
K-percent Evaluation for Lifelong Reinforcement
Learning

by

Golnaz Mesbahi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Golnaz Mesbahi, 2024

Abstract

If we aspire to design algorithms that can run for long periods, continually

adapting to new, unexpected situations, then we must be willing to deploy

our agents without tuning their hyperparameters over the agent’s entire life-

time. The standard practice in deep RL—and even continual RL—is to assume

unfettered access to the deployment environment for the full lifetime of the

agent. In this thesis, we propose a new approach for evaluating lifelong RL

agents where only k percent of the experiment data can be used for hyper-

parameter tuning. We then conduct an empirical study of DQN and SAC

across a variety of continuing and non-stationary domains. We find agents

generally perform poorly when restricted to k-percent tuning, whereas several

algorithmic mitigations designed to maintain network plasticity help with the

performance. In addition, we explore the impact of the tuning budget (k)

on algorithm performance and hyperparameter selection, and assess various

mitigation strategies’ network properties to analyze their behavior.

ii

Preface

This thesis is an extension of the ”K-percent Evaluation for Lifelong RL” sub-

mission to the Conference on Neural Information Processing Systems (NeurIPS),

2024. It is a joint work with Parham Mohammad Panahi, Olya Mastikhina,

Martha White, and Adam White. Parham and I are responsible for the main

experiments. Olya helped with the SAC experiments, and Adam and Martha

wrote the main body of the paper, including the introduction, methodology,

and conclusion. I wrote the experiment section and appendix with the help of

Parham and Olya.

iii

To my parents for their constant support

and to my sister, who brings brightness to my life

iv

In the darkest of nights

at the end of a blind alley

on the top of a mud wall

jasmine buds burst into bloom...

– Abbas Kiarostami

v

Acknowledgements

This thesis is the result of the support and encouragement of many amazing

people I have met throughout my studies, from the first day of school to my

undergraduate and graduate days. While I cannot name everyone, I would like

to express my deep gratitude to those who have made significant contributions

and have been inspiring teachers to me.

In particular, I am grateful to Peyman Setoodeh, who first introduced me

to reinforcement learning in his course. His engaging teaching sparked my

interest in the topic and set me on this path.

I would like to genuinely thank my supervisors, Adam and Martha White.

They have provided consistent support throughout my research journey, help-

ing me navigate the ups and downs of exploratory research. Their guidance

has also helped me improve my writing and research skills.

My gratitude also extends to Matthew Guzdial for his valuable feedback

as a committee member.

I am deeply appreciative of Andrew Patterson and Matthew Schlegel for

teaching me how to run better experiments when I first joined RLAI lab and

for their insightful advice on improving my research.

Special thanks to Olya Mastikhina and Parham Mohammad Panahi for

their assistance with the paper submission.

Finally, I want to express my heartfelt appreciation to my friends, especially

Mahdieh Mallahnezhad, who supported me through some of my challenging

days, and to my family, whose warmth has been a comforting presence.

vi

Contents

1 Introduction 1

1.1 A Brief Definition of Continual RL 2

1.2 Challenges of Continual RL 3

1.3 Role of Hyperparameters and Design Choices in Continual RL 4

1.4 Solutions and Methods in Continual RL 5

1.5 Thesis Contributions . 7

2 Background 9

2.1 Markov Decision Process . 9

2.2 Value Functions . 9

2.3 Agents Considered in This Thesis 11

2.3.1 Deep Q-Network (DQN) 11

2.3.2 Soft Actor-Critic (SAC) 12

2.4 Summary . 12

3 k-percent Tuning 13

4 Failure of Standard Algorithms Under k-Percent Evaluation 16

4.1 Failure of DQN Under k-Percent Evaluation 16

4.2 Failure of SAC in Continuous Control 19

4.3 Scaling Up: Jelly Bean World 20

4.4 Summary . 22

5 The Impact of k 23

5.1 Case Study: DQN in Non-stationary Catch

and Continuing Cartpole . 23

vii

5.2 Effect of k-Percent Tuning on Hyperparameter Selection . . . 24

5.3 Summary . 25

6 Mitigations Help Under k-percent Evaluation 26

6.1 A Brief Overview of Mitigation Strategies 26

6.1.1 W0Regularization . 27

6.1.2 L2Regularization . 27

6.1.3 CReLU . 28

6.1.4 PT-DQN . 28

6.1.5 Weight Normalization 29

6.1.6 Layer Normalization 29

6.2 k-percent-tuning for DQN with Mitigations 30

6.3 k-percent-tuning for SAC with Mitigations 30

6.4 Impact of k on Mitigations . 32

6.4.1 Jelly Bean World . 36

6.5 Summary . 38

7 Revisiting Network Properties 40

7.1 Properties . 40

7.2 Observations . 42

7.3 Summary . 47

8 Conclusion and Future Work 48

References 50

Appendix A Tuning Details 54

A.1 DQN tuning . 54

A.2 SAC tuning . 56

viii

List of Tables

A.1 Default hyperparameters values for DQN on dancing catch . . 54

A.2 Values for DQN on dancing catch from 1% tuning, selected by

AUC and by final 10% performance and best worst performance 55

A.3 Hyperparameter ranges for one-percent-tuning on DQN and

mitigations on dancing catch 55

A.4 Hyperparameter ranges for one-percent-tuning on PT-DQN on

dancing catch . 55

A.5 PT-DQN values on dancing catch from one-percent-tuning, se-

lected by AUC, by final 10% performance, and by best-worst

performance. Tuning was done with 3 seeds. Batch size is at a

default value of 64, and buffer size at a default value of 100, 000 56

A.6 Hyperparameter ranges for one-percent-tuning on SAC on Deep-

Mind Control Suite environments 57

A.7 Default hyperparameter values and values selected from 1% tun-

ing for SAC for the DeepMind Control Suite environment in this

paper. Tuning was done with three seeds. The values were the

same for selection via AUC as for final 10% return 58

ix

List of Figures

4.1 Tuning on one-percent of a lifetime leads to poor performance

for DQN in Non-stationary Catch and Continuing Cart-pole.

Each row of plots corresponds to a different environment, and

each column corresponds to a different hyperparameter selection

strategy. Lines are averaged over ten seeds and the shaded

regions are 95% bootstrap confidence interval. 17

4.2 Tuning on one-percent of a run similarly leads to poor perfor-

mance for SAC in a task-switching setting. The results are

averaged over ten runs with standard error. 19

4.3 Agent World view in Jelly Bean World 21

4.4 Tuning for twenty-percent of the lifetime leads to poor perfor-

mance for DQN in Jelly Bean World. Lines are averaged over

ten seeds with 95% bootstrap confidence intervals. 22

5.1 Effect of k on the performance of DQN in Non-stationary Catch

(down) and continuing Cart-pole (up), over its entire lifetime.

Results are averaged over 30 seeds with shaded regions being

95% student-T confidence intervals. 24

6.1 The effect of incorporating mitigations into DQN under one-

percent tuning in Non-stationary Catch and Continuing Cart-

pole. Each of the plots shows a different approach for choos-

ing the hyper-parameters during one-percent tuning. Results

are averaged over ten seeds and shaded regions reflect the 95%

bootstrap confidence intervals. 31

x

6.2 The effect of incorporating mitigations into DQN under twenty-

percent tuning in Jelly Bean World. Results are averaged over

ten seeds and shaded regions reflect the 95% bootstrap confi-

dence intervals. 32

6.3 Multiple mitigation strategies do improve the performance of

quadruped-walk-to-run with the sub-optimal hyperparameters

obtained from tuning on one-percent of quadruped-walk. l2

is weight decay = 1 · 10−5, w0 is with penalization of weights

moving away from their initialization values, and wn is weight

normalization. The results are averaged over 10 seeds, and the

shading is the standard error. 33

6.4 Effect of k on performance of Crelu in Continuing Cartpole,

over its entire lifetime. Results are averaged over 30 seeds with

shaded regions being 95% student-T confidence intervals. . . . 34

6.5 Effect of k on performance of PT DQN in Continuing Cartpole,

over its entire lifetime. Results are averaged over 30 seeds with

shaded regions being 95% student-T confidence intervals. . . . 34

6.6 Effect of k on performance of L2 Regularization in Continuing

Cartpole, over its entire lifetime. Results are averaged over

30 seeds with shaded regions being 95% student-T confidence

intervals. 35

6.7 Effect of k on performance of Layer Norm in Continuing Cart-

pole, over its entire lifetime. Results are averaged over 30 seeds

with shaded regions being 95% student-T confidence intervals. 35

6.8 Effect of k on performance of W0 Regularization in Continuing

Cartpole, over its entire lifetime. Results are averaged over

30 seeds with shaded regions being 95% student-T confidence

intervals. 36

6.9 DQN and mitigations under one-percent tuning in Jelly Bean

World. Results are averaged over ten seeds and shaded regions

reflect the 95% bootstrap confidence intervals. 38

xi

6.10 DQN and mitigations under five-percent tuning in Jelly Bean

World. Results are averaged over ten seeds and shaded regions

reflect the 95% bootstrap confidence intervals. 38

6.11 DQN and mitigations under ten-percent tuning in Jelly Bean

World. Results are averaged over ten seeds and shaded regions

reflect the 95% bootstrap confidence intervals. 39

7.1 The correlations between properties for DQN with mitigations

under one-percent tuning and final returns in Non-stationary

Catch. The top row is for the properties of the permanent net-

work, and the bottom row is for the properties of the transient

network. Each color represents one mitigation combination, and

there are 40 dots per color corresponding to the four ways to

select hyperparameters during one-percent tuning and the ten

seeds used per selected hyperparameter 44

7.2 The correlations between properties for DQN with mitigations

under one-percent tuning and final returns in Continuing Cart-

pole. The top row is for the properties of the permanent net-

work, and the bottom row is for the properties of the transient

network. Each color represents one mitigation combination, and

there are 40 dots per color corresponding to the four ways to

select hyperparameters during one-percent tuning and the ten

seeds used per selected hyperparameter. 45

7.3 The correlations between properties for DQN with mitigations

under twenty-percent tuning in Jelly Bean World. The top row

is for the properties of the permanent network, and the bottom

row is for the properties of the transient network. Each color

represents one mitigation combination, and there are 40 dots per

color corresponding to the four ways to select hyperparameters

during one-percent tuning and the ten seeds used per selected

hyperparameter. 46

xii

A.1 Hyperparameter values for one-percent tuning of SAC on quadruped-

walk. There are three seeds per point. The shading is the stan-

dard deviation. 57

xiii

Chapter 1

Introduction

Continual or lifelong reinforcement learning (RL) arises in many applications.

In HVAC control, agents learn to adapt the set-points daily, with deployment

lasting for weeks or months, but the agent does not exploit knowledge of the

length of the deployment [26]. Similar situations arise in data-center cooling

[23], water treatment [17], and many other industrial control settings. These

examples illustrate the widespread relevance and importance of continual RL

in real-world applications.

Even our popular deep RL benchmarks could naturally be treated as life-

long learning tasks: Atari agents could play games forever, switching to a new

game when they die or complete each game (similar to the Switching ALE

benchmark [1]). Mujoco tasks are naturally continuing, but common practice

is to truncate experiments after a fixed number of interactions, resetting to

some initial configuration. These benchmarks highlight the need for suitable

methodologies to design and evaluate agents in such tasks. In lifelong learning

tasks, we should design and evaluate our agents with limited access to the

environment and then deploy the learning system as-is without further tuning

of its hyperparameters during the rest of its lifetime.

Despite its importance, the vast majority of algorithmic progress in deep

RL has focused on the non-continual setting. Agent designers test algorithmic

variations and hyperparameter combinations in the deployment environment

for the full lifetime of the agent and then report the best performance across

these deployments. For example, if one were to develop a new exploration

1

algorithm for Atari, then this new algorithm would be extensively tested over

200 million frames, tuning any new hyperparameters introduced by evaluating

each over 200 million frames. In this sense, the standard methodology is to

design and evaluate our agents, given access to their full lifetime.

Given these challenges, we suggest deploying the agents after a limited

number of interactions with the environment and without further tuning of

hyperparameters for their lifetime. Once deployed, the agent should ideally

adapt and perform well over time. This approach of evaluating agents in a

continual setting motivates the design of algorithms that are robust to envi-

ronmental nonstationarities and can adapt over time.

In this introduction, we first briefly define continual RL and discuss com-

mon challenges faced by deep RL algorithms in a continual setting. We then

highlight the critical role of hyperparameter tuning and demonstrate that cur-

rent selection methods do not consider the constraints of continual learning

systems, as they tune for the agent’s full lifetime.

To address the issues in continual RL, we introduce solutions and evalu-

ation methods proposed in the literature and motivate further research into

evaluation methods for continual learning. Finally, we outline the contribu-

tions made in this thesis.

1.1 A Brief Definition of Continual RL

This thesis focuses on the evaluation strategies in continual reinforcement

learning (CRL). Although continual RL is a broad term with ongoing research

trying to formalize the term, we try to specify the framework in the following

paragraphs.

Continual reinforcement learning is usually defined as a framework where

the agent-environment interaction is never-ending and the agent has to learn

to adapt to new information endlessly, as opposed to finding a fixed policy

[2]. In reality, the agent-environment interaction eventually ends. However,

the agent is not aware of the exact time it will end as it is also unaware of

when or how the changes happen in the environment. This continual need for

2

adaptation necessitates unique approaches to the design and evaluation of the

algorithms.

In this framework, we typically look for particular properties [40]: The

environment is more complex than the agent. Moreover, the agent operates

in a continual setting with a single uninterrupted life, without resets. Ad-

ditionally, the dynamics or the reward function change over time due to the

non-stationary nature of the environment. This non-stationarity can be either

sudden or gradual. Note that there is already an inherent non-stationarity

built into the RL framework because of the improving policy [16]. Understand-

ing these properties is crucial for developing effective evaluation strategies.

Enforcing these constraints onto the agent is particularly interesting be-

cause they can help us develop algorithms that are better suited for real-world

applications [18]. This thesis explores an evaluation method that better follows

these constraints.

1.2 Challenges of Continual RL

A growing body of literature demonstrates that within the framework of con-

tinual reinforcement learning, particularly when using deep RL methods, neu-

ral networks show poor performance [4].

The following is a list of these closely related phenomena in CRL:

1. Loss of Plasticity The neural network’s capacity to learn new policies

is diminished over time as a result of changes in data distribution [11].

2. Primacy Bias: Deep RL methods tend to overfit early interactions and

ignore the later experience, which is detrimental to the learning process

[35].

3. Catastrophic Forgetting: Neural networks are prone to gradually for-

getting previously known information [12].

4. Implicit Underparametrization: The combination of bootstrapping

and gradient descent in deep RL methods can lead to implicit under-

parametrization, resulting in deteriorating performance over time [20].

3

There have been several investigations on the potential causes of this phe-

nomena. Some of the potential reasons include an increase in the number of

dead neurons [1] , weight and gradient norm growth [29], [35], and pathologies

in the loss landscape of the optimization problem [25], [28]. Each potential

cause can be assessed using specific metrics to gauge its impact.

1.3 Role of Hyperparameters and Design Choices

in Continual RL

The choice of hyperparameters can directly affect the phenomena mentioned

above in algorithms. These choices include the optimizer, step size, activation

functions, warmup steps, width, and depth of the networks, batch size, and

many other agent-specific hyperparameters. Selecting the right combination

of these hyperparameters is crucial for performance, and poor choices can lead

to suboptimal performance or even performance collapse.

For example, architectural choices play an important role in influencing the

performance of the algorithms. Hyperparameters such as width, depth, use of

batch normalization, skip connections, and pooling layers can directly affect

the performance. In some cases, even simply modifying the architecture can

achieve a similar or better performance compared to specially designed con-

tinual learning algorithms [31]. Therefore, carefully considering architectural

elements is essential for improving algorithm performance

Hyperparameter tuning can significantly affect the stability and perfor-

mance of algorithms. For instance, wider networks have been shown to miti-

gate catastrophic forgetting [30]. Furthermore, factors such as dropout, learn-

ing rate decay, and batch size can also affect the loss landscape and catas-

trophic forgetting. Additionally, it is shown that hyperparameters cannot be

transferred across different data regimes [37]. Therefore, proper hyperparam-

eter tuning is crucial for the success of continual learning methods.

The choice of activation function also influences loss of plasticity. Acti-

vation functions such as leaky ReLU [10] and Concatenated ReLU [1] can

help maintain plasticity. Furthermore, adjusting the hyperparameters of the

4

Adam optimizer can directly impact algorithm stability during task switches

[27]. Consequently, selecting appropriate activation functions and optimizer

settings is vital for maintaining learning efficiency.

Despite the importance of hyperparameters in the behavior of algorithms,

current practices often fall short. The widely used method for choosing hy-

perparameters for an algorithm in deep RL is either to tune for the lifetime

of the agent or to use previously selected hyperparameters. These traditional

approaches take no notice of the direct effect of the hyperparameters on the

learning difficulties of algorithms in a continual setting. They also do not take

into account the assumptions in continual learning that agent-environment in-

teraction will be for a very long and undefined time, and the agent is not aware

of when or how the non-stationarities will happen in the environment. This

oversight highlights the need for more dynamic and context-aware hyperpa-

rameter tuning and evaluation methods.

1.4 Solutions and Methods in Continual RL

There has been increased focus on extending or modifying existing deep RL

agents for continual RL, with limited success. These approaches can be roughly

categorized into three groups: resetting, regularization, and normalization.

1) Resetting: This approach periodically resets parts of the agent’s network

to random initial values, initially causing large performance drops but even-

tually leading to improved final performance [8], [34], [35], [46].

2) Regularization: Regularization techniques introduce additional informa-

tion by either modifying the loss function of the agent or modifying the weight

updates, in order to prevent overfitting [24]. Examples of this method are

dropout [32], L2 regularization [11], elastic weight consolidation [19], and re-

generative regularization [21]. In particular, we further explore regenerative

regularization in this thesis, which balances error reduction with keeping the

agent’s network parameters close to initialization [21]; this helps because the

random initial parameters help the network learn quickly.

3) Normalization: Recent studies have found that layer normalization can

5

help maintain the ability to learn [29].

All these approaches are mitigations: algorithmic fixes applied to a base

agent that is not designed for lifelong learning.

In all these works, the ultimate empirical demonstrations were conducted in

non-continual testbeds like Atari and Mujoco, where the proposed new lifelong

learning agents were tuned for the agent’s entire lifetime—there is no sense in

which it is continual. Many of these approaches are promoted to address loss

of plasticity, which, although important for the success of lifelong RL agents,

also arises in standard episodic non-continual benchmarks like Mujoco and

Atari [8], [34].

In contrast, there are several algorithms designed from the first principles

for continual RL. Continual backpropagation [11], for example, was designed

for and evaluated in never-ending regression and RL control tasks. This algo-

rithm randomly re-initializes connections in the network to promote continual

adaptation in the face of non-stationarity. Similarly inspired, Permanent-

transient networks [3] use a pair of neural networks to ensure a deep Q-learning

agent is able to distill key information from a sequence of tasks while adapting

to new ones.

However, more is needed than to evaluate these proposed mitigations in

conventional ways. The average or final performance will not give us enough

information about these mitigation methods’ reliability for a continual setting.

[18], [24]. New metrics such as backward transfer, forward knowledge transfer,

and average forgetting over time are proposed to better evaluate the continual

learners [9]. However, hyperparameter selection should be an integral part

of the evaluation process because the choice of hyperparameters can directly

impact the performance and stability of these mitigation strategies. Still,

hyperparameter selection is a critical yet overlooked aspect in this area.

In conclusion, while these solutions show promise in mitigating the chal-

lenges of continual RL, there is a need for improved evaluation methodologies

that account for the constraints of continual learning scenarios

6

1.5 Thesis Contributions

This thesis explores the notion that progress in continual RL research has

been held back by inappropriate empirical methodologies. We propose a new

methodology for tuning and evaluating continual RL agents inspired by the

constraints of real-world applications of RL. Our proposal is based on a simple

idea: continual RL agents may be deployed for an unknown amount of time

and thus agent designers should not be allowed to tune their agents for their

entire lifetime. Instead, we introduce a tuning phase: a small percent of

the total lifetime. Only k-percent of the experiment data can be used for

hyperparameter tuning; after that, the hyperparameters must be fixed and

deployed for the remainder of the agent’s lifetime. This setup is inspired

by real-world deployment scenarios where (a) we cannot tune for the agent’s

full lifetime and (b) we may have limited knowledge and experience with the

dynamics and state distribution of the deployment environment. The goal

of our proposed evaluation methodology is to encourage the development of

agents that are more suitable for continual RL and perhaps deployment in

the real world, not introduce a way to tune hyperparameters for real-world

deployment.

In our first set of experiments, we verify that a popular and performant

deep RL agent, DQN, performs poorly across a suite of continual RL tasks

irrespective of what metric is used to select the best hyperparameters under k-

percent evaluation. We additionally test Soft Actor-Critic, to see the impact of

k-percent evaluation on a different algorithm in the continuous action setting,

finding similar outcomes.

Moreover, we investigate the effect of k on the performance of the algo-

rithms, and the hyperparameters chosen. We show that the minimum value of

k, the interaction budget for tuning required for good performance, is agent-

environment dependent, and the value of the hyperparameters including step

size and warmup step is meaningfully related to the amount of data used for

tuning.

We then investigate several mitigation strategies, including regularizing to

7

the initial weights, Concatenated ReLU, and layer normalization, under k-

percent evaluation finding most actually improve performance compared to

the base algorithms. In many cases, however, as the deployment lifetime is

extended, performance eventually drops.

We also revisit many metrics proposed in the literature as potentially pre-

dictive of catastrophic performance collapse in lifelong RL, such as stable rank

[20], dormant [43] or inactive neurons [1], [11], [27], and weight norms [35]. Un-

der k-percent evaluation, we see that some of these metrics actually correlate

with performance, suggesting explanations for the agents’ behavior.

Finally, we show that mitigation methods that are more robust under k-

percent evaluation, including Permanent-transient networks (PT-DQN), and

layer normalization, are more desirable.

8

Chapter 2

Background

In this chapter, we present the problem formulation and the notations used

throughout this thesis. We begin by describing the framework and then intro-

duce the baseline algorithms used in our study.

2.1 Markov Decision Process

We consider lifelong problems formulated as Markov Decision Processes (MDPs).

On each discrete time step, t = 1, 2, 3, ... the agent selects an action At from a

finite set of actions A based, in part, on the current state of the environment

St ∈ S. In response, the environment transitions to a new state St+1 ∈ S

and emits a scalar reward Rt+1 ∈ R. The agent’s action selection is de-

termined by its policy At ∼ π(·|St). Episodic problems are ones where the

agent-environment interaction naturally breaks up into sub-sequences where

the agent reaches a terminal and then is teleported to a start state S0 ∼ µ(S).

A continuing problem is one where the agent-environment interaction never

ends.

2.2 Value Functions

The agent’s task is to find a policy π that maximizes the expected discounted

sum of rewards. To achieve this, the agent needs an estimate of how good a

state is, provided by the state value function v(s). The state value function is

9

defined as:

vπ(s)
.
= Eπ[Gt | St = s]

where

Gt
.
= Rt+1 + γt+1Gt+1

We use transition-based discounting to unify episodic and continuing problems,

where γt+1 = γ(St, At, St+1) ∈ [0, 1] (see White [45] for further details).

Additionally, there is the state-action value (Q-value) function, qπ(s, a),

which considers both the state and the action, unlike the value function which

only considers the state. The state-action value function provides an estimate

of how good an action is, given the current state, and is defined as:

qπ(s, a)
.
= Eπ[Gt | St = s, At = a]

Respectively, the optimal state-action value function is defined as:

q∗(s, a) = max
π

qπ(s, a)

The goal is to find a policy that maximizes the state-value function, which we

refer to as the optimal policy, π∗.

A lifelong RL problem is one where the agent-environment interaction, ei-

ther one long episode as in a continuing task or many episodes as in an episodic

task, is eventually truncated at time T but neither the agent nor the agent

designer can exploit this information because it is unknown. This appears

similar to how the Atari benchmark is used: at the beginning of a trial, the

agent is initialized and interacts with the environment for a fixed number of

steps T (200 million frames), and T is unrelated to the agent’s performance in

the game and the agent does not make use of T (i.e., the underlying learning

algorithm is not designed for finite-horizon MDPs). The key difference, as

outlined in the next chapter, is that in lifelong RL the agent designer does not

exploit knowledge of T in the design or evaluation of the agent.

10

2.3 Agents Considered in This Thesis

In most interesting tasks, the agent cannot directly observe the underlying

state; instead, only an observation of St is available to the agent. In the case

of discrete action, the policy is constructed using a neural network, outputting

estimates of the value of each action: q̂w(St, At) ≈ Eπ[Gt|St = s, At = a],

where w are the learnable parameters of a neural network. We use the DQN

algorithm [33] to learn q̂w and select actions. In the case of continuous actions,

we learn a parameterized policy πw where w are the parameters of a network

with Soft Actor-critic (SAC) [14]. We will provide a brief definition of these

two algorithms in the next two sections.

2.3.1 Deep Q-Network (DQN)

As mentioned, we use the Deep Q-Network agent (DQN), where the future

reward, called the Q-value function, is estimated with a neural network as:

q̂w(St, At) ≈ Eπ[Gt|St = s, At = a]

where w are the parameters of the Q-network. DQN utilizes bootstrapping and

gradient descent for training the network to minimize the mean-squared tem-

poral difference error. The mean-squared temporal difference error is defined

as:

L(w) =
∑

s∈S,a∈A

(
Rt+1 + γmax

a∈A
q̂w(St+1, at)− q̂w(St, At)

)2

where w is the delayed copy of w, which belongs to a second network referred

to as the target network. The target network is utilized to calculate target

Q-values. Target networks are usually used to stabilize learning. As shown in

sections 6.1.1, and 6.1.2, the loss function L(w) can then be modified to add

regularization in order to help the network maintain learning stability.

The Q-network consists of multiple layers, each containing a number of

hidden units. We refer to the weights of each layer l as wl, the gradients of

the weights as ∇wl, and the output of each hidden layer l at as hl. We use

this notation to later define the network properties in chapter 7.

11

2.3.2 Soft Actor-Critic (SAC)

The Soft Actor Critic consists of two components. The actor is a parametric

policy that is responsible for choosing actions, and the critic is a value function

learned by a temporal difference learning algorithm. The goal of SAC is to

optimize the continuing entropy-regularized objective, defined as:

Jτ (π) = E{St+k} in trajectory of π

[
Gt + τ

T∑
k=0

H(π(·|St+k))

]

where Jτ (π) is the entropy-regularized objective with entropy scale parameter

τ ∈ R+, π represents the policy, Gt denotes the discounted sum of rewards,

and H(π(·|St+k)) is the entropy of the policy π given state St+k.

The optimization problem associated with SAC is to find the policy π∗
τ that

maximizes Jτ (π). This objective forces the algorithm to find policies that not

only maximize the expected reward but also the entropy. This encourages

exploration and improves the robustness of the algorithm.

2.4 Summary

In this chapter, we formulated the problem addressed in this thesis. We began

by introducing Markov Decision Processes (MDPs), and episodic and continu-

ing problems, focusing on continuing problems, which are particularly relevant

in lifelong learning. The focus is on continuing problems in this thesis, as two

out of the three environments used for testing DQN are continuing, and SAC

experiments are also performed in continuing settings. A continuing problem

is characterized by a never-ending agent-environment interaction, where the

agent has a single life. Next, we discussed value functions and extended this

discussion to value functions with function approximation, highlighting Deep

Q-Networks (DQN) as the primary algorithm used in our experiments. Finally,

we introduced Soft Actor-Critic (SAC) as the second algorithm evaluated in

our experiments.

12

Chapter 3

k-percent Tuning

The common agent development-evaluation loop in RL is artificial and not

particularly reflective of biological systems or applications. In RL research,

we conduct experiments on computer simulations or robots, running for a

predetermined number of steps. Naturally, as agent designers we want our

agents to perform well and want to report the performance of an agent that is

well-engineered for the task. The typical process is to fix the total budget of

experience or lifetime of the agent and then begin design and tuning iterations:

tweak the algorithm and the hyperparameter settings (e.g., step size, explo-

ration rate, replay parameters, etc.) and run the agent for the lifetime and

record the performance. The process is iterated until performance plateaus or

the designer is happy with the outcome.

Hyperparameters have a dramatic impact on both the performance and

learning dynamics of deep RL agents. A DQN is one of the simplest such

agents, and it contains over 14 hyperparameters controlling the size of the

replay buffer, target network updated rate, averaging constants in the Adam

optimizer, and exploration over time, to name a few. These hyperparameters

allow us to instantiate DQN variants that learn incredibly slowly to mitigate

noise and off-policy instability, to fast online learners that can track station-

ary targets. The proliferation of hyperparameters in modern deep RL agents

effectively allows the agent designer to select which algorithm they want to

use ahead of time for a given task. This is even more important in lifelong RL,

as recent work has shown that the default hyperparameter settings of popular

13

agents must be significantly adjusted to deal with long-running non-stationary

learning tasks [29].

The design iteration described above seems at odds with the goals of lifelong

learning. In lifelong RL, we aspire to build agents that will run for long periods

of time, continually adapting to unpredictable changes in the environment and

continually revealing new regions of the state space. Using hyperparameters

to effectively select the algorithm that works best over the entire lifetime of

the agent is only possible in simulators. If your MDP is basically stationary

you can set the hyperparameters to exploit this knowledge.

Imagine deploying our agents to control a water treatment plant or to inter-

act with customers on the internet. It is totally unclear how these imagined

deployment settings even match the standard agent development-evaluation

loop described above. In these examples, it is much more natural to imagine

that the designer has access to the deployment scenario for a limited amount

of time. During this time, she can try out different hyperparameters and agent

designs, but eventually deployment time beckons. This empirical setup would

not only be a better match for many applications but also motivate the de-

velopment of algorithms with fewer critically sensitive hyperparameters. In

other words, agents capable of adapting their learning online, forever plastic,

adapting to the nature of task non-stationarities—a lifelong learning agent.

Our proposed k-percent tuning methodology mechanizes these goals. The

name describes the relatively simple idea: we propose to tune the agent only

for k% of its lifetime. Though the agent cannot know its lifetime, as exper-

imenters, we know how long we will run our experiment and can constrain

ourselves to tune only over a small window. If we know the agent will run

for n steps, then we tune the agent for ⌊0.01kn⌋ steps. We multiply by 0.01

to convert the percent from the range of 0 to 100 into a percentage from 0

to 1. In other words, for every hyperparameter setting, we run the agent for

⌊0.01kn⌋ steps to obtain the performance metric after this short learning time.

We then choose the best hyperparameter configuration, for example, accord-

ing to the best performance in the final 10% of the tuning phase. The agent

is then deployed with these hyperparameters for the full n steps, for multiple

14

runs, to get the performance of that lifelong learning agent.

15

Chapter 4

Failure of Standard Algorithms
Under k-Percent Evaluation

In this chapter, we evaluate our proposed methodology for tuning lifelong RL

agents. In our experiments, we use k equal to one and twenty percent, for dif-

ferent environment settings. We contrast the k-percent-tuned agent with an

agent with either default hyperparameters from the literature or hyperparam-

eters chosen based on tuning for the whole lifetime in environments for which

there are no obvious default hyperparameters. We perform the experiments

with DQN in three discrete action environments and SAC in one continuous

control environment.

4.1 Failure of DQN Under k-Percent Evalua-

tion

We consider a large set of hyperparameters for DQN, each over a wide range,

including exploration (epsilon), learning rate, batch size, buffer size, minimum

number of steps before the first update, and the values of β2 and ϵ in the

Adam optimizer. The ranges and chosen hyperparameters are outlined in Ap-

pendix A.1. We test three different criteria to choose the best hyperparameter

configuration, primarily to see if any allow for DQN to perform well under

k-percent-tuning. These metrics include area under the learning curve (AUC)

which corresponds to overall performance in the tuning phase, the best per-

formance in the final 10% of the tuning phase, and finally the best worst-case

16

0 5M 10M
Time Steps

0.0

0.5

0.9

Ca
tc

h
Ra

te

final 10%

0 5M 10M
Time Steps

area under the learning curve

0 5M 10M
Time Steps

best worst

0 5M 10M
Time Steps

0.88

0.95

1.00

Po
le

 B
al

an
ce

d
Ra

tio

0 5M 10M
Time Steps

DQN 1% tuned DQN life-time tuned

0 5M 10M
Time Steps

Figure 4.1: Tuning on one-percent of a lifetime leads to poor performance for
DQN in Non-stationary Catch and Continuing Cart-pole. Each row of plots
corresponds to a different environment, and each column corresponds to a
different hyperparameter selection strategy. Lines are averaged over ten seeds
and the shaded regions are 95% bootstrap confidence interval.

17

performance across seeds, to select hyperparameters that are robust across

seeds, which we call best-worst.

We test DQN in two environments: Non-stationary Catch and Continuing

Cart-pole. Non-stationary Catch [13] is a visual control domain from the

DeepMind C-suite library of continuing environments. The agent controls a

paddle on the bottom of a 10 by 5 board, and the goal is to collect as many

falling objects as the agent can, with new objects spawned with a probability

of 0.1, making this a continuing MDP. There are three actions, {left, right,

stay-still}. If the paddle successfully catches a ball, a reward of +1 is received.

If it fails to catch a ball, a reward of −1 is received. Otherwise, a reward of

0 is given. The non-stationarity is induced by randomly swapping two entries

in the observation every 10, 000 steps. The agents are run for 10 million steps,

with 100, 000 steps for the one-percent-tuning. The agent goes through 10 non-

stationary transitions during tuning for the 100, 000 steps. The performance

measure is catch rate, which is defined as the moving average of the ratio of the

balls caught. An optimal agent (without exploration) would achieve a catch

rate of 1 while a random agent would get 0.2.

Continuing Cart-pole [6] is a simple classic control task with completely

stationary dynamics. The agent’s observations are the position and velocity

of the cart and its pole. At each step, the agent takes one of two actions: push

the cart toward the left or right with the goal of keeping the pole balanced

on top of the cart. The reward is +1 for every step that the pole is balanced.

Once the pole falls more than 24 degrees from its upright position, the agent

receives a reward of 0, and the pole is teleported to the position, but the agent

is not reset. The agents are run for 10 million steps, with 100, 000 steps for the

one-percent-tuning. The agent’s performance is measured as an exponential

moving average (0.99 averaging constant) of the ratio of recent time steps that

the pole successfully balanced. Under this performance measure, a perfect

agent that keeps the pole balanced indefinitely would attain a score of 1. This

environment provides a non-stable equilibrium, requiring constant learning

and adjustment.

The results are shown in Figure 4.1 and are as expected after the first

18

100, 000 steps. None of the three criteria prevent this collapse and result in

relatively similar performance. Best-Worst is more effective than Final 10%

and AUC in Non-stationary Catch, and all three are similar in Continuing

Cart-pole.

4.2 Failure of SAC in Continuous Control

We ran a similar experiment with SAC in a modified environment from

the DeepMind Control Suite [44]. The DeepMind Control Suite environments

are large-scale continuous control environments commonly used in deep RL

research. The environments are physical simulations, making them useful for

investigating tuning in semi-real-world settings.

Figure 4.2: Tuning on one-percent of a run similarly leads to poor performance
for SAC in a task-switching setting. The results are averaged over ten runs
with standard error.

We again consider a large set of hyperparameters for SAC, including the

learning rate, batch size, buffer size, and the values of β2 and ϵ in the Adam

optimizer. The ranges and chosen hyperparameters are outlined in Appendix

19

A.2. We compare the one-percent-tuned values with the default hyperparam-

eters previously reported for the DeepMind Control Suite [14]. The agents are

run for 1 million steps, with 10, 000 exploration steps followed by training over

10, 000 steps.

We investigated how SAC performs with one-percent-tuning in a lifelong

learning setting where the environment switches from quadruped-walk to quadruped-

run halfway through the experiment. We call this designed environment

the switching Quadruped-walk-run. The agent is tuned for one-percent of

the experiment in quadruped-walk. In Figure 4.2, we see a more noticeable

improvement over SAC with default hyperparameters in early learning for

quadruped-walk, but we see a performance drop and then almost no learning

in quadruped-run.

4.3 Scaling Up: Jelly Bean World

We also performed larger-scale experiments with DQN in an environment

called Jelly Bean World. Jelly Bean World is a testbed for developing never-

ending learning algorithms [38]. This environment is an infinite two-dimensional

grid world that is filled with different items, each with its corresponding re-

ward, and the agent can move through the procedurally generated environ-

ment, constantly trying to adapt.

We follow the modified version of this environment, where the reward func-

tion is swapped every 150k steps to add reward non-stationarity [3]. In this

configuration, the observation is an 11*11 RGB array representing an egocen-

tric 360-degree view of the agent. The agent can take the four actions of up,

down, left, and right, and each action takes the agent to the next square of

the grid world in that direction. The items in the environment are represented

with colors, and each color has its corresponding rewards. The reward is +0.1

for some items, and other items’ rewards alternate between −1 and +2 every

150k steps. You can find a visualization of the agent’s view of the environment

in Figure 4.3. We report the average reward over a 1000-sized window as the

performance measure. We ran DQN in this environment for 1.5 million steps,

20

where the agent sees 10 swaps. We tuned the agents for twenty percent of their

lifetimes (k = 20), to allow them to see both sides of the game only once. This

provides enough time for the agent to see part of the non-stationary in this

complex environment and reach a fairly good performance in this duration,

but not be aware of later non-stationarities.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

4 2 0 2 4

4

2

0

2

4

Figure 4.3: Agent World view in Jelly Bean World

We can see in Figure 4.4 that the same pattern holds, with the twenty-

percent-tuned agent performing initially better but worse over the lifetime.

Note that for this experiment, this plot only shows the agents with hyper-

parameters selected based on the best-worst performance of the final 10%,

which is a combination of two of the hyperparameter selection strategies. This

method tends to be more robust because it takes into account both the worst

seed and the most recent information.

21

0 500k 1M 1.5M
Time Steps

0.2

0.0

0.2

0.4

0.6

Re
w

ar
d

pe
r

St
ep

(a
ve

ra
ge

d
ov

er
 1

00
0

st
ep

s) best worst final 10% default

Figure 4.4: Tuning for twenty-percent of the lifetime leads to poor performance
for DQN in Jelly Bean World. Lines are averaged over ten seeds with 95%
bootstrap confidence intervals.

4.4 Summary

In this chapter, we tested DQN and SAC under the k-percent evaluation

methodology. The experiments show that irrespective of the hyperparame-

ter selection strategy (final ten percent, best-worst performance, and AUC),

agents fail to perform well continually when exposed to only a fraction of their

lifetime as the tuning phase. DQN fails under one-percent evaluation in Non-

stationary Catch, and Continuing Cart-pole, and under twenty-percent tuning

in Jelly Bean World, a computationally scaled-up environment. Moreover,

SAC fails under one-percent tuning in Quadraped walk-run. These experi-

ments emphasize the vulnerability of the standard algorithms under k-percent

evaluation. While agents exhibit competitive performance during the tun-

ing phase, they struggle to maintain this performance throughout their entire

lifetime.

22

Chapter 5

The Impact of k

In this chapter, we intend to answer this empirical question: what is the

impact of k on the performance and behavior of the agent? Furthermore, how

do hyperparameters change with different values of k?

The value of k is important as it indicates how much of the agent’s lifetime

the agent has access for tuning. The choice of k is problem and research-

question dependent. This choice depends on the goals of the experimenter.

k can be chosen in a way that gives the agent enough time to reach a fairly

good performance and visit some of the non-stationaries (for instance, visiting

a limited number of task switches, season changes, etc.), but not all of them.

This is to simulate a condition where we have limited knowledge about the

agent’s lifetime and non-stationarity. Tuning under increasing k can also give

researchers better insight into their algorithm.

5.1 Case Study: DQN in Non-stationary Catch

and Continuing Cartpole

We evaluate the DQN agent in Non-stationary Catch and Cotinuing Cartpole

for values of k= 1, 5, 10, 20, 30, 50, 70, 100 percent. We tune the DQN for

the mentioned durations, select the best-performing hyperparameters based

on four hyperparameter selection strategies, and report the mean performance

of those hyperparameters in a full-length experiment (10M steps for 10 seeds).

In Figure 5.1, as we expand the tuning window, the performance starts to

improve. More demonstrations are further discussed in section 6.4.

23

0 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

1 5 10 20 30 50 70 100
% Tuned

0.0

0.9

Av
er

ag
e

Pe
rfo

rm
an

ce

AUC
Final 10%
Best Worst
Final 10% Best Worst

Figure 5.1: Effect of k on the performance of DQN in Non-stationary Catch
(down) and continuing Cart-pole (up), over its entire lifetime. Results are
averaged over 30 seeds with shaded regions being 95% student-T confidence
intervals.

5.2 Effect of k-Percent Tuning on Hyperpa-

rameter Selection

We can also look at the difference in hyperparameters under different k:

Learning Rate: We observe that the tuning procedure mostly chooses larger

learning rates for smaller k values. For instance, for DQN in Non-stationary

Catch, learning rates of 0.001 and 0.0001 are chosen respectively for k values

of one and a hundred. We also found that DQN in Jelly Bean chose 0.001 for

twenty percent tuning, in contrast to 0.0001 as the default.

Exploration Factor: We also found that smaller values for the exploration

factor were chosen for smaller k values. For instance, in Continuing Cartpole,

24

one-percent tuned DQN has an exploration factor of 0.01 whereas the value is

0.1 in the lifetime-tuned agent.

Warmup Steps: Finally, the number of chosen warmup steps was generally

smaller for smaller k. For instance, in the Non-stationary Catch, the one-

percent tuned agent chooses a warmup value of 0 under two out of the three

hyper-selection strategies, compared to a value of 1000 under full-lifetime tun-

ing.

It is also valuable to compare different hyperparameter selection methods

and their effects on the hyperparameters. Our experiments show that the best-

worst metric (and also a combination of final 10% and best-worst) tends to

choose more robust hyperparameters: smaller learning rates, larger exploration

factors, and bigger warmup values.

5.3 Summary

We investigated the effect of k, demonstrating that researchers can gain valu-

able insights into their algorithms by observing their behavior under different

levels of data exposure. Through a series of experiments with DQN in Non-

stationary Catch and Continuing Cartpole, we evaluated performance across

k values ranging from 1 to 100. The results indicated that performance gener-

ally improves as k increases. Additionally, we observed that smaller k values

tend to result in higher learning rates, lower exploration factors, and fewer

warmup steps. This forces the agent to learn faster initially but does not

necessarily lead to good performance and stability in the long run. We also

compared different hyperparameter selection methods, finding that the final

10 percent best-worst metric tends to select more robust hyperparameters. In

this chapter, we focused on the effect of k on standard DQN. In the next chap-

ter, we will investigate the effect of mitigations on performance collapse under

the k-percent evaluation regime and revisit the effect of k on the proposed

mitigations compared to the standard DQN in Section 6.4.

25

Chapter 6

Mitigations Help Under
k-percent Evaluation

In this chapter, we investigate if mitigation strategies designed for lifelong

learning improve performance under our k-percent evaluation methodology.

We revisit the same environments and base algorithms as in chapter 4 but

now include new algorithms using several mitigation strategies layered on top

of the base learner.

6.1 A Brief Overview of Mitigation Strategies

In this section, we introduce the mitigation strategies we chose to test k-

percent evaluation on for this thesis and expand on the algorithmic details and

mechanisms these mitigations use to suit continual learning. In this thesis,

we attempt to consider the various ways algorithms mitigate the issues in

continual learning such as loss of plasticity.

We consider the following mitigations, where most are used for both DQN

and SAC and otherwise are used only for one. They do not perfectly share

the same mitigations, because for example, the PT-DQN algorithm [3] is de-

signed only for action-values methods, so we included an additional different

mitigation for SAC.

26

6.1.1 W0Regularization

There is previous research showing that resetting the parameters of the net-

work to their initial distribution helps with the loss of plasticity issue in con-

tinual learning. This family of algorithms intuitively mitigates the issue by

reactivating the dead or dormant neurons and using a set of freshly initialized

parameters for learning new tasks [11], [35], [43]. Keeping the parameters close

to initialization will also maintain the rank of the weights, a property shown

to sometimes correlate with plasticity [20].

Inspired by this idea, W0Regularization [21] implicitly resets the low-utility

weights by adding a new term to the loss function. In this method, the ℓ2 norm

of the difference between the weights and the initial weights is added to the

loss function to encourage the weights to stay near the initialization:

Lw0reg(w) = L(w) + λ∥w − w0∥22

where w0 are the initial weights and λ is a regularization parameter that

controls the strength of the regularization. We sweep over values of 0.001,

0.0001, and 0.01 for the λ in our experiments.

6.1.2 L2Regularization

Previous research shows that parameter norm growth is one of the potential

properties that contribute to the loss of plasticity [28], [35].

In the L2Regularization [10], [22], a term proportional to the ℓ2 norm of

the weights of the network is added to the loss function. This will result in

keeping the weight magnitudes smaller in the network. The new loss function

is then defined as:

Ll2reg(w) = L(w) + λ∥w∥22

where ∥w∥22 is the ℓ2 norm of the weights, and λ is the regularization parameter.

We sweep over the same values as for the W0Regularization method for the λ

hyperparameter.

27

6.1.3 CReLU

The concatenated ReLU (CReLU) activation function was first proposed as

a tool for improving the performance of Convolutional Neural Network archi-

tectures [41]. The concatenated ReLU activation function concatenates the

output of ReLU(x) with ReLU(−x), meaning the output for one CReLU unit

is as follows:

CReLU(x) = [ReLU(x),ReLU(−x)]

This has been shown to help the loss of plasticity issue since it limits the

number of inactive units and reduces the percentage of inactive neurons since

CReLU maintains 50% of the neurons in an active state [1].

6.1.4 PT-DQN

Permanent-Transient DQN [3] is an algorithm inspired by complementary

learning systems (CLS) theory in the brain [36]. This theory explains that

learning is done by two systems, one that slowly obtains the structured and

permanent knowledge of the environment and another that adapts fast and

learns new information in the non-stationary world rapidly.

Inspired by this idea, PT-DQN consists of two networks, each of which

is responsible for one type of learning. The value function is decomposed

into two separate networks: permanent and transient. In the case of control

using function approximation, as DQN is, the overall action-value function is

computed as the sum of the two value functions, as shown below:

Q(s, a) = Qp(s, a;wp) +Qt(s, a;wt)

where Qp(s, a;wp) is the value function learned by the permanent network with

parameters wp, and Qt(s, a;wt) is the value function learned by the transient

network with parameters wt.

The permanent network stores the permanent action-value function, and

similar to the role of the neocortex, it is responsible for acquiring the general

structure of the knowledge in the environment. It is updated less regularly

and is usually updated with a smaller step size. The transactions are stored

28

in a buffer corresponding to the permanent network, and with an update

frequency, the permanent network is updated, similar to a supervised learning

update with the permanent value function as the target, and the combined

value function as the predicted value. In other words, the permanent buffer

is updated by distilling the transient network’s predictions. Afterwards, the

permanent buffer is reset.

On the other hand, the transient network, similar to the role of the hip-

pocampus, is responsible for learning new information rapidly. It is updated

toward the residual error from combining both networks’ predictions. This

network’s parameters are decayed or reset after incorporating new information

into the permanent network. Resetting the network to its initial parameter dis-

tribution prepares the algorithm for learning new information more plastically

compared to a pre-trained network.

6.1.5 Weight Normalization

In this method, weight matrices are split into the weight magnitudes and

weight directions, with separate gradients for each [39]. This decoupling of the

weight magnitudes from their directions will help accelerate and stabilize the

training process. Weight normalization has also been shown to push activation

outputs to a homeostatic state, where all neurons in the neural network are

equally activated. Hidden units in weight-normalized networks have more

similar activation probabilities and may promote plasticity [42].

6.1.6 Layer Normalization

This method applies normalization to pre-activations of the neural network

by using the statistics from all of the summed inputs to the neurons within

one layer [5]. Layer normalization is shown to make networks more robust

to optimizer choices, and induce weaker gradient covariance which intuitively

corresponds with less interference [29]. It also helps with the pre-activation

distribution shift, which is shown to be one of the properties that correlate

with loss of plasticity [28].

29

6.2 k-percent-tuning for DQN with Mitigations

Figure 6.1 summarizes the performance of DQN with mitigation under one-

percent tuning in Non-stationary Catch and Continuing Cart-pole. All mitiga-

tions perform well in Non-stationary Catch, except LayerNormalization which

fails under final 10% and AUC tuning and is slightly less effective than other

mitigations, although better than the baseline, in best-wort tuning.

In Continuing Cart-pole, performance is much more mixed. CReLU per-

forms well when the hyperparameters are chosen according to the best-worst

performance, and otherwise performs poorly, though it does degrade less quickly

than other mitigations. L2Regularization and W0Regularization help reduce

the performance collapse, but steadily degrade over time. PT-DQN performs

more steadily in AUC and best-worst tuning and has a higher final performance

compared to other mitigations except LayerNormalization which consistently

performs well under all the tuning strategies.

Figure 6.2 shows the performance of DQN with mitigations under twenty-

percent tuning in Jelly Bean World. DQN performs poorly under twenty-

percent tuning, but adding mitigations including l2Regularization, PT-DQN,

and W0Regularization helps with performance, with W0Regularization be-

ing the most effective. CReLU initially has a good performance but is then

followed by a collapse after the third swap. LayerNormalization fails under

twenty-percent tuning, performing worse than other mitigations, and partially

worse than the baseline. We also measured several properties of these agents,

to give more insight beyond the performance analysis. These properties in-

clude stable rank [20], dormant [43] or inactive neurons [1], [11], [27], and

weight norms [35]. These results are given in Chapter 7.

6.3 k-percent-tuning for SAC with Mitigations

Figure 6.3 shows the performance of SAC with different mitigations under

one-percent tuning in the switching Quadruped-walk-run environment. Most

30

0 5M 10M
Time Steps

0.0

0.6

0.9

Ca
tc

h
Ra

te

Final 10%

0 5M 10M
Time Steps

Area under the learning curve

0 5M 10M
Time Steps

Best Worst

0 5M 10M
Time Steps

0.88

0.95

1.00

Po
le

 B
al

an
ce

d
Ra

tio

0 5M 10M
Time Steps

Crelu W0 L2 DQN Layer Norm PT_DQN

0 5M 10M
Time Steps

Figure 6.1: The effect of incorporating mitigations into DQN under one-
percent tuning in Non-stationary Catch and Continuing Cart-pole. Each of
the plots shows a different approach for choosing the hyper-parameters during
one-percent tuning. Results are averaged over ten seeds and shaded regions
reflect the 95% bootstrap confidence intervals.

31

0 500k 1M 1.5M
Time Steps

0.2

0.0

0.2

0.4

0.6

Re
w

ar
d

pe
r

St
ep

(a
ve

ra
ge

d
ov

er
 1

00
0

st
ep

s)

L2 DQN Layer Norm PT-DQN W0 CReLU

Figure 6.2: The effect of incorporating mitigations into DQN under twenty-
percent tuning in Jelly Bean World. Results are averaged over ten seeds and
shaded regions reflect the 95% bootstrap confidence intervals.

mitigation strategies improve performance over SAC with one-percent tuning,

except for W0regularization which further decreases performance. CReLU

improves performance the most on its own, and combining CReLU with weight

normalization has the strongest effect. Interestingly, weight normalization on

its own is the least effective when moving from walk to run. Of note, the

learning rate chosen by one-percent tuning in quadruped-walk-run is 1 · 10−3

which is higher than the default value of 3 · 10−4. As normalization has been

shown to allow for the use of larger learning rates [7], [39], that may be why

weight normalization leads to effective mitigation for Quadruped-walk-run.

Although L2Regularization has previously been shown to increase the effective

learning rate [22], it does not appear to be sufficient here.

6.4 Impact of k on Mitigations

In chapter 5, we analyzed the effect of different values of k in k-percent evalu-

ation of DQN. In this section, we further analyze how k can affect the perfor-

mance for the mitigations ink-percent evaluation. In Figures 6.4, 6.5, 6.6, 6.7,

32

Figure 6.3: Multiple mitigation strategies do improve the performance of
quadruped-walk-to-run with the sub-optimal hyperparameters obtained from
tuning on one-percent of quadruped-walk. l2 is weight decay = 1 · 10−5, w0 is
with penalization of weights moving away from their initialization values, and
wn is weight normalization. The results are averaged over 10 seeds, and the
shading is the standard error.

and 6.8 you can find the effect of k on performance in mitigations in Contin-

uing Cartpole. Layer norm and PT-DQN are more robust to the value of k,

consistently having the same performance with exposure to different percent-

ages of data. On the other hand, l2Regularization and W0Regularization have

more inconsistent performances. CReLU does poorly for smaller k values but

eventually reaches a good performance for larger k.

33

!

1 5 10 20 30 50 70 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

Crelu

Final 10%
AUC
Best Worst
Final 10% Best Worst

Figure 6.4: Effect of k on performance of Crelu in Continuing Cartpole, over
its entire lifetime. Results are averaged over 30 seeds with shaded regions
being 95% student-T confidence intervals.

1 5 10 20 30 50 70 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

PT-DQN

Final 10%
AUC
Best Worst
Final 10% Best Worst

Figure 6.5: Effect of k on performance of PT DQN in Continuing Cartpole,
over its entire lifetime. Results are averaged over 30 seeds with shaded regions
being 95% student-T confidence intervals.

34

1 5 10 20 30 50 70 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

L2 Regularization

Final 10%
AUC
Best Worst
Final 10% Best Worst

Figure 6.6: Effect of k on performance of L2 Regularization in Continuing
Cartpole, over its entire lifetime. Results are averaged over 30 seeds with
shaded regions being 95% student-T confidence intervals.

1 5 10 20 30 50 70 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

Layer Norm

Final 10%
AUC
Best Worst
Final 10% Best Worst

Figure 6.7: Effect of k on performance of Layer Norm in Continuing Cartpole,
over its entire lifetime. Results are averaged over 30 seeds with shaded regions
being 95% student-T confidence intervals.

35

1 5 10 20 30 50 70 100
% Tuned

0.9

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce

W0 Regularization

Final 10%
AUC
Best Worst
Final 10% Best Worst

Figure 6.8: Effect of k on performance of W0 Regularization in Continuing
Cartpole, over its entire lifetime. Results are averaged over 30 seeds with
shaded regions being 95% student-T confidence intervals.

6.4.1 Jelly Bean World

To further analyze the effect of k in another environment, we focus on the

performance plots under different values of k for Jelly Bean World. The plots

illustrate the varying behaviors of DQN and its mitigations when exposed to

different percentages of data. Figures 6.9, 6.10, 6.11, and 6.2 show the perfor-

mance for k values of 1, 5, 10, and 20, respectively. CReLU starts with poor

performance under one-percent tuning but improves with more data expo-

sure. On the other hand, Layernorm begins with fairly good performance but

deteriorates in twenty-percent tuning. Other agents exhibit mixed patterns.

As shown in Jelly Bean World for LayerNorm, and also in Figures 6.4 and

6.8, performance can sometimes deteriorate with larger k values. In Continu-

ing Cartpole, CReLU performs better with k = 5 compared to k = 10 when

using the best worst selection method. Additionally, W0Regularization ex-

hibits a decline in performance at larger k values in the Cartpole environment,

particularly when the hyperparameter selection method is based on the final

10 percent of best worst performances.

36

Upon closer analysis, it becomes clear that the performance differences

between agents with different k values are exceedingly close in the tuning

phase, which can lead to suboptimal selections. Although the agent selected

during tuning shows higher performance within the tuning window, it does not

necessarily maintain that performance outside of it. For example, the CReLU

agent tuned with k = 10 achieves an average performance of 0.9942 within

the 10% tuning window, compared to 0.9926 for the k = 5 agent, a difference

of just 0.0016. However, when evaluated for 5 percent of the lifetime, the

k = 5 agent scores 0.9921, outperforming the k = 10 agent, which scores

0.9911. This indicates that while the performance of the agents with k = 5

and k = 10 is very close during their respective tuning phases, they show

noticeable differences in average full-length performance.

This suggests that small differences in tuning phase performance can sig-

nificantly affect the selection process. To address this, we hypothesize that

increasing the number of seeds before tuning could enhance statistical robust-

ness, or that using a more reliable method for hyperparameter selection might

yield more consistent results. In future work, it would be beneficial to explore

hyperparameter selection methods that take into account both the variance be-

tween different configurations and their average performances, to ensure more

robust and generalizable results.

37

0 500k 1M 1.5M
Time Steps

0.2

0.0

0.2

0.4

0.6

Re
wa

rd
 p

er
 S

te
p

(a
ve

ra
ge

d
ov

er
 1

00
0

st
ep

s)

SwitchingJBW_map - 1%-10_worst

W0 DQN CReLU L2 Layer Norm PT-DQN

Figure 6.9: DQN and mitigations under one-percent tuning in Jelly Bean
World. Results are averaged over ten seeds and shaded regions reflect the 95%
bootstrap confidence intervals.

0 500k 1M 1.5M
Time Steps

0.2

0.0

0.2

0.4

0.6

Re
wa

rd
 p

er
 S

te
p

(a
ve

ra
ge

d
ov

er
 1

00
0

st
ep

s)

SwitchingJBW_map - 5%-10_worst

W0 CReLU Layer Norm PT-DQN L2 DQN

Figure 6.10: DQN and mitigations under five-percent tuning in Jelly Bean
World. Results are averaged over ten seeds and shaded regions reflect the 95%
bootstrap confidence intervals.

6.5 Summary

In this chapter, we showed that the performance collapse in the k-percent

evaluation setting is improved significantly by using mitigation techniques.

However, different tuning strategies and environmental factors determine how

beneficial they can be. Moreover, by evaluating the effect of different values of

k on the performance, in DQN in Continuing Cartpole, and Jelly Bean World,

we compared the behavior and robustness of different mitigations under various

38

0 500k 1M 1.5M
Time Steps

0.2

0.0

0.2

0.4

0.6

Re
wa

rd
 p

er
 S

te
p

(a
ve

ra
ge

d
ov

er
 1

00
0

st
ep

s)

SwitchingJBW_map - 10%-10_worst

DQN L2 PT-DQN CReLU Layer Norm W0

Figure 6.11: DQN and mitigations under ten-percent tuning in Jelly Bean
World. Results are averaged over ten seeds and shaded regions reflect the 95%
bootstrap confidence intervals.

conditions. In particular, mitigation methods that are more robust under k-

percent evaluation are more desirable.

39

Chapter 7

Revisiting Network Properties

In this chapter, we measure the properties of the k-percent-tuned agents during

learning to examine if they correlate with performance. We investigate six

properties and measure them for DQN in the three environments. We measure

these properties in the Q-network, rather than the target network. For PT-

DQN agents, we both measure the properties of the transient network and the

permanent network.

7.1 Properties

Percentage of Inactive Neurons [1]: A hidden unit with an output of

zero is an inactive neuron. A higher percentage of inactive neurons is shown

to affect the agents negatively in a continual setting [1]. The percentage of

inactive neurons is measured online through the experiments as follows:

Percentage of Inactive Neurons =

∑
l

∑
i 1(hl,i = 0)∑
l Nl · L

× 100%

where hl,i is the output of the hidden unit in layer l at position i, 1(·) is the

indicator function that equals 1 if the condition is true and 0 otherwise, Nl

is the total number of hidden units in layer l, and L is the total number of

layers.

Normalized Stable Rank of the Weights [20]: A higher value of stable

rank means that the layer’s weight matrix carries more information [15]. It is

shown that regularization methods that can help keep the weight rank higher

are helpful in mitigating the implicit underparametrization phenomenon that

40

causes the agents to perform poorly in deep RL settings [20]. The normalized

stable rank for a layer’s weight matrix, wl with dimensions n∗m is defined as:

R(wl) =
1

n

∥wl∥∗
∥wl∥2

=
1

nσ2
1(wl)

n′∑
i=1

σ2
i (wl)

where σ1 ≥ σ2 ≥ · · · ≥ σn′ are the singular values in descending order and

∥ · ∥∗ stands for nuclear norm.

To get the stable rank for an entire network, we use the average of the

normalized stable ranks for all weights in the network. The stable rank is

normalized to be between 0 and 1.

The ℓ0 Norm of the Gradient: This metric corresponds to the number

of non-zero values in the gradients, and is defined as:

∥∇w∥0 =
1

L

L∑
l=1

∑
i

1(∇wl,i ̸= 0)

where ∇wl,i is the gradient of the weight at layer l and position i, 1(·) is the

indicator function that equals 1 if the condition is true and 0 otherwise, and

L is the total number of layers.

The ℓ2 Norm of the Gradient: This metric reflects the magnitude of

the gradient not just the active elements. It is defined as:

∥∇w∥2 =

√√√√ 1

L

L∑
l=1

∑
i

(∇wl,i)2

where ∇wl,i is the gradient of the weight at layer l and position i, and L is the

total number of layers.

The ℓ2 Norm of the Weight Matrices: This metric is also averaged

across layers. Growing parameter norms have been shown to be problematic

in neural networks, causing training instabilities [28]. In this thesis, we specif-

ically consider the Frobenius norm. We measure the Frobenius norm of the

weight matrices, defined as:

∥w∥2 =

√√√√ 1

L

L∑
l=1

∑
i

w2
l,i

41

where wl,i is the weight at layer l and position i, and L is the total number of

layers.

The Distance From Initialization: Calculated as the l2 norm of the dif-

ference between current and initial weights, averaged over layers:

∥∆w∥2 =

√√√√ 1

L

L∑
l=1

∑
i

(wl,i − w0
l,i)

2

where wl,i is the current weight and w0
l,i is the initial weight at layer l and

position i, and L is the total number of layers.

7.2 Observations

We examine the DQN agents with mitigations, and omit DQN under k-percent

evaluation which largely fails in the environments. Note that for the percentage

of inactive neurons, CReLU always has exactly 50% active neurons by design.

All properties are measured during the experiment length, and then averaged

over the lifetime, so that they can be summarized in a dot. Figure 7.1, 7.2, and

7.3 show correlations of mitigations in Continuing Cartpole, Non-stationary

Catch, and Jelly Bean World. These suggest that the properties are agent-

and-environment dependent, with some properties being more meaningfully

correlated than others. For instance, there is a negative correlation with the

distance from initialization and l2 norm of the weights. There is also mostly

a positive correlation with the stable rank, and l0 norm of gradients. Note

that the PT-DQN algorithm consists of two networks. In the figures, above

are the properties of the permanent network, and below are the properties of

the transient network.

In Non-stationary Catch, clear correlations are observed in Figure 7.1.

There is a negative correlation with the distance from initialization and the

l2 norm of the weights. Conversely, there is a positive correlation with the

l0 and l2 norms of the gradients and the stable rank. No clear correlation is

seen with the inactive units. Notably, there is significant variability among

different variants of the Layernorm method. Each dot in the figure represents

42

a different way to select the hyperparameters during one-percent tuning of a

different seed (4 selection methods times 10 seeds, totaling 40 dots). Most

mitigations perform well and form clear groupings in the correlation plots.

However, the Layernorm method forms clusters of well-performing and failed

groups with different properties. The failed clusters have clearly lower stable

ranks, lower l0 and l2 norms of the gradients, higher weight magnitudes, and

higher distances from initialization.

We can also compare the permanent and transient network properties to

understand their learning dynamics better. The permanent network has a

higher stable rank, which is expected as it is updated less frequently.

In Continuing Cart-pole in Figure 7.2 the mitigations were less effective,

and the correlations are different from Non-stationary Catch in some cases due

to this. In particular, Layernorm which was less performant in Nonstationary

Catch shows better performance in this environment. Furthermore, for exam-

ple, there is a positive correlation with the percentage of inactive neurons, but

that is likely because even at its highest level it is still lower than the best-

performing agents in Non-stationary Catch. The correlation is also opposite

for the l2 norm of the gradient, but that is because the smallest values in

Cartpole—where performance is good—match the magnitudes of good perfor-

mance in Catch. But the poor-performing agents have very small magnitude l2

gradient norms in Catch, whereas the poor-performing ones in Cart-pole have

very large gradient norms. There is a similar correlation to stable rank and a

negative correlation between the l2 norm of the weights and performance, and

also a negative correlation for distance from initialization. This consistency in

the l2 norm of the weights across environments makes sense, as we typically

want the weights to stay smaller in magnitude; keeping the weights closer to

1 should promote stable (non-vanishing and non-exploding) gradients. The

patterns for stable rank comparison in permanent and transient network is

the same.

In Jelly Bean World in Figure 7.3, we can see the same pattern of negative

correlation for distance from initialization and l2 norm of the weights and

positive correlation of stable rank as the two previous environments. The

43

correlation of inactive units with performance is negative and has also generally

a lower value compared to the previous environments. Layernorm again has

some clusters of agents that fail in performance, and generally have higher l2

norm of weights, and lower stable ranks. The permanent network has a higher

stable rank and lower number of inactive units compared to the transient

network.

Figure 7.1: The correlations between properties for DQN with mitigations
under one-percent tuning and final returns in Non-stationary Catch. The top
row is for the properties of the permanent network, and the bottom row is for
the properties of the transient network. Each color represents one mitigation
combination, and there are 40 dots per color corresponding to the four ways
to select hyperparameters during one-percent tuning and the ten seeds used
per selected hyperparameter

44

0 100
% dead units

0.90

0.95

1.00

Po
le

 B
al

an
ce

d
Ra

tio

0.5 1.0
stable rank

0 20
% grad L0

0 5e9
grad L2

0 100000
weight L2

0 100000
init distance

Crelu W0 L2 PT_DQN Layer Norm

0 100
% dead units

0.90

0.95

1.00

Po
le

 B
al

an
ce

d
Ra

tio

0.3 0.4
stable rank

0 20
% grad L0

0 5e9
grad L2

0 100000
weight L2

0 100000
init distance

Crelu W0 L2 PT_DQN Layer Norm

Figure 7.2: The correlations between properties for DQN with mitigations
under one-percent tuning and final returns in Continuing Cart-pole. The top
row is for the properties of the permanent network, and the bottom row is for
the properties of the transient network. Each color represents one mitigation
combination, and there are 40 dots per color corresponding to the four ways
to select hyperparameters during one-percent tuning and the ten seeds used
per selected hyperparameter.

45

50 75
% dead units

0.1

0.2

0.3

Re
w

ar
d

pe
r S

te
p

0.2 0.4
stable rank

0 10
% grad L0

0 2
grad L2

0 500
weight L2

0 500
init distance

Crelu W0 L2 PT_DQN Layer Norm

70 80 90
% dead units

0.1

0.2

0.3

Re
w

ar
d

pe
r S

te
p

0.1 0.2
stable rank

0 10
% grad L0

0.0 0.2
grad L2

0 500
weight L2

0 500
init distance

Crelu W0 L2 PT_DQN Layer Norm

Figure 7.3: The correlations between properties for DQN with mitigations
under twenty-percent tuning in Jelly Bean World. The top row is for the
properties of the permanent network, and the bottom row is for the properties
of the transient network. Each color represents one mitigation combination,
and there are 40 dots per color corresponding to the four ways to select hy-
perparameters during one-percent tuning and the ten seeds used per selected
hyperparameter.

46

7.3 Summary

In this chapter, we revisited the properties of the DQN agents chosen under

the k percent evaluation, in three environments. These properties suggest

the potential reasons for the performance collapse. By filtering out the non-

performant agents using k-percent evaluation, and keeping agents that initially

performed well in the tuning phase, we can have a clearer view of the poten-

tial causes. It should be noted that the results indicate that the correlation

between properties and performance is ultimately agent- and environment-

dependent. However, in general, agents that leverage higher stable rank, lower

zero gradients, and lower L2 norm of the weights and gradients are more de-

sirable and robust to collapses.

47

Chapter 8

Conclusion and Future Work

In this thesis, we introduced the k-percent evaluation methodology to bet-

ter evaluate lifelong reinforcement learning agents. Agents that perform well

under k-percent evaluation should be better suited to continual adaption with-

out assuming access to the deployment setting which is neither realistic nor

lifelong. Our methodology should allow researchers to better assess existing

agents and provide direction for developing new lifelong learning agents.

We showed that agents tuned for the first k-percent of interaction can

learn faster than agents tuned for the entire lifetime, but that these agents

quickly degrade as learning progresses. Such a strict tuning setting may seem

challenging, making it seem potentially obvious that these learners should fail,

but we found that several simple mitigations introduced for lifelong learning

were actually able to perform well in this regime. Our results highlight that

k-percent evaluation can be a useful methodology for identifying good and bad

continual learning algorithms.

Moreover, by exploring a range of k values, we gained a deeper understand-

ing of algorithm performance and behavior under different constraints. Smaller

k values encourage larger learning rates, and smaller epsilon and warmup val-

ues, which can initially help the agent to learn faster but will lead to per-

formance degradation in a continual setting. Although initially expensive to

try out k values, it leads to a better understanding of our algorithms and ad-

vocates for algorithms that eventually need less computation for tuning and

online adaptation.

48

We also found that the separation between good and bad learners given by

k-percent tuning also led to more meaningful correlations to properties than

reported in previous work.

There are multiple directions for future work on this thesis:

1. Improved Hyperparameter Selection Strategies: Although we tried var-

ious hyperparameter selection strategies, there is still room for improvement.

We chose hyperparameter configurations based on different metrics, including

the best area under the curve, the best performance in the final 10 percent of

the tuning phase, the best performance of the worst agent, and a combination

of the last two for more robust results. However, these metrics do not account

for the variance of performance across multiple seeds of one hyperparameter

configuration. Developing a hyperparameter selection strategy that considers

performance variance would help in choosing more robust hyperparameters

under the k-percent evaluation method.

2. Adaptive and Online Hyperparameter Tuning: k-percent evaluation ex-

posed the vulnerability of current algorithms in a continual setting. It demon-

strated that hyperparameters ideal for a fraction of the agent’s lifetime are

not necessarily good in the long run. For instance, a large learning rate at the

beginning of tuning might be beneficial but detrimental to performance as the

agent is exposed to more data. Future work could explore better ways to keep

hyperparameters updated throughout the agent’s lifetime.

k-percent evaluation will force us to develop agents with important proper-

ties that the usual RL evaluation scheme does not address. Specifically, it will

encourage the creation of agents with minimal hyperparameters that are not

sensitive, agents capable of automatically adapting hyperparameters during

deployment, and agents that are robust to novel, unknown non-stationarities,

meaning they can effectively track changes. Furthermore, this methodology

will drive the development of agents that do not merely converge but continue

to learn and explore. As a community, we still lack effective lifelong learning

algorithms, and the full impact of the k-percent evaluation remains to be seen.

49

References

[1] Z. Abbas, R. Zhao, J. Modayil, A. White, and M. C. Machado, “Loss
of plasticity in continual deep reinforcement learning,” arXiv preprint
arXiv:2303.07507v1, Mar. 2023. 1, 4, 8, 28, 30, 40, 56

[2] D. Abel, A. Barreto, B. Van Roy, D. Precup, H. van Hasselt, and S.
Singh, “A definition of continual reinforcement learning,” no. arXiv:2307.11046,
Dec. 2023, arXiv:2307.11046 [cs]. 2

[3] N. Anand and D. Precup, “Prediction and control in continual reinforce-
ment learning,” arXiv preprint arXiv:2312.11669, 2023. 6, 20, 26, 28, 56

[4] J. T. Ash and R. P. Adams, “On warm-starting neural network train-
ing,” Advances in Neural Information Processing Systems, vol. 2020-
December, Oct. 2019, issn: 10495258. 3

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer Normalization, Jul. 2016. 29

[6] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp. 834–
846, 1983. 18

[7] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, “Understand-
ing Batch Normalization,” in Advances in Neural Information Processing
Systems, vol. 31, Curran Associates, Inc., 2018. (visited on 02/01/2024). 32

[8] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and
A. Courville, “Sample-efficient reinforcement learning by breaking the re-
play ratio barrier,” in Deep Reinforcement Learning Workshop NeurIPS
2022, 2022. 5, 6

[9] N. Dı́az-Rodŕıguez, V. Lomonaco, D. Filliat, and D. Maltoni, “Don’t
forget, there is more than forgetting: New metrics for continual learning,”
arXiv preprint arXiv:1810.13166, 2018. 6

[10] S. Dohare, J. F. Hernandez-Garcia, P. Rahman, R. S. Sutton, and A. R.
Mahmood, “Loss of plasticity in deep continual learning,” arXiv preprint
arXiv:2306.13812v2, Jun. 2023. 4, 27

[11] S. Dohare, R. S. Sutton, and A. R. Mahmood, “Continual backprop:
Stochastic gradient descent with persistent randomness,” arXiv preprint
arXiv:2108.06325v3, Aug. 2021. 3, 5, 6, 8, 27, 30

50

[12] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends
in Cognitive Sciences, vol. 3, pp. 128–135, 4 Apr. 1999, issn: 1364-6613. 3

[13] Google-Deepmind, GitHub - google-deepmind/csuite, 2022. 18

[14] T. Haarnoja, A. Zhou, K. Hartikainen, et al., “Soft actor-critic algo-
rithms and applications,” arXiv preprint arXiv:1812.05905, 2018. 11, 20, 56

[15] M. S. Hosseini, M. Tuli, and K. N. Plataniotis, “Exploiting explainable
metrics for augmented sgd,” Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, vol. 2022-
June, pp. 10 286–10 296, Mar. 2022, issn: 10636919. 40

[16] M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson, “Tran-
sient non-stationarity and generalisation in deep reinforcement learning,”
arXiv preprint arXiv:2006.05826v4, Jun. 2020. 3

[17] M. K. Janjua, H. Shah, M. White, E. Miahi, M. C. Machado, and A.
White, “Gvfs in the real world: Making predictions online for water
treatment,” arXiv preprint arXiv:2312.01624v1, Dec. 2023. 1

[18] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual
reinforcement learning: A review and perspectives,” Journal of Artificial
Intelligence Research, vol. 75, pp. 1401–1476, Dec. 2020, issn: 10769757. 3, 6

[19] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., “Overcoming catas-
trophic forgetting in neural networks,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 114, pp. 3521–3526, 13
Mar. 2017, issn: 10916490. 5

[20] A. Kumar, R. Agarwal, D. Ghosh, and S. Levine, “Implicit under-parameterization
inhibits data-efficient deep reinforcement learning,” arXiv preprint arXiv:2010.14498v2,
Oct. 2020. 3, 8, 27, 30, 40, 41

[21] S. Kumar, H. Marklund, and B. Van Roy, “Maintaining plasticity via
regenerative regularization,” arXiv preprint arXiv:2308.11958, 2023. 5, 27

[22] T. van Laarhoven, L2 Regularization versus Batch and Weight Normal-
ization, Jun. 2017. (visited on 02/01/2024). 27, 32

[23] N. Lazic, T. Lu, C. Boutilier, et al., “Data center cooling using model-
predictive control,” Advances in Neural Information Processing Systems,
vol. 31, 2018. 1

[24] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodŕıguez, “Continual learning for robotics: Definition, framework, learn-
ing strategies, opportunities and challenges,” arXiv preprint arXiv:1907.00182,
2019. 5, 6

[25] A. Lewandowski, H. Tanaka, D. Schuurmans, and M. C. Machado, “Di-
rections of curvature as an explanation for loss of plasticity,” arXiv
preprint arXiv:2312.00246, 2024. 4

51

[26] J. Luo, C. Paduraru, O. Voicu, et al., “Controlling commercial cooling
systems using reinforcement learning,” arXiv preprint arXiv:2211.07357,
2022. 1

[27] C. Lyle, M. Rowland, and W. Dabney, “Understanding and preventing
capacity loss in reinforcement learning,” in International Conference on
Learning Representations, 2022. 5, 8, 30

[28] C. Lyle, Z. Zheng, K. Khetarpal, et al., “Disentangling the causes of
plasticity loss in neural networks,” Feb. 2024. 4, 27, 29, 41

[29] C. Lyle, Z. Zheng, E. Nikishin, B. A. Pires, R. Pascanu, and W. Dab-
ney, “Understanding plasticity in neural networks,” Proceedings of Ma-
chine Learning Research, vol. 202, pp. 23 190–23 211, Mar. 2023, issn:
26403498. 4, 6, 14, 29

[30] S. I. Mirzadeh, A. Chaudhry, D. Yin, et al., “Wide neural networks
forget less catastrophically,” Proceedings of Machine Learning Research,
vol. 162, pp. 15 699–15 717, Oct. 2021, issn: 26403498. 4

[31] S. I. Mirzadeh, A. Chaudhry, D. Yin, et al., “Architecture matters in
continual learning,” Feb. 2022. 4

[32] S. I. Mirzadeh, M. Farajtabar, R. Pascanu, and H. Ghasemzadeh, “Un-
derstanding the role of training regimes in continual learning,” Advances
in Neural Information Processing Systems, vol. 2020-December, Jun.
2020, issn: 10495258. 5

[33] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through
deep reinforcement learning,” Nature 2015 518:7540, vol. 518, pp. 529–
533, 7540 Feb. 2015, issn: 1476-4687. 11

[34] E. Nikishin, J. Oh, G. Ostrovski, et al., “Deep reinforcement learning
with plasticity injection,” arXiv preprint arXiv:2305.15555, 2023. 5, 6

[35] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville, “The
primacy bias in deep reinforcement learning,” arXiv preprint arXiv:2205.07802v1,
May 2022. 3–5, 8, 27, 30

[36] R. C. O’Reilly, R. Bhattacharyya, M. D. Howard, and N. Ketz, “Com-
plementary learning systems,” Cognitive science, vol. 38, pp. 1229–1248,
6 2014, issn: 1551-6709. 28

[37] J. Obando-Ceron, J. G. M. Araújo, A. Courville, and P. S. Castro, On
the consistency of hyper-parameter selection in value-based deep rein-
forcement learning, 2024. 4

[38] E. A. Platanios, A. Saparov, and T. Mitchell, “Jelly bean world: A
testbed for never-ending learning,” in International Conference on Learn-
ing Representations, 2020. 20

52

[39] T. Salimans and D. P. Kingma, “Weight Normalization: A Simple Repa-
rameterization to Accelerate Training of Deep Neural Networks,” in Ad-
vances in Neural Information Processing Systems, vol. 29, Curran Asso-
ciates, Inc., 2016. 29, 32

[40] T. Schaul, H. van Hasselt, J. Modayil, et al., “The barbados 2018 list of
open issues in continual learning,” arXiv preprint arXiv:1811.07004v1,
Nov. 2018. 3

[41] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and im-
proving convolutional neural networks via concatenated rectified lin-
ear units,” 33rd International Conference on Machine Learning, vol. 5,
pp. 3276–3284, Mar. 2016. 28

[42] Y. Shen, J. Wang, and S. Navlakha, “A correspondence between nor-
malization strategies in artificial and biological neural networks,” Neural
Computation, vol. 33, 12 2021. 29

[43] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci, “The dormant neu-
ron phenomenon in deep reinforcement learning,” Proceedings of Ma-
chine Learning Research, vol. 202, pp. 32 145–32 168, Feb. 2023, issn:
26403498. 8, 27, 30

[44] Y. Tassa, Y. Doron, A. Muldal, et al.,DeepMind Control Suite, arXiv:1801.00690
[cs], Jan. 2018. 19

[45] M. White, “Unifying task specification in reinforcement learning,” in
International Conference on Machine Learning, PMLR, 2017, pp. 3742–
3750. 10

[46] S. Zaidi, T. Berariu, H. Kim, et al., “When does re-initialization work?,”
no. arxiv.2206.10011, 2023. 5

53

Appendix A

Tuning Details

A.1 DQN tuning

For tuning the DQN agent, we sweep over the hyperparameters mentioned in

table A.3. The DQN agent’s q-network and target network consist of a two-

layer network with ReLU activations, each layer with 32 hidden units. We use

orthogonal initialization, and we use 10 seeds for each hyperparameter setting

for tuning. The hyperparameters chosen for one-percent tuning is shown in

table A.2, and the lifelong tuned agent’s hyperparameters are shown in table

A.1. (The same process of hyperparameter selection was done for continuing

cartpole.)

Default DQN values on dancing catch
Learning rate 1 · 10−4

Batch size 256
Buffer size 10, 000

Initial buffer fill 1000
Exploration ϵ 0.1

Adam optimizer β2 0.999
Adam optimizer ϵ 1 · 10−8

Table A.1: Default hyperparameters values for DQN on dancing catch

For the Switching-JellyBeanWorld experiments we first sweep over a range

of hyper-parameters for 20% of the total experiment length (300k steps) for

5 seeds. We then select hyperparameters that achieve best worst final 10%

performance among seeds and run the full length experiment (1.5M steps)

54

DQN

AUC 10% Best Worst

LR 10−3 10−3 10−3

batch 256 256 256
buffer 10, 000 10, 000 10, 000
warmup 256 1000 256

ϵ 0.01 0.01 0.1
β2 0.999 0.999 0.9
ϵ 10−8 10−8 10−8

Table A.2: Values for DQN on dancing catch from 1% tuning, selected by
AUC and by final 10% performance and best worst performance

1%-tuning values for DQN and mitigations on dancing catch
Learning rate 1 · 10−1, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5

Batch size 1, 4, 32, 256
Buffer size 1000, 10, 000, 100, 000

Initial buffer fill batch size, 1000
Exploration ϵ 0.01, 0.1

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table A.3: Hyperparameter ranges for one-percent-tuning on DQN and miti-
gations on dancing catch

1%-tuning values for PT DQN on dancing catch
Learning rate θ 3 · 10−2, 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6

Learning rate w 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4

Batch size 64
Buffer size 100, 000

Initial buffer fill 64, 1000
Exploration ϵ 0.01, 0.1

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table A.4: Hyperparameter ranges for one-percent-tuning on PT-DQN on
dancing catch

for 10 seeds. We sweep over learning rate α ∈ {10−5, 10−4, 10−3, 10−2}, ex-

ploration factor ϵ ∈ {0.1, 0.01}, buffer size {1000, 8000, 100000}, and adam

optimizer’s secondary parameter β2 ∈ {0.9, 0.999}. In addition for agents

that perform regularization (W0, L2) we sweep over the regularization param-

55

AUC final 10% best-worst
Learning rate θ 1 · 10−3 2 · 10−2 2 · 10−2

Learning rate w 1 · 10−2 1 · 10−2 1 · 10−2

Batch size 64 64 64
Buffer size 100, 000 100, 000 100, 000

Initial buffer fill 64 1000 64
Exploration ϵ 0.01 0.01 0.01

Adam optimizer β2 0.9 0.999 0.999
Adam optimizer ϵ 1 · 10−8 1 · 10−8 1 · 10−8

Table A.5: PT-DQN values on dancing catch from one-percent-tuning, selected
by AUC, by final 10% performance, and by best-worst performance. Tuning
was done with 3 seeds. Batch size is at a default value of 64, and buffer size
at a default value of 100, 000

eter λ ∈ {0.0001, 0.001, 0.01}. We fix the batch size to 64 and target refresh

rate to 200.

For PT DQN hyperparameter sweeps, adding to ϵ, β2, and buffer size

mentioned above, are both transient net step sizes {10−5, 10−4, 10−3} and

permanent net step sizes {10−4, 10−3, 10−2}. Finally we sweep over the fol-

lowing range of time steps between decaying the transient network’s weights

{1000, 10000, 50000, 150000}. The batch size is 256 and target refresh rate is

128.

We use the same network architecture as Anand and Precup [3] by em-

ploying a 3 layer neural network with ReLU activation of sizes 512, 256, 128

respectively. For the PT DQN agent we halve the size of all layers to compen-

sate for having two networks. For the Crelu agent we use a Crelu activation

[1] in the final layer.

A.2 SAC tuning

The architecture as well as the default hyperparameter values are as previously

described for the DeepMind Control Suite [14], and we use orthogonal initial-

ization. We use 3 random seeds for tuning SAC agents. The hyperparameter

tuning ranges can be seen in Table A.6, and the default hyperparameters and

the tuning results in A.7.

56

For one-percent-tuning, the agent performs random exploration for 10, 000

iterations, followed by training for 10, 000 iterations. The top hyperparameters

are picked based on the biggest Area Under the curve (AUC) for the 10, 000

training iterations, or for the 10% final return for those iterations.

For final training, we use 10 random seeds. The online return is used in all

cases to simulate an agent learning while performing real-world tasks.

1%-tuning SAC parameter values
Learning rate 2 · 10−2, 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6, 1 · 10−7

Batch size 16, 32, 128, 256, 512
Buffer size 512, 1000, 10000

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table A.6: Hyperparameter ranges for one-percent-tuning on SAC on Deep-
Mind Control Suite environments

Figure A.1: Hyperparameter values for one-percent tuning of SAC on
quadruped-walk. There are three seeds per point. The shading is the standard
deviation.

57

default quadruped-walk
Learning rate 3 · 10−4 1 · 10−3

Batch size 256 512
Buffer size 1, 000, 000 10, 000

Adam optimizer β2 0.999 0.9
Adam optimizer ϵ 1 · 10−8 1 · 10−8

Table A.7: Default hyperparameter values and values selected from 1% tuning
for SAC for the DeepMind Control Suite environment in this paper. Tuning
was done with three seeds. The values were the same for selection via AUC as
for final 10% return

58

	Introduction
	A Brief Definition of Continual RL
	Challenges of Continual RL
	Role of Hyperparameters and Design Choices in Continual RL
	Solutions and Methods in Continual RL
	Thesis Contributions

	Background
	Markov Decision Process
	Value Functions
	Agents Considered in This Thesis
	Deep Q-Network (DQN)
	Soft Actor-Critic (SAC)

	Summary

	k-percent Tuning
	Failure of Standard Algorithms Under K-Percent Evaluation
	Failure of DQN Under K-Percent Evaluation
	Failure of SAC in Continuous Control
	Scaling Up: Jelly Bean World
	Summary

	The Impact of k
	Case Study: DQN in Non-stationary Catch and Continuing Cartpole
	Effect of k-Percent Tuning on Hyperparameter Selection
	Summary

	Mitigations Help Under k-percent Evaluation
	A Brief Overview of Mitigation Strategies
	W0Regularization
	L2Regularization
	CReLU
	PT-DQN
	Weight Normalization
	Layer Normalization

	k-percent-tuning for DQN with Mitigations
	k-percent-tuning for SAC with Mitigations
	Impact of k on Mitigations
	Jelly Bean World

	Summary

	Revisiting Network Properties
	Properties
	Observations
	Summary

	Conclusion and Future Work
	References
	Appendix Tuning Details
	DQN tuning
	SAC tuning

