This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 91Reinforcement Learning
- 21Machine Learning
- 10Artificial Intelligence
- 6Transfer Learning
- 5Planning
- 5Representation Learning
- 1Abbasi Brujeni, Lena
- 1Abbasi-Yadkori, Yasin
- 1Aghakasiri, Kiarash
- 1Alikhasi, Mahdi
- 1Asadi Atui, Kavosh
- 1Banafsheh Rafiee
-
Fall 2024
Experience replay, the reuse of past data to improve sample efficiency, is ubiquitous in reinforcement learning. Though a variety of smart sampling schemes have been introduced to improve performance, uniform sampling by far remains the most common approach. One exception is Prioritized...
-
Fall 2024
If we aspire to design algorithms that can run for long periods, continually adapting to new, unexpected situations, then we must be willing to deploy our agents without tuning their hyperparameters over the agent’s entire lifetime. The standard practice in deep RL—and even continual RL—is to...
-
Spring 2024
We introduce the background of the natural language processing field, outlining the benefits and drawbacks of rule-based versus statistical methods. We present knowledge graphs as a way to integrate the explainability of rule-based methods and the power of statistical methods, large language...
-
Fall 2023
The average-reward formulation is a natural and important formulation of learning and planning problems, yet has received much less attention than the episodic and discounted formulations. This dissertation makes three areas of contributions to algorithms and their theories concerning the...
-
Spring 2023
Oblique decision trees use linear combinations of features in the decision nodes. Due to the non-smooth structure of decision trees, training oblique decision trees is considerably difficult as the parameters are tuned using expensive non-differentiable optimization techniques or found by...
-
Learning to Partner: Exploring Real-Time Adaptive Feedback via Temporal-Difference Machine Learning for Improved Human-Prosthesis Collaboration
DownloadFall 2024
Modern myoelectric artificial limbs are sophisticated devices with many of the degrees of freedom of biological limbs. These devices have great potential to provide function for people with amputations, assisting them in participating in a greater number of activities and tasks of daily...
-
Learning What to Remember: Strategies for Selective External Memory in Online Reinforcement Learning Agents
DownloadSpring 2019
In realistic environments, intelligent agents must learn to integrate information from their past to inform present decisions. An agent's immediate observations are often limited, and some degree of memory is necessary to complete many everyday tasks. However, an agent cannot remember everything...
-
Fall 2023
Of all the capabilities of natural intelligence, one of the most exceptional is the ability to expand upon and refine knowledge of the world through subjective experience. Therefore, a longstanding goal of Artificial Intelligence has been to replicate this success: to enable artificial agents to...
-
Leveraging Large Language Models for Speeding Up Local Search Algorithms for Computing Programmatic Best Responses
DownloadFall 2024
Despite having advantages such as generalizability and interpretability over neural representations, programmatic representations of hypotheses and strategies face significant challenges. This is because algorithms writing programs encoding hypotheses for solving supervised learning problems and...