
Learning and Planning
with the Average-Reward Formulation

by

Yi Wan

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Yi Wan, 2023

Abstract

The average-reward formulation is a natural and important formulation of

learning and planning problems, yet has received much less attention than the

episodic and discounted formulations. This dissertation makes three areas of

contributions to algorithms and their theories concerning the average-reward

formulation, primarily through the lens of reinforcement learning. The first

area of contributions is a family of tabular learning and planning average-

reward algorithms and their convergence theories. The second area of contri-

butions of this dissertation is a complete extension of the options framework

(Sutton, Precup, and Singh 1999) for temporal abstraction from the discounted

formulation to the average-reward formulation. The extension includes general

convergent off-policy inter-option learning algorithms, intra-option algorithms

for learning values and models, as well as incremental planning variants of the

learning algorithms, an option-interrupting algorithm, and convergence theo-

ries of the algorithms. The third area of contributions includes an average-

reward prediction function approximation algorithm, its convergence analysis,

and an error bound for the convergence point.

ii

Preface

The chapters of this dissertation are based on four papers that I co-authored.

More specifically, Chapter 3 is based on my contribution to two papers (Wan,

Naik, and Sutton 2021a; Wan, Yu, and Sutton 2023). The work by Wan,

Yu, and Sutton (2023) is currently prepared to be submitted. Chapter 4 is

also based on this paper. In addition, Chapter 4 is based on my contribution

to the paper by Wan, Naik, and Sutton (2021b). Chapter 5 is based on my

contribution to a joint work by Zhang, Wan, Sutton, and Whiteson (2021).

Wan, Y., Naik, A., Sutton, R. S. (2021a). Learning and planning in average-

reward Markov decision processes. In Proceedings of the 38th International

Conference on Machine Learning, 10653–10662.

Wan, Y., Naik, A., Sutton, R. S. (2021b). Average-reward learning and plan-

ning with options. In Advances in Neural Information Processing Systems,

34, 22758–22769.

Zhang, S., Wan, Y., Sutton, R. S., Whiteson, S. (2021). Average-reward off-

policy policy evaluation with function approximation. In Proceedings of the

37th International Conference on Machine Learning, 12578–12588.

Wan, Y., Yu, H., Sutton, R. S. (2023). On Convergence of Average-reward

off-policy control algorithms in weakly communicating MDPs. To Be Sub-

mitted. An Earlier Version in ArXiv:2209.15141.

During the development of the research presented in my dissertation, I co-

authored the following papers. Most of them (Wan et al. 2018; Wan et al.

iii

2019; Kudashikina et al. 2021; Wan et al. 2022; Wan and Sutton 2022; He,

Wan, and Mahmood 2022; He et al. 2023) are related to this dissertation and

are mentioned in this dissertation while one (Hou et al. 2020) is not related

and is therefore omitted.

Wan, Y., Zaheer, M., White, M., Sutton, R. S. (2018). Model-based reinforce-

ment learning with non-linear expectation models and stochastic environ-

ments. In The Joint IJCAI/ECAI/AAMAS/ICML Conference Workshop

on Prediction and Generative Modeling in Reinforcement Learning.

Wan, Y., Abbas, Z., White, A., White, M., Sutton, R. S. (2019). Planning

with expectation models. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence, 3649–3655.

Hou, Z., Zhang, K., Wan, Y., Li, D., Fu, C., Yu, H. (2020). Off-policy

maximum entropy reinforcement learning: Soft actor-critic with advantage

weighted mixture policy (sac-awmp). ArXiv:2002.02829.

Kudashkina, K., Wan, Y., Naik, A., Sutton, R. S. (2021). Planning with

expectation models for control. ArXiv:2104.08543.

Wan, Y., Rahimi-Kalahroudi, A., Rajendran, J., Momennejad, I., Chandar,

S., van Seijen, H. (2022). Towards evaluating adaptivity of model-based

reinforcement learning methods. In Proceedings of the 39th International

Conference on Machine Learning, 22536–22561.

Wan, Y., Sutton, R. S. (2022). Toward discovering options that achieve faster

planning. ArXiv:2205.12515.

He, J., Wan, Y., Mahmood, R. (2022), The Emphatic Approach to Average-

Reward Policy Evaluation. In NeurIPS 2022 Workshop on DeepRL.

He, J., Che, F., Wan, Y., Mahmood, R. (2023), Consistent Emphatic Temporal-

Difference Learning. Accepted by the 39th Conference on Uncertainty in

Artificial Intelligence.

iv

To my parents Junbiao Wan and Qun Su

for giving me the best they could.

v

The noblest pleasure is the joy of understanding.

– Leonardo da Vinci.

vi

Acknowledgements

No words can express my gratitude to my supervisor Richard S. Sutton.

Rich is one of the few who have influenced me the most. As a supervisor, Rich

is admirable, inspiring, and extremely supportive. I still clearly remember the

day when Rich taught Abhishek and me how to write a research paper for six

straight hours. As a scientist, he is a genuine thinker, a respectful pioneer,

and a visionary architect. Working with him is the best thing I have ever

had in my life. I’d like to extend my heartfelt thanks to Huizhen (Janey) Yu.

While she played an unofficial supervisory role during my Ph.D., her contribu-

tions were invaluable. As a globally recognized expert in MDP and RL theory,

Janey consistently provided timely and insightful feedback on my queries. She

patiently navigated me through the average-reward literature, enhancing my

grasp of this domain and mentoring me in the clear presentation of techni-

cal results. I thank Csaba Szepevari, Martha White, Dale Schuurmans, and

Benjamin Van Roy for carefully examining my candidacy and dissertation and

sharing insightful opinions and advice. Csaba’s and Ben’s questions raised in

the candidacy exam inspired me to rethink the problem a generally intelligent

system solves. Martha’s and Dale’s comments sharpen my understanding of

both the algorithms I studied and existing ones. Special thanks to Abhishek

Naik, Huizhen (Janey) Yu, Richard S. Sutton, and Shangtong Zhang for their

close collaboration on the papers that this dissertation is based on. I gained

valuable insights from our close collaboration with each of them and truly

cherished the time we spent working together. I thank Arsalan Sharifnassab

and Abhishek Naik for reading the early versions of this dissertation and shar-

ing great comments. I thank Martha Steenstrup for teaching me how to write

in her writing boot camp and for always giving me valuable feedback for my

vii

presentations. I also thank Beverly Balaski, our great lab administrator, who

repeatedly helped me with the logistics work. Without her, work could not

be as easy as it was. I thank Alberto Pozanco Lancho, Daniel Borrajo, Leo

Ardon, Sumitra Ganesh, and Manuela Veloso for hosting my internship at JP

Morgan AI Research and for their firm support. I thank Sarath Chandar and

Harm van Seijen for hosting my internship at Mila and for their great guidance

on my research during and after the internship. I thank Hengshuai Yao for

his support and great advice during my internship at Huawei. I thank all my

wonderful collaborators: Richard S. Sutton, Abhishek Naik, Huizhen (Janey)

Yu, Zaheer Abbass, Shangtong Zhang, Ali Rahimi-Kalahroudi, Zhimin Hou,

Katya Kudashkina, Kris De Asis, Alan Chan, Adam White, Martha White,

Shimon Whiteson, Janarthanan Rajendran, Ida Momennejad, Sarath Chan-

dar, Harm van Seijen, Brian Tanner, Daniel Plop, Jiamin He, Fengdi Che,

and Rupam Mahmood. Working with them has been a fantastic experience. I

thank people in the RL-planning group for discussing fundamental problems

in planning. They are Richard S. Sutton, Mike Bowling, Katya Kudashkina,

Joseph Modayil, John Martin, Arsalan Sharifnassab, Esra’a Saleh, and Alex

Ayoub. I thank all members of our Reinforcement Learning and Artificial

Intelligence (RLAI) lab. I also thank my undergraduate advisor Kai Yu and

master advisor Benjamin Kuipers. Kai introduced me to artificial intelligence

and unreservedly shared his wise advice on my research and career. Ben guided

me to start studying reinforcement learning and introduced me to Rich. With-

out them, I may not even consider pursuing a Ph.D. in artificial intelligence or

reinforcement learning. Finally, I thank my family and friends, without them,

I can not imagine how to get through all the hardness.

viii

Contents

1 Average-Reward Reinforcement Learning 1

1.1 The Reinforcement Learning Approach to Intelligence 2

1.2 The Average-Reward Formulation of Reinforcement Learning . 5

1.3 Taxonomy of Average-Reward Sub-Problems 6

1.4 Contributions . 14

2 Markov Chains and Markov Decision Processes 19

2.1 Markov Chains . 19

2.2 Markov Decision Processes . 21

3 Tabular Algorithms 25

3.1 Problem Setup . 25

3.2 The Convergence of a General Algorithm 28

3.3 Prediction Algorithms . 41

3.4 Prediction Experiments . 46

3.5 Control Algorithms . 47

3.6 Control Experiments . 54

3.7 Centered Algorithms . 63

3.8 Centering Experiments . 72

3.9 Summary . 77

4 Temporal Abstraction with Options 79

4.1 SMDP Preliminaries . 80

4.2 A Sub-Optimality Bound in Weakly Communicating SMDPs . 83

4.3 Important Properties of the Solution Set 88

ix

4.4 Problem Setup . 96

4.5 Inter-Option (SMDP) Algorithms 100

4.6 Inter-Option Experiments . 109

4.7 Intra-Option Value Learning and Planning Algorithms 116

4.8 Intra-Option Experiments . 124

4.9 Intra-Option Model Learning and Planning Algorithms 126

4.10 Interruption to Improve the Hierarchical Policy 133

4.11 Interruption Experiments . 136

4.12 Summary . 137

5 Prediction with Function Approximation 141

5.1 Problem Setup . 142

5.2 Differential Semi-Gradient Q-Evaluation 144

5.3 One-Stage Differential Gradient Q-Evaluation 146

5.4 Two Related Algorithms . 155

5.5 Experiments . 159

5.6 Summary . 164

6 Discussion 167

Appendix A The Discounted Factor Deprecates with Function

Approximation 186

Appendix B Additional Experiments 191

B.1 Options Experiments . 191

B.2 Function Approximation Experiments 191

x

List of Figures

2.1 Examples of recurrent, unichain, communicating, weakly com-

municating, and other MDPs. 22

2.2 A unichain MDP that does not have a state being recurrent

under every stationary policy. 23

2.3 A multi-chain MDP that has state 1 being recurrent under every

stationary policy. 23

2.4 Hierarchy of MDP classes . 24

3.1 A continuing variant of the four-room domain. 45

3.2 Plots showing learning curves and parameter sensitivity curves

for Differential TD-learning in the continuing four-room do-

main. 48

3.3 Plots showing reward rate achieved by policies learned by Dif-

ferential Q-learning, RVI Q-learning, and Gosavi’s algorithm. . 56

3.4 Plots showing reward rate error for Differential Q-learning, RVI

Q-learning, and Gosavi’s algorithm. 58

3.5 Plots showing relative value error for Differential Q-learning,

RVI Q-learning, and Gosavi’s algorithm. 59

3.6 Tested MDPs for verifying the convergence of Differential Q-

learning and RVI Q-learning when the solution set has more

than one degree of freedom. 60

xi

3.7 Dynamics of the estimated values produced by Differential Q-

learning and RVI Q-learning in the two MDPs shown in Fig-

ure 3.6. The black line segment in each plot marks the set

of points that the corresponding algorithm should converge to.

The green regions denote the solution set of the action-value

optimality equation (3.7). 62

3.8 Example showing that there can be two different greedy poli-

cies w.r.t. a solution of the action-value optimality equation

and the action-value functions of the two policies are different.

First row: The example MDP is a unichain MDP. There are two

states marked by two circles respectively. There are two actions

red (r) and blue (b). Second row: a solution of the action-value

optimality equation. Note that the MDP is unichain and thus

all solutions of the equation are different by a constant. Third

row: two different greedy policies w.r.t. the solution. Fourth

row: the two different policies correspond to different differen-

tial action-value functions. 66

3.9 Plots showing learning curves and parameter sensitivity curves

for Centered Differential TD-learning. 74

3.10 Plots showing learning curves and parameter sensitivity curves

for Centered Differential Q-learning. 75

4.1 Illustration example. Left : the example MDP. There are three

states marked by three circles respectively. There are two ac-

tions solid and dashed, both have deterministic effects. Taking

action solid at state 3 results in a reward of −1. Taking action
dashed at state 1 results in a reward of −2. All other rewards
are 0. Right : a graphical explanation of V ,Vs. The two yellow

line segments together represent Vs. The red and blue regions

together represent V . 92

xii

4.2 A continuing variant of the four-room domain where the task is

to repeatedly go from the yellow start state to one of the three

green rewarding states. There is one rewarding state per experi-

ment, chosen to demonstrate particular aspects of the proposed

algorithms. Also shown is an option’s policy to go to the upper

hallway cell. 109

4.3 Plots showing learning curves and parameter studies for inter-

option Differential Q-evaluation-learning in the continuing four-

room domain when the goal was to go to G1. The algorithm

used the set of primitive actions and the set of hallway options

O = A+H. 111

4.4 Plots showing some learning curves and the parameter study of

inter-option Differential Q-learning on the continuing four-room

domain when the goal was to go to G1. A point on the solid

line denotes the reward rate over the last 2000 time steps and

the shaded region indicates one standard error. The behavior

using the three different sets of options was as expected. . . . 113

4.5 Parameter studies showing our inter-option Differential Q-learning’s

rate of learning performed well for a wider range of parameters,

compared to the baseline algorithm (Gosavi 2004). O = A+H
and β = 2−1 in all six subfigures. The left three subfigures show

the sensitivity curves of inter-option Q-learning’s reward rate

achieved by its learned policy, reward rate error, and relative

value error. The right three subfigures show the same quantities

but for Gosavi’s (2004) algorithm. The experiment setting and

the plot axes are the same as mentioned in Figure 4.3’s caption. 115

4.6 Plots showing parameter studies for intra-option Differential Q-

evaluation in the continuing four-room domain when the goal

was to go to G1. 124

4.7 A learning curve and parameter sensitivity curves of the intra-

option Q-learning algorithm. 125

xiii

4.8 Parameter sensitivity curves of the intra-option Q-learning al-

gorithm. 127

4.9 Plots showing that executing options with interruptions can

achieve a higher reward rate than executing options till ter-

mination in the domain described in the adjoining text. . . . 136

5.1 An example showing the divergence of Differential SGQ. In this

MDP, the target policy always chooses action solid. The sam-

pling distribution satisfies that dµ(1, solid) = dµ(1, dashed) =

6/13, dµ(2, solid) = 1/13. Each state-action pair has a fea-

ture vector of size 1. x(1, solid) = x(2, dashed) = 1, and

x(2, solid) = 14. 146

5.2 Learning curves of the four tested algorithms when ϵ = 0.2. The

parameter setting was chosen to minimize the error over the last

5000 steps. The axes have the same meaning as in Figure 3.2a

and in Figure 3.2b. 164

5.3 Sensitivity curves of Differential SGQ when ϵ = 0.2. The pa-

rameter setting was chosen to minimize the error over the entire

50, 000 steps. The axes have the same meaning as in Figure 3.2c

and in Figure 3.2d. 164

5.4 Sensitivity curves of Differential GQ1 when ϵ = 0.2. The axes

are the same as in Figure 5.3. 165

5.5 Sensitivity curves of Differential GQ2 when ϵ = 0.2. The axes

are the same as in Figure 5.3. 165

5.6 Sensitivity curves of GradientDICE when ϵ = 0.2. The axes are

the same as in the left subfigure of Figure 5.3. 166

xiv

B.1 Plots showing learning curves and parameter studies for inter-

option Differential Q-evaluation-learning in the continuing Four-

Room domain when the goal was to go to G1. O = A + H.
β = 2−3 (first row), β = 2−5 (second row), β = 2−7 (third row),

β = 2−9 (fourth row). The first and second columns show the

reward rate error, and the relative value error achieved by the

algorithm, respectively. The experiment setting and the plot

axes are the same as those in Figure 4.3. 192

B.2 Parameter studies of inter-option Differential Q-learning. O =

A+H and β = 2−3 (first row), β = 2−5 (second row), β = 2−7

(third row), β = 2−9 (fourth row). The first, second, and third

columns show the reward rate, the reward rate error, and the

relative value error achieved by the algorithm, respectively. The

experiment setting and the plot axes are the same as mentioned

in Figure 4.3’s caption. 193

B.3 Learning curves of the four tested algorithms when ϵ = 0. The

parameter setting was chosen to minimize the error over the last

5000 steps. The axes have the same meaning as in Figure 3.2a

and in Figure 3.2b. 194

B.4 Sensitivity curves of Differential SGQ when ϵ = 0. The param-

eter setting was chosen to minimize the error over the entire

50, 000 steps. The axes have the same meaning as in Figure 3.2a

and in Figure 3.2b. 194

B.5 Sensitivity curves of Differential GQ1 when ϵ = 0. The axes are

the same as in Figure 5.3. 194

B.6 Sensitivity curves of Differential GQ2 when ϵ = 0. The axes are

the same as in Figure 5.3. 195

B.7 Sensitivity curves of GradientDICE when ϵ = 0. The axes are

the same as in the left subfigure of Figure 5.3. 195

B.8 Learning curves of the four tested algorithms when ϵ = 0.4. The

axes are the same as in Figure 5.2. 195

xv

B.9 Sensitivity curves of Differential SGQ when ϵ = 0.4. The axes

are the same as in Figure 5.3. 196

B.10 Sensitivity curves of Differential GQ1 when ϵ = 0.4. The axes

are the same as in Figure 5.3. 196

B.11 Sensitivity curves of Differential GQ2 when ϵ = 0.4. The axes

are the same as in Figure 5.3. 196

B.12 Sensitivity curves of GradientDICE when ϵ = 0.4. The axes are

the same as in the left subfigure of Figure 5.3. 197

xvi

Chapter 1

Average-Reward Reinforcement
Learning

This dissertation develops the average-reward formulation of learning and

planning problems, primarily from the reinforcement learning perspective. The

average-reward formulation is a simple and natural formulation for problems in

which long-term performance is preferred. It has been extensively researched

in planning problems, which constitute the core focus of operations research—

a field that develops and implements analytical methodologies to enhance

decision-making in various domains, including business, industry, and society.

However, the average-reward formulation has been underdeveloped in learning

problems, which are the primary focus of reinforcement learning—a subfield

of artificial intelligence concerned with constructing intelligent systems.

The primary objective of this dissertation is to explore and develop theoret-

ically sound learning algorithms concerning the average-reward formulation,

thereby contributing to the advancement of reinforcement learning. The plan-

ning variant of the learning algorithms and the associated theories could also

be of interest to readers from operations research.

The contributions of this dissertation include both algorithmic and theo-

retical improvements for several average-reward sub-problems. The algorith-

mic contributions include learning algorithms that are less sensitive to hyper-

parameters and that work under a wider range of training conditions (i.e., off

policy), planning algorithms that perform more incremental and flexible up-

dates, learning and planning algorithms that work with temporally extended

1

courses of action, and a learning algorithm that works well with approxima-

tions. The theoretical contributions include convergence results for all the

new algorithms. My most important theoretical contribution is to show that

certain new and existing average-reward algorithms converge under a wider

range of training conditions than has been used in previous work.

1.1 The Reinforcement Learning Approach to

Intelligence

The importance of intelligence has been recognized for a long time. For

example, in the 4th century BC, Socrates said that “all philosophers agree—

whereby they really exalt themselves—that intelligence is the king of heaven

and earth. Perhaps they are right” (documented by Plato in his book Phile-

bus). Later, Socrates affirmed that the subsequent discussion “confirms the

utterances of those who declared of old that intelligence always rules the uni-

verse”.

It is useful to have a definition for intelligence, for the same reason that it is

useful to have definitions for other important concepts such as economics, the

universe, and the arts. A clear definition of a concept establishes the bound-

aries for exploring and comprehending the concept and facilitates effective

communication among individuals while discussing the concept.

“The computational part of the ability to achieve goals”(McCarthy 2007) is

the definition of intelligence that I choose in this dissertation. This definition

is particularly relevant to my discussion and aligns well with my perspective

on intelligence. By emphasizing the computational aspect, this definition un-

derscores that intelligence is not based on physical ability, such as strength or

speed, which I find reasonable. Moreover, McCarthy’s definition also under-

scores that intelligence is about the accomplishment of goals, which includes a

great number of possibilities and is not limited to achieving certain goals like

what we humans can do. In my view, this more comprehensive way to define

intelligence is, again, more reasonable.

McCarthy’s definition also echoes the ancient philosophers’ belief that in-

2

telligence is the most formidable power in the universe, because achieving

goals, regardless of their nature, is arguably the most powerful thing in the

world.

Many fields talks about goals/intelligence in terms of a number to be op-

timized. For example, the field of optimal control theory deals with finding a

control for a dynamic system over a period of time so that the “performance

measure” (also known as “cost to go”) is minimized. The field of operations

research concerns how to conduct operations within an organization in order

to maximize a number called the “overall measure of performance”, which can

be a composite of multiple objectives of interest such as time and profit. In

the field of economics, this number is called the “utility” and measures the

satisfaction or pleasure that consumers receive for consuming a good or service.

Reinforcement learning (RL) is also a field that has the intelligence goal

being optimizing a number. In RL, an agent observes an indication of the

state of the world and takes an action, which is received by the world. The

world then emits a reward and the next state in response to the agent’s action.

In order to choose actions, the agent uses a special function named a policy,

which maps from a state to an action. In RL, the number to be optimized is

called the “value”, which is the cumulative reward of the policy.

I will work within the field of RL in this dissertation because I find it a

very appealing approach to intelligence. The RL agent achieves its goal by

learning which actions to choose from its own experience in the world, much

like how natural intelligence systems do. And natural intelligence systems, like

humans and animals, are widely believed as being successful. This similarity

between the RL agent and natural intelligence systems makes it convenient

to gain inspiration from research fields that study natural intelligence like

psychology and neuroscience, which had a long history. In fact, some of the

key ideas of RL, including temporal-difference error and eligibility trace, had

been related to what psychologists and neuroscientists had discovered. For a

detailed discussion on how RL ideas are related to those studied in psychology

and neuroscience, see Chapter 14 and Chapter 15 of the book by Sutton and

Barto (2018).

3

The field of reinforcement learning (RL) is different from other fields that

study goals/intelligence by emphasizing a bit more methods that can be used

in a wide range of domains without relying on domain knowledge. While some

RL methods leverage domain knowledge or apply only to certain domains, it is

more common in RL to develop methods that do not need such knowledge and

can be used widely. These general methods include classic RL methods like

Temporal-Difference learning (Sutton 1988), Q-learning (Watkins and Dayan

1992), and the actor-critic method (Barto, Sutton, and Anderson 1983), as well

as more modern ones like the Proximal Policy Optimization algorithm (Schul-

man et al. 2017). Other fields are more commonly concerned with specialized

methods for certain domains and methods that leverage domain knowledge.

For example, it is common in the field of operations research to study methods

for certain domains like queuing and inventory control. For another example,

in the field of Markov Decision Process, methods typically have full knowledge

of the domain.

Many impressive successes pertained to intelligence involve reinforcement

learning. For example, RL has been involved in the development of a program

developed by the OpenAI company in 2023, called ChatGPT, which generates

responses to human instructions. This system can produce surprisingly good

responses to a very wide range of instructions, including drafting an email,

fixing bugs in code, and summarizing key points of an article. Previous sys-

tems either can not take human instruction as input or can not provide useful

responses to human instructions. OpenAI built ChatGPT, which can under-

stand human instructions and provide instructs that humans like, by combin-

ing self-supervised learning, supervised learning, and reinforcement learning.

For another example, RL has been involved in a Go program called AlphaGo

(Silver et al. 2016), which won the game against the world Go champion Lee

Sedol in 2016. The game of Go has been a difficult challenge for artificial intel-

ligence over the years due to its enormous search space. Before AlphaGo, no

Go program was able to achieve a place near the level of a human Go master.

The creators of AlphaGo addressed this challenge by combining supervised

learning, Monte Carlo tree search, and reinforcement learning. In addition

4

to ChatGPT and AlphaGo, RL has been involved in a number of impressive

successes including achieving human-level performance in video game playing

(Mnih et al. 2015; Berner et al. 2019), regulating temperatures and airflow

inside a large-scale data center (Lazic et al. 2018), controlling an autonomous

helicopter (Kim et al. 2003), and so on.

1.2 The Average-Reward Formulation of Re-

inforcement Learning

In reinforcement learning, there are three main ways to summarize a se-

quence of rewards into a number to be optimized. The first way computes

the expectation of the discounted total reward, with weights decaying expo-

nentially over time. The rate of decay is controlled by a scalar called discount

factor, which is always non-negative and less than one. This way of summa-

rizing rewards is called the discounted formulation. Another way, known as

the average-reward formulation, computes the average-reward rate per step,

with equal weights given to immediate and future rewards. The third way

is used in worlds with a special terminal state, at which point the world is

reset to the start state. This formulation is called episodic because the agent’s

experience can be organized into a series of episodes, each of which begins at

the start state and ends at the terminal state. The maximized number in this

formulation is the expected total reward within each episode.

The average-reward rate concerned by the average-reward formulation is a

simple and straightforward measure of long-term performance, which can be

preferred in many real-world problems. For example, for an intelligent system

that recommends content to users, it is common to maximize the click-through

rate (see e.g. Warlop, Lazaric, and Mary 2018), which is the ratio between the

number of users who click on a specific link of a recommended content and

the number of users who view the content. The click-through rate is just the

average-reward rate if we assign each click with a reward of one and each view

without a click with a reward of zero. For another example, in an intelligent

call admission control and routing system (Marbach, Mihatsch, and Tsitsiklis

5

2000), the agent determines whether to accept a call and chooses a route to

send the call to the desired destination if the call is accepted. Each call has

an associated reward and the goal of the intelligent system is to maximize the

long-term average reward.

The average-reward formulation has been less well-developed than the other

two formulations. For example, existing average-reward algorithms with the-

oretical guarantees either require choosing a reference function or require the

data used by the algorithms to be generated in a specific way. The choice of the

reference function can have a significant effect on the algorithms’ performance.

But it is not clear how to choose it well. The requirement for data generation

limits the application of algorithms. For example, algorithms with such a re-

quirement can not be applied to data generated by human experts. With the

episodic and discounted formulations, we have algorithms (e.g., the Q-learning

algorithm by Watkins and Dayan (1992)) that have theoretical guarantees, do

not use a reference function, and work with data generated flexibly.

This dissertation concerns several sub-problems within the average-reward

formulation. To better understand these sub-problems, the next section pro-

vides a taxonomy of sub-problems concerning the average-reward formulation

and existing algorithms for these sub-problems. Useful surveys of average-

reward learning are given by Mahadevan (1996a) and Dewanto et al. (2020).

1.3 Taxonomy of Average-Reward Sub-Problems

Problems within the field of RL can be divided into prediction problems

and control problems. The goal of prediction problems is to evaluate the

performance of a given target policy. The goal of control problems is to obtain

the most performant policy. Prediction problems are not only interesting by

themselves (Sutton et al. 2011) and are also solved by many control methods

as a sub-step (see, e.g., Howard (1960); Konda (2002); Abbasi-Yadkori et al.

(2019a;b)). Control problems are generally more challenging than prediction

problems.

With the average-reward formulation, the goal of prediction problems is to

6

estimate the differential value function (or bias in some literature) up to some

additive constant and the average-reward rate for a given target policy. The

differential value function summarizes the expected cumulative future excess

rewards, which are the differences between received rewards and the reward

rate. A policy better than the target policy can be derived from the target

policy’s differential value function, in which way prediction methods serve as

a sub-step of control methods with the average-reward formulation.

Control problems with the average-reward formulation concern obtaining

a policy that maximizes the average-reward rate.

Another way to classify average-reward problems is based on what rep-

resentation is allowed to use. For tabular problems, each function of interest

(e.g., the estimated differential values for all states) can be represented exactly

using a look-up table. For function approximation (FA) problems, functions of

interest may only be represented approximately. FA methods include tabular

methods as a special case. Tabular methods are typically better understood

in theory. FA methods are necessary for the great ambition of intelligence

to achieve goals in worlds that are much larger than what the agent could

completely represent (e.g., Mnih et al. 2015; Silver et al. 2016).

Problems within the field of RL can also be divided into learning prob-

lems, which require only the agent’s interaction with the world, and planning

problems which require only a model of the world. A planning method can be

an essential part of a learning method. In particular, learning methods may

learn a world model and then plan with the learned model. Such methods

are therefore called model-based methods. Other learning methods are called

model-free methods. Both model-based and model-free methods have been

actively studied in RL.

Both prediction and control learning problems can be subdivided into on-

policy problems, in which the data is generated by following the target policy 1

, and off-policy problems, in which the data is generated by a second behavior

policy. In general, both policies may be non-stationary. For example, in

control problems, the target policy is learned and gradually becomes more

1In the control case, the target policy is the current learned policy.

7

performant. Off-policy problems include on-policy problems as a special case,

where the target and the behavior policies are identical. Off-policy methods

are more flexible because the behavior policy can be different from and even

independent of the target policy. A direct consequence of the flexibility is

that by using off-policy prediction methods, multiple different policies can be

evaluated using one stream of experience that is not generated from any of

these policies. The flexibility also makes off-policy prediction methods key to

efficient learning world models for temporally extended courses of action (see

Section 17.2 by Sutton and Barto 2018). For control problems, this flexibility

allows learning from experience generated by a non-learning policy, such as a

human expert’s policy.

On-policy prediction algorithms in the literature include average-cost TD(λ)

(Tsitsiklis and Van Roy 1999), LSTD(λ) (Konda 2002), and LSPE(λ) (Yu and

Bertsekas 2009). The theoretical properties of these algorithms have been well-

understood with linear function approximation. These algorithms estimate the

reward rate and the differential value function directly from data, thus are all

model free. They all estimate the reward rate using the average of the received

rewards. The estimated reward rate then converges to the true reward rate.

They all use linear function approximation to estimate the differential value

function. Their estimated differential value functions all converge to the same

point. Because of the limited capacity of linear function approximation, in

general, the convergent point is not the differential value function up to an

additive constant. Two upper bounds of the distance between the convergent

point and the differential value function up to an additive constant have been

provided by Tsitsiklis and Van Roy (1999) and Yu and Bertsekas (2008). Rates

of convergence of average-cost TD(λ) and LSTD(λ) have been established by

Konda (2002). The rate of convergence of LSPE(λ) has been established by

Yu and Bertsekas (2009). For the average-cost TD(λ) algorithm, an upper

bound of the number of samples required to achieve a certain level of closeness

to the final convergent point, which is also known as the sample complexity,

has been established by Zhang, Zhang, and Maguluri (2021).

Existing off-policy prediction algorithms (e.g., Wen et al. 2020; Liu et

8

al. 2018; Lazic et al. 2020; Tang et al. 2019; Mousavi et al. 2020; Zhang et

al. 2020a,b) operate on a fixed given batch of data. These algorithms are

called batch algorithms. Because the batch can not be infinitely large, batch

algorithms would inevitably suffer from an error because the batch data only

approximates the data distribution following the behavior policy. Increasing

the size of the batch reduces this error with the cost of more memory usage.

Existing off-policy prediction algorithms all use function approximation to

estimate the reward rate and do not seek to approximate the differential value

function. To estimate the reward rate, many of them (e.g., Wen et al. 2020; Liu

et al. 2018; Tang et al. 2019; Zhang et al. 2020a,b) first approximate the ratio

of the stationary distribution under the target policy and the behavior policy,

and then use that ratio to estimate the reward rate. The first step is difficult,

after which the second step is straightforward. Alternatively, to estimate the

reward rate, there also exists an algorithm that uses the estimated stationary

distribution of the target policy (Mousavi et al. 2020) and an algorithm (Lazic

et al. 2020) that uses an estimated world model.

Various kinds of theoretical results have been developed for off-policy pre-

diction algorithms, but most results do not directly tell how well the algo-

rithms estimate the reward rate, and there is only one algorithm that has been

proven to obtain the true reward rate asymptotically. For example, Zhang et

al. (2020b) provided a convergence result and a finite-sample analysis for their

density-ratio-estimation algorithm in the linear FA setting but didn’t state

how accurate the estimated density ratios and the estimated reward rate are.

For another example, Zhang et al. (2020a) provided a bound for the difference

between the optimal solution of an optimization problem and the true density

ratio, but the optimal solution may not be obtained using the optimization

method that they used, as observed by Zhang et al. (2020b). Liu et al. (2018)

also proposed to solve an optimization problem and related the solution of the

optimization problem to the density ratio, but didn’t state how to reach that

optimal solution. Wen et al. (2022) showed that their algorithm converges

to the true density ratio, but the algorithm uses an exact world model which

the paper does not specify how to obtain. The only algorithm that has been

9

proven to obtain the true reward rate asymptotically is by Lazic et al. (2020).

They proposed a model-based algorithm, which estimates the world model

and then computes the reward rate using the model. They further provided a

bound of the error of the estimated reward rate w.r.t. the actual reward rate,

for a setting that slightly generalizes over the tabular setting.

Various kinds of theoretical results have been shown for many on-policy

control algorithms, including the asymptotic convergence, upper bounds of

sample complexity, and upper bounds of regret. For formal definitions of

sample complexity and regret, see Szepesvari (2010). On-policy algorithms

that have been proven to have such theoretical results include tabular model-

free algorithms (Wheeler and Narendra 1986; Wei et al. 2020), tabular model-

based algorithms (Kearns and Singh 2002; Brafman and Tennenholtz 2002;

Auer and Ortner 2006; Bartlett and Tewari 2009; Jaksch et al. 2010), and FA

algorithms (Marbach and Tsitsiklis 2001; Konda 2002; Abbasi-Yadkori et al.

2019a;b; Hao et al. 2021).

There are only a few off-policy control algorithms that have a theoretical

result for the obtained policy, and the theoretical results are available only

for the tabular, discrete setting without function approximation. The only

known convergent algorithms are SSP Q-learning and RVI Q-learning, both by

Abounadi, Bertsekas, and Borkar (2001), and the algorithm by Ren and Krogh

(2001). Others either do not have an associated theoretical result (Schwartz

1993; Singh 1994; Bertsekas and Tsitsiklis 1996; Das et al. 1999) or have

incorrect proofs (Yang et al. 2016; Gosavi 2004). 2 The algorithm by Ren

and Krogh (2001) requires knowledge of properties of the world which is not

typically known. SSP Q-learning needs to know a special state in the world,

which is again typically unknown to the agent. The RVI Q-learning algorithm

is, therefore, the only known convergent off-policy control algorithm that does

not require knowledge of the world.

Average-reward planning algorithms have been extensively studied in the

field of Markov decision processes (MDPs). These algorithms have been known

2See Appendix D in Wan et al. (2021a) for a discussion about Yang’s proof and see
Section 3.6 of this dissertation for a discussion about Gosavi’s proof.

10

at least since the setting was introduced by Howard in 1960. Early algorithms

include policy iteration (Howard 1960), value iteration (Bellman 1957), rela-

tive value iteration (RVI, White 1963), and contracting value iteration (CVI,

Bertsekas 1998).

The planning algorithms introduced above are ill-suited when real-time

decision-making is desired because they involve sub-steps whose complexity is

the order of the number of states or more. These algorithms are called syn-

chronous algorithms, because they proceed in large iterations, each comprising

a sweep over the full state (or state-action) space. On the other hand, some

planning algorithms are asynchronous or incremental, which implies that they

progress in small iterations, with each update addressing only a few states

(or state-action pairs). By updating only a few states in each iteration, asyn-

chronous/incremental planning algorithms can produce a policy within a brief

amount of time. The policy improves as more time is devoted to the planning

process. Therefore, asynchronous/incremental algorithms are more suitable

for real-time decision-making.

More incremental average-reward planning algorithms have been under-

explored. Almost all of the algorithms that have an associated theory either

update for states/state-action pairs in a specific way or require knowledge

of the world that is usually not available to the agent. For example, Jalali

and Ferguson (1989, 1990) were among the first to explore more incremental

algorithms, though their algorithms require knowledge of a special state in the

world. For another example, Bertsekas (1998) then showed the convergence

of a special asynchronous version of the CVI algorithm. This asynchronous

algorithm needs to update states according to their order, and, just like the

algorithms by Jalali and Ferguson, requires knowledge of a special state in the

world. For another example, the Primal-Dual π Learning algorithm (Wang

2017) and the stochastic mirror descent algorithm by Jin and Sidford (2020)

have been shown convergent. For both algorithms, the state-action pairs to

update are not arbitrarily chosen, but sampled from the algorithms’ estimate

of the optimal state-action-pair distribution. The only incremental planning

algorithm that can update for states/state-action pairs in a flexible way and

11

does not require knowledge of the world is again RVI Q-learning, now applied

as a planning algorithm to simulated experience generated by the model.

Extending all of the aforementioned average-reward sub-problems, which

only involve primitive actions, we obtain average-reward sub-problems that

involve temporally abstracted courses of action, or options (Sutton, Precup,

and Singh 1999). Each option is defined as a tuple consisting of a policy

that determines the option’s behavior, an initiation set that includes states at

which the option can be initiated, and a termination condition that describes

how to terminate the option. Options include actions as special cases. Unlike

actions, options can take multiple time steps to finish. Using options can have

multiple potential benefits, which will be discussed in Chapter 4.

With options, it is natural to consider more generalized policies, which

choose from options instead of primitive actions. Such policies are also called

hierarchical policies. The agent may choose to follow a hierarchical policy,

which means that it first chooses an option according to the hierarchical policy,

and then follow the option’s policy until the option terminates, at which point

it chooses a new option. The goal of average-reward prediction sub-problems

is then to obtain the reward rate and the differential value function (up to an

additive constant) of the hierarchical policy. And the goal of average-reward

control sub-problems is then to obtain a hierarchical policy that achieves the

highest reward rate.

For both learning and planning sub-problems, options sub-problems can

be subdivided into two classes: inter-option and intra-option sub-problems.

In inter-option sub-problems, the experience used for learning/planning is a

stream of option transitions. An option transition characterizes the execution

of the option. It is a tuple consisting of five elements: the option being ex-

ecuted, the start and terminal states of the option, the duration (number of

time steps) of the execution of the option, and the cumulative reward dur-

ing the execution of the option. In intra-option sub-problems, the experience

used for learning/planning is a stream of action transitions, each of which is

a tuple consisting of four elements: the action being executed, the start and

resulting states of the action, and the reward as a result of the action. Each

12

option transition is a result of a series of action transitions. Inter- and intra-

option learning sub-problems are different because, in the inter-option case,

the behavior policy needs to be hierarchical so that option transitions can be

obtained while it does not have to be in the intra-option case. Being con-

strained to a hierarchical behavior policy would be just fine when the agent

has control over its behavior policy but can be an issue when the behavior

policy is provided by a human expert and the policy is a non-hierarchical one.

Inter- and intra-option planning sub-problems are different because they

involve different kinds of world models. Inter-option planning sub-problems

involve models that predict outcomes of options. In contrast, intra-option

planning sub-problems work with models that predict outcomes of actions.

Because option models are jumpy, inter-option planning algorithms could be

more efficient computationally. Finally, note that while action models can only

be learned from the agent’s experience, option models can be learned from real

experience or be obtained by planning with action models.

Average-reward options algorithms have been underdeveloped in the liter-

ature. There are only a few existing control learning algorithms (Das et al.

1999; Gosavi 2004; Vien and Chung 2008), and none of them have been proven

to obtain the optimal hierarchical optimal policy 3. In addition, all of the ex-

isting average-reward learning algorithms are inter option and there are no

known intra-option average-reward algorithms in the literature. Further, the

existing proven-convergent planning algorithms (e.g., Schweitzer 1971, Puter-

man 1994, Li and Cao 2010) are all synchronous because they perform a full

sweep over states for each planning step.

Finally, it might be tempting to ask if algorithms that work with primitive

actions can be directly applied by replacing actions with options. In general,

with the average-reward formulation, it is not appropriate to directly apply

algorithms that work with actions, like those mentioned above, to a set of

options. Algorithms that operate with actions do not take into consideration

the amount of time when executing an action, because all actions take the same

amount of time to execute (more specifically, a single time step). However,

3Gosavi’s (2004) proof of his options algorithm is incorrect, just as in the action case.

13

different options usually take different amounts of time to execute and it is not

appropriate to ignore the difference between the amounts of execution time.

For example, two options that accumulate the same reward and reach the same

state are not necessarily equally good because one might take more steps to

finish than the other one. The option that takes fewer steps to finish is better

because the reward rate with this option is higher.

1.4 Contributions

This dissertation contributes to several average-reward sub-problems by in-

troducing novel average-reward algorithms and their corresponding theories for

these sub-problems. These sub-problems include several tabular sub-problems

and a function approximation sub-problem. The tabular sub-problems include

off-policy learning and planning prediction and control sub-problems as well as

the options versions of these sub-problems. The function approximation sub-

problem is the off-policy prediction learning sub-problem, which, as discussed

before, generalizes the on-policy prediction learning sub-problem.

All of the newly developed algorithms distinguish themselves from most

of their predecessors by their approach to estimating the average-reward rate.

Most previous methods either update the estimate of the average-reward rate

using the difference between the actual reward and the estimated average-

reward rate or do not maintain an estimate at all. On the other hand, the

newly proposed algorithms update the reward rate estimate using Temporal-

Difference (TD) errors. These TD errors involve the differential rewards, i.e.,

the difference between the actual reward and the estimated reward rate, rather

than the rewards themselves. Consequently, I have classified algorithms that

update the average-reward rate estimate using TD errors as differential algo-

rithms. While two earlier algorithms (Schwartz 1993; Singh 1994) also adopted

the differential idea and are therefore also differential algorithms, they lack

associated theoretical analyses, unlike the algorithms introduced in this dis-

sertation.

The contributions of this dissertation can be grouped into three areas.

14

The first area of contributions of this dissertation (Chapter 3), based on

two papers I co-authored (Wan, Naik, and Sutton 2021a; Wan, Yu, and Sutton

2023), is a family of average-reward tabular learning and planning algorithms

and their convergence theories. The algorithms were developed by Abhishek

Naik, Richard S. Sutton, and myself. Most of the theoretical results were

developed by myself. Huizhen Yu corrected errors in early versions of the

results and helped improve the presentation of the results.

Among the family of algorithms, our prediction learning algorithm, Dif-

ferential TD-learning, is the first off-policy model-free prediction algorithm

proved to obtain the reward rate of the target policy asymptotically. It is

also the first off-policy prediction algorithm proved to obtain the differential

value function up to some additive constant asymptotically (remember that

all existing methods do not estimate the differential value function). Differ-

ential TD-learning is also different from existing algorithms in that existing

off-policy algorithms either operate on a fixed batch of data or operate on i.i.d.

data generated from a sampling distribution, while Differential TD-learning is

fully online and operates on a single sample trajectory.

Our control learning algorithm, Differential Q-learning, is the first off-

policy model-free control algorithm proved to achieve the optimal reward rate

without using a reference function. In addition, the convergence analysis of

Differential Q-learning only assumes weakly communicating MDPs, which are

more general than the unichain assumption made in the convergence theory of

the most important existing off-policy model-free control algorithm, RVI Q-

learning, by Abounadi, Bertseka, and Borkar (2001). Weakly communicating

MDPs are the most general class of MDPs in which a learning algorithm with

a single stream of experience could achieve the optimal reward rate, regardless

of the start state of the experience. Using a similar analysis, the dissertation

shows that RVI Q-learning also converges in weakly communicating MDPs.

These are the first results showing that model-free off-policy average-reward

algorithms converge in weakly communicating MDPs.

The planning versions of the learning algorithms, Differential TD-planning

and Differential Q-planning are fully incremental and well suited for use in

15

reinforcement learning architectures (e.g., Dyna (Sutton 1990)) and are proved

convergent just as learning algorithms. The new planning algorithms, just like

the planning version of RVI Q-learning, update the state-action pairs flexibly

and do not require special knowledge of the world.

All the aforementioned average-reward algorithms converge not to the ac-

tual differential value function, but to the differential value function plus an

offset that depends on initial conditions or the reference function. The offset

is not necessarily a problem because only the relative values of states (or of

state-action pairs) are used to determine policies. However, the actual differ-

ential value function of any policy is centered, meaning that the mean value

of states encountered under the policy is zero. Although it is easy to center

an estimated value function in the on-policy case, in the off-policy case it is

not. As part of the first contribution, this dissertation provides centered ver-

sions of our off-policy algorithms and their proof of convergence to the actual

differential value function.

The second contribution of this dissertation (Chapter 4), based on two

papers I co-authored (Wan, Naik, and Sutton 2021b; Wan, Yu, and Sutton

2023), is a complete extension of the options framework (Sutton, Precup, and

Singh 1999) from the discounted formulation to the average-reward formu-

lation, enabling widespread use of options for the average-reward formula-

tion. The extension includes general convergent off-policy inter-option learn-

ing algorithms, intra-option algorithms for learning values and models, as well

as incremental planning variants of our learning algorithms, and an option-

interrupting algorithm. There is yet another contribution independent of the

options algorithms—I proved a bound of sub-optimality of the reward rate

achieved by greedy policies induced by any action-value estimate in weakly

communicating SMDPs. This result generalizes Puterman’s (1994) Theorem

8.5.5 from unichain Markov Decision Processes to weakly communicating Semi-

Markov Decision Processes.

The inter-option prediction and control learning algorithms are the first

such algorithms that learn with off-policy data and are guaranteed to con-

verge. These inter-option algorithms extend Differential TD-learning and Dif-

16

ferential Q-learning. Extending these algorithms to inter-option algorithms is,

however, non-trivial, as highlighted in Chapter 4. The planning version of our

inter-option learning algorithms is the first convergent incremental planning

algorithm.

The proposed intra-option learning and planning algorithms for both values

and models are the first such algorithms, filling a gap in the average-reward

literature. These algorithms are stochastic approximation algorithms solving

the average-reward intra-option value and model equations. The intra-option

value algorithms, just like their inter-option counterparts, extend Differential

Q-learning and Differential TD-learning from actions to options.

This dissertation extends an interruption algorithm from the discounted

to the average-reward formulation. The idea of interruption, introduced by

Sutton, Precup, and Singh (1999), is simple and natural. Instead of letting

an option execute to termination, interruption algorithms involve potentially

interrupting an option’s execution to check if starting a new option might yield

a better outcome. If so, then the currently executing option is terminated, after

which the new option is executed. An interruption mechanism determines

how the agent should behave and are independent of how the option values

are obtained. However, it is usually not convenient to perform inter-option

learning, because the execution of options can be interrupted and complete

option transitions are not necessarily obtained.

The third contributions of this dissertation (Chapter 5), based on a paper

I co-authored (Zhang, Wan, Sutton, and Whiteson 2021), include an average-

reward prediction function approximation algorithm, called Differential GQ1,

its convergence analysis, and an error bound for the convergent point. Differ-

ential GQ1, together with its sibling algorithm Differential GQ2 (Zhang et al.

2021), are the first proven convergent algorithms that estimate both the reward

rate and the differential value function via off-policy linear function approx-

imation. The credit for the development of Differential GQ2 and its theory

should go to Shangtong Zhang. Both Differential GQ1 and Differential GQ2

are inspired by the celebrated Gradient TD family of algorithms (Sutton et al.

2009), which optimize the mean squared projected Bellman error (MSPBE)

17

for the discounted formulation. While for the discounted formulation, there is

only one MSPBE, for the average-reward formulation we developed two differ-

ent MSPBEs. The two average-reward algorithms optimize the two MSPBEs

respectively. Interestingly, while the two MSPBEs are different, their solutions

are the same if the solutions uniquely exist.

Finally, to empirically verify convergence theories proved in the disserta-

tion, I also performed proof-of-concept experiments and provide experiment

results for most of the proposed learning algorithms. Most of these empirical

results are new—they have not been presented in the three published papers

this dissertation is based on (Wan, Naik, and Sutton 2021a;b; Zhang et al.

2021).

18

Chapter 2

Markov Chains and Markov
Decision Processes

This chapter presents some basic definitions and existing technical results

that serve as a basis for presenting the contributions of the dissertation. The

definitions and results presented in this chapter are widely used in the litera-

ture and can be found in textbooks like Lawler (2018) and Puterman (1994).

Readers who are familiar with these topics may choose to skip this chapter.

2.1 Markov Chains

A finite Markov chain is a discrete-time stochastic process, Sn, n = 0, 1, 2, . . .,

where Sn takes value from a state space with finite elements, or a finite state

space S. This stochastic process satisfies the Markov property—the probabil-

ity of each sequence of realizations can be defined using a product of transition

probabilities. Formally, for each n ≥ 1, the probability of observing a sequence

of realizations s0, s1, . . . , sn,

Pr(S0 = s0, S1 = s1, . . . , Sn = sn)
.
= d(s0)

n−1∏
t=0

p(st+1 | st).

19

Here d0 ∈ ∆(S) 1 is the initial state distribution with d0(s)
2 defined as the

probability that the stochastic process starts from state s and p : S → ∆(S) is
the transition function with p(s′ | s) defined as the probability of transitioning

to s′ from s. Write the transition probability in the matrix form: P [s, s′]
.
=

p(s′ | s). We call P the transition matrix of the Markov chain. A probability

vector d is a stationary distribution of a Markov chain with transition matrix

P if d⊤ = d⊤P .

Given a Markov chain with a finite number of states, we say a state is

recurrent if starting from this state the Markov chain returns to this state

infinitely often, with probability one. A state is called transient if it is not

recurrent.

We say two states of a Markov chain communicate with each other, if start-

ing from each state, the Markov chain reaches the other state with a positive

probability. It is clear that if state a communicates with state b and state b

communicates with state c, then state a communicates with state c. States in

the Markov chain can then be partitioned into one or multiple communication

classes. Within each communicating class, every state communicates with all

other states in the class. If the Markov chain only has one communicating

class, the chain is called irreducible. Otherwise, it is called reducible.

A communicating class is called transient if, with probability one, the

Markov chain eventually leaves this class and never returns. A communicat-

ing class is called recurrent otherwise. States in transient classes are called

transient states and states within recurrent classes are called recurrent states.

A Markov chain is recurrent if all states belong to the same recurrent class.

If a finite Markov chain is recurrent, it is irreducible and vice versa. A finite

Markov chain is called unichain if there is a recurrent class and a possibly

empty set of transient states. If a Markov chain is unichain, there is a unique

stationary distribution.

1∆(S) is the probability simplex over S. A probability simplex over a set X is the set
of all possible probability vectors over X . Given a countably infinite set |X |, denote |X |
as the cardinality of X , any vector x ∈ R|X | satisfying x(i) ≥ 0,∀i = 1, 2, . . . , |X | and∑|X |

i=1 x(i) = 1 is a probability vector over X .
2Through this dissertation, vectors are always written in columns. In addition, this

dissertation uses lower cases for vectors and upper cases for matrices, both in plain text.

20

The period of a state s in a Markov chain is the greatest common divisor

of {n ≥ 0 : p(n)(s | s) > 0}, where p(n)(s | s) is the transition probability from

state s back to itself in n steps. It is known that all states within the same

communicating class share the same period. We say an irreducible Markov

chain aperiodic if the period shared by all states is 1. If a Markov chain is

irreducible and aperiodic, it is called ergodic.

2.2 Markov Decision Processes

Markov decision processes extend Markov chains by adding actions and

rewards. A finite Markov decision process (MDP) is defined by the tuple

M .
= (S,A,R, d0, p), where S is a finite set of states, A is a finite set of

actions, R is a finite set of rewards, d0 ∈ ∆(S) is an initial state distribution,

and p : S×A → ∆(S×R) is a transition function with p(s′, r | s, a) defined as

the probability of transitioning to state s′ ∈ S and observing a reward r ∈ R
when taking action a ∈ A from state s ∈ S. All MDPs considered in this

dissertation are finite.

Given an MDP, a stationary policy π : S → ∆(A) is a function with π(a |
s),∀s ∈ S, a ∈ A denotes the probability of choosing action a at state s. De-

note the set of all stationary policies Π. Given an MDPM .
= (S,A,R, d0, p), a

policy π ∈ Π induces a Markov chain, which has state space S, initial state dis-
tribution ϕ = d0, and transition function p(s′ | s) =∑a,r π(a | s)p(s′, r | s, a).

An MDP is called unichain/recurrent/ergodic if the Markov chain induced

by any stationary policy in the MDP is unichain/recurrent/ergodic. Given an

MDP, a policy is said to be unichain/recurrent/ergodic if the Markov chain

induced by any stationary policy in the MDP is unichain/recurrent/ergodic.

Given an MDP, we say two states communicate with each other if there

exists a stationary policy that transitions from each one to the other one with

non-zero probability in a finite number of steps. A set of states is called com-

municating if every state within the set communicates with all other states.

An MDP is said to be communicating if all states belong to the same commu-

nicating class. An MDP is said to be weakly communicating if there is a closed

21

communicating class and a possibly empty set of states that are transient un-

der all stationary policies. A set is closed if starting from any state within the

set, there is a zero probability of transiting to states outside the set, regardless

of the sequence of actions. Examples of recurrent, unichain, communicating,

weakly communicating, and other MDPs are shown in Figure 2.1.

There is a special class of MDPs considered by several average-reward

algorithms. These MDPs are unichain and have a state being recurrent under

every stationary policy. These MDPs are considered in the convergence results

of SSP Q-learning (Abounadi et al. 2001), Gosavi’s (2004) algorithm, and

Contractive Value Iteration (Bertsekas 1998). Note that a unichain MDP

does not necessarily have a common recurrent state (e.g., Figure 2.2) and that

the existence of a common recurrent state does not imply that the MDP is

unichain (e.g., Figure 2.3).

1 2

1 2

recurrent

communicating

1 2

unichain

1 2

weakly communicating

1

1 2

not weakly communicating

1 2

not weakly communicating

Figure 2.1: Examples of recurrent, unichain, communicating, weakly commu-
nicating, and other MDPs.

There is yet another class of MDPs considered in the convergence theorem

of Differential Q-learning by Wan et al. (2021a). And it can be shown that

RVI Q-learning also converges in this set of MDPs. For this class of MDPs,

the solution set of q in the optimality equation (3.7) (introduced in the next

chapter) has one degree of freedom (i.e., all solutions are only different by a

22

constant). This class of MDPs is more general than unichain MDPs but is less

general than weakly communicating MDPs.

An illustration of the hierarchy of MDP classes is shown in Figure 2.4.

4 5 6

2 3

1

Policy 1

Policy 2 Policy 3

Figure 2.2: A unichain MDP that does not have a state being recurrent under
every stationary policy.

1 2

Figure 2.3: A multi-chain MDP that has state 1 being recurrent under every
stationary policy.

23

recurrent

communicating

unichain

weakly communicating

general

a common recurrent state
and unichain

solution set of in the optimality equation
has one degree of freedom

v

ergodic

only one closed communicating class
no states are transient

under all policies

all states in the
same recurrent class

aperiodic under all policies

all states in the
same recurrent class

a common recurrent state

unichain under all policies

Figure 2.4: Hierarchy of MDP classes

24

Chapter 3

Tabular Algorithms

This chapter presents the first area of contributions of this dissertation:

a family of tabular algorithms for the average-reward formulation as well as

the algorithms’ convergence theories. This family of algorithms includes both

prediction and control algorithms. And for each of the prediction and control

cases, this family includes an off-policy learning algorithm and a correspond-

ing planning algorithm. Both prediction and control learning algorithms are

off policy. These algorithms all use value estimates, which are guaranteed to

converge to the true value function up to an additive constant. For all of the

algorithms, this chapter further presents their centered versions, which pro-

duce the true differential value function instead of one with an offset. This

chapter presents convergence theories for all of the algorithms, including both

uncentered and centered versions. In order to do so, this chapter proves the

convergence theory of a general algorithm, which encompasses all of the al-

gorithms introduced in this chapter as special cases. Finally, several sets of

simple experiments are presented in this chapter to demonstrate the empirical

performance of some of the proposed algorithms.

3.1 Problem Setup

This section sets up the tabular learning and planning problems with the

average-reward formulation.

Reinforcement learning (RL) is a formulation of the problem of an agent

achieving its goal in the world. Classic RL formalizes the agent’s interaction

25

with the world by a finite Markov decision processM = (S,A,R, d0, p). The
agent’s interaction with the world starts from one of the initial states S0, sam-

pled from the initial state distribution d0. At each of a sequence of discrete

time steps t = 0, 1, 2, . . ., the agent observes a state St and selects, using a be-

havior policy b : S → ∆(A), an action At ∈ A, then receives from the world a

reward Rt+1 ∈ R and the next state St+1 ∈ S, and so on. The transition prob-

ability follows p: Pr(St+1 = s′, Rt+1 = r | St = s, At = a) = p(s′, r | s, a) for all
s, s′ ∈ S, a ∈ A, and r ∈ R. For convenience, with a bit of abuse of notation,

I will also use p(s′ | s, a) to denote the state part of the transition function

(i.e., p(s′ | s, a) .
=
∑

r p(s
′, r | s, a) for all s, a). Learning algorithms only use

the agent’s real experience {St, At, Rt+1, St+1}t≥0. Planning algorithms use a

model of the MDP, p̂ ≈ p.

The average-reward formulation seeks a policy π within the class of station-

ary policies Π that maximizes, for each state s ∈ S, the agent’s average-reward
rate following a policy π starting from s:

r(π, s)
.
= lim

n→∞

1

n

n∑
t=1

E[Rt | S0 = s, A0:t−1 ∼ π], (3.1)

where the limit always exists. The reward rate measures the long-run perfor-

mance of a policy.

Another important quantity, called differential value function (also called

bias; see, e.g., Puterman 1994), represents the relative “goodness” of states

and can be used to rank states. The differential value function vπ : S → R for

a policy π ∈ Π is:

vπ(s)
.
= lim

n→∞

1

n

n∑
k=1

k∑
t=1

E [Rt − r(π, s) | S0 = s, A0:t−1 ∼ π] ,

for all s ∈ S, where the limit always exists. Tabular prediction learning and

planning algorithms seek, given a policy π ∈ Π, r(π, s) and vπ(s) + c for all

s ∈ S for some constant c.

Note that by the above definition, prediction algorithms do not seek the

differential value function but only the differential value function plus some

constant vector. This is because the differential value function is typically used

26

by control algorithms that iteratively evaluate a policy and improve the policy

(e.g. policy iteration by Howard (1960), actor-critic by Konda (2002)). For

this purpose, it is not necessary to obtain the differential value function—any

function that differs from the differential value function by a constant vector

would be no different. Consequently, algorithms in the literature typically

do not seek the differential value function but any function that equals the

differential value function up to an additive constant vector.

It is convenient to rule out the possibility of the reward rate of π depending

on the start state. In particular, assume that under the policy being evaluated,

there is only a set of recurrent states. This is known as the Markov chain being

unichain. Under the unichain assumption, there exists a unique reward rate

r(π) that does not depend on the start state:

r(π)
.
= r(π, s),∀s ∈ S.

Under the unichain assumption, the state-value evaluation equation is

v(s) = rπ(s)− r̄ + Pπv(s), ∀s ∈ S, (3.2)

where

Pπ(s, s
′)

.
=
∑
a

π(a | s)p(s′ | s, a) (3.3)

is the transition matrix under policy π, and

rπ(s)
.
=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)r. (3.4)

is the expected reward starting from state s under policy π. The state-value

evaluation equation has r(π) as its unique solution of r̄ and any solution of v :

S → R satisfies v = vπ+c1 for some constant c. Throughout this dissertation,

1 is used to denote an all-one vector with dimension implied from the context.

Similarly, 0 is used to denote an all-zero vector with dimension implied from

the context. Similarly, the action-value evaluation equation

q(s, a) = r(s, a)− r̄ +
∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′)q(s′, a′), (3.5)

27

for all s ∈ S, a ∈ A, where

r(s, a)
.
=
∑
s′,r

p(s′, r | s, a)r (3.6)

is the one step reward, has r(π) as its unique solution of r̄ and any solution of

q : S ×A → R satisfies q = qπ + c1 for some constant c.

Tabular control learning and planning algorithms seek a policy that achieves

the “best reward rate”. For an unconstrained continuing MDP, the best re-

ward rate depends on the start state. For example, the MDP may have two

disjoint sets of states with no policy that passes from one to the other; in this

case, there are effectively two MDPs. A learning algorithm would have no

difficulty with such cases—it would optimize for whichever sub-MDP it found

itself in—but it is complex to state formally what is meant by an optimal

policy. To remove this complexity, it is commonplace to rule out such cases

by assuming that the MDP is weakly communicating.

Under the weakly communicating assumption, there exists a unique opti-

mal reward rate r∗ that does not depend on the start state.

r∗
.
= sup

π∈Π
r(π, s),

for all s ∈ S. A control algorithm seeks a policy π such that r(π, s) = r∗ for

all s ∈ S. A common way to find such a policy is to solve the action-value

optimality equation:

q(s, a) = r(s, a)− r̄ +
∑
s′

p(s′ | s, a)max
a′

q(s′, a′), (3.7)

for all s ∈ S and a ∈ A. The unique solution of r̄ is r∗. The solution set

of q has multiple degrees of freedom (Schweitzer and Federgruen 1978) but

any greedy policy w.r.t. any solution of q is a deterministic optimal policy (an

optimal policy that, at each state, chooses an action w.p. one). Denote the set

of deterministic optimal policies as ΠD
∗ .

3.2 The Convergence of a General Algorithm

This section introduces a new technical result that plays a central role in

the convergence proofs of many of the algorithms introduced in the current

28

and the next chapters. Specifically, this result shows the convergence of a

general algorithm, which encompasses these algorithms as special cases. The

convergence of these algorithms follows as a result of this general convergence

result. This general algorithm is called General RVI Q because it is a gener-

alization of an algorithm called RVI Q-learning by Abounadi, Bertsekas, and

Borkar (2001). The convergence result of General RVI Q is also a general-

ization of the convergence result of the RVI Q-learning algorithm shown by

Abounadi, Bertsekas, and Borkar (2001). Readers who are not intended to

read the convergence proofs of algorithms introduced in the current and next

chapter may choose to skip this section.

General RVI Q is a stochastic approximation algorithm that finds a solution

of the following equation

r(i)− r̄ + g(q)(i)− q(i) = 0,∀ i ∈ I, (3.8)

where I = {1, . . . , d}, r̄ ∈ R and q ∈ Rd are unknown variables to be solved,

r ∈ Rd is any fixed d-dim vector, g : Rd → Rd is a function satisfying the

following assumption.

Assumption 3.1 (Conditions on g).

(i) g is a max-norm non-expansion

(ii) g is a span-norm non-expansion

(iii) g(x+ c1) = g(x) + c1 for any c ∈ R, x ∈ Rd

(iv) g(cx) = cg(x) for any c ≥ 1, x ∈ Rd.

We further make the following conditions on the solution set of (3.8).

Assumption 3.2 (Condition on the solution set of (3.8)).

Equation 3.8 has a unique solution of r̄ and has at least one solution of q.

Denote the unique solution of r̄ as r#. It is clear that if q is a solution of

(3.8), then q + c1 is also a solution for any c ∈ R. Therefore Assumption 3.2

implies that there are an infinite number of solutions of q in (3.8).

I now introduce the General RVI Q algorithm. This algorithm maintains

29

a d-dim vector of estimates Q ∈ Rd, and updates Q using

Qn+1(i)
.
= Qn(i)

+ ανn(i)

(
r(i)− f(Qn) + g(Qn)(i)−Qn(i) +Mn+1(i) + ϵn+1(i)

)
I{i ∈ Yn},

(3.9)

where Qn = [Qn(1), . . . , Qn(d)]
⊤ ∈ Rd, {Yn} is a random process taking values

in the set of non-empty subsets of I, νn(i) .
=
∑n

k=0 I{i ∈ Yk}, where I is the

indicator function (i.e., νn(i) = the number of times the i component was

updated up to and including step n), f : Rd → R is a function, {αn} is a

sequence of step sizes, Mn+1 and ϵn+1 are two sequences of noise terms.

Assumption 3.3 (Conditions on f).

(i) f is L-Lipschitz for some L ∈ R,

(ii) there exists a positive scalar u s.t. f(x + c1) = f(x) + cu for any c ∈ R

and x ∈ Rd and,

(iii) f(cx)− f(0) = c(f(x)− f(0)) for any c ≥ 1 and x ∈ Rd.

Examples of functions that satisfy the above assumption include f(x) =

a⊤x+ b for any a ∈ Rd such that a⊤1 > 0, b ∈ R, f(x) = a ·maxi x(i) + b for

any a > 0, b ∈ R.

The f(Qn) term in the General RVI Q algorithm is designed to solve for r̄

in (3.8). Denote Q# as the set of solutions of q in (3.8) and

f(q) = r#. (3.10)

Lemma 3.1. Under Assumptions 3.1, 3.2, 3.3, Q# is non-empty and closed.

Proof. Q# is not empty by Assumption 3.3(ii) and Assumption 3.2.

To show the closeness of Q#, first note that the set of solutions of q in (3.8)

is closed, because g(x)−x is continuous by Assumption 3.1(i) and the preimage

of a continuous function on a closed set is closed. Similarly, the set of solutions

of q in (3.10) is closed, because f(x) is continuous by Assumption 3.3(i) and

the preimage of a continuous function on a closed set is closed. Q#, being the

intersection of two closed sets, is therefore closed.

30

I will show that Qn converges to Q#. But before that, I need to first finish

the presentation of other assumptions. The following assumption will be used

to show the stability of General RVI Q.

Assumption 3.4 (Condition on Q#). If in (3.8), r(i) = f(0) for all i, 0 is

the only member of Q#.

The following assumption is for the steps-size sequence {αn}.

Assumption 3.5 (Step-size conditions).

(i) For n ≥ 0, αn > 0. αn+1 ≤ αn for all n sufficiently large.
∑∞

n=0 αn = ∞,

and
∑∞

n=0 α
2
n <∞.

(ii) Let [·] denote the integer part of (·), for x ∈ (0, 1),

sup
n

α[xn]

αn

<∞

and as n→∞ ∑[ym]
n=0 αn∑m
n=0 αn

→ 1 uniformly in y ∈ [x, 1].

Assumption 3.6 (Update schedule). The following statements hold:

(i) there exists a deterministic ∆ > 0 such that

lim inf
n→∞

νn(i)

n
≥ ∆,

a.s., for all i ∈ I.
(ii) for all x > 0, let

N(n, x) = min

{
m > n :

m∑
k=n

αk ≥ x

}
,

the limit

lim
n→∞

∑νN(n,x)(i)

k=νn(i)
αk∑νN(n,x)(i

′)

k=νn(i′)
αk

exists a.s. for all i, i′ ∈ I.

Remark: Assumptions 3.5 and 3.6 originate from a result showing the

convergence of stochastic approximation algorithms (Borkar 1998;2000) and

were also required by the convergence theorem of RVI Q-learning. Roughly

31

speaking, Assumptions 3.5 and 3.6 mean that the step-size sequence {αn}
decreases appropriately and all states are updated comparably often in an

evenly distributed manner. Assumptions 3.5 can be satisfied if the sequence

{αn} decreases to 0 appropriately. The sequence {αn} could be, for example,

1/n, 1/n log n, or log n/n for n ≥ 2 (Abounadi, Bertsekas, and Borkar 2001).

The first part of Assumption 3.6 requires that the fraction of updates to any

element in Q is greater than or equal to any fixed positive number in the

limit. Therefore relative update frequency between any two elements can not

go infinite. The second part of the assumption is more sophisticated. It

puts some restriction on the step-size sequence {αn}∞n=0 and the visitations

{νn(i)}, ∀i ∈ I. Certain step-size schedules satisfy the second part with a very

flexible update schedule. The next example shows that, with a common step-

size sequence αn = 1/n, Assumption 3.6(ii) can be satisfied (Assumption 3.5

can also be satisfied with this step-size sequence), as long as Assumption 3.6(i)

is satisfied and limn→∞ νn(i)/n exists for all i ∈ I, which means the fractions

don’t change in the limit.

Example 3.1. To see that Assumption 3.6(ii) holds with αn = 1/n, note that

lim
n→∞

∑νN(n,x)(i)

k=νn(i)
αk∑νN(n,x)(i

′)

k=νn(i′)
αk

=

∑νN(n,x)(i)

k=1 αk −
∑νn(i)−1

k=1 αk∑νN(n,x)(i
′)

k=1 αk −
∑νn(i′)−1

k=1 αk

= lim
n→∞

log
(
νN(n,x)(i)

)
+ γ − log(νn(i)− 1)− γ

log
(
νN(n,x)(i′)

)
+ γ − log(νn(i′)− 1)− γ

.

The second equation uses the fact that limn→∞
∑n

k=1
1
k
− log n = γ, where

γ ≈ 0.57721 is the Euler’s constant. The r.h.s. of the second equation can be

further written as follows.

r.h.s. = lim
n→∞

log
νN(n,x)(i)

νn(i)−1

log
νN(n,x)(i

′)

νn(i′)−1

= lim
n→∞

log νn(i)−1
νN(n,x)(i)

log νn(i′)−1
νN(n,x)(i

′)

= lim
n→∞

log νn(i)
n

+ log νn(i)−1
νn(i)

− log
νN(n,x)(i)

N(n,x)
− log N(n,x)

n

log νn(i′)
n

+ log νn(i′)−1
νn(i′)

− log
νN(n,x)(i

′)

N(n,x)
− log N(n,x)

n

(3.11)

Note that limn→∞ log νn(i)−1
νn(i)

= 0. Also, note that N(n, x) is the minimum

integer that satisfies
∑N(n,x)

k=1
1
k
−∑n

k=1
1
k
≥ x by definition. When n → ∞,

32

N(n, x) is the minimum integer that satisfies logN(n, x) − log n ≥ x. Thus

N(n, x) ≈ nex. Therefore log N(n,x)
n
≈ log nex

n
= x > 0.

If limn→∞
νn(i)
n

exists, limn→∞ log νn(i)
n

= limn→∞ log
νN(n,x)(i)

N(n,x)
. Therefore

log N(n,x)
n
≈ x > 0 dominates both the numerator and the denominator of

(3.11). Therefore (3.11) = limn→∞
log

N(n,x)
n

log
N(n,x)

n

= 1. Therefore Assumption 3.6(ii)

holds.

On the other hand, if limn→∞
νn(i)
n

does not exist, limn→∞ log νn(i)
n
−log νN(n,x)(i)

N(n,x)

does not necessarily exist. Therefore (3.11) may not exist.

The example is finished.

Let Fn
.
= σ(xm, Ym,Mm, ϵm;m ≤ n) be an increasing family of σ-fields.

Assumption 3.7 (Conditions on the noise terms). For some deterministic

constant K ≥ 0,

(i) E[Mn+1 | Fn] = 0, E[∥Mn+1∥2 | Fn] ≤ K(1 + ∥Qn∥2) a.s., for all n ≥ 0

(ii) as n→∞, ϵn → 0 a.s.

Theorem 3.1. If Assumptions 3.1–3.7 hold, then Qn converges almost surely

to Q# and f(Qn) converges almost surely to r#.

Remark: To prove Theorem 3.1, I will use a result by Theorem 2.5 by

Borkar and Meyn (2000). This result is a key result used to show the con-

vergence of RVI Q-learning (Abounadi, Bertsekas, and Borkar 2001) and the

convergence of Differential Q-learning (Wan, Naik, Sutton 2021a). However,

Borkar and Meyn (2000) only provided a proof sketch of Theorem 2.5 rather

than the details of the proof. They suggested that the proof, which concerns a

family of asynchronous algorithms, would be similar to their proof concerning

a corresponding family of synchronous algorithms. Recently, Huizhen Yu and

I tried to complete the details of the proof of Theorem 2.5, but we found that

we can not use similar arguments from their synchronous proof to establish

the asynchronous result. Huizhen Yu proved a result that is slightly different

from Theorem 2.5. Unlike Theorem 2.5, Yu’s result does not require that the

o.d.e. associated with the update has a unique globally asymptotically stable

equilibrium, assumes that there is no delay in updates, and allows the inclu-

sion of an additional noise that decreases to zero almost surely. Note that

33

Borkar (Section 4, Chapter 7; Theorem 2, Chapter 2; 2009) also presented

a similar result without assuming the unique globally asymptotically stable

equilibrium. However, just as in Borkar (1998), he didn’t provide proof of the

stability of the algorithm. Borkar (2009) also suggested, without proof, that

including an additional noise in both synchronous and asynchronous updates

would not change the convergence of the updates. However, in his comment,

the additional noise is bounded while Yu’s noise does not have to be bounded.

Removing the assumption of a unique globally asymptotically stable equilib-

rium is needed for my purpose of showing control algorithms’ convergence

in weakly communicating MDPs. The delay allowed by Theorem 2.5 is not

needed for RVI Q-learning or any algorithm presented in this dissertation.

The additional noise term (without boundedness condition) will be used to

show the convergence of centered algorithms (Section 3.7) and inter-option

algorithms (Section 4.5).

I now present Yu’s result and use it to show the convergence of General

RVI Q. The proof of Yu’s result will be shown in our upcoming paper (Wan,

Yu, Sutton 2023). The concerned asynchronous stochastic approximation al-

gorithm’s update rule is:

xn+1(i) = xn(i) + ανn(i) (hi(xn) +Mn+1(i) + ϵn+1(i)) I{i ∈ Yn}, i ∈ I, (3.12)

where xn = [xn(1), . . . , xn(d)]
⊤ ∈ Rd, αn, Yn, νn,Mn+1, and ϵn+1 are defined

just as for General RVI Q (3.8) and satisfy Assumptions 3.5, 3.6, 3.7, h : Rd →
Rd satisfies the following conditions.

Assumption 3.8 (Conditions on the function h).

(i) Lipschitz continuity: for some 0 ≤ L < ∞, ∥h(x) − h(y)∥ ≤ L∥x − y∥
for all x, y ∈ Rd.

(ii) For c ≥ 1 and functions hc(x)
.
= h(cx)/c, we have hc(x) → h∞(x) as

c → ∞, uniformly on compact subsets of Rd, where h∞ is a continuous

function on Rd. Furthermore, the o.d.e.

ẋ(t) = h∞(x(t)) (3.13)

34

has the origin as its unique globally asymptotically stable equilibrium.

Theorem 3.2. Under Assumptions 3.5, 3.6, 3.7, 3.8, then the sequence {xn}
generated by (3.12) converges a.s. to a (possibly sample path-dependent) com-

pact, connected, internally chain transitive, invariant set of the o.d.e. ẋ(t) =

h(x(t)).

Proof of Theorem 3.1

By choosing h such that h(q)(i)
.
= r(i)− f(q) + g(q)(i)− q(i) for all i ∈ I

and q ∈ Rd, we see that (3.9) is in the same form of (3.12). We will first show,

using a series of lemmas, any compact invariant set of the o.d.e. ẋ(t) = h(x(t))

is a subset of Q#. Then, we will verify conditions required by Theorem 3.2 to

show Theorem 3.1.

Define operators T1, T2:

T1(Q)(i)
.
= r(i) + g(Q)(i)− r#,

T2(Q)(i)
.
= r(i) + g(Q)(i)− f(Q) = T1(Q)(i) + (r# − f(Q)) .

Consider two ordinary differential equations:

ẏt
.
= T1(yt)− yt, (3.14)

ẋt
.
= T2(xt)− xt = T1(xt)− xt + (r# − f(xt))1. (3.15)

Note that because g is a non-expansion by Assumption 3.1(i) and f is Lip-

schitz continuous by Assumption 3.3(i), both (3.14) and (3.15) have Lipschitz

r.h.s. and thus are well-posed.

Because g is a non-expansion, T1 is also a non-expansion. Also, (3.14) has

an equilibrium by Assumption 3.2. Therefore we have the next lemma, which

restates Theorem 3.1 and Lemma 3.2 by Borkar and Soumyanatha (1997).

Lemma 3.2. Let ȳ be an equilibrium point of (3.14). Then ∥yt − ȳ∥∞ is

nonincreasing, and yt → y∞ for some equilibrium point y∞ of (3.14) that may

depend on y0.

The next three lemmas extend Lemmas 3.2, 3.3 by Abounadi, Bertsekas,

and Borkar (2001) to the case where Q# is a set instead of a point and there

is a weaker condition on f (Assumption 3.3).

35

Lemma 3.3. The set of equilibrium points of (3.15) is Q#.

Proof. Q# is the set of fixed points of T1. Then for any q ∈ Q#, T2(q) = T1(q)+

(r#− f(q)) = T1(q) = q. Thus q is an equilibrium point of (3.15). Conversely,

if q is an equilibrium of (3.15), then q = T2(q) = T1(q) + (r# − f(q))1. But

the equation q = T1(q) + c1 has a solution if and only if c = 0 because of

Assumption 3.2. Thus q = T1(q), implying q ∈ Q#.

Lemma 3.4. Let x0 = y0, then xt = yt + zt1, where zt satisfies the ODE

żt = −uzt + (r# − f(yt)).

Proof. I first show xt = yt + zt1. From (3.14) and (3.15), by the variation of

parameters formula,

xt = exp(−t)x0 +

∫ t

0

exp(τ − t)T1(xτ)dτ +

[∫ t

0

exp(τ − t) (r# − f(xτ)) dτ

]
1,

yt = exp(−t)y0 +
∫ t

0

exp(τ − t)T1(yτ)dτ.

Then we have

max
i

(xt(i)− yt(i)) ≤
∫ t

0

exp(τ − t)max
i

(T1(xτ)(i)− T1(yτ)(i))dτ

+

[∫ t

0

exp(τ − t) (r# − f(xτ)) dτ

]
,

min
i
(xt(i)− yt(i)) ≥

∫ t

0

exp(τ − t)min
i
(T1(xτ)(i)− T1(yτ)(i))dτ

+

[∫ t

0

exp(τ − t) (r# − f(xτ)) dτ

]
.

Subtracting, we have

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(T1(xτ)− T1(yτ))dτ,

where sp(x) denotes the span of vector x.

Because g is a span-norm non-expansion (Assumption 3.1(ii)), T1 is also a

span-norm non-expansion. Thus,∫ t

0

exp(τ − t)sp(T1(xτ)− T1(yτ))dτ ≤
∫ t

0

exp(τ − t)sp(xτ − yτ)dτ.

36

Recall Gronwall’s inequality, which states that for continuous real-valued func-

tions u(t), v(t) defined on [0,∞) for some positive T , if v is non-negative, and

for c ∈ R,

u(t) ≤ c+

∫ t

0

u(s)v(s)ds ∀t ∈ [0,∞),

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
∀t ∈ [0,∞).

Applying Gronwall’s inequality to

sp(xt − yt) ≤
∫ t

0

exp(τ − t)sp(xτ − yτ)dτ,

we have sp(xt − yt) = 0 for all t ≥ 0. Therefore xt = yt + zt1, t ≥ 0 for some

zt. Also x0 = y0 =⇒ z0 = 0.

Now we show that żt = −uzt+(r#−f(yt)). Note that f(xt) = f(yt+zt1) =

f(yt)+uzt where the second equation holds because of Assumption 3.3 (ii). In

addition, T1(xt)− T1(yt) = T1(yt + zt1)− T1(yt) = T1(yt) + zt1− T1(yt) = zt1,

where the second equation holds because of Assumption 3.1(iii). Therefore,

żt1

= ẋt − ẏt

= (T1(xt)− xt + (r# − f(xt))1)− (T1(yt)− yt) (Equations 3.14 and 3.15)

= −(xt − yt) + (T1(xt)− T1(yt)) + (r# − f(xt))1

= −zt1+ zt1+ (r# − f(xt))1

= −uzt1+ uzt1+ (r# − f(xt))1

= −uzt1+ (r# − f(yt))1

=⇒ żt = −uzt + (r# − f(yt)) .

Lemma 3.5. Let x0 = y0, then limt→∞ xt = y∞ + (r# − f(y∞))1/u, which is

an member of Q#.

37

Proof. By the variation of parameters formula and noting that z0 = x0− y0 =

0,

zt =

∫ t

0

exp(uτ − ut)(r# − f(yτ))dτ.

Because yt → y∞ by Lemma 3.2 and f is continuous by Assumption 3.3(i),

the above equation can be rewritten as

zt =

∫ t

0

exp(uτ − ut)(r# − f(y∞))dτ +

∫ t

0

exp(uτ − ut)o(τ)dτ,

where o(τ) is a sequence of scalars that converges to 0 as τ →∞. Thererfore,

for every ϵ > 0, there exists a T > 0 such that ∥o(t)∥ < ϵ for all t > T . Fix an

ϵ > 0, for any t > T , we have∥∥∥∥∫ t

0

exp(uτ − ut)o(τ)dτ

∥∥∥∥
=

∥∥∥∥∫ T

0

exp(uτ − ut)o(τ)dτ +

∫ t

T

exp(uτ − ut)o(τ)dτ

∥∥∥∥
≤
∫ T

0

exp(uτ − ut)∥o(τ)∥dτ +

∫ t

T

exp(uτ − ut)∥o(τ)∥dτ

≤ ϵ

∫ T

0

exp(uτ − ut)o(τ)dτ +

∫ t

T

exp(uτ − ut)dτ

=

∫ T

0

exp(uτ − ut)o(τ)dτ + ϵ
1− exp(uT − ut)

u
.

As t → ∞, the r.h.s. converges to ϵ/u. Because the choice of ϵ can be made

arbitrarily small, we have
∥∥∥∫ t

0
exp(uτ − ut)o(τ)dτ

∥∥∥→ 0 as t→∞. Using this

result and limt→∞
∫ t

0
exp(uτ − ut)(r# − f(y∞))dτ = (r# − f(y∞))/u, we have

zt → (r# − f(y∞))/u. Combining this result with xt = yt + zt1 (Lemma 3.4)

and Lemma 3.2, we have xt → y∞ + (r# − f(y∞))1/u as t → ∞. Finally,

because the set of equilibrium points T2 is Q#, xt must converge to one of

such points.

For ϵ > 0, denote by Qϵ
the closed ϵ-neighborhood of Q# w.r.t. ∥ · ∥∞.

Lemma 3.6. For the o.d.e. (3.15), Q# is Lyapunov stable in the sense that

given any ϵ > 0, there exists δ > 0 such that for all initial conditions x0 ∈ Qδ
#,

xt ∈ Qϵ
for all t ≥ 0.

38

Proof. Let y0 = x0, then z0 = 0, and by Lemma 3.4 we have żt = −uzt+(r#−
f(yt)). By variation of parameters and z0 = 0, we have

zt =

∫ t

0

exp(u(τ − t)) (r# − f(yτ)) dτ.

Choose any q∗ ∈ Q#,

∥q∗ − xt∥∞
= ∥q∗ − (yt + ztu1)∥∞
≤ ∥q∗ − yt∥∞ + u|zt|

≤ ∥q∗ − y0∥∞ + u

∫ t

0

exp(u(τ − t))|r# − f(yτ)|dτ (Lemma 3.2)

= ∥q∗ − x0∥∞ + u

∫ t

0

exp(u(τ − t))|f(q∗)− f(yτ)|dτ, (3.16)

where the last equality holds by (3.10).

Because f is L-Lipschitz by Assumption 3.3(i), we have

|f(q∗)− f(yτ)| ≤ L∥q∗ − yτ∥∞ ≤ L∥q∗ − y0∥∞ (Lemma 3.2)

= L∥q∗ − x0∥∞.

Therefore,∫ t

0

exp(u(τ − t))|f(q∗)− f(yτ)|dτ ≤
∫ t

0

exp(u(τ − t))L∥q∗ − x0∥∞dτ

= L∥q∗ − x0∥∞
∫ t

0

exp(u(τ − t))dτ

=
L

u
∥q∗ − x0∥∞(1− exp(−ut)).

Substituting the above equation in (3.16), we have

∥q∗ − xt∥∞ ≤ (1 + L)∥q∗ − x0∥∞.

Finally, for any ϵ > 0, choose δ = ϵ/(1 + L), and for any x0 ∈ Qδ
#,

choose q∗ ∈ Q# within the δ-neightborhood of x0, then by the above inequality

∥xt − q∗∥ ≤ ϵ. Lyapunov stability follows.

Lemma 3.7. Any compact invariant set of the o.d.e. (3.15) is contained in

Q#.

39

Proof. We use proof by contradiction. Suppose A is a compact invariant set of

(3.15) and A ̸⊂ Q#. Let dA,Q#

.
= supx∈A infy∈Q#

∥x− y∥∞ we have dA,Q#
> 0

by the compactness of A and the closedness of Q# by Lemma 3.1, and that

A ̸⊂ Q#. Let 0 < ϵ < dA,Q#
, and let δ be given by Lemma 3.6 for this ϵ.

Let ϕ(t;x) be the solution of the o.d.e. (3.15) with x(0) = x. Since ϕ(t;x)

converges to an element in Q# as t→∞ (Lemma 3.5), there is a time tx such

that ϕ(tx;x) ∈ Qδ/2
. Since h is Lipschitz continuous, ϕ(t;x) is continuous in

x, so there is an open neighborhood Dx of x such that

ϕ(tx; y) ∈ Qδ
#, ∀ y ∈ Dx. (3.17)

Now Dx, x ∈ A, form an open cover of the compact set A, so there exist a finite

number of points x1, x2, . . . , xℓ ∈ A with A ⊂ ∪ℓ
i=1Dxi

. Let t̄ = max1≤i≤ℓ txi
.

Then by (3.17) and Lemma 3.6,

ϕ(t;x) ∈ Qϵ
#, ∀x ∈ A, t ≥ t̄. (3.18)

With A being invariant for the o.d.e. (3.15), {ϕ(t̄;x) | x ∈ A} = A, so (3.18)

implies that A ⊂ Qϵ
#, contradicting the fact dA,Q#

> ϵ. The proof is now

complete.

We now verify assumptions required by Theorem 3.2. First, note that

Assumptions 3.5, 3.6, 3.7 are also required by Theorem 3.1 and do not need

to be verified. Part (i) of Assumption 3.8 can be easily verified because both

f and g are Lipschitz by Assumptions 3.3, 3.1. Thus we only need to verify

part (ii) of Assumption 3.8.

Note that for any c ≥ 1

hc(x) = (r − f(cx)1+ g(cx)− cx) /c

= (r − (f(cx)− f(0))1− f(0)1+ g(cx)− cx) /c

= (r − c(f(x)− f(0))1− f(0)1+ cg(x)− cx) /c

= r/c− (f(x)− f(0))1− f(0)1/c+ g(x)− x,

where the second last equation holds because of Assumption 3.3(iii) and As-

sumption 3.1(iv). In addition, for every x ∈ Rd,

h∞(x) = lim
c→∞

hc(x) = f(0)1− f(x)1+ g(x)− x.

40

The function h∞ is continuous on Rd by the non-expansion assumption on g

and the Lipschitz assumption on f . In addition, hc converges to h∞ as c→∞,

uniformly on compact subsets of Rd because, for any x ∈ Rd, and c ≥ 1,

|hc(x)− h∞(x)| = |r/c− f(0)1/c|,

which is independent of the choice of x.

We now show that 0 is the unique globally asymptotically stable equilib-

rium of ẋ = h∞(x) = f(0)1 − f(x)1 + g(x) − x. Note that this is o.d.e.

(3.15) with r(i) = f(0). By Assumption 3.4, and Lemma 3.3, 0 is the unique

equilibrium of this o.d.e. In addition, by Lemma 3.6, 0 is also stable. Finally,

according to Lemma 3.5, for any x0 ∈ Rd, limt→∞ xt ∈ Q#, which must coin-

cide with 0 because Q# = {0}. Thus 0 is the globally asymptotically stable

equilibrium.

All the assumptions required by Theorem 3.1 are verified and the theorem

is proved.

3.3 Prediction Algorithms

This section presents the new prediction learning and planning algorithms.

Recall that the goal of prediction algorithms is to estimate the reward rate of

a given policy and also estimate the given policy’s differential value function

up to an additive constant. Along with the two algorithms, this section also

shows their convergence theories.

The prediction algorithm, called Differential TD-learning, updates a table

of estimates Vt : S → R, t ≥ 1, as follows:

Vt+1(St)
.
= Vt(St) + ανt(St)ρtδt, (3.19)

Vt+1(s)
.
= Vt(s), ∀s ̸= St,

where {αn}n≥1 is a step-size sequence satisfying Assumption 3.5, νt(St) is

the number of times the state St was updated up to and including step t,

{αn}n≥1 and νt(St) jointly satisfy Assumption 3.6 (with I = S and n = t),

ρt
.
= π(At | St)/b(At | St) is the importance-sampling ratio, and δt is the TD

41

error at time step t:

δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St), (3.20)

where R̄t is a scalar estimate of r(π), updated by:

R̄t+1
.
= R̄t + ηανt(St)ρtδt, (3.21)

and η is a positive constant. The next assumption is required to guarantee that

the behavior policy covers all possible state-action pairs the target policy may

incur. It guarantees that importance sampling ratios ρt, t ≥ 0, are bounded.

Assumption 3.9. For all s ∈ S, a ∈ A, if π(a | s) > 0, then b(a | s) > 0.

The pseudocode of Differential TD-learning is shown in Algorithm 1.

Algorithm 1: Differential TD-learning

Input: The policy π to be evaluated, and b to be used
Algorithm parameters: step-size sequence αn, parameter η

1 Initialize V (s), ∀s, R̄ arbitrarily (e.g., to zero)
2 ν(s)← 0 ∀s
3 Obtain initial S
4 while still time to train do
5 ν(S)← ν(S) + 1
6 A← action given by b for S
7 Take action A, observe R, S ′

8 δ ← R− R̄ + V (S ′)− V (S)
9 ρ← π(A | S) / b(A | S)

10 V (S)← V (S) + αν(S)ρδ
11 R̄← R̄ + ηαν(S)ρδ
12 S ← S ′

13 end
14 return V

The theorem to be presented shows that R̄t converges to r(π) and Vt con-

verges to v∞, which is defined to be the unique solution of v in (3.2) and the

following equation.

r(π)− R̄0 = η
(∑

v −
∑

V0

)
. (3.22)

The uniqueness of v∞ can be seen as follows. Note that π is unichain, which

implies that solutions of v in (3.2) are unique up to an additive constant. This

consequence plus (3.22) shows that v∞ is unique.

42

Theorem 3.3. If the target policy π is unichain, Assumptions 3.5, 3.6 (with

I = S), and 3.9 hold, then the Differential TD-learning algorithm (3.19)–

(3.21) converges, almost surely, R̄t to r(π) and Vt to v∞.

Remark: Assumptions 3.5–3.6 used by the above theorem can be satisfied

if, for example, the step-size sequence {αn} is {1/n}n≥1 and the behavior policy

b visits all states an infinite number of times.

The proof of the theorem will be presented at the end of this section.

If Differential TD-learning is applied to a simulated experience generated

from a model of the world, then it becomes a planning algorithm, which we

call Differential TD-planning. Formally, the model is a function p̃ : S × A →
∆(S × R), analogous to p, that, like p, sums to 1:

∑
s′,r p̃(s

′, r | s, a) = 1 for

all s, a. A model MDP can be thus constructed using p̃ and S,A,R, d0. If a

policy π is unichain in the model MDP, then there is a unique reward rate and

a unique solution of v in (3.2) and (3.22). Given the model MDP and a target

policy π, let r̃(π) and ṽ∞ be defined in the same way as r(π) and v∞, except

for p̃ rather than p.

The simulated transitions are generated as follows: at each planning step

n, the agent arbitrarily chooses a state S̃n and action Ãn and applies p̃ to

generate a simulated resulting state and reward S̃ ′
n, R̃n ∼ p̃(·, · | Sn, An).

Like Differential TD-learning, Differential TD-planning maintains a table of

value estimates Vn : S → R and a reward-rate estimate R̄n. At each planning

step n, these estimates are updated by (3.19)–(3.21), just as in Differential

TD-learning, except now using S̃n, Ãn, R̃n, S̃
′
n instead of St, At, Rt+1, St+1.

Theorem 3.4. Under the same assumptions made in Theorem 3.3 (except

now for the model MDP corresponding to p̃ rather than p) the Differential

TD-planning algorithm converges, almost surely, R̄n to r̃(π) and Vn to ṽ∞.

The proof of Theorem 3.4 is similar to that of Theorem 3.3 and is omitted.

The rest of this section proves Theorem 3.3.

We first transform the Differential TD-learning’s update rules (3.19)–(3.21)

43

into an equivalent update rule.

R̄t − R̄0 = η

t−1∑
i=0

∑
s

ανi(s)ρiδi

= η
(∑

Vt −
∑

V0

)
=⇒

R̄t = η
∑

Vt − η
∑

V0 + R̄0 = f(Vt)

where f : R|S| → R satisfying ∀v ∈ R|S|, f(v)
.
= η

∑
v − η

∑
V0 + R̄0.

(3.23)

Substituting R̄t in (3.19) with (3.22) we have, ∀s ∈ S:

Vt+1(St) = Vt(St) + ανt(s)ρt(Rt+1 − f(Vt) + Vt(St+1)− Vt(St)). (3.24)

We first show that (3.24) is a special case of the General RVI Q’s update

(3.9). To see this point, we hypothesize three |S|-sized random processes

{A′
t}, {S ′

t}, {R′
t} such that for any t, s, a, A′

t(s) ∼ b(· | s), S ′
t(s), R

′
t(s) ∼ p(·, · |

s, A′
t(s)). Now consider the stream of experience . . . , St, At, Rt+1, St+1,

Then we have At = A′
t(St), Rt+1 = R′

t(St, At) and St+1 = S ′
t(St, At). Equation

3.9 reduces to (3.24) by choosing i = s, n = t, Qn = Vt, Yn = {St},

r(i) = rπ(s),

g(v)(i) =
∑
a

π(a | s)
∑
s′

p(s′ | s, a)v(s′),

Mt+1(i) = ρt(s) (R
′
t(s)− f(Vt) + Vt(S

′
t(s))− Vt(s))

− (rπ(s)− f(Vt) + g(Vt)(s)− Vt(s)) ,

ϵt+1 = 0,

where ρt(s)
.
= π(A′

t(s) | s)/b(A′
t(s) | s).

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for the choice of g(v) easily.

2. Assumption 3.2 is satisfied. Note that (3.8) becomes (3.2) given our

definition of r and g. Because the π is assumed to be unichain, r# = r(π)

44

is the only solution of r̄ in (3.2). In addition, (3.2) has an infinite number

of solutions of q by the discussion right after (3.2).

3. Assumptions 3.3 holds for f defined in (3.23).

4. Assumption 3.4 is satisfied. Note that r(i) = rπ(s) = f(0) implies that

r# = r(π) = f(0). One can thus verify that 0 is a solution of q in (3.8)

and (3.10), which reduce to (3.2) and (3.22) in the current setting. In

addition, (3.2) and (3.22) have a unique solution of v (see the discussion

right below (3.22)), implying that 0 is the unique solution.

5. Assumptions 3.5–3.6 are assumed in the theorem statement.

6. Assumption 3.7 can be verified by noting that state and reward spaces

are finite, ρt is bounded by Assumption 3.9, and that ϵt+1 = 0.

Therefore all the conditions of Theorem 3.1 have been verified and we have

f(Qn) = R̄t → r#, which is r(π) in the current setting, and Qn = Vt converges

to Q#, which is {v∞} in the current setting.

Figure 3.1: A continuing variant of the four-room domain.

45

3.4 Prediction Experiments

This section presents a set of experiments testing Differential TD-learning

in a variant of Sutton, Precup, and Singh’s (1999) four-room domain (shown

in Figure 3.1). In this domain, the agent starts from the state indicated by

the yellow cell. The rewarding state is indicated by the green cell. There are

four primitive actions of moving up, down, left, right. If the agent takes any

action in the rewarding state, it receives a +1 reward and moves to the start

state. All other rewards are 0. The shortest path to the rewarding state from

the start state takes 16 time steps, and there is an extra step moving from the

rewarding state to the start state, hence the best possible reward rate for this

task is 1/17 ≈ 0.0588.

The target policy π was a greedy policy w.r.t. a solution of q in (3.7).

Therefore the target policy is optimal. Note that in this four-room domain,

all optimal policies are unichain. Therefore solutions of v in (3.2), under any

greedy policy, are only different by some additive constant. In this case, Dif-

ferential TD-learning guarantees convergence to the differential value function

up to some additive constant (Theorem 3.3). The behavior policy was an ϵ-

greedy policy—it follows the target policy with probability 1− ϵ and chooses

a random action with probability ϵ. Here ϵ was chosen to be 0.1.

To evaluate the estimated differential value function of Differential TD-

learning at time step t, Vt, it is natural to consider the absolute difference

between the estimated relative value and the true relative value as a measure

of the quality of Vt. This absolute difference is termed relative value error.

Formally, the relative value error at time step t is defined as follows,

Relative Value Errort
.
= |(Vt(St)− Vt(s0))− (vπ(St)− vπ(s0))|,

where s0 was chosen to be the start state. The error of the estimated reward

rate, or the reward rate error, measures the distance between R̄t and the true

reward rate r(π):

Reward Rate Errort
.
= |R̄t − r(π)|.

46

The step-size sequence αt was chosen to be a constant sequence for sim-

plicity. I tested five choices of αt : 2
−x, x ∈ {1, 3, 5, 7, 9} and tested five choices

of η : 10−x, x ∈ {0, 1, 2, 3, 4}. V0 and R̄0 were set to 0. Each experiment tested

one parameter setting and was repeated for 30 times, each of which consists

of 500, 000 steps. I recorded the reward rate error and relative value error

for each step. Each point in Figure 3.2a or Figure 3.2b denotes one of the

two errors, averaged over the last 2000 steps. The shaded region indicates

one standard error. The parameter setting was chosen to be the one that re-

sulted in the lowest reward rate error (relative value error) averaged over the

last 10, 000 steps. Therefore the reported learning curves show the asymptotic

performance of the algorithm rather than its speed of learning.

The parameter studies for the reward rate error and relative value error

are shown in Figure 3.2c and Figure 3.2d, respectively. Each point in a curve

in Figure 3.2c (Figure 3.2d) denotes the average of 500, 000 reward rate errors

(relative value errors). The error bars denote one standard error (not visible

because the error is too low).

The learning curves show that, asymptotically, the agent achieved a small

reward rate and relative value errors. Parameter studies show that the average

reward rate and relative value errors are almost zero when both αt and η were

chosen to be large, suggesting that learning is quite fast for these choices of αt

and η. In addition, error bars are not visible, suggesting that the variance of

learning is quite low.

To conclude, our prediction experiments with the continuing four-room

domain show that Differential TD-learning indeed learns the reward rate and

the differential value function up to some additive constant, in accordance with

Theorem 3.3. In addition, the algorithm learned fast and suffered from a low

variance in this experiment, for large αn and η.

3.5 Control Algorithms

This section presents the new control learning and planning algorithms.

Both two algorithms are designed to produce an optimal policy. This section

47

250000 500000
Total Steps

0.000

0.002

0.004

0.006

0.008

0.010

Reward
Rate
Error

Differential TD-learning

(a) A learning curve of the reward rate
error.

250000 500000
Total Steps

0.000

0.002

0.004

0.006

0.008

0.010

Relative
Value
Error

Differential TD-learning

(b) A learning curve of the relative value
error.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(c) Parameter sensitivity curves of the
reward rate error. Larger η and α gener-
ally perform better in the tested domain,
potentially due to the deterministicity of
the tested domain.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error η = 100

η = 10−1

η = 10−2

η = 10−3 η = 10−4

(d) Parameter sensitivity curves of the
relative value error. Similar to parame-
ter sensitivity curves of the reward rate
error, larger η and α generally perform
better in the tested domain.

Figure 3.2: Plots showing learning curves and parameter sensitivity curves for
Differential TD-learning in the continuing four-room domain.

also presents the convergence results of the two algorithms. In addition, the

technical tools used to obtain the convergence results also lead to an improved

convergence result for RVI Q-learning (Abounadi, Bertsekas, and Borkar 2001).

The control learning algorithm, Differential Q-learning, updates a table of

estimates Qt : S ×A → R as follows:

Qt+1(St, At)
.
= Qt(St, At) + ανt(s,a)δt, (3.25)

Qt+1(s, a)
.
= Qt(s, a), ∀s, a ̸= St, At,

where {αn}n≥1 is a step–size sequence satisfying Assumption 3.5, νt(s, a) is the

number of times state-action pair (s, a) was updated up to and include time

48

step t, {αn}n≥1 and νt(s, a) jointly satisfy Assumption 3.6 (with I = S × A)
and δt, the temporal-difference (TD) error at time step t, is:

δt
.
= Rt+1 − R̄t +max

a
Qt(St+1, a)−Qt(St, At), (3.26)

where R̄t is a scalar estimate of r∗, updated by:

R̄t+1
.
= R̄t + ηανt(s,a)δt, (3.27)

and η is a positive constant.

Remark: The idea of updating the reward rate estimate using the TD

error has been used in the R-learning algorithm by Schwartz (1993) and a

variant of R-learning by Singh (1994). R-learning and Singh’s (1994) variant

share the same update rules with Differential Q-learning. However, in R-

learning, (3.27) is only performed when At is greedy (At ∈ argmaxQ(St, ·)).
This could potentially be inefficient if the greedy action is rarely chosen, which

would happen if the behavior policy is not close to an optimal policy (e.g., a

random policy). Singh’s (1994) variant addressed this issue by performing

(3.27) for every time step, just like our Differential Q-learning. His algorithm

grounds the value of a fixed state-action pair to zero, while our algorithm does

not. Singh (1994) argued that a potential disadvantage of not grounding the

value is that action values can be too large. This does not seem to be a problem

for our Differential Q-learning, because the set that action-value estimates

converge to is bounded by a result shown later (Theorem 3.5). Finally, neither

R-learning nor Singh’s variant has been shown to be convergent.

We now transform the Differential Q-learning’s update rules (3.25)—(3.27)

into an equivalent update rule, from which it is easier to present further results.

At each step, the increment to R̄t is η times the increment to Qt and
∑

Qt.

Therefore, the cumulative increment can be written

R̄t − R̄0 = η

t−1∑
i=0

ανi(Si,Ai)δi = η
(∑

Qt −
∑

Q0

)
=⇒ R̄t = η

∑
Qt − η

∑
Q0 + R̄0 = f(Qt),

where f : R|S|×|A| → R satisfying

f(q)
.
= η

∑
q − η

∑
Q0 + R̄0,∀q ∈ R|S|×|A|. (3.28)

49

Algorithm 2: Differential Q-learning

Input: The behavior policy b
Algorithm parameters: step-size sequence αn, parameter η

1 Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g., to zero)
2 ν(s, a)← 0 ∀s, a
3 Obtain initial S
4 while still time to train do
5 ν(S,A)← ν(S,A) + 1
6 A← action given by b for S
7 Take action A, observe R, S ′

8 δ ← R− R̄ +maxa Q(S ′, a)−Q(S,A)
9 Q(S,A)← Q(S,A) + αν(S,A)δ

10 R̄← R̄ + ηαν(S,A)δ
11 S ← S ′

12 end
13 return Q

Now substituting R̄t in (3.25) with f(Qt), we have ∀s ∈ S, a ∈ A:

Qt+1(St, At) = Qt(St, At)

+ ανt(St,At)

(
Rt+1 − f(Qt) + max

a′
Qt(St+1, a

′)−Qt(St, At)
)

Qt+1(s, a) = Qt(s, a), ∀s, a ̸= St, At. (3.29)

The above update rule is in the same form as it of RVI Q-learning by Abounadi,

Bertsekas, and Borkar (2001). In RVI Q-learning, this f function is called

the reference function. However, the f function defined in (3.28) violates

an assumption required by RVI Q-learning. This assumption consists of three

parts: 1) f is L-Lipschitz for some L ∈ R, 2) f(1) = 1 and f(x+c1) = f(x)+c

and, 3) f(cx) = cf(x).

We now show the convergence of (3.29) to a set under Assumption 3.3,

which subsumes the above assumption and the case defined in (3.28) as special

cases. This result, therefore, immediately implies the convergence of Differen-

tial Q-learning and RVI Q-learning.

The set that (3.29) will be shown to converge to is the set of solutions of

50

(3.7) and

f(q) = r∗. (3.30)

Denote this set as Q∞. The properties of the set are stated formally in the

following theorem.

Theorem 3.5. If the MDP is weakly communicating and Assumption 3.3

holds, Q∞ is non-empty, compact, connected, and possibly non-convex.

This theorem is built upon a result by Schweitzer and Federgruen (1978),

who showed that the set of solutions of q in (3.7) is non-empty, closed, un-

bounded, connected, and possibly non-convex.

The proof of this theorem will not be presented. However, I will prove in the

next chapter a more general theorem that subsumes this theorem as a special

case. The presentation and the proof of this general theorem must wait until

the next chapter because it involves Semi-Markov Decision Processes, which

generalize MDPs and will be required in the next chapter, but not in the

current one.

The next theorem establishes the convergence of (3.29).

Theorem 3.6. If the MDP is weakly communicating, Assumptions 3.3, 3.5,

3.6 (with I = S × A) hold, then (3.29) converges, almost surely, 1) f(Qt) to

r∗, 2) Qt to a sample-path dependent compact connected subset of Q∞, and 3)

almost surely, πt ∈ ΠD
∗ for sufficiently large t.

The proof of the theorem will be presented at the end of this section.

Remark: Assumptions 3.5–3.6 used by the above theorem are also used in

the convergence theorem of Differential TD-learning (Theorem 3.3). Here, for

Differential Q-learning and RVI Q-learning, these assumptions can be satisfied

if, for example, the step-size sequence {αn} is {1/n}n≥1 and the behavior policy

b eventually visits all state-action pairs an infinite number of times. Note that

if the MDP has transient states, these states can not be visited for an infinite

number of times no matter what policy the agent follows. Therefore action

values associated with these states can not be estimated accurately by any

51

learning algorithm that uses only a single stream of experience. Nevertheless,

Qt still converges to a sample-path dependent compact connected set (but not

necessarily a subset of Q∞), and, because actions chosen in transient states

do not influence the reward rate of a policy, the other two conclusions of the

theorem still hold.

Algorithm 3: RVI Q-learning (Abounadi et al. 2001)

Input: The policy b to be used (e.g., ϵ-greedy), a reference function
f : R|S|×|A| → R

Algorithm parameters: step-size sequence αn, parameter η
1 Initialize Q(s, a), ∀s, a arbitrarily (e.g., to zero)
2 ν(s, a)← 0 ∀s, a
3 Obtain initial S
4 while still time to train do
5 ν(S,A)← ν(S,A) + 1
6 A← action given by b for S
7 Take action A, observe R, S ′

8 δ ← R− f(Q) + maxaQ(S ′, a)−Q(S,A)
9 Q(S,A)← Q(S,A) + αν(S,A)δ

10 S ← S ′

11 end
12 return Q

The planning version of Differential Q-learning, calledDifferential Q-planning,

uses simulated transitions generated just as in Differential TD-planning. Dif-

ferential Q-planning maintains a table of value estimate Qn : S × A → R

and a reward rate estimate R̄n and updates them just as in Differential Q-

learning (3.25)–(3.27) (or equivalently, (3.29)) using S̃n, Ãn, R̃n, S̃
′
n instead of

St, At, Rt+1, St+1.

Just like Differential Q-planning, the planning version of RVI Q-learning

operates following (3.29) using simulated transitions.

The next theorem shows the convergence of (3.29). Let r̃∗, Q̃∞, and Π̃D
∗

be defined in the same way as r∗, Q∞, and ΠD
∗ , except now for p̃ rather than

p.

Theorem 3.7. If the model MDP is weakly communicating and Assumptions

3.3, 3.5, 3.6 hold (with I = S×A), then (3.29) (using S̃n, Ãn, R̃n, S̃
′
n instead of

52

St, At, Rt+1, St+1) converges, almost surely, 1) f(Qn) to r̃∗, 2) Qn to a sample-

path dependent compact connected subset of Q̃∞, and 3) almost surely, πn ∈ Π̃D
∗

for a sufficiently large n.

The proof of the theorem is omitted as it is essentially the same as the

proof of Theorem 3.6.

As promised earlier, the rest of this section provides the proof Theorem 3.6.

We first show that (3.29) is a special case of the General RVI Q’s up-

date (3.9). To see this point, we hypothesize two |S × A|-sized random pro-

cesses {S ′
t}, {R′

t} such that for any t, s, a, S ′
t(s, a), R

′
t(s, a) ∼ p(·, · | s, a). Now

consider the stream of experience . . . , St, At, Rt+1, St+1, Then we have

Rt+1 = R′
t(St, At) and St+1 = S ′

t(St, At). Equation 3.9 reduces to (3.29) by

choosing i = (s, a), n = t, Yn = {(St, At)}, r(i) = r(s, a), g(Qn)(i) =
∑

s′ p(s
′ |

s, a)maxa′ Qt(s
′, a′), Mn+1(i) = R′

t(s, a) − r(s, a) + maxa′ Qt(S
′
t(s, a), a

′) −
g(Qt)(s, a), ϵn+1 = 0.

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for g(q)(s, a) =
∑

s′ p(s
′ | s, a)maxa′ q(s

′, a′)

easily.

2. Assumption 3.2 is satisfied. Note that (3.8) becomes (3.7) given our

definition of r and g. Because the MDP M is weakly communicating,

r# = r∗ is the only solution of r̄ in (3.7). Furthermore, there exists a

solution of q in (3.7) by the discussion right after (3.7).

3. Assumptions 3.3–3.6 are assumed in the theorem statement.

4. Assumption 3.4 is satisfied by noting that the MDP is weakly commu-

nicating and applying Corollary 4.1, which will be presented and proved

in the next chapter.

5. Assumption 3.7 can be verified by noting that state and reward spaces

are finite and that ϵn+1 = 0.

53

Therefore all the conditions of Theorem 3.1 have been verified and we have

a.s., Qt converges toQ# and f(Qt) = R̄t converges to r#, which areQ∞ and r∗,

respectively, in the current setting. The rest of the proof follows Lemma 4.3,

which will be presented and proved in the next chapter.

3.6 Control Experiments

This section presents two sets of experiments testing Differential Q-learning.

The first set of experiments tests Differential Q-learning in the four-room

domain (shown in Figure 3.1) with RVI Q-learning and Gosavi’s (2004) algo-

rithm as two baselines.

Gosavi’s (2004) algorithm estimates the reward rate R̄t by tracking a

weighted average of observed rewards when greedy actions are taken. If the

action executed is a greedy choice at time step t, then R̄t+1 is updated:

R̄t+1
.
= R̄t + βt(R̂t − R̄t),

where {βt} is a step-size sequence. Otherwise R̄t+1 = R̄t. The action-value

function is updated with (3.25) with δt as defined in (3.27). The pseudocode

of his algorithm can be found in Algorithm 4 for readers’ convenience.

Remark: The convergence result of Gosavi’s proposed algorithm is sum-

marized in his Theorem 2. In the proof of the theorem, he used Borkar’s (1997)

two-time scale stochastic approximation result to prove the convergence of the

proposed algorithm. Specifically, he argued that his algorithm is a special case

of the general class of algorithms considered by Borkar (1997). As Gosavi

quotes, “Note that the Eqs. (48) and (49) for SMDPs form a special case of

the general class of algorithms (29) and (30) analyzed using the lemma given in

Section 5.1.1.” However, a closer look at these equations shows that equation

(49) is not a special case of equation (30). Note that because ρk is a scalar, yk

only has one element, and thus the f function in equation (30) does not vary

across different state-action pairs. However, this is not true for the f function

in equation (49). It appears to me that there is no straightforward way to fix

this issue.

54

Algorithm 4: Gosavi’s (2004) Algorithm for MDPs

Input: Behavioral policy b
Algorithm parameters: step-size sequences αn, βn

1 Initialize Q(s, a), ∀ s ∈ S, o ∈ A, R̄ arbitrarily (e.g., to zero)
2 ν(s, a)← 0 ∀s, a
3 N ← 0
4 Obtain initial S
5 while still time to train do
6 A← action given by b for S
7 ν(S,A)← ν(S,A) + 1
8 Take action A, observe R, S ′

9 δ ← R− R̄ +maxa Q(S ′, a)−Q(S,A)
10 Q(S,A)← Q(S,A) + αν(S,A)δ
11 if A ∈ argmaxQ(S, ·) then
12 R̄← R̄ + βN(R− R̄)
13 end
14 S ← S ′

15 N ← N + 1

16 end
17 return Q

For all three tested algorithms, the agent used an ϵ-greedy policy with

ϵ = 0.1. For Differential Q-learning, the tested choices of parameters αn and

η were the same as those used for Differential TD-learning in the prediction

experiments (Section 3.4). For RVI Q-learning, the tested choices of the step-

size sequence αt were the same as those for Differential Q-learning. Tested

reference functions include the values of 26 particular state-action pairs, the

max of all action values, the min of all action values, the mean of all action val-

ues, and the max of action values per state averaged over states. For Gosavi’s

algorithm, the choices of both two step sizes were the same as the choices of

αt for Differential Q-learning.

For control algorithms, it is natural to consider the reward rate achieved

by the learned policy. To estimate the reward rate, for every 2000 steps,

I evaluated the reward rate achieved by the learned policy, which was just

a greedy policy w.r.t. the action-value estimates, by following the policy for

2000 evaluation steps and computing the average reward over these evaluation

steps. No updates to parameters were performed during evaluations.

55

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Differential Q-learning

RVI Q-learning

Gosavi’s Algorithm

(a) Learning curves for the three algo-
rithms. It can be seen that all three al-
gorithms can achieve an optimal reward
rate eventually in the tested domain.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate η = 100

η = 10−1
η = 10−2

η = 10−3η = 10−4

(b) Reward rate for Differential Q-
learning. The algorithm is sensitive to
the first step size and is relatively less
sensitive to its second step size η. More-
over, intermediate values of η perform
the best.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

mean

max

min

(c) The reward rate achieved by RVI Q-
learning is sensitive to its choice of the
reference state-action pairs/reference
functions. For small step sizes, some
choices of the reference state-action
pairs can achieve a high reward rate
quickly.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

β = 100
β = 10−1

β = 10−2β = 10−3

β = 10−4

(d) The reward rate of Gosavi’s algo-
rithm is sensitive to both of the two step
sizes. In order to achieve a high reward
rate quickly in the tested domain, the
first step size should be large while the
second step size should be small.

Figure 3.3: Plots showing reward rate achieved by policies learned by Differ-
ential Q-learning, RVI Q-learning, and Gosavi’s algorithm.

Learning curves of the reward rate during evaluations of three tested al-

gorithms are shown in Figure 3.3a. For each algorithm, each point in the

algorithm’s curve denotes the reward rate obtained in an evaluation. The

shading region denotes one standard error. For each curve, the corresponding

parameter setting is the one that resulted in the highest reward rate averaged

over the last five evaluations, which happened in the last 10, 000 steps. The

56

parameter studies for the three tested algorithms in terms of the reward rate

achieved by their learned policies are shown in the other three subfigures in

Figure 3.3. Each point in a curve in these three subfigures denotes the reward

rate averaged over all 500, 000/2000 = 250 evaluations.

Just as I did for prediction experiments, for control experiments, I also

used the relative value and reward rate errors. Given an estimated differential

action-value function Q, the relative value error at time t is defined as follows,

Relative Value Errort
.
= |(Qt(St, At)−Qt(s0, a0))− (q∗(St, At)− q∗(s0, a0))|,

where (s0, a0) is a fixed state-action pair. I chose s0 to be the state indicated

by the yellow cell and chose a0 to be the action up in this experiment. In

the relative value error, q∗ is any solution of (3.7). Note that this four-room

domain is a bit special. The MDP is communicating, but all solutions of q in

(3.7) are only different by a constant vector, just as in unichain MDPs. Thus

choosing any q∗ would be no different.

For the reward rate estimate R̄t,

Reward Rate Errort
.
= |R̄t − r∗|.

Learning curves of the relative value and reward rate errors of the three tested

algorithms are shown in Figure 3.4a and Figure 3.5a. Each point in a curve de-

notes the error averaged over the past 2000 steps. The shading region denotes

one standard error. The reported parameter settings were chosen in the same

way as in the prediction experiments. The parameter studies for the reward

rate error and relative value error are shown in the corresponding subfigures

in Figure 3.4 and Figure 3.5, respectively.

The reward rate learning curves (Figure 3.3a) show that, asymptotically,

the learned policies by each of the three tested algorithms achieved the op-

timal reward rate. Parameter studies in terms of the achieved reward rate

(Figure 3.3b–3.3d) show that in the tested problem 1) Differential Q-learning

learned faster when αn was large and η was some intermediate value, 2) the

learning rate of Differential Q-learning varies less significantly across its sec-

ond parameter than Gosavi’s algorithm, 3) the learning rate of RVI Q-learning

varies across different choices of the reference function significantly.

57

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Differential Q-learning

RVI Q-learning

Gosavi’s Algorithm

(a) Learning curves for the three algo-
rithms. It can be seen that Differential
Q-learning and RVI Q-learning achieved
a zero reward rate error eventually in the
tested domain while Gosavi’s algorithm
failed to do so.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(b) Reward rate error for Differential Q-
learning. Intermediate values of η per-
form the best.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

mean max

min

(c) For RVI Q-learning, the reward rate
error is high for most of the tested
choices of reference functions.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

β = 100

β = 10−1β = 10−2

β = 10−3

β = 10−4

(d) The relative value error of Gosavi’s
algorithm. The algorithm’s reward rate
error is again, sensitive to the choice of
the two step sizes and the algorithm’s
best step sizes still can not achieve a
near-zero reward rate error while both
of the other two algorithms with their
best parameter settings can.

Figure 3.4: Plots showing reward rate error for Differential Q-learning, RVI
Q-learning, and Gosavi’s algorithm.

The reward rate error learning curves (Figure 3.4a) show that, asymptoti-

cally, the reward rate estimate in Differential Q-learning and the output of the

f function both approached the optimal reward rate r∗ asymptotically. On

the contrary, the reward rate estimate of Gosavi’s algorithm failed to converge

to r∗. Note that the parameter setting minimizes the error at the end of train-

58

250000 500000
Total Steps

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Differential Q-learning
RVI Q-learning

Gosavi’s Algorithm

(a) Learning curves for the three al-
gorithms. It can be seen that Differ-
ential Q-learning and RVI Q-learning
can achieve a zero relative value error
eventually in the tested domain while
Gosavi’s algorithm fails to do so.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

η = 10−4

(b) Relative value error for Differential
Q-learning. Again, intermediate values
of η perform the best.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

mean

max

(c) The relative value error is high for
most of the tested choices of reference
functions.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

β = 100

β = 10−1

β = 10−2β = 10−3

β = 10−4

(d) The relative value error of Gosavi’s
algorithm is generally higher compared
with the two other algorithms.

Figure 3.5: Plots showing relative value error for Differential Q-learning, RVI
Q-learning, and Gosavi’s algorithm.

ing. Thus other parameter settings resulted in even higher asymptotic errors.

Parameter studies in terms of the reward rate error (Figure 3.4b–3.4d) show

that the learning rate of Differential Q-learning was less sensitive to its choice

of the parameters than RVI Q-learning and Gosavi’s algorithm.

The above observations for the reward rate error carry over to the relative

value error learning curves and parameter studies (Figure 3.5).

To conclude, the first set of control experiments suggests several points.

First, the learned policy of Differential Q-learning achieved the optimal re-

59

ward rate, and the estimated action values and the estimated reward rate

indeed converged to desired points, in accordance with Theorem 3.6. Second,

Differential Q-learning was less sensitive to its second parameter η compared

with the two baseline algorithms w.r.t. their second parameters (reference func-

tion for RVI Q-learning and βn for Gosavi’s algorithm). Third, for Gosavi’s

algorithm, the estimated action values and the estimated reward rate failed

to converge to the desired points, which empirically validates my arguments

about the incorrectness of his convergence proof at the beginning of this sec-

tion.

In the first set of experiments, the MDP (four-room domain) is communi-

cating but is somewhat special. It has a unique solution of q up to an additive

constant in the optimality equation (3.7). Thus the solutions of Differential

Q-learning and RVI Q-learning are unique.

1 2 11
0

0

(a) A communicating MDP. States 1 and
2 are in the same communicating class.
For each of the two states, taking action
solid stays at the same state and re-
ceives a reward of one, and taking action
dashed moves to the other state and re-
ceives a reward of zero. The initial state
of the MDP is state 1.

1 2 11
0

0

0
p = 0.9,r = − 5 p = 0.9,r = − 5

p = 0.1,r = − 5 p = 0.1,r = − 5

(b) A weakly communicating MDP con-
structed by adding one more state (State
0) to the MDP shown on the left panel.
State 0 is transient. In this state, taking
both solid and dashed actions stays at
the transient state with probability 0.9.
The MDP moves to state 1 with proba-
bility 0.1 given action solid and moves
to state 2 with probability 0.1 given ac-
tion dashed. The reward starting from
state 0 is always −5. The initial state of
the MDP is state 0.

Figure 3.6: Tested MDPs for verifying the convergence of Differential Q-
learning and RVI Q-learning when the solution set has more than one degree
of freedom.

My second set of experiments was to empirically verify the convergence

60

results of Differential Q-learning and RVI Q-learning (Theorem 3.6) when the

solution set of q in (3.7) has more than one degree of freedom.

For this second set of experiments, the experiment setting was chosen to

satisfy assumptions required by Theorem 3.6. Notably, I chose the step-size se-

quence αn = 1/n instead of a constant step-size sequence. While the constant

step size sequence is commonly used in practical algorithms, it is not allowed by

the step-size assumption required by Theorem 3.6. The 1/n step size sequence

is, however, allowed given that the behavior policy is also randomized (see

Example 3.1). The test domains were two weakly communicating MDPs. The

first MDP (shown in Figure 3.6a) is not only a weakly communicating MDP

but also a communicating MDP, because it does not have transient states. The

second MDP is the first communicating MDP plus a transient state. I chose

the behavior policy to be a randomized one, which chooses action solid with

probability 0.8 and action dashed with probability 0.2 for all states so that

the required assumptions Assumption 3.5 and Assumption 3.6 are satisfied.

Therefore all assumptions required by Theorem 3.6 are satisfied.

Experiment settings that are unrelated to the required assumptions of The-

orem 3.6 were chosen as follows. I tested Differential Q-learning with initial

action values 0, initial reward rate estimate −3, and η = 1, and tested RVI

Q-learning with action values initialized to 0 and f(q) = q(1, dashed). I per-

formed 10 runs for each algorithm. Each run started from state 1 and lasted

for 1000 steps. For every 10 steps, I recorded the estimated action values.

Figure 3.7a and Figure 3.7b show, in the first MDP, the dynamics of

the higher action value at each state for Differential Q-learning and RVI Q-

learning, respectively. It can be seen that for both algorithms, 1) for each

run, the estimated action-value function converged to a point in the solution

set (the black line segments), and 2) for different runs, the estimated action

values generally converged to different points in the solution set.

The dynamics of the estimated action values of Differential Q-learning and

RVI Q-learning in the second MDP are shown in Figure 3.7c and Figure 3.7d,

respectively. This time, the solution set of Differential Q-learning depends

on the action values associated with the transient states when entering the

61

−2 0 2 4 6
max Q(1,)

−2

0

2

4

6

max Q(2,)

(a) Differential Q-learning in the com-
municating MDP (Figure 3.6a).

−2 0 2 4 6
max Q(1,)

−2

0

2

4

6

max Q(2,)

(b) RVI Q-learning in the communicat-
ing MDP (Figure 3.6a).

−2 0 2 4 6
max Q(1,)

−2

0

2

4

6

max Q(2,)

(c) Differential Q-learning in the weakly
communicating MDP (Figure 3.6b).
Note that, I didn’t draw a black line seg-
ment in this plot, because the set the al-
gorithm converges to varies across differ-
ent trajectories. Specifically, it depends
on the estimated action values of tran-
sient states when the agent first enters
the communicating class.

−2 0 2 4 6
max Q(1,)

−2

0

2

4

6

max Q(2,)

(d) RVI Q-learning in the weakly com-
municating MDP (Figure 3.6b).

Figure 3.7: Dynamics of the estimated values produced by Differential Q-
learning and RVI Q-learning in the two MDPs shown in Figure 3.6. The
black line segment in each plot marks the set of points that the corresponding
algorithm should converge to. The green regions denote the solution set of the
action-value optimality equation (3.7).

communicating class. Nevertheless, the estimated action-value function in all

runs converged to the region within the green region, which corresponds to the

solution set of the optimality equation. On the other hand, the solution set of

RVI Q-learning with the choice of the reference function f(q) = q(1, dashed)

62

does not depend on the action values associated with states in the communi-

cating class when entering the class. Therefore the solution set did not vary

across different runs.

In conclusion, the second set of experiments empirically verified Theo-

rem 3.6 for communicating and weakly communicating MDPs.

3.7 Centered Algorithms

This section introduces algorithms that can obtain the differential value

function. Recall that all average-reward algorithms, including the ones pre-

sented here, converge to an uncentered differential value function, in other

words, the actual differential value function plus some unknown offset that

depends on the algorithm itself and design choices such as initial values or

reference states. This section introduces a simple technique to compute the

offset in the value estimates for both on- and off-policy learning and sample-

based planning. Once the offset is computed, it can simply be subtracted from

the value estimates to obtain the estimate of the actual (centered) differential

value function.

First, we show how the offset can be eliminated for Differential TD-learning.

For this purpose, I introduce, in addition to the first estimator (3.19)–(3.21),

a second estimator for which the rewards are the value estimates of the first

estimator. The second estimator maintains an estimate of the scalar offset V̄t,

an auxiliary table of estimates Wt(s),∀s ∈ S, and uses the following update

rules:

Wt+1(St)
.
= Wt(St) + βνt(St)ρt∆t, (3.31)

Wt+1(s)
.
= Wt(s), ∀s ̸= St,

where {βn} is a step-size sequence, ∆t is the TD error of the second estimator

at time steps t:

∆t
.
= Vt(St)− V̄t +Wt(St+1)−Wt(St), (3.32)

and

V̄t+1
.
= V̄t + κβνt(St)ρt∆t, (3.33)

63

and κ is a positive constant. We call (3.19)–(3.21) plus (3.31)–(3.33) Centered

Differential TD-learning. See Algorithm 5 for the pseudo-code of Centered

Differential TD-learning.

Before presenting the convergence theorem, I briefly give the intuition on

why this technique can successfully compute the offset. By Theorem 3.3, R̄t

converges to r(π) and Vt converges to some v∞ almost surely, where v∞(s) =

vπ(s) + c,∀s ∈ S for some offset c ∈ R. Lemma 3.8 (to be presented shortly)

shows that
∑

s dπ(s)vπ(s) = 0, where dπ is the unique limiting state distri-

bution following policy π (the uniqueness follows the unichain assumption),

which implies
∑

s dπ(s)v∞(s) = c. As Vt converges to v∞,
∑

s dπ(s)Vt(s) con-

verges to c. Now note that
∑

s dπ(s)Vt(s) and r(π) =
∑

s dπ(s)rπ(s) are of the

same form. Therefore the estimation of
∑

s dπ(s)Vt(s) can be similar to it of

r(π), using Vt as the reward. This leads to the second estimator: (3.31)–(3.33).

The next theorem shows that Centered Differential TD-learning converges.

Algorithm 5: Centered Differential TD-learning

Input: The policy π to be evaluated, and b to be used
Algorithm parameters: step-size sequences αn, βn, parameters η, κ

1 Initialize V (s),W (s), ∀s, R̄, V̄ arbitrarily (e.g., to zero)
2 ν(s)← 0, ∀s
3 Obtain initial S
4 while still time to train do
5 ν(S)← ν(S) + 1
6 A← action given by b for S
7 Take action A, observe R, S ′

8 δ ← R− R̄ + V (S ′)− V (S)
9 ρ← π(A | S) / b(A | S)

10 V (S)← V (S) + αν(S)ρδ
11 R̄← R̄ + ηαν(S)ρδ
12 ∆← V (S)− V̄ +W (S ′)−W (S)
13 W (S)← W (S) + βν(S)∆
14 V̄ ← V̄ + κβν(S)∆
15 S ← S ′

16 end
17 return V − V̄ 1.

Theorem 3.8. If the target policy π is unichain, Assumptions 3.5, 3.6 hold

for both αn and βn (with I = S), and Assumption 3.9 holds, then Centered

64

Differential TD-learning converges, almost surely, Vt(s)− V̄t to vπ(s) for all s.

The proof of the theorem will be presented at the end of this section.

The planning version of Centered Differential TD-learning is called Cen-

tered Differential TD-planning. Centered Differential TD-planning estimates,

in the model MDP, the differential value function ṽπ of the target policy π.

It uses simulated experience . . . , S̃n, Ãn, R̃n, S̃
′
n, . . . just as in Differential TD-

planning. In addition, just like Differential TD-planning, Centered Differential

TD-planning maintains Vn and R̄n. Centered Differential TD-planning also

maintains an auxiliary table of estimates Wn(s, a),∀s ∈ S, a ∈ A and an offset

estimate V̄n, and updates them just as in Centered Differential TD-learning,

using S̃n, Ãn, R̃n, S̃
′
n instead of St, At, Rt+1, St+1.

Theorem 3.9. Under the same assumptions made in Theorem 3.8 (except now

for the model MDP corresponding to p̃ rather than p̂), Centered Differential

TD-planning converges, almost surely, Vn(s)− V̄n to ṽπ(s) for all s.

The proof of the theorem is very similar to it of Theorem 3.8 and is therefore

omitted.

Applying the centering technique to the Differential Q-learning algorithm

results in Centered Differential Q-learning. This centered algorithm maintains,

in addition to the first estimator (Equations 3.25–3.27), a second estimator in

which the reward is the value estimate of the first estimator. The second

estimator maintains a scalar offset estimate Q̄t, an auxiliary table of estimates

Wt(s, a), ∀s ∈ S, a ∈ A, and uses the following update rules:

Wt+1(St, At)
.
= Wt(St, At) + βνt(St,At)ρt∆t, and

Wt+1(s, a)
.
= Wt(s, a),∀s ̸= St, a ̸= At, (3.34)

V̄t+1
.
= V̄t + κβνt(St,At)ρt∆t, (3.35)

where

∆t
.
= Qt(St, At)− Q̄t +Wt(St+1, argmax

a′
Qt(St+1, a

′))−Wt(St, At), (3.36)

65

qπ1(1,r) = 0
qπ1(1,b) = 0

qπ2(1,r) = 0.5
qπ2(1,b) = 0.5

1 2 1 2
π1 π2

Q(1,r) = 1
Q(1,b) = 1 Q(2,r) = 0

qπ1(2,r) = − 1 qπ2(2,r) = − 0.5

1 2reward = 1
reward = 0

reward = 2

Figure 3.8: Example showing that there can be two different greedy policies
w.r.t. a solution of the action-value optimality equation and the action-value
functions of the two policies are different. First row: The example MDP is a
unichain MDP. There are two states marked by two circles respectively. There
are two actions red (r) and blue (b). Second row: a solution of the action-value
optimality equation. Note that the MDP is unichain and thus all solutions of
the equation are different by a constant. Third row: two different greedy
policies w.r.t. the solution. Fourth row: the two different policies correspond
to different differential action-value functions.

is the TD error of the second estimator, ρt
.
= π(At | St)/b(At | St) is the impor-

tance sampling ratio, {βn}n≥1 is a step-size sequence, and κ is a positive con-

stant. I call (3.25)–(3.27) plus (3.34)–(3.36) Centered Differential Q-learning.

See Algorithm 6 for the pseudo-code of Centered Differential Q-learning.

I now present a convergence theorem for Centered Differential Q-learning.

Unlike the previous theorems, this theorem requires that the optimal policy is

unique. The reason is, if there are multiple optimal policies all achieving the

optimal average reward, the greedy policy w.r.t. Qt will jump between these

optimal policies even in the limit so the second estimator can not evaluate

any particular optimal policy. In addition, unlike the discounted case, where

different optimal policies all correspond to the same unique optimal value

function, in the average reward case, in general, optimal policies correspond

to different differential value functions. An example illustrating this point

66

Algorithm 6: Centered Differential Q-learning

Input: The behavior policy b
Algorithm parameters: step-size sequences αn, βn, parameters η, κ

1 Initialize Q(s, a),W (s, a), ∀s, a; R̄, Q̄ arbitrarily (e.g., to zero)
2 ν(s, a)← 0, ∀s, a
3 Obtain initial S
4 while still time to train do
5 A← action given by b for S
6 ν(S,A)← ν(S,A) + 1
7 Take action A, observe R, S ′

8 δ ← R− R̄ +maxa Q(S ′, a)−Q(S,A)
9 Q(S,A)← Q(S,A) + αν(S,A)δ

10 R̄← R̄ + ηαν(S,A)δ
11 ∆← Q(S,A)− Q̄+W (S ′, argmaxa Q(S ′, a))−W (S,A)
12 W (S,A)← W (S,A) + βν(S,A)∆
13 Q̄← Q̄+ κβν(S,A)∆
14 S ← S ′

15 end
16 return Q− Q̄1.

is shown in Figure 3.8. Therefore, in order to use the second estimator to

evaluate some policy derived from Qt, that policy must converge as t→∞.

In practice, our algorithm can still deal with problems with multiple op-

timal policies. This can be achieved by choosing a small threshold ϵ > 0,

and then replacing the argmaxa Q(s, a) in our algorithms with the first action

ã (assume that actions are ranked) satisfying Q(s, ã) >= maxa Q(s, a) − ϵ.

The resulting policy of the algorithm will converge to an optimal policy if ϵ is

sufficiently small.

Theorem 3.10. If the MDP is weakly communicating and Assumptions 3.5,

3.6 hold for both αn and βn (with I = S × A), and the optimal policy is

unique (denote it as qπ∗), then the Centered Differential Q-learning algorithm

converges, almost surely, Qt(s, a)− Q̄t to qπ∗(s, a) for all s ∈ S, a ∈ A.

The proof of the theorem will be presented at the end of this section.

The planning version of Centered Differential Q-learning is called Centered

Differential Q-planning. Centered Differential Q-planning estimates the differ-

ential action-value function of the optimal policy (assumed to be unique just

67

as in the learning case) in the model MDP. Denote π̃∗ as the unique optimal

policy and q̃π̃∗ as the differential action-value function of this policy. Cen-

tered Differential Q-planning estimates these two quantities using simulated

experience just as in Centered Differential TD-planning.

Theorem 3.11. Under the same assumptions made in Theorem 3.10 (except

now for the model MDP corresponding to p̃ rather than p and that p̃ can be

weakly communicating rather than communicating), Centered Differential Q-

planning converges, almost surely, Qn(s, a)− Q̄n to q̃π̃∗(s, a) for all s, a.

The proof of Theorem 3.11 is quite similar to it of Theorem 3.10 and is

therefore omitted.

Proof of Theorem 3.8

The following lemma will be used.

Lemma 3.8. Given a policy π ∈ Π, assume that the induced Markov chain

under π is unichain. Let dπ be the unique stationary distribution following

policy π. Then

(i) (v, r̄) = (vπ, r(π)) is the unique solution of (3.2) and∑
s

dπ(s)v(s) = 0, (3.37)

and

(ii) if v = vπ + c1 then c =
∑

s dπ(s)v(s).

Proof. Recall the transition matrix Pπ defined in (3.3). Define P∞
π as the

Cesaro limit of the sequence {P i
π}∞i=1:

P∞
π

.
= lim

n→∞

1

n

n−1∑
i=0

P i
π.

Because S is finite, the Cesaro limit exists and P∞
π is a stochastic matrix (has

row sums equal to 1). Because the Markov chain induced by π is unichain,

all rows of P∞
π are identical and are all equal to d⊤π . Then the average-reward

rate following π can be written as

r(π) = d⊤π rπ. (3.38)

68

The differential value function following policy π can be written as

vπ(s) = lim
N→∞

1

N

N−1∑
k=0

k∑
t=0

P t
π(rπ − r(π))(s),

or vπ = HPπrπ in vector form, where HPπ

.
= limN→∞

1
N

∑N−1
k=0

∑k
t=0(P

t
π−P∞

π).

The differential value function vπ satisfies (3.2) due to Theorem 8.2.6 (a)

by Puterman (1994).

To see that vπ satisfies the equation (3.37), let’s apply Equation A.18 in

Appendix A by Puterman (1994), which states that P∞
π HPπ is an all-zero

matrix. Therefore we have d⊤πHPπ = 0⊤ because all rows of P∞
π are d⊤π .

Because vπ = HPπrπ, we have d⊤π vπ = d⊤πHPπrπ = 0.

To verify that vπ is the unique solution of (3.2) and (3.37), suppose there

exists another vector v′ ̸= vπ satisfying (3.2) and (3.37), then v′ = vπ + c1 for

some c ̸= 0 (any two solutions of (3.2) differ by a constant). Substituting this

into (3.37), we have

d⊤π v
′ = d⊤π (vπ + c1) = d⊤π vπ + cd⊤π 1 = c

To satisfy (3.37), we must have c = 0. Therefore, vπ is the unique solution

of (3.2) and (3.37).

To prove the second part, consider v = vπ+c1, then we have
∑

s dπ(s)v(s) =∑
s dπ(s)(vπ + c1)(s) = c.

Because (3.19)–(3.21) are independent of (3.31)–(3.33), we have Vt → v∞

and R̄t → r(π) according to Theorem 3.3.

Similar as the proof of Theorem 3.3, we can combine (3.31)–(3.33) and

obtain a single update rule:

Wt+1(St) = Wt(St) + βνt(St)ρt

(
Vt(St)− f(Wt) +Wt(St+1)−Wt(St)

)
, (3.39)

where f : R|S| → R satisfying f(w)
.
= η

∑
w − κ

∑
W0 + V̄0, ∀w ∈ R|S|.

(3.40)

We now show that (3.39) is a special case of the General RVI Q’s update

(3.9). To see this point, recall A′
t, S

′
t, R

′
t, Yt defined for Differential TD-learning,

69

right below (3.24). Equation 3.9 reduces to (3.39) by choosing I = S, n =

t, Qn = Wt, and

r(i) = v∞(s),

g(Wt)(i) =
∑
a

π(a | s)
∑
s′

p(s′ | s, a)Wt(s
′),

Mn+1(i) = ρt(s)
(
v∞(s)− f(Wt) +Wt(S

′
t(s))−Wt(s)

)
− (v∞(St)− f(Wt) + g(Wt)(s)−Wt(s)) ,

ϵn+1(i) = ρt(s)Vt(s)− ρt(s)v∞(s),

where ρt(s)
.
= π(A′

t(s) | s)/bt(A′
t(s) | s).

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for the choice of g(w) easily.

2. Assumptions 3.2, 3.3 can be verified the same way as in the proof of

Differential TD-learning by noting that (3.8) reduces to the state-value

evaluation equation (3.2) given our definition of r and g.

3. Assumption 3.3 holds for f defined in (3.40).

4. Assumptions 3.5–3.6 are assumed in the theorem statement.

5. Assumption 3.7 can be verified by noting that state and reward spaces

are finite, ρt(s) ∀s ∈ S is bounded by Assumption 3.9, and that ϵt+1 → 0

as t→∞ because Vt → v∞.

Therefore all the conditions of Theorem 3.1 have been verified and we have

f(Qn), which is V̄t in the current setting, converges to r#, which is d⊤π v∞, the

solution of r̄ in (3.8) given our choice of r, g. Because Vt → v∞ and V̄t → d⊤π v∞

by Theorem 3.3, Vt − V̄t1→ v∞ − d⊤π v∞1 = vπ by Lemma 3.8 (ii).

Proof of Theorem 3.10

Because there is only one optimal policy, the solution set of q in the action-

value optimality equation (3.7) only has one degree of freedom (i.e., every pair

70

of solutions are different by a constant vector). Therefore the set Q∞ only

contains one element. Denote this element as q∞.

Because (3.25)–(3.27) do not depend on (3.34)–(3.36), we have Qt → q∞

and R̄t → r∗ a.s., according to Theorem 3.6.

Similar as the proof of Theorem 3.6, we can combine (3.34)–(3.36) and

obtain a single update rule:

Wt+1(St, At) = Wt(St, At) + βνt(St,At)(
Qt(St, At)− f(Wt) +Wt(St+1, argmax

a
Qt(St+1, a)−Wt(St, At)

)
, (3.41)

where f : R|S|×|A| → R satisfying ∀w ∈ R|S|×|A|,

f(w)
.
= η

∑
w − κ

∑
W0 + Q̄0. (3.42)

We show that (3.42) is a special case of the General RVI Q’s update (3.9).

To see this point, recall {S ′
t}, {R′

t}, {Yt} defined in the proof of Theorem 3.6.

Equation 3.9 reduces to (3.42) by choosing i = (s, a), n = t,

r(i) = q∞(s, a),

g(w)(i) =
∑
s′

p(s′ | s, a)w(s′, π∗(s
′)),

Mn+1(i) = Wt(S
′
t(s, a), π∗(S

′
t(s, a))))− g(Qt)(s, a),

ϵn+1(i) = Qt(s, a)− q∞(s, a)

+Wt(S
′
t(s, a), argmax

a′
Qt(S

′
t(s, a), a

′))−Wt(S
′
t(s, a), π∗(S

′
t(s, a)))).

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for g(q)(s, a) =
∑

s′,r p(s
′, r | s, a)maxa′ q(s

′, a′)

easily.

2. Assumptions 3.3 holds for f defined in (3.42).

3. Assumptions 3.3–3.6 are assumed in the theorem statement.

4. Assumption 3.7 can be verified by noting that state and reward spaces

are finite and that ϵt+1 → 0 a.s. because Qt → q∞ a.s. and πt ∈ ΠD
∗ for

sufficiently large t by Theorem 3.6.

71

In order to verify Assumption 3.2, first note that, given our choices of r

and g, (3.8) reduces to

w(s, a) = q∞(s, a)− r̄ +
∑
s′,r

p(s′, r | s, a)w(s′, π∗(s
′)).

The above equation becomes the action-value evaluation equation (3.5) of the

policy π∗ in an MDP M̂ that is the same as the original one, except that the

reward setting is replaced by q∞.

The Markov chain induced by π∗ in M̂ must be unichain. The reason is

stated as follows. Suppose π∗ is not unichain in M̂, then it is not unichain inM
and induces more than one recurrent class. All of these recurrent classes share

the same reward rate, which is the optimal one. Also, note that there exists

a path from one class to the other class becauseM is weakly communicating.

Now, we can construct another optimal policy, which moves from states in one

recurrent class to states in the other recurrent class and stays in the latter

chain. This contradicts our assumption of a single optimal policy inM.

Because π∗ is unichain in M̂, the solution of r̄ in (3.5) for M̂ is uniquely

d⊤π∗q∞. The solution of q exists in (3.5) for any policy. Therefore Assump-

tion 3.2 is verified. Assumption 3.4 can be easily verified by noting that 0 is a

member of Q#, and Q# only has one member by noting that all solutions of

q in (3.5) are only different by a constant, the solution of r̄ is unique in (3.5),

and Assumption 3.3(ii).

Therefore Theorem 3.1 applies and we conclude that Q̄t converges to d
⊤
π∗q∞.

Combining this result with Qt → q∞ (Theorem 3.3) and Lemma 3.8, we con-

clude that Qt − Q̄t1→ q∞ − d⊤π∗q∞1 = q∗ a.s.

3.8 Centering Experiments

This section presents two sets of experiments testing if Centered Differen-

tial TD-learning and Centered Differential Q-learning indeed learn the actual

differential value function. The baseline algorithms are their uncentered ver-

sions introduced in Section 3.3 and Section 3.5. The test domain is still the

continuing four-room domain (Figure 3.1).

72

The first set of experiments is for Centered Differential TD-learning and its

uncentered version. The experiment setup is the same as in Section 3.4. For

both algorithms, the parameters of the second system of updates were chosen

to be the same as those used in the first system. That is, αn = βn and η = κ.

Because the estimated value function is expected to converge to the actual

differential value function, rather than the differential value function plus some

constant vector, the relative value errors introduced in the above two sections

are not appropriate to measure the progress of learning. To measure the

learning progress, I used the value error, defined as follows,

Value Errort
.
= |Vt(St)− vπ(St)|

for Differential TD-learning, and

Value Errort
.
= |Vt(St)− V̄t1− vπ(St)|

for Centered Differential TD-learning (note that Vt(St)− V̄t1 is the output of

the centered algorithm). In both definitions of value errors, π is the target

policy (the policy being evaluated).

Figure 3.9a and Figure 3.9b show the value error learning curves of Differen-

tial TD-learning and Centered Differential TD-learning, with their parameter

settings chosen to minimize the value error over the last 10, 000 steps. The

value error of Centered Differential TD-learning diminished to zero eventu-

ally, in accordance with Theorem 3.8. It might seem to be surprising that the

asymptotic value error of Differential TD-learning also is also close to zero.

In fact, this is because the parameter setting was chosen to be the one that

resulted in the lowest value error asymptotically and Differential TD-learning

with some parameter setting resulted in a near-zero value error.

To better understand the difference between the two algorithms, I show

parameter studies for Differential TD-learning and Centered Differential TD-

learning in Figure 3.9c and Figure 3.9d, respectively. Each point in a curve

is the value error average of the last 10, 000 steps and thus reflecting the al-

gorithms’ asymptotic performance. It can be seen that Centered Differential

TD-learning achieved a close-to-zero value error for a wide range choice of

73

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

0.10

Value
Error

Differential TD-learning

(a) The best learning curve for Differ-
ential TD-learning. The parameter set-
tings were chosen in the same way as in
Section 3.4.

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

0.10

Value
Error

Centered Differential TD-learning

(b) The best learning curve for Centered
Differential TD-learning. The parame-
ter settings were chosen in the same way
as in Section 3.4.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Value
Error

η = 100
η = 10−1

η = 10−2

(c) Parameter sensitivity study of Dif-
ferential TD-learning; the curves corre-
sponding to η = 10−3 and η = 10−4 have
errors higher than 0.5 and are therefore
not visible. Each point is the average
value error over the last 10, 000 steps.
Error bars denote one standard error.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Value
Error

η = 100
η = 10−1

η = 10−2

η = 10−3
η = 10−4

(d) Parameter sensitivity of Centered
Differential TD-learning. Each point is
the average value error over the last
10, 000 steps. Error bars denote one
standard error.

Figure 3.9: Plots showing learning curves and parameter sensitivity curves for
Centered Differential TD-learning.

ηs. Surprisingly, Differential TD-learning also achieved a near-zero value er-

ror when η = 1 or 0.1. To see why this happened, let’s compute the value

error of the final solution of Differential TD-learning, given that V0 = 0

and R̄0 = 0 in this domain. Note that because (3.22) is satisfied, r(π) =

η
∑

s v∞(s) =⇒ ∑
s v∞(s) = r(π)/η. In this problem, r(π) = 1/17, therefore∑

s v∞(s) = 1
17η

. Using this equation and a series of derivations, we can then

obtain
∑

s dπ(s)v∞(s) ≈ 1
1768η

− 0.0136. We also know that
∑

s dπ(s)vπ(s) = 0

74

and the average value error over the last 10, 000 steps should be approximately∑
s dπ(s)|vπ(s) − v∞(s)| = |∑s dπ(s)(vπ(s) − v∞(s))| = |∑s dπ(s)v∞(s)| =

| 1
1768η

− 0.0136|. Here the first equality holds because vπ and v∞ are just dif-

ferent by a constant and dπ is non-negative. Choosing η = 1, we have the

average value error ≈ 0.013. Choosing η = 0.1, we have the error ≈ 0.008.

Choosing η = 0.01, we have the error ≈ 0.043. These values roughly mirror

the value errors shown in Figure 3.9c with step size 2−1 or 2−3.

250000 500000
Total Steps

0.00

0.05

0.10

0.15

0.20

Value
Error

Differential Q-learning

(a) A learning curve for Differential Q-
learning. The parameter settings were
chosen in the same way as in Section 3.6.

250000 500000
Total Steps

0.00

0.05

0.10

0.15

0.20

Value
Error

Centered Differential Q-learning

(b) A learning curve for Centered Dif-
ferential Q-learning. The parameter set-
tings were chosen in the same way as in
Section 3.6.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Value
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

(c) Parameter sensitivity of Differential
Q-learning. Each point is the average
value error over the last 10, 000 steps.
Error bars denote one standard error.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Value
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

η = 10−4

(d) Parameter sensitivity of Centered
Differential Q-learning. Each point is
the average value error over the last
10, 000 steps. Error bars denote one
standard error. each point is the average
value error over the last 10, 000 steps.
Error bars denote one standard error.

Figure 3.10: Plots showing learning curves and parameter sensitivity curves
for Centered Differential Q-learning.

75

The experiment setup testing Differential Q-learning and Centered Differ-

ential Q-learning is the same as in Section 3.6. The metric measuring the

progress of value learning for the control algorithms is different and is tricky

to define. Note that in this domain, there is more than one optimal pol-

icy and thus the assumption on the uniqueness of the optimal policy made

in Theorem 3.10 is not satisfied. However, this domain is somewhat special

because the differential action-value function of any greedy policy w.r.t. any

solution of the action-value optimality equation, q∗, does not depend on the

choice of the greedy policy and the choice of the solution. To see this point,

note that any solution q of the action-value optimality equation in this do-

main can be expressed as q(s, a) =
∑

s′,r p(s
′, r | s, a)v(s′) + c, ∀s, a, where

v(s)
.
= − 1

17
× number of steps to reach the green cell from s, and c is some

constant. Therefore any greedy policy w.r.t. q takes an action that results in

a state one step closer to the green cell. Finally, the differential action-value

function of any greedy policy q∗ satisfies q∗(s, a) = q(s, a)− 1
17
(− 0

17
+ c− 1

17
+

c− . . .− 16
17
+ c) = q(s, a)− c− 8

17
=
∑

s′,r p(s
′, r | s, a)v(s′)− 8

17
. Thus, q∗ does

not depend on the choice of the greedy policy or the choice of the solution

of (3.7). Therefore, even if the theory does not guarantee convergence in this

case, as long as Qt − Q̄t1 converges, it must converge to q∗.

Based on the above discussion, we can now define the error metric. Just

like what I did for the two centered prediction algorithms, for Differential

Q-learning, the value error is defined as

Value Errort
.
= |Qt(St, At)− q∗(St, At)|,

and for Centered Differential Q-learning, we have

Value Errort
.
= |Qt(St, At)− Q̄t1− q∗(St, At)|.

Figure 3.10a and Figure 3.10b show the value error learning curves of Dif-

ferential Q-learning and Centered Differential Q-learning, with the parameter

settings chosen in the same way as in Section 3.6. Each point is the aver-

age of value errors in the 2000 previous steps. The value error in Centered

Differential Q-learning diminished to zero eventually while the value error in

Differential Q-learning failed to do so.

76

Parameter studies for Differential Q-learning and Centered Differential Q-

learning are shown in Figure 3.10c and Figure 3.10d, respectively. The pa-

rameter setting used to generate learning curves were those resulting in the

lowest value error over the last 10, 000 steps. Centered Differential Q-learning

achieved near zero value error asymptotically for a wide range of parameter

settings while Differential Q-learning failed to achieve a near zero value error,

regardless of the choice of parameter setting. These results show that even if

Theorem 3.10 does not guarantee convergence in this domain, Centered Dif-

ferential Q-learning still converged to the desired point.

3.9 Summary

This chapter introduced a family of tabular algorithms for the average-

reward formulation as well as the algorithms’ convergence theories.

The average-reward sub-problems addressed by these algorithms, accord-

ing to the taxonomy provided in Section 1.3, include all tabular sub-problems

except for model-based learning problems, on-policy model-free learning prob-

lems, and problems that involve options.

The most distinctive feature of algorithms introduced in this chapter is that

these algorithms all estimate the reward rate using the TD error while most

previous approaches either do not maintain an estimate of the reward rate

or update the reward rate estimate using the conventional reward error. The

experiments testing Differential Q-learning, while limited in its complexity,

showed that applying the TD error to update the reward rate estimate may

result in an algorithm that is less sensitive to hyper-parameters.

The family of algorithms can be divided into centered ones and uncentered

ones, depending on whether the estimated differential value function has a

constant offset. The centered algorithms were derived by applying the center-

ing technique to uncentered algorithms. In the average-reward literature, it is

common for algorithms to be uncentered, because this offset does not change

the greedy policies derived from these estimated differential value functions.

I conjecture that removing offsets may have benefits such as achieving faster

77

learning. However, these potential benefits were not explored in this chapter.

The key to the convergence theories of the algorithms is the convergence

theory of General RVI Q, which encompasses all of the algorithms introduced

in this chapter as special cases. In addition, by applying this convergence

theory to RVI Q-learning (Abounadi et al. 2001), which was originally proved

to converge in unichain MDPs, this chapter established its convergence in

the more general weakly communicating MDPs. The convergence theory of

General RVI Q extends that of RVI Q-learning by Abounadi et al. (2001) in

several ways, as discussed in Section 3.2. This convergence theory will continue

to be the core technical tool to show the convergence of algorithms introduced

in the next chapter.

78

Chapter 4

Temporal Abstraction with
Options

This chapter presents the second area of contributions of this disserta-

tion: an extension of the family of average-reward algorithms introduced in

the previous chapter from primitive actions to options, which are temporally

abstracted courses of action. The idea of options was originally introduced by

Sutton, Precup, and Singh (1999) as a way to achieve temporal abstraction.

Intuitively, if actions are likened to muscle twitches, options can be thought

of as more complex behaviors, such as rinsing a plate, which is composed of a

sequence of muscle twitches. Using options instead of actions alone can benefit

learning and planning in at least three ways. Firstly, planning with a model

that predicts the outcomes of options can be considerably faster. Secondly,

exploration can be more effective when following options. Finally, human ex-

perts may impart prior knowledge to the agent by appropriately specifying

options. The paper by Sutton, Precup, and Singh (1999) further explores

options algorithms and theories concerning the discounted formulation. The

algorithms and theories introduced in this chapter can be considered as an

extension of theirs to the average-reward formulation.

Algorithms and theories introduced in this chapter work with a prede-

termined set of options. These options can either be defined by experts or

learned to achieve goals specified by humans. However, when such options are

not available, the agent must undertake the task of discovering them. Signif-

icant progress has been made to address this option discovery problem over

79

the past two decades. Readers interested in exploring this topic further may

refer to Pateria et al.’s (2021) comprehensive survey.

To present the options algorithms and theories, this chapter first introduces

some background knowledge about Semi-MDPs (SMDPs), which are tightly

related to options. This chapter then presents a new SMDP theory, which is

used by theories of many algorithms introduced in the current chapter. This

chapter sets up the tabular off-policy learning and planning problems with

options in average-reward MDPs. For both off-policy learning and planning

problems, this chapter introduces inter- and intra-option algorithms, proves

their convergence, and demonstrates their empirical performance using ex-

periments. Because inter-option planning algorithms require using an option

model, this chapter also introduces convergent intra-option learning and plan-

ning algorithms to obtain the option model. Finally, this chapter demonstrates

that by interrupting the agent’s behavior and switching from the current op-

tion to a new one, the agent can achieve a behavior that results in a higher

reward rate.

4.1 SMDP Preliminaries

This section introduces basic definitions and results in average-reward

SMDPs, which will be useful throughout this chapter.

SMDPs extend MDPs by adding the holding time (length) of each action.

A finite SMDP is defined by the tuple (S,A,R,L, d0, p), where S is a finite set

of states, A is a finite set of actions, R is a countably infinite set of rewards,

L is a countably infinite set of time steps, d0 ∈ ∆(S) is the initial state

distribution, and p : S ×A → ∆(S ×R× L) is the transition function of the

SMDP with p(s′, r, l | s, a) defined as the probability of transitioning to state

s′ ∈ S using l ∈ L time steps and observes a reward r ∈ R when taking action

a ∈ A from state s ∈ S.
An SMDP and a policy π ∈ Π induce a sequence of tuples of random

variables (Sn, An, Rn+1, Ln+1) where the transition probability is governed by p

and π. That is, Pr(Sn+1 = s′, Rn+1 = r, Ln+1 = l | Sn = s, An = a) = p(s′, r, l |

80

s, a) and Pr(An = a | Sn = s) = π(a | s). Let Tn =
∑n

i=1 Ln be the time step

at which the n-th transition is finished. Let Nt = maxn I{Tn ≤ t} be a random

variable denoting the number of transitions up to time t. The reward rate of

a policy π ∈ Π given a starting state s can be defined as

r(π, s)
.
= lim

t→∞

Eπ

[∑Nt

i=1Ri | S0 = s
]

t
, (4.1)

where the limit always exists by Equation 18 in the paper by Denardo (1971).

For a cleaner presentation, the following definitions will be used in this

chapter. Let the expected reward of each state-action pair (s, a) be denoted

as r(s, a). That is

r(s, a) =
∑
s′,r,l

p(s′, r, l | s, a)r. (4.2)

Similarly, let the expected length of each state-action pair (s, a) be denoted as

l(s, a). That is

l(s, a) =
∑
s′,r,l

p(s′, r, l | s, a)l. (4.3)

With a bit of abuse of notation let

p(s′ | s, a) .
=
∑
r,l

p(s′, r, l | s, a).

Let the expected reward starting from state s under policy π be denoted as

rπ(s). That is

rπ(s) =
∑
a

π(a | s)r(s, a). (4.4)

Let the expected action length starting from state s under policy π be denoted

as lπ(s). That is

lπ(s) =
∑
a

π(a | s)l(s, a). (4.5)

Let the transition matrix under policy π be denoted as Pπ. That is

Pπ(s, s
′) =

∑
a

π(a | s)p(s′ | s, a). (4.6)

81

We say a policy π ∈ Π is unichain if the SMDP’s transition matrix Pπ

is unichain. We say an SMDP is communicating/weakly communicating if

the MDP with state space S, action space A, reward space R, and transition

function
∑

l p(s, r, l | s, a) is communicating/weakly communicating.

If a policy π is unichain, the reward rate of π does not depend on the

starting state and hence we can denote it by just r(π). The differential action-

value function for a policy π is defined for all s ∈ S, a ∈ A as

qπ(s, a)
.
= lim

n→∞

1

n

n∑
k=1

k∑
t=1

Eπ[Rt − r(π) | S0 = s, A0 = a,A1:t−1 ∼ π].

The evaluation equation for SMDPs:

q(s, a) = r(s, a)− r̄ · l(s, a) +
∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′)q(s′, a′),

where q and r̄ denote estimates of the action-value function and the reward rate

respectively. Just as in the MDP case, if π is unichain, the SMDP evaluation

equation has a unique solution of r̄ — r(π) and a unique solution of q only up

to a constant (Puterman 1994).

If the SMDP is weakly communicating, the optimal reward rate

r∗
.
= sup

π∈Π
r(π, s)

does not depend on the start state s. In addition, r∗ is the unique solution of

r̄ in the SMDP optimality equation:

q(s, a) = r(s, a)− r̄ · l(s, a) +
∑
s′

p(s′ | s, a)max
a′

q(s′, a′). (4.7)

Denote the solution set of q in the above equation as Q. Unlike the evaluation
case, it has been shown by Schweitzer and Federgruen (1978) (I will use a

shorthand S&F for their work from now on because I will need to refer to this

work multiple times) that Q may have multiple degrees of freedom (members

are not different by a constant vector). Their paper also characterizes the

number of degrees of freedom of Q and shows that Q is non-empty, closed,

unbounded, connected, and possibly non-convex. These results are nowadays

perceived as fundamental in average-reward MDPs and SMDPs.

82

In fact, the results by S&F were developed for the state-value optimality

equation

v(s) = max
a

{
r(s, a)− r̄ · l(s, a) +

∑
s′

p(s′ | s, a)v(s′)
}
, (4.8)

rather than the action-value optimality equation (4.8). I now use the following

transformation to show that the results by S&F also hold for the action-value

optimality equation. This transformation shows that the action-value optimal-

ity equation (4.7) for any weakly communicating SMDP can be viewed as the

state-value optimality equation (4.8) for some other weakly communicating

SMDP.

Given an SMDP M̂ and its (4.7), define a function v : S × A → R such

that v((s, a))
.
= q(s, a), ∀s, a. Then (4.7) can be written as

v((s, a)) = r(s, a)− r̄ · l(s, a) +
∑
s′

p(s′ | s, a)max
a′

v((s′, a′))

= max
π∈ΠD

{∑
s′,a′

p̃((s′, a′), r, l | (s, a), π)(r − r̄ · l + v((s′, a′))

}
,∀ s ∈ S a ∈ A,

(4.9)

where ΠD ⊆ Π is the set of deterministic policies, p̃((s′, a′), r, l | (s, a), π) .
=

p(s′, r, l | s, a)I{π(s′) = a′}, where π(s′) is the unique action that the deter-

ministic policy π assigns to state s′. The above equation is just the same as

(4.8) but for a new SMDP M̂′ with R and L being the same as those of M̂,

the state space being S × A, the action space being ΠD, and the transition

function being p̃. Finally, one can verify that M̂′ is also weakly communicat-

ing by showing that 1) if two states s, s′ in M̂ communicate, for any a, a′ ∈ A,
two states (s, a), (s′, a′) in M̂′ communicate, 2) if a state s is transient in M̂,

for any a ∈ A, (s, a) is transient in M̂′, and 3) the communicating class is

unique and closed.

4.2 A Sub-Optimality Bound in Weakly Com-

municating SMDPs

This section presents one of my contributed results. This result concerns

weakly communicating SMDPs and is independent of options algorithms. The

83

result bounds the sup-optimality of the reward rate achieved by greedy policies

w.r.t. an arbitrary q ∈ R|S|×|A|. This result is a generalization of Theorem 8.5.5

by Puterman (1994) from unichain MDPs to weakly communicating SMDPs.

For an arbitrary policy π ∈ Π, the induced reward rate varies across differ-

ent start states. Let’s denote the vector of reward rates for all start states by

r(π) = [r(π, 1), r(π, 2), . . . , r(π, |S|)] (labeling members in S by 1, 2, . . . , |S|).
However,

Proposition 4.1. Given a weakly communicating SMDP and a vector q ∈
R|S|×|A|, let π be a greedy policy w.r.t. q (i.e., π(s) ∈ argmax q(s, ·)). Define

an operator T as follows:

Tq(s, a)
.
= r(s, a) +

∑
s′

p(s′ | s, a)max
a′

q(s′, a′). (4.10)

Then,

max
s
{r∗ − r(π, s)} ≤ sp

(
TQ−Q

l

)
,

where sp(x) = maxi x(i)−minx(i) denotes the span of vector x, and a
b
denotes

the component-wise division of two vectors a, b of the same size.

To prove the above result, we shall first prove the following lemma.

Lemma 4.1. For any m ∈ {1, 2, 3, . . .}, a, b ∈ Rm, b > 0, and for any p ∈ Rm

such that p ≥ 0,
∑

s p(s) = 1,

min
s

a(s)

b(s)
≤ p⊤a

p⊤b
≤ max

s

a(s)

b(s)
.

Proof. For any s ∈ {1, 2, 3, . . . ,m},

a(s)

b(s)
≥ min

s′

a(s′)

b(s′)
=⇒ a(s) ≥ b(s)min

s′

a(s′)

b(s′)
=⇒ p(s)a(s) ≥ p(s)b(s)min

s′

a(s′)

b(s′)
.

Therefore, p⊤a ≥ p⊤bmins′
a(s′)
b(s′)

. By our assumptions on b and p, p⊤b > 0, we

have p⊤a
p⊤b
≥ mins′

a(s′)
b(s′)

. p⊤a
p⊤b
≤ maxs

a(s)
b(s)

can be shown in the same way.

I now show the proof of Proposition 4.1.

84

Proof.

It is known (see, e.g., S&F’s Lemma 2.3) that for any π ∈ Π, r(π) is the

unique solution of r̄ ∈ R|S| in the following system of equations:

v = rπ −Hπr̄ + Pπv, (4.11)

r̄ = Pπr̄, (4.12)

where v, r̄ ∈ R|S| are two vectors of unknown variables, Hπ ∈ R|S|×|S| is defined

as follows:

Hπ(s, s
′)

.
=
∑
a

π(a | s)
∑
r,l

p(s′, r, l | s, a)l.

It is also known that the solution set of v is not empty by S&F’s Lemma 2.3.

I now transform (4.11) and (4.12) into the action-value form, from which

it is easier to proceed. Fix a solution of v, v∗, let

gπ(s, a)
.
=
∑
s′

p(s′ | s, a)r(π, s′),

q∗(s, a)
.
= r(s, a)− H̃πgπ(s, a) +

∑
s′

p(s′ | s, a)v∗(s′),

where H̃π ∈ R|S×A|×|S×A| is defined as follows:

H̃π((s, a), (s
′, a′))

.
=
∑
r,l

p(s′, r, l | s, a)π(a′ | s′)l.

Then by (4.11)—(4.12):

q∗ = r − H̃πgπ + P̃πq∗,

gπ = P̃πgπ,

where P̃π denote a |S × A| × |S × A| transition matrix. That is,

P̃π((s, a), (s
′, a′))

.
= p(s′ | s, a)π(a′ | s′).

Therefore (gπ, q∗) is a solution of (g, q) in the following system of equations

q = r − H̃πg + P̃πq,

g = P̃πg.

85

Just like (4.11)—(4.12), the above system of equations has a unique solution

of g. Therefore gπ is this unique solution. Because Pπ will not be used in this

proof anymore, from now on, in this proof, I use Pπ to denote P̃π.

The above discussion is for arbitrary π. Now let π be a greedy policy of

some q ∈ RS×A, I will show that

min
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
≤ gπ(s, a) ≤ r∗ ≤ max

s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
,∀s, a,

from which the desired bound

max
s

r∗ − r(π, s) ≤ sp

(
Tq − q

l

)
can be obtained using r(π, s) =

∑
a π(a | s)gπ(s, a) (by the definition of gπ).

To obtain the upper and lower bounds of gπ, I first write gπ in the following

expression (S&F’s Lemma 2.3):

gπ(s, a) =

n(π)∑
m=1

ϕ(m)
π (s, a)g(m)

π ,

where n(π) is the number of recurrent classes in the Markov chain induced

by Pπ, ϕ
m
π (s, a) is the probability of absorption in the m-th recurrent class,

starting from state (s, a), and

g(m)
π

.
=

∑
s,a d

(m)
π (s, a)r(s, a)∑

s,a d
(m)
π (s, a)l(s, a)

=
P∞
π r(s, a)

P∞
π l(s, a)

for all (s, a) ∈ the m-th recurrent class,

where d
(m)
π is the unique stationary distribution of Pπ on the m-th recurrent

class, and P∞
π is the limiting matrix of Pπ:

P∞
π

.
= lim

n→∞

1

n

n−1∑
i=0

P i
π. (4.13)

Because S andA are finite, the above Cesaro limit exists and P∞
π is a stochastic

matrix (has row sums equal to 1).

Note that, for any s ∈ S, a ∈ A,

g(m)
π =

P∞
π r(s, a)

P∞
π l(s, a)

=
P∞
π (r + Pπq − q)(s, a)

P∞
π l(s, a)

≥ min
s′,a′

(r + Pπq − q)(s′, a′)

l(s′, a′)

= min
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
,

86

where the inequality holds because of Lemma 4.1 and the last equality holds

because π is a greedy policy w.r.t. q. Therefore we have

gπ(s, a) =

n(π)∑
m=1

ϕ(m)
π (s, a)g(m)

π ≥
n(π)∑
m=1

ϕ(m)
π (s, a)min

s′,a′

(Tq − q)(s′, a′)

l(s′, a′)

= min
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
. (4.14)

On the other hand, consider a deterministic optimal policy π∗ ∈ ΠD
∗ . For any

s, a,

g(m)
π∗ =

P∞
π∗ r(s, a)

P∞
π∗ l(s, a)

=
P∞
π∗ (r + Pπ∗q − q)(s, a)

P∞
π∗ l(s, a)

≤ max
s′,a′

(r + Pπ∗q − q)(s′, a′)

l(s′, a′)

≤ max
s′,a′

(r + Pπq − q)(s′, a′)

l(s′, a′)

= max
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
.

The first inequality holds because of Lemma 4.1 and the second inequality

holds because π is a greedy policy w.r.t. q. Then we have, for any s, a,

gπ∗(s, a) =

n(π∗)∑
m=1

ϕ(m)
π∗ (s, a)g(m)(π∗)

≤
n(π∗)∑
m=1

ϕ(m)
π∗ (s, a)max

s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
= max

s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
.

Note that gπ∗(s, a) =
∑

s′ p(s
′ | s, a)r(π∗, s

′) = r∗ where the second equa-

tion holds because r(π∗, s) = r∗ for all s ∈ S by the weakly communicating

assumption. Therefore,

r∗ ≤ max
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
. (4.15)

Combining (4.14) and (4.15), and noting that gπ(s, a) =
∑

s′ p(s
′ | s, a)r(π, s′) ≤

r∗, we have, for any s, a,

min
s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
≤ gπ(s, a) ≤ r∗ ≤ max

s′,a′

(Tq − q)(s′, a′)

l(s′, a′)
,

which is the desired bound.

87

4.3 Important Properties of the Solution Set

This section presents three new important results concerning the solution

set of control algorithms introduced in the current and previous chapters.

Given an SMDP, all results concern the following set:

Qs
.
= {q ∈ RS×A : q ∈ Q, q is a solution of f(q) = r∗}, (4.16)

where f : S × A → R is a function satisfying Assumption 3.3 and r∗ is the

optimal reward rate of the SMDP.

Result 1: A Special Case in which the Solution Set Has a Single

Degree of Freedom

The next lemma shows that Q is the set of constant vectors if all state-

action pairs share the same “pair-reward rate” defined as

w(s, a)
.
=

r(s, a)

l(s, a)
∀s, a, (4.17)

where r(s, a) and l(s, a) are defined in (4.2) and (4.3), respectively. This pair-

reward rate is independent of the policy and should not be confused with a

policy’s reward rate.

Lemma 4.2. If the SMDP is weakly communicating and w(s, a) = w(s′, a′)

for all s, s′ ∈ S, a, a′ ∈ A, Q = {c1 | c ∈ R}.

Proof. Given that all pair-reward rates are the same, any policy’s reward rate

is also this shared pair-reward rate. And because the solution of r̄ in (4.7) is

the average-reward rate of optimal policies, it is also this shared pair-reward

rate. Then (4.7) reduces to,

q(s, a) =

{∑
s′

p(s′ | s, a)max
a′

q(s′, a′)

}
, s ∈ S.

Following a similar transformation as in the discussion around (4.9), the above

equation can be rewritten as

q(s, a) = max
π∈ΠD

{∑
s′,a′

p̃((s′, a′) | (s, a), π)q(s′, a′)
}
, s ∈ S, (4.18)

88

where p̃((s′, a′) | (s, a), π) = p(s′ | s, a)I{π(s′) = a′}. But this is just the state-
value optimality of a weakly communicating MDP with state space S × A,
action space ΠD, all rewards being zero, and the probability of transitioning

from state (s, a) and action π ∈ ΠD to state (s′, a′) being p̃((s′, a′) | (s, a), π).
Consider a set of states in this new weakly communicating MDP,

Smin
.
=
{
i ∈ S ×A, q(i) = min

i′
q(i′)

}
Then by (4.18), there is a zero probability of transiting from a state i ∈ Smin

to a state i′ ̸∈ Smin, regardless of the action chosen, in this MDP. Therefore

Smin is a closed set. Because this MDP is weakly communicating, any closed

set of states contains the unique communicating class. Therefore all states in

the communicating class are in Smin and share the same value mini q(i
′). The

values of transient states are the same as the shared value of communicating

states by Equation 4.5 by S&F and noting that all transient states are not in

R∗.

The next corollary of Lemma 4.2 characterizes Qs and is what I need for

the proof of Theorem 3.6 and for the proof for options control algorithms to

be introduced later in this chapter.

Corollary 4.1. If an SMDP is weakly communicating, f satisfies Assump-

tion 3.3, and w(s, a) = f(0),∀s ∈ S, a ∈ A, Qs = {0}.

Proof. Because all pair-reward rates are f(0), r∗ = f(0). Combining this

result with r∗ = f(q) for all q ∈ Qs, we have f(q) = f(0) for all q ∈ Qs. Com-

bining this result with all q ∈ Qs ⊆ Q being a constant vector (by Lemma 4.2)

and Assumption 3.3 (ii), we have Qs = {0}.

Result 2: Characterization of the Solution Set

Theorem 4.1. If the SMDP is weakly communicating and Assumption 3.3

holds, Qs is non-empty, compact, connected, and possibly non-convex.

89

Remark: Recall that in the previous chapter, I stated Theorem 3.5 with-

out providing its proof. Theorem 4.1 generalizes Theorem 3.5 because SMDPs

generalize MDPs. And I show the proof of Theorem 4.1 here in this section.

Remark: S&F showed that the set of solutions of q in (4.7) is non-empty,

closed, unbounded, connected, and possibly non-convex. The proof of Theo-

rem 4.1 builds upon their result.

The rest of this section proves the above theorem.

Non-emptiness and Closedness

Let’s divide both hand sides of (4.7) by l(s, a) where l(s, a) > 0 is defined

in (4.3),

0 =
r(s, a)− r̄ · l(s, a) +∑s′ p(s

′ | s, a)maxa′ q(s
′, a′)− q(s, a)

l(s, a)
,∀s, a.

The above equation is equivalent to (4.7) and thus has the same solutions of

(q, r̄) as (4.7).

Now rewrite the above equation as follows

0 =
r(s, a)

l(s, a)
− r̄ +

∑
s′ p(s

′ | s, a)maxa′ q(s
′, a′)− q(s, a)

l(s, a)

= w(s, a)− r̄ + g(q)(s, a)− q(s, a),∀s, a, (4.19)

where w is defined in (4.17), and

g(q)(s, a)
.
=

∑
s′ p(s

′ | s, a)maxa′ q(s
′, a′)

l(s, a)
+

l(s, a)− 1

l(s, a)
q(s, a) ∀s, a.

One can now show that (4.19) is a special case of (3.8) by choosing I =

S×A, verifying that g satisfies Assumption 3.1, and verifying Assumption 3.2

using the weakly communicating SMDPs facts introduced right after (4.7). In

addition, because r∗ is the unique solution of r̄ in (4.7), Q# reduces to Qs in

the current setting. Therefore, applying Lemma 3.1, we have Qs is non-empty

and closed.

Boundedness

We shall prove by contradiction. Suppose Qs is unbounded, there exists

a sequence xn ∈ Qs such that mn
.
= ∥xn∥∞ → ∞ as n → ∞. Let yn

.
=

xn/∥xn∥∞, then ∥yn∥∞ = 1. We choose a subsequence of xn, xnl
, such that

90

the corresponding subsequence of yn, ynl
is convergent. The existence can be

seen by noting that the solution set of y ∈ R|S|×|A| in ∥y∥∞ = 1 is compact

and any sequence in a compact set has a convergent subsequence. With a

bit of abuse of notation, from now on, I use xn and yn to denote the two

subsequences instead of the original sequences to simplify notations.

By xn ∈ Qs, we have

xn(s, a) = r(s, a)− r∗ · l(s, a) +
∑
s′

p(s′ | s, a)max
a′

xn(s
′, a′),∀ s ∈ S, a ∈ A

f(xn) = r∗.

Divide both two equations by mn, we have

yn(s, a) =
r(s, a)− r∗ · l(s, a)

mn

+
∑
s′

p(s′ | s, a)max
a′

yn(s
′, a′),∀ s ∈ S

f(yn) = f(0) +
r∗ − f(0)

mn

,

where the second equation uses Assumption 3.3(iii). Let y∞ be the point yn

converges to as n→∞. Take n→∞ in the above two equations, we have

y∞(s, a) =
∑
s′,r,l

p(s′, r, l | s, a)max
a′

y∞(s′, a′),∀ s ∈ S (4.20)

f(y∞) = f(0), (4.21)

where the second equation holds because f is continuous (Assumption 3.3(i))

and yn → y∞.

The first equation is the action-value optimality equation of an SMDP

(4.7) with all pair reward rate being f(0) (i.e., w(s, a) = f(0) where w is

defined in (4.17)). Therefore optimal reward rate r∗ for this SMDP is also

f(0). Therefore Qs for this SMDP is defined by (4.20) and (4.21). We can

now apply Corollary 4.1 to conclude y∞ equals to 0. But this contradicts our

assumption of ∥yn∥∞ = 1. Therefore Qs is bounded.

Connectedness

Define a function that takes a q ∈ Q as input and produces an element

in Qs as output. Specifically, let z : Q → Qs with z(q) = q + x1, where

x is the solution of f(q + x1) = r∗. Note that x = (r∗ − f(q))/u because

f(q + x1) = f(q) + xu by Assumption 3.3(ii).

91

Note that z is Lipschitz continuous because z(q) = q + (r∗ − f(q))1/u and

f is Lipschitz continuous by Assumption 3.3(i).

Finally, becauseQ is connected by S&F (see the discussion right after (4.7))

and the image of any continuous function on a connected set is connected, z(Q)
is connected. Note that every point in z(Q) belongs to Qs by definition. Every

point in Qs is also a point in z(Q) (pick any x ∈ Qs, then x ∈ Q and that

z(x) = x). Therefore Qs = z(Q) is connected.
Non-convexity

We now show that Qs is not necessarily convex by showing a counterex-

ample.

Note that MDPs are special cases of SMDPs, we, therefore, show that Qs

is not convex for an MDP. Consider the MDP shown in the left subfigure of

Figure 4.1. This is a communicating MDP. The optimal reward rate is 0.

3

1 2
reward = −2

v(1)

v(2)

v(3)

(−
1

12
,

11
12

,
5

12)

(4,4,4)

(0,0,0)

reward =
−1

(0,1,0)

(3,4,3)

(2,4,3)

(1
2

,
1
2

,
1
2)

(1
4

,
3
4

,
1
4)

(−1,1,0)

Figure 4.1: Illustration example. Left : the example MDP. There are three
states marked by three circles respectively. There are two actions solid and
dashed, both have deterministic effects. Taking action solid at state 3 results
in a reward of −1. Taking action dashed at state 1 results in a reward of −2.
All other rewards are 0. Right : a graphical explanation of V ,Vs. The two
yellow line segments together represent Vs. The red and blue regions together
represent V .

Let s and d denote solid and dashed respectively. Let f(q) =
∑

s,a q(s, a).

Such a choice of f satisfies the assumption on f (Assumption 3.3).

92

By (4.16), for any q ∈ Qs,

q(1, s) + q(1, d) + q(2, s) + q(2, d) + q(3, s) + q(3, d) = 0

and

q(1, s) = 0− 0 + max(q(1, s), q(1, d)) (4.22)

q(1, d) = −2− 0 + max(q(2, s), q(2, d))

q(2, s) = 0− 0 + max(q(2, s), q(2, d))

q(2, d) = 0− 0 + max(q(3, s), q(3, d))

q(3, s) = −1− 0 + max(q(2, s), q(2, d))

q(3, d) = 0− 0 + max(q(1, s), q(1, d)), (4.23)

which implies

q(1, s) ≥ q(1, d)

q(1, d) = −2 + max(q(2, s), q(2, d))

q(2, s) ≥ q(2, d)

q(2, d) = max(q(3, s), q(3, d))

q(3, s) = −1 + max(q(2, s), q(2, d))

q(3, d) = max(q(1, s), q(1, d))

Consider two solutions q1, q2 ∈ Qs defined as follows:

q1(1, s) =
1

2
, q1(1, d) = −

3

2
,

q1(2, s) =
1

2
, q1(2, d) =

1

2
,

q1(3, s) = −
1

2
, q1(3, d) =

1

2
,

q2(1, s) = −
2

3
, q2(1, d) = −

2

3
,

q2(2, s) =
4

3
, q2(2, d) =

1

3
,

q2(3, s) =
1

3
, q2(3, d) = −

2

3
.

93

The midpoint of q1 and q2, q̄
.
= 0.5q1 + 0.5q2, satisfies

q̄(1, s) = − 1

12
, q̄(1, d) = −13

12
,

q̄(2, s) =
11

12
, q̄(2, d) =

5

12
,

q̄(3, s) = − 1

12
, q̄(3, d) = − 1

12
.

Note that

5

12
= q̄(2, d) ̸= max(q̄(3, s), q̄(3, d)) = − 1

12
.

Therefore q̄ does not satisfy the action-value optimality equation (Equation

3.7) and q̄ ̸∈ Qs. Thus Qs is not convex. The proof is finished.

Finally, I would like to illustrate graphically the set Q and Qs in some

way for the readers to better understand these two sets. Unfortunately, even

in a small MDP with just two states and two actions, the dimension of

each element in Q and Qs is four, which is more than what I can illus-

trate graphically. Therefore, I choose to show the maximum action value

for each state in the MDP drawn in the left subfigure of Figure 4.1. Be-

cause there are only three states in the MDP, I can show the maximum

action value for all states graphically. Specifically, I will illustrate the set

V .
= {v ∈ RS : v(s) = maxa q(s, a) ∀s ∈ S for some q ∈ Q}, and Vs .

= {v ∈
RS : v(s) = maxa q(s, a) ∀s ∈ S for some q ∈ Qs}.

One should expect to see that both V and Vs are non-empty, connected, and

closed. In addition, V is unbounded while Vs is bounded. To see these proper-

ties, note that by our construction, V is the solution set of the state-value opti-

mality equation (4.8). Therefore by S&F’s result, V is non-empty, connected,

closed, and bounded. On the other hand, because Qs is non-empty, connected,

closed, bounded by the theorem just proved, Vs is also non-empty, connected,

closed, bounded. To see this point, note that h : R|S|×A → R|S| with h(q)(s)
.
=

maxa q(s, a) is Lipschitz continuous, and the image of a bounded/connected set

through a Lipschitz continuous function is bounded/connected. Furthermore,

for any q ∈ Qs and its associated v, q(s, a) = h′(v)(s, a)
.
=
∑

s′ p(s
′ | s, a)v(s′)

by the definition of v and Qs. Using the continuity of h′ and the fact that

94

Qs closed, we have the pre-image of Qs, Vs, is also closed. Verifying the

non-emptiness is trivial.

Now consider the example MDP, for any q ∈ Q, using v(s) .
= maxa q(s, a) ∀s ∈

S and r̂∗ = 0, we have q(s, a) = r(s, a) +
∑

s′ p(s
′ | s, a)v(s′) for all s. Using

this equation and (4.22)—(4.23), we have, for any q ∈ Q, its associated v

satisfies

v(1) = max(v(1),−2 + v(2)),

v(2) = max(v(2), v(3)),

v(3) = max(v(1),−1 + v(2)),

which implies,

v(1) ≥ −2 + v(2),

v(2) ≥ v(3),

v(3) = max(v(1),−1 + v(2)).

Therefore,

V = {v ∈ R3 | v(1) ≥ −2 + v(2); v(2) ≥ v(3); v(3) = max(v(1),−1 + v(2))}.

Similarly,

Vs = {v ∈ V | 2v(1) + 3v(2) + v(3) = 3}.

The right subfigure of Figure 4.1 shows V and Vs. It can be seen that

V corresponds to the union of two connected rectangles, each of which has

an infinite length and a finite width. It is clear that, in this example, V is

non-empty, connected, closed, unbounded, and non-convex. Therefore this

example verifies S&F’s characterization of V .
Vs corresponds to the two connected yellow line segments in the figure. It is

clear that, in this example, Vs is non-empty, connected, closed, and bounded.

This observation is consistent with my above discussion about the properties

of Vs.
Result 3: Convergence to Qs implies convergence of greedy poli-

cies

95

Lemma 4.3. Assume that an SMDP is weakly communicating and Assump-

tion 3.3 holds. Suppose a sequence of random vectors Qn ∈ Rd converges to Qs

almost surely, let πn be a greedy policy w.r.t. Qn (i.e., πn(s) ∈ argmaxQn(s, ·)),
then, almost surely, πn ∈ ΠD

∗ for sufficiently large n, where ΠD
∗ is the set of

deterministic optimal policies.

Proof. Consider a member q̄ ofQs, any greedy policy w.r.t. the member is opti-

mal. LetA∗
s
.
= {a : q̄(s, a) = maxa′ q̄(s, a

′)}. Choose ϵ(q̄) = mins,a/∈A∗
s
maxa′ q̄(s, a

′)−
q̄(s, a). Denote the ϵ(q̄)-neighborhood of q̄, Gq̄

.
= {q ∈ RS×A : ∥q − q̄∥∞ <

ϵ(q̄)}). Let G
.
= ∪q∈QsGq, then every member of G has its greedy policies

optimal and Qs ⊆ G by construction. Further, G is an open set because it is

a union of open sets.

Because G is an open set, its complement Gc is closed. Note that the

distance between a closed set and a compact set is positive if the two sets are

disjoint. Therefore the distance between Gc and Qs is positive by Theorem 4.1

and Qs ⊆ G. Denote this distance as ϵ > 0. Because Qn converges a.s. to Qs,

there exists a sample-path dependent n0 such that for all n ≥ n0, the distance

between Qn and Qs is less than ϵ, which means that Qn ∈ G for all n ≥ n0.

Because every member of G has its greedy policies optimal, greedy policies of

Qn are optimal for all n ≥ n0.

4.4 Problem Setup

This section presents the problem setup for this chapter. Specifically, this

section presents the definition of options and defines learning and planning

problems with a set of options.

This chapter formalizes an agent’s interaction with its world by a finite

Markov decision process (MDP)M = (S,A,R, d0, p) and a finite set of options

O. Each option o in O has two components: the option’s policy πo : S →
∆(A), and a probability distribution of the option’s termination βo ∈ S →
∆({0, 1}). Here 1 denotes termination and 0 denotes continuing. Let’s use

π(a | s, o) to denote πo(a, s) and β(s, o) to denote βo(s). Sutton et al.’s (1999)

96

options additionally have an initiation set that consists of the states at which

the option can be initiated. To simplify the presentation, we allow all options

to be initiated in all states of the state space; the algorithms and theoretical

results can easily be extended to incorporate initiation from specific states.

Finally, we call a policy that produces the probability of choosing each option

at each state a hierarchical policy.

If an option o is initiated at time t at state St, then the action At is chosen

according to the option’s policy π(· | St, o). The agent then observes the next

state St+1 and reward Rt+1 according to p. The option terminates at St+1

with probability β(St+1, o) or continues with action At+1 chosen according to

π(· | St+1, o). It then possibly terminates in St+2 according to β(St+2, o), and

so on. At an option termination, one way to govern an agent’s behavior is to

choose a new option according to a behavior hierarchical policy b. In this case,

when an option terminates at time t, the next option is selected stochastically

according to b(· | St). The option initiates at St and terminates at St+K , where

K is a random variable denoting the number of time steps the option executed.

At St+K , a new option is again chosen according to b(· | St+K), and so on. We

use the notation Ot to denote whatever option is being executed at time step

t. Note that Ot will remain the same for as many steps as the option executes.

Also, note that actions are special options: every action a is an option o that

terminates after exactly one step (β(s, o) = 1, ∀ s) and has its policy picking

a in every state (π(a | s, o) = 1, ∀ s).

Let Tn denote the time step when the n− 1th option terminates and the

nth option is chosen. Denote the nth option by Ôn
.
= OTn , its starting state by

Ŝn
.
= STn , the cumulative reward during its execution by R̂n+1

.
=
∑Tn+1

t=Tn+1Rt,

the state it terminates in by Ŝn+1
.
= STn+1 , and its length by L̂n+1

.
= Tn+1−Tn.

Let L be the set of all possible lengths of options and R̂ be the set of

all possible cumulative rewards. Note that R and R̂ are not necessarily the

same—while R can be finite, R̂ is typically countably infinite because L is

typically countably infinite. Let p̂(s′, r, l | s, o) be, when executing option o

starting from state s, the probability of terminating at state s′, with cumulative

reward r and length l. Formally, for any s, s′ ∈ S, o ∈ O, r ∈ R̂, l ∈ L, p̂ can

97

be defined recursively in the following way. For each state s ∈ S and each

option o ∈ O,

p̂(s′, r, l | s, o) .
=
∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)

[β(s̃, o)I(s̃ = s′, r̃ = r, l̃ = 1) + (1− β(s̃, o))p̂(s′, r − r̃, l − 1 | s̃, o)], (4.24)

where I is the indicator function.

It is natural to assume that every option terminates eventually regardless

of the start state. This is formally stated in the next assumption.

Assumption 4.1. For each option o ∈ O, when executing the option, there

is a non-zero probability of terminating the option after at most |S| stages,
regardless of the initial states.

Throughout this chapter, the above assumption is assumed to hold. If

the above assumption is not satisfied, there exists an option that does not

terminate after |S| stages, starting from a state. This can only happen if the

option does not terminate starting from that state, because there are only |S|
states and there is a positive probability to reach all states within |S| stages
if they are reachable from the start state.

Proposition 4.2. Under Assumption 4.1, the expectations of the execution

time and cumulative reward of every option at every state exist and are finite.

So do the variances.

Proof. Note that the execution time of each option o ∈ O is the return of

executing this option’s policy in a stochastic shortest path MDP (SSP-MDP,

Bertsekas 2007) with state space S ∪ {⊥} (⊥ is the “terminal” state), action

space A, reward space {0, 1}, and transition function p̂ satisfying:

p̂(s′, 1 | s, a) .
= (1− β(s′, o))

∑
r

p(s′, r | s, a), ∀ s, s′ ̸=⊥, a ∈ A,

p̂(⊥, 1 | s, a) .
=
∑
s′

β(s′, o)
∑
r

p(s′, r | s, a), ∀ s ̸=⊥, a ∈ A,

p̂(⊥, 0 |⊥, a) .
= 1, ∀ a ∈ A.

98

Also, note that by Assumption 4.1, the option’s policy is a ’proper’ policy

(Bertsekas 2007) in the SSP-MDP. That is, when using the policy, the SSP-

MDP reaches the terminal state eventually regardless of the start state. Be-

cause the expected value of every proper policy of an SSP-MDP exists and is

finite (Section 2.1 of Bertsekas (2007)), the expected value of the execution

time of option o exists.

The variance always exists for any random variable. The variance is finite

because there is a non-zero probability of terminating the option after at most

|S| stages (Assumption 4.1).

Similarly, the cumulative reward of each option o is the return of executing

o’s policy in a SSP-MDP with state space S ∪ {⊥}, action space A, reward
space R∪ {0} and transition function p̂ satisfying:

p̂(s′, r | s, a) .
= (1− β(s′, o))p(s′, r | s, a), ∀ s, s′ ̸=⊥, a ∈ A

p̂(⊥, r | s, a) .
=
∑
s′

β(s′, o)p(s′, r | s, a), ∀ s ̸=⊥, a ∈ A

p̂(⊥, 0 |⊥, a) .
= 1, ∀ a ∈ A.

Again the option’s policy is proper and the expected value of the cumulative

reward of option o exists. The variance is finite because the reward space R
is finite and there is a non-zero probability of terminating the option after at

most |S| stages (Assumption 4.1).

An MDP (S,A,R, d0, p) and a set of options O together result in an SMDP

(S,O, R̂,L, d0, p̂) given that Assumption 4.1 holds. Let Π̂ denote the set of

stationary hierarchical policies. Given a hierarchical policy µ ∈ Π̂, the reward

rate achieved by the hierarchical policy in the MDP, starting from state s,

denoted as r̂(µ, s), is exactly µ’s reward rate in the resulting SMDP, starting

from state s. The best possible reward rate achieved by a hierarchical policy,

denoted as r̂∗ is the optimal reward rate in the resulting SMDP (assume that

the SMDP is weakly communicating). Given a hierarchical policy µ ∈ Π̂, we

call

qµ(s, o)
.
= lim

n→∞

1

n

n∑
k=1

k∑
t=1

Eµ[Rt − r̂(µ) | S0 = s,O0 = o,O1:t−1 ∼ µ].

99

the differential option-value function of µ and denote it as q̂µ. Finally, the

SMDP’s action-value evaluation equation is

q(s, o) = r(s, o)− r̄ · l(s, o) +
∑
s′

p̂(s′ | s, o)
∑
o′

µ(o′ | s′)q(s′, o′), (4.25)

where

r̂(s, o)
.
=
∑
s′,r,l

p̂(s′, r, l | s, o)r, (4.26)

l̂(s, o)
.
=
∑
s′,r,l

p̂(s′, r, l | s, o)l, (4.27)

p̂(s′ | s, o) .
=
∑
r,l

p̂(s′, r, l | s, o) (4.28)

are the expected reward and length and state dynamics for each transition.

The SMDP’s action-value optimality equation is

q(s, o) = r(s, o)− r̄ · l(s, o) +
∑
s′

p̂(s′ | s, o)max
o′

q(s′, o′). (4.29)

Given an MDP, a set of options, and a unichain hierarchical policy µ ∈ Π̂,

the goal of prediction problems is to identify r̂(µ) and q̂µ. Given a weakly

communicating MDP and a set of options that result in a weakly communi-

cating SMDP, the goal of control problems is to find a policy that achieves r̂∗.

Denote the set of deterministic optimal policies as Π̂D
∗ . For both prediction

and control problems, this chapter considers off-policy learning problems and

planning problems. In off-policy learning problems, algorithms may follow a

hierarchical policy that can be different from the agent’s learned hierarchical

policy. Planning problems in this chapter include those that use standard ac-

tion models and more jumpy option models. More detail of these models will

be provided when needed.

4.5 Inter-Option (SMDP) Algorithms

This section introduces inter-option prediction and control algorithms and

the associated convergence theories.

Inter-option algorithms operate on a sequence of option transitions. At

the option-transition level, interacting with an MDP by choosing from a set of

100

options and executing them is equivalent to interacting with the SMDP result-

ing from the MDP and the set of options. Therefore inter-option algorithms

are also SMDP algorithms. In this sense, the algorithms introduced in this

section extend the differential learning and planning algorithms from MDPs

to SMDPs.

I begin with the control learning algorithm and then move on to the plan-

ning and prediction algorithms.

Learning algorithms operate on a stream of experience. Inter-option algo-

rithms operate on a stream of option transitions: . . . , Ŝn, Ôn, R̂n+1, L̂n+1, Ŝn+1, . . .

generated by following some hierarchical behavior policy that chooses options.

Recall Differential Q-learning introduced in Section 3.5:

Qt+1(St, At)
.
= Qt(St, At) + ανt(St,At)δt,

Qt+1(s, a)
.
= Qt(s, a),∀(s, a) ̸= (St, At),

R̄t+1
.
= R̄t + ηανt(St,At)δt,

where Qt is a vector of size |S × A| that approximates a solution of q in

the action-value optimality equation for MDPs, R̄t is a scalar estimate of

the optimal reward rate, {αn}n≥1 is a step–size sequence, νt(St, At) is the

number of times the (St, At) pair has been updated up to and include time

step t, η is a positive constant, and δt is the temporal-difference (TD) error:

δt
.
= Rt − R̄t +maxaQt(St+1, a)−Qt(St, At). The most straightforward inter-

option extension of Differential Q-learning is:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + ανn(Ŝn,Ôn)

δn, (4.30)

Qn+1(s, o)
.
= Qn(s, o), ∀(s, o) ̸= (Ŝn, Ôn),

R̄n+1
.
= R̄n + ηανn(Ŝn,Ôn)

δn, (4.31)

where Qn is a vector of size |S × O| that approximates a solution of q in (4.29),

R̄n is a scalar estimate of r̂∗, νn(Ŝn, Ôn) is the number of times the (Ŝn, Ôn)

pair has been updated up to and include step n, and δn is the TD error:

δn
.
= R̂n − L̂nR̄n +max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (4.32)

101

Such an algorithm is prone to instability because the sampled option length

L̂n can be quite large, and any error in the reward-rate estimate R̄n gets

multiplied by the potentially-large option length. Using small step sizes might

make the updates relatively stable, but at the cost of slowing down learning

for options of shorter lengths. This could make the choice of step sizes quite

critical, especially when the range of the options’ lengths is large and unknown.

Alternatively, inspired by Schweitzer (1971), I propose scaling the updates by

the estimated length of the option being executed:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + ανn(Ŝn,Ôn)

δn/Ln(Ŝn, Ôn), (4.33)

Qn+1(s, o)
.
= Qn(s, o), ∀(s, o) ̸= (Ŝn, Ôn),

R̄n+1
.
= R̄n + ηανn(Ŝn,Ôn)

δn/Ln(Ŝn, Ôn), (4.34)

where Ln(·, ·) comes from an additional vector of estimates L : S × O → R

that approximates the expected lengths of state-option pairs, updated from

experience by:

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βνn(Ŝn,Ôn)

(L̂n − Ln(Ŝn, Ôn)),

Ln+1(s, o)
.
= Ln(s, o), ∀(s, o) ̸= (Ŝn, Ôn), (4.35)

where βn is an another step–size sequence. The TD-error δn in (4.33) and

(4.34) is

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n +max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn), (4.36)

which is different from (4.32) with the estimated expected option length Ln(Ŝn, Ôn)

being used instead of the sampled option length L̂n. Equations 4.33–4.36 make

up the inter-option Differential Q-learning algorithm. The pseudo-code of this

algorithm is provided in Algorithm 7.

Remark: In the algorithm, Ln(s, o) is used to estimate the expected option

length l̂(s, o). The way I choose to update Ln is just by doing a simple sample

average. One could, of course, use any method, as long as Ln(s, o) converges

a.s. to the expected option length l̂(s, o) for each s, o.

Remark: Q0 and R0 can be initialized arbitrarily but L0 can not be

initialized to 0 because it is the divisor for both (4.33) and (4.34) for the first

102

update. I will assume that L0 > 0. In this way, no elements in Ln will reach a

value of zero for all n ≥ 0 because an option’s length is at least one (L̂n ≥ 1).

Remark: The scaling factor in the algorithm needs to be the expected

option length Ln(Ŝn, Ôn) and not the sampled option length L̂n. If we use

the sampled option length L̂n as the scaling factor, the update rules of the

algorithm become

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + ανn(Ŝn,Ôn)

δn/L̂n, (4.37)

R̄n+1
.
= R̄n + ηανn(Ŝn,Ôn)

δn/L̂n. (4.38)

The above two updates can not guarantee convergence to the desired values

because E[δn/L̂n] = 0 does not imply that the Bellman equation E[δn] = 0 is

satisfied.

Remark: There is yet another way of extending Differential Q-learning to

the inter-option algorithm that appears to work properly at first glance but

does not actually. This way uses, for each option, the average-reward rate per

step instead of the total reward as the reward of the option. In particular, such

an extension use update rules (4.30) and (4.31), but with TD error defined as:

δ′n
.
= R̂n/L̂n − R̄n +max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn)

Unfortunately, such an extension can not guarantee convergence to a desired

point. Specifically, the extension, if converges, converges to a solution of

E[δ′n] = 0, which is, again, not necessarily a solution of the Bellman equa-

tion E[δn] = 0 (4.29).

We are now ready to present the convergence result of inter-option Differ-

ential Q-learning. This result shows that the option-length estimates Ln in

inter-option Differential Q-learning converge to the expected lengths l̂. It also

shows that the reward-rate estimate R̄n converges to the optimal reward rate

estimate r̂∗, and that the option-value estimates Qn converges to the set of

solutions of (4.29) and

r̂∗ = η
∑

q − η
∑

Q0 + R̄0. (4.39)

Denote this set as Q̂∞. By Theorem 4.1, Q̂∞ is non-empty, closed, bounded,

connected and possibly non-convex.

103

Algorithm 7: Inter-option Differential Q-learning

Input: Behavioral policy b
Algorithm parameters: step-size sequences αn, βn, parameter η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Initialize L(s, o) ∀ s ∈ S, o ∈ O to be any value greater than 0
3 ν(s, o)← 0 ∀s, o
4 Obtain initial S
5 while still time to train do

6 Initialize L̂← 0, R̂← 0, Stmp ← S
7 O ← option sampled from b(· | S)
8 ν(S,O)← ν(S,O) + 1
9 do

10 Sample primitive action A ∼ π(· | S,O)
11 Take action A, observe R, S ′

12 L̂← L̂+ 1

13 R̂← R̂ +R
14 S ← S ′

15 while O doesn’t terminate in S ′

16 S ← Stmp

17 L(S,O)← L(S,O) + βν(S,O)

(
L̂− L(S,O)

)
18 δ ← R̂− R̄ · L(S,O) + maxo Q(S ′, o)−Q(S,O)
19 Q(S,O)← Q(S,O) + αν(S,O)δ/L(S,O)
20 R̄← R̄ + ηαν(S,O)δ/L(S,O)
21 S ← S ′

22 end
23 return Q

Theorem 4.2. Given an MDP and a set of options, if the resulting SMDP

is weakly communicating, Assumption 3.5 (i) holds for both {αn} and {βn},
Assumption 3.5 (ii) holds for {αn}, Assumption 3.6 (with I = S × O) holds

for {αn}, and L0(s, o) > 0 for all s ∈ S, o ∈ O, inter-option Differential Q-

learning (4.33)–(4.36) converges almost surely, 1) Ln to l̂, 2) R̄n to r̂∗, 3) Qn

to a sample-path dependent compact connected subset of Q̂∞, and 4) almost

surely, µn ∈ ΠD
∗ for sufficiently large n, where µn is any greedy policy w.r.t.

Qn.

The proof of this theorem will be presented at the end of this section.

If inter-option Differential Q-learning is applied to a simulated experience

generated from an option model of the world, then it becomes a planning

104

algorithm, which we call inter-option Differential Q-planning. Formally, the

option model is a function p̃ : S × O → ∆(S × R̂ × L), analogous to p̂, that,

like p̂, sums to 1:
∑

s′,r,l p̃(s
′, r, l | s, o) = 1 for all s, o. A model SMDP can be

thus constructed using p̃ and S,O, R̂,L, d0. Given this model SMDP, we can

define l̃, Q̃∞, r̃∗, and Π̃D
∗ in the same way as l̂, Q̂∞, r̂∗, Π̂

D
∗ but for the model

SMDP.

The simulated transitions are generated as follows: at each planning step

n, the agent arbitrarily chooses a state S̃n and an option Õn, and applies p̃ to

generate a simulated resulting state and reward S̃ ′
n, R̃n, L̃n ∼ p̃(·, ·, · | S̃n, Õn).

Like inter-option Differential Q-learning, inter-option Differential Q-planning

maintains a table of value estimates Qn : S ×O → R, a table of option-length

estimates Ln : S × O → R, and a reward-rate estimate R̄n. At each plan-

ning step n, these estimates are updated by (4.33)–(4.36), just as in inter-

option Differential Q-learning, except now using S̃n, Õn, R̃n, L̃n, S̃
′
n instead of

Ŝn, Ôn, R̂n+1, L̂n, Ŝn+1.

Theorem 4.3. Under the same assumptions as in Theorem 4.2 (except now

for the model SMDP corresponding to p̃ rather than p̂), inter-option Differen-

tial Q-planning converges almost surely, 1) Ln to l̃, 2) R̄n to r̃∗, 3) Qn to a

sample-path dependent compact connected subset of Q̃∞, and 4) almost surely,

µn ∈ Π̃D
∗ for a sufficiently large n, where µn is any greedy policy w.r.t. Qn.

Remark: If the model SMDP produces the expected option length instead

of the sample option length, we may directly use the option length produced

by the model as Ln, the estimated option lengths, and remove the update

rule that estimates Ln (Equation 4.35) from the update rules of inter-option

Differential Q-planning, therefore simplifying this algorithm.

Our prediction learning algorithm, called inter-option Differential Q-evaluation-

learning, also has update rules (4.33–4.35) but with the TD error:

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n +

∑
o

µ(o | Ŝn+1)Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (4.40)

The pseudo-code of this algorithm is provided in Algorithm 8.

105

Algorithm 8: Inter-option Differential Q-evaluation-learning

Input: Behavioral policy b, target policy µ
Algorithm parameters: step-size sequences αn, βn, parameter η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Initialize L(s, o) ∀ s ∈ S, o ∈ O to be any value greater than 0
3 ν(s, o)← 0 ∀s, o
4 Obtain initial S
5 while still time to train do

6 Initialize L̂← 0, R̂← 0, Stmp ← S
7 O ← option sampled from b(· | S)
8 ν(S,O)← ν(S,O) + 1
9 do

10 Sample primitive action A ∼ π(· | S,O)
11 Take action A, observe R, S ′

12 L̂← L̂+ 1

13 R̂← R̂ +R
14 S ← S ′

15 while O doesn’t terminate in S ′

16 S ← Stmp

17 L(S,O)← L(S,O) + βν(S,O)

(
L̂− L(S,O)

)
18 δ ← R̂− R̄ · L(S,O) +

∑
o µ(o | S ′)Q(S ′, o)−Q(S,O)

19 Q(S,O)← Q(S,O) + αν(S,O)δ/L(S,O)
20 R̄← R̄ + ηαν(S,O)δ/L(S,O)
21 S ← S ′

22 end
23 return Q

If the target policy is unichain in the SMDP, the solution of (4.25) and

r̂(µ)− R̄0 = η(
∑

q −
∑

Q0) (4.41)

is unique. Denote this solution as q̂∞. The following theorem shows that our

prediction learning algorithm converges to q̂∞.

Theorem 4.4. Given an MDP and a set of options, if the hierarchical policy µ

is unichain in the resulting SMDP, Assumption 3.5(i) holds for both {αn} and
{βn}, Assumption 3.5(ii) holds for {αn}, Assumption 3.6 (with I = S × O)
holds for {αn}, and L0(s, o) > 0 for all s ∈ S, o ∈ O, inter-option Differential

Q-evaluation-learning (4.33–4.35, 4.40) converges almost surely, 1) Ln to l̂,

2) R̄n to r̂(µ), and 3) Qn(s, o) to q̂∞.

106

Just like inter-option Differential Q-planning, the planning version of inter-

option Q-evaluation-learning uses simulated transitions. A similar convergence

result for inter-option Q-evaluation-planning can be obtained as follows. De-

fine q̃∞ and r̃(µ) the same way as the q̂∞ and r̂(µ) but for the model SMDP

instead of SMDP resulting from the real MDP and the given set of options.

Theorem 4.5. Under the same assumptions as in Theorem 4.4 (except now

for the model SMDP corresponding to p̃ rather than p̂), inter-option Differen-

tial Q-evaluation-planning converges almost surely, 1) Ln to l̃, 2) R̄n to r̃(µ),

and 3) Qn(s, o) to q̃∞.

The rest of this section shows proof for Theorem 4.2. The proofs of Theo-

rems 4.3, 4.4, 4.5 are very similar and are therefore omitted.

Following a similar transformation of Differential Q-learning to a single

update rule, we can transform (4.33)–(4.36) to the following update rule:

Qn+1(Ŝn, Ôn) = Qn(Ŝn, Ôn)

+ ανn(Ŝn,Ôn)

(
R̂n+1 − Ln(Ŝn, Ôn)f(Qn) + maxo′ Qn(Ŝn+1, o

′)−Qn(Ŝn, Ôn)

Ln(Ŝn, Ôn)

)
,

Qn+1(Ŝn, Ôn) = Qn(Ŝn, Ôn), (4.42)

where f : RS×O → R is defined as follows. For any q ∈ RS×O,

f(q)
.
= η

∑
q − η

∑
Q0 + R̄0. (4.43)

We now show that (4.42) is a special case of the General RVI Q’s update

(3.9). To see this point, we hypothesize three |S ×O|-sized random processes

{S ′
n}, {R′

n}, {L′
n} such that for any n, s, o, S ′

n(s, o), R
′
n(s, o), L

′
n(s, o) ∼ p(·, ·, · |

s, o). Now consider the stream of experience . . . , Ŝn, Ôn, R̂n+1, L̂n+1, Ŝn+1,

Then we have Ŝn+1 = S ′
n(Sn, On), R̂n+1 = R′

n(Sn, On), L̂n+1 = L′
n(Sn, On).

107

Equation 3.9 reduces (4.42) by choosing i = (s, o), Yn = {(Ŝn, Ôn)},

r(i) = r̂(s, o)/l̂(s, o),

g(Qn)(i) =

∑
s′ p̂(s

′ | s, o)maxo′ Qn(s
′, o′)

l̂(s, o)
+

l̂(s, o)− 1

l̂(s, o)
Qn(s, o),

Mn+1(i) =
R′

n(s, o)− r̂(s, o)

l̂(s, o)

+
maxo′ Qn(S

′
n(s, o), o

′)−∑s′ p̂(s
′ | s, o)maxo′ Qn(s

′, o′)

l̂(s, o)
,

ϵn+1(i) =
R′

n(s, o)− Ln(s, o)f(Qn) + maxo′ Qn(S
′
n(s, o), o

′)−Qn(s, o)

Ln(s, o)

− R′
n(s, o)− l̂(s, o)f(Qn) + maxo′ Qn(S

′
n(s, o), o

′)−Qn(s, o)

l̂(s, o)
.

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for g(q) easily.

2. Assumption 3.2 is satisfied. Note that (3.8) reduces to (4.29) in the

current setting. Because the MDP M is weakly communicating, r# =

r̂∗ is the only solution of r̄ in (4.29). Furthermore, there are multiple

solutions of q in (4.29)

3. Assumption 3.3 can be verified easily for f defined in (4.43)

4. Assumption 3.4 holds because of Corollary 4.1.

5. Assumptions 3.5, 3.6 are given in the theorem statement.

6. Assumption 3.7 (i) holds because the state, option, and action spaces

are all finite.

7. Assumption 3.7 (ii) holds. Note that L̂n has a finite variance by Proposi-

tion 4.2, therefore standard stochastic approximation result (Blum 1954)

can be applied to show that Ln converges to l̂ almost surely given the

assumption on βn. Because Ln > 0 (note that L0 > 0 and options ex-

ecution time steps are always no less than a single time step) and ϵn

108

is a continuous function of Ln for all Ln > 0, by continuous mapping

theorem, ϵn converges to 0 almost surely.

All the assumptions required by Theorem 3.1 are verified, thus a.s. Qn →
Q#, which is Q̂∞ in the current setting. The rest of the proof follows Lemma 4.3.

4.6 Inter-Option Experiments

This section empirically studies both inter-option prediction and control

learning algorithms introduced in the previous section.

Throughout this chapter, the test domain is again the four-room domain

(c.f. Figure 3.1), except that in this chapter for different experiments, different

rewarding states are chosen. See Figure 4.2 for a visualization of the four-room

domain used in this chapter. For each experiment, among states G1, G2, and

G3, only one of them is the rewarding state, and the other two states are

just normal states. All states’ rewards are zero, except for the rewarding

state, which has a reward of one regardless of the action taken at the state.

In addition, the dynamics for all states are normal except for the rewarding

state—taking any action from the rewarding state moves the agent to the

yellow cell.

In addition to the four primitive actions, the agent has eight options that

G2

G1

G3

Figure 4.2: A continuing variant of the four-room domain where the task is to
repeatedly go from the yellow start state to one of the three green rewarding
states. There is one rewarding state per experiment, chosen to demonstrate
particular aspects of the proposed algorithms. Also shown is an option’s policy
to go to the upper hallway cell.

109

take it from a given room to the hallways adjoining the room. The arrows in

Figure 4.2 illustrate the policy of one of the eight options. For this option, the

policy in the empty cells (not marked with arrows) is to uniformly randomly

pick among the four primitive actions. The termination probability is 0 for all

cells with arrows and 1 for the empty cells. The other seven options are defined

similarly. Denote the set of primitive actions as A and the set of hallway

options as H. Including the primitive actions, the agent has 12 options in

total.

The first set of experiments is to show that inter-option Differential Q-

evaluation-learning can learn the reward rate and the relative values well,

confirming Theorem 4.4. For this first set of experiments, I used G1 as the

rewarding state. The target policy is an optimal hierarchical policy, which

repeatedly moves the agent from the starting state to the rewarding state

with the fewest number of steps. The shortest path to G1 from the starting

state takes 16 time steps, and there is an extra step taking the agent back to

the yellow cell from G1, hence the best possible reward rate for this task is

1/17 ≈ 0.0588. For each state, the behavior policy picks the target policy’s

action w.p. 0.9 and picks a random action w.p. 0.1. For each of the two

step-size sequences αn and βn, I tested five choices: 2−x, x ∈ {1, 3, 5, 7, 9}. In

addition, I tested five choices of η : 10−x, x ∈ {0, 1, 2, 3, 4}. Q and R̄ were

initialized to 0, L to 1. Each parameter setting was run for 500, 000 steps and

repeated 30 times.

Just as in Section 3.4, the error metrics here are

Reward Rate Errort
.
= |r̂∗ − R̄t|,

where R̄t
.
= R̄n for all Tn ≤ t < Tn+1, and

Relative Value Errort
.
= |(q̂∞(St, Ot)− q̂∞(s0, o0))− (Qn(St, Ot)−Qn(s0, o0))|,

where Qt
.
= Qn for all Tn ≤ t < Tn+1.

The learning curves of the two errors are shown in Figure 4.3a and Fig-

ure 4.3b, with parameter setting chosen to be the best asymptotically (smallest

errors averaged over the last 10, 000 steps). The sensitivity curves of the two

110

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Inter-option prediction

(a) Each point marks the reward rate er-
ror averaged over the past 2, 000 steps.
Parameters were chosen to be to mini-
mize errors over the last 10, 000 steps.
Here these parameters are α = 2−1, η =
10−4, β = 2−9.

250000 500000
Total Steps

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Inter-option prediction

(b) Each point marks the relative value
error averaged over the past 2, 000 steps.
Parameters were chosen to be to mini-
mize errors over the last 10, 000 steps.
Here these parameters are α = 2−1, η =
10−3, β = 2−3

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(c) Each point is the reward rate error
averaged over the entire 500, 000 steps.
The error bars denote one standard er-
ror. The x-axis is the step size α.
β = 1/2. Each curve corresponds to one
choice of η.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(d) Each point is the relative value error
averaged over the entire 500, 000 steps.
The error bars and the x-axis have the
same meaning as in the left plot.

Figure 4.3: Plots showing learning curves and parameter studies for inter-
option Differential Q-evaluation-learning in the continuing four-room domain
when the goal was to go to G1. The algorithm used the set of primitive actions
and the set of hallway options O = A+H.

errors w.r.t. α and η with β = 1/2 are shown in Figure 4.3c and Figure 4.3d.

It turns out the algorithm is not sensitive to the choice of β in this experiment.

The sensitivity curves of the two errors with other choices of β are deferred to

Section B.1.

The learning curves show that the algorithm indeed learned the reward rate

111

and the differential value function (up to an additive constant) of the target

policy, when following a different behavior policy. The sensitivity curves show

that the prediction errors were not sensitive to the choice of η for a relatively

large η (≥ 10−2 in this experiment).

In the second experiment, I tested inter-option Differential Q-learning with

three different sets of options, O ∈ {A,H,A+H}. This experiment is to show

that learning with a set of hallway options can be faster than it with only

primitive actions. The task is again to reach the green cell G1, which the

agent can achieve with a combination of options and primitive actions. The

tested parameters are the same as those used in inter-option Differential Q-

evaluation-learning experiments. Figure 4.4 shows a typical learning curve for

each of the three sets of options, with α = 2−3, β = 2−1, and η = 10−1.

The learning curves in Figure 4.4 show that the agent achieved a relatively

stable reward rate after 300, 000 steps in all three cases. Using just primitive

actions A, the learning curve rose the slowest, indicating that hallway options

indeed helped the agent reach the goal faster. Using just primitive actions

or using primitive actions and hallway options, the learning curve achieved

the optimal reward rate of 0.0588. But solely using the hallway options H
did not achieve the optimal reward rate as the goal G1 is not a hallway state.

These observations mirror those by Sutton, Precup, and Singh (1999) with the

discounted formulation.

The third set of experiments is to study the parameter sensitivity of inter-

option Differential Q-learning. To this end, I performed a parameter study

for O = A + H w.r.t. α and η, with β = 2−1 (left three subfigures of Fig-

ure 4.5). It turns out the algorithm was not sensitive to the choice of β in this

experiment and the sensitivity curves w.r.t. other choices of β are deferred to

Section B.1. I also tested Gosavi’s (2004) algorithm as a baseline. I chose

not to compare the proposed algorithms in this section with Sutton et al.’s

(1999) discounted versions because the discounted and average-reward prob-

lem formulations are different; comparing the performance of their respective

solution methods would be inappropriate and difficult to interpret. Gosavi’s

(2004) algorithm estimates the reward rate by tracking the cumulative reward

112

C̄ obtained by the options and dividing it by another estimate T̄ that tracks

the length of the options. If the nth option executed is a greedy choice, then

these estimates are updated using:

C̄n+1
.
= C̄n + βn(R̂n − C̄n),

T̄n+1
.
= T̄n + βn(L̂n − T̄n),

R̄n+1
.
= C̄n+1/T̄n+1.

When Ôn is not greedy, R̄n+1 = R̄n. The option-value function is updated

with (4.30) using δn as defined in (4.32). αn and βn are two step-size sequences.

The sensitivity of this algorithm with O = A+H is shown in the right three

subfigure of Figure 4.5.

The sensitivity curves of inter-option Differential Q-learning (left three

subfigures of Figure 4.5) indicate that, in this four-room domain, the algorithm

was not sensitive to parameter η unless η was too small, performed well for

a wide range of step sizes α, and showed low variance across different runs.

Compared to inter-option Differential Q-learning, Gosavi’s (2004) algorithm

has one less parameter, but the speed of policy learning was found to be more

sensitive to the values of both its step-size parameters. In addition, both errors

are much larger, compared with inter-option Differential Q-learning. The error

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Hallway Options + Actions

Actions

Options

Figure 4.4: Plots showing some learning curves and the parameter study of
inter-option Differential Q-learning on the continuing four-room domain when
the goal was to go to G1. A point on the solid line denotes the reward rate over
the last 2000 time steps and the shaded region indicates one standard error.
The behavior using the three different sets of options was as expected.

113

Algorithm 9: Gosavi’s (2004) SMDP algorithm

Input: Behavioral policy b’s parameters (e.g., ϵ for ϵ-greedy)
Algorithm parameters: step-size sequences αn, βn

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄, C, T arbitrarily (e.g., to zero);
2 ν(s, o)← 0 ∀s, o
3 N ← 0
4 Obtain initial S
5 while still time to train do

6 Initialize L̂← 0, R̂← 0, Stmp ← S
7 O ← option sampled from b(· | S)
8 ν(S,O)← ν(S,O) + 1
9 do

10 Sample primitive action A ∼ π(· | S,O)
11 Take action A, observe R, S ′

12 L̂← L̂+ 1

13 R̂← R̂ +R
14 S ← S ′

15 while O doesn’t terminate in S ′

16 S ← Stmp

17 δ ← R̂− R̄ · L̂+maxo Q(S ′, o)−Q(S,O)
18 Q(S,O)← Q(S,O) + αν(S,O)δ
19 if O ∈ argmaxQ(S, ·) then
20 C ← C + βN(R̂− C)

21 L← L+ βN(L̂− L)
22 R̄← C/L

23 end
24 S ← S ′

25 N ← N + 1

26 end
27 return Q

bars were also generally larger, suggesting that the variance across different

runs was higher.

To conclude, the experiments with the continuing four-room domain show

that inter-option Differential Q-learning indeed finds the optimal policy given

a set of options, in accordance with Theorem 4.2. In addition, its performance

seems more robust to the choices of parameters and also learns the reward rate

and differential action-value function better compared to the baseline.

114

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

β = 100

β = 10−1

β = 10−2
β = 10−3

β = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1η = 10−2

η = 10−3
η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

β = 100

β = 10−1
β = 10−2

β = 10−3

β = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2
η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

β = 100

β = 10−1
β = 10−2
β = 10−3

β = 10−4

Figure 4.5: Parameter studies showing our inter-option Differential Q-
learning’s rate of learning performed well for a wider range of parameters,
compared to the baseline algorithm (Gosavi 2004). O = A +H and β = 2−1

in all six subfigures. The left three subfigures show the sensitivity curves of
inter-option Q-learning’s reward rate achieved by its learned policy, reward
rate error, and relative value error. The right three subfigures show the same
quantities but for Gosavi’s (2004) algorithm. The experiment setting and the
plot axes are the same as mentioned in Figure 4.3’s caption.

115

4.7 Intra-Option Value Learning and Planning

Algorithms

This section introduces intra-option value learning and planning algorithms.

The objectives are the same as that of inter-option value learning algorithms.

Intra-option algorithms learn from every transition St, At, Rt+1, St+1 that may

not even be generated by following a hierarchical policy. Moreover, intra-

option algorithms also make updates for all options, including ones that may

potentially never be executed.

Intra-option prediction and control algorithms are stochastic approxima-

tion algorithms solving the intra-option evaluation and optimality equations

respectively. Intra-option prediction methods find the reward rate and the

differential option-value function of a hierarchical policy by solving the intra-

option evaluation equation.

q(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(r − r̄ + uq(s′, o)), ∀ s ∈ S, o ∈ O,

(4.44)

where

uq(s′, o) = uq
µ(s

′, o)
.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o)

∑
o′

µ(o′ | s′)q(s′, o′).

(4.45)

Intra-option control methods find an optimal policy by solving the intra-

option optimality equation (4.44), where

uq(s′, o) = uq
∗(s

′, o)
.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o)max

o′
q(s′, o′). (4.46)

The following proposition shows that the set of solutions of the SMDP

evaluation/optimality equation is the same as that of the intra-option evalua-

tion/optimality equation.

Proposition 4.3. Any solution of (4.25) is also a solution of (4.44) with uq

defined in (4.45) and vice versa. Any solution of (4.29) is also a solution of

(4.44) with uq defined in (4.46) and vice versa.

116

Proof. We only show the equality for optimality equations. The equality for

evaluation equations can be derived similarly.

q(s, o)

=
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̄ +max
o′

q(s′, o′))

=
∑
s′,r,l

∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)[β(s̃, o)I{s′ = s̃, r = r̃, l = 1}

+ (1− β(s̃, o))p̂(s′, r − r̃, l − 1 | s̃, o)](r − lr̄ +max
o′

q(s′, o′)) By (4.24)

=
∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)
(
β(s̃, o)(r̃ − r̄ +max

o′
q(s̃, o′))

+ (1− β(s̃, o))
∑
s′,r,l

p̂(s′, r, l | s̃, o)](r + r̃ − (l + 1)r̄ +max
o′

q(s̃, o′))
)
.

Note that
∑

s′,r,l p̂(s
′, r, l | s′, o)](r + r̃ − (l + 1)r̄ + maxo′ q(s̃, o

′)) = r̃ − r̄ +∑
s′,r,l p̂(s

′, r, l | s′, o)(r − lr̄ +maxo′ q(s̃, o
′)) = r − r̄ + q(s̃, o). Therefore,

q(s, o) =
∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)(
r − r̄ + β(s̃, o)max

o′
q(s̃, o′) + (1− β(s̃, o))q(s̃, o)

)
=
∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)(r − r̄ + uq
∗(s̃, o)).

Therefore any solution of (4.29) must be a solution of (4.44) and (4.46) and

vice versa.

I now start to introduce the intra-option algorithms, starting from the

control learning algorithm.

Intra-option learning algorithms operate on a stream of experience gener-

ated by following some history-dependent behavior policy that chooses actions

bt : Ht → A, where Ht is the set of all possible histories up to time step t. Here

the history up to time step t includes all the information revealed up to time

step t, including states and rewards observed up to time step t, and all actions

and options (if they are used) chosen before time step t. This broader class of

experience includes the experience generated by following a hierarchical policy

117

as a special case. Let St denote the state and Rt denote the reward observed

at time step t, and let At denote the action chosen at time step t.

Both the prediction and control algorithms maintain a vector of estimates

Q(s, o) and a scalar estimate R̄, just like our inter-option algorithms. How-

ever, unlike inter-option algorithms, intra-option algorithms need not maintain

an estimator for option lengths (L) because they make updates after every

transition. Our control algorithm, called intra-option Differential Q-learning,

updates the estimates Q and R̄ by:

Qt+1(St, o)
.
= Qt(St, o) + ανt(St,o)ρt(o)δt(o), ∀ o ∈ O, (4.47)

R̄t+1
.
= R̄t + η

∑
o∈O

ανt(St,o)ρt(o)δt(o), (4.48)

where αn is a step-size sequence, ρt(o)
.
= π(At | St, o)/b(At | Ht) for all t ≥ 0

is the importance sampling ratio, and:

δt(o)
.
= Rt+1 − R̄t + uQt

∗ (St+1, o)−Qt(St, o). (4.49)

Similar to Assumption 3.9, I will assume the following.

Assumption 4.2. There exists some positive δ such that if π(a | s, o) > 0,

then b(a | h) > δ for all h ∈ Ht ending with s, t ≥ 0.

This assumption guarantees that ρt(o) is bounded above by a finite number.

Remark: The intra-option learning methods introduced in this section can

be used with options having stochastic policies. This is possible with the use

of the important sampling ratios as described above. Sutton et al.’s (1999)

discounted intra-option learning methods were restricted to options having

deterministic policies.

Theorem 4.6. Given an MDP and a set of options, if the resulting SMDP is

weakly communicating, Assumptions 3.5, 3.6 (with I = S ×O), and Assump-

tion 4.2 hold, intra-option Differential Q-learning (4.47)—(4.49) converges al-

most surely, 1) R̄t to r̂∗, 2) Qt to a sample-path dependent compact connected

subset of Q̂∞, and 3) almost surely, µt ∈ Π̂D
∗ for sufficiently large t, where µt

is a greedy policy w.r.t. Qt.

118

Algorithm 10: Intra-option Differential Q-learning

Input: Behavioral policy b’s parameters (e.g., ϵ for ϵ-greedy)
Algorithm parameters: step-size sequence αn, parameter η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 ν(s, o)← 0 ∀s, o
3 Obtain initial S
4 H ← S
5 while still time to train do
6 Sample primitive action A ∼ b(· | H)
7 Take action A, observe R, S ′

8 ∆ = 0
9 for all options o do

10 ν(S, o)← ν(S, o) + 1
11 ρ← π(A | S, o)/b(A | H)

12 δ ← R− R̄ +
((

1− β(S ′, o)
)
Q(S ′, o) +

β(S ′, o)maxo′ Q(S ′, o′)
)
−Q(S, o)

13 Q(S, o)← Q(S, o) + αν(S,o)ρδ
14 ∆← ∆+ ηαν(S,o)ρδ

15 end
16 R̄← R̄ +∆
17 S ← S ′

18 H ← (H,A,R, S ′)

19 end
20 return Q

If intra-option Differential Q-learning is applied to a simulated experience

generated from a model of the world, then it becomes a planning algorithm,

which we call intra-option Differential Q-planning. Unlike the model used by

inter-option Differential Q-learning, which is an option model, the model used

by intra-option Differential Q-planning is a standard model that predicts the

outcomes of actions. Formally, the model is a function p̃ : S×A → ∆(S×R),
analogous to p, that, like p, sums to 1:

∑
s′,r p̃(s

′, r | s, a) = 1 for all s, a. A

model MDP can be thus constructed using p̃ and S,A,R, d0.
The simulated transitions are generated as follows: at each planning step

n, the agent arbitrarily chooses a state S̃n and chooses an action Ãn according

to some history-dependent policy b: b(Ãn | H̃n), where H̃n ∈ Hn, then applies

p̃ to generate a simulated resulting state and reward S̃ ′
n, R̃n,∼ p̃

(
·, · | S̃n, Ãn

)
.

119

Let r̃∗, Π̃
D
∗ , Q̃∞ be defined in the same way as r̂∗, Π̂

D
∗ , Q̂∞ but for the SMDP

resulting from the model MDP and the set of options.

Like intra-option Differential Q-learning, intra-option Differential Q-planning

maintains a table of value estimates Qn : S × O → R and a reward-rate es-

timate R̄n. At each planning step n, these estimates are updated by (4.47)–

(4.49), just as in intra-option Differential Q-learning, except now using S̃n, Ãn, R̃n, S̃
′
n

instead of St, At, Rt+1, St+1.

Theorem 4.7. Given a model MDP and a set of options, if the resulting

SMDP is weakly communicating, Assumptions 3.5, 3.6 (with I = S ×O) and
Assumption 4.2 hold, intra-option Differential Q-planning converges almost

surely, 1) R̄n to r̃∗, 2) Qn to a sample-path dependent compact connected

subset of Q̃∞, and 3) almost surely, µn ∈ Π̃D
∗ for a sufficiently large n, where

µn is any greedy policy w.r.t. Qn.

The prediction learning algorithm, called intra-option Differential Q-evaluation-

learning, also updates Q and R̄ by (4.47) and (4.48), but with the TD error:

δt(o)
.
= Rt+1 − R̄t + uQt

µ (St+1, o)−Qt(St, o). (4.50)

Theorem 4.8. Given an MDP and a set of options, if the hierarchical pol-

icy µ is unichain in the resulting SMDP, and Assumptions 3.5, 3.6 (with

I = S × O) hold, intra-option Differential Q-evaluation-learning (Equations

4.47,4.48,4.50) converges almost surely, R̄t to r̂(µ), Qt(s, o) to q̂∞.

Like intra-option Differential Q-evaluation-learning, intra-option Differen-

tial Q-evaluation-planning maintains a table of value estimates Qn : S ×
O → R and a reward-rate estimate R̄n. At each planning step n, these

estimates are updated by (4.47),(4.48), and (4.50), just as in intra-option

Differential Q-evaluation-learning, except now using the simulated experience

. . . , S̃n, Õn, Ãn, R̃n, S̃
′
n, . . . instead of the real experience . . . , St, Ot, At, Rt+1, St+1,

Let r̃(µ), q̃∞ be defined the same way as r̂(µ), q̂∞ but for the SMDP resulting

from the model MDP rather than the real MDP.

120

Algorithm 11: Intra-option Differential Q-evaluation-learning

Input: Behavioral policy b, target policy µ
Algorithm parameters: step-size sequence αn, parameter η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 ν(s, o)← 0 ∀s, o
3 Obtain initial S
4 H ← S
5 while still time to train do
6 Sample primitive action A ∼ b(· | H)
7 Take action A, observe R, S ′

8 ∆← 0
9 for all options o do

10 ν(S, o)← ν(S, o) + 1
11 ρ← π(A | S, o)/b(A | H)

12 δ ← R− R̄ +
((

1− β(S ′, o)
)
Q(S ′, o) + β(S ′, o)

∑
o′ µ(o

′ |
S ′)Q(S ′, o′)

)
−Q(S, o)

13 Q(S, o)← Q(S, o) + αν(S,o)ρδ
14 ∆← ∆+ ηαν(S,o)ρδ

15 end
16 R̄← R̄ +∆
17 S ← S ′

18 H ← (H,A, S ′, R)

19 end
20 return Q

Theorem 4.9. Given a model MDP and a set of options, under the same as-

sumptions as in Theorem 4.8, intra-option Differential Q-evaluation-planning

converges almost surely, R̄t to r̃(µ), Qt(s, o) to q̃∞.

I now provide proof for our control learning algorithm (Theorem 4.6). The

proofs for other algorithms introduced in this section are very similar and are

thus omitted.

Proof of Theorems 4.6

Following a similar transformation as for Differential Q-learning, by (4.47)—

(4.49) we have ∀ s ∈ S, o ∈ O:

Qt+1(St, o) = Qt(St, o)

+ ανt(St,o)ρt(o)

(
Rt+1 − f(Qt) + uQt

∗ (St+1, o)−Qt(St, o)

)
,∀o ∈ Ot, (4.51)

121

where f is defined in (4.43).

We first show that (4.51) is a special case of the General RVI Q’s update

(3.9). We hypothesize two |S×O|-sized i.i.d. random processes {S ′
t}, {R′

t} such
that for any t, s, o, S ′

t(s, o), R
′
t(s, o) ∼ p(·, · | s, At). Now consider the stream of

experience . . . , St, At, Rt+1, St+1, Then we have St+1 = S ′
t(St, At), Rt+1 =

R′
t(St, At). Let Yt = {(St, o)|o ∈ Ot}. Then (4.51) can be rewritten as, for

each s ∈ S, o ∈ O,

Qt+1(s, o) = Qt(s, o) + ανt(s,o)
π(At | s, o)
b(At | Ht)(

R′
t(s, At)− f(Qt) + β(S ′

t(s, At)max
o′

Qt(S
′
t(s, At), o

′)

+ (1− β(S ′
t(s, At), o))Qt(S

′
t(s, At), o)−Qt(s, o)

)
I{(s, o) ∈ Yt}. (4.52)

Equation 3.9 reduces to (4.52) by choosing I = S ×O, Yn = Yt, Qn = Qt, and

for each i ∈ I,

r(i) = r′(s, o)
.
=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)r,

g(q)(i) =
∑
a

π(a | s, o)
∑
s′

p(s′ | s, a)

(β(s′, o)max
o′

q(s′, o′) + (1− β(s′, o))q(s′, o)− q(s, o)),

Mt+1(i) = 0 if (s, o) ̸∈ Yt, otherwise

Mt+1(i) =
π(At | s, o)
b(At | Ht)

(
R′

t(s, At)− f(Qt) + β(S ′
t(s, At), o)max

o′
Qt(S

′
t(s, At), o

′)

+ (1− β(S ′
t(s, At), o))Qt(S

′
t(s, At), o)−Qt(s, o)

)
− (r′(s, o)− f(Qt) + g(Qt)(s, o)−Qt(s, o)),

ϵt+1(i) = 0.

We now show that the assumptions required by General RVI Q are all

satisfied.

1. Assumption 3.1 can be verified for g(q) easily.

2. Assumptions 3.2 and 3.4 are satisfied. Note that (3.8) reduces to (4.44)

plus (4.46) by our construction and that (4.44) plus (4.46) is equivalent

122

to (4.29) by Proposition 4.3. Because the MDPM is weakly communi-

cating, r# = r̂∗ is the only solution of r̄ and the solution of q exists in

(4.29) and therefore in (4.46). Finally, given that (4.29) is the action-

value optimality equation (4.7) for the resulting SMDP given the MDP

and the set of options, the assumption of the SMDP being weakly com-

municating, and Assumption 3.3, Corollary 4.1 shows Assumption 3.4.

3. Assumption 3.3 is easy to be verified for f defined in (4.43),

4. Assumptions 3.5, and 3.6 are given in the theorem statement

5. Assumption 3.7 is satisfied. Note that if (s, o) ∈ Yt

E [Mt+1((s, o)) | Ft] = E

[
π(At | s, o)
b(At | Ht)(

R′
t(s, At)− f(Qt) + β(S ′

t(s, At), o)max
o′

Qt(S
′
t(s, At), o

′)

+ (1− β(S ′
t(s, At), o))Qt(S

′
t(s, At), o)−Qt(s, o)

)
| Ft

]
− (r′(s, o)− f(Qt) + g(Qt)(s, o)−Qt(s, o))

=
∑

a∈At,s

b(a | Ht)
π(a | s, o)
b(a | Ht)

∑
s′,r

p(s′, r | s, a)(
r − f(Qt) + β(s′, o)max

o′
Qt(s

′, o′) + (1− β(s′, o))Qt(s
′, o)−Qt(s, o)

)
− (r′(s, o)− f(Qt) + g(Qt)(s, o)−Qt(s, o))

= 0,

where At,s is the set of all a ∈ A such that b(a | Ht) > 0. The second

equation holds because Ht is the history up to time step t and is thus

Ft measurable. The last equation holds because of Assumption 4.2. In

addition, E
[
∥Mt+1∥2 | Ft

]
< K(1 + ∥Qt∥2), because there S,O,A and

R are all finite and Assumption 4.2.

Therefore Theorem 3.1 applies and we conclude that Qt converges a.s.

to Q#, which is Q̂∞ in the current context. The rest of the proof follows

Lemma 4.3.

123

4.8 Intra-Option Experiments

This section presents two sets of experiments that verify Theorem 4.8 and

Theorem 4.6 respectively.

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Intra-option prediction

250000 500000
Total Steps

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Intra-option prediction

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100

η = 10−1η = 10−2η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1η = 10−2

η = 10−3

η = 10−4

Figure 4.6: Plots showing parameter studies for intra-option Differential Q-
evaluation in the continuing four-room domain when the goal was to go to G1.

The first set of experiments is to show that intra-option Differential Q-

evaluation-learning can learn the reward rate and the relative values well (c.f.

Theorem 4.8). The tested world and the setup of the experiment are the same

as those in Section 4.6. The learning curves and sensitivity curves are both

shown in Figure 4.6. The axes are the same as those in Figure 4.3. The learning

curves suggest that intra-option Differential Q-evaluation-learning asymptot-

ically approaches to the true reward rate and relative values, therefore ver-

ifying Theorem 4.8. Comparing Figure 4.6 with Figure 4.3 shows that the

intra-option algorithm’s reward rate and relative value errors were generally

better than the inter-option algorithm’s unless a large step size like α = 0.5

was used.

124

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Intra-option Q-learning

(a) A learning curve of the intra-option
Q-learning algorithm.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(b) Parameter sensitivity curves of the
intra-option Q-learning algorithm.

Figure 4.7: A learning curve and parameter sensitivity curves of the intra-
option Q-learning algorithm.

I conducted another experiment in the four-room domain to show that

intra-option Differential Q-learning can learn the values of hallway options H
using only primitive actions A. As mentioned earlier, there are no baseline

intra-option average-reward algorithms, so this is a proof-of-concept experi-

ment.

The rewarding state for this experiment was G2, which can be reached using

the option that leads to the lower hallway. The optimal reward rate, in this

case, is 1/15 ≈ 0.666 with both O = H and O = A. We applied intra-option

Differential Q-learning using a behavior policy that chose the four primitive

actions with equal probability in all states. This choice of behavior policy and

goal G2 would test if the intra-option algorithm leads to a policy consisting ex-

clusively of options by interacting with the world using only primitive actions.

Each parameter setting was run for 500, 000 steps and repeated 30 times. For

evaluation, for every 2000 training steps, we report the reward rate averaged

over 2000 evaluation steps. During these evaluation steps, I ran the agent’s

greedy policy w.r.t. its current estimated option-value function and did not

modify its parameters.

Figure 4.7 shows the learning curve of this average reward across the 30 in-

dependent runs for parameters α = 0.125, η = 0.1. The agent indeed succeeds

in learning the option-value function corresponding to the hallway options

125

using a behavior policy consisting only of primitive actions. The parameter

study of intra-option Differential Q-learning is presented in the right panel of

the same figure. It can be seen that the algorithm is not sensitive to η and

works well for a wide range of α.

I performed yet another intra-option experiment in the same domain and

experiment setup with the one mentioned in Section 4.6 to demonstrate the

differences between inter- and intra-option Differential Q-learning algorithms.

The parameter study of intra-option is shown in Figure 4.8. Comparing Fig-

ure 4.8 with the left subfigures of Figure 4.5, several observations can be

drawn. First, there is a narrower range of α that the intra-option algorithm

can achieve a high reward rate rapidly. Second, the intra-option algorithm’s

reward rate and relative value errors are less sensitive to η but are more sensi-

tive to α. Third, the intra-option algorithm generally achieved a lower relative

value error.

In conclusion, experiments in this section showed that intra-option predic-

tion and control algorithms both converge to the desired points asymptotically,

verifying Theorem 4.8 and Theorem 4.6. In addition, the value estimates in

both prediction and control intra-option algorithms converged faster. Third,

the intra-option control algorithm is more sensitive to the choice of α, but is

less sensitive to the choice of η.

4.9 Intra-Option Model Learning and Plan-

ning Algorithms

This section introduces methods to obtain option models. Recall that Sec-

tion 4.5 introduced inter-option planning algorithms, which work with option

models, but did not discuss how to obtain such models. This section intro-

duces an algorithm to learn such models in an intra-option fashion. This

option-model learning algorithm can be combined with inter-option planning

algorithms to obtain a complete model-based average-reward options algo-

rithm that learns option models and plans with them (see Algorithm 12 for

the pseudo-code of this combined algorithm). Finally, this section also includes

126

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

(a) This plot illustrates the parameter
sensitivity curves concerning the reward
rate achieved by the learned policy in
relation to parameters α and η.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

η = 10−4

(b) This plot illustrates the parameter
sensitivity curves concerning the reward
rate error in relation to parameters α
and η.

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2
η = 10−3

η = 10−4

(c) This plot illustrates the parameter
sensitivity curves concerning the relative
value error in relation to parameters α
and η.

Figure 4.8: Parameter sensitivity curves of the intra-option Q-learning algo-
rithm.

127

the planning version of the model-learning algorithm. This algorithm plans

with an action model to obtain an option model.

The average-reward option model is similar to the discounted options model

but with key distinctions. Sutton et al.’s (1999) discounted option model has

two parts: the dynamics part and the reward part. Given a state and an

option, the dynamics part predicts the discounted occupancy of states upon

termination, and the reward part predicts the expected (discounted) sum of

rewards during the execution of the option. In the average-reward setting,

apart from the dynamics and the reward parts, an option model has a third

part — the duration part — that predicts the duration of execution of the

option. In addition, the dynamics part predicts the state distribution upon

termination without discounting, and reward part predicts the undiscounted

cumulative rewards during the execution of the option.

Formally, the dynamics part approximates mp(s′ | s, o) .
= p̂(s′ | s, o), the

probability that option o terminates in state s′ when starting from state s.

The reward part approximates mr(s, o)
.
= r̂(s, o), the expected cumulative

reward during the execution of option o when starting from state s. Finally,

the duration part approximates ml(s, o)
.
= l̂(s, o), the expected duration of

option o when starting from state s.

We now present a set of recursive equations that are key to our model-

learning algorithms. These equations extend the discounted Bellman equations

for option models (Sutton et al. 1999) to the average-reward formulation.

m̄p(x | s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(
β(s′, o)I{x = s′}+

(
1− β(s′, o)

)
m̄p(x | s′, o)

)
, (4.53)

m̄r(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
r + (1− β(s′, o))m̄r(s′, o)

)
,

(4.54)

m̄l(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
1 + (1− β(s′, o))m̄l(s′, o)

)
.

(4.55)

The first equation is different from the other two because the total reward

and length of the option o are incremented irrespective of whether the option

128

terminates in s′ or not. The following theorem shows that (mp,mr,ml) is the

unique solution of (4.53–4.55) and therefore the models can be obtained by

solving these equations.

Theorem 4.10. There exist unique m̄p ∈ R|S|×|O|×|S|, m̄r ∈ R|S|×|O|, and

m̄l ∈ R|S|×|O| for which (4.53), (4.54), and (4.55) hold. Further, if m̄p, m̄r, m̄l

satisfy (4.53), (4.54), and (4.55), then m̄p = mp, m̄r = mr, m̄l = ml.

Proof. We will show that there exists a unique solution for (4.53). Results for

(4.54) and (4.55) can be shown similarly. To show that (4.53) has a unique

solution, we apply a generalized version of the Banach fixed point theorem

(see, e.g., Theorem 2.4 by Almezel, Ansari, and Khamsi 2014). Once the

unique existence of the solution is shown, we easily verify that mp is the

unique solution by showing that it is one solution to (4.53) as follows. With a

little abuse of notation, let p̂(s′, l | s, o) .
=
∑

r p̂(x, r, l | s, o), we have

mp(x | s, o)

=
∞∑
l=1

p̂(x, l | s, o)

=
∑
a

π(a | s, o)
∑
r

p(s′, r | s, a)β(s′, o)I{x = s′}+
∞∑
l=2

p̂(x, l | s, o)

=
∑
a

π(a | s, o)
∑
r

p(s′, r | s, a)(
β(s′, o)I{x = s′}+ (1− β(s′, o))

∞∑
l=1

p̂(x, l | s′, o)
)

=
∑
a

π(a | s, o)
∑
r

p(s′, r | s, a)

(β(s′, o)I{x = s′}+ (1− β(s′, o))mp(x | s′, o)) .

To apply the generalized version of the Banach fixed point theorem to show

the unique existence of the solution, we first define operator T : R|S|×|S|×|O| →
R|S|×|S|×|O| such that for any m ∈ R|S|×|S|×|O| and any x, s ∈ S, o ∈ O, Tm(x |
s, o)

.
=
∑

a π(a | s, o)
∑

s′,r p(s
′, r | s, a)(β(s′, o)I{x = s′} + (1 − β(s′, o))m(x |

s′, o))). We further define T nm
.
= T (T n−1m) for any n ≥ 2 and any m ∈

R|S|×|S|×|O|. The generalized Banach fixed point theorem shows that if T n is a

129

contraction mapping for any integer n ≥ 1 (this is called a n-stage contraction),

then Tm = m has a unique fixed point.

The only work left is to verify the following contraction property:∥∥T |S|m1 − T |S|m2

∥∥
∞ ≤ γ∥m1 −m2∥∞, (4.56)

where m1 and m2 are arbitrary members in R|S|×|S|×|O|, and γ < 1 is some

constant.

Consider the difference between T |S|m1 and T |S|m2 for arbitrary m1,m2 ∈
R|S×S×O|. For any x, s ∈ S, o ∈ O, we have

T |S|m1(x | s, o)− T |S|m2(x | s, o)

=
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(1− β(s′, o))

(T |S|−1m1(x | s′, o)− T |S|−1m2(x | s′, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))

(T |S|−1m1(x | s1, o)− T |S|−1m2(x | s1, o))

=
∑
s1

Pr(St+1 = s1 | St = s,Ot = o)(1− β(s1, o))∑
s2

Pr(St+2 = s2 | St+1 = s1, Ot+1 = o)(1− β(s2, o))

(T |S|−2m1(x | s2, o)− T |S|−2m2(x | s2, o))
...

=
∑

s1,··· ,s|S|

Pr
(
St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot:t+|S|−1 = o

)
|S|∏
i=1

(1− β(si, o))(m1(x | s|S|, o)−m2(x | s|S|, o))

≤
∑

s1,··· ,s|S|

Pr
(
St+1 = s1, · · · , St+|S| = s|S| | St = s,Ot:t+|S|−1 = o

)
|S|∏
i=1

(1− β(si, o))∥m1 −m2∥∞.

130

Here

p̃(s, o)
.
=

∑
s1,··· ,s|S|

Pr
(
St+1 = s1 · · · , St+|S| = s|S| | St = s,Ot:t+|S|−1 = o

)
|S|∏
i=1

(1− β(si, o))

is the probability of executing option o for |S| steps starting from s without

termination. If p̃(s, o) = 0, then option o will surely terminate within the first

|S| steps, and if p̃(s, o) = 1, then option o will surely not terminate within the

first |S| steps.
If option o would surely not terminate within the first |S| steps (p̃(s, o) =

1), then it would surely not terminate forever. This is because there are only

|S| states, and thus an option could visit all states that are possible to be

visited by the option within the first |S| steps. p̃(s, o) = 1 means that option

o has a zero probability of terminating in all states that are possible to be

visited by option o. But this violates Assumption 4.1. Therefore, p̃(s, o) < 1

for all s, o. So there must exist some γ(s, o) < 1 such that p̃(s, o) ≤ γ(s, o).

With γ
.
= maxs,o γ(s, o), we obtain (4.56).

Let St, At, Rt+1, St+1 be generated the same way as in intra-option value

learning algorithms introduced in Section 4.7. Our intra-option model-learning

algorithm solves the above recursive equations using the following TD-like

update rules for each option o:

Mp
t+1(x | St, o)

.
= Mp

t (x | St, o) + ανt(St,o)ρt(o)
(
β(St+1, o)I{St+1 = x}

+
(
1− β(St+1, o)

)
Mp

t (x | St+1, o)−Mp
t (x | St, o)

)
, ∀ x ∈ S,

(4.57)

M r
t+1(St, o)

.
= M r

t (St, o) + ανt(St,o)(St, o)ρt(o)(
Rt+1 +

(
1− β(St+1, o)

)
M r

t (St+1, o)−M r
t (St, o)

)
(4.58)

M l
t+1(St, o)

.
= M l

t(St, o) + ανt(St,o)(St, o)ρt(o)(
1 +

(
1− β(St+1, o)

)
M l

t(St+1, o)−M l
t(St, o)

)
, (4.59)

where Mp is a |S| × |O| × |S|-sized vector of estimates, M r and M l are both

|S| × |O|-sized vectors of estimates, {αn}n≥1 is a step-size sequence, νt(St, o)

131

is the number of times the pair (St, o) has been updated up to and including

time step t, and ρt(o)
.
= π(At | St, o)/b(At | Ht) is the importance sampling

ratio.

Theorem 4.11. If Assumption 3.5 holds for {αn}, all state-option pairs are

visited an infinite number of times, and Assumption 4.2 holds, then the intra-

option model-learning algorithm (4.57–4.59) converges almost surely, Mp
t to

mp, M r
t to mr, and M l

t to ml.

Proof. Because the three update rules are independent, we only show the

convergence of the first update rule; the other two can be shown in the same

way.

We apply a slight generalization of Theorem 3 by Tsitsiklis (1994) to show

the first update rule. The generalization replaces Assumption 5 (an assump-

tion for Theorem 3) by:

Assumption 4.3. There exists a vector x∗ ∈ Rn, a positive vector v, a positive

integer m, and a scalar β ∈ [0, 1), such that

∥Fm(x)− x∗∥v ≤ β∥x− x∗∥v, ∀ x ∈ Rn.

That is, we replace the one-stage pseudo contraction assumption with a m-

stage contraction assumption. The proof of Tsitsiklis’ Theorem 3 also applies

to its generalized form and is thus omitted here.

Notice that our update rule (4.57) is a special case of the general update

rule considered by Theorem 3 (Equations 1-3), and is thus a special case of its

generalized version. Therefore we only need to verify the above m−stage con-
traction assumption, as well as Assumptions 1, 2, and 3 required by Theorem

3. According to the proof of Theorem 4.10, the operator T associated with the

update rule (4.57) is a |S|−stage contraction (and thus is a |S|−stage pseudo-
contraction). Other assumptions (Assumptions 1, 2, 3) required by Theorem

3 are also satisfied given our step-size sequence, finite MDP assumptions as

well as Assumption 4.2.

The planning version of the intra-option model-learning algorithm, just

like this learning algorithm, maintains a table of dynamics estimates Mp
n :

132

|S| × |O| × |S| → R, a table of reward estimates M r
n : |S| × |O| → R and

a table of duration estimates M l
n : |S| × |O| → R. At each planning step

n, these estimates are updated by (4.57)–(4.59), just as in intra-option model

learning, except now using the simulated experience . . . , S̃n, Õn, Ãn, R̃n, S̃
′
n, . . .

(see Section 4.7 for the generation of the simulated experience) instead of the

real experience . . . , St, Ot, At, Rt+1, St+1,

Theorem 4.12. If Assumption 3.5 holds for {αn}, all state-action pairs are

visited an infinite number of times, and Assumption 4.2 holds, then the intra-

option model-planning algorithm converges almost surely, Mp
n to mp, M r

n to

mr, and M l
n to ml.

The proof is essentially the same as that of Theorem 4.11 and is therefore

omitted.

4.10 Interruption to Improve the Hierarchical

Policy

In all of the algorithms we considered so far, the hierarchical policy would

select an option, execute the option’s policy till termination, then select a new

option. Sutton et al. (1999) showed that the hierarchical policy can be im-

proved by allowing the interruption of an option midway through its execution

to start a seemingly better option.

We now show that this interruption result applies to average-reward options

as well.

Theorem 4.13. For any MDP, any set of options O, and any hierarchical

unichain policy µ : S → ∆(O), define a new set of options, O′, with a one-to-

one mapping between the two option sets as follows: for every o = (π, β) ∈ O,
define a corresponding o′ = (π, β′) ∈ O′ where β′ = β, but for any state s in

which q̂µ(s, o) < v̂µ(s), β
′(s, o) = 1 (where v̂µ(s)

.
=
∑

o µ(o | s)q̂µ(s, o)). Let the
interrupted policy µ′ be such that for all s ∈ S and for all o′ ∈ O′, µ′(s, o′) =

µ(s, o), where o is the option in O corresponding to o′. Assume that µ′ is

unichain. Then:
133

1. the new policy over options µ′ is not worse than the old one µ, i.e.,

r̂(µ′) ≥ r̂(µ),

2. if there exists a state s ∈ S from which there is a non-zero probability of

encountering an interruption upon initiating µ′ in s, then r̂(µ′) > r̂(µ).

In short, the above theorem shows that interruption produces a behav-

ior that achieves a higher reward rate than without interruption. Note that

interruption behavior is only applicable to intra-option algorithms; complete

option transitions are needed in inter-option algorithms.

Proof. We first show that∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr̂(µ) + v̂µ(s
′))

≥
∑
o

µ(o | s)
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̂(µ) + v̂µ(s
′)) = v̂µ(s). (4.60)

Note that for all s, o and its corresponding o′, µ(o | s) = µ′(o′ | s). In

order to show (4.60), we show
∑

s′,r,l p̂(s
′, r, l | s, o′)(r − lr̂(µ) + v̂µ(s

′)) ≥∑
s′,r,l p̂(s

′, r, l | s, o)(r − lr̂(µ) + v̂µ(s
′)) for all s, o and corresponding o′.∑

s′,r,l

p̂(s′, r, l | s, o′)(r − lr̂(µ) + v̂µ(s
′))

= E[R̂n − L̂nr̂(µ) + v̂µ(Ŝn+1) | Sn = s,On = o′]

= E[R̂n − L̂nr̂(µ) + v̂µ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[R̂n − L̂nr̂(µ) + v̂µ(Ŝn+1) | Sn = s,On = o′,Encountering an interruption]

≥ E[R̂n − L̂nr̂(µ) + v̂µ(Ŝn+1) | Sn = s,On = o′,Not encountering an interruption]

+ E[β(s′)(R̂n − L̂nr̂(µ) + v̂µ(Ŝn+1)) + (1− β(s′))(R̂n − L̂nr̂(µ) + q̂µ(Ŝn+1, o))

| Sn = s,On = o′,Encountering an interruption]

=
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̂(µ) + v̂µ(s
′)).

The above inequality holds because Ŝn+1 is the state where termination hap-

pens and thus q̂µ(Ŝn+1, o) ≤ v̂µ(Ŝn+1). The last equality holds because E[β(s′)(R̂n−
L̂nr̂(µ) + v̂µ(Ŝn+1)) + (1 − β(s′))(R̂n − L̂nr̂(µ) + q̂µ(Ŝn+1, o)) | Sn = s,On =

o′,Encountering an interruption] is the expected differential return when the

134

agent could interrupt its old option but chooses to stick on the old option.

(4.60) is shown.

Now write the l.h.s. of (4.60) in the matrix form∑
o′

µ′(o′ | s)
∑
s′,r,l

p̂(s′, r, l | s, o′)(r − lr̂(µ) + v̂µ(s
′))

= rµ′(s)− lµ′(s)r̂(µ) + (Pµ′ v̂µ)(s),

where rµ′(s)
.
=
∑

o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l | s, o′)r is the expected one option-

transition reward, lµ′(s)
.
=
∑

o′ µ
′(o′ | s)∑s′,r,l p̂(s

′, r, l | s, o′)l is the expected

one option-transition length, and Pµ′(s, s′)
.
=
∑

o′ µ
′(o′ | s)∑r,l p̂(s

′, r, l | s, o′)
is the probability of terminating at s′.

Combined with the r.h.s. of (4.60), we have

rµ′(s)− lµ′(s)r̂(µ) + (Pµ′ v̂µ)(s) ≥ v̂µ(s).

Iterating the above inequality for K − 1 times, we have

K−1∑
k=0

(P k
µ′rµ′(s)− P k

µ′lµ′(s)r̂(µ)) + PK
µ′ v̂µ(s) ≥ v̂µ(s)

=⇒
K−1∑
k=0

(P k
µ′rµ′(s)− P k

µ′lµ′(s)r̂(µ)) ≥ v̂µ(s)− PK
µ′ v̂µ(s).

Divide both sides by
∑K−1

k=0 P k
µ′lµ′(s) and take K →∞:

lim
K→∞

1∑K−1
k=0 P k

µ′lµ′(s)

K−1∑
k=0

(P k
µ′rµ′(s)− P k

µ′lµ′(s)r̂(µ))

≥ lim
K→∞

1∑K−1
k=0 P k

µ′lµ′(s)
(v̂µ(s)− PK

µ′ v̂µ(s)).

For the l.h.s.:

lim
K→∞

1∑K−1
k=0 P k

µ′lµ′(s)

K−1∑
k=0

(P k
µ′rµ′(s)− P k

µ′lµ′(s)r̂(µ)))

= lim
K→∞

∑K−1
k=0 P k

µ′rµ′(s)∑K−1
k=0 P k

µ′lµ′(s)
− r̂(µ)

= r̂(µ′)− r̂(µ),

135

250000 500000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Without interruption

With interruption

(a) Learning curves with and without in-
terruption.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1
η = 10−2η = 10−3

η = 10−4

(b) Parameter sensitivity curves with in-
terruption

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3
η = 10−4

(c) Parameter sensitivity curves without
interruption

Figure 4.9: Plots showing that executing options with interruptions can
achieve a higher reward rate than executing options till termination in the
domain described in the adjoining text.

where the last equation holds because µ′ is unichain.

For the r.h.s.:

lim
K→∞

1∑K−1
k=0 P k

µ′lµ′(s)
(v̂µ(s)− PK

µ′ v̂µ(s)) = 0.

Therefore r̂(µ′)− r̂(µ) ≥ 0.

Finally, note that a strict inequality holds if the probability of interruption

when following policy µ′ is non-zero.

4.11 Interruption Experiments

This section tests the intra-option Differential Q-learning algorithm with

and without interruption in the four-room domain. The goal is to empirically

136

verify that behaving with interruption can indeed achieve a higher reward rate.

We set the goal as G3 and allowed the agent to choose and learn only

from the set of all hallway options H. With just hallway options, without

interruption, the best strategy is to first move to the lower hallway and then

try to reach the goal by following options that pick random actions in the

states near the hallway and goal. With interruption, the agent can first move

to the left hallway, then take the option that moves the agent to the lower

hallway but terminate when other options have higher option values. This

termination is most likely to occur in the cell just above G3. The agent then

needs fewer steps in expectation to reach the goal.

The agent followed a random behavior policy to learn option values. For

every 2000 training step, there is a testing phase. At the beginning of the

testing phase, the agent was reset to the start state. The agent then followed

a greedy hierarchical policy w.r.t. learned option values for 2000 steps, either

with interruption or without interruption. The average reward rate over the

2000 testing steps is recorded.

Figure 4.9a shows learning curves using two tested algorithms on this prob-

lem. Each point is the average-reward rate over 2000 evaluation steps. The

parameter being chosen is the one that resulted in the highest reward rate

over the last 10000 evaluation steps. As expected, the agent achieved a higher

reward rate by using interruptions, verifying Theorem 4.13. The parameter

studies of two tested algorithms are shown in Figure 4.9b and Figure 4.9c

respectively. The axes are the same as those mentioned in Figure 4.3. The

interruption algorithm achieved a higher reward rate for intermediate α and

was also not sensitive to η.

4.12 Summary

This chapter introduced a family of average-reward options algorithms and

their associated theories.

For both learning and planning, prediction and control problems, this chap-

ter introduced inter- and intra-option algorithms. Among these algorithms, the

137

inter-option planning algorithms need special attention because they plan with

option models and are thus potentially much more computationally efficient

than planning algorithms that operate with action models. Recall that one

of the most important ways that the agent can benefit from using options is

to plan faster with option models. To obtain option models, this chapter in-

troduced learning and planning algorithms, both operating in the intra-option

fashion. The intra-option algorithms also include learning or planning algo-

rithms to obtain option values. The intra-option learning algorithms use action

transitions rather than option transitions, and thus can potentially be more

sample efficient than inter-option algorithms, which do not look inside the

execution of options.

Note that, while both classes of algorithms can be viewed as extensions of

the algorithms introduced in the previous chapter from actions to options, such

extensions do not trivially replace actions with options. For example, as shown

in Section 4.5, there exist several more straightforward, yet inappropriate ways

to extend Differential Q-learning to an inter-option algorithm. For another

example, unlike the algorithms introduced in the previous chapter, which only

update for one action at each step, the intra-option algorithms introduced in

this chapter update for all options at each step.

The theories developed in this chapter are largely based on the conver-

gence theory of the General RVI Q algorithm (Section 3.2) and a new theory

concerning SMDPs developed in this chapter (Section 4.3). This new theory

characterizes the intersection of the solution set of the SMDP optimality equa-

tion and the solution set of a special equation. This special equation involves a

class of functions. By choosing a specific function, this intersection reduces to

a set to which one of the algorithms introduced in the current and the previous

chapters converges.

This chapter also developed a new sub-optimality bound for weakly-communicating

SMDPs. This result is independent of the proposed options algorithms. This

bound extends Theorem 8.5.5 by Puterman (1994) from unichain MDPs to

weakly communicating SMDPs. This result shows a lower bound of the per-

formance of greedy policies of any estimate of the action-value function.

138

Algorithm 12: Combined algorithm: intra-option model learning +
inter-option Differential Q-planning

Input: Behavioral policy b
Algorithm parameters: step-size sequences αn, βn, parameter η,

number of planning steps per time step n
1 Initialize Q(s, o), P (x | s, o), R(s, o) ∀ s, x ∈ S, o ∈ O, R̄, arbitrarily

(e.g., to zero)
2 Initialize L(s, o) ∀ s ∈ S, o ∈ O to be any value greater than 0
3 ν1(s, o)← 0 ∀s, o, ν2(s, o)← 0 ∀s, o
4 H ← S
5 while still time to train do
6 S ← current state
7 Sample primitive action A ∼ b(· | H)
8 Take action A, observe R′, S ′

9 for all options o such that π(A | S, o) > 0 do
10 ν2(S, o)← ν2(S, o) + 1
11 ρ← π(A | S, o)/b(A | H)
12 for all states x ∈ S do

13 P (x | S, o)← P (x | S, o) + βν2(S,o)ρ
(
β(S ′, o)I(S ′ =

x) +
(
1− β(S ′, o)

)
P (x | S ′, o)− P (x | S, o)

)
14 end

15 R(S, o)← R(S, o)+βν2(S,o)ρ
(
R′+

(
1−β(S ′, o)

)
R(S ′, o)−R(S, o)

)
16 L(S, o)← L(S, o)+βν2(S,o)ρ

(
1+
(
1−β(S ′, o)

)
L(S ′, o)−L(S, o)

)
17 end
18 H ← (H,A, S ′, R′) for all of the n planning steps do
19 S ← a random previously observed state
20 O ← a random option previously taken in S
21 ν1(S,O)← ν1(S,O) + 1
22 S ′ ← a sampled state from P (· | S,O)
23 δ ← R(S,O)− L(S,O)R̄ +maxo Q(S ′, o)−Q(S,O)
24 Q(S,O)← Q(S,O) + αν1(S,O)ρδ/L(S,O)
25 R̄← R̄ + ηαν1(S,O)ρδ/L(S,O)

26 end

27 end
28 return Q

139

Algorithm 13: Intra-option Differential Q-learning with interruption

Input: Behavioral policy b
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, o) ∀ s ∈ S, o ∈ O, R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 ν(s, o)← 0 ∀s, o
4 O ← option sampled from b(· | S)
5 while still time to train do
6 if O /∈ argmaxQ(S, ·) then
7 O ← option sampled from b(· | S)
8 end
9 Sample primitive action A ∼ π(· | S,O)

10 Take action A, observe R, S ′

11 ∆← 0
12 for all options o do
13 ν(S, o)← ν(S, o) + 1
14 ρ← π(A | S, o)/π(A | S,O)

15 δ ← R− R̄ +
((

1− β(S ′, o)
)
Q(S ′, o) +

β(S ′, o)maxo′ Q(S ′, o′)
)
−Q(S, o)

16 Q(S, o)← Q(S, o) + αρδ
17 ∆← ∆+ ηαρδ

18 end
19 R̄← R̄ +∆
20 S ← S ′

21 end
22 return Q

140

Chapter 5

Prediction with Function
Approximation

This chapter presents the third area of contribution: an average-reward

off-policy prediction learning algorithm with function approximation, its con-

vergence theory, and an error bound for the convergent point.

The previous two chapters present average-reward learning and planning

algorithms using a tabular representation. In many real-world problems, the

state and/or the action spaces can be very large. It is not possible to represent

the action-value function using a table whose size is the order of the number of

state-action pairs. For these problems, function approximation must be used

to represent any object, including the action-value function, that is in order

of the number of state-action pairs or more.

This chapter first demonstrates that a direct function approximation ex-

tension of the tabular algorithm (Differential TD-learning) introduced in Sec-

tion 3.3 diverges. It then introduces a new algorithm and its associated con-

vergence proof. Just like all the prediction and control algorithms introduced

in the previous two chapters, this new algorithm, called Differential GQ1, also

uses the TD error to estimate the reward rate and is therefore, again, a dif-

ferential method. In addition to the convergence theory of the new algorithm,

this chapter further shows an asymptotic error bound of the point that the

algorithm converges to due to function approximation. Finally, this chapter

uses an experiment to demonstrate the empirical performance of Differential

GQ1.

141

5.1 Problem Setup

This chapter considers the off-policy prediction problem: evaluating a pol-

icy using data generated by following another policy. The target policy π ∈ Π,

which is the policy being evaluated, is assumed to be unichain, just as in

Section 3.1.

Assumption 5.1. The policy π is unichain in the MDP.

The goal of the off-policy prediction problem is to approximate the reward

rate and the differential action-value function of π up to a constant. The

differential action-value function qπ can be defined given the differential value

function vπ: qπ(s, a)
.
=
∑

s′,r p(s
′, r | s, a)(r + vπ(s

′)).

Unlike Section 3.3, which studies the tabular setting, this chapter considers

the linear function approximation (LFA) setting. In this setting, the agent

can still observe states and actions, but instead of maintaining tables of size

in the order of |S| or |A|, it typically maintains weight vectors whose sizes are

much smaller than |S| or |A|. An LFA algorithm approximates any function

f : S×A → R that takes as input a state-action pair and produces a real vector

(e.g., the action-value function), using a feature vector of the pair. Specifically,

given a state-action pair (s, a), a feature vector x(s, a) for (s, a) is a real vector

of length d, where x : S × A → Rd. The algorithm then uses x(s, a)⊤w to

approximate f(s, a). For the uniqueness of the solution of w, it is typically

assumed that

Assumption 5.2. X has linearly independent columns, where X ∈ R|S||A|×d

is the feature matrix whose (s, a) row is x(s, a)⊤.

The LFA setting is mainly for the situation when |S| or |A| is large or infi-
nite. But even if |S| and |A| are both small, LFA algorithms are still typically

faster than their tabular counterparts because of generalization across states

and actions. However, LFA algorithms typically achieve a worse asymptotic

performance because of the limited representation power of the LFA.

The problem studied in this chapter is also different from the problem

studied in Section 3.3 in the way data is generated. In this chapter, the

142

agent learns from i.i.d. transitions sampled from a given unknown sampling

distribution, whereas in Chapter 3, the agent learns from data generated by

following a known behavior policy. Concretely, at each time step, a sample

transition (St, At, Rt, S
′
t, A

′
t) from a given sampling distribution dµπ, which

satisfies the following assumption.

Assumption 5.3. St, At ∼ dµ, where dµ ∈ ∆(S × A) satisfying dµ(s, a) > 0

for all (s, a) is some probability distribution over state-action pairs, S ′
t, Rt ∼

p(·, · | St, At), and A′
t ∼ π(· | S ′

t).

Assumption 5.3 requires that dµ > 0, which just means that every state-

action pair is possible to be sampled. This is a necessary condition for learning

the differential action-value function accurately for all state-action pairs. How-

ever, if one’s goal is to only approximate the reward rate, then it is not needed

to sample all state-action pairs infinitely often. Instead, reasonable algorithms

should only require pairs that are visited infinitely often when following π. In

this chapter, this weaker assumption is not considered because my goal in-

cludes approximating the action-value function well.

In many cases, the sampling distribution dµπ is not known by the agent.

Instead, a large batch of transitions, collected by one or multiple agents, with

all agents following possibly different unknown policies in the same MDP, is

presented to the agent. One could then draw samples in the following way.

First randomly sample (St, At, Rt, S
′
t) from the batch. Then sample A′

t ∼
π(· | S ′

t). Assuming that the size of the batch is large enough, then sampling

from the batch is approximately equivalent to sampling from some distribution

satisfying Assumption 5.3. Of course, as required by Assumption 5.3, the batch

of data should cover the state-action space well in order to guarantee that the

action-value function can be accurately estimated.

Recall that a common way to obtain the reward rate and the differential

action-value function (up to an additive constant) is to solve the action-value

evaluation equation, defined by

q(s, a) =
∑
s′,r

p(s′, r | s, a)
(
r − r̄ +

∑
a′

π(a′ | s′)q(s′, a′)
)
, ∀s ∈ S. (5.1)

143

5.2 Differential Semi-Gradient Q-Evaluation

This section presents Differential Semi-gradient Q-Evaluation (Differential

SGQ), which is a straightforward linear function approximation extension of

the Differential TD-learning algorithm (Section 3.3). This straightforward

FA extension of the tabular algorithm, however, may diverge as shown in an

example presented in this section. This divergence issue motivates searching

for a proven-convergent algorithm for the FA setting. The next section presents

such an algorithm.

Differential SGQ updates wt and r̄t by

wt+1
.
= wt + αtδt(wt, R̄t)xt, (5.2)

r̄t+1
.
= r̄t + ηαtδt(wt, R̄t), (5.3)

where αt is the step size used at t time step, xt
.
= x(St, At), x

′
t
.
= x(S ′

t, A
′
t),

η > 0 is some constant, and δt(w, R̄)
.
= Rt− R̄+ x′⊤

t w− x⊤
t w is the TD error.

Algorithm 14: Differential SGQ

Input: A sampling distribution dµπ and a feature mapping
x : S ×A → RK ,

Algorithm parameters: A step-size sequence αt and a scaling
parameter η

1 Initialize w ∈ RK and R̄ ∈ R arbitrarily (e.g., to zero)
2 for t = 0, 1, 2, . . . do
3 Sample a transition (S,A,R, S ′, A′) from dµπ
4 ϕ = x(S,A), ϕ′ = x(S ′, A′)
5 δ

.
= R− r̂ + ϕ′⊤w − ϕ⊤w

6 w ← w + αtδϕ
7 R̄← R̄ + αtδ

8 end
9 return the estimated reward rate R̄, differential action-value function

Xw, where X is the feature matrix with X[(s, a), i] = x(s, a)[i] for all
s ∈ S, a ∈ A and i = 0, 1, . . . , d− 1

Diff-SGQ iteratively solves

E[δt(w, R̄)xt] = 0 (5.4)

E[δt(w, R̄)] = 0, (5.5)

144

whose solutions, if they exist, are TD fixed points. A TD fixed point is an ap-

proximate solution to (5.1) using linear function approximation. We consider

the quality of the approximation in the next section.

In general, there could be no TD fixed point, one TD fixed point, or in-

finitely many TD fixed points, as in the discounted setting. To see this, let

yt
.
= [η, x⊤

t]
⊤, y′t

.
= [η, x′⊤

t]⊤, u
.
= [R̄, w⊤]⊤, and e1

.
= [1, 0, · · · , 0]⊤ ∈ Rd+1.

Then combining (5.4) and (5.5) gives

E[δt(u)yt] = 0, (5.6)

where δt(u)
.
= Rt − e⊤1 u+ y′⊤t u− y⊤t u.

Let Pπ denote the transition matrix under π (Equation 3.3). Writing (5.6)

in vector form, we have Au+ b = 0, where

A
.
= E[yt(−e1 + y′t − yt)

⊤]

= Y ⊤D(Pπ − I)Y − Y ⊤dµe
⊤
1

=

[
−η 1⊤D(Pπ − I)X
−X⊤dµ X⊤D(Pπ − I)X

]
,

b
.
= E[ytRt] = Y ⊤Dr,

Y
.
= [η1, X], D

.
= diag(dµ).

If and only if A is invertible, there exists a unique TD fixed point

uTD
.
= −A−1b. (5.7)

Otherwise, there is either no TD fixed point or there are infinitely many.

Unfortunately, even if there exists a unique TD fixed point, Differential

SGQ can still diverge, which exemplifies the deadly triad (Sutton and Barto

2018) in the average-reward setting. The following example confirms this

point.

Example 5.1 (The divergence of Differential SGQ). Consider a two-state

MDP (Figure 5.1). The expected Differential SGQ update per step, when

choosing η = 1, can be written as

[
R̄t+1

wt+1

]
=

[
R̄t

wt

]
+α

(
A

[
R̄t

wt

]
+ b

)
=

[
R̄t

wt

]
+

α

[
−1 6
−2 6

][
R̄t

wt

]
. Here, we consider α a constant step size. The eigenvalues of

145

A =

[
−1 6
−2 6

]
are both positive. Hence, no matter what positive step size

is picked, the expected update diverges. The sample updates (5.2) and (5.3)

using standard stochastic approximation step sizes, therefore, also diverge.

Furthermore, because both eigenvalues are positive, A is an invertible matrix,

implying the unique existence of the TD fixed-point.

1 2 0
0

0

Figure 5.1: An example showing the divergence of Differential SGQ. In this
MDP, the target policy always chooses action solid. The sampling distri-
bution satisfies that dµ(1, solid) = dµ(1, dashed) = 6/13, dµ(2, solid) =
1/13. Each state-action pair has a feature vector of size 1. x(1, solid) =
x(2, dashed) = 1, and x(2, solid) = 14.

5.3 One-Stage Differential Gradient Q-Evaluation

We now present Differential GQ1, a proven-convergent off-policy prediction

learning algorithm in the LFA setting.

Motivated by the Mean Squared Projected Bellman Error (MSPBE) de-

fined in the discounted setting and used by Gradient TD algorithms, we define

the MSPBE in the average-reward setting as follows. Given an approximation

of the reward rate r̄ and and an approximation of the differential action-value

function q, let u⊤ = [r̄, q⊤], the MSPBE can be defined as

MSPBE1(u)
.
=
∥∥ΠY δ̄(u)

∥∥2
D
, (5.8)

where

ΠY
.
= Y (Y ⊤DY)−1Y ⊤D

is the projection matrix onto the column space of Y , and

δ̄(u)
.
= r − e⊤1 u1+ PπY u− Y u (5.9)

146

is the vector of Bellman errors for all state-action pairs. Therefore, the vector

ΠY δ̄(u) is the projection of the vector of Bellman errors on the column space

of Y and thus a vector of projected Bellman errors. (5.8) is a weighted mean

of squared projected Bellman errors, with the weight vector diag(D) = dµ and

is therefore called an MSPBE.

The existence of the matrix inverse in ΠY , (Y
⊤DY)−1, is guaranteed by

Assumptions 5.2, 5.3 and the following assumption.

Assumption 5.4. For any w ∈ Rd, Xw ̸= 1.

The above assumption guarantees that if w∗ is a solution of w in (5.4) and

(5.5), then no other solution’s approximated action-value function would be

identical to Xw∗ up to a constant. This assumption is also used by Tsitsiklis

and Van Roy (1999) in their on-policy prediction algorithms in average-reward

MDPs. Apparently, the assumption does not hold in the tabular setting (i.e.,

when X = I). However, with function approximation, we usually have many

more states than features (i.e., |S| ≫ d), in which case the above assumption

would not be restrictive.

Let C
.
= Y ⊤DY , we have Π⊤DΠ = DY C−1Y ⊤D, with which we give a

different form for (5.8):

MSPBE1(u) =
∥∥Y ⊤Dδ̄(u)

∥∥2
C−1 = ∥Au+ b∥2C−1

= E[δt(u)yt]⊤E[yty⊤t]−1E[δt(u)yt]. (5.10)

It can be seen that if (5.6) has a solution, then that solution also mini-

mizes (5.10), in which case solving (5.6) can be converted to minimizing (5.10).

However, when (5.6) does not have a unique solution, the set of minimizers

of (5.10) could be unbounded, and thus algorithms minimizing MSPBE1 risk

generating unbounded updates. To ensure the stability of the algorithm when

(5.6) does not have a unique solution, consider a regularized MSPBE1 objec-

tive:

J1,c(u)
.
= ∥Au+ b∥2C−1 + cu⊤I0u,

147

where I0
.
= diag(1 − e1), c is a positive scalar, and cu⊤I0u = c∥w∥2 is a

ridge regularization term on w. Introducing a regularization term in MSPBE-

like objectives is not new though; see, for example, Mahadevan et al. (2014);

Yu (2017); Du et al. (2017); Zhang et al. (2020b;c). One could, of course, apply

regularization to Differential SGQ directly, similar to Diddigi et al. (2020)

in the discounted off-policy linear TD. Unfortunately, the weight for their

regularization term has to be sufficiently large to ensure convergence.

To minimize J1,c(u), one could proceed with techniques used in TDC (Sut-

ton et al. 2009), which is left as future work. In this chapter, let’s proceed

with the saddle-point formulation of GTD2 introduced by Liu et al. (2015),

which exploits Fenchel’s duality:

u⊤M−1u = max
ν

2u⊤ν − ν⊤Mν,

for any positive definite M , yielding

J1,c(u) = maxν∈Rd+1 2ν⊤Y ⊤Dδ̄(u)− ν⊤Cν + cu⊤I0u. (5.11)

So minu J1,c(u) = minu maxν J1,c(u, ν), where

J1,c(u, ν)
.
= 2ν⊤Y ⊤Dδ̄(u)− ν⊤Cν + cu⊤I0u.

As J1,c(u, ν) is convex in u and concave in ν, we have now reduced the problem

to a convex-concave saddle point problem. Applying primal-dual methods to

this problem, that is, performing gradient ascent for ν following ∇νJ1,c(u, ν)

and gradient descent for u following ∇uJ1,c(u, ν), we arrive at One-Stage Dif-

ferential Gradient Q Evaluation, or Differential GQ1. At time step t, with a

sample (St, At, Rt, S
′
t, A

′
t) from dµπ, Differential GQ1 updates ut and νt as

δt
.
= Rt − e⊤1 ut + y′⊤t ut − y⊤t ut, (5.12)

νt+1
.
= νt + αt(δt − y⊤t νt)yt, (5.13)

ut+1
.
= ut + αt(yt − y′t + e1)y

⊤
t νt − αtcI0ut, (5.14)

where {αt}t≥0 is a sequence of step sizes satisfying the standard assumption

Assumption 3.5.

The algorithm is called one-stage because, while there are two weight vec-

tors updated in every iteration, both converge simultaneously.

148

Algorithm 15: Differential GQ1

Input: A sampling distribution dµπ and a feature mapping
x : S ×A → Rd

Algorithm parameters: A step-size sequence αt, a scaling
parameter η, and a regularization weight c.

1 Initialize ν, u ∈ Rd+1 arbitrarily (e.g., to zero)
2 for t = 0, 1, 2, . . . do
3 Sample a transition (S,A,R, S ′, A′) from dµπ

4 y =

[
η

x(S,A)

]
, y′ =

[
η

x(S ′, A′)

]
5 δ

.
= R− e⊤1 u+ y′⊤u− y⊤u

6 ν ← ν + αt(δ − y⊤ν)y
7 u← u+ αt(y − y′ + e1)y

⊤ν − αcI0u

8 end
9 return the estimated reward rate u[0], differential action-value

function Xu[1 :], where X is the feature matrix.

Theorem 5.1. If Assumptions 5.1—5.4, and 3.5 hold, then for any c > 0,

almost surely, the iterate {ut} generated by Differential GQ1 (Equations 5.12–

5.14) converges to u∗
c, where u∗

c
.
= −(cI0 + A⊤C−1A)−1A⊤C−1b is the unique

minimizer of J1,c(u). Further, if A is invertible, then for c = 0, {ut} converges
almost surely to uTD defined in (5.7).

Proof. The proof of Theorem 5.1 uses a result from Borkar (2009) and mimics

the convergence proof of GTD2 in Sutton et al. (2009).

I first state the result from Borkar (2009). Consider updating θ ∈ Rd by

θt+1
.
= θt + αt(Gt+1θt + ht+1),

where Gt+1 ∈ Rd×d, ht+1 ∈ Rd. Assuming

Assumption 5.5. There exist Ḡ ∈ Rd×d and h̄ ∈ Rd such that

Mt+1
.
= Gt+1θt + ht+1 − Ḡθt − h̄

satisfies

1. E[Mt+1 | Ft] = 0 a.s.

2. E[∥Mt+1∥2 | Ft] ≤ C(1 + ∥θt∥2) for some constant C > 0 a.s.

149

Here

Ft
.
= σ(x0,M1,M2, . . . ,Mt),

where σ(·) denotes the σ-field.

Assumption 5.6. The real part of every eigenvalue of Ḡ is strictly negative.

Theorem 5.2. (Borkar (2009)) Under Assumptions 3.5, 5.5, and 5.6, almost

surely,

lim
t→∞

θt = −Ḡ−1h̄

Theorem 5.2 can be directly obtained from Theorem 2 in Chapter 2 and

Theorem 7 in Chapter 3 of Borkar (2009).

I proceed by verifying Assumptions 3.5, 5.5, and 5.6 thus invoking The-

orem 5.2. With θt
.
= [ν⊤

t , u
⊤
t]

⊤, we rewrite Equations 5.12–5.14 as

θt+1
.
= θt + αt(Gt+1θt + ht+1),

where

Gt+1
.
=

[
−yty⊤t yt(y

′
t − yt)

⊤ − yte
⊤
1

(yt − y′t)y
⊤
t + e1y

⊤
t −cI0

]
,

ht+1
.
=

[
ytrt
0

]
, I0

.
=

[
0 0⊤

0 I

]
.

The asymptotic behavior of {θt} is governed by

Ḡ
.
= E[Gt+1] =

[
−C A
−A⊤ −cI0

]
,

h̄
.
= E[ht+1] =

[
b
0

]
,

where

A
.
= Y ⊤D(Pπ − I)Y − Y ⊤dµe

⊤
1

=

[
−η η1⊤D(Pπ − I)X
−X⊤dµ X⊤D(Pπ − I)X

]
b
.
=

[
Y ⊤Dr

0

]
.

150

Assumption 3.5 is assumed in the theorem being proved. For Assumption 5.5,

we define

Mt+1
.
= Gt+1θt + ht+1 − Ḡθt − h̄.

It is easy to see

E[Mt+1 | Ft] = E[Gt+1]θt + E[ht+1]− Ḡθt − h̄ = 0

E[∥Mt+1∥2 | Ft] ≤
1

2
E[
∥∥Gt+1 − Ḡ

∥∥2∥θt∥2 + ∥∥ht+1 − h̄
∥∥2|Ft].

Because our samples are generated in an i.i.d fashion, Assumption 5.5 is guar-

anteed to hold.

To verify Assumption 5.6, we first show det
(
Ḡ
)
̸= 0. Using the rule of block

matrix determinant, which states that for any square matrix E =

[
A B
C D

]
,

where A,B,C,D are all square matrices, det(E) = det(A) det(D − CA−1B),

we have

det
(
Ḡ
)
= det(C) det

(
cI0 + A⊤C−1A

)
.

Assumption 5.4 ensures C is positive definite and A⊤C−1A is positive semidef-

inite, implying cI0 + A⊤C−1A is positive semidefinite. For any z ̸= 0 ∈ Rk+1,

z⊤I0z = 0 if and only if z has the form

[
c
0

]
for some c ̸= 0 ∈ R, implying

A⊤z ̸= 0, i.e., z⊤A⊤C−1Az ̸= 0. So as long as c > 0, z⊤(cI0 +A⊤C−1A)z ̸= 0,

implying cI0 +A⊤C−1A is positive definite. It follows easily that det
(
Ḡ
)
̸= 0.

Let λ ∈ C be an eigenvalue of Ḡ. det
(
Ḡ
)
̸= 0 implies λ ̸= 0. Let z ̸= 0 ∈

C2K+2 be the corresponding normalized eigenvector of λ, i.e., zHz = 1, where

zH is the conjugate transpose of z. Let z =

[
z1
z2

]
, we have

λ = zHḠz = −zH1 Cz1 − zH2 A⊤z1 + zH1 Az2 − czH2 I0z2.

As (zH2 A⊤z1)
H = zH1 Az2, we have Re(−zH2 A⊤z1 + zH1 Az2) = 0, where Re(·)

denotes the real part. So

Re(λ) = −zH1 Cz1 − czH2 I0z2 ≤ 0.

151

Because λ ̸= 0, we have Re(λ) < 0. Assumption 5.6 then holds. Invoking

Theorem 5.2 yields

lim
t→∞

θt = −Ḡ−1h̄ almost surely.

Let u∗
c be the lower half of −Ḡ−1h̄, we have

u∗
c
.
= −(cI0 + A⊤C−1A)−1A⊤C−1b.

From (5.11), we can rewrite J1,c(u) as

J1,c(w) = ∥Au+ b∥2C−1 + cu⊤I0u

It is easy to verify (e.g., using the first order optimality condition of J1,c(u))

that u∗
c is the unique minimizer of J1,c(u).

It can also be seen that if c = 0 and A is invertible, det
(
Ḡ
)
̸= 0 as well

and u∗
c=0 = −A−1b = uTD.

Let’s now analyze the quality of TD fixed points.

Assumption 5.7. There exists at least one TD fixed point.

Let u∗ = [r̄∗, w∗⊤]⊤ be one fixed point (a solution of (5.6)). We are inter-

ested in the upper bound of the absolute value of the difference between the

estimated reward rate and the true reward rate |r̄∗− r(π)| and also the upper

bound of the minimum distance between the estimated differential value func-

tion Xw∗⊤ to the set {qπ + c1}. In general, as long as there is a representation

error, the TD fixed point can be arbitrarily poor in terms of approximating

the value function, even in the discounted case (see Kolter (2011) for more

discussion). In light of this, we study the bounds only when dµ is close to

dπ, the stationary state-action distribution of π, in the sense of the following

assumption. Let ξ ∈ (0, 1) be a constant,

Assumption 5.8. F is positive semidefinite, where

F
.
=

[
X⊤DX X⊤DPπX

X⊤P⊤
π DX ξ2X⊤DX

]
.

152

A similar assumption about F is also used by Kolter (2011) in the anal-

ysis of the performance of the MSPBE minimizer in the discounted setting.

Kolter (2011) uses ξ = 1 while we use ξ < 1 to account for the lack of dis-

counting. Section D.1 of Zhang et al. (2021) shows with a simulation that this

assumption holds with reasonable probability in randomly generated MDPs.

Furthermore, consider the bounds when all the features have zero mean under

the distribution dµ.

Assumption 5.9. X⊤dµ = 0.

This can easily be achieved by subtracting each feature vector sampled in

our learning algorithm by some estimated mean feature vector, which is the

empirical average of all the feature vectors sampled from dµ. Note that without

this mean-centered feature assumption, a looser bound can also be obtained.

We are now ready to show a bound of the convergent point. This bound is the

first bound for the TD fixed point (up to some regularization if necessary) in

the off-policy setting concerning the average-reward formulation.

Proposition 5.1. Under Assumptions 5.1–5.4, 5.7–5.9,

inf
c∈R
∥Xw∗ − qcπ∥D ≤

∥Pπ∥D + 1

1− ξ
inf
c∈R
∥ΠXq

c
π − qcπ∥D,

|r̄∗ − r(π)| ≤ ∥d
⊤
µ (Pπ−I)∥

D−1 (∥Pπ∥D+1)

1−ξ
infc∈R ∥ΠXq

c
π − qcπ∥D,

where qcπ
.
= qπ+c1, ∥Pπ∥D

.
= max∥x∥D≤1 ∥Pπx∥D, and ΠX = X(X⊤DX)−1X⊤D

is a projection matrix.

Proof. That u∗ is a TD fixed point implies

E[δt(u∗)yt] = 0,

which implies

Y ⊤D(Pπ − I)Y u∗ − Y ⊤dµe
⊤
1 u

∗ + Y ⊤Dr = 0,

expanding which yields

r̄∗ − d⊤µ (r + PπXw∗ −Xw∗) = 0,

X⊤D(r − r̄∗1+ PπXw∗ −Xw∗) = 0.

153

So we have ∥∥X⊤D(r − r̄∗1+ PπXw∗ −Xw∗)
∥∥2
(X⊤DX)−1 = 0,

implying

∥ΠX(r − r̄∗1+ PπXw∗ −Xw∗)∥2D = 0.

Using the Schur complement, Assumption 5.8 implies (see Kolter (2011) for

more details)

∥ΠXPπXw∥D ≤ ξ∥Xw∥D

holds for any w ∈ RK . We have

∥Xw∗ − qcπ∥D
≤∥Xw∗ − ΠXq

c
π∥D + ∥ΠXq

c
π − qcπ∥D

=∥ΠX(r + PπXw∗ − r̄∗1)− ΠX(r + Pπq
c
π − r(π)1)∥D + ∥ΠXq

c
π − qcπ∥D

≤∥ΠXPπXw∗ − ΠXPπq
c
π∥D + ∥ΠX(r̄

∗1− r(π)1)∥D + ∥ΠXq
c
π − qcπ∥D

=∥ΠXPπXw∗ − ΠXPπq
c
π∥D +

∥∥X(X⊤DX)−1(X⊤D1)(r̄∗ − r(π))
∥∥
D

+ ∥ΠXq
c
π − qcπ∥D

=∥ΠXPπXw∗ − ΠXPπq
c
π∥D + ∥ΠXq

c
π − qcπ∥D (By X⊤dµ = 0)

≤∥ΠXPπXw∗ − ΠXPπΠXq
c
π∥D + ∥ΠXPπΠXq

c
π − ΠXPπq

c
π∥D + ∥ΠXq

c
π − qcπ∥D

≤ξ∥Xw∗ − ΠXq
c
π∥D + ∥Pπ∥D∥ΠXq

c
π − qcπ∥D + ∥ΠXq

c
π − qcπ∥D

≤ξ∥Xw∗ − qcπ∥D + (∥Pπ∥D + 1)∥ΠXq
c
π − qcπ∥D.

From the above derivation, we have

∥Xw∗ − qcπ∥D ≤
∥Pπ∥D + 1

1− ξ
∥ΠXq

c
π − qcπ∥D.

Take the infimum

inf
c∈R
∥Xw∗ − qcπ∥D ≤ inf

c∈R

∥Pπ∥D + 1

1− ξ
∥ΠXq

c
π − qcπ∥D.

For the reward rate at the fixed point, we have, for all c ∈ R,

|r(π)− r̄∗| = |d⊤µ (Pπ − I)(Xw∗ − qcπ)|

= |d⊤µ (Pπ − I)D− 1
2D

1
2 (Xw∗ − qcπ)|

≤
∥∥d⊤µ (Pπ − I)

∥∥
D−1∥Xw∗ − qcπ∥D,

154

where the inequality is due to the Cauchy-Schwarz inequality.

As a special case, there exists a unique TD fixed point in the on-policy

case (i.e., dµ = dπ) under Assumptions 5.1, 5.2, and 5.4. Then |r(π)− r̄∗| = 0

as d⊤π (Pπ − I) = 0 and a tighter bound for the estimated differential value

function can be obtained. See Tsitsiklis and Van Roy (1999) for details.

5.4 Two Related Algorithms

This section discusses two related algorithms for solving the problem con-

sidered in this chapter. They are not contributions of this dissertation but are

still important to be mentioned to help better understand Differential GQ1.

In addition, they are used as baseline algorithms in my experiments in Sec-

tion 5.5.

The first algorithm, called Differential GQ2 (Zhang et al. 2021), is a sibling

algorithm of Differential GQ1. Differential GQ2 was derived from a different

MSPBE objective, called MSPBE2. Note that these two MSPBE objectives

not only have different forms—they also have different gradients and different

minimizers. The fact that we have at least two MSPBEs in the average-reward

setting might sound surprising because, in the discounted setting, there is only

one MSPBE objective.

MSPBE2 can be derived from MSPBE1. Note that MSPBE1 involves an

unknown variable r̄ for the reward rate. However, it is not necessary to use

such a variable to represent the reward rate because the reward rate of a policy

can be obtained directly given action values of the policy using (5.1):

r(π) =
∑
s′,r

p(s′, r | s, a)
(
r +

∑
a′

π(a′ | s′)q(s′, a′)− q(s, a)

)
,∀s, a.

Therefore

r(π) =
∑
s,a

d(s, a)
∑
s′,r

p(s′, r | s, a)
(
r +

∑
a′

π(a′ | s′)q(s′, a′)− q(s, a)

)
,

155

for any probability distribution d over the state-action space. One may replace

q(s, a) with an approximate action-value function x(s, a)⊤w, choose d = dµ,

and obtain an approximation of the reward rate,

∑
s,a

dµ(s, a)
∑
s′,r

p(s′, r | s, a)
(
r +

∑
a′

π(a′ | s′)x(s′, a′)⊤w − x(s, a)⊤w

)
≈ r(π).

Write the r.h.s. of the above equation in the vector form, we have d⊤µ (r +

PπXw − Xw). Here with a bit of abuse of notation, we use r to denote the

one-step reward vector. Replacing r̄ in the Bellman errors (5.9) (note that r̄ is

hidden in u) with d⊤µ (r+PπXw−Xw) and note that PπY u−Y u = PπXw−Xw,

we have a new Bellman error

δ̄(w) = r − d⊤µ (r + PπXw −Xw)1+ PπXw −Xw.

A new MSPBE can then be defined using this new Bellman error:

MSPBE2(w) =
∥∥ΠX δ̄(w)

∥∥2
D
.

There is an interesting fact about these two objectives. While they are differ-

ent, if the TD fixed point uniquely exists, the minimizers of the two objectives

are both the TD fixed point. Readers may refer to Zhang et al. (2021) for

more discussion about this fact.

Differential GQ2 was designed to optimize MSPBE2 (with an extra regular-

ization term just as in Differential GQ1) and has been proved to converge a.s.

to the minimum of the objective (Zhang et al. 2021). It maintains two weight

vectors w, ν ∈ Rd and a scalar R̄. Here w is used to approximate the differen-

tial action-value function, R̄ is used to approximate the reward rate, and ν is

an auxiliary parameter. At each odd step (t = 1, 3, 5, . . .), the algorithm uses

the recent two transitions ((St, At, Rt, S
′
t, A

′
t) and (St−1, At−1, Rt−1, S

′
t−1, A

′
t−1))

from dµπ to updates νt and wt:

νt+2
.
= νt + αt

(
(Rt + x′⊤

t wt − x⊤
t wt)− (Rt−1 + x′⊤

t−1wt − x⊤
t−1wt)− x⊤

t νt

)
xt,

wt+2
.
= wt + αt

(
(xt − x′

t) + (xt−1 − x′
t−1)

)
x⊤
t νt − αtcwt,

156

where xt
.
= x(St, At), xt−1

.
= x(St−1, At−1), x

′
t
.
= x(S ′

t, A
′
t), x

′
t−1

.
= x(S ′

t−1, A
′
t−1), {αt}

is a step-size sequence, and updates R̄t by

R̄t+2
.
= R̄t + ηαt

(
0.5(Rt + x′⊤

t wt − x⊤
t wt) + 0.5(Rt−1 + x′⊤

t−1wt − x⊤
t−1wt)− R̄t

)
,

where c > 0 is a constant. For convenience, I put the pseudocode of Differential

GQ2 in Algorithm 16.

Algorithm 16: Differential GQ2

Input: A sampling distribution dµπ and a feature mapping
x : S ×A → RK

Algorithm parameters: A step-size sequence αt, a scaling
parameter η, and a regularization weight c

1 Initialize ν, w ∈ Rd and R̄ ∈ R arbitrarily (e.g., to zero)
2 for t = 0, 1, 2, . . . do
3 Sample two transitions (S1, A1, R1, S

′
1, A

′
1) and (S2, A2, R2, S

′
2, A

′
2)

from dµπ
4 x1 = x(S1, A1), x

′
1 = x(S ′

1, A
′
1), x2 = x(S2, A2), x

′
2 = x(S ′

2, A
′
2)

5 R̃1 ← R1 + x′⊤
1 w − x⊤

1 w

6 R̃2 ← R2 + x′⊤
2 w − x⊤

2 w

7 ν ← ν + αt

(
R̃1 − R̃2 − x⊤

1 ν
)
x1

8 w ← w + αt

(
(x1 − x′

1) + (x2 − x′
2)
)
x⊤
1 ν − αcw

9 R̄← R̄ + ηαt

(
(R̃1 + R̃2)/2− R̄

)
10 end
11 return the estimated reward rate R̄, differential action-value function

Xw, where X is the feature matrix.

Differential SGQ, Differential GQ1, and Differential GQ2 are the first func-

tion approximation methods that estimate the reward rate with the help of

an estimated differential action-value function while almost all of the existing

approaches (e.g., Liu et al. 2018; Zhang et al. 2020a;b) estimate the reward

rate by estimating the ratio between the target policy’s stationary distribu-

tion and dµπ. An estimate of the reward rate can be directly easily using an

estimated density ratio. Algorithms estimating such a ratio are called density-

ratio-based methods. Only two prior algorithms do not follow this approach.

To compute the reward rate, the algorithm by Mousavi et al. (2020) uses an

estimated stationary distribution of the target policy, and the algorithm by

Lazic et al. (2020) uses an estimated world model.

157

To see how to estimate the reward given an estimate of the density ratio.

let dπ(s, a) be the unique stationary state-action distribution under the target

policy π. The uniqueness is guaranteed given the unichain assumption on π.

Note that with the density ratio τ(s, a)
.
= dπ(s, a)/dµπ(s, a), the reward rate

of π,

r(π) = E
[
dπ(St, At)

dµ(St, At)
Rt | St, At ∼ dµ

]
.

Once τ is approximated accurately using some τ̄ , the agent can simply estimate

r(π) using R̄t, updated by

R̄t+1 = R̄t + αt(τ̄(St, At)Rt − R̄t)

where αt is a step-size sequence.

GradientDICE is a competitive density-ratio-based baseline approach. In

fact, by the time our paper (Zhang et al. 2021) was published, Gradient-

DICE was the only density-ratio-based approach for off-policy prediction in

average-reward MDPs that is provably convergent with general LFA and has

O(d) computational complexity per step. The pseudocode of GradientDICE

is shown in Algorithm 17.

Algorithm 17: GradientDICE

Input: A sampling distribution dµπ and a feature mapping
x : S ×A → RK

Algorithm parameters: A step-size sequence αt and two
regularization parameters λ, c

1 Initialize ν, w ∈ Rd and K, R̄ ∈ R arbitrarily (e.g., to zero)
2 for t = 0, 1, 2, . . . do
3 Sample a transitions (S,A,R, S ′, A′) from dµπ
4 x = x(S,A), x′ = x(S ′, A′)
5 w ← w − αt(ν

⊤(x′ − x)x+ λKxt + cw)
6 ν ← ν + αt(w

⊤x(x′ − x)− ν⊤xν)
7 K ← K + αtλ(w

⊤x− 1−K)
8 R̄← R̄ + αt(w

⊤xR− R̄)

9 end
10 return the estimated reward rate R̄, differential action-value function

Xw, where X is the feature matrix.

The LFA version of GradientDICE, with an additional reward rate estima-

tion part, maintains two weight vectors w, ν ∈ Rd and two scalars K and R̄.

158

Here w is used to approximate the density ratio, with w⊤x(s, a) ≈ τ(s, a), and

R̄ is used to approximate the reward rate. ν and K are auxiliary parameters.

At each time step, using the transition (St, At, Rt, S
′
t, A

′
t) sampled from dµπ,

GradientDICE updates its parameters using the following rules:

wt+1 = wt − αt(ν
⊤
t (x

′
t − xt)xt + λKtxt + cwt)

νt+1 = νt + αt(w
⊤
t xt(x

′
t − xt)− ν⊤

t xtνt)

Kt+1 = Kt + αtλ(w
⊤
t xt − 1−Kt)

R̄t+1 = R̄t + αt(w
⊤
t xtRt − R̄t),

where xt = x(St, At), x
′
t = x(S ′

t, A
′
t), and λ is a parameter that pushes the

sum of d⊤µ τ , which is an estimate of dπ, to one. Note that the R̄t update does

not appear in the original GradientDICE algorithm by Zhang et al., (2020b)

as the original algorithm was only intended to estimate a density ratio, not a

reward rate.

5.5 Experiments

This section empirically studies Differential GQ1. The baseline algorithms

are Differential SGQ (see Section 5.2), Differential GQ2, and GradientDICE,

all with linear function approximation.

Just as I did in previous chapters, I used the four-room domain (Figure 3.1)

as the test domain. The target policy is an optimal one. Unlike previous ex-

periments, where the agent interacts with the world following some behavior

policy, here the agent’s experience is generated by a fixed probability distribu-

tion dµ in light of the problem setup described in Section 5.1. To ensure that

the data sampled from dµπ comes from an off-policy distribution, dµπ should

be different from the stationary distribution under π. In this experiment, dµπ

was set as follows.

dµπ(s, a) =

{ (
1− ϵ+ ϵ

4

)
dµ(s) a = π(s)

ϵ
4
dµ(s) a ̸= π(s)

,

159

where

dµ(s)
.
=

{
1−ϵ
17

+ ϵ
104

s is visited by π.
ϵ

104
otherwise

state-action pairs were then sampled from dµπ. To understand dµπ, note that

sampling a pair from it is equivalent to the following sampling process. With

probability 1 − ϵ, a state s is sampled from states that are visited by the

target policy (there are 17 such states). Note that both the target policy and

the world dynamics are deterministic, and therefore these states are visited

equally often under the target policy. With probability ϵ, a random state s

is sampled from the entire set of state space (there are 104 states in total).

Given the sampled state s, with probability 1− ϵ, an action a is chosen to be

the optimal policy’s action at s, and with probability ϵ, a is chosen to be a

random action. It is clear that when ϵ = 0, dµπ is the stationary state-action

pair distribution under policy π and evaluating π using data sampled from dµπ

is an on-policy problem. As ϵ gets higher, dµπ becomes more different from π’s

stationary state-action distribution and the learning problem becomes more

off-policy. As required by Assumption 5.3, resulting states and rewards of

state-action pairs sampled from dµπ were generated by the transition function

p, and next actions were chosen following the target policy. Note that in the

tested domain, as long as ϵ > 0, dµπ(s, a) > 0,∀s ∈ S, a ∈ A. If ϵ = 0, only

state-action pairs visited by the target policy are sampled. The algorithm may

still learn the reward rate and the differential action-value function for these

pairs correctly, up to an additive constant. But there is no hope that other

pairs are learned well. In experiments, ϵ was chosen from {0, 0.2, 0.4}. This

finishes the description of the sampling process that generates transitions used

by tested algorithms.

For each state-action pair (s, a), the corresponding feature vector x(s, a)

was constructed as follows. First, a state feature vector x(s) was computed.

Here,

x(s)
.
= concatenate(ϕ(i), ϕ(j)),

where i, j are the x, y coordinates of the cell corresponding to state s (e.g., the

160

yellow cell at the upper left corner has coordinates (1, 1) and the right hallway

cell’s coordinates are (7, 9)), and,

ϕ(0) = [1, 0, 0, 0]

ϕ(1) = [0.75, 0.25, 0, 0]

ϕ(2) = [0.5, 0.5, 0, 0]

ϕ(3) = [0.25, 0.75, 0, 0]

ϕ(4) = [0, 1, 0, 0]

ϕ(5) = [0, 0.75, 0.25, 0]

ϕ(6) = [0, 0.5, 0.5, 0]

ϕ(7) = [0, 0.25, 0.75, 0]

ϕ(8) = [0, 0, 1, 0]

ϕ(9) = [0, 0, 0.75, 0.25]

ϕ(10) = [0, 0, 0.5, 0.5]

ϕ(11) = [0, 0, 0.25, 0.75]

ϕ(12) = [0, 0, 0, 1].

I then set x(s, a)’s elements ranging from the (aK)th one to the ((a+1)K−1)th

one with x(s). All other elements in x(s, a) were set to zero. In this way,

generalization only happens across states but not across actions. Each feature

vector has length 4× 2× 4 = 32.

The reward rate error metric used in Section 3.4 is again used here. For

Differential SGQ, Differential GQ1, and Differential GQ2, a relative value error

metric was used to determine if the action values were properly learned. Note

that the relative value error metric is not pertinent to GradientDICE because

the algorithm does not estimate action values. The relative value error metric

used here has been defined in Section 3.6. A reference state-action pair is

needed in the relative value error metric. The reference state s0 was chosen

to be the yellow cell, just as in previous experiments. The reference action

was chosen to be down, which is different from the previous choice up. This

was indeed on purpose—experiments in this section tested different degrees

161

of off-policyness, ranging from the on-policy case to a very off-policy case. In

the on-policy case, the action up was never sampled from dµ. Thus the value

of action up was not learned at any state and was not suitable as a reference

value.

The parameters were set as follows. For GradientDICE, tested choices

of α were {0.1× 2−1, 0.1× 2−3, 0.1× 2−5, 0.1× 2−7, 0.1× 2−9}. For the other

three algorithms, tested choices of α were {2−1, 2−3, 2−5, 2−7, 2−9}. Note that

GradientDICE’s step sizes were chosen to be only one-tenth of other algo-

rithms’ because GradientDICE diverges with a large step size. Differential

SGQ, Differential GQ1, and Differential GQ2 all have a parameter η, which

has been chosen from {100, 10−1, 10−2, 10−3, 10−4}. Differential GQ1, Differen-

tial GQ2, and GradientDICE all use a regularization parameter c to guarantee

the uniqueness of their solutions. As discussed before, as long as this term

is positive, convergence is always guaranteed for all three algorithms. There-

fore, I fixed its value to be a small value 10−8. Finally, GradientDICE uses a

parameter λ, for which I tested {2−4, 2−2, 20, 22, 24}.
For each parameter setting, I performed 30 independent runs, each of which

contains 50, 000 time steps. The left subfigure of Figure 5.2 shows learning

curves of the four tested algorithms for the reward rate error when ϵ = 0.2.

Remember by construction, ϵ = 0.2 results in slight off-policyness. All of the

experiment results shown in this chapter use this ϵ. Experiment results in

the more off-policy case (ϵ = 0.4) and the on-policy case (ϵ = 0) are deferred

to Section B.2 because the same observations can be made for ϵ = 0.2 and

ϵ = 0.0 or ϵ = 0.4. Each learning curve is produced with the parameter setting

that minimizes the reward rate error averaged over the last 5000 steps and

averaged over the 30 runs. Therefore the learning curves show the algorithms’

asymptotic performance. The shading region indicates one standard error.

Similar learning curves for the relative value error are shown in the right

subfigure of Figure 5.2.

First, none of them converge to zero errors eventually. This is unsurprising

because they all use LFA. The learning curves show that the three Differential

methods converge to points that have similar errors. GradientDICE’s error at

162

the end of training is much higher than the other three algorithms. Although

GradientDICE may still improve its performance after 50, 000 steps, it is clear

that the other three algorithms are faster. Also, note that the learning curves

of the three differential methods are more stable than the learning curve of

the GradientDICE method.

Figures 5.3–5.6 show sensitivity curves of the tested algorithms, respec-

tively. As usual, each point in a sensitivity curve is an error (either reward

rate error or relative value error) averaged over the entire 50, 000 training

steps.

Several observations can be drawn from these curves. First, Figure 5.4

shows that Differential GQ1 was almost not sensitive to its parameter η and

was only slightly sensitive to its step size α. Comparing Figure 5.4 and Fig-

ure 5.2 shows that Differential GQ1’s reward rate and relative value errors were

close to their asymptotic counterparts for appropriate choices of parameter set-

ting, suggesting that the algorithm learned very fast with these parameters.

Second, Figure 5.3 shows that Differential SGQ was more sensitive to η and

to α. Just like Differential GQ1, Differential SGQ with appropriate parame-

ter settings also had its average errors being close to the asymptotic errors.

Third, the estimated reward rate of Differential GQ2 was sensitive to η while

the estimated differential action-value function was not. This should not be

surprising given that η only influenced the reward rate estimate. Unlike the

other two differential methods, Differential GQ2 was not stable with a large

step size. And just like the other two differential methods, GQ2 learned fast

with the best parameter setting. Finally, GradientDICE generally performed

badly in the experiment regardless of the chosen parameters. And even with

the best parameter setting, GradientDICE’s reward rate error was still much

higher than the asymptotic reward rate error, suggesting that learning was

pretty slow.

In summary, in my experiments, Differential GQ1 was not sensitive to its

parameter η and was only slightly sensitive to its step-size parameter α. In

addition, Differential GQ1 performed better than the three competitors in

terms of speed of convergence and sensitivity to hyper-parameters.

163

25000 50000
Samples

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Differential SGQ

Differential GQ1

Differential GQ2
GradientDICE

25000 50000
Samples

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Differential SGQ

Differential GQ1

Differential GQ2

Figure 5.2: Learning curves of the four tested algorithms when ϵ = 0.2. The
parameter setting was chosen to minimize the error over the last 5000 steps.
The axes have the same meaning as in Figure 3.2a and in Figure 3.2b.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1

η = 10−2 η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1
η = 10−2 η = 10−3

η = 10−4

Figure 5.3: Sensitivity curves of Differential SGQ when ϵ = 0.2. The parame-
ter setting was chosen to minimize the error over the entire 50, 000 steps. The
axes have the same meaning as in Figure 3.2c and in Figure 3.2d.

5.6 Summary

This chapter developed an average-reward algorithm for off-policy predic-

tion learning with function approximation and developed theories for the al-

gorithm. Specifically, this chapter considered the i.i.d. learning setting, where

the agent’s experience consists of transitions sampled from a certain transi-

tion distribution, which can be empirically constructed by collecting a batch

of data following the behavior policy. Under this learning setting, this chapter

showed, using a counterexample, that Differential Semi-Gradient Q, which is

a straightforward linear function approximation extension of Differential TD-

learning, diverges. Inspired by the proven-convergent Gradient-TD family of

164

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100
η = 10−1

η = 10−2 η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1

η = 10−2
η = 10−3

η = 10−4 η = 100

Figure 5.4: Sensitivity curves of Differential GQ1 when ϵ = 0.2. The axes are
the same as in Figure 5.3.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1
η = 10−2

η = 10−3η = 10−4

η = 100

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1

η = 10−2
η = 10−3

η = 10−4 η = 100

Figure 5.5: Sensitivity curves of Differential GQ2 when ϵ = 0.2. The axes are
the same as in Figure 5.3.

algorithms (Sutton et al. 2009), which were originally developed under the dis-

counted setting, this chapter introduced the One-Stage Differential Gradient-

Q (Or Differential GQ1) algorithm for the average-reward formulation. For

this new algorithm, this chapter showed a convergence result of the new algo-

rithm and presented an error bound of the point that the algorithm converges

to. The convergence result only requires very standard assumptions and the

proof builds upon the proof of the GTD2 algorithm shown by Sutton et al.

(2009). The result characterizing the error bound requires more complicated

assumptions. This bound, however, is the first bound for the TD fixed point

(up to some regularization if necessary) in the off-policy setting concerning

the average-reward formulation. The proof of the theorem extends Kolter’s

(2011) result from the discounted formulation to the average-reward formu-

165

2°1/102°3/102°5/102°7/102°9/10
Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

λ = 22

λ = 20

λ = 2−2

λ = 2−4

λ = 24

Figure 5.6: Sensitivity curves of GradientDICE when ϵ = 0.2. The axes are
the same as in the left subfigure of Figure 5.3.

lation. Finally, this chapter showed that, when the TD fixed point uniquely

exists, by removing the regularization term in the algorithm, the Differential

GQ1 algorithm converges to the TD fixed point.

This chapter also compared Differential GQ1 with Differential SGQ, its

sibling algorithm Differential GQ2 and a competitive density-ratio-based al-

gorithm, GradientDICE, in experiments. The empirical results demonstrated

that Differential GQ1 performed better than the competitors in terms of speed

of convergence and sensitivity to hyper-parameters in the tested domain.

166

Chapter 6

Discussion

In this last chapter, I would like to discuss the limitations of this disserta-

tion. These limitations naturally lead to potential future work. I would like

to close this chapter with a discussion of some final remarks on the average-

reward formulation.

A major limitation of this dissertation is that it primarily focuses on the

tabular setting and the FA setting is studied to a limited extent. Function

approximation is necessary for large-scale applications and the larger ambi-

tions of artificial intelligence. Chapter 3 and Chapter 4 were both developed

in the tabular setting. Chapter 5 was developed under the linear function

approximation setting but was limited to the prediction learning case. While

it is straightforward to extend the tabular algorithms presented in Chapter 3

and Chapter 4 to the FA setting (see e.g, Appendix E in Wan, Naik, and Sut-

ton (2021a)), the extensions may not be stable as suggested by Section 5.2.

Chapter 5 provided a stable LFA prediction algorithm (i.e., Differential GQ1).

A natural idea is to extend this algorithm to the control setting, potentially

using the technique developed by Maei et al. (2010). It also seems possible to

extend this algorithm to the non-linear FA setting, potentially using the tech-

nique developed by Maei et al. (2009) or the technique developed by Patterson,

White, and White (2022). In addition to the gradient TD approach used to

develop Differential GQ1, it is also possible to develop off-policy prediction

algorithms following the emphatic approach (He, Wan, and Mahmood 2022),

which was primarily studied concerning the discounted formulation (e.g., Sut-

167

ton, Mahmood, and White 2016; He et al. 2023). Finally, in the FA setting

considered here, the feature vector is a function of the current environment

(MDP) state. In the real world, environment states are not observable, the

agent must construct its own state using the history of observations. It is

also possible to develop and analyze average-reward algorithms in this more

general agent-state setting (see e.g., Dong, Van Roy, and Zhou 2022).

This dissertation only covers off-policy model-free algorithms and planning

algorithms and does not cover two other classes of algorithms: on-policy model-

free algorithms and model-based learning algorithms.

On-policy model-free learning algorithms (examples were provided in Chap-

ter 1) need to specify how to choose actions and deal with the exploration-

exploitation challenge while off-policy algorithms do not have to. For example,

the Differential Q-learning algorithm introduced in Section 3.5 is an off-policy

algorithm, and can be applied to a data stream generated by following any

fixed policy that assigns a positive probability to each action. A natural ques-

tion that arises is whether it is possible to develop an on-policy version of

Differential Q-learning. Although the derivation of such an on-policy version

is not immediately apparent, it does not seem implausible to achieve. In the

context of the discounted setting, successful examples have been demonstrated

for extending discounted Q-learning (Watkins and Dayan 1992) to on-policy

versions (Strehl et al. 2006; Dong et al. 2019). This suggests that due to the

strong connection between the discounted approach with a large discount fac-

tor and the average-reward formulations, it may be feasible to derive on-policy

algorithms using similar techniques.

Model-based learning methods learn a world model and plan with it. These

methods could possibly be more sample-efficient and adapt faster to non-

stationary environments, as suggested by Wan et al. (2022). Nevertheless,

there are also challenges that are unique to model-based methods, especially

in the FA setting. For example, the design of the model with FA is not a

stand-alone problem—it depends on and influences many other components

including feature learning, planning, and option discovery. For more discus-

sion about learning a model with FA, readers may refer to, for example, Sutton

168

et al. (2012), Chua et al. (2018), Wan et al. (2018;2019), Kudashkina et al.

(2021), Wan et al. (2022), Gottesman et al. (2019), Yu et al. (2020), and

Kidambi et al. (2020).

The empirical studies of all of the proposed algorithms were mainly used

to verify theories, even though some of them also helped gain insights that are

unrelated to the theories. More extensive study is needed to understand the

behaviors of the proposed algorithms, both in pedagogical small-scale problems

and challenging large-scale problems.

All of the methods studied in this dissertation are one-step methods. Ex-

tensions of these methods to n-step, λ-return, or sophisticated eligibility-trace

methods (e.g., van Seijen et al. 2016; Sutton and Barto 2018) are also possi-

ble. Recently, Naik and Sutton (2022) studied extensions of the Differential

TD-learning algorithm to the multi-step and eligibility-trace settings.

This dissertation considers policies that result in the same average-reward

rate as equally good. It is possible to seek more selective sets of policies,

which are those achieving better short-term performance among all policies

that achieve the optimal reward rate. These policies include bias-optimal

policies and the more selective Blackwell optimal policies (Blackwell 1962).

The biases (also known as differential value function) of these policies are the

highest among all policies achieving the optimal reward rate (for more details,

see, e.g. Chapter 10 by Puterman 1994). The Blackwell optimal policies are

optimal for not only the average-reward formulation but also the discounted

formulation for all discount factors that are close to one. Algorithms seeking

these more selective policies have been quite limited. To my knowledge, all

existing algorithms that guarantee to obtain such policies are planning algo-

rithms (see Bibliographic Remark of Section 10 in Puterman 1994 for a list of

them). Learning algorithms (e.g., Mahadevan 1996b; Dewanto and Gallagher

2021) have not been proven to produce such policies.

Chapter 4 considers average-reward sub-problems that involve temporal

abstraction with options. While the options framework (Sutton, Precup, and

Singh 1999) provides a simple and general way to formulate the idea of tem-

poral abstraction, there also exist other ways such as Hierarchies of Abstract

169

Machines (Parr and Russell 1997) and MAXQ (Dietterich 2000). The average-

reward formulation has been studied together with HAM by Ghavamzadeh and

Mahadevan (2007).

Chapter 4 assumes that a fixed set of options is provided and the agent

then learns or plans using them. One of the most important challenges in the

options framework is the discovery of options. I think the discovery problem

is orthogonal to the problem formulation. Hence, another line of future work

is to extend existing option-discovery algorithms developed for the discounted

and episodic formulations to the average-reward formulation (e.g., algorithms

by Wan and Sutton 2022, McGovern and Barto 2001, Menache et al. 2002,

Simsek and Barto 2004, Singh et al. 2004, Machado et al. 2017, Brunskill

and Li 2014, Jinnai et al. 2019). Relatively more work might be required

in extending approaches that couple the problems of option discovery and

learning (e.g., Gregor et al. 2016, Bacon et al. 2017, Eysenbach et al. 2018,

Achiam et al. 2018, Veeriah et al. 2021).

The Differential GQ1 algorithm (Chapter 5) needs to use i.i.d. samples.

These samples can be obtained by sampling from a batch of data, which is

potentially stored in a buffer. In large-scale problems, this batch learning

approach may need a large buffer to store transitions, which requires a big

memory space. Further, if the world is non-stationary, this approach would

need to tackle the additional challenge of determining whether or not to remove

an old transition in the buffer. Alternatively, the agent may follow an online

learning approach, where the old transitions are discarded and only the current

transition is used for learning. Transitions collected in this way are not i.i.d.

Convergence of Differential GQ1 or its variant in this non-i.i.d. setting might

be derived based on Yu’s (2017) analysis.

I now discuss some final remarks concerning the average-reward formula-

tion.

Firstly, it appears to me that some researchers in our field believe that

the average-reward formulation only cares about the performance in the very

far future and does not care about the near future. I hold a more optimistic

view and there is a nice theoretical result that supports my view. Specifically,

170

it has been shown in Proposition 6.4 by Meyn (2022) that, given any policy,

the average of rewards observed in a sequence of n transitions can be lower

bounded by the difference between the reward rate of the policy and a term

that diminishes to zero very fast (in particular, with speed 1/n, where n is the

number of transitions). This result shows that the average-reward formulation

also cares about the near future.

Secondly, it also appears to me that some researchers within our field be-

lieve that, in order to favor policies with high long-term performance, one does

not have to apply the average-reward formulation. Instead, one could simply

apply the discounted formulation with a large discount factor. In fact, there

are several works showing the tight connection between the two formulations

when the discount factor is large (Blackwell 1962; Kakade 2001; Tsitsiklis and

Van Roy 2002; Devraj and Meyn 2021). Although this approach is doable, it

has its own challenges, and this approach is probably not as easy as one would

expect. Firstly, how large the discount factor needs to vary across differ-

ent worlds and is thus not straightforward to choose without prior knowledge

of the world. Furthermore, when this discount factor is large, the resulting

discounted total reward could have an unduly large magnitude and varies sig-

nificantly across different policies, making algorithms maximizing it prone to

be unstable. Finally, it has been argued that the discounted formulation might

be inappropriate for control problems with function approximation (Section

10, Sutton and Barto 2018). They have provided a result showing that the

discount factor does not play a role in these problems for special-case MDPs.

Specifically, varying this factor does not change the ranks of policies. I show

that their result also holds for general MDPs in Chapter A.

Thirdly, the development of average-reward algorithms indeed requires a

bit more imagination and creativity compared to episodic or discounted formu-

lations. The average-reward formulation poses a unique challenge of estimating

the reward rate, which is not present in episodic or discounted settings. To

obtain the reward rate, the naive way is to simply estimate it using the average

of all the observed rewards. But this approach can not produce the reward

rate in the off-policy-learning or incremental-planning settings. We need al-

171

ternative non-trivial ways to estimate the reward rate. In this dissertation,

we have seen three such ways. The first way is to directly apply the TD er-

ror to update both the value estimate and the reward rate estimate as in our

Differential Q-learning. The second way is to choose a reference state-action

pair, whose associated action value will become the reward rate as in RVI

Q-learning by Abounadi, Bertsekas, and Borkar (2001). And the third way

uses an estimate of the density ratio between the stationary distributions of

the behavior and target policies, as in GradientDICE by (Zhang et al. 2020b).

It would be valuable to study the advantages and disadvantages of these three

ways in theory and practice.

Fourthly, people usually find that the theoretical analyses of the average-

reward algorithms are more challenging than those of the discounted or episodic

algorithms. I think this is true. The average-reward algorithms need a dif-

ferent, more involved technical tool to analyze. For example, the technical

tool used to analyze both Differential Q-learning and RVI Q-learning is more

involved than the technical tool used to analyze discounted Q-learning and

episodic Q-learning (Tsitsiklis 1994). The other example is the analysis for

value iteration. The discounted and episodic value iteration algorithms (Bert-

sekas 2007) are much easier to analyze than the average-reward value iteration

algorithm (Schweitzer and Federgruen 1977). One needs to consider the struc-

ture of Markov chains for the average-reward value iteration algorithm but not

for the discounted or episodic algorithms. To advance the theory of average-

reward algorithms further, we might still need to discover new theoretical

properties of this class of algorithms or new technical tools.

Fifthly, it is a bit surprising to me that most of the RL empirical work has

been on episodic problems, and empirical studies of continuing problems have

been quite limited. Creating testbeds for continuing problems and benchmark-

ing continuing algorithms hold immense value in our field, as it addresses a

significant gap and helps advance research and development.

172

References

Abounadi, J., Bertsekas, D., Borkar, V. S. (2001). Learning algorithms for

Markov decision processes with average cost. SIAM Journal on Control

and Optimization, 40 (3), 681–698.

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvari, C., Weisz,

G. (2019a). POLITEX: regret bounds for policy iteration using expert

prediction. In Proceedings of the 36th International Conference on Machine

Learning, 3692–3702.

Abbasi-Yadkori, Y., Lazic, N., Szepesvari, C., Weisz, G. (2019b). Exploration-

enhanced POLITEX. ArXiv:1908.10479.

Achiam, J., Edwards, H., Amodei, D., Abbeel, P. (2018). Variational option

discovery algorithms. ArXiv:1807.10299.

Almezel, S., Ansari, Q. H., Khamsi, M. A. (2014). Topics in fixed point theory,

5. Springer.

Auer, R., Ortner, P. (2006). Logarithmic online regret bounds for undis-

counted reinforcement learning. In Advances in Neural Information Pro-

cessing Systems, 19, 49–56.

Bacon, P. L., Harb, J., Precup, D. (2017). The Option-critic architecture. In

Proceedings of the 31st AAAI Conference on Artificial Intelligence, 1726–

1734.

Bartlett, P. L., Tewari, A. (2009). REGAL: a regularization based algorithm

for reinforcement learning in weakly communicating MDPs. In Proceedings

of the 25th Conference on Uncertainty in Artificial Intelligence, 35–42.

Barto, A. G., Sutton, R. S., Anderson, C. W. (1983). Neuronlike adaptive ele-

ments that can solve difficult learning control problems. IEEE Transactions

on Systems, Man, and Cybernetics(5), 834–846.

Bellman, R. E. (1957). Dynamic programming. Princeton University Press.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C.,

173

Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, J., Petrov, M.,

Pondé de Oliveira Pinto, H., Raiman, J., Salimans, T., Schlatter, J., Schnei-

der, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., Zhang, S. (2019). Dota

2 with large scale deep reinforcement learning. ArXiv:1912.06680.

Bertsekas, D. P. (1998). A new value iteration method for the average cost dy-

namic programming problem. SIAM Journal on Control and Optimization,

36 (2), 742–759.

Bertsekas, D. P. (2007). Dynamic programming and optimal control (3rd ed.,

Vol. II). Athena Scientific.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena

Scientific.

Blackwell, D. (1962). Discrete dynamic programming. The Annals of Mathe-

matical Statistics, 719–726.

Blum, J. R. (1954). Approximation methods which converge with probability

one. The Annals of Mathematical Statistics, 382–386.

Borkar, V. S. (1997). Stochastic approximation with two time scales. Systems

& Control Letters, 29 (5), 291–294.

Borkar, V. S. (1998). Asynchronous stochastic approximations. SIAM Journal

on Control and Optimization, 36 (3), 840–851.

Borkar, Vivek S. (2000). Erratum: Asynchronous stochastic approximations.

SIAM Journal on Control and Optimization, 38 (2), 662–663.

Borkar, V. S. (2009). Stochastic approximation: A dynamical systems view-

point. Springer.

Borkar, V. S., Soumyanatha, K. (1997). An analog scheme for fixed point

computation. I. Theory. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 44 (4), 351–355.

Borkar, V. S., Meyn, S. P. (2000). The ODE method for convergence of

stochastic approximation and reinforcement learning. SIAM Journal on

Control and Optimization, 38 (2):447–469.

174

Brafman, R. I., Tennenholtz, M. (2002). R-MAX — a general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine

Learning Research, 3 (10), 213–231.

Brunskill, E., Li, L. (2014). PAC-inspired option discovery in lifelong rein-

forcement learning. In Proceedings of the 31st International Conference on

Machine Learning, 316–324.

Chua, K., Calandra, R., McAllister, R., Levine, S. (2018). Deep reinforcement

learning in a handful of trials using probabilistic dynamics models. In

Advances in Neural Information Processing Systems, 31, 4759–4770.

Das, T. K., Gosavi, A., Mahadevan, S. Marchalleck, N. (1999). Solving semi-

Markov decision problems using average reward reinforcement learning.

Management Science, 45 (4), 560–574.

Denardo, Eric V. (1971). Markov renewal programs with small interest rates.

The Annals of Mathematical Statistics 42 (2), 477–496.

Diddigi, R. B., Kamanchi, C., Bhatnagar, S. (2020). A convergent off-policy

temporal difference algorithm. In Proceedings of the 24th European Con-

ference on Artificial Intelligence, 1103–1110.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ

value function decomposition. Journal of Artificial Intelligence Research,

13, 227–303.

Dewanto, V., Dunn, G., Eshragh, A., Gallagher, M., Roosta, F. (2020). Average-

reward model-free reinforcement learning: a systematic review and litera-

ture mapping. ArXiv:2010.08920.

Dewanto, V., Gallagher, M. (2021). A nearly Blackwell-optimal policy gradi-

ent method. ArXiv:2105.13609.

Devraj, A. M., Meyn, S. P. (2021). Q-learning with uniformly bounded vari-

ance. IEEE Transactions on Automatic Control.

Dong, K., Wang, Y., Chen, X., Wang, L. (2019). Q-learning with ucb explo-

ration is sample efficient for infinite-horizon mdp. ArXiv:1901.09311.

175

Dong, S., Van Roy, B., Zhou, Z. (2022). Simple agent, complex environ-

ment: Efficient reinforcement learning with agent states. Journal of Ma-

chine Learning Research, 23 (255), 1–54.

Du, S. S., Chen, J., Li, L., Xiao, L., Zhou, D. (2017). Stochastic variance

reduction methods for policy evaluation. In Proceedings of the 34th Inter-

national Conference on Machine Learning, 1049–1058.

Eysenbach, B., Gupta, A., Ibarz, J., Levine, S. (2018). Diversity is all you

need: Learning skills without a reward function. In Proceedings of the 7th

International Conference on Learning Representations.

Ghavamzadeh, M., Mahadevan, S. (2007). Hierarchical average reward rein-

forcement learning. Journal of Machine Learning Research, 8 (11).

Gosavi, A. (2004). Reinforcement learning for long-run average cost. European

Journal of Operational Research, 155 (3), 654–674.

Gottesman, O., Liu, Y., Sussex, S., Brunskill, E., Doshi-Velez, F. (2019).

Combining parametric and nonparametric models for off-policy evaluation.

In Proceedings of the 36th International Conference on Machine Learning,

2366–2375.

Gregor, K., Rezende, D. J., Wierstra, D. (2016). Variational intrinsic control.

ArXiv:1611.07507.

Hao, B., Lazic, N., Abbasi-Yadkori, Y., Joulani, P., Szepesvari, C. (2021).

Adaptive approximate policy iteration. In Proceedings of the 24th Interna-

tional Conference on Artificial Intelligence and Statistics, 523–531.

He, J., Wan, Y., Mahmood, R. (2022). The emphatic approach to average-

reward policy evaluation. In NeurIPS 2022 Workshop on DeepRL.

He, J., Che, F., Wan, Y., Mahmood, R. (2023), Consistent Emphatic Temporal-

Difference Learning. Accepted by the 39th Conference on Uncertainty in

Artificial Intelligence.

Howard, R. A. (1960). Dynamic programming and Markov processes. MIT

Press.

176

Jalali, A., Ferguson, M. J. (1989). Computationally efficient adaptive control

algorithms for Markov chains. In Proceedings of the 28th IEEE Conference

on Decision and Control, 1283–1288.

Jalali, A., Ferguson, M. J. (1990). A distributed asynchronous algorithm for

expected average cost dynamic programming. In Proceedings of the 29th

IEEE Conference on Decision and Control, 1394–1395.

Jaksch, T., Ortner, R., Auer, P. (2010). Near-optimal regret bounds for rein-

forcement learning. Journal of Machine Learning Research, 11 (4), 1563–

1600.

Jin, Y., Sidford, A. (2020). Efficiently solving MDPs with stochastic mirror

descent. In Proceedings of the 37th International Conference on Machine

Learning, 4890–4900.

Jinnai, Y., Abel, D., Hershkowitz, D., Littman, M., Konidaris, G. (2019).

Finding options that minimize planning time. In Proceedings of the 36th

International Conference on Machine Learning, 3120–3129.

Kakade, S. (2001). Optimizing average reward using discounted rewards. In

International Conference on Computational Learning Theory, 605–615.

Kearns, M., Singh, S. (2002). Near-optimal reinforcement learning in polyno-

mial time. Machine Learning, 49 (2), 209–232.

Kidambi, R., Rajeswaran, A., Netrapalli, P., Joachims, T. (2020). Morel:

Model-based offline reinforcement learning. In Advances in Neural Infor-

mation Processing Systems, 33, 21810–21823.

Kim, H., Jordan, M., Sastry, S., Ng, A. (2003). Autonomous helicopter flight

via reinforcement learning. Advances in Neural Information Processing Sys-

tems, 16, 799-806.

Kolter, J. (2011). The fixed points of off-policy TD. In Advances in Neural

Information Processing Systems, 24, 2169–2177.

Konda, V. R., (2002). Actor-critic algorithms. Doctoral dissertation, MIT.

Kudashkina, K., Wan, Y., Naik, A., Sutton, R. S. (2021). Planning with

177

expectation models for control. ArXiv:2104.08543.

Lawler, G. F. (2018). Introduction to stochastic processes. Chapman and

Hall/CRC.

Lazic, N., Boutilier, C., Lu, T., Wong, E., Roy, B., Ryu, M. K., Imwalle, G.

(2018). Data center cooling using model-predictive control. In Advances in

Neural Information Processing Systems, 31.

Lazic, N., Yin, D., Farajtabar, M., Levine, N., Gorur, D., Harris, C., Schu-

urmans, D. (2020). A maximum-entropy approach to off-policy evaluation

in average-reward mdps. In Advances in Neural Information Processing

Systems, 33, 12461–12471.

Li, Y., Cao, F. (2010). RVI Reinforcement learning for semi-Markov decision

processes with average reward. In Proceedings of the 8th World Congress

on Intelligent Control and Automation, 1674–1679.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., Petrik, M. (2015). Finite-

sample analysis of proximal gradient TD algorithms. In Proceedings of the

31st Conference on Uncertainty in Artificial Intelligence, 504–513.

Liu, Q., Li, L., Tang, Z., Zhou, D. (2018). Breaking the curse of horizon:

Infinite-horizon off-policy estimation. In Advances in Neural Information

Processing Systems, 31, 5361–5371.

Machado, M. C., Bellemare, M. G., Bowling, M. (2017). A Laplacian frame-

work for option discovery in reinforcement learning. In Proceedings of the

34th International Conference on Machine Learning, 2295–2304.

Maei, H., Szepesvari, C., Bhatnagar, S., Precup, D., Silver, D., Sutton, R.

S. (2009). Convergent temporal-difference learning with arbitrary smooth

function approximation. In Advances in neural information processing sys-

tems, 22, 1204–1212.

Maei, H. R., Szepesvari, C., Bhatnagar, S., Sutton, R. S. (2010). Toward off-

policy learning control with function approximation. In Proceedings of the

27th International Conference on Machine Learning, 719–726.

178

Mahadevan, S. (1996a). Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Machine Learning, 22 (1–3), 159–195.

Mahadevan, S. (1996b). An average-reward reinforcement learning algorithm

for computing bias-optimal policies. In Proceedings of the 13th National

Conference on Artificial Intelligence, 875–880.

Mahadevan, S., Liu, B., Thomas, P., Dabney, W., Giguere, S., Jacek, N.,

Gemp, I., Liu, J. (2014) Proximal reinforcement learning: A new theory of

sequential decision making in primal-dual spaces. ArXiv:1405.6757.

Marbach, P., Mihatsch, O., Tsitsiklis, J. N. (2000). Call admission control and

routing in integrated services networks using neuro-dynamic programming.

IEEE Journal on Selected Areas in Communications, 18 (2), 197–208.

Marbach, P., Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov

reward processes. IEEE Transactions on Automatic Control, 46 (2), 191–

209.

McCarthy, J. 2007. What is Artificial Intelligence? Available electronically at

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

McGovern, A., Barto, A. G. (2001). Automatic discovery of subgoals in rein-

forcement learning using diverse density. In Proceedings of the 18th Inter-

national Conference on Machine Learning, 361–368.

Menache, I., Mannor, S., Shimkin, N. (2002). Q-cut—dynamic discovery of

sub-goals in reinforcement learning. In Proceedings of the 13th European

Conference on Machine Learning, 295–306.

Meyn, S. (2022). Control systems and reinforcement learning. Cambridge

University Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.

G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,

S. , Beattie, C. , Sadik, A. , Antonoglou, I. , King, H. , Kumaran, D. ,

Wierstra, D. , Legg, S. , Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature 518 (7540), 529–533.

179

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

Mousavi, A., Li, L., Liu, Q., Zhou, D. (2020). Black-box off-policy estima-

tion for infinite-horizon reinforcement learning. In Proceedings of the 8th

International Conference on Learning Representations.

Naik, A., Sutton, R. S. Multi-step average-reward prediction via differential

TD (λ) (2022). In Conference on Reinforcement Learning and Decision

Making (RLDM).

OpenAI (2023). GPT-4 Technical Report. ArXiv:2303.08774.

Parr, R., Russell, S. (1997). Reinforcement learning with hierarchies of ma-

chines. In Advances in Neural Information Processing Systems, 10, 1043–

1049.

Pateria, S., Subagdja, B., Tan, A., Quek, C. (2021). Hierarchical reinforcement

learning: A comprehensive survey. ACM Computing Surveys, 54 (5), 1–35.

Patterson, A., White, A., White, M. (2022). A generalized projected bellman

error for off-policy value estimation in reinforcement learning. The Journal

of Machine Learning Research, 23 (1), 6463–6523.

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dy-

namic programming. John Wiley & Sons.

Ren, Z., Krogh, B. H. (2001). Adaptive control of Markov chains with average

cost. IEEE Transactions on Automatic Control, 46 (4), 613–617.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Prox-

imal policy optimization algorithms. ArXiv:1707.06347.

Schwartz, A. (1993). A reinforcement learning method for maximizing undis-

counted rewards. In Proceedings of the 10th International Conference on

Machine Learning, 298–305.

Schweitzer, P. J. (1971). Iterative solution of the functional equations of undis-

counted Markov renewal programming. Journal of Mathematical Analysis

and Applications, 34 (3), 495–501.

Schweitzer, P. J., Federgruen, A. (1977). The asymptotic behavior of undis-

counted value iteration in Markov decision problems. Mathematics of Op-

180

erations Research, 2(4), 360–381.

Schweitzer, P. J., Federgruen, A. (1978). The functional equations of undis-

counted Markov renewal programming. Mathematics of Operations Re-

search, 3 (4), 308–321.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess-

che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,

Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lill-

icrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D. (2016).

Mastering the game of Go with deep neural networks and tree search. Na-

ture, 529 (7587), 484-–489.

Simsek, O., Barto, A. G. (2004). Using relative novelty to identify useful

temporal abstractions in reinforcement learning. In Proceedings of the 21st

International Conference on Machine Learning.

Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff

Markovian decision processes. In Proceedings of the 12th AAAI Confer-

ence on Artificial Intelligence, 700–705.

Singh, S., Barto, A. G., Chentanez, N. (2004). Intrinsically motivated rein-

forcement learning. In Advances in Neural Information Processing Systems

17, 1281–1288.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., Littman, M. L. (2006). PAC

model-free reinforcement learning. In Proceedings of the 23rd International

Conference on Machine learning, 881–888.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differ-

ences. Machine learning, 3 (1), 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and

reacting based on approximating dynamic programming. In Proceedings of

the 7th International Conference on Machine Learning, 216–224.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs:

A framework for temporal abstraction in reinforcement learning. Artificial

181

Intelligence, 112 (1–2), 181–211.

Sutton, R. S., Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepes-

vari, C., Wiewiora, E. (2009). Fast gradient-descent methods for temporal-

difference learning with linear function approximation. In Proceedings of

the 26th International Conference on Machine Learning, 993–1000.

Sutton, R. S., Szepesvari, C., Geramifard, A., Bowling, M. P. (2012). Dyna-

style planning with linear function approximation and prioritized sweeping.

In Proceedings of the 24th Conference on Uncertainty in Artificial Intelli-

gence, 528–536.

Sutton, R. S., Mahmood, A. R., White, M. (2016). An emphatic approach

to the problem of off-policy temporal-difference learning. The Journal of

Machine Learning Research, 17 (1), 2603–2631.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.,

Precup, D. (2011). Horde: A scalable real-time architecture for learning

knowledge from unsupervised sensorimotor interaction. In Proceedings of

the 10th International Conference on Autonomous Agents and Multiagent

Systems, 761–768.

Szepesvari, C. (2010). Algorithms for reinforcement learning. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning, Morgan and Claypool

Publishers.

Tang, Z., Feng, Y., Li, L., Zhou, D., Liu, Q. (2019). Doubly robust bias

reduction in infinite horizon off-policy estimation. In Proceedings of the 8th

International Conference on Learning Representations.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning.

Machine Learning, 16 (3), 185–202.

Tsitsiklis, J. N., Van Roy, B. (1999). Average cost temporal-difference learn-

ing. Automatica, 35 (11), 1799–1808.

182

Tsitsiklis, J. N., Van Roy, B. (2002). On average versus discounted reward

temporal-difference learning. Machine Learning, 49 (2), 179–191.

van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., Sutton,

R. S. (2016). True online temporal-difference learning. Journal of Machine

Learning Research, 17 (145), 1–40.

Veeriah, V., Zahavy, T., Hessel, M., Xu, Z., Oh, J., Kemaev, I., van Hasselt, H.,

Silver, D., Singh S. (2021). Discovery of options via meta-learned subgoals.

In Advances in Neural Information Processing Systems 34, 29861–29873.

Vien, N. A., Chung, T. (2008). Policy gradient semi-Markov decision process.

In Proceedings of the 20th IEEE International Conference on Tools with

Artificial Intelligence, 2, 11–18.

Wan, Y., Zaheer, M., White, M., Sutton, R. S. (2018). Model-based reinforce-

ment learning with non-linear expectation models and stochastic environ-

ments. In The Joint IJCAI/ECAI/AAMAS/ICML Conference Workshop

on Prediction and Generative Modeling in Reinforcement Learning.

Wan, Y., Abbas, Z., White, A., White, M., Sutton, R. S. (2019). Planning

with expectation models. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence, 3649–3655.

Wan, Y., Naik, A., Sutton, R. S. (2021a). Learning and planning in average-

reward Markov decision processes. In Proceedings of the 38th International

Conference on Machine Learning, 10653–10662.

Wan, Y., Naik, A., Sutton, R. S. (2021b). Average-reward learning and plan-

ning with options. In Advances in Neural Information Processing Systems,

34, 22758–22769.

Wan, Y., Sutton, R. S. (2022). Toward discovering options that achieve faster

planning. ArXiv:2205.12515.

Wan, Y., Yu, H., Sutton, R. S. (2023). On convergence of average-reward

off-policy control algorithms in weakly communicating MDPs. To Be Sub-

mitted. An Earlier Version in ArXiv:2209.15141.

183

Wan, Y., Rahimi-Kalahroudi, A., Rajendran, J., Momennejad, I., Chandar,

S., van Seijen, H. (2022). Towards evaluating adaptivity of model-based

reinforcement learning methods. In Proceedings of the 39th International

Conference on Machine Learning, 22536–22561.

Wang, M. (2017). Primal-dual π learning: Sample complexity and sublinear

run time for ergodic Markov decision problems. ArXiv:1710.06100.

Warlop, R., Lazaric, A., Mary, J. (2018). Fighting boredom in recommender

systems with linear reinforcement learning. In Advances in Neural Infor-

mation Processing Systems, 31, 1757–1768.

Watkins, C. J., Dayan, P. (1992). Q-learning. Machine Learning, 8 (3), 279–

292.

Wei, C. Y., Jahromi, M. J., Luo, H., Sharma, H., Jain, R. (2020). Model-free

reinforcement learning in infinite-horizon average-reward markov decision

processes. In Proceedings of the 37th International Conference on Machine

Learning, 10170–10180.

Wen, J., Dai, B., Li, L., Schuurmans, D. (2020). Batch stationary distribution

estimation. In Proceedings of the 37th International Conference on Machine

Learning, 10203–10213.

Wheeler, R., Narendra, K. (1986). Decentralized learning in finite Markov

chains. IEEE Transactions on Automatic Control, 31 (6), 519–526.

White, D. J. (1963). Dynamic programming, Markov chains, and the method

of successive approximations. Journal of Mathematical Analysis and Appli-

cations, 6 (3), 373–376.

Yang, S., Gao, Y., An, B., Wang, H., Chen, X. (2016). Efficient average reward

reinforcement learning using constant shifting values. In Proceedings of the

30th AAAI Conference on Artificial Intelligence, 2258–2264.

Yu, H. (2017). On convergence of some gradient-based temporal-differences

algorithms for off-policy learning. ArXiv:1712.09652.

Yu, H., Bertsekas, D. P. (2008). New error bounds for approximations from

184

projected linear equations. In European Workshop on Reinforcement Learn-

ing, 253–267.

Yu, H., Bertsekas, D. P. (2009). Convergence results for some temporal dif-

ference methods based on least squares. IEEE Transactions on Automatic

Control, 54 (7), 1515–1531.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., Ma,

T. (2020). Mopo: Model-based offline policy optimization. In Advances in

Neural Information Processing Systems, 33, 14129–14142.

Zhang, R., Dai, B., Li, L., Schuurmans, D. (2020a). GenDICE: Generalized of-

fline estimation of stationary values. In Proceedings of the 8th International

Conference on Learning Representations.

Zhang, S., Liu, B., Whiteson, S. (2020b). GradientDICE: Rethinking gen-

eralized offline estimation of stationary values. In Proceedings of the 37th

International Conference on Machine Learning, 11194–11203.

Zhang, S., Wan, Y., Sutton, R. S., Whiteson, S. (2021). Average-reward off-

policy policy evaluation with function approximation. In Proceedings of the

37th International Conference on Machine Learning, 12578–12588.

Zhang, S., Zhang, Z., Maguluri, S. T. (2021). Finite Sample Analysis of

Average-Reward TD Learning and Q-Learning. Advances in Neural Infor-

mation Processing Systems, 34, 1230–1242.

185

Appendix A

The Discounted Factor
Deprecates with Function
Approximation

It has been shown (Section 10.4 in Sutton & Barto 2018) that, with the

discounted formulation, the discounted factor deprecates in control problems

with function approximation. Their result was developed for ergodic finite

MDPs. In this section, I show that their result applies to general finite MDPs.

The discounted formulation of MDPs seeks a policy that maximizes the

discounted total reward, or the discounted return, with the discount factor

given as a problem parameter. The discounted discounted return is R1 +

γR2 + · · · , where 0 ≤ γ < 1 is the discount factor. Define the value of a state

s given a policy π to be the expected discounted return:

vγπ(s)
.
= Eπ[R1 + γR2 + · · · | S0 = s].

The discounted formulation seeks a policy π ∈ Π that maximizes the value for

all states. Such a π always exists.

It is well-known that for both the discounted and the average-reward for-

mulations, there exists a deterministic optimal policy. It is therefore common

for the agent to maintain a S ×A table that can represent every deterministic

policy. However, if the state and action spaces are large, such a table would

be large and the agent would have to resort to some function approximation

(FA) that only represents a much smaller subset of Π.

186

When policies are represented by function approximation, both the dis-

counted and the average-reward formulations need to be modified because

there may not be a representable policy that maximizes expected return/discounted

return/reward rate for each state and there must be a different weight for dif-

ferent states.

If the weights are set to be the start state distribution, the best policy would

then be optimized for the start states and can be useless for other states. Such a

policy performs well in the early stages but can become useless eventually if the

start states are not visited again. Such a policy is not desirable in continuing

problems because the agent is expected to perform well continuously, not only

in the early stages. A more reasonable way is to weigh states according to the

long-run fraction of time that the agent spends in each state. The rigorous

definition of such a fraction for policy π is

dπ(s)
.
= lim

n→∞

1

n

n−1∑
t=0

Pr(St = s | S0 ∼ d0, A0:t−1 ∼ π), (A.1)

where the limit always exists. This limit is not necessarily the limiting dis-

tribution of π with initial distribution d0. The limiting distribution does not

necessarily exist. The limit is one stationary distribution of π (note that a

policy may have multiple stationary distributions).

The discounted formulation is modified to∑
s

dπ(s)Eπ[R1 + γR2 + · · · | S0 = s]. (A.2)

The average-reward formulation is thus modified to∑
s

dπ(s)r(π, s). (A.3)

The following proposition shows that maximizing the average-reward formula-

tion (A.3) is equivalent to maximizing the discounted formulation (A.2). This

proposition extends what is presented in the box on Page 254 by Sutton &

Barto (2018) by considering general MDPs rather than ergodic MDPs.

187

Proposition A.1. For any π ∈ Π and s ∈ S,∑
s

dπ(s)r(π, s) =
∑
s

d0(s)r(π, s),

1

1− γ

∑
s

d0(s)r(π, s) =
∑
s

dπ(s)v
γ
π(s).

Proof.

∑
s

dπ(s)r(π, s) =
∑
s

d0(s)
∑
s′

lim
n→∞

1

n

n−1∑
t=0

Pr(St = s′ | S0 = s, π)r(π, s′)

=
∑
s

d0(s) lim
n→∞

1

n

n−1∑
t=0

∑
s′

Pr(St = s′ | S0 = s, π)r(π, s′)

=
∑
s

d0(s) lim
n→∞

1

n

n−1∑
t=0

r(π, s)

=
∑
s

d0(s)r(π, s)

The third equation holds because∑
s′

Pr(St = s′ | S0 = s, π)r(π, s′)

=
∑
s′

Pr(St = s′ | S0 = s, π) lim
n→∞

1

n

n+t∑
i=t+1

E[Ri | St = s′, π]

= lim
n→∞

1

n

n+t∑
i=t+1

E[Ri | S0 = s, π]

= lim
n→∞

1

n

(
n+t∑
i=1

E[Ri | S0 = s, π]−
t∑

i=1

E[Ri | S0 = s, π]

)
= r(π, s).

188

∑
s

dπ(s)v
γ
π(s)

=
∑
s

dπ(s)Eπ[R1 + γR2 + · · · | S0 = s]

=
∑
s

dπ(s)Eπ[R1 | S0 = s] + γ
∑
s

dπ(s)Eπ[R2 | S0 = s] + · · ·

=
∑
s

d0(s)r(π, s) + γ
∑
s

dπ(s)Eπ[R2 | S0 = s] + · · ·

=
∑
s

d0(s)r(π, s) + γ
∑
s

d0(s)r(π, s) + · · ·

=
1

1− γ

∑
s

d0(s)r(π, s).

The third equation holds from the definition of dπ and r(π, s):∑
s

dπ(s)Eπ[R1 | S0 = s]

=
∑
s

lim
n→∞

1

n

n−1∑
t=0

Pr(St = s | S0 ∼ d0, π)rπ(s)

= lim
n→∞

1

n

n−1∑
t=0

E[Rt+1 | S0 ∼ d0, π]

=
∑
s

d0(s)r(π, s).

Here rπ(s)
.
=
∑

a π(a | s)
∑

s′,r p(s
′, r | s, a)r is the one-step expected reward

under policy π.

189

The fourth equation holds for a similar reason∑
s

dπ(s)Eπ[R2 | S0 = s]

=
∑
s

lim
n→∞

1

n

n−1∑
t=0

Pr(St = s | S0 ∼ d0, π)
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)rπ(s′)

= lim
n→∞

1

n

n−1∑
t=0

∑
s′

Pr(St+1 = s′ | S0 ∼ d0, π)rπ(s
′)

= lim
n→∞

1

n

n−1∑
t=0

E[Rt+2 | S0 ∼ d0, π]

= lim
n→∞

1

n

n−1∑
t=0

E[Rt+1 | S0 ∼ d0, π]− lim
n→∞

1

n
E[R1 | S0 ∼ d0, π]

+ lim
n→∞

1

n
E[Rn+1 | S0 ∼ d0, π]

=
∑
s

d0(s)r(π, s).

The above proposition suggests that γ is not playing a role in ranking poli-

cies and is thus unnecessary. Therefore, the discount factor deprecates, and the

discounted formulation is equivalent to the average-reward formulation when

function approximation is used to represent policies. One might wonder why

not optimize the discounted formulation anyway with an arbitrary discount

factor, given that it is equivalent to the average-reward formulation. Could

that be easier than the average-reward formulation? It turns out that no

known algorithm maximizes the discounted formulation with different states

weighted by the stationary distribution. If there is such an algorithm then its

choice of the discount factor should not influence its solutions. All existing

algorithms that I know of do not have this property.

190

Appendix B

Additional Experiments

B.1 Options Experiments

Section 4.6 shows sensitivity curves of inter-option prediction and con-

trol algorithms in the four-room domain with the second step size parameter

β = 2−1. This section shows the same results but with other choices of β

(2−3, 2−5, 2−7, 2−9). Figure B.1 and Figure B.2 show sensitivity curves of the

prediction and the control algorithms, respectively. These sensitivity curves

are similar to those with β = 2−1, suggesting that the algorithm is not sensitive

to the choice of β.

B.2 Function Approximation Experiments

In this section, I present additional experiment results for the experiment

described in Section 5.5. In Section 5.5, I presented learning curves and sen-

sitivities curves for Differential SGQ, Differential GQ1, Differential GQ2, and

GradientDICE when a parameter controlling the off-policyness of the problem

ϵ = 0.2. In this section, I show results with two other choices of ϵs. The first

choice of ϵ is zero, in which case the problem becomes an on-policy one. The

second choice of ϵ is 0.4, in which case the behavior policy is more different

from the target policy than the case when ϵ is 0.2. The most extreme case

is ϵ = 1. In this case, state-action pairs are randomly sampled from the en-

tire state-action space, whose size is 104 × 4 = 416, while the target policy

is optimal and only visits 17 state-action pairs equally often. Figure B.3 and

191

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100
η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100η = 10−1

η = 10−2

η = 10−3

η = 10−4

Figure B.1: Plots showing learning curves and parameter studies for inter-
option Differential Q-evaluation-learning in the continuing Four-Room domain
when the goal was to go to G1. O = A + H. β = 2−3 (first row), β = 2−5

(second row), β = 2−7 (third row), β = 2−9 (fourth row). The first and second
columns show the reward rate error, and the relative value error achieved by
the algorithm, respectively. The experiment setting and the plot axes are the
same as those in Figure 4.3.

Figure B.8 shows learning curves for ϵ = 0 and ϵ = 0.4 respectively. Figure B.4

– Figure B.7 show sensitivity curves for the four tested algorithms when ϵ = 0.

192

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1η = 10−2

η = 10−3
η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2
η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1η = 10−2

η = 10−3
η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2
η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2
η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 100 η = 10−1

η = 10−2

η = 10−3

η = 10−4

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 100

η = 10−1

η = 10−2

η = 10−3

η = 10−4

Figure B.2: Parameter studies of inter-option Differential Q-learning. O =
A +H and β = 2−3 (first row), β = 2−5 (second row), β = 2−7 (third row),
β = 2−9 (fourth row). The first, second, and third columns show the reward
rate, the reward rate error, and the relative value error achieved by the algo-
rithm, respectively. The experiment setting and the plot axes are the same as
mentioned in Figure 4.3’s caption.

Figure B.9 – Figure B.12 shows sensitivity curves for the four tested algorithms

when ϵ = 0.4. The observations I made in Section 5.5 for ϵ = 0.2 also apply

here for ϵ = 0 and ϵ = 0.4.

193

25000 50000
Samples

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Differential SGQ
Differential GQ1

Differential GQ2
GradientDICE

25000 50000
Samples

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Differential SGQ

Differential GQ1

Differential GQ2

Figure B.3: Learning curves of the four tested algorithms when ϵ = 0. The
parameter setting was chosen to minimize the error over the last 5000 steps.
The axes have the same meaning as in Figure 3.2a and in Figure 3.2b.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1

η = 10−2

η = 10−3

η = 10−4

η = 100 2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1

η = 10−2 η = 10−3
η = 10−4

η = 100

Figure B.4: Sensitivity curves of Differential SGQ when ϵ = 0. The parameter
setting was chosen to minimize the error over the entire 50, 000 steps. The axes
have the same meaning as in Figure 3.2a and in Figure 3.2b.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1
η = 10−2 η = 10−3

η = 10−4

η = 100
2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error η = 10−1

η = 10−2
η = 10−3

η = 10−4
η = 100

Figure B.5: Sensitivity curves of Differential GQ1 when ϵ = 0. The axes are
the same as in Figure 5.3.

194

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1

η = 10−2

η = 10−3

η = 10−4

η = 100 2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1

η = 10−2
η = 10−3 η = 10−4η = 100

Figure B.6: Sensitivity curves of Differential GQ2 when ϵ = 0. The axes are
the same as in Figure 5.3.

2°1/102°3/102°5/102°7/102°9/10
Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

λ = 22
λ = 20

λ = 2−2

λ = 2−4

λ = 24

Figure B.7: Sensitivity curves of GradientDICE when ϵ = 0. The axes are
the same as in the left subfigure of Figure 5.3.

25000 50000
Samples

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

Differential SGQ

Differential GQ1

Differential GQ2

GradientDICE

25000 50000
Samples

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

Differential SGQ

Differential GQ1

Differential GQ2

Figure B.8: Learning curves of the four tested algorithms when ϵ = 0.4. The
axes are the same as in Figure 5.2.

195

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1

η = 10−2
η = 10−3

η = 10−4

η = 100

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1
η = 10−2

η = 10−3
η = 10−4

η = 100

Figure B.9: Sensitivity curves of Differential SGQ when ϵ = 0.4. The axes
are the same as in Figure 5.3.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1
η = 10−2

η = 10−3
η = 10−4

η = 100

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1

η = 10−2

η = 10−3

η = 10−4

η = 100

Figure B.10: Sensitivity curves of Differential GQ1 when ϵ = 0.4. The axes
are the same as in Figure 5.3.

2°12°32°52°72°9

Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

η = 10−1 η = 10−2 η = 10−3

η = 10−4

η = 100

2°12°32°52°72°9

Step Size

0.0

0.1

0.2

0.3

0.4

0.5

Relative
Value
Error

η = 10−1
η = 10−2

η = 10−3

η = 10−4

η = 100

Figure B.11: Sensitivity curves of Differential GQ2 when ϵ = 0.4. The axes
are the same as in Figure 5.3.

196

2°1/102°3/102°5/102°7/102°9/10
Step Size

0.00

0.02

0.04

0.06

0.08

Reward
Rate
Error

λ = 22

λ = 20
λ = 2−2

λ = 2−4

λ = 24

Figure B.12: Sensitivity curves of GradientDICE when ϵ = 0.4. The axes are
the same as in the left subfigure of Figure 5.3.

197

	Average-Reward Reinforcement Learning
	The Reinforcement Learning Approach to Intelligence
	The Average-Reward Formulation of Reinforcement Learning
	Taxonomy of Average-Reward Sub-Problems
	Contributions

	Markov Chains and Markov Decision Processes
	Markov Chains
	Markov Decision Processes

	Tabular Algorithms
	Problem Setup
	The Convergence of a General Algorithm
	Prediction Algorithms
	Prediction Experiments
	Control Algorithms
	Control Experiments
	Centered Algorithms
	Centering Experiments
	Summary

	Temporal Abstraction with Options
	SMDP Preliminaries
	A Sub-Optimality Bound in Weakly Communicating SMDPs
	Important Properties of the Solution Set
	Problem Setup
	Inter-Option (SMDP) Algorithms
	Inter-Option Experiments
	Intra-Option Value Learning and Planning Algorithms
	Intra-Option Experiments
	Intra-Option Model Learning and Planning Algorithms
	Interruption to Improve the Hierarchical Policy
	Interruption Experiments
	Summary

	Prediction with Function Approximation
	Problem Setup
	Differential Semi-Gradient Q-Evaluation
	One-Stage Differential Gradient Q-Evaluation
	Two Related Algorithms
	Experiments
	Summary

	Discussion
	Appendix The Discounted Factor Deprecates with Function Approximation
	Appendix Additional Experiments
	Options Experiments
	Function Approximation Experiments

