
Polarity Classification of Reviews by Expanding a Preliminary Lexicon

by

Ali Yadollahi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝Ali Yadollahi, 2015

Abstract

Polarity classification in text is the problem of automatically detecting the general opinion

of textual data. Analyzing the general opinion toward a topic of interest is important for

different audiences, such as companies, politicians or even regular users. On the other

hand, the availability of opinionated text data has been rapidly increasing in WWW during

the past decade. However, most of the available text data is not provided with a polarity

label and hence one may not be able to learn from it. Addressing this challenge shapes the

main motivation of the research in this field of study.

Previous works in polarity classification suffer from some drawbacks. As the major

drawback, most of the research in the literature naively assumes the availability of the la-

belled data and takes the advantage of supervising their method by the given ground truth.

Furthermore, they do not generally perform well in all domains of textual data, since they

are specifically trained over one domain. Although there exists a limited number of works

proposing an adaptable classification method, their performance is not promising on the

unlabelled data.

This thesis tackles the problem of multi-domain unsupervised polarity classification.

We propose a hybrid polarity classification technique, which is the combination of a lexical

and a learning classification. We also propose a lexicon expansion method, which uses

the hybrid classification along with the association rule mining at the sentence level. Our

experiments on various datasets show that our hybrid classification method outperforms the

previous state-of-the-art unsupervised works. Furthermore, our expansion method is shown

to increase the performance of the initial lexicon.

ii

Acknowledgements

I would like to thank my supervisor, Professor Osmar Zaiane for his invaluable guidance,

encouragement and patience throughout this thesis. I cannot imagine this project done

without his incredible support.

I would also like to thank my parents, who are always supportive of me and make my

life as easy as possible. Lastly, I thank my beloved wife, who I can always count on.

iii

Table of Contents

1 Introduction 1
1.1 Thesis questions . 3
1.2 Thesis contribution . 3
1.3 Thesis organization . 4

2 Background and Related Work 5
2.1 Polarity Classification Methodologies . 5

2.1.1 Works on annotated data . 6
2.1.2 Works on unannotated data . 8

2.2 Polarity Related Resources . 13
2.2.1 Lexicons . 14
2.2.2 Datasets . 16

3 Processing the Data 19
3.1 Data . 19
3.2 Preprocessing . 20

3.2.1 Tokenizing . 20
3.2.2 Part of Speech Tagging . 21
3.2.3 Word cleaning and Preprocessing 22
3.2.4 Inverted Indexing . 26

4 Scoring Methods 29
4.1 Lexical method . 30

4.1.1 Comparison between lexicons . 31
4.2 Learning method . 32

4.2.1 Feature extraction . 33
4.2.2 Feature selection . 34
4.2.3 Learning . 35
4.2.4 Experiments . 36

4.3 Hybrid method . 37
4.3.1 Experiments . 37

5 Lexicon Expansion 40
5.1 Association rule mining . 41
5.2 Providing an Annotated Sentence Dataset 42
5.3 Scoring words based on scores of sentences 43
5.4 Updating the lexicon . 44
5.5 Experiments on lexicon expansion . 47

5.5.1 Analysis of results . 49

6 Applying Users’ Feedback 51
6.1 Experiments . 51

6.1.1 Feedback to polarity of words . 51
6.1.2 Feedback to polarity of sentences 52

6.2 User interface . 53
6.3 Meerkat . 54

iv

7 Conclusions and Future Work 58

Bibliography 60

v

List of Tables

2.1 Summary of polarity related lexicons . 16
2.2 Summary of polarity related datasets . 18

3.1 Adjectives with exceptional superlatives and comparatives 25

4.1 Evaluation of the lexicons based on the accuracy measure 31
4.2 Results of different combinations of two learning methods and two feature

vectors . 37
4.3 Experiment over how much percent of the weakly scored data to select for

training . 38
4.4 Evaluation of the hybrid method at document level against MPQA lexicon . 38

5.1 Evaluation of lexical and hybrid methods at the sentence level based on the
accuracy measure . 43

5.2 Performance comparison between the two word scoring methods 49
5.3 Performance comparison between the two lexicon updating procedures . . . 49
5.4 Comparison with the previous methods . 50

6.1 Effect of feedback for words over performance of lexicon expansion method 52
6.2 Effect of feedback for sentences over performance of lexicon expansion

method . 53

vi

List of Figures

1.1 Review of a laptop product from the online shopping centre called “Amazon” 2

3.1 Symbolic procedure of tokenizing an input document review to its sentences
and words . 22

3.2 Preprocessing and inverted indexing of the words 27

5.1 Behaviour of the two proposed lexicon update procedures 45
5.2 Big picture of the lexicon expansion model including all the components . . 46
5.3 Performance of the lexicon expansion over different datasets based on the

various values of minimum confidence . 48
5.4 Performance of lexicon expansion over different datasets based on various

values of minimum support . 48

6.1 A snapshot of message panel in Meerkat (the tree structure shown on the
left side of the image) . 55

6.2 Message window, polarity of the message at the top left of the window and
coloured words . 56

6.3 Feedback mode in the message window 57
6.4 Diagrams window for a thread of messages in Meerkat. The left diagram is

the temporal trend of polarity and the right one is the histogram of polarities
inside that thread . 57

vii

Chapter 1

Introduction

Gathering and analyzing opinions toward a topic or entity is a crucial and fundamental task

every politician, famous company or even individual person is concerned with. There are

many large companies and firms that collect and analyze the reviews and feedback from

users. This is also a common interest among many politicians and administrators, who

want to know more about opinions and feelings of the general public toward them or their

organization. Furthermore, from an individual point of view, realizing about the opinions

of other people psychologically helps the instigator to grasp knowledge about an entity and

to feel more confident about the future decisions one wants to make.

On the other hand, growth of available data in the World Wide Web has assisted re-

searchers to gain more information about people’s opinions regarding various targets of

interest. This has made the opportunity for researchers to study people’s attitudes about

products, companies, politicians, etc. These information are often represented textually in

different formats such as reviews of products, opinions inside a weblog, posts in a forum,

tweets as short messages and comments in social media such as Facebook, Youtube and

Google plus. In general, any type of text, which expresses an opinion (either positive or

negative) toward a subject such as an event, issue, service, or any other interest, is called

“opinionated text”. Figure 1.1 is an example of an opinionated text about a laptop extracted

from the “Amazon” online shopping centre.

The positivity/negativity degree of a text unit is called “polarity”. In the sample opinion

shown in Figure 1.1, one can see the star-based polarity given to the review. In spite of the

availability of a huge number of opinions in the WWW, most of them are not provided with

a manually labelled polarity, such as posts inside a forum. Hence, devising an automatic

labelling method to find the general polarity of a set of textual opinions is fundamental.

Problem Definition: Given an opinionated document d evaluating an entity e, deter-

1

Figure 1.1: Review of a laptop product from the online shopping centre called “Amazon”

mine the opinion orientation oo of d on e [1].

In order to come up with an automatic solution for the labelling task, diverse techniques

from different fields of computing science have been applied. Since the labeller deals with

the text, “Natural Language Processing” (NLP) techniques can be used to extract informa-

tion out of text. Furthermore, since the task in general is a classification task, “Machine

Learning” ideas and methods would be of great importance.

Finding the general polarity of a text unit has been done in different granularities. Anal-

ysis of polarity can be done at the document level, sentence level or phrase level. Further-

more, polarity can be categorized in binary classes of positive/negative or in ternary classes

of positive/neutral/negative or it can be considered as a regression problem in which the

task is to assign a rate (for example from one star to five stars) to a text.

This work is set up under the set of assumptions as below:

1. Text units are documents. We create our classifier over documents, instead of other

text units such as sentences, since they represent the general opinion of the users,

while sentences would express users’ opinions toward a specific target.

2. The classification task is binary, i.e. documents are considered to be either positive

or negative (due to lack of available data with the additional label “neutral”).

3. We assume that we do not have the Labels of the documents in order to simulate

the unsupervised environment. However, the datasets that we use in this work are

provided with the labels, which we use for evaluating our methods.

4. We study the performance of the classification over a mixture of reviews subject to

various types of entities, gathered from different online media. Our motivation to

work on such a mixed data is that we desire a generic and robust polarity classifier,

which is adaptable to new domains of discussions. Furthermore, since reviews are

2

meant to bear a general opinion toward a subject, they become an interesting type of

opinionated text to be investigated.

1.1 Thesis questions

This research mainly attempts to approach the problem of polarity classification of texts. We

manage to run experiments and observations with the purpose of answering the following

questions:

1. Would it be possible to build a polarity classifier with a high level of performance,

without having any knowledge on the polarity of text documents?

2. Can we build a robust polarity classifier, adaptable to be applied in multiple domains

of text?

3. What are the discriminative words inside a corpus of text documents, which would

determine the polarity of the text? Can we expand an initialized lexicon by extracting

those words from an unlabelled corpus?

4. Can we apply users’ knowledge in our classification system to enhance its quality?

1.2 Thesis contribution

In this work, we contribute to the problem of polarity classification through various dimen-

sions:

1. A lexicon expansion method is proposed, which is capable of mining the informative

and dominant rules from a set of multi-domain unlabelled text data. This expansion

technique is also able to apply feedback at different levels of text, including sentence

and word to modify its behaviour. The lexicon resulted from the expansion method

is shown to improve the initial lexicon.

2. A hybrid method is proposed for the scoring of documents and sentences, which is

a combination of a lexical and a machine learning scoring method. This method is

shown to outperform the state-of-the-art unsupervised methods.

3. A new feature selection method is proposed, which is capable of ranking the features

without having any labels from the instances. The resulted features are shown to

3

represent more accurately the polarity of the documents and to boost performance of

the applied learning methods.

4. Based on the techniques proposed in this work, a sentiment analysis tool has been

implemented and embedded in a community mining package called “Meerkat”. This

tool provides polarity classification and polarity visualization of documents, words

and sentences. Furthermore, it enables the user to provide feedback about the polarity

of text units and exploit this feedback to improve performance.

1.3 Thesis organization

The content of this manuscript is structured as following: Chapter 2 introduces the previous

methods and techniques in polarity classification; Chapter 3 discusses the techniques we

have used for preprocessing; in Chapter 4, the scoring methods we have applied in our sys-

tem are examined; Chapter 5 describes our proposed lexicon expansion method; Chapter 6

discusses the feedback system and finally Chapter 7 is dedicated to the conclusion of our

work and the future research directions.

4

Chapter 2

Background and Related Work

2.1 Polarity Classification Methodologies

Polarity classification is the task of classifying the opinion of a given text as falling under

one of two opposing sentiment polarities, the most famous of which are “like” vs “dislike”

[1]. Although much of the work in this area has been done on products and services reviews

which mostly hold positive or negative opinions, there are other problems where “like” or

“dislike” are interpreted as other concepts such as different political views [1].

Automatic classification of polarity can be categorized from different aspects. Different

media can be used to express opinions, among which we only focus on text. For more

information about other types of polarity classification, one can refer to [2].

Polarity classification in a text can be done either at the document or sentence level.

At the document level, the whole document, whether short or long, is the atomic unit of

input to the problem and what matters is the polarity of the whole document, while at the

sentence level, each sentence is expected to have a polarity independently. As noted in [3],

a challenge in labelling at the sentence level is the influence of the surrounding context on

the sentence. For example, depending in what context it is used, the sentence “I can’t give

a better score to this product.” can have different polarities. For instance, if there are other

sentences before this sentence stating the positive features of the product, the sentence is a

complement. But, if it is followed by a set of drawbacks, it would be a negative sentence.

With respect to the nature of the data, there are two important modes of the problem.

Some datasets benefit from being annotated by a human, while there are many unlabelled

datasets of reviews and posts. Methods working with labelled data often show better re-

sults, nevertheless they require manual labelling which is an expensive process in terms of

both time and money. In the following two subsections, we discuss previous methods on

annotated and unannotated text data, respectively.

5

2.1.1 Works on annotated data

The algorithms that deal with labelled data are called “supervised methods”. Supervised

methods apply some machine learning algorithms on a set of training data, in order to be

able to predict the label of unseen test data. They need an annotated dataset of texts for the

task of training, which creates a model to discriminate between polarities.

In order to apply machine learning methods, one should represent the text by means

of descriptive features. After that, some techniques should be used to train a polarity clas-

sifier. Most solutions introduced in the literature are general purpose machine learning

techniques, while some of them are sentiment specific. Sebastiani was the first to apply

general text categorization algorithms on the field of sentiment detection [4]. Later, Pang

et al. [5] compared performance of SVM and Naı̈ve Bayes for classifying polarity of the

movie reviews.

A large part of the literature is dedicated to finding out usefulness of many features and

techniques in learning. Most common types of those features, which have been also applied

in other areas of text mining, are as follows:

Presence-based and frequency-based features

The most common way to describe a piece of text is by using a binary vector, in which each

element corresponds to one term from a dictionary. The element at index i in the vector is

set to 1 if the term i is present in the text and is 0 otherwise. Likewise, one may describe

the text as a vector representing the number of times individual terms have been repeated.

The former is called the presence-based and the latter is named the frequency-based type of

features. Although term frequency is a popular feature in information retrieval, Pang et al.

[5] obtain better performance when using presence-based features.

Unigram and n-grams features

A unigram refers to one single word in a text and an n-gram represents a group of adjacent

words in a sentence, preserving the order. For instance, in a sentence such as “I ate a

delicious apple”, delicious would be a unigram and “delicious apple” would be an n-gram,

more exactly a bigram in this case. Although n-grams have more information than unigram

features, concerning the position of words in the sentence and being used as a group, their

effectiveness in increasing the performance is a matter of some debate. For instance, Pang et

al. [5] report that unigrams are more effective than n-grams; however, some other research

6

such as the work of Dave et al. [6] indicate better results for the combination of bigrams

and trigrams.

Part of speech

A part of speech is any grammatical category, which represents syntactic functions of a

word in a sentence. For example, nouns, verbs and adjectives are three most common parts

of speech. Some types of words are more probable to carry information about the polarity

of a sentence or document, hence part of speech can be a crucial discriminator to detect such

words. It is indicated in previous works that adjectives are very important in determining

sense of the text. In fact, adjectives can be used both as main features such as in works like

[7] and [8] and as filters for selecting other features. For instance, Turney uses adjectives to

detect a set of phrases as features and then determines the polarity of documents based on

those features [9].

In addition to adjectives, other part of speech tags such as nouns like “gem” or verbs such as

“love” can improve performance of the task [1]. Some previous works focus on comparison

of adjectives, adverbs, verbs and nouns like [10], [11], and [12].

Syntax

Several researchers investigate usage of word dependency-based features by using depen-

dency trees [13]. There are contradicting results regarding the effectiveness of dependencies

in text in previous works. Slight improvements in performance are reported in [6] and [14],

while Ng et al. [15] conclude that addition of dependency-based features does not offer any

improvements over the simple n-gram-based classifier.

Negation

The use of negating words in a sentence may totally flip the polarity of that sentence. For

instance, ignoring “not” in “He does not like the color blue” results in a false positive.

Attaching “not” to the words occurring near the negating words is one of the elementary

techniques done for the first time by Das et al. [16]. Although the naı̈ve assumption that

each negation word flips the polarity of a window of following words is working in many

cases, it is not a general rule. Later works try to optimize this technique by reversing the

phrases based on the part of speech tag patterns [17].

Besides the explicit negation words, there are other terms which may negate a sentence. For

instance the verb “prevent” in the sentence “They prevent keeping unhealthy foods in the

7

store” and the verb “deny” in “She denies admiring the brand” are implicitly reversing the

polarity.

Topic-oriented features

Sentiment of a given sentence may be topic specific. For instance, the word “fast” in the

context of car reviews is considered as positive, while it may be considered as negative in

movie reviews. Different features have been investigated based on topic in the literature,

especially in the work of Mullen et al. [7].

2.1.2 Works on unannotated data

It is obvious that providing a solution for unannotated data is always harder because of

the lack of labels comparing to annotated ones. In fact, most of the informative and also

subjective text formats, such as comments, reviews and news, are left unlabelled and hence

it is useless using them for the purpose of training a classifier. Also, annotating the data is

very expensive in terms of time, money, and human effort.

Researchers try to tackle the problem of unlabelled data from a wide range of perspec-

tives. We have categorized the related methods in three different groups: the first group

belongs to the solutions whose aim is to expand a lexicon of words which contains words

and their prior polarity, so called the “Lexicon expansion” methods; the second group is

concerned with “domain adaptation”. Most of the works on unannotated data would fall in

one of these two categories. However, there are also other types of works in this scope, all

of which are described in the third category referred to as “other methods”.

Lexicon expansion

A very basic and simple idea to build a classifier for unannotated data is to use a lexicon of

words. A lexicon is a dictionary of words, each associated with a score showing its degree of

polarity. While classifying the test instances, polarity scores of each word contained in the

test sample are fetched and processed for the sake of predicting the polarity of the whole

text. Processing of these scores could be done in different ways, including summing up,

taking the average, etc. This generic solution is called “lexical based” method. Currently

existing lexicons can be used for this purpose; however, to have higher performance, one

may need to create his/her own lexicon of words suitable for the domain of data. Since

manually building a lexicon is a tedious and time consuming task, automatic solutions,

called “lexicon expansion” methods are suggested. Researchers apply different methods

8

for automatic creation of the lexicon from the information lying in the data. The first works

belong to Hatzivassiloglou et al. [18], Pang et al. [5], and also Yu et al. [19]. They

approached the problem by making simple assumptions about the occurrences of words.

For instance, Pang et al. [5] assumed that words present near the word “excellent” could be

counted as positive while words adjacent to the word “poor” can be negative.

Further attempts to create a useful lexicon were concerned with clustering of words

or phrases in sentiment clusters including [20], [21], [22], [23], [24], [25], and [26]. One

of the valuable attempts in this set of works was the work of Hatzivassiloglou et al. [18].

They created a lexicon by using “opposition constraints” such as “but” and “and” between

pairs of words and separating the words into two categories with opposite polarities. After

finding these two groups of opposing words, in order to assign sentiment orientation (or

degree of polarity) to each category, different techniques have been proposed. For instance,

Hatzivassiloglou et al. [18] simply assumed that the words with more frequency seem to

be positive. For instance, their method takes the sentence “I think this book is well-written

but controversial”, puts “well-written” on one category and “controversial” on the other

one. Then by using the frequencies of the words in each of those categories, they find

the general polarity of each category and assign it to all of the words inside it. The larger

category is simply and naively assigned a positive polarity.

Another technique, popular in previous works, is to have a set of “seed” words with

known polarity and then to assign the polarity of new words with respect to their relation-

ship to the seed words, i.e. polarity of new words are assigned by propagating the polarity

of seed words to other words such as [20], [27], [21], [22], and [28]. For instance, they take

a dictionary and find the synonyms and antonyms of the seed words and assign the same

polarities and the opposite polarities of the seed words to those related words respectively.

Note that most of the mentioned methods try to find a “prior polarity” of words. “Prior po-

larity” of a word is the polarity that it invokes no matter what context that word is occurring

in while “contextual polarity” is the polarity of the word with respect to the context. For

instance, since the word “security” bears a positive polarity in general, we can assume a

positive prior polarity for it. However, if it occurs inside a sentence like “There are three

living former Secretaries of Homeland Security.”, it does not infer any positive or negative

polarity since it is part of a referring expression. Therefore, it has a neutral “contextual

polarity”. Prior polarity should be further applied to determine the “contextual polarity” of

the words with respect to the concept and domain such as in the work of Wilson et al. [29].

9

Domain adaptation

One idea to produce a generic classification method which is adaptable to any kind of

data on any domain and extremely useful for unannotated data, is training a classifier over

a labelled dataset from one domain or topic, called the “source” and use it to label the

unlabelled data from another domain, called “target”. For instance, if one has the polarity

labels of the instances in a dataset in the domain “movies” and wants to do the classification

in the domain “cars”, the source domain would be the movie data and the target would be

that of the cars. However, the results of such a process in various domains have been shown

to be unsatisfactory in [30]. This is expected since the keywords and phrases used in one

domain may differ totally from the keywords in another one. Furthermore, one word in a

domain may bear a different sentiment from what it does in another domain. For instance,

sophisticated may be interpreted positively in domain of the movie, while it might bear a

negative meaning in domain of the cars. Therefore, adapting the classifier trained over the

source to be useful for the target is an essential step. This procedure is called “domain

adaptation”.

According to [31], domain adaptation is done in two distinct ways, namely “labelling

adaptation” and “instance adaptation”. In labelling adaptation, the labelling function is

adapted since some features (words in opinion mining) may differ in polarity between

source and target domains. In instance adaptation, the probability function of features is

adjusted, for instance the changes of word frequency from one domain to another one are

modelled.

Early attempts to approach the problem relates to the work of Aue et al. [32], which

evaluates the performance of four rudimentary approaches to somehow adapt a classifier

to be useful for the target domain. Those approaches include: training over all possible

domains, limiting features to those observed in the target domain, ensemble of classifiers,

and using a small set of labelled in-domain data.

Further simplistic attempts are the work of Yang et al. [33], which ranked features of

the two labelled datasets by running logistic regression over the sentences and selecting the

highly ranked features as the ones that are most common in all domains.

Label transferring is another method used in some of the previous works for domain

adaptation. The basic idea of label transferring is to find the most informative samples

of the target domain by means of a classifier that is trained over the source domain and

then label those informative instances to train a brand new classifier over the instances.

10

The first work that exploited this idea belongs to [34]. Later, the same team improved the

performance of their system with selecting “generalizable features” by means of a measure

they named “Frequently Co-occurring Entropy” in [35]. This measure includes two criteria

which are frequently occurring in both of the domains and also having almost the same

probability in the two domains. Recently, Li et al. [36] applied the same idea by finding the

most informative instances in the target domain using classifiers with a query by committee

(QBC) strategy.

A very common technique, used in different schemes in previous works, is to categorize

the features in every domain into two groups. The first group belongs to features, which

happen frequently regardless of the domain, called “domain-independent” features. The

second group, called “domain-specific” features, are common just inside their belonging

domain. For instance, assume that we have two sets of reviews belonging to the domains

“food” and “movie”. We can categorize all of the words of these two datasets into three

different categories. One of them would be the set of the words specific to the domain

“movie” such as the words “actor”, “screen” and “perform”. The second category would be

the set of the words specific to the domain “foods” such as “pot”, “spicy” and “bake” and

the last category would be the set of the words in common between the two domains, which

would occur independently of the domain of the text such as “good”, “bad”, etc. The reason

of applying such a categorization over the features is to align domain-specific features of

the source domain to those of the target domain and then adapt the trained classifier in the

source domain.

Based on the explanation above two steps should be followed:

Clustering features: There are methods suggested to distinguish the two types of fea-

tures. The idea to recognize domain-independent features is to find features which occur

more than a threshold in any domain. To find domain-specific ones, the degree of depen-

dency of each feature to each domain should be calculated. In information theory this can

be done by using “mutual information” between the feature and domain.

Alignment: Alignment is a step in which each domain-specific feature in the target

domain is mapped to one or more domain-specific features in the source domain. In the

literature this is done in various ways. In the first attempts, Blitzer et al. [30] approached

the problem by using an algorithm, called “structural correspondence learning (SCL)”. SCL

tries to find the domain-independent features (pivot features) as most frequent ones and

finds the correspondence model between pivot features and all other features by training

linear pivot trainers.

11

Li et al. [37] try to approach the alignment problem by using non-negative matrix tri-

factorization of term-document matrix. Basically, they factorize the term-document matrix

in the source domain and then by means of a matrix (which expresses if each of the words

is occurred in both domains or not) they estimated the factors of the term-document matrix

in the target domain.

Pan et al. [38] aimed to cluster domain-specific words in both domains by means of

a spectral feature alignment (SFA) algorithm. This work is promising to exploit all the

relationships between the domain-specific and domain-independent words in spite of SCL.

Basically, they create a bipartite graph of features that consists of two clusters of domain

specific and domain independent features. Then if there exists two domain specific features

from two domains that have many common domain-independent features they align them

to be in correspondence to each other.

In addition to clustering-alignment method, there exists another group of solutions to

the problem of adaptation which is based on feature selection in both of the source and

target domains. This approach tries to find a feature space in which the gap between dis-

tribution of source and target domains is minimum, comparing to other spaces. Features of

both domains are transferred to this new feature space and then a classifier over the source

domain in the new feature set is trained. This classifier can be guaranteed to be working

with higher performance over the target domain.

Other methods

Some other methods appropriate for unannotated data include but are not limited to:

Bootstrapping: The general idea is to use an initial pre-trained classifier on another

dataset to label the target dataset and then using this newly labelled dataset to train a new

classifier. Kaji et al. [39] used this method to label a set of HTML documents with the

positive/negative polarities.

Belief network modelling: One of the recent usage of belief networks is on training

a model for the task of sentiment classification. Lin et al. [40] add a layer of sentiment to

the structure of a famous probabilistic document model called “Latent Dirichlet Allocation

(LDA)” [41] and created a new model called “joint sentiment topic” (JST) to find the po-

larity of the words inside a set of documents with respect to each topic. The same group

conducted a comparative study of Bayesian models for unsupervised sentiment analysis in

[42]. They also examined the performance of the JST model over different domains of

datasets in the same work.

12

Geometric structure: There exists a set of works, which attempt to find the polarity

of the data points (either documents, sentences or words) by using the assumption that the

points sufficiently close to each other prefer to have the same polarities. The works of Zhou

et al. [43] and also that of Cai et al. [44] are examples of this category.

Combining lexical and machine learning methods: Lexical and learning methods

can be combined to compensate the disadvantages and drawbacks of each other. In order

to optimize the performance of an initially trained classifier (over a different domain), Qiu

et al. [45] use a lexicon-based classifier in which in each step firstly the lexical classifier

labels the data and then the learning classifier is trained over the labelled dataset. Operations

continue until results of the two datasets have the minimum distance. In another work,

Prabowo et al. [46] try to build a semi-supervised hybrid classifier by using both rule-based

classifiers and SVM classification.

It is worth to note that there exists another group of works, which exploit a small set of

labelled data to train a classifier with a low level of accuracy. Then, by using this classifier to

label the unlabelled data points, they attempt to expand the training data. One of the recent

works in this category belongs to the work of Dasgupta et al. [47], which uses spectral

clustering to find the unambiguous reviews in a corpus and then to apply those reviews to

classify the ambiguous ones.

Some of the previous works employ other types of information of the corpus, besides

their lingual content, to enhance their classification. For instance, Hu et al. [48] use emoti-

cons to find the sentiment of a given comment in social media. Strong analytical references

exist for a broader study of all the previous methods and their details in the area of the po-

larity classification, such as the survey published by Liu et al. [49], the book [50] published

by the same author and the surveys [51] and [52].

2.2 Polarity Related Resources

Building lexicons and collecting datasets is hard and time consuming. This is why most

researchers prefer to take advantage of current resources. Here we introduce some of the

most well-known lexicons and datasets for polarity mining. Note that getting to know the

process for the creation of these resources helps if one desires to build his/her own lexicon

or dataset.

13

2.2.1 Lexicons

There are many publicly available lexicons which are results of lexicon creation and expan-

sion of the previous sentiment analysis works. Among these lexicons the following ones

are known to be the most frequently used and effective in the literature (A summary for the

following lexicons can be seen in Table 2.1):

Harvard General Inquirer

This lexicon 1 is the result of one of the first attempts [53] in compiling a list of words for

sentiment analysis. The lexicon contains syntactic, semantic and pragmatic information of

its words. Among the information provided for each word, the one that is of our interest is

“positive” and “negative”. The lexicon includes 11, 790 words. The score of each word in

this lexicon would be 1, 0 or −1 respectively meaning that the word is positive, neutral or

negative.

Opinion Lexicon

This lexicon 2 which is an outcome of Bing Liu’s research in sentiment analysis [54, 55]

consists of 6, 786 words, among which 2, 009 of them are positive and the rest are negative.

The corpus from which they have extracted the words, includes customers’ opinions about

various features of products. They have extracted the words of their lexicon by finding

sentences which include a frequent feature and pulling adjectives out of those sentences.

Afterwards they have separated those extracted words into two clusters of positive and

negative ones based on the score of their synonyms and antonyms using a dictionary of

words. The score of each word is defined in a similar way to the scoring of the Harvard

General Inquirer lexicon.

MPQA

“MPQA” lexicon 3 [29] consists of 8, 222 words, each of which is provided with a set of

information including how much subjective the word is, how strong its subjectivity is, prior

polarity of the word which can be positive, negative, both or neutral, and whether the word

is stemmed or not.

This lexicon is built on a subjectivity lexicon that resulted from the works of the same

team [56]. In the first step, annotators are given a set of instructions and also an annotating

1http://www.wjh.harvard.edu/˜inquirer/spreadsheet_guide.htm
2http://www.cs.uic.edu/˜liub/FBS/sentiment-analysis.html#lexicon
3http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

14

scheme to annotate phrases and words as to be either positive, negative, both or neutral. In

the second step, they measured agreement between annotations of two annotators to evalu-

ate the lexicon. Based on their annotation scheme, annotators’ decisions depend mostly on

the emotion of the sentences inside their corpus.

WPARD

Using an online form, [57] collected information from 342 undergraduate students. Partic-

ipants were asked to rate how negative or positive were the emotions they associate with

each word, using a scale from −6 (very negative) to +6 (very positive). They built the

lexicon Wisconsin Perceptual Attribute Rating Database (WPARD) 4 from this data such

that each word has a corresponding polarity and a real number showing the strength of that

polarity.

SentiWordNet 3.0

“SentiWordNet 3.0” 5 is a lexical resource provided by [58]. This lexicon is built on top of

its previous version, SentiWordNet 1.0. It contains 155, 287 words and is providing them

with a polarity degree. In a nutshell, their method to create SentiWordNet 3.0 consists

of 5 steps including starting from a seed set of positive and negative words and applying

synonyms and antonyms to expand the lexicon, adding objective words as a new cluster,

training a community of ternary classifiers for the glosses of the words, classifying clusters

of words with the classifiers and finally running a random walk on the graph of words to

make their scores converge to a final state. In this lexicon each word is provided with a

decimal signed polarity score.

NRC

Since 2009, S. M. Mohammad has compiled several word-sentiment lexicons 6 from differ-

ent corpora including Twitter and customer reviews of Yelp and Amazon. In some cases,

labelling is done manually and in other cases it is done automatically, such as using hashtag

of a tweet as its label. For more elaboration on each of them, one can refer to [59, 60, 61, 62]

4http://www.neuro.mcw.edu/ratings/
5http://sentiwordnet.isti.cnr.it/download.php
6http://saifmohammad.com/WebPages/lexicons.html

15

Table 2.1: Summary of polarity related lexicons

Name Author Year Size Set of polarities

(words)

Harvard

General

Inquirer

P. Stone 1968 11,790
positive, neutral and

negative

Opinion

Lexicon
B. Liu 2005 6,786 positive, negative

MPQA T. Wilson 2005 8,222
positive, neutral, negative

and both

WPARD D. A. Medler 2005 1,400 positive, negative

SentiWordNet

3.0
S. Baccianella 2010 155,287 degree of polarity

NRC S. M. Mohammad 2009+ various sizes positive, negative

2.2.2 Datasets

Compared to other areas of text categorization, polarity classification benefits from a larger

number of well-annotated datasets. Because of this, here we only point to the benchmark

datasets which have been very commonly exploited in the literature for experiments.

Amazon

“Amazon” 7 is the result of the work of Blitzer et al. [30]. It is a dataset of product reviews

constructed from the website of an online shopping center with the same name. It includes

4 different domains of product reviews, including DVDs, books, electronics and kitchen

items, each of which has 2, 000 reviews. The reviews of each domain are half positive and

half negative making this dataset balanced. Each instance in this dataset includes detailed

information of a review consisting of its rating which is from 0 to 5 stars, review title

and date, and the review content. They have crawled the data from the Amazon website,

annotated reviews with the rating of greater than 3 stars as to be positive, and those with

rating less than 3 stars as to be negative and discarded the ones with 3 stars since those

reviews are more likely to have ambiguous sentiments. In addition to the labelled data,

this dataset includes 3, 685 unlabelled instances in the DVD domain and 5, 945 unlabelled

instances of kitchen reviews. This part of the dataset is created by selecting an equal number

of positive and negative reviews from a set of labelled data and discarding the labels.

7http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/

16

Movie datasets

Various versions of datasets 8 have been extracted from the movie reviews of famous online

movie databases all of which are built by Pang et al. Here is a summary of the details for

each of these versions:

• Pool of HTML files: This data consists of 27, 886 HTML files which are unprocessed

and unlabelled. Files consist of reviews crawled from an online database called “In-

ternet Movie Database (IMDB)”. This version is the raw version of the next labelled

one (Polarity dataset).

• Polarity dataset: This version of the data includes four different minor versions. The

minor versions 0.9 and 1 [5] consist of 700 positive and 700 negative processed

reviews, version 1.1 is slightly modified by removing a few non-English/incomplete

reviews and correcting some mislabelled reviews. Finally, the last minor version 2

consists of 1, 000 reviews for each class of polarities [63]. Since not all the reviews

in the raw version have the same format of rating, labelling them is done differently

based on the format of rating. First of all, only those reviews whose author has

explicitly declared the rating for them are classified. With a five-star system, reviews

with 3.5 stars and up are labelled as positive and reviews below or equal to 2.5 are

counted as negatives. With a four-star system, reviews higher or equal to 3 stars

are labelled as positive and the ones with 1.5 stars or lower are labelled as negative.

Finally, with a letter grade system, B or above is considered positive and C or below

is considered negative.

• Sentence polarity dataset: This version of the data includes 5, 331 positive and 5, 331

negative processed sentences and snippets provided by Pang et al. [64]. All of the in-

stances are downloaded from a movie review database called “rottentomatoes” which

classifies reviews either as fresh (meaning positive) or rotten (meaning negative).

Blogs

This dataset which is provided by Melville et al. [65] includes two different sets of blog

posts, one of which is concerned with technology blogs and the other one is related to

political blogs. The first set, named “lotus blogs”, is a set of posts corresponding IBM Lotus

collaborative software gathered from 14 blogs, 4 of which have posted mostly negative

8http://www.cs.cornell.edu/people/pabo/movie-review-data/

17

Table 2.2: Summary of polarity related datasets

Name Author Year Size Type of Data

Movie B. Pang

2004 29,419
processed labelled IMDB movie reviews

(document-level)

2004 2,000
raw unlabelled IMDB movie reviews

(document-level)

2005 10,662
processed rottentomatoes movie reviews

(sentence-level)

Amazon J. Blitzer 2007 8,000 reviews of products

Blogs P. Melville 2009 252 product review and political posts

comments about the product and the others have provided positive posts. The data have

been provided by downloading either the latest posts of each blogger’s RSS feed or the

archived posts of that blog. Afterwards, they extracted text from those parts of the HTML

files in which the ratio of tags to words is above a minimal threshold. Then all the posts

were read and labelled manually to either positive, negative, neutral or irrelevant. There

exist 34 positive and 111 negative instances in this set.

The second part of this dataset consists of political posts regarding two candidates of the

United States presidential election in 2008 namely “Barak Obama” and “Hillary Clinton”.

The posts were taken from a set of 16, 741 blogs, filtered based on whether they have the

words “Obama” and “Clinton” and randomly selected for the manual labelling. Based on

[65], labelling political posts is much more difficult than that of product reviews because

posts are more emotional, mostly mention implicit comments and judgements about the

candidate and may apply cultural references to make a point. Therefore, they have labelled

those posts which have explicitly mentioned an opinion about one of the two candidates as

positive or negative. Hence there are no neutral or irrelevant posts in this set. The “Politic”

dataset includes 49 positive and 58 negative posts.

18

Chapter 3

Processing the Data

3.1 Data

Since the main purpose of this work is to have a sentiment analysis tool on different do-

mains, the data that we used includes five different domains. Four of the domains are

provided from the “Amazon” website, which (as discussed in Section 2.2.2) are reviews of

some products encompassing four types of {“books”, “dvds”, “electronics”, “kitchen”}.

The main purpose of publishing these reviews by Blitzer et al. [30] was to evaluate their

proposed method, which transfers knowledge from a labelled source domain to an unla-

belled target domain. We add the domain of “movie” as the fifth one to their dataset by

combining the IMDB movie dataset with their data.

The purpose of using two sets of data from two different websites is to have a mixture

of reviews, which include various types and formats of the language. The audience of

Amazon website consists of regular people who use simple and easy-to-understand words

and formats of writings to write a review about a product that they have purchased, had

or seen. On the other hand, reviews of the IMDB dataset are written by different types

of writers varying from normal users to experts and critics. They contain a wide range

of writings, from simple formats to sophisticated words and grammatical structures. This

yields a valuable set of data to evaluate our work and to check whether it can boost the

performance, regardless of the constraints the test data might have.

In order to simulate the aforementioned challenges in our dataset, we select all of the

domains of the Amazon dataset as the development set and apply the IMDB movie review

dataset as the test set. We use the development set to refine any parameter, or to decide

among any techniques, which we may have in our method. After setting all the parameters

and finalizing the classification model, we classify the reviews in the movie dataset by

means of our model and get the accuracy as the performance measure of our method.

19

3.2 Preprocessing

In general, for every classification problem before tackling the main subtasks, such as fea-

ture extraction, feature selection or learning, one needs to process the raw input data to

provide a set of meaningful and informative instances. Preprocessing the data is a crucial

step, since real world raw input includes different types of noise and irregularities, which

need to be removed before the data can be used in one’s application.

Ever since textual information are one of the main components of real world data, they

suffer from noise, variations and abnormalities. The format of the text, the language in

which the text is written in, the level of formality of the language, symbols, abbreviations

and misspellings are some of the many parameters which create many possible formats

and types of writings. This pushes the necessity of preprocessing the text input, before

applying it in the next steps. In this chapter, we explain the preprocessing techniques and

steps involved in our project. Two of the main steps in preprocessing (including tokenizing,

part of speech tagging), we used a powerful tool named “Stanford NLP Toolbox”, which is

a collection of different natural language processing tools, developed in java, by Manning

et al. [66] at Stanford university.

3.2.1 Tokenizing

Text consists of different units and segments. A text document can include multiple sen-

tences. Also, every sentence can be interpreted as a sequence of words. In order to analyze

a document, collecting information with respect to all the units is necessary. Segmenting

a text document into sentences and words is called “tokenizing”. There are two different

kinds of tokenization applied in our work: sentence tokenization and word tokenization.

Sentence and word Tokenizing

We used one of the tokenizers implemented inside the Stanford NLP toolbox called “PTBto-

kenizer”, to segment each review to its corresponding sentences and then to tokenize each

sentence to its words. “This tokenizer mimics the behaviour of Penn Treebank 3 (PTB)

tokenization” according to documentation of the toolbox. It is a fast, deterministic rule-

based tokenizer, which also benefits from a set of heuristics to decide when a symbol (like

a period) represents the end of a sentence and when it does not.

Although, PTBtokenizer tokenizes simple sentences with a high degree of accuracy, it

lacks the ability to segment different clauses of the complex sentences. For instance, if we

20

give the below review to the PTB tokenizer as the input, it will provide us with the two

mentioned output sentences. This can lead to a major drawback in our work which we will

discuss later in detail. Also, as can be seen in this example, punctuation marks such as dot

or question mark are also considered as tokens.

• Input (Review): This is a good movie. Although the movie was too lengthy it had a

very novel and new point of view toward life.

• Output (Sentences):

1. [This, is, a, good, movie, .]

2. [Although, the, movie, was, too, lengthy, it, had, a, very, novel, and, new, point,

of, view, toward, life, .]

3.2.2 Part of Speech Tagging

After segmenting the document to sentences and words, we need to know the role of each

word within its sentence. The reason to perform such a process is that there are many words

in English, which have the same exact writing but they bear different meanings according

to their role in the sentence. For instance, a word like “will” occurs with two different

meanings according to online dictionary “Merriam-Webster” [67] which are mentioned be-

low. The first one is completely neutral as it does not indicate any feelings, emotions or

opinions. However, the second one can show a strong desire toward something which bears

a considerable degree of subjectivity.

• will(auxiliary verb): used to express futurity.

• will(noun): a strong desire or determination to do something

“In grammar, a part of speech (POS) is a linguistic category of words (or more precisely

lexical items), which is generally defined by the syntactic or morphological behaviour of

the lexical item in question” [68]. For instance, verbs, nouns and adjectives are the most

common parts of speech in every language.

In our work we tag every word resulting from the tokenization step by its part of speech.

The method we used belongs to the Stanford NLP tool called “MaxentTagger”. This class

includes two different models of POS tagging: the first model uses a bidirectional depen-

dency network while the second one only applies left second-order sequence information

(left 3 words). Although the accuracy for the second model is a little bit lower than the first

21

Figure 3.1: Symbolic procedure of tokenizing an input document review to its sentences

and words

one (96.92% versus 97.32%) it runs much faster and is recommended for general use. [69]

points to some of the example of the failures for these tagging methods.

Figure 3.1 illustrates the symbolic procedure of tokenizing and POS tagging of a docu-

ment to words with a simple example. In this figure, results of word tokenization and POS

tagging steps are shown together for better illustration though the word tokenization is done

in the same step as the sentence tokenization.

3.2.3 Word cleaning and Preprocessing

Main Steps

1. Lower case conversion: In order to look up a word in a lexicon or to create an

inverted index of words (we will talk about this later), we need to use comparison

between words. Therefore, all the letters should be converted to lower case so that

different models of writing the same word would fall into the same category. For

instance, two words such as “Hello” and “hello” could be converted to the same

shape as “hello”.

2. Omitting meaningless words: Different deformations of words can be found in

various types of writing such as spelling the words differently, using combination

of numbers or punctuation marks with letters or separating words with underscore

instead of spaces or tabs. These changes in the shape of words can make the analysis

harder since they are linguistically meaningless and cannot be understood by lingual

analysis tools. Therefore, we filter all the words with characters other than letters to

discard these deformations and to make the analysis simpler.

22

3. Stemming: Stemming is an NLP technique which attempts to find the root or base

form of any inflected or derived word. Applying this procedure over the words en-

ables us to treat all the words with the similar base form in the same way. For instance,

the word “liked” has the same polarity of its root form, which is “like”. We use the

morphology package from Stanford NLP toolbox for this step. This package finds

the root form of only inflected forms (not derivational). In other words, it only stems

plural nouns, verb endings and the pronouns.

4. Comparative and superlative adjective conversion: Since in the stemming step we

do not stem the simple form of adjectives and also because there is no certain rule

in the English grammar for stemming adjectives, we undertake a simple procedure to

estimate the root form of some adjectives.

The comparative and superlative forms of a simple adjective can be made either reg-

ularly or irregularly. In the regular forms, either one of the two postfixes of “er” and

“est” is added to the end of the word or the keywords “more” or “most” is used before

the word to express the type of adjective. In this case, the ending letter of the main

root of the word may or may not change. For instance, comparative adjective of the

word “neat” is “neater”, in which the simple form is not changed, while the root form

of the word “easy” is changed in its comparative form “easier”.

For some adjectives, the comparative and superlative forms are totally different from

the root form. For instance, adjectives “good” and “bad” have the comparative forms

of “better” and “worse” respectively. In order to find the root form of an adjective

from its comparative form we run the procedure shown in Algorithm 1:

In the pseudo code below, exception is a list of exceptional comparative adjectives

which are shown in Table 3.1. The base form of the adjective and its comparative and

superlative forms can be found in this table. Also, in order to perform a sanity check

we look up the resulting base forms in a dictionary to see if they are valid English

words. If the procedure is not able to find a base form of an adjective, it will return

the input as the output without any changes.

The procedure of converting superlative adjectives to their base form is very similar

to the above procedure with only two slight changes. Firstly, we add “est” or “iest”

postfixes to the end of the base form of an adjective (instead of “er” and “ier”) to

convert it to its superlative form. Furthermore, since the constructing postfixes of

the superlative forms have one more letter compared to that of the comparative ones,

23

Algorithm 1 Comparative to base conversion

1: function COMPARATIVETOBINARY(comparative)

2: exception ▷ list of all irregular comparative adjectives

3: base ▷ list of the base form for all exceptional adjectives

4: if comparative ∈ exception then

5: index = search(exception, comparative)
6: return base[index]
7: else

8: if comparative ends with “er′′ then

9: result = Substring(comparative, 0, length(comparative)− 2)
10: if result is in dictionary then

11: return result
12: end if

13: else if comparative ends with “ier′′ then

14: result = Substring(comparative, 0, length(comparative)− 3) + ‘y‘
15: if result is in dictionary then

16: return result
17: end if

18: end if

19: end if

20: return comparative
21: end function

we need to deduct the ending indices in lines 9 and 14 of Algorithm 1 by one, so

that it finds the proper base form from the comparative form. For instance, if we

pass “cleverer” to the comparative conversion procedure it finds “er” at the end of the

word and returns the substring of the word starting from the index 0 and ending at

the index n− 2, in which n is the number of letters of the word. However, if we pass

“cleverest” to the superlative conversion procedure it will find “est” at the end of the

word and returns the substring starting from index 0 and ending at index n− 3.

It is worth mentioning that the aforementioned procedures are not working for all the

cases since we just consider most frequent patterns. For instance, we do not handle

cases such as the word “nicer”, which is converted to “nic” when we omit “er” from

its end and it is not a meaningful, valid word.

Note that we use these two procedures for those words whose part of speech indicate

the type of adjective. Then we replace the word with the output of the functions.

5. Stop word omission: In the English language, there exists a set of words which

although occur in the text very frequently, they do not bear significantly any valuable

information. Articles such as “a”, “an” and “the” or auxiliary verbs like “be” and

24

Base form Comparative form Superlative form

good better best

bad worse worst

far farther farthest

far further furthest

late later latest

late latter last

little less least

many more most

old older oldest

old elder eldest

Table 3.1: Adjectives with exceptional superlatives and comparatives

“would” are examples of these words so called as “stop words”. The set of the stop

words used in a text processing problem can be defined differently depending on the

task and the information it requires. For instance, the word “good” can be considered

as a stop word for the task of “topic mining” , while it carries crucial information for

sentiment analysis. Stop words act as noise in decision making since they are very

common and may decrease the impact of other more important words, which have

less frequency. Hence we need to omit the stop words in order to lower the noise

in the system. We use the list of “stop words” from one of the “machine learning”

packages written in java environment, called “Weka”.

Other Steps

So far in this chapter, we have discussed about the main preprocessing steps that are applied

in our work. However, by taking a look at the results of the preprocessing steps, we find

many other insufficient and deformed words which need to be processed mostly because of

the following reasons:

• Misspellings: There exists a considerable number of misspellings and dropped let-

ters from words in the corpus, which cannot be corrected by any of the mentioned

preprocessing steps. Therefore, the essence of an automatic correction step is sensed.

The general method applied for the auto-correction task, is exploiting a dictionary of

words as the ground truth and finding the nearest word to the misspelled one by means

of a distance measure (such as the Euclidean distance). For instance, if the word

“cure” is incorrectly written as “curr”, by finding the nearest word in the dictionary

to “curr” we may be able to correct this word. However, based on the used dictionary

25

and the distance measure, the output is not always guaranteed to be correct. For

instance, in the mentioned example, if the word “curl” exists in the dictionary it may

be a better candidate for us, which is not the right word. Furthermore, depending on

the number of words in the dictionary this task may be too much time consuming

since for every word in the corpus, the auto-correction method needs to search over

many words to find the correct one. Therefore, we decide not to run such a procedure.

• compound words: During the next steps such as sentence scoring, we need to look

up the words in a lexicon of words. While looking up words, one may not find

the exact word in the lexicon; though the base form of the word may exist. As an

example, consider the word “hopelessly”. If the lexicon does not include this word,

by looking up “hopelessly”, we cannot find the polarity of the word. This word

is a combination of three parts, called “lemmas”. In this example, the lemmas are

“hope”, “less” and “ly”. The first lemma is a meaningful word in a lexicon with

positive polarity. The second one is a suffix which converts a noun to an adjective

form with an opposite polarity and the last lemma converts an adjective to an adverb.

The process of decomposing a word into its lemmas is called “lemmatization”. For

each word that is not found in the lexicon we may be able to find the polarity of the

whole word by lemmatizing it, finding the polarity of the base lemma and applying

the flipping effect of possible prefixes and the suffixes. However, sometimes the base

form of a word does not exist in the lexicon but a subset of its adjacent lemmas may

shape a word existing in that lexicon. For instance, in the word “usefulness”, “use”

and “ful” consist a word, which exists in the lexicon and bears a positive polarity. But

the word “use” by itself may not exist inside that lexicon.

Lemmatization needs a broad knowledge of lemmas which is not publicly available.

Furthermore, even by having the lemmas of a word, considering different combina-

tions of adjacent lemmas to look up a part of the word in the lexicon takes a long time

and is beyond the scope of this research.

As in each of the above cases the reason not to apply such a method was mentioned, we

do not use these steps in our models despite of the potential advantages they might have.

3.2.4 Inverted Indexing

Given a document and a word, if we need to find the number of occurrences of the word

inside the document, we need to search the word inside that document and find out the an-

26

Figure 3.2: Preprocessing and inverted indexing of the words

swer. However, naively searching the document whenever a query arrives would be highly

time consuming if the number of queries increases. For each query, the running time of this

search would be O(N), in which N is the number of words in the given document. Since

the number of these queries is significantly large in our application, we need to exploit

a data structure, which decreases the running time of response for queries. Furthermore,

since we also need to have the sentences of the given document, in which the given word

occurred in, that data structure must also encapsulate information about those sentences. To

solve this problem we use the “inverted index” technique:

Inverted index: “In computer science, an inverted index (also referred to as postings

file or inverted file) is an index data structure storing a mapping from content, such as words

or numbers, to its locations in a database file, or in a document or a set of documents.” [70]

The way we use inverted indexing is by mapping each word to the list of all the doc-

uments it has occurred in. Furthermore, inside this list, we map each document to the list

of all of its sentences, in which the given word has occurred. Then, by means of this data

structure, we can find the answer in O(1) for each query (regardless of the number of words

of the document).

Figure 3.2 summarizes all the preprocessing steps we discussed in this chapter. The

first step shows the result of applying all of the techniques except inverted indexing and

the second step shows the result of the inverted index. After the data is preprocessed, each

word is tokenized, simplified to its most possible base form and the result and its part of

speech tag are attached together with a # sign in between. The tag, which is added to the

27

end of the word, is not the main tag determined by Stanford POS MaxentTagger. This tag

is determined as below:

• Simple, comparative and superlative forms of adjectives and adverbs are given the

general tag of “a”

• Singular and plural nouns and proper nouns are given the general tag of “n”.

• Base form, past tense, present participle, past participle and singular present forms of

the verbs are given the general tag of “v”.

• Other parts of speech not included above are given the tag “d”.

For instance, the output of the preprocessing step for an adjective such as “Good” is

“good# a”. Furthermore, as can be seen in Figure 3.2 the inverted index of documents and

sentences, in which each word is occurred, is mentioned in the inverted index list.

28

Chapter 4

Scoring Methods

After preprocessing the text and creating all the necessary units for fast and optimized

computations, we need to invest on designing and building a scoring unit. The scoring

unit is a module which gets a preprocessed text unit as the input and outputs a number

as a measure of how much that text unit is positive or negative. As we discussed in the

“background” chapter, there are two general types of techniques for creating a scoring unit.

The first type, called “lexical method”, uses a lexicon of words while the other category

of techniques, named “learning methods”, trains a classifier by means of machine learning

approaches. Both types of methods have some advantages and disadvantages.

Lexical methods need a strong lexicon to have a reasonable performance. If we use

general lexicons which are not specific to the domains of our datasets, we may face poor

performance, since information included for the words in those lexicons may be generally

true but not specifically correct for our domains. For instance, the word “fast” may be

interpreted positively in general but it may be negative in the domain of “teaching”. On the

other hand, manually creating a lexicon, which includes polarity of the words in our corpus,

requires a considerable amount of effort and cost. However, lexical methods are easy to use,

relatively fast and not computationally intense. Furthermore, if we need to provide the user

with the clues of why we pick a label for a certain sentence (or document), we can easily

highlight words of the lexicon which exist in that sentence (or document) and give the user

the total score. Ultimately, although machine learning methods perform better compared

to lexical methods, they need a set of training sentences (or documents), which should be

large enough to provide a classifier with a decent discriminative knowledge.

It is important to note that we can use these two types of scoring methods in any level

of granularity of text. In other words, both of them could be applied for scoring either

phrases, sentences or documents. In this chapter, we proceed to explain how to apply these

29

methods at the document level, since our task is to label document reviews. However, later

in the next chapters we will apply them for scoring sentences. The following three sections

explain respectively the lexical methods, learning methods and a hybrid method combining

the two.

4.1 Lexical method

Assuming that we can infer the polarity score of every word from a lexicon, we apply the

following process to a text unit to assign a polarity score to it:

1. Preprocessing: As explained in Chapter 3, we tokenize each document to sentences

and then tokenize each sentence to its constituent words. Next, we provide all the

words with their POS tags and apply the preprocessing filters to get to the base and

clean forms of the words.

2. Word look up: We look up each preprocessed word in the lexicon and assign a score

to that word based on the information provided in the lexicon. If the word does not

exist in the lexicon we assign 0 to it. The scoring function differs among the lexicons,

since the information each of them provides, varies. In Section 4.1.1, we will explain

the scoring function for each of the lexicons on which we run our experiments.

3. Negation: We make a simple assumption for applying the effect of occurring nega-

tion words in the polarity score of the text unit. Having a list of negation words, we

look up all the occurrences of the negation words in the text unit. Then for each of

the occurred negation words, we flip the polarity score of all the words which fall

into the adjacency interval of the negation word.

4. Summation: We assign the score for each text unit as the sum of all the scores of all

of its words. The resulting score would be our measure of its polarity degree. The

sign of the score shows the polarity of the text unit and its absolute value represents

the strength of that polarity.

5. Normalization: In order to normalize the polarity score for the given text unit based

on the number of its words, we calculate the mean score as:

Sui
=

N
∑

j=1

Swj

N
. (4.1)

in which Swj
is the score for the word wj and N is the number of the preprocessed

words resulted from the text unit.

30

Table 4.1: Evaluation of the lexicons based on the accuracy measure

Books Dvd Electronics Kitchen Average

Opinion Lexicon 71.70 73.55 76.00 74.95 74.05 ± 1.86

MPQA 69.45 70.45 72.15 73.85 71.50 ± 1.93

General inquirer 67.4 66.55 67.20 69.7 67.71 ± 1.37

SentiWordNet 62.40 62.25 64.05 66.35 63.76 ± 1.90

4.1.1 Comparison between lexicons

We have introduced some of the most famous and publicly available lexicons in Sec-

tion 2.2.1. We select four of those lexicons: Harvard General Inquirer, Opinion Lexicon,

MPQA and SentiWordNet 3.0, to apply the lexical method and to investigate their perfor-

mance over the polarity classification task. The word scoring function described in step

2 of the lexical method, i.e. word look up, should be defined for each of these lexicons.

In Harvard General Inquirer and Opinion Lexicon, the score of each word would be 1, 0

or −1 respectively if that word is positive, neutral or negative. In SentiWordNet 3.0, all

the words are provided with a decimal signed polarity score. However, there is no explicit

score assigned to each word in MPQA lexicon. According to the information provided in

this lexicon, we calculate the score of each word as to be Sw = S ∗P in which S is 2 if the

word is strongly subjective or 1 if it is weakly subjective. Also, P is {−1, 0, 1} if the word

is {negative, neutral, positive} accordingly. Therefore, each word has a score between

−2 and 2.

Table 4.1 shows the summary of the results of the aforementioned experiment. Accu-

racy of classification, using every lexicon over each of the domains in our dataset, is men-

tioned in its corresponding cell in the table. As can be observed from the results, “Opinion

Lexicon” and “MPQA” have the best performances compared to the other lexicons. In-

terpretation of this observation could be that, both of these two lexicons have a manually

annotated source of data engaged in their creation. “MPQA” has been annotated by human

annotators. Moreover, “Opinion Lexicon” is built automatically on top of a dataset of re-

views, labelled manually by the costumers. Therefore, it also has a set of manually labelled

data engaged in its generation. In another sense, the method used in building the “Opinion

Lexicon” is similar to what we will explain about our method in Chapter 5. These are the

motivations for us to use these two lexicons for the next steps.

31

4.2 Learning method

Assuming that we have labels for the data, one idea to build a scoring module is to find out

the correlation between text units and their label. Assume that we can represent a dataset of

text units as a matrix of numbers called X , in which each row represents an instance of the

whole data and each column represents a numerical measure of an instance. Furthermore,

assume that we have the labels of the whole dataset in another numerical column matrix,

called Y . If we can find a function F , such that F (X) = Y , whenever any unlabelled text

unit arrives, we can represent that instance as a row matrix of numbers T and assign F (T)

as the score of that unit. Finding the function F of raw text reviews to their labels is the

main purpose of “machine learning” techniques. Applying a machine learning technique to

create a scoring module requires one to take multiple steps as follows:

1. Feature extraction: In order to represent a text unit in the form of a matrix, we need

numerical metrics which can represent the information in the text. These metrics are

called “features” in machine learning.

2. Feature selection: If the number of features, which are extracted in the previous

step, is large, then we should select the best features and discard useless ones to

decrease computational cost of dealing with a huge feature space. In Section 4.2.1

we define some of the quality measures for the features. Furthermore, we introduce

some types of dimensionality reduction and feature selection methods that we applied

in the process.

3. Learning: The process of training the classifier on the labelled data to find the cor-

relation between text units and their labels is called “learning”. In Section 4.2.3 we

talk about two different types of learning techniques, which are very effective in text

processing.

4. Classification and score assignment: After running the learning step, we have a

trained classifier which is capable of getting a numerical representation of an instance

as input and returning the predicted class of that instance. Depending on the learn-

ing technique, the classifier returns also meta information for each instance, such as

the likelihood of the assigned label to the instance, distance from a hyperplane that

separates two classes etc. By having this information, we can assign a score to each

instance as the polarity strength of that instance. Since this depends on the learn-

32

ing method, we will explain the score assignment for each method separately in its

corresponding section.

4.2.1 Feature extraction

The feature space is a crucial matter in the concept of learning. Features based on which

the classifier is trained, play a very effective role in making a discriminative classifier. An

informative and high quality set of features would include the following characteristics:

1. Frequent features: If the features are not likely to be happening in instances, they

do not bear much information about them. Therefore, frequency of the features is one

of the main criteria.

2. Discriminative features: If the features are equally distributed among various

classes and do not differentiate among them very well, they do not help making a

proper decision. Therefore, they should be discriminative enough to make any clas-

sification task effective.

3. Independent features: If distribution of occurrence in one feature obeys that of

another feature in some way, those two features are dependent on each other. If two

features in a feature set are dependent to each other, their information would provide

for the task of classification is similar. Therefore, keeping both in the feature set does

not add value. Thus, extracting independent features would increase efficiency of the

learning process.

In text classification problems, the common feature sets used to train a classifier are

constructed from different tokens such as unigrams, bigrams and trigrams. It is proven

empirically that unigrams provide more independent features, since each word of the text

appears only in one feature instead of multiple features. The common raw feature sets (with-

out using dimensionality reduction techniques) for textual instances are presence-based and

frequency-based features, explained in Chapter 2. From the experience of previous works,

we realize that frequency-based features do not bear much more useful information than

presence-based features. This is due to the fact that, in the context of sentiment analysis,

there are many sentimental words which occur rarely in the text, while there are also many

neutral words which are frequent in the text. Therefore, frequency of a feature does not

make it more important than the other features.

33

4.2.2 Feature selection

Based on what we discussed about criteria of a high-quality feature set, for our work we

decide to have a presence-based feature set of unigram tokens. To find frequent features for

our feature set we must engage frequency of the words in the selection process. However,

naively selecting words with high frequencies in all the documents could result in picking

less informative words such as frequent neutral words. Therefore, we need to have a better

measure of the frequency of each word in the dataset. This measure must favour the words

which are regularly frequent while penalizing words with too much frequency. In text

mining and information retrieval, a measure called “tf-idf” is defined to have the desired

behaviour.

Term Frequency Inverse Document Frequency (tf-idf): “ is a numerical statistic that

is intended to reflect how important a word is to a document in a collection or corpus.” [71]

Based on the definition, tf-idf increases with proportion to the number of times a term

occurs in a document. Furthermore it decreases, if the total number of occurrences of that

term in the whole corpus is getting higher. This measure represents a proper intuition of the

frequency of a word.

There exist various versions of calculation for the tf-idf. We pick a normalized version

of tf-idf in order to prevent bias toward the longer documents, with the formulation as

follows:

tf(t, d) = 0.5 +
0.5× f(t, d)

max {f(w, d) : w ∈ d}
(4.2)

idf(t,D) = log
N

| {d ∈ D : t ∈ d} |
(4.3)

tfidf = tf(t, d)× idf(t,D) (4.4)

in which tf(t, d) is the augmented frequency of the term t inside the document d, f(t, d) is

the raw frequency of a term inside a document; idf(t,D) is the measure of how many times

the term t is repeated in all documents (represented with D) and N is the total number

of documents in the corpus. As can be seen, the augmented frequency is calculated by

finding the ratio of the frequency of the term in a document against the frequency of the

most frequent item in that document.

We use tf-idf in order to rank the tokens as features to figure out how frequent and also

informative they are compared to each other. After ranking them, we pick the top Pt percent

of the tokens (where Pt is a parameter) and construct a feature vector based on them.

34

Although tfidf represents a useful measure of frequency in text for each token, it may

skip a set of informative words which are not commonly used in the text and yet are con-

siderable in changing the total polarity of the text unit. For instance, a word like “gracious”

bears a very positive meaning, though it is rarely used in a corpus with informal language.

4.2.3 Learning

Many learning methods have been tried in the literature such as SVM, Naı̈ve Bayes, logistic

regression and maximum entropy, each with different setups and parameters. However,

according to the results of previous works, SVM and Naı̈ve Bayes are shown to have better

performances in text categorization. Here, we discuss the details of these two learning

methods and explain how we calculate the score of each instance based on the output of

their classifier:

Naı̈ve Bayes

Naı̈ve Bayes is a machine learning algorithm from the family of Bayesian network classi-

fiers. It takes the word “Bayes” from the fact that Bayes theorem is applied when construct-

ing its probabilistic model and takes the word “Naı̈ve” because it naively assumes that,

given the label of the instance as the condition, all features are statistically independent

from each other. Suppose X is a document consisting of m n-grams x1, ..., xm, then:

y = argmax
k∈{pos,neg}

p(Ck)

m
∏

i=1

p(xi|Ck) (4.5)

where Ck can be either the positive class or the negative class and y is the predicted label

for X .

SVM

Support Vector Machine (SVM) [72] is a two class classification method, which is com-

monly used in different applications of machine learning. The main idea behind SVM is to

separate two different classes of instances by a hyperplane, given a non-linear set of vectors

as input. The main criterion for SVM is to maximize the “margin” of hyperplane. The

margin is defined as the distance of the plane from the nearest data point of any class. This

is due to the fact that, by having a greater margin for the plane we can decrease the gener-

alization error. However, it is not always possible to find a hyperplane which completely

separates instances of the two classes in the feature space. There is another version of SVM

so called “soft margin” which also allows for instance the number of mislabelled examples

35

as a measure which should be minimized while still keeping the margin maximum. Thus,

the soft margin will treat the classification task as a min-max problem, which can be solved

by linear programming. Although SVM is mainly designed as a linear classification mod-

ule, by using different kernels and applying the “kernel trick” one can investigate non-linear

behaviours with SVM.

In order to customize SVM for polarity classification, after running experiments on

different kernels, we decide to apply SVM with “radial basis function” as the kernel. In

order to assign a score to a testing text unit, we need SVM to predict how likely the text

unit belongs to each class. This can be predicted by fitting a “logistic regression” learner

on the output of SVM and by using the learner to calculate the distribution of the text unit

over the two classes. Thereafter by having the distribution we simply set the score as:

Sw =

{

P (t, positive) if P (t, positive) ≥ P (t, negative)
−P (t, negative) otherwise

(4.6)

in which P (t, positive) and P (t, negative) are the likelihoods of the instance t belonging

to each class respectively. These two values are the results of SVM and running logistic

regression.

4.2.4 Experiments

We classify the polarity of the documents by means of different combinations of the feature

sets and the two types of learning methods, explained above, to find a high-performance pair

of feature selection and learning method. We use presence-based features with two different

sets of words. The first one is the set of all the words existing in the MPQA lexicon and the

second set includes the top 4, 000 words of the documents ranked based on tf-idf (which

is referred to as TFIDF4000 set of features in the results). The reason for choosing the

words included in the MPQA lexicon is that, it is a manually annotated dataset. Hence, the

certainty of selecting informative words as the features increases.

Table 4.2 shows performance results of all the combinations over all domains of the

development dataset. As can be seen, using the Naı̈ve Bayes method with presence-based

features of MPQA words leads to a better performance on average compared to the other

methods. However, results of all combinations are close to each other. This shows the fact

that both Naı̈ve Bayes and SVM classifiers are performing promisingly in our field of study.

The results also present better performance of MPQA words over our set of highly ranked

tf-idf features. However, it is important to note that MPQA words are labelled manually,

while the TFIDF4000 features are extracted automatically, which again shows the power of

36

Table 4.2: Results of different combinations of two learning methods and two feature vec-

tors
Books Dvd Electronics Kitchen Average

NB & MPQA 75 78.95 78.55 81.35 78.46 ± 2.61

SVM & MPQA 73.35 76.9 78.2 79.85 77.07 ± 2.76

NB & TFIDF4000 77.25 72.35 79.15 80.05 77.20 ± 3.44

SVM & TFIDF4000 72.7 73.55 76.2 77.55 75.00 ± 2.26

ranking the words based on tf-idf.

4.3 Hybrid method

Since both of the lexical and learning methods have their own benefits and drawbacks,

we decide to investigate the effectiveness of a hybrid method built by combining a lexical

and a learning method. In an unsupervised fashion, we do not have the labels to provide the

learning component with the ground truth. However, we can estimate the labels by applying

the lexical labelling system in order to provide a set of preliminary weakly labelled instances

with normalized scores. The magnitude of the score for each instance could represent a

certainty, to which that instance is positive or negative. We rank all the instances based on

this measure to find the most certain ones, to later use them as training feeds for the learning

classifier.

Although the lexical method would provide a set of information for the learning counter-

part, erroneous preliminary labels can lead to a classifier biased toward wrong information.

In order to increase the certainty of instances participating in the training set, we can pick

the top instances, ranked based on the absolute amount of score. On the other hand, we

need to be careful of making our training dataset balanced, in order not to bias the classifier

toward a particular class. Therefore, if we need to select the top P percent of instances,

we should pick top Pnormalized percent of positives and also top Pnormalized percent of

negatives, which is calculated as follows:

Pnormalized =
min(Np, Nn, N ∗ P/2)

N
(4.7)

In the above formula, Np and Nn are the number of positive and negative instances.

4.3.1 Experiments

We configure the hybrid method to use Naı̈ve Bayes classification as the learning algorithm

fed by presence-based features of the first 4, 000 words with highest TFDFT scores. Fur-

37

Table 4.3: Experiment over how much percent of the weakly scored data to select for train-

ing

P Books Dvd Electronics Kitchen Average

0.2 69.7 67.1 69.3 71.85 69.48 ± 1.94

0.4 69.15 68.1 72 75.4 71.16 ± 3.27

0.6 67.05 70.35 74.7 77.15 72.31 ± 4.49

0.8 67.35 68.45 75.85 77.5 72.28 ± 5.13

1 63.95 67.25 75.95 75.7 69.05 ± 6.05

Table 4.4: Evaluation of the hybrid method at document level against MPQA lexicon

Movie

MPQA 70.90

Hybrid(MPQA) 78.65

Opinion Lexicon 71.05

Hybrid(Opinion Lexicon) 78.8

thermore, in order to experiment the efficacy of the hybrid method over various lexicons, we

use both MPQA and “opinion” lexicons for the preliminary lexical scoring. These lexicons

are the best two lexical scoring resources, based on the results of Table 4.1.

In order to study the effect of the parameter P over the performance of the hybrid

method, we run the hybrid method with 5 different values of P from 0.2 to 1 with equal

steps. Table 4.3 shows the accuracy of the methods over each dataset in the development

set. As can be seen in this table, the maximum average accuracy of all datasets is achieved

when P = 0.6. This observation would be expected, since increasing P results to a trade-off

between the certainty of the labels and amount of information handed over to the learning

phase. In other words, having lower values of P , we increase the minimum certainty of the

training instances and lose true information at the same time and vice versa by assigning

larger amounts to P . Therefore, by setting P to a value close to the middle of the range

[0, 1] , we can gain a dataset with both enough instances and acceptable certainty.

Note that, our hybrid method and the lexical methods are designed to be used in unsu-

pervised classification tasks. Therefore, comparing their results with those of the learning

methods would be unfair, since learning methods take the advantage of the ground truth

to learn from. Based on this reasoning, here we only compare performance of running the

hybrid method over each dataset against applying the MPQA and “opinion” lexicons.

According to Table 4.4, the hybrid method increases the performance of each of the

MPQA or “opinion” lexicons by about 7 percent, which shows a great improvement of the

classification. We also measure the significance of this improvement over each of the lexi-

38

cons by means of the McNemar’s test [73], which has the chi-squared distribution. Compar-

ing the classification results of the hybrid method using the Opinion lexicon with its lexical

counterpart leads to χ2 = 21.09 which strongly rejects the null hypothesis (p < 0.001).

Moreover the same comparison for the MPQA lexicon leads to χ2 = 8.5 which also rejects

the null hypothesis(p < 0.001). This means that the hybrid method has a statistically sig-

nificant improvement over the lexical method. Furthermore, the hybrid method which is fed

by “opinion” lexicon scores performs slightly better than that of the MPQA. However, the

improvement over the MPQA lexicon is more pronounced, compared to that of the “opin-

ion” lexicon (7.25 versus 6.75). This can be the effect of engaging manual scores of the

words in the MPQA lexicon. This makes the MPQA lexicon a more interesting candidate

compared to the “opinion” lexicon, which can be employed in the next experiments (as will

be discussed in Chapter 5).

39

Chapter 5

Lexicon Expansion

As has been discussed in the previous chapters, the goal is to expand the initial lexicon based

on the distribution of words in the target domain, since it lacks domain specific words and

their score. According to what we discussed in the “previous works” chapter, expanding a

lexicon consists of two major steps, which are finding the most informative words and then

assigning polarity scores to them by means of a scoring function. For the first step, one

can choose different metrics to rank the words from most informative to least informative.

The problem of finding informative words in the text can be represented as a rule mining

problem.

• Rule: a rule is a logical clause which consists of a set of conditions and a result such

as p1 ∧ p2 ∧ ... ∧ pn → q

In general, the task of automatically extracting rules from a database is called rule

mining. Every pi in the antecedent of the rule can be one of the words in our text and

q would be the polarity to which the co-occurrence of the words in the antecedent set leads.

Therefore, if we have a set of these rules extracted from our textual data using rule mining

techniques, we can use the words in their antecedents and the label in their consequent to

expand our lexicon.

For example, given a sentence like “I watched a very good movie” with a positive label

in our corpus, we could extract one or some of the following rules:

1. “good” → +

2. “good” ∧ “movie” → +

3. “very” ∧ “good” ∧ “movie” → +

40

Therefore, our lexicon expansion problem would be reduced to the classic problem of

automatic rule mining. For this work, we use “Association rule mining” as a fast mining

method to discover dominant and informative polarity rules.

5.1 Association rule mining

“Association rule mining” is intended to identify strong rules discovered in transactional

databases using different measures of interestingness. This method is a simple rule mining

method, which searches for the rules that satisfy both a minimum degree of “confidence”

and “support”. Support of a rule represents the frequency of occurrence of the elements of

the rule in the dataset, while confidence shows the conditional probability of the elements

of the rule given its consequence, which is the polarity of that rule in our problem. These

two metrics are calculated as follows:

supp(w) =
Nw

NT

(5.1)

Conf(w,Ci) =
supp(Ci ∪ w)

supp(w)
(5.2)

in which Nw and NT are frequency of the word w and sum of frequencies of all the words

in total, respectively. For instance, if the word “nice” has occurred 20 time in negative

documents and 30 times in positives ones and also all the words of all the documents are

50, 000, supp(w = nice) = 20+30
50000 , Conf(w = nice, Ci = positive) = 30

20+30 and

Conf(w = nice, Ci = negative) = 20
20+30 . Since our goal is to expand a lexicon of single

words, we focus on those rules which have a single word in their antecedents. Extracting

the rules with a set of co-occurred words as their antecedents would be a promising future

work direction for this scope of the research.

In summary, we need to find frequency of word occurrences, rank them based on that

and pick a set of them which satisfy the minimum support. The resulting group of words

are the candidates to update the lexicon with the condition to satisfy also the minimum

confidence.

For the purpose of measuring confidence of the words we need to find their co-occurrence

with the positive and negative labels. These labels could be the labels of the documents that

contain the words. But, since we do not have labelled documents in our dataset, we need to

consider of an alternative set of labels to find the label/word co-occurrence.

The next unit of the text to consider, as an alternative to documents, is the sentence.

Since we also do not have the labels of the sentences, they equally have the same drawback

41

in our application. However, from the semantic point of view, considering the label of a

word as the same as the label of its document could be wrong for many more cases than

assigning the label of its sentence to it. This claim can be backed up by the fact that,

there may be many positive and negative sentences in a document. For instance, words

of a positive sentence which exists in a negative document may weigh the sentence to be

positive. But, they do not lead the document to be positive.

Although the sentence is a better text unit than a document to judge the polarity of

words, words inside a sentence do not always have the same polarity as itself. There are

various reasons supporting this fact including negating words, irony and sarcasm. Since

dealing with sarcasm and sense of irony is beyond the scope of this work we just consider

negation as a factor which may reflect the reverse polarity of the words to the sentence.

5.2 Providing an Annotated Sentence Dataset

Since we do not have the labels for sentences we should consider a way to provide labels for

our sentences. As discussed in the “scoring methods” chapter, we can apply either lexical

methods or learning methods or even a combination of them. We plan to try all three of

these methods to experiment which one is more powerful and more accurate in labelling

the data.

In order to compare the performance of the scoring methods at the sentence level we

conduct an experiment over a dataset of sentences extracted from Amazon reviews and

labelled manually. Since this dataset is extracted from the same resource that includes our

document-level reviews, it would be reasonable to run experiments over it and to analyze

the results for later decisions and justifications at the document level.

We pick a combination of Naı̈ve Bayes and TFIDI features as the learning method,

MPQA lexicon as the resource of our lexical method and their combination as the configu-

ration of our hybrid method. The reason for selecting these methods is that they were shown

to have the best performances among other methods based on the experimental results ran

at the document level described in Chapter 4. In Table 5.1, the performance of the lexical

and the hybrid methods are compared on three domains at the sentence level. There are

no available datasets at the sentence level for the domain of kitchen items from Amazon.

Therefore, we only consider the domains of Books, Dvd and Electronics for setting up this

experiment. Furthermore, the reason not to consider the results of the learning method in

this experiment is that it applies labels of the sentences to build its model, while lexical and

42

Table 5.1: Evaluation of lexical and hybrid methods at the sentence level based on the

accuracy measure

Books Dvd Electronics Average

Lexical 57.95 50 52.94 53.63 ± 4.01

hline Hybrid 72.72 69.67 69.8 70.73 ± 1.72

hybrid methods are scoring sentences with an unsupervised manner.

As can be observed in Table 5.1, the hybrid method performs with a higher degree of ac-

curacy compared to the lexical method. This is due to the advantage that the hybrid method

gets by applying learning and analysing correlation between sentences instead of just apply-

ing the domain independent knowledge existing inside a lexicon. Based on this observation,

we decide to pick the hybrid scoring at the sentence level to estimate the polarity score of

sentences in our work.

5.3 Scoring words based on scores of sentences

Now that we have the preliminary estimated scores for the sentences in our corpus we are

able to calculate both the confidence and support of each word occurring in those sentences.

Afterwards, we filter the words which are satisfying the minimum thresholds for confidence

and support to have the words discriminative and frequent enough for updating the lexicon.

In order to assign a score to each word based on scores of sentences, we need to decide

between two options. The first is to simply set the score of the word based on the confidence

level of the class for that word such that:

Sw =

{

Conf(w,P) if Conf(w,P) ≥ Conf(w,N)
−Conf(w,N) if Conf(w,P) < Conf(w,N)

(5.3)

where Conf(w,N) and Conf(w,P) are the confidences of the word w belonging to the

classes of negative and positive, respectively. For example, if for the word “sad” we have

Conf(w = sad, P) = 0.4, Conf(w = sad,N) = 0.6, the score of the word would be

−0.6.

The second option is to use the following formula as the scoring function. For future

references we call this scoring function the “average difference”:

Sw =
score(w,N) + score(w,P)

|score(w,N)|+ |score(w,P)|
(5.4)

score(word, Class) =
∑

word∈sentencei,sentencei∈Class

(
score(sentencei)

num(sentencei)
) (5.5)

43

In the above formula, score(sentencei) is the score that we provide by means of applying

the previous scoring steps, num(sentencei) is the number of the words in sentencei and

score(word, Class) is a function, which gets the word and Class as the input and returns

a score as the output. This score represents the degree to which the word is correlated to

Class, based on the scores of the sentences it has occurred in. For example, if the average

score of all the positive sentences containing the word “beauty” is 24.5 and that of the

negative sentences is −5, the score for the word would be Sw = 24.5+(−5)
|24.5|+|−5| = 0.66.

We need to have a summary of scores of all the sentences in which word has occurred

and also those sentences belonging to the class Class. In order to obtain this measure, we

simply divide the score of each sentence with the number of words of that sentence and

sum all of these average scores to assign the score to the word. The longer the sentence is,

the lesser probable the label of the sentence is the same as the label of its words. This fact

would be the justification for taking the average score of the sentence.

In order to experiment on the effectiveness of these two different scoring options we de-

cide to update the preliminary lexicon by using the results of each of these scoring methods

and then to apply the new lexicons as the lexical resources to find the polarities of docu-

ments. We can then compare the performance of the two scoring methods based on their

accuracies for scoring documents. After we explain how to update the lexicon in the next

section, we will demonstrate results of running experiments over our word scoring methods.

5.4 Updating the lexicon

The whole procedure of finding frequent and discriminative rules (which are unigrams in

our application) by means of applying association rule mining, is to achieve two main pur-

poses:

1. Extracting and adding new words: The initial lexicon we start the iteration with,

includes mostly domain-independent words that are frequently used in many do-

mains. In order to extend the capability of the lexicon toward classifying the polarity

in our target domain, we need to add unigrams which are dominant and also effective

in terms of determining polarity.

2. Modifying scores of the previously existing words: In the English language there

exist many words whose polarity changes depending on the the context and domain

of the text. For instance, the adjective “fast” may be positive in the context of vehicles

while it is a negative feature in context of teaching. Thus, it is essential to modify

44

Figure 5.1: Behaviour of the two proposed lexicon update procedures

scores of these types of words in the lexicon based on the new domain in order to

boost the performance of the lexicon.

In each iteration of finding dominant words in the documents and scoring them there

might exist false positive and false negative scores for the words. Therefore, applying

these scores to the lexicon may lead to losing true information and replacing with wrong

information instead, which weakens the performance of the lexicon.

In order to achieve the aforementioned two goals without running into the problem of

missing information from the lexicon, we propose two versions of updating procedures

which are almost the same with just a small difference. These procedures will receive a rule

containing a word, its confidence, support and score calculated based on the previous steps

and update the lexicon according to their behaviour.

45

As the steps involved in the two procedures are almost the same, their behaviour are

shown simultaneously in Figure 5.1. As can be seen in this figure, a series of conditions

and steps are involved in both of the procedures which check boundaries of confidence,

support and score of the rule. The only difference between the two procedures is the last

step. While the first schema (so called as “Careless modification”) does not check if the

estimated score of the word matches the score inside the lexicon, the second schema (called

“Agreeing modification) ignores whatever rules that disagree with the lexicon. For instance,

given the input of the procedure such that the rule is “essential” → + and its score is equal

to 1.5 and also assuming that the word “essential” already exists in our initial lexicon with

the score of −1.0, “Careless modification” changes the score of the word in the lexicon

to be (−1.0) + (1.5) = 0.5, while “Agreeing modification” ends the updating procedure

without changing anything in the lexicon.

Figure 5.2: Big picture of the lexicon expansion model including all the components

The updating procedures described in Figure 5.1 inject two parameters to the method

which belong to association rule mining algorithm. These parameters, called suppmin and

46

confmin, are relatively the minimum thresholds of support and confidence to keep a rule as

a legitimate one. We would show results of running experiments to fine tune these parame-

ters as well.

By having the lexicon updating module, we create all the essential components of our

expansion system. Figure 5.2 represents the big picture of the whole process of the lexicon

expansion.

5.5 Experiments on lexicon expansion

Now that we have put all pieces of the chain together for our lexicon expansion method, we

can run experiments to fine tune the parameters and decide among different settings of the

method.

The evaluation can be done by iterating over different sets of parameter values, ex-

panding the lexicon based on each set and applying the expanded lexicon in each iteration

to measure accuracy of the polarity classification over our documents. The performance

measure for the expanded lexicon would represent how much efficient the setting of its

parameters would be.

Since there exist multiple parameters in different parts of the method, running opti-

mization over all possible sets of values for them would be significantly time consuming.

Therefore, we choose to act greedily to find a set of parameters which would result to a

close to optimal solution. In order to fine tune each parameter, we fix all the other param-

eters to certain values and iterate the parameter value over a certain interval to search for

the best performance. When we find the best value for this parameter, we fix it to that value

and apply the same action for the rest of the parameters.

• Minimum confidence and minimum support: These two parameters belong to the

association rule mining and determine the minimum level of quality for a rule to be

considered for the lexicon expansion procedure. By increasing these thresholds, the

minimum desired confidence and frequency of a word will be increased which makes

it harder for the words to be qualified. On the other hand, increasing them too much

leads to losing informative words. For instance, there are words which are not very

frequent (hence have a low support) but are effective in the polarity classification.

This behaviour is observed also in experiments, which are shown in Figure 5.3 and

5.4. In Figure 5.3, we observe that the performance tends to get to the maximum value

with a minimum confidence of 0.65. Also, as can be seen in Figure 5.4, performance

47

reaches maximum with a minimum support of 0.00008.

Figure 5.3: Performance of the lexicon expansion over different datasets based on the vari-

ous values of minimum confidence

Figure 5.4: Performance of lexicon expansion over different datasets based on various val-

ues of minimum support

48

Table 5.2: Performance comparison between the two word scoring methods

Books Dvd Electronics Kitchen Average

Confidence 73.1 72.05 79.4 78.85 75.85 ± 3.81

Average difference 69.25 71.2 72 73.55 71.5 ± 1.78

Table 5.3: Performance comparison between the two lexicon updating procedures

Books Dvd Electronics Kitchen Average

MPQA (before expansion) 69.45 70.45 72.15 73.85 71.47 ± 1.93

Careless modification 70.3 69.45 75.3 75.9 72.73 ± 3.33

Agreeing modification 73.1 72.05 79.4 78.85 75.85 ± 3.81

• Word scoring method: In Section 5.3, we have proposed two different scoring meth-

ods for words. Here we compare the performance of running the lexicon expansion

by means of applying each of these methods. As can be seen in Table 5.2, assigning

the confidence as the score would lead to a better set of results in most cases. Thus,

we pick this method as the word scoring module.

• Updating lexicon procedures: In Table 5.3, the performance of “Careless modi-

fication” and “Agreeing modification” procedures are shown. As can be seen, the

“Agreeing modification” schema performs better. This leads to the fact that, scores

of the words in MPQA lexicon are generally true in all tested domains, which by

modification based on poorly scored data may flip to be wrong.

5.5.1 Analysis of results

As shown in the experiments over the development set, the performance of the initial lex-

icon will increase by using our expansion method. By analyzing the results of these ex-

periments we can summarize the behaviour of the expansion model and discuss about its

pros and cons. The expansion model attempts to apply two types of changes in the lexicon:

updating the previous words and adding new words. As shown in Table 5.3, if we apply

the “Agreeing modification” schema, it would result a better performance, compared to the

“Careless modification”. Based on this, we can infer that the expansion method does not

update the previously existing words properly in the lexicon. However, according to the

same experiment, even “Careless modification” would increase the performance of the ini-

tial lexicon. This means that the second type of changes applied by the expansion model,

which is addition, compensates the improper effect of updating the scores.

The proposed expansion algorithm encapsulates many parameters, which need to be

49

Table 5.4: Comparison with the previous methods

Movie

MPQA(Baseline) 70.90

Expansion method 71.2

Hybrid method 78.65

G. Zhou [43] 73.6

S. Dasgupta [47] 70.9

Y. He [40] 74.1

fine tuned to increase its performance. As can be seen in Figure 5.3 and Figure 5.4, the sen-

sitivity of the algorithm is high with respect to the changes of parameter values. However,

results of running the fine tunings over various domains show a similar behaviour among

all the domains, which makes the model robust and adaptable to be used in any domain of

data.

Table 5.4 shows the performance results of the state-of-the-art unsupervised polarity

classification methods, along with the results of our two proposed methods, the hybrid

method at the document level and the lexicon expansion method. The previous works,

compared to our methods in this table, include the work of Zhou et al. [43], Dasgupta et

al. [47] and He et al. [40], which have been discussed in Chapter 2. As can be seen in this

table, the hybrid method has the best performance by about 5 percent with the second best

method, which is the work of Y. He.

The result of the expansion model is not competitive, compared to the best methods.

Although a slight improvement can be observed by using the expansion method compared

to the baseline, this improvement is not statistically significant. The number of the words

existing in the MPQA lexicon is 14000. By comparing the words of the expanded lexicon

with those of the initial lexicon, we realized that the number of the words updated in the lex-

icon is 2469, while the number of the new words added to the lexicon is 813, in which case

the size of the initial lexicon increases by only 5.8 percent. This is the effect of increasing

the quality measures such as the minimum confidence and minimum support thresholds,

which decreases the freedom of the expansion model and makes it biased toward a result

close to that of the baseline. Furthermore, all of the domains in the development set belong

to a different website than that of the test set. Since, all the parameter fine tunings have

been done in those domains, this result would be expected for the movie domain.

50

Chapter 6

Applying Users’ Feedback

The procedure of updating a lexicon without having any set of knowledge regarding the

ground truth may still be error-prone. We estimate the scores for sentences and used these

scores for scoring the words which may propagate the error from the former step to the

latter. Also, we update the lexicon based on the estimated scores for the words which (if

wrongly scored) may decrease the truly scored weight of a word. In all of these steps, the

essence of a knowledge set about the polarity of text units (either sentences or words) to

reduce the error in the scoring tasks is felt.

We decide to take advantage of the users’ feedback in order to boost the performance

of our classifiers. A “feedback” occurs when the output of a system happens to be fed

back as the input of the same system. In our work we need to use the opinion of the

users about either the results of our classifiers or scorers as the feedback to our system. As

we discussed above, errors could happen either in the sentence scoring procedure or word

scoring procedure in our system. Therefore, we aim to gather users’ feedback about degree

of polarity, both in sentence and word level.

6.1 Experiments

Before we proceed to design and implement the feedback collection mechanism, we need

to investigate efficacy of gathering and applying feedback over our classifiers and lexicon

expansion method. In this section we conduct a series of experiments and analyze the effect

of applying feedback over both words and sentences:

6.1.1 Feedback to polarity of words

Since we do not have any set of feedback gathered from actual users we need to simulate a

set of feedback for words by means of a manually labelled lexicon. Although it is almost

51

Table 6.1: Effect of feedback for words over performance of lexicon expansion method

Books Dvd Electronics Kitchen Average

Before applying

feedback
71.35 67.4 74.5 74 71.81 ± 3.25

After applying

feedback
72.05 65.75 75.95 78.1 72.96 ± 5.42

trivial that having a set of labelled words would increase the power of the lexicon, we

would need to check if this trend exists over our method too. For the purpose of simulating

feedback, we use the MPQA lexicon. We separate 20% of the words inside the lexicon

and feed our expansion method with the rest of the words inside it. After running the

expansion method, we apply the 20% separated part of the lexicon, as feedback to the

expanded lexicon.

Table 6.1 shows results of running the aforementioned experiment over all domains

of the development set. Except the Dvd domain, applying the feedback has increased the

performance of the expanded lexicon. On average the accuracy has been improved about 1

percent. Since the amount of the words applied as feedback are not too much, performance

improvement is not considerable. However, this improvement could be promising if we

could apply more feedback.

6.1.2 Feedback to polarity of sentences

We need to provide the system with a set of labelled sentences to imitate users’ feedback

for it. Since, in all domains of our datasets, labels are just provided for documents and not

for sentences, we are not able to provide the feedback for sentences of the documents in

our data. As an alternative, we use other sources of labelled sentences as our feedback.

We need to investigate feedback of sentences over a certain domain of data. Thus, it is

necessary to have feedback sentences in the same domain as that of our experimented data.

But, we cannot find a set of those sentences for all domains of our data. Therefore, we are

able to show results of our experiment for those domains which are publicly provided with

labelled sentences.

The datasets we use for sentence feedback for the domains of Books, Dvd and Electron-

ics are provided from the Amazon, which is the same website that instances of our original

datasets of reviews are pulled from. The corresponding dataset for each domain includes

200 sentences. We do not include the domain of the Kitchen, since there are no available

datasets of annotated sentences for this domain. Furthermore, since the purpose of running

52

Table 6.2: Effect of feedback for sentences over performance of lexicon expansion method

Books Dvd Electronics Movie Average

Before applying

feedback
70.95 71.85 77.55 71.2 72.89 ± 3.13

After applying

feedback
71.9 72.6 77.75 70.7 73.24 ± 3.11

this experiment is solely studying the effect of feedback and also we do not compare its

results with the other methods, we include domain of the movies in this experiment as well.

There are no available annotated data for the sentences of the IMDB movie website. How-

ever, there exists a balanced dataset of the labelled sentences in the domain of the movies

from another website called “rottentomatoes”, which consists of 10, 662 sentences. We use

this dataset as the feedback for the domain of the movies.

Table 6.2 shows the results of applying these feedback. Similar to the results of ap-

plying words as feedback, we can observe a slight improvement over the average accuracy

of the expanded lexicon. Since the sentences are not originally from our documents, we

cannot expect a large progress by applying an external set of feedback. However, we can

guarantee the advantage that having feedback on sentences of the same domain could in-

crease accuracy of the method. Furthermore, in spite of the other domains, a slight decrease

of the accuracy can be observed in the domain of the movies. This result could represent

the fact that, applying the existing labelled instances from another website would not neces-

sarily enhance the performance, even if the domain of that website is the same as the target

dataset.

6.2 User interface

According to the results of Section 6.1, having feedback to the output of our lexicon would

boost performance of our method. Therefore, we decide to design and build a feedback

collector, both at the word and the sentence level. A well designed system with capability

of gathering feedback from users should abide by the following criteria:

1. User friendly: The more complex the system is, the less the user is willing to en-

ter his thoughts and opinions. Therefore, the system needs to be simple and also

attracting enough to bring users’ attention to itself.

2. Applying users’ feedback in real-time: The user expects to see his opinion being

applied to the result of classifier immediately, so that he could feel his contribution.

53

Thus, considering feedback in batch processing and not applying users’ feedback

instantaneously may not be of users interests.

3. Aggregation of feedback: In spite of the fact that users prefer to see modifications

instantly as they give feedback, it might not be legitimate for the system to apply

each feedback immediately. This is the case since either the user may submit a wrong

feedback or the feedback is subjective and needs to be compared against opinions of

other users. Therefore, summarizing all the opinions and applying the aggregated

result would be necessary.

In order to apply users’ feedback instantaneously and to apply aggregated feedback at

the same time, we need to personalize our lexicon for each user. In other words, every user

needs to have his own version of the lexicon. Also, there should be a general version of the

lexicon, in which aggregation of feedback will be applied by means of batch processing.

Thus, whenever the user inserts a feedback to the system, his version of the lexicon will be

updated immediately and scores of words, sentences and documents are getting modified

correspondingly. Furthermore, whenever the number of user’s feedback reaches a certain

threshold, all of his feedback would be sent to the general lexicon. In the general lexicon,

user’s feedback for each sentence or word are compared to the other users’ feedback and an

average of all of their feedback would be applied to that lexicon.

6.3 Meerkat

Our lexicon expansion method along with the feedback collector system is embedded within

a public social network analysis tool called Meerkat. Developed in the Alberta Innovates

Centre for Machine Learning (AICML), Meerkat offers a wide range of visualization and

analyzing algorithms as well as a set of text analysis tools for datasets consisting a group

of messages such as forums, discussions, and so forth. Figure 6.1 shows a snapshot of

the message panel inside Meerkat, including the forums, discussions and messages inside

them. By means of applying our lexicon as the lexical resource of polarity classification,

we provide the following functionalities for Meerkat messages:

• Polarity classification: By applying our lexicon as the source of the lexical method

demonstrated in Section 4.1 we provide the polarity label for each message. Fig-

ure 6.2 shows the message window in Meerkat. One can open up this window for any

of the message in Meerkat, which includes general polarity of the message, its meta

54

Figure 6.1: A snapshot of message panel in Meerkat (the tree structure shown on the left

side of the image)

data and content. Furthermore, the words inside content of the message are coloured

with respect to their polarity inside the lexicon. There exists an “edit” button at the

left bottom of this window which enables the feedback mode for the message. With

this method of visualization, the user would have the clues of our decision about

general polarity of the message.

• Feedback collection: In order to make an easy-to-use and user friendly interface

for feedback collection, we have provided a feedback mode for the message window

as shown in Figure 6.3. In this mode, the content of the message is tokenized into

its sentences and the sentences are shown separately. Each sentence has a slide bar,

whose default value is the polarity assigned by our sentence classifier. This value can

change from −1, which is the left side of the slide bar shown as dark red, to 1, which

is dark green on the right side.

Furthermore, if the user clicks on any of the words in the content, he can change the

colour of the word, which represents polarity of that word. There is a legend on the

55

Figure 6.2: Message window, polarity of the message at the top left of the window and

coloured words

top left of the window, which shows the polarity that each of the colours represents.

Furthermore, the order of colours can help the user to figure out what colour the word

will change into, if he clicks on it. The default colour for each word is correlated

to the initial polarity of the word in the lexicon. After the user finishes applying the

feedback, he can submit the results by clicking on the “confirm” button on the bottom

left of the window.

• Analysis of polarity: By having the general polarity for each message, we can

visualize interesting statistics about polarity of a thread or a forum. The user is able

to take a look at the trend of polarity of messages in a thread over time, as shown in

the temporal diagram in Figure 6.4. He is also capable of observing the histogram

of polarities of a thread or a forum as shown in Figure 6.4. These types of statistics

would help the user to have a better idea of the community’s characteristics.

56

Figure 6.3: Feedback mode in the message window

Figure 6.4: Diagrams window for a thread of messages in Meerkat. The left diagram is the

temporal trend of polarity and the right one is the histogram of polarities inside that thread

57

Chapter 7

Conclusions and Future Work

In this work, we tackled the prime problem of polarity classification to build a classifier

for the messages inside our educational forum. We needed our classifier to be intuitive

and explicit enough, so that the user could get a general understanding of the polarity of

the messages inside each thread of discussion. Furthermore, the user could observe the

justifications of the results of our classification as intuitive clues and provide feedback to

help our system improve.

One of the main challenges we had in our data was the lack of polarity labels for the

messages. The other main issue we faced on this data was diversity of domains of topics

in discussions. Hence, we needed to have a robust classifier, which does not have any set

of information about polarity of data. Furthermore, our classifier must be adaptable to new

domains of discussions. We tried to address these issues by creating a lexicon expansion

method. Our expansion method uses hybrid scoring, which is a combination of learning and

lexical scoring methods. We showed that our proposed hybrid method outperforms both of

the lexical and learning methods. We then fed an association rule miner with results of our

hybrid scorer, extracted rules out of our messages and expanded our initial lexicon with

these rules.

Thereafter, by using the expanded lexicon we classified our messages and showed the

polarity of the words inside message by colouring them in order to give clues of our deci-

sions to the user. Furthermore, we created a polarity feedback collector and embedded it

inside Meerkat, to gather users’ knowledge of polarity both at the word and the sentence

level. Finally, we extracted some of the statistics of the threads such as histograms of mes-

sages and trend of polarity of messages inside a thread over time.

In summary, we came to a conclusion that we can use the unstructured knowledge,

hidden in a set of messages, for the task of classifying them into polarity categories, even

58

if those messages are not taking the advantage of having polarity labels. Furthermore, our

experiments led to the result that having users’ feedback would boost performance of our

classifiers, though the users may have non-expert opinions about different topics.

In spite of the fact that, our lexicon expansion method improves performance of the

initial lexicon, it does not insert a large set of words compared to the size of the initial

lexicon. This is due to the fact that the confidence level of many of the rules extracted

from the association rule mining is not enough to make them qualified for selection. One of

our future research directions would be strengthening the scoring methods to create better

scores for the sentences. Furthermore, we could apply other rule mining approaches to

investigate their efficacy in our method. In addition, we can extend the rule mining by

extracting rules with more than one antecedent as a future direction. Finally, we can apply

the results of the classification module to extract more information about the characteristics

of our communities and its members, such as users’ behaviour mining or monitoring the

trends of emotions within the forum.

59

Bibliography

[1] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and trends
in information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[2] L. P. Morency, R. Mihalcea, and P. Doshi, “Towards multimodal sentiment analysis:
Harvesting opinions from the web,” in Proceedings of the 13th international confer-
ence on multimodal interfaces, pp. 169–176, ACM, 2011.

[3] A. Neviarouskaya, H. Prendinger, and M. Ishizuka, “Textual affect sensing for so-
ciable and expressive online communication,” in Affective Computing and Intelligent
Interaction, pp. 218–229, Springer, 2007.

[4] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing
surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[5] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using
machine learning techniques,” in Proceedings of the ACL-02 conference on Empirical
methods in natural language processing, vol. 10, pp. 79–86, Association for Compu-
tational Linguistics, 2002.

[6] K. Dave, S. Lawrence, and D. M. Pennock, “Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews,” in Proceedings of the 12th
international conference on World Wide Web, pp. 519–528, ACM, 2003.

[7] T. Mullen and N. Collier, “Sentiment analysis using support vector machines with
diverse information sources.,” in EMNLP, vol. 4, pp. 412–418, 2004.

[8] C. Whitelaw, N. Garg, and S. Argamon, “Using appraisal groups for sentiment anal-
ysis,” in Proceedings of the 14th ACM international conference on Information and
knowledge management, pp. 625–631, ACM, 2005.

[9] P. D. Turney, “Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews,” in Proceedings of the 40th annual meeting on as-
sociation for computational linguistics, pp. 417–424, Association for Computational
Linguistics, 2002.

[10] F. Benamara, C. Cesarano, A. Picariello, D. R. Recupero, and V. S. Subrahmanian,
“Sentiment analysis: Adjectives and adverbs are better than adjectives alone.,” in
ICWSM, 2007.

[11] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural lan-
guage processing,” in Proceedings of the 2nd international conference on Knowledge
capture, pp. 70–77, ACM, 2003.

[12] J. Wiebe, T. Wilson, R. Bruce, M. Bell, and M. Martin, “Learning subjective lan-
guage,” Computational linguistics, vol. 30, no. 3, pp. 277–308, 2004.

[13] B. Liu, “Opinion mining and sentiment analysis,” in Web Data Mining, pp. 459–526,
Springer, 2011.

60

[14] M. Gamon, “Sentiment classification on customer feedback data: noisy data, large
feature vectors, and the role of linguistic analysis,” in Proceedings of the 20th inter-
national conference on Computational Linguistics, p. 841, Association for Computa-
tional Linguistics, 2004.

[15] V. Ng, S. Dasgupta, and S. Arifin, “Examining the role of linguistic knowledge sources
in the automatic identification and classification of reviews,” in Proceedings of the
COLING/ACL on Main conference poster sessions, pp. 611–618, Association for
Computational Linguistics, 2006.

[16] S. Das and M. Chen, “Yahoo! for amazon: Extracting market sentiment from stock
message boards,” in Proceedings of the Asia Pacific finance association annual con-
ference (APFA), vol. 35, p. 43, Bangkok, Thailand, 2001.

[17] J. C. Na, H. Sui, C. Khoo, S. Chan, and Y. Zhou, “Effectiveness of simple linguis-
tic processing in automatic sentiment classification of product reviews,” Advances in
Knowledge Organization, vol. 9, pp. 49–54, 2004.

[18] V. Hatzivassiloglou and J. M. Wiebe, “Effects of adjective orientation and gradability
on sentence subjectivity,” in Proceedings of the 18th conference on Computational
linguistics, vol. 1, pp. 299–305, Association for Computational Linguistics, 2000.

[19] H. Yu and V. Hatzivassiloglou, “Towards answering opinion questions: Separating
facts from opinions and identifying the polarity of opinion sentences,” in Proceed-
ings of the 2003 conference on Empirical methods in natural language processing,
pp. 129–136, Association for Computational Linguistics, 2003.

[20] A. Andreevskaia and S. Bergler, “Mining wordnet for a fuzzy sentiment: Sentiment
tag extraction from wordnet glosses.,” in EACL, vol. 6, pp. 209–215, 2006.

[21] A. Esuli and F. Sebastiani, “Determining the semantic orientation of terms through
gloss classification,” in Proceedings of the 14th ACM international conference on In-
formation and knowledge management, pp. 617–624, ACM, 2005.

[22] A. Esuli and F. Sebastiani, “Determining term subjectivity and term orientation for
opinion mining.,” in EACL, vol. 6, p. 2006, 2006.

[23] A. Esuli and F. Sebastiani, “Sentiwordnet: A publicly available lexical resource for
opinion mining,” in Proceedings of LREC, vol. 6, pp. 417–422, 2006.

[24] A. Finn and N. Kushmerick, “Learning to classify documents according to genre,”
Journal of the American Society for Information Science and Technology, vol. 57,
no. 11, pp. 1506–1518, 2006.

[25] H. Takamura, T. Inui, and M. Okumura, “Extracting semantic orientations of phrases
from dictionary.,” in HLT-NAACL, vol. 2007, pp. 292–299, 2007.

[26] N. Kaji and M. Kitsuregawa, “Building lexicon for sentiment analysis from massive
collection of html documents.,” in EMNLP-CoNLL, pp. 1075–1083, Citeseer, 2007.

[27] M. Gamon and A. Aue, “Automatic identification of sentiment vocabulary: exploiting
low association with known sentiment terms,” in Proceedings of the ACL Workshop on
Feature Engineering for Machine Learning in Natural Language Processing, pp. 57–
64, Association for Computational Linguistics, 2005.

[28] J. Kamps, M. Marx, R. J. Mokken, and M. De Rijke, “Using wordnet to measure
semantic orientations of adjectives.,” in LREC, vol. 4, pp. 1115–1118, Citeseer, 2004.

[29] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity in phrase-
level sentiment analysis,” in Proceedings of the conference on human language tech-
nology and empirical methods in natural language processing, pp. 347–354, Associ-
ation for Computational Linguistics, 2005.

61

[30] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification,” in ACL, vol. 7, pp. 440–
447, Citeseer, 2007.

[31] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in nlp,” in ACL, vol. 7,
pp. 264–271, Citeseer, 2007.

[32] A. Aue and M. Gamon, “Customizing sentiment classifiers to new domains: A case
study,” in Proceedings of recent advances in natural language processing (RANLP),
vol. 1, Citeseer, 2005.

[33] H. Yang, J. Callan, and L. Si, “Knowledge transfer and opinion detection in the trec
2006 blog track.,” in TREC, 2006.

[34] S. Tan, G. Wu, H. Tang, and X. Cheng, “A novel scheme for domain-transfer problem
in the context of sentiment analysis,” in Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pp. 979–982, ACM, 2007.

[35] S. Tan, X. Cheng, Y. Wang, and H. Xu, “Adapting naive bayes to domain adaptation
for sentiment analysis,” in Advances in Information Retrieval, pp. 337–349, Springer,
2009.

[36] S. Li, Y. Xue, Z. Wang, and G. Zhou, “Active learning for cross-domain sentiment
classification,” in Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, pp. 2127–2133, AAAI Press, 2013.

[37] T. Li, V. Sindhwani, C. Ding, and Y. Zhang, “Knowledge transformation for cross-
domain sentiment classification,” in Proceedings of the 32nd international ACM SI-
GIR conference on Research and development in information retrieval, pp. 716–717,
ACM, 2009.

[38] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain sentiment clas-
sification via spectral feature alignment,” in Proceedings of the 19th international
conference on World Wide Web, pp. 751–760, ACM, 2010.

[39] N. Kaji and M. Kitsuregawa, “Automatic construction of polarity-tagged corpus from
html documents,” in Proceedings of the COLING/ACL on Main conference poster
sessions, pp. 452–459, Association for Computational Linguistics, 2006.

[40] C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,” in Proceedings
of the 18th ACM conference on Information and knowledge management, pp. 375–
384, ACM, 2009.

[41] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal of
machine Learning research, vol. 3, pp. 993–1022, 2003.

[42] C. Lin, Y. He, and R. Everson, “A comparative study of bayesian models for unsu-
pervised sentiment detection,” in Proceedings of the Fourteenth Conference on Com-
putational Natural Language Learning, pp. 144–152, Association for computational
linguistics, 2010.

[43] G. Zhou, J. Zhao, and D. Zeng, “Sentiment classification with graph co-
regularization,” in Proceedings of COLING, pp. 1331–1340, 2014.

[44] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix factor-
ization for data representation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 8, pp. 1548–1560, 2011.

[45] L. Qiu, W. Zhang, C. Hu, and K. Zhao, “Selc: a self-supervised model for senti-
ment classification,” in Proceedings of the 18th ACM conference on Information and
knowledge management, pp. 929–936, ACM, 2009.

62

[46] R. Prabowo and M. Thelwall, “Sentiment analysis: A combined approach,” Journal
of Informetrics, vol. 3, no. 2, pp. 143–157, 2009.

[47] S. Dasgupta and V. Ng, “Mine the easy, classify the hard: a semi-supervised approach
to automatic sentiment classification,” in Proceedings of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP, vol. 2, pp. 701–709, Association for Computational Linguistics, 2009.

[48] X. Hu, J. Tang, H. Gao, and H. Liu, “Unsupervised sentiment analysis with emotional
signals,” in Proceedings of the 22nd international conference on World Wide Web,
pp. 607–618, International World Wide Web Conferences Steering Committee, 2013.

[49] B. Liu and L. Zhang, “A survey of opinion mining and sentiment analysis,” in Mining
Text Data, pp. 415–463, Springer, 2012.

[50] B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge
University Press, 2015.

[51] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment analysis: Tasks,
approaches and applications,” Knowledge-Based Systems, 2015.

[52] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-based methods
for sentiment analysis,” Computational linguistics, vol. 37, no. 2, pp. 267–307, 2011.

[53] P. Stone, D. C. Dunphy, M. S. Smith, and D. Ogilvie, “The general inquirer: A
computer approach to content analysis,” Journal of Regional Science, vol. 8, no. 1,
pp. 113–116, 1968.

[54] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 168–177, ACM, 2004.

[55] B. Liu, M. Hu, and J. Cheng, “Opinion observer: analyzing and comparing opinions
on the web,” in Proceedings of the 14th international conference on World Wide Web,
pp. 342–351, ACM, 2005.

[56] T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, J. Wiebe, Y. Choi, C. Cardie,
E. Riloff, and S. Patwardhan, “Opinionfinder: A system for subjectivity analysis,” in
Proceedings of hlt/emnlp on interactive demonstrations, pp. 34–35, Association for
Computational Linguistics, 2005.

[57] D. A. Medler, A. Arnoldussen, J. Binder, and M. Seidenberg, “The wisconsin per-
ceptual attribute ratings database.” http://www.neuro.mcw.edu/ratings/,
2005.

[58] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.,” in LREC, vol. 10, pp. 2200–
2204, 2010.

[59] X. Z. Svetlana Kiritchenko and S. M. Mohammad, “Sentiment analysis of short in-
formal texts,” Journal of Artificial Intelligence Research (JAIR), vol. 50, pp. 723–762,
2014.

[60] S. M. Mohammad, S. Kiritchenko, and X. Zhu, “Nrc-canada: Building the state-of-
the-art in sentiment analysis of tweets,” in Proceedings of the seventh international
workshop on Semantic Evaluation Exercises (SemEval-2013), June 2013.

[61] X. Zhu, S. Kiritchenko, and S. M. Mohammad, “Nrc-canada-2014: Recent improve-
ments in the sentiment analysis of tweets,” SemEval 2014, p. 443, 2014.

63

[62] S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, “Nrc-canada-2014: Detect-
ing aspects and sentiment in customer reviews,” in Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442, Association
for Computational Linguistics and Dublin City University, 2014.

[63] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts,” in Proceedings of the 42nd annual meeting
on Association for Computational Linguistics, p. 271, Association for Computational
Linguistics, 2004.

[64] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment cate-
gorization with respect to rating scales,” in Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pp. 115–124, Association for Compu-
tational Linguistics, 2005.

[65] P. Melville, W. Gryc, and R. D. Lawrence, “Sentiment analysis of blogs by combining
lexical knowledge with text classification,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1275–1284,
ACM, 2009.

[66] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky,
“The Stanford CoreNLP natural language processing toolkit,” in Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60, 2014.

[67] “will.” http://www.merriam-webster.com/dictionary/will. Ac-
cessed: 2014-11-12.

[68] “Part Of Speech.” http://en.wikipedia.org/wiki/Part_of_speech.
Accessed: 2014-11-12.

[69] C. D. Manning, “Part-of-speech tagging from 97% to 100%: is it time for some lin-
guistics?,” in Computational Linguistics and Intelligent Text Processing, pp. 171–189,
Springer, 2011.

[70] “Inverted index.” http://en.wikipedia.org/wiki/Inverted_index.
Accessed: 2014-11-20.

[71] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University
Press, 2011.

[72] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[73] Q. McNemar, “Note on the sampling error of the difference between correlated pro-
portions or percentages,” Psychometrika, vol. 12, no. 2, pp. 153–157, 1947.

64

