

level of enviromjnemél payoff really does correspond to a reasonable measure of application performance

-~

[De85].

2.2.6. External Parameters

The reader may have noticed that the’ presence of externally settable parameters viplates the black
box assumptions to some degree. The ability to "tune" the genetic learning system to improve its perfor-

. X ‘ | y
mance in certain tasks may be considered a feature, however, advantageously setting parameters before

learning commences would constitute providing the machine with implicit domain knowledge a priori.

Genetic algorithms are almost universally implemented with the presence 0( a number of external parame-

ters. In principle, the parameters could be autonomously adjusted by the learning system itself, thus recov-

-

ering the black box characieristic. One approach- that has been proposed utilizes a (meta) genetic algorithm. -
to adjust the parameters of the original task genetic algorithm in an effort to automatically tune its perfor-

manc¢ [De85]. However, little has been attempted and even less accomplished in this directidh. Another

.

-
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approach, one that is explored later in this thesis, is 10 simply develop mechanisms that make use of fewer

- \
such parameters.
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Chapter 3

Difficulties with Classifier Represgﬁtntions

a
.

The first component of a genetic leaming system td be investigated is the underlying performance

]

mechanism — the classifier system. Specifically, this chapter is an analysis and critique of the classifier

represe}uation péradigm. At a first glance, classifier representations appear to be a simple, effective tech-
- , K > .
~ nique for implementing computational systems that are well suited to manipulation by genetic algorithms.

o~

R ) . . . - )
However, upon implementing even simple classifier learning. systems, many subtleties arise within the

representation which can have a tremendous impact upon the rates and capabilities of adaptation demon-

stratable by' a genetic learning system. The underlying representational meLho'dologyA imposed by the
classifier system framework may possibly be a contributor to the apparent lack of efficacy in substantial

machine learning tasks @emonstmted by genetic learning systems.

1

The main focus of the investigation undertaken in this chapter is towards révealing some of the

<

apparent inadequacie§ of the r\epresemaLional foundations upon which classifier systéms are built. This
"binary string” representatio ‘ heme has proven to be a useful tool fdr the analysis of adaptive behavior
under a stochastic search leading to a number of powerful and general results (BrG87,Hol75). As a
knowledge representation paradigm, however, classifier representations prove to be lai:king in expressive
power. An important argument will be (iﬁ chapter 4) mat these inadequa;:ies from a knowledge representa-
tior; viewpoint neceésarily manifest themselves as impairmenis ‘upon the ability of genetic learning systems

LN

to demonstrate effective adaptation to a task environment. ' s

—

A few miscellaneous concems will be addressed before presenting a somewhat detailed examination

of the expreSsive properties of the representation.
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3.1. Human Factors \'

To state that programming and debugging with bit strings is a disaster, from a human factors pomt of
view, is an understatement. Classifier systems are clearly negligent in their interface to the user, The need -
for an adequate environment for programming classifier systems has led 10 one line of resedr'ch that has cul-(f
mirrated in the development of a front end interface which allows users 10 program classifier systems osing

P

a Pascal-like syntax [Fen88].

¥
3.2. Attribute-Value Representation

As an auribute-value representation, classifier syslems share in all concomitant weal_messes, particu-
larly with respect to representing relational- fﬁgyledgc [De87, HoM87]. In principle, there is nothing that
can be represented by a relational ("logical") languagé}hat could not a{ well be represented in ban attribute-
value lahgua\ge [DiM83,HoM87]. However, doing so could possibly. lead to a combinatorial explosnon in
the number of atmbums needed [DiM83]. Thus in a structural domam we may be requlrcd to encode very

long classifiers in order 1o adequately capture domain knowledge. ~

N .
. 3.3. Illegal Patterns ‘ . : .

The classifier repres%ntation encodes knowledge in message slrings as a vector of attributes, each
atmbute commmng some parucular value from a predeﬁned set of values. For instance, in the tie-
tac~toe domam messages may encode a board configuration as a vector of the contents of each square,
the allowable contents of a square being one of (X, o, B}. So, each of these possible marks is encoded as

My o
a two bit panéﬁr B = 00, X =.01, O = 10: Notice that not all of Lhe possible two bit panems )
- Ve
. were utilized, spec1ﬁcally, the pattern 11 has no denotauon assigned to it. W -onsider unused patterns as
. ) .

xlle al patterny, because they can never occur in an input message. Clearly, m this of representation
8 ’z type

based upon fixed length bit strings we will always have the problem of illegal pattems (unless, of course
i

*
'

we are fortuitous enough to have 2% possible values for each. ﬁeld) Aside from not seemmg to be an

elegant property of classifier reprosenmuons, it can be shown that this property leads to a numbcP of 'subtle

R

s
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difficulties when we begin to search the space of possible classifiers.

A glassifier that contains an illegal pattern in its condition string will never be executed, because any
message that could satisfy the condition would necessarily haye this illegal pattern as well, which is impos-

sible, The fact that illegal «f)altems’ih classifier conditions are to be avoided presents some difficulties whe

we use classifier systems.

Normally when a classifier implementation is started out it begins with a tgbula rasa. That is, the
original classifier base provided to a classifier system at the onset of its task is usually a completely random

, e ]

one. As mentioned, illegal patterns in a classifierconditionirender the classifier useless to the system, so
care must be taken durihg this random generation process to generate strict]y legal classifiers. If this is not

d&w, then the responsibility falls upon the genetic algorithm to "weed out” the usejéss 'cal\qssiﬁcrs through

Y

Another, pbtentially more serious difficulty arises when we consider searching the space of possible

~its survival of the fittest mechanism.

classifiers utilizing a genetc algorithm. Consider ‘ previous represéntation for the contents of a square:
B = ‘OO, X = 01, c; = 10. 'Although_ initially the system may c.omajn classifiers with illfzgal values,
assume that they will have disappeared either by explicit reméval or as a result of the survival of the fmést ‘
mechanism. Now consider pe;fonning r%wm point mutatip_ns on aassiﬁer strings in a.mau_xre populau'o‘n
where il]pgal vélues havabegn re'moyed, meaning thatthe 11 will not exist in any current classifier in the
population. ASsu:ye also that there is an ;qum dis_Lribu/tion of the three legal patterns throughout the popu-
lation. (The presence of # (don’t care) symbols isv igno?ed f(;r clarity in these arguments.)
. Mut.aung a 00 pattern (B) can result in ether a 01 pattern (X)ora 10 pattern (0).
. Mutaung a 01 panem (x) can result in elther a 11 pattern (illegal) ora 00 pattemn (‘B) (
. Mutaung a 10 pattern (o) can result in either a 11 pattern (illegal) ora 00 pam:m (B)
Thus, glven Lhat there is an equal probability of a square contammg':n X, .O. or B, there is a 33% chance:
‘ of co.nstructiﬁg a ;,a 17% chance of constructing an | X, a 17%‘ chance of constructing an 0, and a 33%

chance of constructing an illegal pattern. So our search over the space of possible classifiers ig biased under

w
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the mutation operator Not only is there a bias favoring B over X and 0, one in three mutations will

Tesult in illegal patterns, producing a new classxﬁer that is useless

Similar difficulties can be encountered under crossovervoperati‘ons as well. Assume, again, that the
. population contains no illegal patterns. and an equal distribution of Bs,' Xs, and 0Os. Half of the time, a
crossover will take place between field boundaries resulting in none of the ill effects encountered under
}mutat.ion. However, the other half of the time, the crossover operation will take place within field boun-
daries. | Here, similar problems are encountered.
. Crossing a Oolpattern witha 01 pattem can producea 00 or a 01.
+ Crossinga 00 pattern witha 10 pattefn can produce’a 00 ’or a 10.
. Crossing a 01 pattern witha 10 pattern can producc a 00ora 11. .
Thus, given that there is an equal probability of a square contaimng an X, O,or B there isa 50% chance
of constructing a B, a 17% chance of constructing an X, a 17% chance of construcung an O, and a 17% )
chance of constructing an illegal pattern. So our search over the space of possible classifiers is biased under
the crossover operation«as well. Notice that the bias favoring B over X and O is even more pronounced
- under the crossover operation than it was under mutztuonr and that there still is the possrbtlity of construct-

ing tllegal patterns. (Note that although the tntnoducuon of the # symbol somewhat reduces search biasmg

problems, it by no means removes these btasmg eﬁ’ects enttrely )

-

There is an alternative method for dealtng with illegal pattems that avoids completely the problem of
generaung useless Classifiers. That is to map 1llegal patterns. redundantly 1o denote the same value already
denoted by some other legal pattern. While ridding us of the problem of generating useless classifiers, this

mechanism agam does not avord creating search biases: -
R
m%hamsm that it should favor the construction of

-

Itis cleariy not a desirable property of a se

certain structures over others a prtort Unfortunau,iy, such search biases are an inescapable consequence of

uuhzmg the classrfier representauon paradigm o encode knowledge in a domain. Making use of these

3
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it where useful structures are more likely to be found, violating the stated black box assumptions.

‘

3.4. Classifier Expressibility : )

In any mle-learnirrg task, 'the object of the leaming systerrr is to distinguilsh between those »yorld
states where it is desirable ré effect a particular action from thos.e\where ir is undesirable. It is fundamerrm_J
that we be able to rer)msent a condition for et’fecring an action which ineludes all desirable world states and
excludes undesirable ones.. That this condition be represemable within a single classifier, or 3} leirst a few
_cbassiﬁers as possible; is a key issue. Cleérly, without rlle abiliiy 0 in r;ome wéy“en'codc feneralieed condi-
tions, we would be left erh the task c;f sunply enumeraung the set of desrrable states for .each action. Such
a~nlexhausuve mble burldmg approach would consmule a brule force learning algomhm with a proh1b1L1ve
computational cost even for srmple «domains. So, generalrty isakey to computauonallv efficient learning in

that it reduces the number of drsunct classifiers the System must discover.

. L)
34.1, Disjunctron
“The presence of the "don‘t care" symbol (#) in classifier repreeenleuohs is in;pc‘)nant-tl)e'cadse it \
allows us to generalize classifiers by expressrng dlSlelCllOn in.the condmon pans of our classifiers. Dis-
“~
JUHCUOH allows conditions to match any one of a set of possible values, Lhus redumg tfre number of
classifiers required to descn'be the desim’ple_subsets of environmental states. Despite their obvious usefult
ness, "don’t c;ire"s only provide l‘.lS.“-/iLh a limited mechanism for‘represeming disjylrnction. In t:act, most of
the possible disjunctive cgmbinatic‘pns are actually unrepresenlaﬁle rn asingle ciassiﬁer.
Consider a dorrlgin where we have a field of information that can take on zir\y one of n values. For a
- classifier rerrrese'mation, typically.. we would encode this field with the minimum number of bits-pOSSit.)le., '
which is k = [log;n 1 vbits. Given the three placeholders in cr)nditidns {0, 1 #} we can represent '

3t = 38" = pli¥n2 pogible disjunctive combinations of the n values. But there are 2* possible disjunc-

tive combinations in total. Clearly then, for linearly increasing n there is an exponentially increasing °

numoer of unrepresentable disjunctive combinations. : .
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It has been suggested that perhaps by utilizing illegal combinations or adding extra bits to the field

this limitation could be overcome. To represent all combinations, wé require condition strings of lengtn k,

‘where 3t =2 Thus, k = %n . r_neaning that to be able to represent every possible disjunctive combina-

tion of n values, 0 (n) bits are required. So if every disjunctive combination is to be represemable we can

do litle better than to allocate a single bit for each distinct possible vatue!

The consequences of, havmg unrepresentable disjunctive combinations can range from providing
beneficial search bxases to prunijng any reasonable soluti: .as from the search space. What_follows is a rather
- simple problem_frorn-the ,tlc—tac_:—toe domain which demonstrates how. the existence of limited dis-
juncrion, if not taken properly into ‘acco{mt, can effectively remove any possibility of expressing a reason-

able solution.

Example

Consider the represenlation B =400, X=2901, 0 =A 10. Now consider a simple learning task
which requires our system to leamn how to recognize a.full t'ic-tac—toe board. That is, we want
| our system to leam o respond wuh a specral message sayv 1111, exactly when the board is full (ie.
when no square conlams a B), no matter how the Xs and Os are ananged Initially, consider onLy
square 0, 0. Here we simply want to express that whenever square- O 0 contains either an X or an 0
(it does not contain a B) then we should respond with 1111. But nouee that given the way we have
desxgned our- classifier representation it /“is impossible o represent the condition X OR ¢
(equivalently NOT B)using # symbols. Consjdering Lhai X = 0land 0 = 10, we can see that |
the only panem. matching both is “##, but this pattern necesserily matches B as well! So with our

present representation, the solution to this sub-problem requires two distinct classifiers:

OL¥ANERFRENFSHHEE > 1111
10################ - 1111

Exlendmg thrs result'to consxder the whole board requires xhat we use 2% = 512 classiﬂers in total (all
Jof whrch must be discovered by Lh‘e system)' If we had shown beuer luck (or insight) we might have

.y
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~chosen a slightly diﬁ"etent.represenlaLjon which would yiéld a solution rcquirilkf only a single
“classifier. Let us alter the representation scheme slighly sothat B = 00, X = 01, 0 = 11.
Now X OR O can be represented by the pattern #1, yielding a single classifier which solves Lhé
problem:

‘#l#l#l#l#l#i#l#l#l - 1111

>

Obviously this example has been contrived to illustrate the point as blatantly as possible. By chang-
ing the bit pattern assignments used, we may dramatically alter the size of the solution set that the system
must discover. This difficulty, to be called the paitern assignment problem (somewhat 'analogous to the

state assignment problem encountered when.: designing sequential machines with digital logic), can be

stated as follows:

Given a field that can take on any one of n values, find a bit pattern representation for each

value that:

1. minimizes the number of classifiers needed to express a solution (reduces the size of the

solution set), and yet

<2, 'minimizc_s the number of bits used to er 2de all n values (reduces the size of the search

w

space).

The mere existence of limited disjunction exposes us to the posbsibility of r(equiring. a solution set
which is combingtorially larger than thc minimum size attainable by appropriately assigning bit patterns. -
To avoid such a threat, a claséiﬁer system designer i~ forced to consider thé potential effect of any pattern
assiénmem upon the representation of a successful solution, meaning that the designer would have to know

the form of successful solutions a priori!

Note that some of the classifier system literature includes the provisions for the negation of condition

strings [Hol86, Rio86). This additional capability does allow for an effective solution to our particular full
. : :{’ N .
bourd problem in an obvious way. However, this does not solve the problem of unrepresentable disjunctive

— . ' ) s
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combinations in general and, hence, does not rid us of the p/anem assignment problem, !

Of course, limited disjunction could be thoughl of as beneficial in some respects. Any way in which
we reduce the size of the search space without removing any des1rable solution states’ beneﬁls us by reduc-

ing the requued search effort.

In conclusion, using a representauon scheme Whlch prohibits certain dxsjuncuve combmanons from
occurring in the search space can be euher a blessmg or a curse, dependmg upon whether or not an optunal
(or adequate) solution remams represemable wnLhm a reasonable number of classifiers. However, I would
like to emphasize that in using such a representation to our benefit we are, m reality, supplying the learning
system with implicit domaJn specific know]edge. ‘That is, we are actually indicating beforehand which
combinations are likely to be useful and ruling out others .as possible candida.tes, clearly violating the
assumptions we have made regarding the construction of black box leam~in§ systems. In any case, if one
desires to supply the learning system with domain-dependent knowledge beforehand it is preferable that
such information be explicitly, not 1mphc1Lly provxded

P

3.4.2. Position Dependent Semantics ) ' N

In the simple classifier representation for playing tic-tac-toe, we can ‘see that the semantics of
'lhe representauon are position dependent. That is, to know ®hich part'jcnlar square 4 éegmem of a condi-
tion smng is refernng to, we must know the €xact position of the segment in its condmon string. In the
basic genetic algomhm there is no effective mechamsm by-which i important 1nfonnauon can be exchanged
between (semantically meaningful) classifier positions. Thus, there is no way for important gen;’rahzauons
to be made across posmons in a classifier string. If an important pattern has been discovered feni one pamc~
ular posmon in a clasmﬁer string, Lhﬁs\ame pauem w1ll have to be lndependemly dzswvered for each
separate position, where that pattem may be i 1mportant. Thxs can be ﬂlusua!ed with a snmple example from

€

- the tic-tac-toe domain.
. Th Tty

o

no
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Example )

Consider a simple leaing task _which req;xires a classifier system 10 ‘leam how to make legal moves,
and suppose that the system has already learned that it,is‘ legal to place an X in square 0,0 whenevar
square 0,0 presently contains a B. The classifier that encodes this is given by
00#'############2#### - 8‘000
For a complete solution, this infonnaﬁ)n must be generalized 1o all squares on the tic-tac-toe »
‘board. But notice that to represent such a generalization the system will require 9 distinct classifiers,
oﬁc for each square. Notice further, that the presence of the above clz;;siﬁer in no way helps the
ge[}etjc algorithm discover this identical 00 pattern for each of the remaining squares. (If this par-

ticular example is not convincing, consider the game of go. Here, given an analogous classifier

representation 19x19 = 361 distinct classifiers are required just to express what the legal moves are!)

In keeping with the theme of this thesis, it is not wished that this problem be remedied by proposing
some new ad hoc genetic operator which transfers bit patterns. between classifier positions. The belief is

’

that the root of this weakness lies in the way in which we have chosen to represent the domain and not so

much within the basic search mechanisms.

So how can the pitfall of position dependent semantics be effectively avoided? .A simple méxim
would be: |

"If we want a genetic learning system Loit_)e able to effectively generalize its.classifiers along some par-

ticular dimension of the problem domain, we must ensure that ref¢rencé$ Lo?nstances of that dimen- °

sion are made explicitly and not through some implicit, position-dependent mapping.

So, in the tic-tac-toe domain, we can see that the initial representation scheme was rather
naive in this réspect (although this was not obvious initially). To provide for the effective generalization of
acquired knowledge along the Avarious board positions, all references to board positions must be made

explicit in the representation of classifiers. This necessitates a change in the formulation of a classifier sys-

t
tem for tic-tac-toe. - \\
|

i
|
|
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Example '\.‘,

- -

Instead of having one input message represent the entire board configuration, we will use 9 distinct -
~ input messages, one for each square, each message representing the contents of the respeetive
squares. Thus, each message will consist of the two fields: square and contents, requiring

v

'4+2 6 bits permessage Using the previous pattem assignments, the set of messages
’ 000001, 000100, 001011
010000, 010101, 011011 "
106000 100100 101000

would be used to denote the f0110w1ng board configuration:

"x|B|oO ,
B|X|oOo -
B|B|B

Here, we encode an action stnng with 6 bits, the first 4 bits indicating the address of the square in.

which to place the mark and the last 2 bits set o 01 indicating that an X'is to be placed For exam-

Ple, the classifier 010100 — 010101 says if the center square is emptylthen place an X in the

g

center square. Now we can express Lhe concept of a’legal move wnh the single classifier:

##.##001‘,—-) ¥E##01,

By avoiding position dependent references in our reppesenlanon we greatly enhance the classnﬁer.
system’s capabilities to succinctly cxpress 1mponant generahmuons The reader may have reahzed that
even this new representanon while avondmg one pufau has introduced a new problem Let us reconsider
the overall problem of playmg successful tic- téc -toe. Here it is necessary in order to make |
appropnate moves, that we consider the contents of more Lhan one square at a time when mahng decxslons
But with the representation just described there is apparently no way for a pamcular classﬁ/ier to consnder
more than a single square at a ume How can we extend the capabilities of the classifiers so that they may

consider many squares snmu[thneous]y wnhout remtroducmg position depéndent semanncs to the represen-

tation? There are two ways in Wthh these types of lxmnauons are overcome in classifier system

-
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implementations: by introducing the possibility of ;;zultiple conditions, and through coordinated sequences

of mtemal actions (chauung) Both of these mechanisms present many new issues relevant to seanchmg the

classifier space, and each introduces new problems and limitations. The dlfﬁCUlUCS assocnated with cham-

ing will be discussed in detail in the next chapter.

3.4.3. Multiple Conditions and Parameterization ‘

PR

As was mentioned previously, we can extend the basic form of a classifier to include the possibility

-
%

of an arbitrary number of condition striﬁgs. In which case the total condition of a classifier is considered to
be satisfied only if each of the condition smngs are satisfied (1 e. the total condition is a conjunction of the
condition strings). MulUple condmoned classifiers are actually common to a number of classifier system
implememhtions [qu86,Ri086]. Typically, the message that matches the first of the conditions is used by

the "pass'through” mechanism to construct the action message. With this additional capability we can'util-

ize information about more than one square in a straight-forward manner for the tic-tac=toe domain.

Example

Consider the classifier 000001, 000101,001011 = 001001, It says that if squa}e 0,0 and
square 0,1 contain Xs and équare 0,2 contains a B, then place an X into square 0,2 (a good move!)._
Now consider trying to gene?alize this particular classiﬁe1" in a u;eful ;vay. The reader may have
noticed that there was an attempt at some clevc,messv'in (he\.x‘j.)ay in which the squares were addressed.
By separating the references to. rows and columns the hgpe was to be able to eﬂ'ecti;/ely generalize

useful information along these dimensions. So an obvioug’and apparently useful generalization of the
previous classifis, would be: ‘\"

¢« #40001, ##(‘)101; ¥#1000 —)}\##1001
whicbh is vimended to say that rio matter what one particular row, if iherc is an Zx in columns 0 and 1,
and a B in column 2, then place an X into the square in column 2. But, unfortunately, this is.not.

what the classifier actually does. For example, the set of. messages 000001,” 100101, 101000

\
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(square 0,0 contains X, square 2,1 contains X, square 2,2 contains B) will satisfy‘lhc classifier cqn-

. . ‘
dition, but the re'sulLing action will not necessarily be a good move. In fact, it is irppossible in this
fonﬁi;htion to express the general concept of a winning move without resorting to enumerating all of
the possxbxlmes which is, in fact, all that the ongmal formulation provided. Sp we haven't gamed

anything with respect to represenung the concept of a wmnmg move by introducing multiple condi-

- tions.

This particular difficulty is term.ed the parameterization problem, and it arises*i'when’ever ¥ (don’t
. o :

care) symbols and multiple condition strings are introduced joindy. The problem is that there <txists no

mechanism in classifier representations by which we can enforce the equality or inequality of Lhe@/ssage

bits which match the identical # positions in separate condition strings'. Therefore we cannot adequately

parameterize solutions which require multiple conditions and some form of agreement between the different
. A |

conditions about matched messages.. This particular difficulty has not been addfessed in any of the

classifier system literature. So pwsend);, introducing multiple conditions does not provide a general

mechanism which allows us to avoid the problems related 1 position dependcm semantics in classifier sys-

tem implementations.

3.5. Remarks - -

This chapter has presented and discussed a. number of properﬁes of classifier representations that
have been deemed to be undesirable features for a performance system that is part of a genetic learning sys-

tem. It has been established thar b, uilizing classifier representations we expose ourselvgs to posstbilities

of: ‘ -
. A larger groth in searck « ost due to position depend.ent semantics over that which would be ;.)o'ssi-
_ ble usmg more powerful represemauon schemes. 'I‘hxs larger than necessary growth is not avondable
in general, regardless of the amount of domain knowledge we posses.
. A combinatorial explosion in search ‘cosit due to the~limited capabilitiés to express disjunction in
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classifier conditions. This explosion may be avoidable. only if we provide sufficient domain

knowledge beforehand. .

So, the main point can be summarized as follows: By utilizing simplified representations (and, hence,

limiting our capabilities for expressing arbitrary rule forms) we do not inherently exclyde any probler

solutions from being expressible, but we do cxpoée _ourseives to ul:. possibility of a combinatorial explosion
in the number of classifiers required to express these solutions. [ wbuld claim fu'rther that such an explo-
sion in the splulion size necessarily manifests itself as Q\ explosion in the search effort reﬁ_uired to discc;ver
that entire solution. This creates a problem that we, as classifiér syst;:m designers, can oﬁly avoid wih cer-
tainty by having sufficient knowledge about the solution a pn;ori; clearl’y‘- violating the stated black boag_r_

assumptions.

4

¢
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Chapter 4 B

" . . Dnscovermg Classifier Solutions with Genetic Algonthms

Throughout the precedmg chapt;:r a recurrent theme has been to focus on those properties pf ;lassiﬁer

.
~ representations which impair the ability of classifier systems to succinctly express solutions to problems.
Due to the computational universality of classifier systems, there is always some way in which the
representational limitations of individual classifiers can be oi/ercome through the coordinated actions of
many classifiers. However, we must keep in mind that the ultimate intent is to automaucally discover solu-
"5 udons through some form of genetic search over the space of possitle classifiers. However the simultane--

ous discovery of multiple classifiers has proven to be quite difficult to achieve using the basic genetic

search techniques, this thﬁculty growing as the required number of classxﬁers gro»fs

The effectiveness of a genetic search relies 0;1 the fact that a classifier is composed of many sub--

- patterns, called schema\?l‘ [Hol75] A classifier which has demonstrated a high level of fimess m the
environment contains schemata which have individually provided for some aspects of the classifier's gen-
erally eﬂ"ecuvc performance. These schemala constitute the buzldmg blocks from w}uch "optimal” /
“classifiers can be, constructed [De85, De87]; Through the reproductive process, useful schemata are con-
*tinuously recombined in an effort to discover the combination yielding the best performance. However,
consider that W’e have some problem that requirt;s a multiple ‘classiﬁer solution that is expressible o?ly with,

say, n classifiers. This implies that each one of the n " solution classifiers must contain some important sche-

mata distinct from the corresponding schemata of the other classifiers.
’ *

Some terminology will be used throughout U.le‘discusAsior'ls o fol'low. A sub-solutiorn refers to one of
the n distinct classifiers neéded to compose a complete solution\u) th¢ problem environment. 'Upon initiat- "
ing a genetic search‘zﬁi‘ﬁugh the space or possible classifiers, the original classifier population is random |
and therefore not likely to contain classifiers that are near any of the sub-solutions. As the geneue search
progresses/flassrﬁers will begin to appear and be retained in lhe ;;?pulauon that ‘are closer in form to one or
' the other of the-sub- soLuuor\ls (as a consequence of the survival of the ﬁaest’rﬁcchamsms). ’Ihose classifiers

40
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in the populau(};z whxch are closer in form to some particular sub- soluuoﬁ' more so than to any other, are

called the sub-population for that sub-solution. So under a genetic search the cla551ﬁer base progresses
/
from & heterogeneous population to a collectiog of specialized sub-populations (optimistically) o a com-

“

plete collection of sub-solutions. A solution path through the classifier space refers to one such progression

o a particular sub-solution. w

A number of difficulties are encounlered when we cqn51der applymg a gcnetxc search techmque to
problcms that require many classifiers in order to represem a solution. Specifically, the basic genetic algo-

rithm as described in-chapter 2 demonstrates convergence and interference difficulties in these cases.

4.1. Convergence /

-

Practice has shown that genetic learning systems that utilize the basic genetic search techniques are
unlikely to simulla?;eously converge to a number of dist'm-:t, equally useful clagsifiers. That is, given that a

number of distinct classifiers are required to form a complete solution for some problem, the genetic algo-

- \
rithm ‘will tend not to discover and maintain a diverse population simultaneously consisting of classifiers

from the different sub-solution paths {GoR87]. The algorithm normally will cluster all of the classiﬁérs

a

about a single sub—solﬂﬁtm even when a number of distinct, equally useful, and necessary sub-solutions

exist. This Lendency Lowardsgmogenexty in classifier populations can cause premature convergence to

sub-optimal solutions even if'an optimal solulion is expressible by a;singlc class_iﬁc;r [Bak85].

\
The conver;ence phenomenon, called genetic drift by some researchers, occurs in finite populations

“where stochastic errors accumulate to the point where the classifier population ultimately converge; to one
alternative or another [GoR87]_.' The cause of Lais behavior‘ arises from the global 'compcdtion employed in
the classifier extinction procéss. Recall that whenever a new classifier is created some classifier from the
current population must be removed to m'ake ‘way fori its.insertion. The selection algorithm normally

. employed in this situation simply removes the weakest classifier from the C}xrrenl popubition. Inmally, the

N

classifier population tends to be diverse, containing classifiers belonging to numerous sub- soluuon palhs

174
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However, eventually some progress is made down 1 particular (soluuon path that sllghtl'y exceeds that

made down other paths Those classifiers contributing towards progress d0wn this one path will gain
higher strengths than pther classifiers in the population and, hence, they will acquire a reproductive advan-
tage. Progressively, new classifiers introduced to the population will be the progeny of the dominant sub-
population while, concurrently, members of the other sub-populations will‘ gradually be extinguished due to )
their . strength,tﬁsadvantage. So, the'slight initial advantage demonstrated by one particular form of
classifier often tends to explode to the point where the population is entirely dommated by that form. ’I’hrs
results in the eventual loss of access to the oLher sub-solution paths as the classifier System converges to a
local optimum down the single, dominant path. Unfortunately, there is nothing to guarar: in ﬁnite popu-
lations, that is) that the sub-solution path that ultimately dominates the genetic search etiort is the most

importagt or effective one 10 pursue.

There has been some research effort devoted to looking for 'ways to control and avoid convergence
related difficulties. One approach adopted by De Jong is to introduce a crowding mechanism to the

classifier extinction process (described in [GoR87]). Here, instead of just selecting the worst classifier for

-

replacement, we select some small (2 or 3) subset of the populauon replacing the classifier from this subset

to which the newly created clasmﬁer 1s most similar. The main idea is that through ‘this replacement stra-

tegy classifiers from. distinct sub—soluuon paths will tend not to replace each other in the population and,

hence, distinct useful forms will be preserved.

‘Another approach, taken by Goldberg, has been to have similar classifiers share any feedback
received from the environment [GoR87] This sharing mechamsm calculates a srmrlanty function between
classifiers and distributes payoﬂ’ amongst the classifiers proportionate’to this s1m11anty measure. 'I'he key

idea behmd this approach is that as some sub- populauon begms to dominate and grow, feedback w1ll be

- divided amongst more and more classifiers ulumately to the pomt where the diminishing level of payoff

will stabhze the number of classifiers in the dommant sub- populatron
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‘ What these mechanisms share is the idea of somehow mitigating the global competition for survival

in such a way as to preserve sub-populations of classifiers that serve distinct purposes. The desire is to
7 \ o
dynamically develop sub-populations to exploit different niches in the environment wherein the classifiers

1

performing these distinct functions can reside without having to’withstand excessive survival pressures
v . ’ 1 :

exerted upon them by other classifiers serving diffe;ent purposes.

4.2. Interference

N

Even considering classifier systems _that employ adequate mechanisms for supporting appropriate

sub-populations that effectively exploit niches in the environment; there are still difficulties to be encoun-

'\\.

fered in efficiently optimizing each of these individual sub-populations. The problem is that the individual

‘gen~*i~ searches ﬁrogressing down inependcm sub-solution paths will interfere with each other. -

’Ifhc difficulty is, again, one 'of “global competition, here-appearing within the reproductive process. | '
Recall that we are assuming a minimum of n distinct classifiers are required to represent the complete solu-
tion to some problem domain. As the classifier system begins to cxploit the various niches in the qriviroﬁ-
mém, gradually improving i_tSpcrfonnanCe. stronger classifiers will have been created within the variou§
s;xb-populations- exploiting the different niches. In fact, éach of the existing’ sub—populatiom will contAin a
small number of best classifiers. It is not unhkely &at the best classifiers from the dxfferem sub-.»
populauons while serving dxstmct funcuons for the overall system, have come to possess strenglh; that are
oqomparauvely on the same order of magmlude with each other. Thue strong classxﬁers from dlsunct s;lu-
}“ﬁ’dn paths will ofu:n be selectf‘d Jmmly as progenitors for the same offsprin g because the rgproductive selec-
i'

o g
Tosin process disregards the form of the classifiers and consxders only their strengths when choosmg paremts

Such offspring are hkely 10 be worse than either parent because they encode building blocks from neces-

sanly distinct solution path [Boo85]. That is, two solution paths are dxsunct precisely becau& no smgle

t [

classnﬁer can adequately capture the behavior of both paths.

_The issue of interfering sub-solutions has been addresséd by Booker [Boo85]. He alte}npts to over-



come these interference difficulties by introducing a restrzctea' mating policy tol the classnﬁer reproductive

‘ process. ThlS procedure allows only those classifiers refevant to the current message list o male on each

—
J

invocation of the geneue search cycle. So, for purposes of selecung parenls for reproducuon we resmct
the set of choxces to JUS[ those classifiers in the currenl conflict seL (Actually, Booker also relaxes th~ ;
A nouon of a "match"” to. rnclude degrees of parual maiches, thus conﬂlct sets tend to be larger than under a

. normal matchmg scheme [Boo85] ) The motivation behind thls approach is lhar only those classifiers &at
tend to occupy the same funcuonal categones are allowed Lo mate, meaning that offspring are not created»

* which atLempt to solve two dlSjOu’ll aspects of the p’roblem sxmultaneously

3

In general t.hc key to limiting this- type of 1merference problem is to mmgate the unbridled, global

compeuuon for the right to reproduce Anempung LO achreve dynamrc spectatlon wuhln the populauon

'

depends upon 1dennfyxng those funcuonal categones of classifiers that are elfecuvely explomng some par-

 ticular niche in the task environment. Once identified, some form of restncted mating can be apphed wnhrn -

these funcuonal sub- populauons Hence, progress made 1n-one sub- populauon becomes unhkely to hamper

progress in other sub- populauons

Although a great deal of eﬂ'on has been drrecled towards ﬁndmg ways to cope wnh convergence and

. interferen related drﬂiculhes a completely sausfactory, domam independent solution still remains 1o be

N

o developed However even assummg that’ these parueular dxﬂiculues may be reasonably avorded there still
. ¢

remain oxher poLenually more serions dlfﬁculues to be encountered when attempuw discover mult1ple-

classrﬁer soluuons Tasks that requrre many classrﬁers lo represent a soluuon Specrﬁcally pose mdepen-

dence problems which must be faced by any search techmque that we'wish to apply to the classxﬁer space
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4.3. Independence

Recall that we are considering problems that require multiple-classifier solutions that are expressible

only with, say, n classifiers. This implies that each one of the n.solution classifiers must contain some .
important sc’hemata distinct from the corresponding schemata of the other classifiers. Thus, at some :stage
of the -ox"emll‘search, our search efforts for the distinct individuals must diverge and, at this.point, -progress
made towards discovering any one soltxtion classifier will in no way contribute towards finding other,soh:-
tion classiﬁersl (recall the discussion in the section on position‘dependent semantlcs). That is, the classifiers

which lie along distinct solution paths will no longer provide each other with useful building:blocks cruc1al
o continued progress towards their solutions. This means that our overall search efforts must eventually

. )
» become divided amongst n distinct, independent searches.

-

I would argue that any such increase in the number of classifierd required to represent a solution
necessarily manifests 1tself as a corresponding increase in the overall search effort required to discover the
entire solution. So, for instance, a representauon that requu'ed arf exponentlally increasing number of
classifiers to represent soluuoﬁzi for some class of problems would tend to demonstrate exponenttal'
mcreases in the total search eﬁ“ort requtred to discover these soluuons This shows clearly why the table:
butlcmg approach discussed P prevrously (making no usé of genemhzauon in classifier conditions) is an
ineffective learning strategy in that it requires a maxrmal number -of dtstmct clas31ﬁers which would be

reflected in a maximal amount of search eﬂort bemg requrred to discover the complete solution.
v .

» ~"Unlike the convergence and interference difﬁculties discussed previously, independence is an inesca-
‘ pable;consequence of attempting to simultanieously discover multiple classiﬁ‘érs, regardless of the specific

genetic search technique used to search the classiﬁer space. .

Thrs would seem 10 mdlcate that, in general the best approach to achl,evmg h\rg{fecme search ofa

» T

" classifier space is to' minimize the*mmber of distinct classnﬁers requmed to express complete soluuons to-

problems. This, unfortunately, 1S not what the classifier representatton y ) jlgm guarantbes us. As was )

demonstrated in Lhe previous \secuon there, are a number of cham:tensucs of thts representatlonal
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formaltsm that limit the expressrveness of a single classtﬁer This forces us to compensate by uttltzmg a

number of classrﬁers to express what mlght otherwise be representable by a single classrﬁer in a more

powerful representatton scheme In fact there are sntuauons where combmatonal explosnons can arise in
the number of classrﬁers that are requued as compensauon (recall the discussion about limited d1$JunctJon
and the pattern assrgnment prsblem) So, there exists' a potenual for a correspondmg explosnon in the
amount of search effort required 1o dlSCOVCI‘ all of the needed classrﬁers l-lavmg suﬁiment domam

knowledge beforehand is the only Way such an unnecessary explosion in the number of classxﬁers needed

"~ can be’ avorded wnth certamty. but tlus clearly v1olates the desire to uuhze classifier systems as an effective

-~

black box'learning mechamsm Therefore exposure to the possrbtlity of unnecessary explosions in search

pme 1s.an mescapable consequence of uultzmg classxﬁer repreSentations in black box learning systems.

4.4. Discovering Chains
An often dlscussed pomt in the t'oundauonal literature on classnﬁer systems is the fact that they are
computauonally universal [Hol86). Given this fact one cannot say that there are soluuons which exist for

~some computauonal probléms that a classnﬁer system cannot express. Obv1ously gtven any rule-based sys-

olem that is computationally unxversal one can always compensate for ltrmtauons in the expressibility of

-
Q

‘ mleldl@l rules through the coordtn&ted actions of many rules

Class1ﬁer chaining presents the possibility of demonstrating types of problem solving behavior |

entirely different from that of the simple stimulus-response that has been assumed throughout most of this-

thesis. Wllh classxﬁer chmmng, problem solving behavior that resembles reasoning, planmng, and environ-

v

mental modelmg carf be shown to be demonstratable in pnncrple [HEN30;. In fact, the ability to construct
chains of classxﬁ"ets 1s an essential capabthty of classifier systems that, w part, provides for their computa-

tional umversaltty [H0186] o .
&

'HOWever we must keep in mind that the mtenuon is o automaucally discover soluuons with some
1]

fqﬁn of mechamzed search over the space of possnble classifiers, specifically, with a genetic algorithm. As

- . T
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" one might expect, drscovenng useful chains of classrﬁers proves 0. be quue dlfﬁcull for geneue anomhms

4 -

" Using the genetic search techniques descnbed'prev}ously, one encounters drfﬁculucs of sp&;ge feedback

‘and cfa?ﬁﬁer interdependence when attempting to discover useful chains of classifiers.
4.4.1. Sparse Feedback

b

f{ecall dlat environmental r"eedback is fthe only avenug available lhrougn which the reladve merits of
individual classifiers can be eyalualed The more frequent the occurrence of feedback, the more effective
Ry
the e'valuauon of the ciassnﬁers ‘A srmple rlf’lustrauon of this point can be made by consrdenng the game of
chess A system that recives feedback immediately afLer every move indicating the value of the new '
| posmon could quickly and eﬁ’ectively evaluale the classiﬁer(s) responsible for that move. However a
lassrﬁer system lhat only recelved feedback at the' end of a game 1nd1caung whether it won, lost or drew
would have an msunnoumably difficult time evaluatmg Lhe classrﬁers responsible for say, the opening few.
moves. “So, the sparsrtyaof Lhe feedback will greatly eﬂ'ect the rate of discovery exhrorted by aclassifier sys-
tem, regardless of whether or not mlemal chams of classrﬁers are utilized. However sparse feedback is a
more important issue with respect to t.he presence of internal elassrﬁer chains because it is anexaggerated
and unavordable consequénce of their use. That is, feedback is received only as an environmental response
10 an external action eﬁ'ecled by a c.lassiﬁer system, meaning that environmemal feedback cannot be

=Y

directed specifically towards centain classifiers in some internal chain and not towards others in the same

chain,

' Why an increasing scarcity of feedback should lead to a less et’fecn've evaluation of the classrﬁere ina
population can be rechnieal]y understood lhrongh an'examinau'on ‘of the’ behavior of the bucket; brigade" :
algorithm. Recall that the bucket brigade algorithm is the sole mechanism that evaluates classifiers based .
upon the feedback received from ‘Lhe environntent. The bucket brigade behaves in a striétlv local rna_nner:
currency (strength) is passed only between consecutively exeeuted classifiers [H0185,H0186, Ri087]. Con-

sider a useful, recumng interngl chain of classnﬁers Any d1r5,§t payoff from the envrronment would be

recerved directly only by the last classifier in the chain.” The next to last classifier in thls chain would
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',observe a resulung gam in strength only on the next executron of the entrre chain (recall operatmn of the .

[

'bucket brigade). In fact, if we, consxder a slnctly senal internal cham ofn. dxsunct classnﬁers it can be seen

that n executions of the entire cham are requrred before the first classifier in the cham reahzes its first nomi-

nal gam in strength So clearly. the longer the chain, the more executions are reqmred for the appropriate

' strengths to propagate ‘down the enure length of the cham and, hence .the longer it takes before an adequate

)
appraxsa] of the clasrﬁers comprising the chain can be made These eﬂ”ects have been demonstrated expen-
. . L

mentally in [R1087]

Recently, a teehmque has been proposed o combat: the problem of sluggrsh propagation through

classrﬁer chams by mtroducmg the notion of bndgmg classzﬁers [Hol85 Hol87, Rio87). A bridge classifier

is acuvated by the first classrﬁer m a sequence and remaxns acuve unul the ‘payoff state at the end of the

-

' sequence is reached Such a classifier executes in parallel to’ the classifiers in the chain and it propagates

1tself by producing’ messages that match its own condrtron as long as the sequence lS executmg Since the

bndge classrﬁer is present when the payoﬁ’ is recerved its strength will be mcreased the first time thé
sequence is executed Thus thxs classxﬁer will- unmedtately begm to pay larger brds to all classxﬁers in the h

cham So the mcreased strength at the end of the chain is passed unmedrately to classrﬁers at the begm-‘

nmg of the scquence [R1087]

*
cos

’I‘he main 1dea underlying this approach is to somehow have all classrﬁers that are responsrble for

’ achrevmg an mstance of envuonmental feedback rmmedxately share in the consequences That 1s after ,

' recetvmg posmve feedback we rmmedrately reward all classrﬁers respons:ble for brmgmg about. the

behavrors that led to its achievement: Correspondmg]y after recervmg negatwe feedback we unmedrateiy' '

7 pumsh all classuiers responsrble for bringing about the behavxors that led to the dxsadvantageous state.

v 'Actually, the drsuneuon between.internal chains of classifier executions and sequences of classrﬁer execu-
:o . ',/‘\_

( >ns resulting in ‘external acuons is not an 1mportant one to make from the pomt of view of dlscovenng

X classrﬁer solutrons - The sequences of classifier executions that’ are important to drstmgursh are those that

'occur between envrronmental payoffs It is within any such sequence that the drﬁiculhes associated thh

o 484,

&
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sparse feedback are o be encountered. From this point forward ‘unless otherwise specified, the term
“"chain" will refer to any such classifier sequence that occurs smctly between feedback events.
. B S |
'.x;_zl.‘!‘.z.l Classiﬁei: Interdependence T \ ‘ {éy
It is read%apparem that it is far more drlﬁcult to discover a solution to some problem that requires a
5 cham of k classxﬁers as opposed to solvmg ariother problem requmng k independent classifiers (chains of
length 1). The 4difﬁculty encounLered when auemptjng to discover useful chains is the interdependence of*
the strengths ‘of the classifiers composing them. V'Ihe strength. of any particular classifier in the chain
depends a greatdeal upon 'which'other classifiers are specifically present in the population, meaning that the
- apparent utilities of the classifiers comprising a'chain are inlerdependenL
‘ 'Consider a chain of n distinct classiﬁers Lha[‘performs some useful '.function in the environmem. If
any of the clessiﬁers comprising this chain-are mi_ssing from the current population, the entire chain cannot
be executed and, ‘hence. the final exlemal action responsiple for reaching ‘a payoff state will never be
effecled. Thus, classiﬁers that form an incomplere chain wul lose their bids without recovering strength
~ from the environment; eventually be deleted from the populauon unless Lhe chain can be completed in time.
The perfozmance of a classifier chain depends upon lhe interaction of all classifiers comprising it. leen an

: ’mcomplele chain, how is the classrﬁer system 10 know. whether lhe cham is sull o short, or whether there

isa wealcrress in the current chain, or boLh"

The classrﬁer system is not in a posmon 0 mdependenlly test individual classlﬁers but, rather, the
»clasmﬁer system must test' sets of coupled classifiers.. That- is, noLhmg short'of a complete chain can demon-
strate the merit. of lhe mdlvxdual classrﬁers Lhateompnse the cham Unfortunately, there is a combmalonal
explosrgn in the number of possxble seLs of coupled classrﬁers as opposed to the number of possible mdrvl-

- dual clasLsrﬁers So an explosxve amoum of eﬁ’on must be: expended to test sets of classxﬁers as compared to

’

Lesung the same number of clas31ﬁers mdependenlly

. One situation yy}here Lheseiprob;lems'might be alleviated somewhat would be the case where the indi-

>
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vidugl classifiers participate in a number of different chains. A classiﬁgg that has the potential to participate
in a number of useful chains is more likely to be successful than a clag.:lﬁ%; that could potentially ‘belong to
. T

only a few us;.ful chains. However, this possibility does not remove the combinatorial explosions that ariseﬂ
when segrching’the classifier space. 'i; | S5
There are currenﬂ:y no eﬂuﬁve mechanisms through which useful chains can be efficiently
: discovered. In fact, in Lhe‘. literature there exists no clear dem?nstration of useful chair.ls: being discovered
"from scratch” in classifier populations ;ising gem\:téc_: search procedurés. The arguments in this section

) :
related to sparse feedback and classifier interdepgndeérice demonstrate why such constructions are exceed-

ingly difficult togghieve in practice.

Perhaps, at this point, i; may be useful to reconsider why it was considered desirable to develop
chains inxi,hc first place. Classifier chairiing is essential to demonstrating the computational universality of
classiﬁer,'systems, so, without chaxjns there will exist computational problems that have a solutiqn that a
classifier systcrh could not q:gpr_ess.‘ Another desirable aspect of c._(;gssiﬁer chaining is that the computational
behavior of the classifier »systenﬂ takes on a more reasoning-like flavor, tending to avoid enumerative mble
building approaches to problem solving. However, when is a chaining approach more appropriate than a
stimulus-response technique? As'was discussed previously, it is difficult for the genetic search algorithm to
discover solutions requiring large numbcfs of ihdependcm, stmulus-response type classifiers. It has also
been demonstrated that 1s is difficult for these algorithms to discover §oluu'on§ requiring even short chains
of classifiers. v'angmatically speaking, attempting to discover chajns of classifiers is appropriate only when
the associatcd search effort cén:demonsmw a savings over that required to discover a stimulus-response

solution. =~
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4.5. Remarks - ' \\@1

Holland has stated that the capaAbi]itie's‘ of parallelism and chaining are the major strengths of the
classifier system formalism [HolSG]fand this point is not argued. Howivevc‘r, by using simplified representa-
tion schemes that force the construction of solutions that rely on }be'/c;,oordinated actions of many classifiers -
(through parallelism or chaining), solutions that might o_Lherwisc/’bc expressible wiQ] indgpendem classifiers
in a more powérful representation, makes the job of d}i‘scovering these }o‘lplions unneceééarily difficult in
© many cases. : : %}

. @

Il is perhaps mtcrcsung to note that it has been a tf%dxuonal weakness of geneue algorithms that they
do not cffecnvely dxscover solutions requiring many classifiers and yet this is exactly what the classifier
representauon paradigm requires (a representation developed specxﬁcally for use in genetic systems!). The
hmuauons associated w1Lh this reprcsentauonal paradxgm necessitate the construcuon of multiple classifier

solutions for a wider range of problems than would be necessary if we considered more powerful represen-

tational schemes. This requirement runs &ntrary 10 strengths of genetic search as an effective global

k4

optimization technique [Bri80).

These weaknesses take on added significance when we consider the fact that classifier representations
- leave open the possibility for a combinatorial explosion in the number of classifiers needed’to express solu-
. tions to black box learning problems: This will manifest itself as an explosion in the search effort required

which, when the many other weaknesses of the genetic search technique are considered, will prevent a com-

plete solution from ever being discovered for all practical intents and purposes.
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Chapter §

A Reconsideration of Fitness Zd Selection

“This chapl vcsugates the adaptive component of a genetic learning system — the geneuc algo-

rithm. Geneuc algoguhgw\s have b@?developed asa do%ndepcndem search wchmque that is suitable

dependent information by re-evaluating and reconstructing gomc Sf‘”zhe bas:c mechamsms of the genetic
algorithm. Spcciﬁcallg;l, this chapter concerns itself with an exammauon of the process through which the
individual members of a classifier Wuon receive strength — an evaluauon of their fitness — based
solely upon the feefiback obtained by the system. The level of fitness attained by a classifier has a direct
bearing upon the 1ikcliho§d that it is selected in each oféhe three contexts: conflict resoluLion‘, reproduction,

and extinction.

This investigation will proceed as follows: First, the various properties of feedback are presented

~ with a discussion of how the different forms impact the capabil'itjes of an adaptive system. The traditional

. economic fitness mechanism currently employed by most genetic learning systems is discussed, revealing

some of the weaknesses of the approach. Next, a reconsideration of the abstract form of the selection prob-

lem is undertaken, examinin'g how best to balance the competing needs of exploration and ‘exploitau'on, fol-.

lowed by a reconstruction of the selection procedure in an attempt to overcome some of the weaknesses of
5

the current approach. And, finally, an account is provided of how finess is evaluated from feedback under

this new selection technique, demonstrating how many of the weaknesses of the economic approach are

overcome \/

e
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5.1. Feedback | : @
Feedback is a fundamenta! component required by any adaptive agent. The éxternal environment

¢

‘must proviﬂe to the agent some indication of the level of performance the agent is achieving. It is only

from this info.rmation' that 4n agent can ultimately judge the relative efficacy of its internal computational,

structuges. That is, the feedback it receives is the agent’s only perception of its level of performance. Thus,-?};jw

if lhé measure of feedback increases, the agent necessarily perceives its level of performance as having
* .
been increased.

Certainly the nature of feedback available to an agent has as much an ‘rmgact upon its adaptive capa-

13 [

bilities as its perceptual and behavioral capacities. The very nature of the feedback that an environment

presents to a learning's'ystem will affect the overall adaptive performance that the system can exhibit.

3

These properties may impact the internal architecture of {;‘léa}nfrig/ systems by restricting the class of

BN .
appropriate learning algorithms. Feedback ‘models that impose dIB‘e\ring requirements can be classified
along four orthogonal &:}ipensions: rate, certainty, noise, and dimensionality.

®

iy

' 5
Rate -
N

" v ¢

The rate of feedback refers to the diachronic relatibnsh‘ip maL}Xists between the agent’s behaviors

and the corresponding feedback provided by the environment.

Immediate feedback means that, upon the execution of a single action by the system in the environ-

ment, the environment immediately responds with a payoff measure that directly evaluates the fitess of

‘that particular action. Immediate feedback from the environment allows the agent to make swift judge-

ments about the usefulngss of the specific actions it has made.

Intermittent feedback means that the environment does not necessarily provide an immediate fo

back response that strictly addresses the fitness of the preceding action only. In these cases, feedbac’

be encountered intermittently, possibly after a long sequence of actions has been taken by the syster 18

in this situation where we encounter the credit as&ignmept problem [V 0l85, Hol86, Sém63]. For exz
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in chess we don’ tknow whether we have won or lost the game until (very near) the end of the game. It

is tnvxal to re;/fard the wmmng move (or correspondingly, to punish the losmg move), but what of the pre-

vious moves which "set the stage” for these ﬁnal, overtly successful (detrimental) moves? In order to solve

this problem we need some vz, of assngmng the credit or blame when consxdenng a sequence of b&\{lork

Certainty ' Lo
The certainty of feedback refers to the accuracy of information that the environment provides 1o the -
. : ~

agent.

Certain feedback means that the environment gives a precise indication whether the. action (or

- v _
sequences of actions) was absolutely beneficial or absolutely detrimental. That is, a strictly qualitative

" assessment is made of the value of the preceding action(s). So, in the case of absolute certainty, there are

only two possible feedback values: "good” (True, 1, etc.) or "bad" (False, 0, etc.).

¥

Uncerram feedback means that the environment provides a measure which indicates some degree of
success or failure, Uncertain feedback offers a quantitative assessment and is presented typically as a real

number Posmve values normally indicating success negative values 1ndlcatmg failure. The absolute value
5

ofa payoff measure represents the degree of success or failure.

In practice, a common difficulty with utilizing uncertain payoff measures is that the values we choose

.10 use are arbitiﬁry. There is no right way to assign these values so the leamtng system developer often

must "pull numbers out of a hat". , '

Noise
Noise refers to the correctness and consistency of the feedback.
- | ,
Noiseless feedback means that the feedback is tl{e correct value for the preceding action and environ-

mental state. This means also that whenever a particular action is taken in some particular environmental
4 N :

~

state, the feedback measure is always the same,
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A)oisy feedbacl& meads that there is no guarantee that the feedback value received i;s in fact, the
correct one for the pamcular action and state. The feedback measure provided for a paruculax action in a
pam;:mr envu'onmcntal state may fluctuate on subsequent encounters. A u)tally noisy environment means
that we have essentially no correlation between feedback values and the actual level of performance nor

any consistency between subsequent encounters with 1denucal situations. Clearly in such a'scenario, no

system could possibly hope to adapt.

Dimensionality

<

It may be the case that in the domain of interest, there is no single, obvious measure for the level of
- 3 c ‘
success. Behavior in the domain may involve consideration of a number of, perhaps non-commensurable,

objectives [Sch85]. The dimensionality of feedback refers to the number of independcnt, distinct ways in

which the performance of the agent is judged.
Scalar feedback means that the agent’s performance is judged by a single scalar payoff measure.

Vector feedback means that there are a number of distinct considerations to be accounted for in

assessing the level of performance achieved by the agent. Here, it isthe total responsibility of the agent,

‘not of the environment, to deal with multi-dimensional performance measurements. (Notice that if we

~ impose the responsibility of combining the distinct dimensions into a single measure on the environment

we reduce the feedback model to a scalar one.)

\ g
,‘*x

FS ‘\Fgg’\purposes of discussion, this list wdl be considered an exhaustive characterization of possible

“l:

models of feedback. Each of Lhe above categories are orthogonal in the sense. that any combmauon of pro-

i

perties, one from each calcgory, for each dimension deterrmnes the poss1ble dlsunct feedback models. .
Therefore, the basxc properues of any parucular feedback model are chafagterized by a tuple

<rat\e,-,;‘certa1nty, noise> for each dimension. The features i in each respective category dre ordered
i ' -
in a manner which indicates their relative effects upon leammg capabxhues lhe most desuable features
/ o’

'hsted first. We can see’that from the pomt of v1ew of constructing an efficient leammg system the best
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" feedback model possiblcﬂifs'\_ scalarand <immediate, ce‘rtain, noiseless>. Similarly, lh:)‘féed-

\
back model posing the most difficulty to constructing efficient learning systems is a vector of

<intermittent,uncertain,noisy> feedbacks.

5.2. Economic Fitness
* .

/

The prototypical Anechanism used in classifier systems for translating environmental feedback irrlo a

\

measure of classifier fitness is Holland’s economics based, melhod as described in chapter 2. Under this

, e 1

scheme classifiers acquire varyrng levels of strength depending upon the payoﬁ' that has accompamed merr
demonstrated behavrors Problems of credit assrgnmem due to mLermmem feedback are clealt wuh by util-

izing the bucket brigade algorithm. These fitness mechanisms have provided for the development of ratlier
simple and strzﬁght forwarcl seleclion algorithms whose behavior canube relaLively well understood How-‘
ever, a number of problems exist with these selection algorithms, most of these being amfacts of the under-
lying economic feedback model. i

Proliferation of Parameters

Recall that lhere are a number of parameters éssociated with Holland’s basic"“economic model

B

{Hol86] al]d €ven more parameters are present in more complrcated versions [Hol85] For instance, the bid-

dmg mechamsm employed by Holland utilizes an arbitrary bid ratio parameter and may include things like
taxation rates, and classifiers must also be given some arbitrary initial strengtht Also, the genetic search
technique requires the designer to choose a fixed population size ‘and fix the genetie search rates (i.e. how

oftén to- apply crossover, or mutation, or inversion, etc.) a priori. Thjs nrollfe:auon of parameters can

o] ‘become a major drﬂiculty with utilizing any learning system. This becomes apparent when actually tesung

an unplemented classxﬁer system in some problem domain. In particular, the difficulty appears when Lhe
system fails to demonsuate effectwe adaplauon to the task environment. The designer is left with little gui-

dance as 10 what wem wrong, whrch parameters to, adjust how 10 adjust lhem or even if the system is in

fact capable of eﬂ‘ecnvely adapung to the env1ronmem at all Is the populauon too small? Is the bidrate too
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high? Are the genetic operators being applied often enough? Or is the problem just too difficfilt? The only

comfort available to classifier system dcsignens is the observation that
4

"There is considerable empirical support for the statement that within reasonable ranges that
the values of such parameters are not all that critical.”" [De85)

However, chanéing the pﬁmnmelers ‘can cenainly still have an effect. Normally, ».vhat the ‘designar
must resort to is a repetitive cycle of adjusting some parameter(s) and retrying the classifier system in hopes
that effective odapt_\tion moy eventually be achieved. This problem i; complicated by Jt}:e/ fact that the
parameter settings all interact in affecung Lh; performance of the leaming system. If all of the paramelcrs
‘but one are given appmpnate'semngs Lhe‘kystem may sull fail to demonstrate adequate performance A

better understanding of the general leaming problem would certainly reflect in a reduction in the number of

arbitrary parameters utilized by genetic learning systems.

Ad hoc Payoff and Fitness Measures i

An obvious problem with utilizing Hollond's economic model in practice is the ad hoc nature of the
payoff values provided to the classifier system as it performs in sorie task environment. When a designer
chooses a dofgin in which a classifier systeﬁ is expected to leam, the payoff values to be associated with
particular actions in parucular environmental states must be chosen a priori. Unhke function opumnmuon
problems, in most domains of interest 10 machine leammg rexarclhers it is not readily apparent what
numerical values are appropriate to provide as feedback for ponicular (action,state) pairs. For example,
numerically evaluaung chess posmons réquires a great deal of domain dependent knowledge on the part
of a system designer. How do we deal wuh domams in which the designer has no previous knowledge"
Often what must occur in practice is that Lhe designer ohooses intuitive yet arbitrary payoff values. If the
classifier system doés_not display an adequote level of adaptation, these arbitrarily chosen values may be
revised. What this means is that the payoff values amount ito another parameter that can be adjusted to
improve the adaptive performance of the classiﬁor system. This. also megns that there is one more place to

R

lay the blame if the classificr system fails to perform adequately. .
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Mit,ltidimens'ional Evaluation

<
‘

Often the dxtﬁculty encountered when choosmg appropnate payoﬁ" values for some domaan is-that -

- there are a, number oT dlsunct aspects ofa system ] performance that must be reﬂected in an evaluauon of a .

. classrﬁers fimess. The most common way to deal w1th mulu ob)ecttve feedback is to somehow combme ot

the separate payotf values from the différent dtmensrons mto a smg]e scalar- value For example a linear
. combmatton of the payolf values from each drmensxon However the 'way in which these values are com-
’ bmcd is hkely to be arbttrary introducing yet another parameter to the classrﬁer system Some research has '
been done for mulu ObjCCLlVC functron Optlmtzauon problems that. does not combme different dunensxons
V[\SehBS with some promtstng results in the casa.lwhere there exists a smgle genotype which'is opttmal in all
o .dtmensnons (Extendtng this result to dlscovenng the Pareto -optimal set of genotypes requxres the learning ‘ "

'system to support muluple sub- populattons )

~,

N

S;trength-}l"ime.\l)ependeuce . _~

| Perhaps the most senous dtﬁicultles in usmg economtc based 5electron algonthms are. encountered«._
) when wé consxder the eventual* competltton between ‘old, somewhat successful clasmﬁers and newly
#created potenttally better classrﬁers ThlS 31tuat10n clearly demonstrates the ttadeoﬂ” between exploratzon
and explouatwn In order o explore new potenuany better forms of classrﬁers the adapttv& system must, '

v temporanly,at least, abandon actton sequences that already have well establtshed payoﬁ' rates [H0187]
B Consxder a newly created classxﬁer that 1s actually better than some other mature classxﬁer that has"

already acqutred a hlgh strength value Say that thi$ new clasmﬁer lS -also.a specxaltst of the mature

. claSSLﬁer Through the payoﬁ” and btddmg mechamsms classrﬁers demonstrate supenor Strength levels only

after a number of executtons that have resulted )n pOSl[lVC feedback Clearly then the mature classuier wul

' "..’A': have acquxred a htgh strength value relauve 0 the remamder of the populauon Recall that selecuon algo- v »

Sl ). '

N nthm used for the conﬂtct resolutlon process determtmsttcally chooses only the wmmng btdder for execu-*

"~uon So if the new classrﬁer is not gtven a suﬁ‘icrent mrttal strength l[ cannot. win'a brddmg competxuon

4
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) against its mature foe anii hence, it will never receive pcyoﬁ"i’iifm' Lhé environment. This means. that lhe‘
strenglh of the new classnﬁer cannot grow 1o, the’ point where" m:an:gvertake the mature sub-oplg?malh

Ty

classifier. Thus, it often occurs that an individual wuh a relatively highv" ut sﬁb-opumal level of ﬁmess is.. "

g

discovered ea.rly in. the search process When l.hlS happens the selection processes will give 11 kuch a su’ong

preference that u can qunclcly dommaLe the populauon and cause premalure convergence [De85]

This problem may be avoided t0.some extent by giving new classiﬁers high strength values but mﬁ ,
approach results in a classifier system that perfornfs poorly for the sake of testing untried, probably poor
classifiers. The real issue beneath this proble,m is Lhe queslion of how do we allocate trials to optimally bal-

ance the competing need of ‘exploring the classifier space with -the desire of exploiting'previously

discovered, apparently useful classifiers? This quesiion' is the topic of a forthcoming section.

[

The Scaling Problem

There are a number of difficulties related to the' way absolute strength ditferences 1mpacl the adaptive
behavior of the classﬂier system as opposed 1o relauve strength diﬂ"erenccs For instance, late in the search
process the classifier population may be legitimately dominated by high strength classifiers which diﬁer on
an absolute scale, but these strengths do not necessarily differ on a relative scale. So, it is possible thgn‘
essentially every classiﬁer co.mn'.butes equally to future progeny in spite of strength differences. The conse-
~ quence of Lhis.sc called scaling problem [De85] is that the basic genetic searcwn be more eﬂ'ecli\ie when
4. Lhe clzissiﬁ_er svtrengthshdiﬁ“er significantly on a relative rathérthan absolute scale. It has been expressed hy
De Joni Ihata éenerally‘ effective method remains to be developed that a(iequately exploits absolute
str'en‘glh differenccs in-spite of relative strength equilily [De85].

v

'The'Bucket Brigade Algorithm

One final difficulty is one that has been Tirentioned before, namely the problems regarding the slug-

< i

o gishness of the bucket brigade algorithm. When faced with-intermittent feedback from the environment,

+. the.classifier system must rely upon the operation of the bucket brigade to effc - 'irely evaluate the relative
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fitnesses ‘of classifiers in the population, Unfortunately, as cnvironmental feedback becomes sparse, the

performance of the'bucket brigade deteriorates w. the point where an effective estimate of a classifier’s

.

. ‘ o .
fitness takes an unreasonable lerigth of time 16 achieve [RiG87] (recall the discussion in chapter 4)..
. : - ©

In most cases it is not clear how these difficulties are to be avoided given the economic moa@ that is

used to arrive at an estimate of a classifier's fimess.

5.3. Selection

The desire 1o demonstrateﬂ‘the -best possible performance generally-compels us to consider selecting
the best ’classiﬁ'er for' execudon.. However, Lﬁere ere likely to be relatively new classifiers in the ponulation
that have not been adequately tested to.the point where we can assrnne that they are not better than the
observed best classdier So we must balance these competmg desires 9\‘ ;

. Explomng the knowledge we already have of the environmenf ‘(expressed by the classifiers and their

strengths) in order to demonstrate what is immediatel;' apparent as the best performance possible.
. Exploring the classifier space in hopes of diseoveﬁng even better classifiers and consequently achiev-
ing superior ‘performance in the long run. This involves départing from the "tried -and true"

sequence®of behavior that may result in poorer performance in the short run.

Balancing the competing needs of exploration and explouauon in an effecuve manner is Lhe responsnbrlxty

A
of the selection procedure 'Dns problem can be seen in its srmplest abstract form as the "2-Armed Bandrt

Problem” [Hol75]. This basic form of the selectibn problern is introduced and examined with the intent of

constructing an efficient and effective selection procedure for use in a genetic learning systern. ,

3
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5.3.1. The 2-Armed Bandit Problem

The 2-Armed Bﬁn%{ Problem (2ABP) is usually described by the following scenario: Y*ou dre

presented with’wo slot machines unimaginatively called BANDIT, and BANDIT 5. Pulli‘pg the arm of one
, parde A

of the slot machines ean result in one of two'“possible outcomes, either the machine will spit out 1 dollar, or

.

it will do.nothing. Notice that each pull of a slot machine’s arm could be viewed as a Bernoullibrrial, the

event of receiving 1 dollar considered a success (it is better than nothing), and the event where nothing hap-

pens considered a failure. You are told that one of these slot méchines has a higher probability of "paying

off” on each trial than the other machine, but you are not tld which is the one. - The problem is then stated:

leen that you are free to allocate trials in any way you wxsh how should thc trials be allocated

between BANDIT | and BANDIT 2 SO that the total expected number of successes is fnammmed"
~ The following symbols will be defined for use Lhroughout the following discussions; -

. ‘Let pi be the true probablhty thal BANDIT; will actually payotf on a given trial,
Yo

« . Lett be the total number of trials anempted

. Let n; (1) be the number of trials anempged on BANDJT{ and lef k; () be the number of observ‘ed

successes up to time . So.t = ny(t:) +no(r).

. Let §;(t) be the propdru'on of successes obséri_/ed_ on BANDIT; up); to time ¢. It is worthwhile to
notice that this observed proportion of success g;. = — is the maximum likelihood estimator for p; .

NoLe that it is an underlymg assumpnon that all trials are mdependcm of one another and that each

tnal terminates. It is also a55umcd Lhat Lhe ﬂayot’f probabnlxues of the slot machines remain constam

throughout the experimentation. - o

.

Of course, instead of considering slot machinféime\ 2ABP could alsb be- expressed in terms of

classifiers: You are given two classifiers that achieve environmental feedback at different rates. How are

the trials to be allocated so that the total expected amount of feedback accumulated is maximized?
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Asymptotic Optimality

What is the best strategy for allocating trials to the two slot machines? If we knew, for instance, that
P1 > py then, clearly, the best strategy would be to play BANDIT,—exc':lusively With this strafegy. lne totat
expected numbser of successes would be maximized. The problem. of optimally allodaung trials when the.

probabilities p, and p, are not known beforehand is the main topic of investigation of this section.

One sense of opumallty that is unpon@t to consider here is the notion of asymplotic optimality. A

g 7
prmﬁﬁn‘%{ 2 d to be asymptoucally optimal if it guarantces that lhe observed proporuon of successes

o v\",.

¥ -
: convergts u;;b max (p1, p2) when ¢, the total number of tnals approaches infinity. 'I'hal 18, as the number.

of trials we perform grows without bound, the overall performance of an asympLoLically optimal procedure

will be such that we could have done no better even if we had known the identity of the superior bandit q

» PN

. f el

priori. . N ol
il

Throughout most of the discussions to follow it will be assumed, without loss of generality, that

D1 > pa, but this (obviously) will not be known by the procedures beforehand.
) - i

Robbins’ Algorithm 4 .

Acma.lly, an asy mptoucally optumal soluuon to the 2&\BP has existed since 1952 when Robbins intro-

‘duced a sxmplc. by; artificial procedure [Rob52]

Lel as (1< a,<ay<- "}and B= [2 < bz < by <} be two disjoint, unbounded sequences of |
positive inwgers such that the proportion of integers 1,2, 3, ..., n which are either elements of o or B
tends toOas n. — oo, Now suppose that after ¢ tfials. k; successes have been observed in the n; trials asso-
ciated with BANDIT;. On the next trial, 1+1, we test the bandit with the highest obeewed proportion of
success unless t+1 € a(_ B. If 1+1 happensto be a ﬁember of one of these prescribed sequences, then the

next trial must’test BANDIT , ift'+‘1, € o, or test BANDIT, if t+1 € P.

The ﬁym_ptolic optimality of this procedure can be simply demonstrated by first noticing that there

are an unbounded number of integers in the sequences o and B, meaning that each“bandit will receive an
3 .
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" infinite number of trials.

‘ lim m;(t) = oo
/ [ —poe

Qne important property!of the estimator p; i3'its consistency, meaning that lim g; = p; [LaM81, MSW)SI].
. om
. \;\ : /

This means that there must exista T svuc,hlgat forallt 2T, p,(t) > pt). So, aftertime T, as¢ —>(Lo the
: :

3 :
" procedure will choose 1o test only BANDIT | except at those prescribed times ¢ € B when BANDIT , v\v\xd% be

tested. (Notice that we cannot place a finite bound on the value of T, but there
number of imegéfs t such that ¢ > T.) But, by definition, the proportion of integer$ 1, 2, 3,....n that are ele-

-

ments of B tends to 0 as n — oo, So it follows from the laws of large numbers that

still exists an unbounded

! {
tim 29 gim 229 o
e [ e !
._/{ and; hence, that
A\‘-"J,.- ’
ky(t) + ko)
P D Ty P =max (i) .

" [Bat80,Rob52].

An unbounded number of trials will$e performed on the inferior BANDIT 5, but the number of such

-tests will be sufﬁcieritly sparse so as to leave the asymptotic proportion of tests unaffected as though only

BANDIT | were used throughout [Kum85]. 5
Unfortunately, this proccdufe is not that useful from the point of view of genetic learning systems. It

is not clear how procedures that require spafsc and unbounded number sequences can be usefully applied,

~ especially when we consider extending this construétion to an undetermined number of competing

classifiers that may not all be introduced simultancously. ' . g

There have since been a number of algorilhnfé constructed that also demonstrate asymptotic optimal-

P

25 - -
ical procedures to help decide which bandit to choose on each trial [LaR85, Pol78]. All of these procedures

. ¥ S -
ity, some of them being simple variations of Robbins’ algorithm [Kum85], and others that introduce statist-

are deterministic in that for each trial they will specify one particular bandit to be tested on the next trial.
y

v
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Another more recent approach takgn by some researchers has been to utilize a stochastic selection
procedure for choosing a bandit to test on the next trial [Bat80]. The stochastic-approach offers more flexi-
bility for the ways in which the 2ABP may be dealt with and, consequcntly, it is the method that will be

developed here.

5.3.2. Asyn?‘ptotically Optimal Stochastic Procedures S o

In thS section, I will dcvelop and characterize a class of stochasue procedures l"or the ZABP From :
CE
the stated assumptions that charactcnzc this class, it will be shown Lhat any proccdurc that &USﬁes the cofi-
g‘

o

ditions of class membership is an asymptoucally optimal one.

Weighted Stochastic Selection

A stochastic sampling procedure for the 2ZABP can be characterxzed as follows Each of the two ban- :

~ dits are glven weights, K1 is given to BANDIT | and w, is given to BANDIT . Let us place the followmg

“constraints on the values of the weights: ' |
| wi+wsy=1,

0w 1; wasS 1.

Let © be a continuous randgm variable with a uhifonn density over the ims?viil [0,11. ’l’hen a simple.

weighted stochastic sclecu'on procedure can be performedas follows: I.uet 8 be a random sample from the

uniform distribution. One of the alternative bandits is selected at each stagc by the followmg rule:
. If0 <08 <w thcn BANDIT; is selected. |
© Ifwi < 8 < 1thenBANDIT, s selected. ,;:
Eﬁ“ecmely, the weight w; of a bandit is the probability that\lhe bahdlt will be selectcd ina parucular
trial.
Of coarse,' fo_r purposes of solving the 2ABP the weights wl)‘and w2 will be dynamically modified, _

somehow according to the observed behavior of the bandits. If we assume that the update policy for modi-
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fying the weights converges in a manner such that

lim w;(¢) = some constant ¢;
§ —bes

then it is clear that

: m()

lim

{ ~dee t

Ci.

That is, if the update policy for modifying the weights converges asymptotically, then the overall propor-
-tion of trials devoted to any particular bandit must also converge. It will be seen that this asymptotic
behavior under the condition of converging weights is an impertant property of stochastic selection pro-

cedures for the 2ABP.
. i . .

A Class of Asymptotically Optimal Stochastic Algorithms for the 2ABP -

A family of asymplou’cally optimal procedures for the 2ABP can be easily constructed given the sto-

/ ;
chastic selection meck&anism described previously.

Assumptions )

'

At each stage ¢ of the procedure, let the weight w; (¢) for each bandit be assigned by a function

OP,-jV(t) (where j is the other bandit). Let us further assume the followihg properties of OP,; (1):
() "0<OP;(t) <1 forfinite .

(i) OP;(t)=1-0P;(t).

(iii) If p,is truly greéler than p, then lim OP ,(t) =1, and lim OP ,,(t) =0.
1 —pes { —pes

Asymptotic Optimality

© T As we have seen, given that p; > po, all that is really required to show the asymptotic optimality of

hny algorilhm for the ZABP is that

R O ¢
[.‘) ‘ o ™lim 1) =1,and lim nalt)

. e . [ ]

=0.

<

/
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That is, the behavior of the procedure is such LhaL, in the long run, we could not. rmprove on its performance

even if we knew the rdenuty of the superior bandit a prwn

w

Lemma

If the weights are assrgned at each stage of the procedure by a function with the properucs of OP

then lrm n; (1) — o (each bandit receives an unbounded number ‘of tnals)

Proof

Assu"'nc that there exists some finite integer T such that after trial T BANDIT; is never again tested.
This imkplies, beginning at the next trial (rial T+1), that w; =0, and that w; continues to be O
Lhereaner

But w; (1) = OP,;(1), and under our assumpuons about Lﬁe behavror of OP, OP‘, (T+1) = 0 implies an

mf;mte number of trials, a contradiction of assumpuon @).

Theorem

If py is truly greater than p3, and the weights are assigned at each stage of the trial by a function with

the properties of OP , then : o e
' 1'. t
tim 29 4 and tim 220 g,
f—oe { £ ~pen t 4
Proof

% Recall from the discussion on the behavior <df the stochastic’ selection algorithm that

-t . L '
tim 29 i w;(¢) which, in this case, = OP,, (1),
£ e { s —pen .

From the ’lemma we have that each bandit receiveséan unbounded number of trials.

So, under our assumptions about the behavior of OP ,if py is truly greater than p, we have that

lim OP 5(t) =1, and lim OP 5(¢) = 0. .
[ —poe { —doo .
B :

s

which yiclds the result.



cedure that al;'o.;é)'zhibi!s an optimal rate of convergence. Some steps in this direction have been made by

considering the 2ABP under the restriction of a finite number of trials. For example, Sato et al have con-
structed a deterministic procedure that maximizes the expected number of successes given that the two pro-
babilities p, , p;, and the number of trials N are all known beforehand [SAT84]. The algorithm splits the

trials into two phases: the testing phase consisting of the first n” trials, and the exploitation phase which

strictly tests the bandit that achieved the highest observed proportion of success in the test phase. (This.

construction is very similar to the treatment given in [Hol75).) Clearly, this construction is not general
enough to be of use as a selection mechanism in adaptive classifier systems. A ﬁseful procedure is one that

can exhibit fast convergence without assuming knowledge about the values of the probabilities and a fixed

number of trials.

5.3.4. A Fast Algorithm for the 2ABP

AN
. e,

It has been shown that a stochastic, asymptotically optimal algorithm can be corrstructéd from any

function that satisfies the three specified propertiés of OP. The approach taken here is to construct a func-.

tion that satisfies these crucial properties of OP and yet adjusts the weights in an appropriate rham&er S0 as

to achieve a high rate of convergence. Consider the following function:

1 2,(1) .
PPij(t)=——-\57E j e"/“dx,
where
Pi - P,
zj(t) = —— et
Pigi qu/ :1
n; nolq



2

and .
D)
‘Q -
e &
P = P
LY
di=1-p
(Note that z;;(¢) is defined only in the region n’,’»‘> 0, n; >0, and, r our purposes, both 0 < k; < n; and e
(A7

0< kl < n; .) '
Theorem ~

In the region where it is defined, the function PP satisfies the three properties of OP and, hence,
yields in an asymptotically optimal algorithm for the 2ABP.
i) O<PP;(r) <1 for finite ¢ .
(i) PP;(t)=1-PP;(t).
(iii) If py is truly greater than p, then lim PP 5(t)=1,and lim PP,,(t)= 0.

o [
Proof of (i) ' &Y
»

PPi;(t) =0 implies that z;; (1) = —eo, and v

PPi;{t)=1 implies that z;; (¢) = +oo [LaM81],

Buf, no denominator of z vanishes in the defined region, thus, z (¢) remains finite for finite ¢.
Proof of (ii)

It is a well known propenty of the integral

Fey= - [ e
’ V2 4
o 3

that for values z|, z,, where z, = —z2that F(z1)=1-F (z,) (LaM81, MSWS8I1].

By inspecting the formula for z it is clear that 2y (1) ="-z;; (1). i

Thus, PP,‘j(l) =1 —PPJ','([).

- o | -
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Proof of (iii) ‘ : 3 aw

Recad! U ¢« PP < 3 fur Brute ¢ and that thus property o PP implies Lim n,(t) — =<, and
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random quantities. This probability is either 0 or 1 depending upon whether or not p, really is greai than

2

R

However, g, and P2 are random observations. That is,.these estimates, being calculated from a singlg
sample, will'vary in a random manner from sample to sample. So, our notion of "degree of certainty” must

be based sbmehow upon the relationship between the estimators and the target parameters.
Y

" Consider the problcm‘of expressing the "degree of certainty” that some target parameter 6 is truly
greater than some constant ¢, given only an observed esximate-é\. First, consider constructing a one-sided
confidence interval for 8.

. Le[ 8 be an estimator for the target parameter, where

. E(©)=0, and S

!

. 0?4 denotes the variance of 6.
Notice that the pivotal quantity Z = %ﬁ has an approximatc standard normal distribution N (0,1)
. 6 .

[MSW81]. This means that we can determine the (approximate) probability that the random variable Z will
be within some interval.

Plzg>Z]=1-q, ' : u

P[é—zac‘;é{ 8] = 1-a -
[MSW381].
So, the pfobability that the target parameter 0 is not moré_ man zq standard deviations smaller than @ is
1-a.
~The relationship between 1—o and z, is given b)‘/ the féllowing formula: .

a=_L
%= %=

f 4y

)



n

So, by specifying a, the confidence coefficient, we can detefminc zq, yielding an interval that has a

100(1—d)% chance of con&g&ning 8. Conversely, we can first specify z, which, in turn, can be used to J

determine 1-a [LaM81, MSW81].

Consider an altemative, but equivalentv form of the previous probability statement.
P[0~ 2,04 < 8] = 1-q.
The probability that the value of 6 is not more than z 4 standard deviations smai.cr than the target paramelz;r
is also 1~a. With this formulation we can mak;: statements about the probability that & is within a certain
interval, provided that we know .

Plc <8]=1-qa.

The probability that @ would be greaicr than ¢ is 1-a.. So, we have ¢ ‘=0 — 24T, Which implies that

o-é ’ .

Recall that* _m somehow measure the "degree of centainty” that the target pa}ameter 0 is

truly greater than some constant ¢, given only an observed estimate 8. Clearly, if 6 is much greater than ¢

we would be more certain that 8 > ¢ than we would be if 6 were closer to ¢. Similarly, if 6 is based upona

large number of trials we would be more certain that 8 > ¢ than we would be if the esLimate were based

upon fewer trials. One such measure that captures these intuitions is the following:

_If the observed estimate § is assumed to accurately reflect the true value of the target ﬁ}ametcr 0,

what would be the probability, upon repeating the experiment, that we would observe estimates &

that are greater than ¢ ?

For our purposes here, the "degree of certainty” that > ¢ given only th¢ observed estimate 8,
denoted C [0 > ¢ | 6], will be defined to be this measure — the probability that repreating the experiment

would S'ield © > ¢, under the assumption that 6 = 6.

®

N
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‘ . L . N ,~ . "‘- , . ) “
Clo>c IO}— é>casswmng:ha:e=é]=1—_a

Iy

0~-¢ -

So, 1-a can be dezennined by using Zg=

. : _ 6

Usmg this parueular quantity o serve as a measure of Lhe degree of certarmy" about Lhe true value

of Lhe target parameter lS not fully _]USllﬁBd in.any formal mathemauoal sense. Perhaps Lhere may be better

1

ways 1o capture the notion of "certamty However lhe measure used here can be consrderéd a reasonable '

Ad

one 10 use in that it caplures many of the mtunuons we have about the way cenamty should behave The

assumpuon that Lhe observed estimate is near enough to the target parameter is’ appropnate one to make if
o the esuma(or 1s based upon a large number of mals

Recall lhe ongmal problem of measunng the "degree of cenamty" that p, >,p,, given observed esti-

mates J 2 and P2 Fxrsl of all notice that P1>p, unplres that P1—p2 > 0. Notice also Lhat the estimator

-~

Ff'— P, isan unbiased and consistent estimator for Lhiquuanuty,[l_aMS I, MSW81].

-
v

L Var(Pipy = 2L P o . '
. CEEom s ag : LT .

. E(ﬁl—-ﬁ?)’:pl—-pz. . . S - . N

8- 0 , where e'=\g1 ~pyand O = Pl — P, has an approximate standard

* . The pivotal quantilh)l Z =
* norma] distribution N (0,1) (MSW381]. ‘

. ’ Y N .
So, the previous technique can be applied in this case (o arrive at a measure of th’e "degree of certainty/ that . -

p1> pz The "degree of certamty" that p4 > p2, given th observed esumatespl, P, wrll be deﬁngito be

-/
the probablllty that repeuuon of Lhe expenment would yield P = P2 >0 under the assumpuoy( that pl

N . . B . . p / P
and-p; =p,.- t - . T
. ‘ . \\ -
C[p1 >Pz | pr.pa) = PIP, >Pzasswmng rha! P1=p) andp,=py] = LT
. .. ' ’ ’,/ [N
This probability is determined by the formula S o e ’ *

. ~ 1 Ia St
4 1_—(17—\f2=-n—:£€ dx,
13
o r &
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where , - Coer

Notice that this is exactly the formula for z,5, thus, yielding the result that

PPy =Clp1>py | prpd = 1-a.

- The selection procedure that utilizes this function PR\,i”;j&all be referred to as a "likelihood-based” selection

technique. The behavior of this algorithm is explored throughout the rest of'Lhis thesis.

~—

Convergence

The behavior of the likelihood based selection leehmque is intuitive and 51mple to-understand. At

each stage of Lhe trial the bandits are given weights that correspond to the "degree of certainty” that their )

“

' . R T . L ", . K
success rate is actually better than their rival's, given the previous observauons.

L4

If one bandit s observed payoff propomon is greater than the other bandit’s, this apparently supenor
%
bandit will receive a higher weight than the inferior bandit and, thus, it will become more likely to be tested

JAn future trials. If the observed’ advantage is slight, the difference in weigh(s is smaller than. it would have

oy

o

been if the observed a}vantage was large ‘ ' - N . -7

"Another impormnt aspect of the behavxor of this aigomhm is Lhat as mw: of acquifed infdrma-
uon grows; “so does the "degree of cenamty that one bandn or Lhe other possesses a higher syccess rate.

This increase fn certainty is reflected directly in an increase in the weighvt advantage.gwen to the apparently
S § j

 superior bandit. - So, even & slight advantage in dbserved payoff rate will result in an exaggerated weight

.. difference as more trials are observed. ST e

2 v o
:'Il has been shown that if o"ne’ bandit posscsses a truly sdperior success rate the algorithm will discover
{ > :
lhlS fact and explon it to the exLent ihat in-the long run, i} will allocaLe trials in dn opumal manner. More

.

’

importantly, Lhe stochasuc algomhm that uses lhc funcuon PP. to assign weights at each stage of the exper-

~

"

\:



iment converges quickly to correct decisions in an apparently efficient manner.

Experiment .-

These intuitions appear to be supported by the em;;irical evidence in that the algor'ithm does converge
1o correct décisions in rapid fashion. The likelihood-based sele‘éu’on technique demonstrates a much higher

, :

- rate of convergence than a u;diUonal. economics basegi,selectjor\l ‘mechanism like the one described in
chapter 2. To dcm;nstratc this point, experimeﬁml results were obtained to compare the two approaches,
Consider the graphs shown in Figure 5.‘1 and Figure 5.2. Both graphs show the results of an experiment
with two one-armed bandits, one bandit A wit1 a payoff proportion of 3/4, and the other.band>it B with a
‘payoff proportion of 1/4 (details of the procedures followcd in the 2ABP cxpenmen&s can be found in
'Appendlx Al). Flgure 5.1 shqws the resulting proporuon of trials allocaLcd by the economic selection tech-'
mquc and Figure 5 2 shows Lhe resulung proportions allocated by the likelihood-based selecuon technique.

It is clear upon examining these graphs that Lhe likelihood-based technique converges to the correct propor- .

tion — 100% A, 0% B — at a much faster rate Lh\a\n the economic technique.



‘l.’.'l

..
&

75

Trials

i

)

Figure 5.2 2ABP Experiment with Likelihood Selection
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53.5. Generalization: The K-Armed Bandit Problem

Clearly, a solution to the 2ABP is really of limited usefulness unless it can be extended to consider

the more general tase of an arbitrary number of slot machines. This has been referred to as the K-Armed

" Bandit Problem (KABP). It turns out that the algorithm developed previously can be easily extended to the

general case of K armed bandits while still retaining asymptotic optimality and fast convergence.

The Generalized Algorithm A \\ > )

Iy

-

" ‘The stochastic selection algorithm can be simply extended by}jving a weight w; to BAND[ZY;‘;-R"undcr

the following constraints:
§ B K '
§ E w; = 1,and

i=1

OSW],Wz,.... WKSI
¥ -

If 8 is a random sample from“a‘um{\rm [0,1] distribution, then a bandit can be selected at each stage

by the following rule:

. If0 < 6 < w, then BANDIT, is selected.

i-1
. Yy w < ): w; then BANDIT; is selected forz = 2 toK-1.
: = =
: K-1 ' T :
. If 3 w, < 8 < 1then BANDITy is selected.
=l -

1 ‘s v o

'+ So, the weight w; (¢) of BANDIT; still gives the effective prdbability that BANDIT; will be cl;losen on any

\

o =

* particular trial .

The wexghxs fo- each of the K bandits are assxgned by a funcuon KPP;. This funcuon is mtended Lo

express in’ some sense, the llkehhood Lhat BANDIT 1s ‘the best of Lhe K bandits, glven Lhe observauons -

Consxderlhefuncuon . ) - : C}

'

o - ‘. , . l‘(ppi(t)zr‘?in{gp_‘.j(l)}“ | - L

-k
- ‘ ’

By using this function to Aass'ign (unnormalized) weights to the K bandits it ¢an be shown that the resulting

’( co . \ a
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algorithm for the KABP will be asymptotically optimal. An empirical study of its behavior also shows that

the algorithm converges rapidly, much like the 2ABP algorithm.

So, at each stage r of the KABP procedure, each bandit is assigned a weight as follows
I .

w,-(:):KPP,.(:)=—KfM~.

3 kppi(t) '

- j=1

Asymptotic Optimality

.~

% . R : k3
.~ The asymptotic optimality of the generalized algorithm can be simply shown:

® .
() [t has been shown for finite r and for arbitrary bandits BANDIT; and BANDIT,, that 0 < PP;;(1) < 1.

Thus, for initc{#0 < KPP g’ ¥ ‘e,‘xpp‘. simply takes the value of PP;; for some j#i. So, for

at each bandit will receive an unbounded number of trials.

-

1<i <K, lim.n, (1) = oo, mARING
{ —peo .

i=l

" (ii) The property that ¥ w; ——hisei trivially out of the fact that the.weights are normalized.

i .

(iii) Assume, wi’iﬁ?ut loss of generality, that p;/, D3 Px <pi-
. ;2/‘.;:1’*": - a 7
As we have seen, the MLE p; is a consistent estimator for p;, meaning that lim g; = p;, which

. . : . R 1 —oo ’

implies }lﬂﬁz,ﬁ:;, . pAKy< pi. S?, 'll_rll.kpp i (t) =PP; (1), fOI‘l-‘#?

N

It has been demonstratéd that, under. our assumptions, lim PP;;(t) =0, and lim PP,;(t)= 1. Thus,
. o ; ) e £ —ree

“ - s

yielding (R®¥esult that lim KPP (¢t )= 1, and for 2 i <K lim KPP, t)=0.
N T e 1 e

Convergence s
4 -

.4 The behavior-of this al‘gorithm can be intuitively described as follows: Each of the bandits is given a

weiglm&mgpohional Lotthe "dégree of certainty” we have that their true ;ﬁropom'%n of success is"
greater than that of the appai'ér_\lly best competitor. (The best bandit is compared to the second best bandit.)
If some bandit’s weight-has greatly diminished, then there must be some other bandit who has derhonstmledv' .

a higher observed‘prob(;nion of success. Similarly, if a bandit begins o dominate, there must be no other °
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bandit with a higher observed proportion of success. As more information is acquired from the observa-
tions, the greater is our certainty that the observed best bandit really is the best and, hence, the greater its -

proportion of trials. 1

Rl
1

Experiment vz
Compare the graphs shown in Figure 5.3 and Figure 5.4. Both graphs show the results of an experi-
ment with four one-armed, bandits: bandit A with a paydftf proportion of 4/5, bandit B with a payoﬁ" propor-

b

tion of 3/5, bandit C with a payoff proportion of 2/5, and bandit D with a payoff proportion of 1/5.
(details of the procedures followed in the KABP experiments can be found in Appendix Al).

Figure 5.3 shows the resulting proporuons‘of trials allocated by the economic sclecuon technique and
Figure 5.4 shows the resulung proportions allocated by the lxkelxhoqg -based selection lechmque It is clear
upon examining these graphs that the likelihood-balsed technique converges to the correct proportion —
100% A,0% B, 6% C,and 0% D — at a much faster rate than the economic technique. In fact, the advan-

tage gained by the statistical technique has become even more pronounced as the number of bandits grbws.
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'5.4. Evaluating Fitness | - ' Y

In the prevrous secuon an eﬁicnem selection algorithm was developed from a detailed reconsrderanon
" of the ZABP The feedback structure underlying this construction is that of a Bernoulli trial. The structure
of the _feedback must be such that the system receives a response from the envu‘onment that indicates

whether the results .of the preceding acuon(s) were either "good" or "bad" from the system’s standpoint. In
| the likelihood- based .approach, the fitness of a particular classifier is a measure of the likelihood that it is
better than its competitors. Thisis a su??ight.fonvard_ property of the classifier’s observed proportion of suc-
. he stochastic selection algorithm has a numl)er of desirable pro-

perues beyond its sheer speéd of convergence In fact, many of the difficulties encountered by selection -

:(l *‘

algorithms based upon an economic model of fitness are overcome by the likelihood approach taken_here.

cess and the strengths of its compe’titio"'.j-‘:

Proliferation of Parameters

Within the framework developed here, there are ne prameters associated with the process of evaluat-

ing a classifier’s ﬁmess from the feedback provided ‘environment. Recall that in the economic

T
evaluation scheme, there were a number of parameters asgo

Led wuh this process: bid ratio, taxation rates
and initial strength It was also argued Lhat this proliferation of parameters constitutes a hindrance to our
!ask of construcung" eﬂ”ecuve learmng mechanisms rather lhan provnding a ﬂClel]lly lhat can be exploned»
ina useful way l“s interesung to note Lhat the parameterless selecuon Lechmque clearly oulperforms the
heavxly paramezenzed melhod A construction that reduces the number of arbitranly séttable -parameters

without sacrificing the level of learning perfOrmance must be seen as advantageous from,Lhe point of view

of constr‘ucting real'.:ﬂworking systems:

Howevcr oLhcr parameters still remain in the reformulated | genetic search Lechmquc For mslancc
the fact that a sysu:m dcs;gner must choose a lecd populauon size and dewermine the - -genctc search raucs

' bclomhmd ms not changed. 'l‘he qucsuon reMains as to how these pammctcrs in pamcular may l‘-{ dynam-

‘ztau_y m‘(magcd ina pnrmpled dommain mdepgndunt and efl’ex uve manner.
vl .
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Ad hoc Payoff and Fitness Mez ‘res

AN . .
Again the prohlem of choosing arbitrary values is avoided by formulating feedback in strictly qualita-
~ tive terms. Once the designer has sufficiently conceptualized the task domim and arrived at’an adequate

definition of what copsfitutes s cssful and unsuccessful behavnor in lhe domain, no more work is required

" in terms oOf quantifying degrees pf succgss'omfaxlure. It has been. mentioned often that by removing these
situations where the system designer is forced to conjure up appropriate values beforehand we greatly

improve the chance of the resulting leamning system being able to affectively adapt to the environment.

The Scafing Problem .

Another fortuitous result of developing a hkel;krood based selection mcthod is that the scaling prob-
lerin is overcome simply as a byproduct of the nqhnz;l behavior of the algorithm. That is, the algorithm tests
fo‘r absolutc- differences in the observed succgsé ratios and, thus, is insensitive to the faét' that the ratios may
be similar on a relative scale. So if the classjﬁer population becor\"xes dominated by legidrr'xétely strohg
classifiers, selection will still favor those classifiers who are stronges than their competitors even if their

/
success ratios are relatively the same. The obvious advantage held by the probabilistic approach over the

“economic one, in this césc. has been clearly demonstrated empirically as well.

-~

» ‘Experiment

>
Consider the graphs shown in Figure 5.5 and Figyre 5.6. Both graphs show the results of three exper- ..

- iments with two one-armed bandits.

The experiment shown by the solid lines utilized one bandxl A with a payoff proporuon of 3/20 and»_' '

anothcr bandit 8 wuh a payoff propomon of: 1,-():

Ltw

- -

w"ﬁf*’“w ’

The cxpcrrmcm shown by the dmhcd lines. uuhud one b.mdn A’ with a pay offpmpomén of, 6/’30-

3
‘

-and another bandit 8" witha payof‘f pro;x)hio_u of 420,

Afid, finaily, the experiment shown by the douted hines unlized one bandit A !

e




tion of 19720, and anoLher bandit B ** with a payoff proportion of 17/20. o v

Figure 5. 5 shows the resulung proportion of trials allocated by the economic selection techmque and»Flgure
5y
5.6 shows the resulting proporuons allocated by the likelihood- based selection technique. Notice that in “
each of the three experiments that the payoff proportions of the compedng bandits differ by exactly the
same amount on an absolute scale. The key difference between the\ experiments is the fact that thé bandits’
payoff proportions become closer on a relative scale. Figure 5.5 clearly demonstrates the difficulty that the
economic‘ selecu'on} technique experiences with proportions that are similar on a relative scale. As the pro-
portions of the competing bandits become closer in reiau'vg size, the performance of the economic tech-
nique degrades drastically. No similar such degradation in performance is experienced by the likelihood-

F\.
based selection technique, due to its sensitivity to differences on an absolute scale (Figure 5.6).
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Figure 5.5 2ABP Scaling Experiments with Economic Selection
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Experiment ' ' ‘ . . .
: A
: Consxder the graphs shown in Figure 5.7 and Fxgure 5.8. Both graphs show the nesults of an experi-
ment wuh two one-armed bandits: bandit A with a payoff proportion of 3/4 and bandit B with a payoff
proportion of 1/4. However, bandit B is initialized by giving it the res—}ts of having been given 100 trials.
That is, 25 successes and 100 trials have been given to B before A is allowed o compete S‘P when the
competition begins, bandit A — the superior bandit — competes against an inferior, bul ‘weH/ entrenched

bandit B . Figure 5.7 shows the proportion of trials allocated to the bandits by the economic selection tech-

nique and Figure 5.8 shows the proportions allocated by the likelihood-based technique.

"The econcmic technique takes time to overcome the skewed initial situation and so the superior ban-

dit is not allocated an appropriate proportion of the trials until a large number of trails have been attempted.

_Again, the statistical approach appears 10 be the superior technique in that its performance is not degraded
"'bv this skewed initialization. In fact, its performance is improved over the basic ex erim - s.mply .
because of lhe fact that it has been prov1ded with more information which, m tum mea:  that it . 'nore:

certam in allocalmg trials. So this technique can immediately decide whether a newly introduced claSSLﬁer

actually demonstmtes better performance than a well entrenched classifier and immediately alloca.e trials

appropnately

\_4/
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5.5. Remarks
. . P .
In a genetic learning system we are constantly faced with the competing desires of using the .

ky)wledge that we already have to our advantage or acquiring more informau‘on 1o increase our knowledge

about what is or is not useful. In fact, the 2ABP is sunply an absu-aa formulation of precnsely this tradeoff n

and, consequem}-y any good algorithm for thxs problcm dlrectly ylelds a good policy for selecung

classx‘ﬁers to execute. This, of course, was” ‘the strategy Laken in this chapter The probabilistic selection

Lechmque that was developed allows us to compare 3 performance of a mature, well entrenched classifier
with that of a newly created, apparently successful classifier in a principled, well reasoned way. This
method of comparison pr0vides swift and ongoing judgemens as to which of a set of eompéﬁng classifiers

is really the best. A fortunate result is that the refonnulated algorithm is sufﬁcxenl]y practical to be applied 4

to Lhe classtﬁcr selecuon problem in an obvnous and unencumbered way.

“v%

w:



“ Y ’ '»-Chapter 6' . i ' T

Implementation and Expenmental Results

: 'I‘lns chapter exammes a number of demlls regardmg lhe actual unplememauon of genetic leaming
_systems Lhat are mtended to overcome the various weaknesses of the traditional classrﬁer sysLem and
< <.

genetic algonlhm technologies by:

~

. Avmdmg some of the represemauonal drﬂ"xculues of classrﬁer systems (as ouleed in chapter 3),
- specifically by eroducmg a "disjunctively complete” representation to avoid unnecessary computa-

_ tional explosions.

e Incorporating mechanisms Lhat attempt to overcome or limit some of the difficulties with the genetic
search technique (as discussed inchapter4). ' . o

. Incorporating the likelihood-baséd selection technique that was developed inchapter §. -

* A number of versions of a genetic leaming system are implemented and tested on a learning problem

First, a credit assignment procedure is developed for use with the likelihood- based selecnon techmque Lhat i

is based upon the Bemoullr trial formalism. Next, each of the selecnon algorithms utilized by a’ genetic
leammg system are descnbed (conflict resolution, reproducuon and extinction). Finally, a learning lask
and accompanymg represemauon are-set up, followed by a series of experiments which show the perfor-

mance gains realized through the mtroducuon of some of the techmques developed in this thesis.

. or .
6.1.. Credjt Assignment ; v g o {
2
Recall that the credrl assrgnmem problem 1s encoumered whenever lhere occurs a situation in whxch a

number of classrﬁers are executed between feedback eprsodes The economic approach offcrs the bucket

+

- bngade algonthm as a method for’ dealmg wuh the drfﬁculty of asslgmng appropnate credu o classrﬁers

kS .mvolved in mmatmg behaviors that have resulted in envxronmental payoff. Unfortunately, adapung lhe C

-

bucket bngade mechamsm to the hkehhood based appmach does not appear lo be feasxble nor desuable;_l' o

. Actually, there appears 1o be a more natural way to deal with the credit assrgnrnent problem within lhe

o . &
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scope of the Bernoulli trial formalism. -
e
6.1.1. Bertoulli Trial Sets

The strategy investigated here has been to _simply keep- a lrst of the classifiers that are executed .
between feedback episodes. This list wrll be referred to as a Bernoulli trial set (BTS) When a feedback -

episode takes place all of the classrﬁers that have executed since the last feedback occurrence (those in the

BTS) are affected equally.

. If the envrronment mdicates that a success has occurred then each classifier in the BTS has its success

counter k; incremented along with its trial counter n;..
c”

§

. If a failure is indicated then each classifier in the BTS has only its trial counter n; incremented.

-

Thus, all of the executed classifiers pamcrpate equally in what-amounts to a smgle Bernoulli mal for each
The degree to whtch a particular classrﬁer contributes to the’ overall success or failure of the system is
diﬁ"erent.tated from the contributions of other classifiers by the frequency with whtch tts execution is associ- -
‘ated with a positive or negattve outcome. That is, even though during one particular feedback episode all'
classifiers are affected eqaally, their effective co‘ntribution to the final outcome is reflected in the frequency

of their involvement over a number of such episodes. >

For example, consider a classifier system th_at plays t ic—tacft oes Ifa sequence of moves results
in a \’1ctory for the system, all of the classifiers responsible for those"‘r'noves are rewarded equally. Now~
~overa number of games the classifier that completes tl? game bx,placmg the third X.in a row will continu-
g _ally be rewarded whenever it is ‘executed. However the classifier that is responsible for the ﬁrst move of ; a
game may often times be mvolve(} in losmg matches thus its’ success ratio’ will necessanly be }ower than
| the success ratio of the final, wmmng classiﬁer Thts reflects the fact &gat the final, wmmng move is, in

bE
“some sense more responsrble for the final‘outcome of the game’ﬁan ‘the tmual move is.
\ : :

The a®vantage that the BTS approacli has over the bucket bngade algonthm‘ S that there IS o propa-

i

gation delay between the time when the first feedback event is encountered to when .the ﬁmtfclassmer i’m -




-L

~ the chain feel even nommal effects of “this feedback. ‘By atmbutmg the responsibility, of the outcome

o Same course of action be. taken

N

tmmedtately to all classxﬁe.rs that were involved there is no such delay present. All classﬁiers in the chain

.

immediately begm to strengthen-tf the outcome is desuable. and they are all immediately weakened if the

outcome is bad for the system Yet, everi though all classifiers involved are tmmedlately affected by the

feedback eptsodes they encounter it can still be seen that those classnﬁers that are tnore responsrble for the

outcome ulumately feel a greater eﬂ'ect than those classifiers that are not so frequently associated with the

outcome

So ‘this constrtiction seem 1o allow for a more efficient evaluation of the chained execution of

classifiers that still attnbutes credit and blame appropriately. Another advantage of using BTSs is that their

operauon is much simpler o implement, understand and analyze than the bucket bngade

¢

6.1.2. Parallel Testing

Another enhancement that has‘ been implemented is parallel testing. This mechanism, again,
improves the oweral] rate at which eﬂ'ecttve classifier evaluations can be achleved throughout the popula-
tion. The mechanism is based on.a few simple observations about the behavior of a classrﬁer system :

Recall that dunng each execution cycle, stimuli are provided by the external environment in the form of

- messages. The clasmﬁer system then compares all of the classifiers from its classrﬁer population and keeps
all possxble mstanuated matches in a conflict set. ‘Next, a classrﬁer is selected from this set and its actxon“

'executed perhaps resultmg 1n§some xternal behavior that affects the. state of the environment.. The main

pomt is that there mtght have been ~aqumber of other classrﬁers in the conflict set pmposmg that thts exact

Lo . »

would seem to be clear that two classrﬁers both performmg the exact
agi/\on when presented with some identical situation, should both receive credit or blame depending

upon the ultunatedresult of executmg the action, \

Incorporatmg lhlS pohcy into a bucket bngade scheme does appear tobea possrbrhty However, th

: .would not be nearly as stratght forward as it lS for BTS approach Here we must simply add to the BTS all ~

. ‘e

ri'

I8}
S
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other classrﬁers from Lhe conﬂlcl sét whose mslanualed acuon is ldenucal to that of the selecayl classifier.

This parallel tesung pohcy gathers potenually many moré observations with which the true probabxhty \of -

success of a classifier can be more accurately assessed w1Lhout requiring anxqextra trials and a tnvral

\I v

amount of extra computauon -

‘

-

‘@

v,
v

6.13. Limitations

The main limitation of using the Bemoulli frial structure as a feedback model is that it assumes that a

. strictly qliallta:ﬁive judgement of the classifier system’s behavior is‘ available. Of course,vth‘is rmay not
always be the case. There are certainly problems that are quamitatlve inmature so"that a qualitative assess-'
ment is no:tvfeasible. One possible extension of the ideas presented here might be to generalize the feedback
and selection mechamsms 10 handle quanutauve meastres. However allowmg for quanutaLwe measures

- may remtroduce the problems associated wuh ad hoc values Anyways, a qualitative approach can still be
| quite general, and the mechamsms so far described can be generalized to handle a much wider range of

interesting domains by allowing for multi-dimensional, yet still qualitative, feedback.

. 6.1.4. Multidimensional Feedback

-

Performance in the task domain can often be divided into a few distinct aspects. How this division ‘

must occur can be influenced by a number of factors., One of the most important reasons that the measure

of task performance might be split up into separate dimensions has to do with the problems of credit assign- .

ment. For example in the: tic-tac-toe domain, one mlght view the performance of the system as
compnsed of the legahty/illegalxty of its moves and whether it wms/loses/draws the games. The unportam
distinction between these.two dlmensmns is Lhe fact Lhat in Lhe case of a legalflllegal move only the smgle

acuon that caused the condition is responsible, whereas in the case of a won/lost/drawn game, the enure

o N

preceding sequence of actions was responsxble as ¥ ‘whole for the final outcome This is-an 1mp0rtam dlS-”

uncL-on from the pomt of view of appropnately assrgnm credit or blame Lo the classrﬁers in the system
3 .

A

e
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- Given that the measure of task performance can be appropnately divided into a few separate dunen-
sions, there remains the problem of accounting for multiple feedback dimensions in the hkehhood based

selecuon algomhms developed prevnously The approach consndered here has been to first calculate parual

wexghts for all of the competing classifiers, one dxmensron at a time. Once each classifier has a separate: .

-wexght for each dimension the final weight is calculated by simply mumplymg each of the partial wenghts. v

kN

“ together.
| In practice, this procedure produced good fesults but with some limitations. Search performance was
best when there exlsted classxﬁers thal could exhlbxt good performance in all aspects of the domain task. I
- suspect that the search would be much less eﬁ'ecuve when no one classxﬁer could encode behavior that was
succ‘essful along aj, dxmensxons of the task. In reality, the search techmque was not developed wuh mulu-
 ple performance drmensrons in fnind. The method of muluplymg the mdmdual likelihoods to arrive at an
evaluauon of a classuier s overall ﬁmess arose strictly from intuitions and pragmatic concerns but this pro-
. cedure is not Just:ﬁed In any real, formal sense and must be considered ad hoc.

6.2. Selection Algorithms

There are three dxsunct selection mechamsms used in constructmg a genetic learmng system. A

“

selection mechanism is uulued for the conflict resolutxon process, the classifier reproductive ﬁocess and.

classxﬁerexuncuon s < Lo i RN
. b T . . 3

\_6.2 l Conﬂnct Resoluhon ' g?_»

.,4,5 .

'I‘h(; conﬂicb resolunon pha§e of 1he classnﬁer system execution cycle involves a compeuuon among '
all of the classxﬁer mstanuatxons k the conﬂxc(,set for the nght to execute thexr Tespective actions. The
algoﬁthm developed here uuhzes a.weighted stochasm: selecuon procedure hke that descnbed in a previous

secuon Each classifier in the conﬂxct set is given a welght lhal Is proportional to the likelihood that it is the

~ classifier that yields the best chance of cxecuung a successful action. In the caSe where feedback is pro-

vided in a muludxmensmnal form, the weights for each dxmensron are. calculated mdependenLIy and then thc
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. results mulnplted together for each classxﬁer Once the, werghts have been assrgned to each classrﬁer one

of them is selected by the stochasua procedure accordmg to théir wexghts This classifier and all other

‘s

e
classxﬁers tp the conflict set that specrfy the same acuon are saved ina BTS for credtt assrgnment purposes

K

s Thts particular selecuon procedure for conflict- resoluuon has a dtstmct advantage over. tradluonal

conﬂtct resolut.ton selecuon procedures in that it more effecuvely balances the competmg needs of explota- o .
tion and explortatron (this advantage was clearly demonstrated in chapter 5) As more tnformauon about
the success ratios of the various classifiers is acquired, we become more certarn that the classifiers observed
to have been the best really are so. ’Ihe proportion of trials allocated to these successful classrﬁers grows in

dtrect correspondence to this mcreased certainty. Thus if a supenor classxﬁer is introduced at some pomt

-

of the search its observcd ratio of success will eventually demonstrate this fact wrth ever mcreasmg cer-

tainty and, hence tt wrll eventually dommate its inferior compeu‘lors to th% point where it wtns virtually all

<

-conflict resoluuon competitions. In fact if we assume that no classrﬂer is deleted from the populauon then
it is clear that the classiftér system is guaranteed tQ achreve its opumum level of performance in the limit.

Of course it is not practical to keep every classrﬁer in the population 1ndeﬁmtely, meamng that at some :
/‘t L.
stage of the search classrﬁers will have to be deleted from the populatron So there is always a non- zero_

] .

chance that an opttmal classrﬁer could be deleted from the populatmn before it could adequately demon-’

strate its value. This, hQWever is an unavordable risk.
62.2. Reproduétion :

[ .-

, The reproducttve phase drives. the heunsttc search through the classxﬁer space and as such it pro-= - N
S '

vides the rmpetus behtnd the genetic search techmque lt has been- prevrously mentmned that the heunshc,

underlymg the enttre genetic search process can be stated as follows:

If some classifier has demonstrated good task performance, then a similar classifier may also demon-

strate good performance-and, perhaps, evert better performanlge. .

- The definition of similarity is dependent upon the genetic operators that are used o construct progeny, from

v



the parent classifiers.

The reproducuve process involves a global compeuuon amongst the entire g}assrﬁer population for
the nght to become progemrors for the next generation ‘'of offspring. Normally, this selection process is
biased, favonng strong classrﬁers over weak clasgifiers, Underlyrng this bias is the assumplmn that the

3

offspring of superior parents are hkely to be fit, more so than the offspring of inferior parents.

The alg'omhm used to select parems, for the next generation of classifiers is again construcred from ‘
" the likelihood-based weighted stochastic selection téehnique developed earlier. That is, all of the classifiers
in the population compete for the right to reproduce, each classifier receiving a weight that is proportional
to lhe likelihood that it is superior to its competitors. This procedure provides a strong bias towards select-

ing as parenls those classifiers that have proven to be supenor than the remainder of the population.

Muludrmensronal ﬁmess measures are dealt with in much the same manner as with the previous
selection processes. Once the appropriate values have been arrived at for each dimension, the final com-

bined weight for a elassiﬁer is obtained simply by multiplying the values from each dimension together.

6.2.3. Extinction

| Under the fixed population size assumption, whenever a new classrﬁer is to be mtroduced o the
classifier population, some existing classifier must.be removed to make way for its msernon A classifier
extinction phase immediately precedes any ipsertion phase in the execution cycle. This extinction phase
‘normally involves aglobal compeuuon 'for survival amongst Lhe entire classifier population. It has been»
observed that whenever any classifier is removed there is a non: zero chance that it’ may have been an

ﬂrmponant one 10 fetain. The real issue is how 1s. lhe risk of prematurely removmg an’ 1mportant classrﬁer ,

: from the populauon o bgmmmrzed"

The mechamsm lo be used here is Just a srmple determmrsue selection of the classifier that happens
to posses Lhe lowest observed success Jatio at the onset of the extmcuon phase. So the apparently fittest

classifiers survrve each exunct.ron phase The rrsk of losing superior classifiers is small because they will =
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* normally outperform the inferior members of\“the popdlaei'oﬁ‘ and, ‘h'ence. be spared during the extinction
phase. However, there is a nor-zero likelihood that a superior‘ cilassiﬁerv_wi'll, by chance, demonstrate
apparently inferior behavior in the short run and be removed as a result. This p(')ssibilit‘y is uﬁavoidable. in
principle, but this deletion policy is a reasonable one in that superior classiﬁers"are not likely to be

removed.

5

This selection Lechmque has been snmply extended to deal wnh muludxmensnonal ﬁmess me.. ures by
sxmply prioritizing the dnmensxons and progressxvely filtering out the worst classifiers in each dunensxon

until a set of worst classifiers remams. One of these classifiers in the worst set is then targeted for removal.

63. Tic-Tac-Toe Legal Move Experiments

Recall the tic-tac-toe legal move proBlem that was presented and discussed in chapter 3. This
problem shall be used to demonstrate 1he perfonnancecharacterist.icfs of a numi)er of gehgtie learning sys-
tems that employ different mechanisms. These legal vmove experiments will uﬁ}ize a repfesentational
scheme that avoids the problems associated with the limited capabilities for representing disjunction pos-

sessed by traditional classifier rei)resemations. Instead of encoding the various domain values as bit pat-

&

terns, the input messages are simply composed of lists of symbels. For example, the message (X B-O B

X 0 B B B) would denote the followihg board configuration: _ -

< X | B o]
B|X]O
B|B | B

.The claksxﬁers have condition stnngs with nine locations, one for each square on the tic- tac toe
: board o match agamst ‘board configuration messages. Each of these locauons contam some (non -empty)
subset of the set of possible marks {X,0,B}. A condmon string wxll malch a configuration message if

for each locauon i, the subset at position i in the condition smng contains the symbol at position i of the

N v -
confighrations message. Such a representation scheme can express any disjunctive combinatidn of the sym-

. "m
bols and, hence, any potential explosion (related to limited disjunction) in the number of classifiers needed

3
.

+
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to express solutions is avoided. The action stnng will merely desrgnate the square in whxch an’ X is to be

placed where the squares are addressed as follows

—
0 1 2 .
r 314 .
v ‘61718 .

Given such a construcuon a classrﬁer Lhat encodes the rule if the cenrer square is blank then pIace an X in

-

the'center square wogd be expressed by: ’ ,“

(X 0 B) (x,os) (xos) (X 0 B) (B) (x 9 B) (X © B) (X.0B) (X0 B) = 4

.

With this representation, a complete soluuon to the legal move problem requrres a geneuc leammg

system to drscover and mamtam nine d;sunct classifiers in the form of the above classxﬁer one for each

Square | / \ “

¥ i
~

Figure 6 1 deplcts a gmph of lhe performances on lhe legal move problem by two drﬁ'erent genenc

LS

learning systems, a traditional economics- based system (curve E ) .and a system lhat mcorporated the

llkellhood based mechamsms developed here (curve L) (details of the procedure followed in performmg .

| tic-tac-<toe legal move. expenmems can be found in Appendrx A2). '111e measure of performance is

‘ 51mply the: propomon of legal moves to 1llegal moves made by the systems as they adapl It can be clearly-

seen from Figure 6 1 that the llkehhood based system outperforms the economic based | system

l
s
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Figure 6.1 Legal Move Experiment - Economic vs. Likelihood

However, notice that in each case, the performance of the system plateaus well before a high level of suc-

) c'ess'is achieved. The reasons for this leveling off of perfemance can be seen by examining Table 6.1 and
I'Iilbl"e 6.2. These tables are intended to show, in some sense, how the "ciuality" of the classifier population

- changes as the systems adapt. Table 6.1 shows what proportion of a perfect solution (mne generalized

| classifiers, one for each square) was discovered by the economic-based system at various stages of its ~
search. This table also shows what percentage.))f each of the sib-solutions, one for each square was

discovered, and (in small type) what proporti ‘ of the total populauon belongs to each of Lhese sub-

populations. Table 6.2 shows the correspondmg information for the Iikelihood-baISe_d‘system.

&
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Table 6.1 Legal Move Experim'emwim Ecdnomic Selection
o Percentage of Solution for each Sub-Populatxon
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Table62 Legal Move Expenment with Ltkehhood Selecnon

"Ihese tables demonshate agam that the ltkehhood based system d1scoVered a htgher proporuon of the ]

soluuon but nou¢e that 1n both cases, the proporuon of thc total soluuon dtscovered has begun to difninish.

The sub—populauon 51zes mdtcate why this has occurred Both of the systems have over—converged That s,

they have converged to good soluuons in a few of the sub—populauons but systems have completely lost -

the | representames from other sib- populauons ‘Thus, they have lost dlversny that was necessary for attam-

_ing and maintaining an opumal soluuon T -

- Further experiments of this nature are presented in the next section that attempt to improve on these

V-
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result of the bias in the reproductlve phase only.

.
e
’

systems and overcome sonf¢ of their weakgesses.

6.4. Extensions ‘ - : ' o ’ ;
' - . Lo : . e .

£
Recall that the convergence drfﬁcuers encountered by tlm: prevnous expenment were presented and ,
discussed in' chapter 4. In lhlS section, a number of mechamsms are developed Wthh are an attempt to i

overcome some of these major. weaknesses of the-selection algonthms developed here and of genetrc algg

v

rithms in general. Fust. an enhancement to the llkellhood based approach is preseated and its performance v

'3
mvesugated %
' 6.4.1. Ubiquity | B .. ¥

It is rmponant for the geneuc learning system 1o not only dxscover a solution that exhlbrts opumal :

task performance but also the system must encode 1ts behavioral capacities with a limited, 1f not mmrmal

number of classifiers. An obvrous way to capture this need is to attempt to discover the few most general

classrﬁers that exhlbxt the desired performance. Machme leamning systems almost universally encode a bias .
\t

" towards genemlity in their structures, and this is true of genetic algorithms as well.'

The bias towards generalxty is captured in a Holland type classrﬁer system through the scheme that

"protects generalists in the bidding mecharusm The intent is to prevent general classifiers from potennally

A

"losing their strength as quickly as their speciallsts. So, generalists will tend to acquire greater strengths,

thus biasing the conflict resolution and reproductive selection processes in their favor
{Hol8s, Hol86 H0187] What is not clear from Holland s treatment is that there is no real need for the bias

in the conﬂrct resolutron phase, and lhat the presence of such a bias is merely an artifact of the economic

model being used to estimate classifier ﬁmess. The ultimate prevalence of generalists in a population is the

P K

. Notice that there is no btas in favor of generalrsts in the conﬂrct resoluuon mechamsm developed 4

here 'Ihat is, classrﬁers are selected for execuuon based solely upon thetr demon‘&tk utility to the sys-

- tem.- So the issue at hand is how to construct a reproducuve mechamsm that appropnately biases theksearch y

[P
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around successful and general,classiﬁerﬁ.

-

Given the feedback and ﬁmess models that have been developed up to now, the approach towards
biasing the search in favor of general classnﬁers is to-introduce another fitness dxmensxon — ublquuy Ubi-*
quity is deﬁned to be the observed ratio of malchmgs to cycles. The total number of cycles that a classxﬁer.
has existed and Lhe total number of successful matches during that period arekepl for each'_classiﬁer. That
is, instead of using an artificial measure of a classifier’s synldcuc generality an operalidndlized measure of a
classifier’s real usefulnéss -to the system is utilized. Once an ubiquity dimension is defined, the normal
mechanisms for combining multidimensional fitness measures will automatically bias the reprog cﬁ\;e

selection in favor of those classifiers that have demonstrated a high rate of utility,

Experiment

Flgure 6.2 shows the results obtamed from a legal move expenment that utilized a geneue learning

~

system that incorporated the ubiquity mechanism (curve U ) along with the results obtained from the previ-

4

Ous experiment that utilized basic likelihood selection (curve L ).
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Figure 6.2 Legal Move Experiment - Likelihood vs. Ubiquity
Percentage of Solution for each Sub-Population
Trials % Solution . (Percentage of Population in each Sub-Population)
e ot ] 2] 3 Ta 5 6 [ 77 38
1000 40 51177 | 30 87 7 34 0| 35| 41
A : 51 17 7 35 4 12 3 5 4
. 2000 47 37178 | 23| 100 | 36 72 | 22 118 | 34
_ 5 6 2 61 7 9 4 3 3
3000 43 57 | 78 0] 100 Ol1wo|[mr|1s5]20
2 3 2 56 1 31 2 1 1
- 4000 40 27 | 53 0] 100 | 22| 100 0 8 | 48
2 2 0} 49 1 40 2 1 3
. 5000 37 21 | 28 0 | 100 4 | 100 032 |4
1 1.{ o 48 {. 3 41 1 1 3

 Table 6.3 Legal Move Experiment with Ubiquity Bias
Thre atroduction of the ubiquity mechanism apparently diminished the performance of the learning system .
‘a great deal! However, upon examining Table 6.3 and noLiciﬁg that the ubiquity mechanism actually began

* 1o impvove rapidly but then plateaued early, we can see that the system actually converges much faster than

¥
v



the previous two systems, leading.to qui}kcr over-convergence. Most of the dxversnty is lost almost

immediately, while the system quickly dxscovered opumal sub-soluuons in two of lhe mne sub—populanons

. — at the cxpensc of th&other sub-populations. This ncxt secuon attempts to mcorporalc a mechanism that

" limits over~convergence , o

6.4.Z. Dominance

' |
It has been mentioned earher in chaptcr 4 that the simple algomhm for classxﬁer cxuncuon 1 ds to

T T

o

some difficulties when the environment prcsems a number of dxstmct niches, all of whxch should be takcn

advantage of. That particular discussion ﬂlustm!ed how the Lechmque of sunply removmg Lhe worst
classifier from the population during each extinction phase, regardless o form tends to rob the popula-
tion of i ns diversity, thus leading the classxﬁer system into a convergent state where only a single environ-

mental niche is exploue(L

o

The approach taken here, in an auempt o cope with convergence difficulties, is in the same spirit as *

the approach taken to favor generalists — through the inLroducu';)n of another finess dimension that will be
referred to as dominance. Dominance is defined te be the observed ratio of selectmns to matchmgs The

total number of times that a classifier has been selected in the conflict resolution cycle and the total number
of succcssful matchmgs are kept for each classifier. Once the dominance dimension is defined, the nermal
mechamsm for combining multidimensional fitness measures aulomaueally bxases Lhe selecuon mechan-

isms to favor those classifiers that win a large proportion of their competitions.

-

. The operation of Lhis mechanism in'combating convergence is twofold. ™

* " Dominance limits over-convergence ‘in the presencc of a [iredoininamly successful sub-population,
When some particular form of classxﬁer is dlscovered fo,pérfonn well in the environment it acqmres a
high fitness rating, thus, increasing its reproducuye advantage. When this occurs, a number‘of
classifiers similar in-form will be introduced to the population through the reproductive process. If

the general form of these classifiers is particularly successful a sub-population will grow around ‘this

s
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1

"- Y .‘ » i
form, Mem,bers.of the same sub-population (i.e. classiﬁers with similar forms) w}ill tend to match the
same set of envu'onmental sumuh and so Lhey wrll compere with each other On successive conﬂrct .
«' 'resol‘uuon cycles. As the sub populauon grows Lhe chances of any ¢ classifier winning a compeuv

tion diminishes and hence the members of lhe sub—popl.uam)n recen alow dommance raung

e Dominance limits the loss of classrﬁers that are suecessful' in?: specialized niches. A classifier that is
reasonably successful at exploiting some particular niche but does not belong to a large'.li well
entrenched sub-population, will not have many competiLors'in those situations where it is matched.

“In which case, it will win most of its competitions and, hence, receive a high dominance rating. .

-,

l .
' Experiment

Frgure 6.3 shows the results of a legal move expenmenl erh a geneuc 1eammg system that ‘mcor-
‘porates both the ubiquity and dominance mechamsms (curve D) aJong with Lhe prevxous results from the' »

P3
A -
system with ubiquity alone (curve U).
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Figure 6.3 Legal Move Experiment - Ubiquity vs. Dominance
Percentage of Solution for each Sub-Population
. Trials % Solution (Percentage of Population in each Sub-Population) »
, 0 1 2 3 4 5 6 7 8
1000 43 401 331441364056 51|18 6
N S o 7 4 15 8| 10] 16 9 6 15. -

2000 58 67 1 44 167[33(33[67] 79| 39 97

: 11 4| 17 8 9] 1| 1 7 23

3000 . 68 67 54171 |64 148679367 - 82

» 7 sjujunjn)wlal s 15

4000 73 60 | 80 |74 [ 67 [52]66| 97| 67 | 96

o 8 )1 15| 15| 14 3 9

5000 69 46 1 100 | 71 [ 57 | 48 58 { 92 |50 | 100

5 7010 11 28| 2 8 9 6

Table 6.4 Legal Move Experiment with Domiinance Bias
The performance of the system wnh dommance is- superior to that exhibited by the system incorporating

only an ubiquity mechamsm 'I‘he mrroducuon of the dominance mechanism appears to have reduced the

. Plateau effect experienced by the previous syStems. Table 6.4 shows that the dominance mechanism does,

!

N
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in fact, limit over-convergence so that the predominantly successful sub—populations do not grow at the

expensé of the other sub-populations. Upon examining Table 64, it seems that a sub-population'grows in

‘size while its membership continues to improve, but the sub-population will begin to shrink if progress v

does not continue to be made. In this respect, the dominance mechanism is quite a powerful technique for
improving the performance of the genetic search in a domam mdcpendem manner. However, a dxsturbmg

px‘operty of Table 6.4 is that, periodically, the system appears to los¢ important and useful classifiers. This

. problem would seem to stem from the ad hoc way in which the multiple fitness dimensions are combined in

the extinction phase of the genetic search.

6.4.3. Sub-Population Separation

A difﬁculty lhai presents itself when we simply allow the entire classifier population to compete
equally for the right to reproduce is that interference problems can arise. As was discussed, the problem is

that classifiers that explon different niches in the environmerit normally possess formé;that are sngmﬁcamly

assunﬂar When two such classifiers are recombined, the resulting offspring will hkely not be useful in

" either niche because it contains building blocks from what might be two necessarily distinct sub-solutions.

Interference difficulties can be avoided to some degree by introducing a simple sub-population

separation scheme to the reproductive process. The simple, static policy implemented hercens‘ures that two

\
classifiers possessing distinct action smngs are never the joint progenitors for an offspring classxﬁcr So Lhe

classxﬁer population is staucally divided mto separale species, one for each possible action, and mating is

restricted to-eecur only between members of the same species.
A

The disadvantage of this approach can be seen if we consider that two distinct actions may be useful

in much the same type of situation. If two different actions are effective in the same situationsb then some of
\e [

the search effort will be duplicated between these two sub- populauons “The argument 1§</hat, generally,

-

distinct actions are effecuve in.a distinct set of situations, otherwise dlsnngmshmg between the actions”

becomes unimportant.
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This sub-populauon scparauon schcme actually demonstrates a performance improvement in empiri-
cal tests, A major source of mterferencc between species that explon completely dxfferent mches is
avoided. However this mechanism constitutes only a partial soluuon to the interference problem, far from

Lhe gencral goal of achieving dynamic and eﬁ“ecuve speciation, '

Experiment
Figure 6.4 shows the performarce obtained by a system that utilized dominance and ubiquity
mechanisms, with nine, fixed size sub-populations, one for each squaré (curve §). These results are com-

pared with the results from the previous experiment that utilized only dominance and ubiquity (curve D).
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Figure 6.4 Legal Move Experiment - Dominance vs. Sub-Populations
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% Solution ~ Percentage of Solution for each Sub-Population
0] 1.2 ]34 5T 61 7 s

44 43 7151 133] 36 76| 66 16 48
77 68 69 | 84 | 43 | 67 98 87 89 87
85 78 8218 1.5 {73100} 100 { 100 89 ,
93 78 99 | 97 1 79 [ 91 | 100 | 100 | 100 95
98 97 | 100 [ 93 197 |91 100 | 100 | 100 | 100
Table 6.5 Legal Move Experiment with Sub-Populations
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A pronounced performance improvement is realized> This is due to the fact that there is no longer any

- interference between the separate searches that are auempting to discover distinct sub-solutions indepen-

dently from one another. This. vast improvement in the effectiveness of the genetic search is corroborated

by-Fable 6.5.

*



Chapter 7

Concluding Rem3arks

The general objective of this research was to construct an effective, domain-ihdependent learning sys-
-tem. Genetic leaming systems were considered as an appropriate approach to take towards constructing
such black box learning systems. A more specific goal has been to examine the techmques underlying this
. genetics inspired approach wuh the intent of ulumately improving upon the capabxhues of such systems.

To that end, three main issues were pursued throughout the course of this thesis, *

. The representional adequacy of classifier syhtems.

. The difﬁculu'es experienced by genetic algorithms when atternpting to discover muluple classifier
sdlutions. “

e The tradeotf between exploiting the current knowledge of a system o achieve the best poss;ble per-

formance in Lhe short run and exploring new behaviors in an atrempt to improve upon this perfor-

mance in the long run.

The first issue to be investigated was lhe representational adequacy of classifier systems. A number
of small difficulties’ associated with using classifier systems were 1mmedlately observed. However upon
funher exammaUOn a number of properties of the representation were discovered to have a profound effect
‘ upon the way in Wthh solutions to problems could be represented. The most serious of Lhese was the lim-

rLed expressiveness of the representation. Not all of the possible disjunctive combinations of values could

. be represemed in a single field, creating Lhe potential for a combinatorial explosxon in the number of

classifiers needed to represent a solution. Such an explosion in the size of a soluthm would have an equally

drastic eﬂ“ect upon. ‘the eﬁicrency of a genetic search Lhat attempits to discover this solution.

-Another major topxc of investigauon pursued throughout this thesis was an examination of {he -

difficulties encoumered by the genetic leammg technique whenﬂt anempts to dlSCOVCl‘ muluple classrﬁer .

soluuons This was pursued both through a survey and discussion of the processes underlying the prob-

107



108

lems, and through the construction and empirical testing of mechanisms that atempt to remedy these
difficulties. Two of the major problems confronting the genetic search technique were convergence and
interference. Although Lhesg': two difficulties pose a scridus obstacle to obtaining an effective éenetic
search, techniques have bet;n developed to combat them with some . (albeit li;nited) success. Another
difficulty, indep_endenf:e.-‘is more serious in the sense that ilsaggects cannos be overcome even in principle.
The main point is that the more "targets” the genetic search must discover, the more effort is required to dis-
cover all of Lheim, no(i;hsté,ndirgg suitable techniques Lhét overcome convergence and interference
difficulties. In this respect, thé féct that the classifier system may require a larger than nccéssary number of

classifiers to represent solutions appears to condemn the representation as being unsuitable for use with a'

genetic search.

o

A final, important topic of investigation was the detailed re onsideration of the tradeoff between
exploration and ekploitati_on in i'ts abstract form — the 2-Armed Bandit Problem. A careful examination of
this problem led to the development of an improved'. statistically motivated selection techniqﬁe that demon-

strates a substantial performance advantage over the traditional economic technique in a series of empirical

» i ' ‘
tests. As a selection “hnique for ggnetic learning systems, the likelihood approach also avoids most of the

Aweaknesscs f the tra //Llonal technique: proliferation of parameters, ad hoc payoffs, scaling, and strength-

»

time dependén y l ) '

((!fResults

AN

The main result of this research has been the construction of a genetic learning system that incor-

porates all of the suggestions and procedures that were developed throughout. This implementation is built

* upon a number of results,

The development of 4 staUSucale motivated sLochasuc selection techmquc that effectively balances :
Lhe tradeoff between exploration and exploitation. ThlS in turn, led 1o the development of an accom-

panying credit assignment scheme that is superior 10 the traditional, economics-based technique.

.{
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. The dcvelo‘pment‘of méchanisms that demonstratably overcome some of the traditional weaknesses
of the genetic search technique. The ubiquity mechanism to help the genetic search better discover
. general, more concise solutions. The dominance mécham'sm to combat the tendency for the genetic

search to over-converge. And, finally, sub-populations to eliminate interference difficulties,

. "' * The development of a simple, classifier-like representation scheme that overcomes some of
" difficulties of traditional classifier répresentations. Most importantly, this new representation scheme

is "disjunctively complete”. A nice feature is that it tends to provide better human factors, as well.

Under empirical test, the genegic learning system that incorporated the suggestions and procedures
developed in this thesis demonstrates significant improvement in performance over the traditional form of
genetic learning system. This impro!ghmem does constitute progress towards the general goal of construct-

: NN

ing effective black box machine learning systéms.

Future Directions

In the previous discussions, a number of j 1ssues have been raised that have yet to receive an adequate

trcaunenL These'i 1ssues raise a number of drfﬁcult problems Lhal remain to be solved In a completely satis-

‘ fymg manner. Although some progress was made towards the general goal, there still remam a large

number of weaknesses with the genetic leamning system that was developed.

Multiple fitness dimensions have been seen to be an important gcneralizatioo of the Bernoulli trial
formalism for credit assignment. Unfonunazoj.y, the vlikelihood-based selection iechm'que was not
developed with this generalization in mind and, consequently, several ad hoc prec dures were unhzed
when havmg to combme muluple fitness measures. This- teg to a number of difficulties when extra fitness
dimensions were ‘introduced as extensions to the basic genetic search mechamsm For mstance with the
ubrqurty bias, there was a tendency for Lhe geneuc algorithm tc over- generahze its classifiers. The ubrqurty |

dimension dominated the search process mainly due to the fact lhat more mfonnauon could be acquired in |

this dimension than any other drmensron and, herice, the certainty levels in this drmensron grew at a much



™
110

‘faster rate. Another difficulty that appeared with the introduction of the dominance dimension was the ten-
. ' SR
dency for the genetic learning system to periodically lose valuab'le classifiers. The mechanisms utilized to

v

combine these various fitness dimensions did not adequately balance the tradeoff amongst these competing .

factors.

Of all the factors that can influence the .performanc\;a o.f a genetic algorithm that i;‘-searching for a
multiple classifier solution, the most important, based upon the experimental results, seems to be interfer-
ence. Recall the tremendous performance improvement that was c;b!ained by separating lﬁe chssiﬁer popu-
lation into distinct sub-populations, one for each sub-solution. This is because global optimization is a
strength of the genetic search fcchriique [Bri80j and because interbreeding between different "species” of
.classiﬁers tends to impede, not enhance, the seﬁrch. bf course, Lhe form of static separation of the classifier
populauon that was used to achieve the improved perfonnance violated the assur.,.uons about black box
learmng systems. Dynamically developing appropriate species in a population in an efficient and effective

manner is a difficult, open problem in genetic learning system research.

An important point that was made throughout was the fact tﬁat the proliferation of pérameters nor-
mally assothed with the genetic search technique is a hindrance when applying genetic learning systems
to application domains. The fact that the likelihood-based selection technique eliminated a number d_f
‘parameters was seen as a strength of the approach. However, a few para;netcrs remain. The application
developer must still provide Lhé' system with an appropriate populau'on‘ Sizc, crossover rate, and mutation .

rate. Again, developing a mechanism that Qynamically adapts the population size and search rates

appropriately and effectively remains another difficult open problem.

A basic assumption undérlying all of the develop'rrients in chapter 5 was that the inherent pfobabi]ity
of success possessed@,y a one-armed bandit (or a classifier for that matter) was fixed. That is, the probabil-
ity of obtaining a successful payoff with a given bandit or classifier did not change. This could be seen as a

restrictive assumption in that many interesting machine learning problems involve a-changing environment.

For example, the machine could be attempting to learn how .fo successfully play some game against an

3
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opponent who is adapting as well. Thus, certain behaviors that were successful at one point in time, may
not continue ‘f’/ be all that successful in the future. The selection mechanisms developed in this thesis are -
not well equipped to cope with such an environment. This would certainly be a useful extension to con-

sider.,

I would hope that, as-a result of ‘this research, it can be se¢n that black box leaming techniques, in

general, and genetic leaming systems, in particular, are an important area of machine learning research

wherein a number of fundamental issues remain to be addressed.
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Appendix 1

Procedures for the 2ABP and KABP Experiments

In the 2ABP and KABP expenmems a number of one-armed bandits are given, each of which may
possess a different probabxhty of paying oﬁ successfully. To lackle this problem, a procedure must be
defined that allocates trials increasingly to the bandit (or set of bandits) that is-paying off more than the

other(s). N '

To run an experiment, givcn a.competition among K one-armed bandits, K "rules" were used, one

rule for each bandit. The idea is that on each cycle all of the rules compete for the right to have the next

e

: Les{ performed on their particular bix/ndn A\\»vgighted stochastic selection algorithm Was used to pick ?ayvin-
ning rule on each cycle. The winning rule’s bandit was then "pulled”, and feedback was given to the rule
| depending upon the outcome of the test. The scl;action techniques that were experimentally _tcstcd differed
onl& in the way [m which the weights were assigned to the K rules, depending upon the outcomes of the
tests. As more information ts acqﬁired f;om the tests, the rule whose bandit poSsésscs the highest true pro-
bability of success should attain a weight that dominates the competitions to the extent that the best bandit "

receives most :)sf the tests. An optimal solution is reached in the state where only the rule for the best bandit

has any w ight at all and, hence, wins all of the competitions.

The economic selection algorithm utilized for the 2ABP and KABP experiments was a simple pro-

cedure that was based upon the traditional, economi'c-basgd.selection techniques described in chapter 2.
T Each wle was given an initial strength of 10.

. 'Ihe payoffs brovide?i were 1 for a' success, and O for a failure.

.. No taxation was used throughsut these experiments, ' 4 : ¥

An accounting of the total strength attained was kept for each rule which was simply:
strength = 10 + number of successes.

These siengths were used directly as the weights for the stochastic selection procedure. There is no need
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for a bucket bngade algonlhm hcre because feedbaci was always provided after each cycle, and the o;{t-

come of each trial was comgletely independent from the previous trials.

‘

The likelihood-based selection algonithm calculated weights according to the function PP (as
descnbed in chapter 5). For each rule, a count was kept of the total number of tests attempted and the total

number of successes obtained in those tests. These counts were used by PP to assign the weights,

All of the experimental results for the 2ABP and the KABP were averaged over 10 runs.



Appendlx 2

Procedures for the Tic-Tac-Toe Legal Move Experiments

A number of full-fledged genetic leaming systems were used for the tic-tac-toe legal move

experiments. Each system was built upon an identical classifier system-based parformance system, utiliz-
ing the representation described in chapter 6. During each cycle of an éxperimcm. a completely random
tic-tac-toe board configuration was co?xstructed and presented to the system that was being tested.

‘

The response made by the system would mdxcalc a square in which the system wanted to place an X. After

cach response, the system was provided with feedback that indicated the legalxty orillegality of (he preced-

ing move.

All experiments used a population size of 90 classifiers (9 sub-populations of 10 classiﬁgré each in

the case of separated sub-populations). The same genetic operators and rates were used in each experiment:

. Crossover was applied on 25% of the cycles.

'+ 7 Muution was applied on 10% of the cycles.

. The cover operator was utilized to prevent impasse situations.

The economic selection *gorithm utilized for the tic-tac-toe legal move experiments ‘was,’
1 o ' ' .
again, a simple procedure based upon the traditional, economic-based selection techniques described in

chapter2. . -

+  Each classifier was given an initial suehgth of 100. &

. The payofTs provided were 10 for a legal move, and -10 for an illegal move. -
: . P}

* * No taxation was used throughout these experiments.

An accounting of the total strength attained was kept for eachclassiﬁer which was simply: '

strength = 100 + (10 X numiber of legal moyves ) — (10 X number of illegal moves)

These strengths were used directly as the weights for the stochastic selection procedure. There is no need
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for a bucket brigade algorithm here because feedback was always provided after each cycle, and the out-
come of each move was completely independent from the previous moves.
¢
The likelihood-based selection algorithm _calculated weights according to the function PP (as
R

described in chapter 5) For each classifier, a count was kept of the total number of moves attempted and
the total number of these moves that were legal. These counts were used by PP 1o assign the weights.
Nbu’ce that the p%aua testing mechanism was used to advantage here, however, the use of Bernoulli trial

SCls was unnecessary, again, because feedback was always provided after each cycle, and the outcome of

each move was completely independent from the previous maves.

In the cases where ubiquity and dominance measures were utilized, a count was kept for each
classifier of the number of cycles that the classifier had existed, the number of times that the classifier had
_been matched Successfully, and the number of times that the classifier had won a conflict resolutxon com-
petition. These multiple ﬁmess dimensions were combined as described in chapLer 6. In the case where the
sub-populations were separated, compeuqon between sul?~popL}ladons occurred only during conflict resoly-
tion. All reproductive and extinction processes were ixf:dependently carried out séparately for each sub-

{
population,



