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Abstract

In realistic environments, intelligent agents must learn to integrate information

from their past to inform present decisions. An agent’s immediate observations

are often limited, and some degree of memory is necessary to complete many

everyday tasks. However, an agent cannot remember everything it observes.

The history of observations may be arbitrarily long, making it impractical to

store and process. In this thesis, we will develop a novel method, called online

policy gradient over a reservoir (OPGOR), for selecting what to remember

from the stream of observation. We will also explore a number of alternative

methods for handling this selective memory problem.

OPGOR contrasts with recurrent neural networks (RNNs), which handle

the task of selective memory by propagating information forward one step

at a time. RNNs are very practical to a point but suffer on longer time

horizons due to the difficulty of maintaining information over many steps with

a mechanism based on one step updates. Furthermore, RNNs are generally

trained by backpropagation through time (BPTT) which requires, at each

time-step, compute time proportional to the length of the history. To handle

this in practice, backpropagation is only performed over a fixed time window,

further limiting its utility over long time horizons.

OPGOR operates within the framework of external memory mechanisms

for selective memory, which use explicit read and write operations instead of

recurrent updates. An external memory consists of a fixed number of constant

length vectors, or slots, in which relevant information can be written and later
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read. Such mechanisms give rise to three key questions: what to read from

memory, what to write to memory, and what to drop from memory when

something is written.

External memory mechanisms have some advantages over RNNs for learn-

ing long-term dependencies, but in many cases they are still trained using

BPTT, in which case they require similarly restrictive computation time. We

will focus on external memory mechanisms which avoid the use of BPTT. Such

mechanisms generate a vector, which we call a state variable, at each time-step

and then, perhaps stochastically, decide whether to write it to memory, replac-

ing an existing state variable in the process. External memory mechanisms

that forgo BPTT often use a heuristic to decide which item to replace. Such

heuristic replacement mechanisms can work well if the memory is very large

but may fail if there are dependencies over much larger timescales than the

memory size.

This thesis will focus on the question of how to learn to prioritize which

information is written to and retained in an external memory. We will focus

on the online case, where a single agent acts and learns concurrently, with a

limited amount of memory and compute time. In doing so, we hope to produce

agents that can learn to perform well, while storing much less information.

Our primary approach, OPGOR, will apply policy gradient to the process of

selecting which state variables to store in memory from the entire trajectory.

Naively applying policy gradient to draw a subset of the full history of state

variables would require us to store the full history of state variables and then

draw a sample. This is not feasible for an online method. On the other hand

we can easily make a stochastic decision at each time-step regarding whether

to add the current state variable, and if so which one to replace. One could ask

whether we can construct an incremental stochastic procedure such that the

marginal probability of inclusion for any given state variable in an observed
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sequence is as if we had drawn a sample from the full history of state variables.

A variety of algorithms exist which maintain a fixed sized sample with

particular statistical properties from a stream observed one item at a time.

Such algorithms are called reservoir sampling algorithms, named for the fact

that they maintain a fixed size sample, or reservoir, of items drawn from a

stream. The goal is to ensure, through specific add and drop probabilities,

that the n items in the reservoir at each time-step correspond to a sample

with certain desired statistical properties over n-subsets of all observed items.

This is done without ever storing more than n items from the stream.

In this thesis we will use a reservoir sampling algorithm to maintain an

external memory where the inclusion probability for each state variable in

the history is given by a differentiable, closed form expression. Reservoir

sampling allows us to achieve this while storing only a small fixed number

of state variables. Our main contribution will be to combined this technique

with policy gradient to tune the inclusion probabilities of each state variable

online, to improve expected return. The resulting procedure, OPGOR, allows

us to efficiently train our memory to maintain useful state variables.

We test OPGOR, along with a number of alternative selective memory

strategies, on a set of psychology inspired problems, simplified to focus on the

specific aspects of the problem we aim to investigate. In doing so, we explore

the challenges of deciding what to retain in memory and to what degree various

methods handle them.
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Chapter 1

Learning What to Remember

In realistic environments, intelligent agents must learn to integrate informa-

tion from their past to inform present decisions. The reinforcement learning

(RL) framework, which we will utilize in this thesis, provides powerful general

techniques, which allow an agent to learn to optimize arbitrary reward sig-

nals in arbitrary environments. One area where RL remains limited, however,

is the oft applied assumption that given the current state, future states and

rewards are independent of all past states. This is called the Markov assump-

tion, and the practical implication is that an agent has all the information it

needs to make correct decisions and predictions at each time-step, and need

not remember its past.

In realistic problems, an agent’s immediate observations are often limited,

and some information about the past is necessary to make informed decisions.

Since it is not practical to store, or to process, the entire sequence of obser-

vations, an agent must have some method for selectively storing information

from its past. Various methods exist which attempt to handle this problem.

One common approach is to maintain a hidden state, updated with each new

observation. The update function is adjusted over time, learning to store infor-

mation pertinent to future decision making. Other approaches utilize external

memories which an agent can explicitly write to and read from using various

mechanisms.

A major contribution of this thesis will be introducing a method, called

online policy gradient over a reservoir (OPGOR), for handling the problem of
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selecting what to remember from the stream of observation. OPGOR operates

on a reservoir of data drawn from the stream of observations, and attempts

to optimize this limited storage such that what is remembered helps to facili-

tate good performance. OPGOR does this by applying policy gradient, which

facilitates improvement through trial and error by increasing the probability

of selections which lead to high return. OPGOR works online, which here

means it operates in real time, on the stream of experience generated by a

single agent interacting with an environment, without storing a large amount

of extra data to learn from.

OPGOR contrasts with recurrent neural networks (RNNs), which handle

the task of selective memory by propagating information forward one step at

a time. More precisely, RNNs maintain a hidden state which is recurrently

updated with each new observation. In the simplest case of an ordinary RNN,

the state update consists of a matrix multiplication of the last hidden state

concatenated with the current observation, followed by a nonlinear activation

to produce the next hidden state. Explicitly, if ht is the RNN state and xt is

the input at time t, an RNN updates it’s hidden state as follows:

ht = σ(Wxt + Uht−1 + b),

where W and U are learned matrices, b is a learned bias vector and σ is a non-

linear activation. Though it is in principle possible to propagate information

over arbitrary lengths of time with such a mechanism, the form of the update

can make long-term dependencies difficult to learn. One reason for this is

the lack of any specific mechanism for retaining information over time. Since

each update is defined by a matrix multiplication, in order to maintain some

part of the hidden state over many time-steps the system must explicitly learn

something like an identity transformation, and small deviations may cause the

hidden state to decohere in unpredictable ways. This manifests in the well

known vanishing (or exploding) gradient problem, where the gradients with

respect to past inputs quickly become negligible (or inordinately large).

To fight the vanishing gradient problem more modern RNN variants gener-

ally make use of learnable gating mechanisms. Gates attenuate the updates to
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certain elements of the RNN state by multiplying by a number between zero

and one. This gives the system the ability to explicitly choose to retain infor-

mation over many time-steps by consistently gating its update with a value

near zero. Long short term memory (LSTM) (Hochreiter & Schmidhuber,

1997) and gated recurrent unit (GRU) (Cho, Van Merriënboer, Bahdanau,

& Bengio, 2014) networks are two commonly used examples of such gated

systems. GRUs make use of two gates, a reset gate for clearing information

currently stored in an element of the state, and an update gate for adding

information to an element. Explicitly, the GRU updates its state as follows:

zt = σg(Wzxt + Uzht−1 + bz),

rt = σg(Wrxt + Urht−1 + br),

ht = zt ⊙ ht−1 + (1 − zt) ⊙ σ(Wxt + U(rt ⊙ ht−1) + b),

where σg is a sigmoid activation constraining zt and rt to be between one and

zero, Wz, Wr, W , Uz, Ur and U are all learned matrices and bz, br and b

are learned bias vectors. The operator ⊙ denotes an element-wise product.

Notice that, by setting elements of the update gate zt to a value near one, this

mechanism allows elements of the hidden state from the last time-step to be

maintained as is. On the other hand, setting elements of the reset gate rt near

zero allows elements of the hidden state to be explicitly cleared. In addition

to these two gates, LSTM also uses an output gate for gating information read

from an element. These mechanisms help to greatly reduce the vanishing or

exploding gradient problem by providing a unit gradient pathway between the

hidden state at one time-step and the next.

Gating mechanisms help to extend the utility of recurrent systems to much

larger timescales, however they still have limitations. Gates provide a conve-

nient way to learn to retain information, however ultimately a sequence of

one step updates still needs to be learned. As dependencies become longer,

it becomes increasingly difficult to learn what information is worth propagat-

ing over many steps, even with a gating mechanism. Further difficulty arises

because RNNs, LSTMs and GRUs are all usually trained with backpropaga-

tion through time (BPTT). BPTT unrolls the computation as if the series of
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recurrent updates were one large network with one layer for each observation

seen in the history so far. It then backpropagates errors from the current

time-step through all of these layers to determine the gradient of these er-

rors with respect to each network parameter over all time-steps. This requires

compute time proportional to the length of the history at each update step.

To handle this in practice, backpropagation is generally only performed over a

fixed time window, which further limits the systems ability to learn long-term

dependencies.

Instead of recurrent updates, OPGOR builds on an alternative framework

for selective memory, which utilizes an explicit memory that is external to

the network. Like gating mechanisms, these external memory mechanisms

also aim to provide a learning agent with the ability to store information over

many time-steps, but take this idea further. While gating mechanisms provide

a way to selectively maintain individual elements of the hidden state, an exter-

nal memory provides a series of slots in which whole vectors can be stored and

subsequently read. By using addressing mechanisms which explicitly select

slots to write to and read from, such systems allow an agent to store dras-

tically more information, with less learning, and perhaps less computation,

than would be associated with an RNN of similar capacity. Unlike a gating

mechanism, interaction with memory is constrained to be highly sparse, which

biases the system towards maintaining information for a longer period of time.

External memory based systems give rise to three key questions: what to read

from memory, what to write to memory and what to drop from memory when

something is written.

External memory mechanisms have some advantages over RNNs for learn-

ing long-term dependencies, but in many cases they are still trained using

BPTT. Training an external memory with BPTT requires that the read and

write mechanisms be differentiable. In practice this means that reading and

writing are fractional operations. A write operation updates or partially over-

writes the content of each slot, while a read operation returns a weighted

average over the values in each slot.

External memory mechanisms trained with BPTT have the same compu-
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tational issue inherent in RNNs trained similarly. In particular, training with

BPTT loses much the computational benefit of maintaining a limited memory,

as in order to train a system in this manner we must actually record the full

history in order to backpropagate over it. If instead we truncate the backprop-

agation to a fixed number of steps, as is usually done when training RNNs,

it is unclear how the system could learn dependencies over a longer timescale

than the truncation length. Items stored for longer than the truncation length

could not be traced back to when they were written.

We will focus on external memory mechanisms which avoid the use of

BPTT. Such mechanisms generate a vector, which we call a state variable,

at each time-step and then, perhaps stochastically, decide whether to write

it to memory, replacing an existing state variable in the process. In this

case the writing mechanism is not fractional, the state variable either entirely

replaces another in memory, or is not written at all. The state variable may

be the hidden state of an RNN, or generated through some other mechanism.

Generally, external memory mechanisms that forgo backpropogation through

time instead use a simple heuristic to decide which item to replace when the

memory becomes full. Possible heuristics include dropping the least recently

used, or even simply maintaining the last n state variables. Such heuristic

replacement mechanisms can work well if the memory is very large but may

fail if there are dependencies over much longer timescales than the memory size.

Reading from memory may still be based on a differentiable mechanism similar

to the one described above. Note however, that differentiable reading does not

require BPTT, as we need only select from the current memory contents,

which are immediately available. Alternatively, reading from memory may be

stochastic, and trained by a trial and error procedure, such as policy gradient.

Deciding what to write to and retain in memory poses some interesting

challenges. Once we have decided what is worth putting in memory it is

relatively straightforward to figure out how to use it in a given time-step, for

example by training a system to make queries, either content addressable or

based on separate keys and values. Selecting what to remember, however, is in

some sense a much more difficult problem. The contents of memory at a given
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time are in principle a function of the entire observation history. This is made

more difficult because decisions about what is worth remembering must be

made on the fly, once we decide not to remember some information it cannot

be recovered at a later time.

This thesis will focus in particular on the problem of selecting what to

remember in the context of an external memory based system. We aim to

build a system that can learn online to use a limited external memory capacity

effectively, without introducing a large amount of additional time and memory

complexity. This precludes BPTT, since BPTT requires recording the entire

history, at least up to a specified truncation length.

Our primary approach to selective memory will be to apply policy gradient

to the process of choosing which state variables are stored in memory from the

entire history. This will allow the system to learn over time to remember

things which are found to facilitate better than expected return when they are

recalled in the future. To do this naively we would have to maintain the entire

history in order to sample from it.

Given we want our agent to operate online, storing the entire history will

not be feasible. Consider instead an online procedure which maintains only a

finite sized memory and, at each time-step, stochastically decides whether to

add the new state variable, and if so which one to replace. Note that, for a

fixed sequence of state variables, such a procedure necessarily gives rise to a

certain marginal distribution over sets of state variables contained in memory

after observing the full sequence. One could ask whether it is possible to

tune the online add and drop probabilities such that the marginal inclusion

probability for each state variable has a useful closed form.

A number of algorithms exist which maintain a fixed-size sample with

particular statistical properties from a stream observed one item at a time.

Such algorithms are called reservoir sampling algorithms, named for the fact

that they maintain a fixed-size set, or reservoir, of items drawn from a stream.

The goal is to ensure, through specific add and drop probabilities, that the n

items in the reservoir at each time-step correspond to a sample with certain

desired statistical properties over n-subsets of all observed items. This is done
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without ever storing more than n items from the stream.

In this thesis, we will use a reservoir sampling algorithm which maintains

an external memory, in which the inclusion probability for each state variable

in the history is given by a differentiable, closed form expression. Reservoir

sampling allows us to achieve this while only ever storing a small fixed number

of state variables. In particular, the reservoir sampling technique we apply

gives closed form, differentiable inclusion probabilities for each state variable

in terms of an associated weight. In our case, this weight is generated by an

artificial neural network (ANN) for each observed state variable. This allows

us to apply the techniques of policy gradient to improve the weights assigned

to state variables in memory with respect to the resulting expected return.

The resulting procedure is online policy gradient over a reservoir (OPGOR).

Our main contribution is to introduce the OPGOR method. In doing so

we demonstrate how policy gradient can be applied to a reservoir sampling

algorithm to manage an external memory in an online RL context.

A secondary contribution is to perform an empirical exploration of a num-

ber of different selective memory techniques for reinforcement learning, in-

cluding OPGOR. This evaluation will consist of several episodic reinforcement

learning problems. Each of these problems is designed to test an agent’s ability

to store and recall pertinent information from earlier in an episode to inform

present decision making. In the process we validate the performance of OP-

GOR when the assumptions of our derivation hold.

We also expose a weakness of our first version of OPGOR, when a certain

assumption does not hold, which it may not in many realistic problems. We

demonstrate when this issue occurs, and derive another version of the OPGOR,

OPGOR-DS, which mitigates it.

Aside from evaluating OPGOR we found in our experiments that the rel-

ative performance of various selective memory strategies is highly problem

dependent. We provide insight into why certain technique may work better

in certain settings and worse in others. In particular, we found that the least

recently used heuristic, variants of which have been used in a number of prior

works, was surprisingly robust despite its simplicity.
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Chapter 2

Background

In this chapter, we will provide the relevant background necessary to under-

stand the rest of the thesis. We begin with an introduction to the RL problem,

along with the solution approach of actor-critic algorithms. We will then dis-

cuss how partial observability can be introduced into the RL framework. The

final section provides an overview of external memory based approaches to

solving partially-observable problems, on which OPGOR is built.

2.1 Reinforcement Learning

We consider the RL problem, where a learning agent interacts with an envi-

ronment, while striving to maximize a reward signal. The problem is generally

formalized as a Markov decision process described by a 5-tuple: ⟨S,A, p, r, γ⟩.

At each time-step the agent observes the state St ∈ S and selects an action

At ∈ A. Based on St and At, the next state St+1 is generated, according to a

transition probability p(St+1|St, At). The agent additionally observes a reward

Rt+1, generated by r : S × A → R. RL is concerned not with the immediate

reward, but with a temporally discounted sum Gt =
∞∑︁
k=t

γk−tRk+1, known as

the return. The discount factor γ controls how much we care about long-term

rewards versus short-term rewards. Algorithms for RL broadly fall into two

categories, prediction and control; this thesis will focus primarily on control.

In the prediction task, an agent follows a fixed policy π : S × A → [0, 1],

which assigns probabilities to each action conditioned on the state. From the

current state St, the agent aims to estimate the expectation value of the return
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Gt =
∞∑︁
k=t

γk−tRk+1, with discount factor γ ∈ [0, 1]. We refer to Eπ[Gt|St = s]

as the value vπ(s) of state s under policy π. We will write our estimate of

the value as v̂(s, θ), where θ is a set of parameters which define the current

value estimate. We will write the policy as π(a|s) to emphasize that it is a

state conditional probability distribution over actions. If a problem is such

that an agent eventually reaches an absorbing state where all further rewards

are zero, it is said to be episodic, and the return need only be computed until

the absorbing state is reached. Otherwise, if the agent continues interacting

with the environment indefinitely we say the problem is continuing. In the

continuing case it is necessary to have γ strictly less than one for Gt to be well

defined.

In the control task, the goal is to learn, through interaction with the ini-

tially unknown environment, a policy π(a|s, θ) that maximizes the expected

return Gt with respect to the parameters θ, with discount factor γ ∈ [0, 1].

For this to be a meaningful objective it is necessary to choose the distribution

of states over which we want to maximize expected return. In the episodic

case, a reasonable choice is to maximize expected return from the start state.

In the episodic case, discounting may be unnecessary but could still prove

useful algorithmically for biasing learning towards short-term rewards, which

generally have lower variance and are thus easier to learn. Our experiments

will focus on the episodic case, where we hold the view that it is better to

think of γ as merely a parameter of the solution method, while acknowledg-

ing that the objective we really wish to optimize is the undiscounted return

(Schulman, Moritz, Levine, Jordan, & Abbeel, 2015). In the continuing case,

we may instead choose to optimize over the steady state distribution (i.e., the

expected long-term state occupancy under the current policy). The expected

return objective over the steady state distribution is identical to the average

reward objective, independent of the choice of γ (Sutton & Barto, 2017).

Action-value methods like Q-learning are often used for RL control, how-

ever, we will focus on an alternative class of algorithms for control, known

as actor-critic (AC) methods. AC methods separately learn a state value

9



function v̂(s, θ), known as the critic, which approximates vπ(s) for the cur-

rent policy and a parameterized policy π(a|s, θ), known as the actor, which

attempts to maximize that value function. The policy and value function

are both parametrized by a set of parameters θ. The parameters controlling

v̂(s, θ) may be disjoint from those controlling π(a|s, θ) but in the general case

some parameters may be shared. We will build our work on actor-critic with

eligibility traces AC (λ) (Degris, Pilarski, & Sutton, 2012; Schulman et al.,

2015). While eligibility traces are often associated with prediction methods

like TD(λ) they are also applicable to AC.

AC methods have a number of advantages over action value methods for

control (Sutton & Barto, 2017). Firstly, they allow the policy to approach

a deterministic policy in a natural way. Action value methods on the other

hand require a choice of how to map action values to an associated policy.

Generally, this includes some stochasticity to facilitate exploration. While this

stochasticity can be made arbitrarily small, it is difficult to strike a balance

between exploration and exploitation of the current best action. AC allows

this balance to be learned over time as the policy is only adjusted when it is

found to be beneficial. On the other hand AC is capable of explicitly learning

a stochastic policy when it is beneficial to do so. Stochastic policies can be

beneficial in the presence of an adversary, to limit ones predictability. They can

also be beneficial when the environment is partially-observable, meaning only

some information about the state is available to the agent. This is because,

in the presence of partial observability, an agent may have no way to know

the best action. Choosing stochastically allows a chance of success, where a

deterministic policy may get stuck indefinitely. This thesis focuses on partially-

observable environments, which is one reason we choose to focus on AC.

To specify the objective of TD(λ), and by extension AC (λ), we first define

the λ-return Gλ
t . Here we will define Gλ

t recursively:

Gλ
t = Rt+1 + γ

(︁
(1 − λ)v̂(St+1, θ) + λGλ

t+1

)︁
.

Gλ
t bootstraps future evaluations to a degree controlled by λ. If λ < 1, then

Gλ
t is a biased estimate of the return, Gt. If λ = 1, then Gλ

t reduces to Gt.
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Defining the TD-error δt = Rt + γv̂(St+1, θ) − v̂(St, θ), we can expand Gλ
t as

the current state value estimate plus the sum of future discounted δt values:

Gλ
t = v̂(St, θ) +

∞∑︂
k=t

(γλ)k−tδk.

This form is useful in the derivation of TD(λ) as well as AC (λ). TD(λ)

can be understood as minimizing the mean squared error
(︁
Gλ

t − v̂(St, θ)
)︁2

between the value estimate v̂ and the λ-return Gλ
t . In deriving TD(λ), the

target Gλ
t is taken as constant despite its dependence on the parameters of

the value function. For this reason, TD(λ) is often called a semi-gradient

method. Intuitively, we want to modify our current estimate to match our

future estimates and not the other way around. For AC (λ), we will combine

this mean squared error objective with a policy improvement term, such that

the combined objective represents a trade-off between the quality of our value

estimates and the performance of our policy:

Jλ(θ) =
1

2

(︄
∞∑︂
t=0

(︁
Gλ

t − v̂(St, θ)
)︁2 − ∞∑︂

t=0

log(π (At|St, θ))
(︁
Gλ

t − v̂(St, θ)
)︁)︄

.

(2.1)

As in TD(λ), we apply the notion of a semi-gradient to optimizing equation

2.1. In this case along with Gλ
θ,t, the appearance of v̂(St, θ) in the right sum

is taken to be constant. Intuitively, we wish to improve our actor under the

evaluation of our critic, not modify our critic to make our actor’s performance

look better. With this caveat in mind, by the policy gradient theorem (Sutton,

McAllester, Singh, & Mansour, 2000), the expectation of the gradient of the

right term in equation 2.1 is approximately equal to the (negated) gradient of

the expected return. This approximation is accurate to the extent that the

expectation of
(︁
Gλ

t − v̂(St, θ)
)︁
, which we will refer to as the advantage estimate,

accurately approximates the advantage E[Gt|St, At] − E[Gt|St]. Descending

the gradient of the right half of Jλ(θ) is then ascending the gradient of an
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estimate of expected return. Taking the semi-gradient of equation 2.1 yields:

∂

∂θ
Jλ(θ) = −

∞∑︂
t=0

(︃
∂v̂(St, θ)

∂θ
+

1

2

∂ log(π (At|St, θ))

∂θ

)︃(︁
Gλ

t − v̂(St, θ)
)︁

= −
∞∑︂
t=0

(︃
∂v̂(St, θ)

∂θ
+

1

2

∂ log(π (At|St, θ))

∂θ

)︃ ∞∑︂
k=t

(γλ)k−tδk

= −
∞∑︂
t=0

δt

t∑︂
k=0

(γλ)t−k

(︃
∂v̂(Sk, θ)

∂θ
+

1

2

∂ log(π (Ak|Sk, θ))

∂θ

)︃
.

Define the eligibility trace at time t as:

zt =
t∑︂

k=0

(γλ)t−k

(︃
∂v̂(Sk, θ)

∂θ
+

1

2

∂ log(π (Ak|Sk, θ))

∂θ

)︃
,

such that:
∂

∂θ
Jλ(θ) = −

∞∑︂
t=0

δtzt. (2.2)

Offline AC (λ) can be understood as performing a gradient descent step along

equation 2.2. Online AC (λ), analogous to online TD(λ) can be seen as an ap-

proximation to this offline version that updates parameters after every time-

step using a single term in the above sum. This approximation is exact in

the limit where the step-size α is low enough to give quasistatic parameters.

Advantages of the online version include making immediate use of new infor-

mation, and being applicable to continuing problems. Online AC (λ) is defined

by the following set of equations:

zt = γλzt−1 +
∂v̂(St, θt)

∂θ
+

1

2

∂ log(π (At|St, θt))

∂θ
,

θt+1 = θt + αztδt.

Most of the theory around AC methods assumes that the actor is updated

on a slower timescale than the critic. This is to ensure that the critic is actually

able to adapt to the current policy before the policy significantly changes. In

practice, however, updating the two simultaneously at a similar rate generally

works well. One could speculate as to why this seems to work so well. One

possible explanation is that the critic need not learn a value function for the

current policy exactly, but something like a running average of recent policies.
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If the policy updates tend toward improving on this running average it will

tend to get better in the long run even if the critic is never properly adapted

to any fixed policy. We will not explore this further in the present thesis and

simply note that we will perform our actor and critic updates on a similar

timescale.

2.2 Partial Observability

In Section 2.1 we assume the agent is given a state St at each time-step,

such that the value function and policy are restricted to depend only on St.

The agent’s task is to optimize performance under this constraint. When

the environment has the property that St really does provide all the relevant

information to make optimal decisions and predictions, or more precisely when

future states and rewards are conditionally independent of past states given

the present state, the environment is said to have the Markov property. In

realistic problems such a state is rarely available. Nevertheless, the framework

of function approximation is sufficiently powerful to reason about RL when a

Markov state St is not available. If some pertinent aspect of the environment

is hidden from the agent, we can simply consider this to be a limitation of the

parameterized form of v̂(s, θ) and π(a|s, θ) (Sutton & Barto, 2017).

While sound, considering partial observability as merely a limitation of the

function parameterization ignores the possibility of improving performance

by integrating certain aspects of the observation history into the state rep-

resentation. To be precise, assume that rather than state, the environment

outputs at each time-step only an observation Ot. Ot gives some limited in-

formation about the agent’s current situation while keeping other informa-

tion hidden. In this case we can recover something like a Markov state in

the form of a full history of observations and actions up to the current time

Ht = O0, A0, O1, A1, ..., Ot. In some sense this must be considered a suffi-

cient representation because it represents all the information the agent could

possibly have at time t. Any information not available in the history can be

considered part of the stochasticity of the environment. Note, however, that
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any function approximation we apply over the full history must be severely re-

stricted. The full history may be unbounded in length, it may not be practical

to even maintain it in memory, much less input it directly to something like

an ANN. Once we drop the assumption that our agent is privileged with all

the information it could need at each time-step, we can start to think about

how we might propagate information received in the past to better inform our

present value and policy.

In this thesis, information will be propagated via objects we refer to as

state variables, a term introduced by Wayne et al. (2018). The state variable

generated at time t, ϕt, is a low dimensional function of the history available

at each time-step, on which an agent can condition its value estimate and

policy. For simplicity, in this thesis, ϕt will be generated by the environment,

making it equivalent to an observation. In general, the state variable may

be something more elaborate, such as the hidden state of an RNN or, as in

the MERLIN architecture of Wayne et al. (2018), a sample drawn from a

learned belief distribution over predictive states. In addition to conditioning

the current value estimate and policy, state variables will be stored in an

external memory, which will be used to condition later action selection in a

manner described in detail in Chapter 5.

2.3 External Memory Systems andWriting Mech-

anisms

Deep learning systems which make use of an external memory have received

a lot of interest lately. Such systems are broadly motivated by the desire to

expand the capabilities of neural network based systems to allow more general

computation, and to operate over longer timescales than is possible with RNNs.

Two prototypical examples are neural Turing machines (NTM) (Graves, Wayne,

& Danihelka, 2014) and the follow-up, differentiable neural computers (DNC) (Graves

et al., 2016). These systems use an LSTM controller attached to read and write

heads of a fully differentiable external memory and train the combined system

to perform algorithmic tasks.
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The NTM architecture uses a writing mechanism inspired by the reset and

update gates of systems like GRU and LSTM. At each time-step t each of

some fixed number of write heads generates a weight vector wt over available

memory slots with elements summing to 1. Each write head also produces an

erase vector et and add vector vt, each of size equal to the length of the vector

stored at each memory location. An update to the memory Mt(i) in slot i is

then computed as follows:

Mt(i) = Mt−1(i)(1−wt(i)et) + wt(i)vt,

where wt(i) represents the ith element of wt, et determines which elements of

selected slots are cleared, while vt determines which are updated. The write

weight vector wt determines which slots to update and is constrained to sum

to one such that the update is sparse. The elements of wt are generated by a

combined content and relative location based addressing scheme. The content

addressable part uses cosine similarity between a learned query and each item

stored in memory. The location addressable part is implemented as a learned

shift weight which acts to add write weight to the slots directly above and

below the last written locations. Another learned gate is used to interpolate

between the content addressable and location addressable parts of the write

mechanism.

The follow up architecture to the NTM, the DNC also utilizes a content

addressable writing mechanism, but removes the location addressable writing

mechanism and adds a dynamic memory allocation mechanism. The dynamic

allocation mechanism maintains a usage counter which is increased propor-

tional to the write weight each time a location is written to. The usage counter

can then be decreased by another mechanism called the free gate whenever a

location is read from. More precisely, assuming a single read head for simplic-

ity, a memory retention vector ψt is defined from the last read weights qt−1

and the free gate ft as follows:

ψt = 1− ftqt−1,
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the usage vector is then defined as:

ut = (ut−1 + wt−1 − ut−1 ⊙wt−1) ⊙ ψt.

Each write to a location increases its usage until it is explicitly decreased by

the free gate after being read. This allows the system to learn when a value it

has just read is no longer likely to be of further use and subsequently release

it. An allocation weight vector at is then determined from the usage vector

by sorting the elements in ascending order of usage. A given item’s allocation

is the product of one minus its own usage with the usage of all the items of

larger usage. This gives high allocation to items with low usage, as well as

rapidly dropping off the allocation of other items when items with very low

usage are available. Similar to NTM, another learned gate is used to inter-

polate between the content addressable and allocation based components of

the write mechanism. A location may be updated either because its allocation

is high, or because the system explicitly chooses to update it based on its

content. Contrary to OPGOR, both NTM and DNC are trained entirely by

backpropagation through time, making them computationally intensive and

not readily applicable to the online RL case.

More directly related to the present thesis is the work of Oh, Chockalingam,

Singh, and Lee (2016). They experiment with architectures using a combina-

tion of key-value memory and a RNN. They test on a number of RL environ-

ments in the Minecraft domain. The memory saves learned keys and values

corresponding to the last N observations for some integer N , thus it is in-

herently limited in temporal extent but does not require any mechanism for

information triage.

More recently Wayne et al. (2018) introduced MERLIN, a more sophisti-

cated external memory based architecture for RL, along with a detailed study

of its performance and behavior over a wide variety of problems. In their ap-

proach, the items stored in memory, which they refer to as state variables, are

trained to function as a world model. They utilize recalled state variables in

two places, first to update a distribution from which the present state variable

is drawn, and second to condition the policy. The latter is similar to how we
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use the recalled state variables in this thesis. To decide which state variables

to maintain in memory, MERLIN uses a simple usage indicator, monitoring

the cumulative magnitude of reads made to each state variable in memory,

and always replacing the one with the smallest usage with the current state

variable.

In MERLIN, the processes of learning useful state variables and condi-

tioning the policy are decoupled by stopping gradients, such that the policy

learning does not influence the learned state variables in any way. This is done

to emphasize that training end to end to optimize return is unnecessary and of-

ten inefficient. Their approach treats the encoding and storage of sensory data

as a separate problem from policy optimization, with the policy acting only as

a consumer. This view fits quite well into the approach of the present thesis,

where we optimize memory storage based on what is useful to the policy, but

do not backpropagate policy gradient errors through the state representation.

In addition to an external memory of size 1350, MERLIN utilizes recurrent

state updates with a relatively short truncation length of 20. Contrary to the

present thesis, which uses a single online actor, MERLIN employs 192 parallel

actors to train a single shared learner.

To conclude this section, we note our own prior work on applying reservoir

sampling to manage an external memory for RL (Young, Sutton, & Yang,

2018). That work introduced a similar procedure to the one outlined here but

used a novel, and somewhat complex reservoir sampling procedure. Here we

simplify the approach by using an established reservoir sampling technique

from the literature (note that the two procedures are identical in the single-

state memory case). In addition we extend the method to be usable with

eligibility traces, along with multiple read heads and soft queries. Finally we

provide a solution to a limitation of that work, and our first version of OPGOR,

which causes them to require a very accurate value estimate to perform well.

We also perform much more extensive evaluation, testing OPGOR on three

different problems against a number of alternative selective memory strategies.

There are many other examples of deep learning systems with integrated

external memory (e.g., Gulcehre, Chandar, and Bengio, 2017; Gulcehre, Chan-
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dar, Cho, and Bengio, 2018; Joulin and Mikolov, 2015; Kaiser, Nachum, Roy,

and Bengio, 2017; Sukhbaatar, Szlam, Weston, and Fergus, 2015; Zaremba

and Sutskever, 2015), as well as many examples of work applying deep RL to

non-Markov tasks (e.g., Bakker, Zhumatiy, Gruener, and Schmidhuber, 2003;

Hausknecht and Stone, 2015; Wierstra, Förster, Peters, and Schmidhuber,

2010; Zhang, Levine, McCarthy, Finn, and Abbeel, 2016).
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Chapter 3

Advantage Actor-Critic with
External Memory

We have reviewed the reinforcement learning framework, the solution method

of actor-critic, and the additional challenges posed by partial observability.

In addition, we discussed the framework of external memory systems, which

provide one way of addressing the challenges of partial observability, by giving

an agent access to a fixed number of slots to write and read pertinent infor-

mation. Our main contribution, OPGOR, will operate within the framework

of external memory, and provides one answer to the question of how to decide

what is worth storing in such a memory. We will now describe in detail the

particular architecture in which we will frame our derivation of OPGOR in

Chapter 5. This architecture is a variant of actor-critic, augmented with an

external memory. In our experiments in Chapter 6, we will also investigate a

number of alternative selective memory techniques, each of which will operate

within a variant of the architecture presented in this chapter.

We build our primary architecture on the advantage actor-critic architec-

ture introduced by Mnih et al. (2016), which consists of a value network and

policy network. In addition to the value and policy networks of the advan-

tage actor-critic architecture, we include an external memory consisting of

a sequence of n pairs ((Mt(0),Wt(0)), ..., (Mt(n − 1),Wt(n − 1))) of vec-

tors Mt(i) with associated scalar importance weight Wt(i). As an additional

notational convenience we will use Mt to refer to the sequence of vectors

(Mt(0), ...,Mt(n − 1)) alone. Following Wayne et al. (2018), we refer to the

19



vectors stored in memory as state variables, taking care to distinguish them

from the Markov state St specified by the RL problem. The state variable

generated at time t will be a vector of fixed size, denoted by ϕt. While, in this

thesis, ϕt is generated directly by the environment, in general we would want

to use some learned state representation. The fact that we use a ϕt generated

directly by the environment is for simplicity in this initial proof of concept and

not something we wish to impose as a restriction. For our purposes, ϕt rep-

resents the immediate information an agent has on hand at a particular time,

whether constructed by a recurrent state update, provided by the environment

directly, or otherwise.

The importance weights Wt(i) stored with each state variable in memory

are generated by the write network w(ϕt, θ), which takes the current state

variable as input and outputs a single real value. The importance weights

will be used in a reservoir sampling procedure, and adjusted via OPGOR. The

details of the reservoir sampling algorithm in which these weights are used will

be described in Chapter 4, for now simply note that these weights determine

how likely a state variable is to be written to, and subsequently retained in,

the external memory.

The query network q(ϕt, θ) outputs a vector of size equal to the size of ϕt

with tanh activation. At each time-step, a single state variable mt = Mt(i)

is drawn from the memory to condition the policy π(At|ϕt,mt, θ) according to

the probability distribution:

Q(Mt(i)|ϕt,Mt, θ) = exp (⟨q(ϕt, θ)|Mt(i)⟩ β)

/︄
n−1∑︂
j=0

exp (⟨q(ϕt, θ)|Mt(j)⟩ β) ,

(3.1)

where β is a positive learnable parameter representing the inverse temperature

of the softmax. The parameter β is intended to allow the agent to make its

queries more or less precise as appropriate as learning progresses. The state

variable mt selected from memory is given as input to the policy network along

with the current state variable ϕt, both of which condition the resulting policy.

An illustration of this architecture is shown in Figure 3.1.

Recall from Section 2.2 that partial observability can be considered a limi-
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tation of our function approximation, while the full history is taken to serve as

the Markov state St. The particular architecture outlined here can be viewed

as a particular choice about this limitation where there is a significant asym-

metry between the information provided to the value function approximation

and policy. In particular, the policy is conditioned on a past state variable,

while the value is limited to only the present state variable ϕt.

In addition to the single read head architecture described above, we will

experiment with using multiple read heads. In this case the query network will

generate multiple queries of size matching the state variable and the memory

will output one state variable for each query generated. The policy in this case

will be conditioned on the concatenation of the current state variable with

each of the recalled state variables. This could in principle allow each head to

specialize to recall a particular type of relevant information as is observed in

the navigation experiments of Wayne et al. (2018).

In all our experiments we will use single hidden layer ANNs for the value,

query and write networks, and two hidden layers for the policy network. This

choice is based on the intuition that the policy network must aggregate infor-

mation from the current state variable as well as the state variable recalled

from memory in order to select a good action. This is likely to be a more

complex function than what is necessary for the other three networks. For

simplicity, there will be no parameter sharing between networks. Unless oth-

erwise specified, hidden layers will be of size 32 and use sigmoid linear unit

(SiLU) activations. The SiLU activation is described by Elfwing, Uchibe, and

Doya (2018), where it was found to be beneficial when training ANNs for

online RL with eligibility traces, as we will do in this thesis.
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Figure 3.1: Advantage actor-critic with external memory architecture. Each
grey circle represents an ANN module. The state variable (ϕ) is provided as
input to the query (q), write (w), value (v) and policy (π) networks at each
time-step. The query network outputs a vector, equal in length to the state
variable, which is used (via equation 3.1) to choose a past state variable from
the memory (m1 ,m2 or m3 in the above diagram) to condition the policy.
The write network assigns a weight to each new state variable, determining
how likely it is to stay in memory. The policy network assigns probabilities to
each action conditioned on current state variable and recalled state variable.
The value network estimates expected return (value) from the current state
variable.
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Chapter 4

Reservoir Sampling

In this chapter, we provide the relevant background on reservoir sampling,

which we will use, in association with OPGOR, to manage our agent’s external

memory. Specifically, the importance weight output by the write network, as

discussed in Chapter 3, will be used in a reservoir sampling algorithm. Given

the importance weight associated with each state variable in memory and

the importance weight assigned to the new state variable ϕt, the reservoir

sampling algorithm stochastically decides whether to add ϕt and if so which

state variable to remove. In turn, our main contribution, OPGOR will be used

to tune the weights generated by the write network to preferentially retain state

variables that help to yield higher return.

Reservoir sampling refers to a class of algorithms for sampling from a dis-

tribution over n-subsets of items from a larger set streamed one item at a time.

The goal is to ensure, through specific add and drop probabilities, that the n

items in the reservoir at each time-step correspond to a sample with some de-

sired statistical properties over n-subsets of all observed items. The particular

reservoir sampling technique we apply gives closed form, differentiable inclu-

sion probabilities for each state variable in terms of an associated weight. In

our case, this weight will be generated by an artificial neural network (ANN)

for each observed state variable. This allows us to apply the techniques of pol-

icy gradient to improve the weights assigned to states in memory with respect

to the resulting expected return.

One of the simplest examples of a reservoir sampling algorithm maintains
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a reservoir of n items drawn uniformly at random from a stream observed one

item at a time (Vitter, 1985). To achieve this, the first n items are added to

the reservoir automatically, after which the algorithm proceeds as follows at

each time-step t:

• Observe a new item ϕt

• Choose whether to add the item to the current reservoir with probability

n/t

• If we do choose to add it, replace an item from the current reservoir

uniformly at random

To see that this correctly produces uniform inclusion probabilities, first note

that the most recently observed item is included with precisely probability

n/t. Assume towards a proof by induction that all other items in the reservoir

are included with probability n/(t − 1) prior to observing ϕt. Now, since ϕt

is added with P = n/t, and if it is added each item has equal probability of

being replaced, the inclusion probability of each item in the reservoir after the

new observation is:

P =
n

t− 1
·
(︃

1 − n

t
+
n

t
·
(︃

1 − 1

n

)︃)︃
=

n

t− 1
·
(︃
t− n

t
+
n− 1

t

)︃
=
n

t
,

which is indeed equal to the inclusion probability of ϕt. As the base case for

the inductive proof simply note that at time n the inclusion probability of each

item is 1 which is indeed n/t at that time.

There are various ways to extend reservoir sampling to the more complex

case of unequal probabilities, for example probabilities proportional to a weight

wt associated with each ϕt. In this thesis we will focus on one such method,

first presented by Chao (1982), which we will now describe. In this case at each

time-step we observe an item ϕt along with an associated weight wt. We want

the inclusion probability of each ϕt in the reservoir to be linearly proportional
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to the associated wt. However, if we allow arbitrary positive weights this

may necessitate some probabilities greater than one, so we have to refine this

desiderata slightly. Precisely, define the set of inadmissible indices:

Ωt = arg min
ω⊂[0,..,t−1]

|ω| s.t. ∀i ∈ {0, .., t− 1} \ ω, (n− |ω|)wi∑︁
j∈{0,..,t}\ω

wj

< 1. (4.1)

In other words, the smallest set of indices such that when we fix the associated

item in the reservoir, the inclusion probabilities of the remaining items given

the remaining reservoir space are all valid probabilities less than one. Note

that such a set is easily constructed by recursively removing the largest weight

item until the inequality holds for the next largest. Now define Mt as the

set of items in the reservoir prior to observing item ϕt. We will assert the

following probabilities for each item indexed from 0 to t − 1 being present in

the reservoir at time t:

P (ϕi ∈ Mt) =

⎧⎨⎩1 if i ∈ Ωt
(n−|Ωt|)wi∑︁

j ̸∈Ωt

wj
if i ̸∈ Ωt

. (4.2)

All items whose probability would be greater than one are included with cer-

tainty, while the remaining items are included with probability proportional

to their weight. With the desired inclusion probabilities in place, it remains to

describe how to formulate incremental replacement rules to give rise to these

probabilities. As in the equal probability case, the first step will be to deter-

mine whether or not to add ϕt to the reservoir. There is little choice in this

step, to achieve the desired inclusion probability for the new item we must add

it with probability P (ϕt ∈ Mt+1) as defined in equation 4.2. After that, we

separately handle the items which were included with certainty at time t − 1

and those which were not. The full procedure goes as follows:

• Observe a new item ϕt

• Choose whether to add the item to the current reservoir with probability

P (ϕt ∈ Mt+1)
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• If we choose not to add it, stop here and maintain the same reservoir,

otherwise continue to the next step

• From all items ϕi with index in Ωt choose one, or none, to drop with

probability 1−P (ϕi∈Mt+1)
P (ϕt∈Mt+1)

, note that this may be 0 if wi remains inadmis-

sible

• If no item is dropped in the previous step, drop one of the other items

uniformly at random

From now on we will refer to this procedure as Chao sampling, after the author

who originally described it. We will now show how these rules give rise to the

correct inclusion probabilities for all items. Note that though Chao gives

a sketch of how these rules produce the desired probabilities, the detailed

breakdown provided here is our own. We will break the reasoning down into

four cases as follows:

• ϕt

• ϕi, i ∈ Ωt+1

• ϕi, i ∈ Ωt \ Ωt+1

• ϕi, i ∈ {0, ..., t− 1} \ Ωt

First note that we trivially assert P (ϕt ∈ Mt+1) obeys equation 4.2 by

choosing to add it with the correct probability. Similarly, for items with index

in Ωt+1 we simply omit them from consideration when choosing an item to

swap, thus they are included with certainty as desired. For items with index

in Ωt \ Ωt+1 we note that they were included with probability one in the last

time-step. They will be included in the next time-step if either we choose

not to add ϕt, or choose to add ϕt but swap a different item out. Thus the

probability of inclusion for an item ϕi with i ∈ Ωt \ Ωt+1 can be computed as

follows:

P ′(ϕi ∈ Mt+1) = 1 − P (ϕt ∈ Mt+1) + P (ϕt ∈ Mt+1)

(︃
1 − 1 − P (ϕi ∈ Mt+1)

P (ϕt ∈ Mt+1)

)︃
= P (ϕi ∈ Mt+1).
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Which is the probability we intended. Note that we have assumed that
1−P (ϕi∈Mt+1)
P (ϕt∈Mt+1)

for each i ∈ Ωt sum to a number less than one, such that they

represent valid probabilities and we can actually run the procedure as indi-

cated. This follows from the fact that that all i ∈ Ωt \ Ωt+1 are inadmissible

at time t. If we assume wt is admissible then since Ωt+1 is a subset of Ωt we

have by definition, for all i ∈ Ωt \ Ωt+1:

(n− |Ωt+1|)wi >
∑︂

j∈{0,...,t−1}\Ωt+1

wj

=⇒ (n− |Ωt+1|)
|Ωt \ Ωt+1|

∑︂
i∈Ωt\Ωt+1

wi >
∑︂

j∈{0,...,t−1}\Ωt+1

wj

=⇒ (n− |Ωt+1|)
|Ωt \ Ωt+1|

∑︂
i∈Ωt\Ωt+1

wi + wt >
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒ (n− |Ωt+1|)
|Ωt \ Ωt+1|

∑︂
i∈Ωt\Ωt+1

wi +
(n− |Ωt+1|)
|Ωt \ Ωt+1|

wt >
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒ (n− |Ωt+1|)
∑︂

i∈Ωt\Ωt+1

wi + (n− |Ωt+1|)wt > |Ωt \ Ωt+1|
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒
∑︂

i∈Ωt\Ωt+1

⎛⎝ ∑︂
j∈{0,...,t}\Ωt+1

wj − (n− |Ωt+1|)wi

⎞⎠ < (n− |Ωt+1|)wt

=⇒
∑︂

i∈Ωt\Ωt+1

(︄
1 − (n− |Ωt+1|)wi∑︁

j∈{0,...,t}\Ωt+1
wj

)︄
<

(n− |Ωt+1|)wt∑︁
j∈{0,...,t}\Ωt+1

wj

=⇒
∑︂

i∈Ωt\Ωt+1

1 − P (ϕi ∈ Mt+1)

P (ϕt ∈ Mt+1)
< 1.

In the forth line we have used n−|Ωt+1| > |Ωt|−|Ωt+1| = |Ωt\Ωt+1|. If instead

we assume wt is inadmissible, note that we have |Ωt \Ωt+1| = |Ωt| − |Ωt+1|+ 1

as Ωt+1 contains t while Ωt does not, but Ωt+1 \ {t} ⊂ Ωt. In this case we can
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reach the same conclusion by slightly different reasoning:

(n− |Ωt+1| + 1)wi >
∑︂

j∈{0,...,t−1}\(Ωt+1\{t})

wj

=⇒ (n− |Ωt+1| + 1)wi >
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒ (n− |Ωt+1| + 1)

|Ωt \ Ωt+1|
∑︂

i∈Ωt\Ωt+1

wi >
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒ (n− |Ωt+1| + 1)
∑︂

i∈Ωt\Ωt+1

wi > |Ωt \ Ωt+1|
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒ (n− |Ωt+1|)
∑︂

i∈Ωt\Ωt+1

wi > |Ωt \ Ωt+1|
∑︂

j∈{0,...,t}\Ωt+1

wj −
∑︂

i∈Ωt\Ωt+1

wi

=⇒ (n− |Ωt+1|)
∑︂

i∈Ωt\Ωt+1

wi > |Ωt \ Ωt+1 − 1|
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒
∑︂

i∈Ωt\Ωt+1

⎛⎝ ∑︂
j∈{0,...,t}\Ωt+1

wj − (n− |Ωt+1|)wi

⎞⎠ <
∑︂

j∈{0,...,t}\Ωt+1

wj

=⇒
∑︂

i∈Ωt\Ωt+1

(︄
1 − (n− |Ωt+1|)wi∑︁

j∈{0,...,t}\Ωt+1
wj

)︄
< 1

=⇒
∑︂

i∈Ωt\Ωt+1

1 − P (ϕi ∈ Mt+1)

P (ϕt ∈ Mt+1)
< 1.

Thus, in either case the probabilities are indeed valid and we can sample from

Ωt \ Ωt+1 as previously specified. Lastly we have the items ϕi, i ∈ {0, ..., t −

1} \ Ωt. For this case assume toward a proof by induction that the inclusion

probability at time t, P ′(ϕi ∈ Mt), is given by P (ϕi ∈ Mt) as specified in

equation 4.2. The probability that ϕi is included at the following time-step,

P ′(ϕi ∈ Mt+1), can then be computed as follows:

P ′(ϕi ∈ Mt+1) = P (ϕi ∈ Mt)

(︄
1 − P (ϕt ∈ Mt+1)

+ P (ϕt ∈ Mt+1)

⎛⎝ ∑︂
j∈Ωt\Ωt+1

1 − P (ϕj ∈ Mt+1)

P (ϕt ∈ Mt+1)

⎞⎠
+ P (ϕt ∈ Mt+1)

⎛⎝1 −
∑︂

j∈Ωt\Ωt+1

1 − P (ϕj ∈ Mt+1)

P (ϕt ∈ Mt+1)

⎞⎠
n− |Ωt| − 1

n− |Ωt|

)︄
.
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That is, the probability that ϕi was included at time t times the probability

that it is not removed at that time. We have broken down the probability

of i not being removed as the probability no swap occurs, the probability an

element of Ωt \ Ωt+1 is swapped, and the probability an element of {0, ..., t −

1}\Ωt other than i is removed. From this expression it is a matter of algebraic

manipulation to obtain the desired probability:

P ′(ϕi ∈ Mt+1) = P (ϕi ∈ Mt)

(︄
1 − P (ϕt ∈ Mt+1) +

∑︂
j∈Ωt\Ωt+1

(1 − P (ϕj ∈ Mt+1))

+

⎛⎝P (ϕt ∈ Mt+1) −
∑︂

j∈Ωt\Ωt+1

(1 − P (ϕj ∈ Mt+1))

⎞⎠
n− |Ωt| − 1

n− |Ωt|

)︄

= P (ϕi ∈ Mt)

(︄(︄ ∑︂
j∈Ωt\Ωt+1

(1 − P (ϕj ∈ Mt+1))

− P (ϕt ∈ Mt+1)

)︄
1

n− |Ωt|
+ 1

)︄
.

From here we again consider two cases, either wt is admissible, or it is not. If

wt is admissible we have:

P ′(ϕi ∈ Mt+1) = P (ϕi ∈ Mt)

(︄
|Ωt| − |Ωt+1|
n− |Ωt|

− n− |Ωt+1|
n− |Ωt|

∑︁
j∈Ωt\Ωt+1

wj + wt∑︁
j∈{0,...,t}\Ωt+1

wj

+ 1

)︄

= P (ϕi ∈ Mt)
n− |Ωt+1|
n− |Ωt|

⎛⎜⎝1 −

∑︁
j∈Ωt\Ωt+1

wj + wt∑︁
j∈{0,...,t}\Ωt+1

wj

⎞⎟⎠ ,

where we have used the fact that for admissible wt, Ωt+1 is a subset of Ωt, and

thus |Ωt \ Ωt+1| = |Ωt| − |Ωt+1|. If on the other hand wt is inadmissible we

have |Ωt \Ωt+1| = |Ωt|− |Ωt+1|+ 1 as noted previously. In this case we instead
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get:

P ′(ϕi ∈ Mt+1) = P (ϕi ∈ Mt)

⎛⎜⎝ |Ωt| − |Ωt+1|
n− |Ωt|

− n− |Ωt+1|
n− |Ωt|

∑︁
j∈Ωt\Ωt+1

wj∑︁
j∈{0,...,t}\Ωt+1

wj

+ 1

⎞⎟⎠
= P (ϕi ∈ Mt)

n− |Ωt+1|
n− |Ωt|

⎛⎜⎝1 −

∑︁
j∈Ωt\Ωt+1

wj∑︁
j∈{0,...,t}\Ωt+1

wj

⎞⎟⎠ .

Note that this differs by the exclusion of wt from the numerator of the second

term. In either case we can simplify to get:

P ′(ϕi ∈ Mt+1) =
(n− |Ωt|)wi∑︁

j∈{0,...,t−1}\Ωt

wj

⎛⎜⎝(n− |Ωt+1|)
∑︁

j∈{0,...,t−1}\Ωt

wj

(n− |Ωt|)
∑︁

j∈{0,...,t}\Ωt+1

wj

⎞⎟⎠
=

(n− |Ωt+1|)wi∑︁
j∈{0,...,t}\Ωt

wj

= P (ϕi ∈ Mt+1).

Thus, again, we recover the desired probability. To complete the inductive

proof simply note that we have already demonstrated that when an item is

either first added, or first enters the admissible set it’s probability will obey

equation 4.2. We have demonstrated that the probability will continue to obey

equation 4.2 on all subsequent time-steps.

Note that in the absence of inadmissible items this procedure takes O(1)

time each time-step; only requiring that we compute the inclusion probability

of the new item, add it to the denominator, and randomly select its position if

we decide to add it to memory. Inadmissible items require extra computation

as it is necessary to check at each time-step whether each remains inadmissible.

Assuming inadmissible items are maintained in ascending order of the associ-

ated weight, this can be done by checking for each previously inadmissible item

i whether (n − |Ωt|)wi <
∑︁

j ̸∈|Ωt|
wj, and if so removing them. If inadmissible

items are maintained in a linked list, newly admissible items can be removed

and ϕt added if necessary in a single sweep, requiring at most O(|Ωt|) time.

Thus the total cost of writing to memory is at most O(n) in the infrequent
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case where almost all items in memory transition from inadmissible to admis-

sible. Generally inadmissible items will be rare, so on average the compute

time should be closer to constant every time a new item is added.

In the special case of a single item memory, the Chao sampling algorithm

becomes very simple. In this case we need only choose whether to add each

newly observed item according to:

P (Mt+1 = {ϕt}) =
wt

t∑︁
i=0

wi

.

In the single item case there is no need to worry about inadmissibility, if

a new item is added, the stored item must be dropped. A simple calcula-

tion analogous to the unweighted case reviewed above will show the inclusion

probabilities for all j ∈ [0, t] will then obey:

P (Mt+1 = {ϕj}) =
wj

t∑︁
i=0

wi

.

To conclude this chapter we briefly mention another weighted reservoir sam-

pling algorithm first described by Efraimidis and Spirakis (2006). Instead of

enforcing that inclusion probabilities be directly proportional to weights this

algorithm enforces that the reservoir represents a sequential weighted random

sample without replacement from the full stream. The manner in which it

does this is quite interesting in its own right and it may also be useful in the

context of RL with external memory. We do not explore this further here.
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Chapter 5

Online Policy Gradient Over a
Reservoir (OPGOR)

Having described our particular external memory architecture, and Chao sam-

pling, which will manage the external memory, we are ready to describe our

main contribution, online policy gradient over a reservoir (OPGOR). OPGOR

is an online algorithm for training a write network which generates weights for

use in Chao sampling, as described in Chapter 4. OPGOR trains the write

network to emphasize state variables that lead to high expected return when

later recalled. OPGOR does this by treating the state variables stored in

memory like actions, where the action space is the entire history, and apply-

ing policy gradient to increase the probability of state variables that result in

positive advantage. To make it possible to do this online, we employ a few

mathematical tricks and approximations.

We will also describe, in Section 5.6, how an external memory, trained

with OPGOR can be easily combined with the other components of an online

RL agent, trained using standard online RL algorithms. In particular, we use

the architecture presented in Chapter 3, and train using the AC(λ) algorithm

described in Section 2.1. All components of our proposed agent are trained

online, performing one update per time-step with no experience replay or

multiple parallel actors.

The goal of OPGOR is to apply policy gradient to the process of selecting

which state variables from the history are stored in memory. Towards this,

we associate a parameterized importance weight w(ϕi, θw), as introduced in
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Chapter 3, with each observed state variable ϕi. We refer to the function w

that generates the importance weights as the write network. We wish to satisfy

three main desiderata with respect to the importance weights w(ϕi, θw):

1. We want the importance weights w(ϕi, θw) to be such that the probability

of a particular state variable ϕi being present in memory at any given

future time t > i is proportional to the exponential of the importance

weight exp(w(ϕi, θw)). These importance weights thus form something

like the logits of a softmax distribution, as is often used to parameterize

the policy of AC agents with discrete action spaces.

2. We want to obtain estimates of the gradient of the return with respect

to the parameters θw of the write network, such that we can perform

stochastic gradient ascent on the return with respect to those parameters.

3. We want to construct these gradient estimates online, without maintain-

ing significantly more information than the fixed set of state variables

stored in memory.

A naive approach to the first desiderata could involve storing the entire history

of state variables up to time t and then drawing a subset from that history

to fill our memory according to some weighted probability distribution. This

would obviously be extremely memory intensive as the history grows, and is

thus not appropriate for an online method, which violates the third desiderata.

This is exactly what we avoid through the use of Chao sampling to manage a

fixed-size memory online, according to the importance weight associated with

each state variable.

Given that Chao sampling solves the problem of drawing a weighted sam-

ple from the full history online, there is an additional complication from the

second desiderata, estimating the gradient of the return with respect to the pa-

rameters of the write network. The denominator of the inclusion probability of

a particular state variable will be the sum of the importance weights assigned

to all state variables. To naively compute the gradient of this denominator,
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for use in policy gradient, we would again have to maintain the full history to

compute the gradient of the weight assigned to each state variable.

We will begin by showing that, for a single-state memory, if we have an

accurate critic to act as a baseline, we can produce an unbiased estimate of

the gradient of the expected return with respect to the parameters of the write

network using only the numerator of the inclusion probability. OPGOR uses

this estimate to perform approximate gradient ascent in the expected return.

Here, by accurate critic, we mean we have a value function approximation

which is a good estimate of the history conditional expected return. This is

possible because the denominator is independent of the specific state variable

stored in memory, hence we can pull it out of the sum, similar to how one

can subtract an action independent baseline in the REINFORCE algorithm

of Williams (1992). In Section 5.1 we will describe how this estimator is

constructed in detail. In Section 5.2 we will also describe how we extend

this estimator to the case of a multiple-state memory, for which we employ a

semi-gradient approximation.

In deriving OPGOR we assume, as discussed above, that we have a value

function and associated state variable on hand which provide an accurate

estimate of Et[Gt]. In Section 6.5 we will show in a simple case how serious

issues can result when this assumption fails to hold. In more realistic problems,

an approximation to such a value function could be obtained, for example, by

using a recurrent network, such as a GRU. Nonetheless, since avoiding the use

of backpropagation over long time horizons is one motivation for OPGOR, this

is a somewhat limiting assumption and would be useful to relax. Motivated

by this issue, in Section 5.7, we derive a modified version of OPGOR which

mitigates the reliance on an accurate critic. This new version of OPGOR

maintains an online sample of the contribution of the denominator of the

inclusion probability to the policy gradient, hence we call this version OPGOR

with Denominator Sampling (OPGOR-DS).

For brevity, in this chapter, we will use the notation Et[x] to denote

E[x|ϕ0, ..., ϕt], the expectation conditioned on the entire history of state vari-

ables up to time t. Similarly, Pt(x) will represent probability conditioned on

34



the entire history of state variables. All expectations and probabilities are as-

sumed to be with respect to the current policy, query and write network. We

will use A to represent the set of available actions and At the action selected

at time t.

Formally, we will consider the episodic case and take our optimization

objective to be the undiscounted expected return from the start state:

J = E0[G0] = E[G0|ϕ0] = E[R1 +R2 + ...|ϕ0]. (5.1)

We will nonetheless estimate advantages using a non-unit discount factor γ

which has a dual role. First, it serves to reduce variance due to high uncertainty

in distant future rewards, in exchange for biasing the value estimate towards

short-term rewards. See, for example, the work of Schulman et al. (2015)

for a discussion of the interpretation of γ as a parameter of the algorithm as

opposed to a property of the problem. Additionally, γ will act as a surrogate

for the time limits which will be imposed in many of the problems used in our

experiments. Due to the discount factor the agent will be encouraged to obtain

rewards quickly without needing to explicitly encode the remaining steps in

the state representation.

OPGOR could be applied to the continuing case by geometrically discount-

ing the weights associated with items in memory at each time-step, such that

more recent items would be favored. This would prevent the probability of

adding new items to memory from decaying uniformly to zero, which would

be the case otherwise. The possibility of adding a recency bias to a reservoir

sampling algorithm is discussed by Aggarwal (2006). This is, however, beyond

the scope of this thesis.

5.1 OPGOR for a Single-State Memory

To introduce the idea behind OPGOR, we first derive the algorithm for the case

when our external memory can store just one state variable, and thus there is

no need to query. We will use mt to represents the state variable in memory at

time t and thus, in the single-state memory case, the state variable read from
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memory by the agent at time t. Assume the stored state variable is drawn from

a distribution parameterized by a set of weights {wi|i ∈ {0, ..., t − 1}}. Each

wi = w(ϕi, θw) is associated with a state variable ϕi by the write network w,

parameterized by θw, when the associated state is visited. In the single-state

memory case we parameterize the distribution as follows:

Pt(mt = ϕi) = exp(wi)

/︄
t−1∑︂
j=0

exp(wj) , (5.2)

which is the probability resulting from the single item case of Chao sampling

outlined in Chapter 4, except with the weights exponentiated. Exponentiated

importance weights are used because they give a simpler form for the gradient

estimate, and enforce positive probabilities with arbitrary real weights. We

can then write the expectation of the return Gt = Rt+1 +Rt+2 + ... as follows:

Et[Gt] =
t−1∑︂
k=0

Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]. (5.3)

We wish to perform stochastic gradient ascent on this objective with respect

to the parameters θw of the write network. OPGOR employs an estimate of

this gradient using an AC method that, assuming no discounting, is unbiased

if the critic can accurately estimate Et[Gt]. Additionally, this estimate will

involve computing the gradient only of the wi associated with the index i

such that mt = ϕi. This means we will only have to compute gradients for

the weight associated with the stored state variable. This is crucial to allow

OPGOR to run online, as otherwise we would need to store every generated

state variable to compute the gradient estimate. We now compute the gradient

of the expected return at some time t, as in equation 5.3, with respect to the

parameters of the write network θw, given the distribution over state variables

in memory is given by equation 5.2.

∂

∂θw
Et[Gt] =

t−1∑︂
k=0

(︄
∂Pt(mt = ϕk)

∂θw

∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

+ Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)
∂Et[Gt|At = a]

∂θw

)︄
. (5.4)
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Note that π does not depend on the write network parameters θw. Working
out the first term from the right hand side of equation 5.4:

t−1∑︂
k=0

∂Pt(mt = ϕk)

∂θw

∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂ log(Pt(mt = ϕk))

∂θw∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂

∂θw

(︄
wk − log(

t−1∑︂
j=0

exp(wj))

)︄
∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(mt = ϕk)

(︄
∂wk

∂θw
−

t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

)︄
∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂wk

∂θw

∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

−
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

t−1∑︂
k=0

Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂wk

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − Et[Gt]

)︄
.

Working out the second term from the right hand side of equation 5.4:

t−1∑︂
k=0

Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)
∂Et[Gt|At = a]

∂θw

=
t−1∑︂
k=0

Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)

(︃
∂Et[Rt+1|At = a]

∂θw
+
∂Et[Gt+1|At = a]

∂θw

)︃
= Et

[︃
∂

∂θw
Et+1[Gt+1]

]︃
.

Where we are able to drop ∂Et[Rt+1|At=a]
∂θw

because the immediate reward is

independent of the state variable in memory once conditioned on the action.
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Thus we finally arrive at:

∂

∂θw
Et[Gt] =

t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕi, θ)Et[Gt|At = a] − Et[Gt]

)︄

+ Et

[︃
∂

∂θw
Et+1[Gt+1]

]︃
. (5.5)

We will use a policy gradient approach, similar to REINFORCE (Williams,

1992), to estimate this gradient using an estimator ζt such that:

Et[ζt] ≈
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕi, θ)Et[Gt|At = a] − Et[Gt]

)︄
.

(5.6)

Expanding equation 5.5 recursively this will also give us:

E0

[︄∑︂
t≥0

ζt

]︄
≈ ∂E0[G0]

∂θw
. (5.7)

Consider the following gradient estimator:

ζt = δt
∂w(mt, θt)

∂θw
, (5.8)

which has expectation:

Et[ζt] =
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

∑︂
a∈A

π(a|ϕt, ϕi, θ)

Et[Rt+1 + γv̂(ϕt+1, θ) − v̂(ϕt, θ)|At = a]

=
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

∑︂
a∈A

π(a|ϕt, ϕi, θ)(︃
(Et[Rt+1 + γGt+1|At = a] − Et[Gt])

+ (γEt[v̂(ϕt+1, θ) −Gt+1|At = a] + (Et[Gt] − v̂(ϕt, θ)))

)︃
≈

t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

∑︂
a∈A

π(a|ϕt, ϕi, θ)

(Et[Rt+1 + γGt+1|At = a] − Et[Gt])

=
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

∑︂
a∈A

π(a|ϕt, ϕi, θ)(︃
(Et[Gt|At = a] − Et[Gt])

+ (γ − 1)Et[Gt+1|At = a]

)︃
38



≈
t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕi, θ)Et[Gt|At = a] − Et[Gt]

)︄
.

Thus the specified estimator approximately satisfies equation 5.6 and by exten-

sion equation 5.7. The approximation is limited by the accuracy of our value

function as well as biased towards short-term rewards by γ. In conventional

policy gradient, subtracting the state value (e.g. using δt = Rt+1+γv̂(ϕt+1, θ)−

v̂(ϕt, θ) instead of Rt+1 + γv̂(ϕt+1, θ)) is a means of variance reduction. Here

it is critical to avoid computing gradients with respect to the denominator of

equation 5.2, which allows OPGOR to run online while computing the gradi-

ent with respect to only the importance weight stored in memory. The reason

this trick is possible is simply that the denominator of equation 5.2 does not

depend on the remembered state variable mt.

To apply OPGOR in a more realistic setting we would want ϕt to be a

learned summary of the history, trained in part to make v̂(ϕt, θ) a good esti-

mate of Et[Gt]. See, for example, the predictive representation learning ap-

proach applied by Wayne et al. (2018). In this thesis, ϕt will be fixed for each

problem and, if it is not possible to estimate Et[Gt] well from ϕt, the above

approximation could be poor, and the performance of OPGOR may suffer.

We will describe a way to mitigate this dependence in Section 5.7.

We are now ready to precisely describe OPGOR for the single-state memory

case. OPGOR consists of using the gradient estimator ζt in a gradient ascent

procedure to emphasize retention of state variables which improve the return.

OPGOR uses online updating, meaning it updates the parameters of the write

network at each time-step according to a single term in the above sum as

follows:

θw,t+1 = θw,t + αδt
∂w(mt, θt)

∂θw
. (5.9)

There are, however, a couple of subtle issues with this approach. First, the

probability Pt(mt = ϕi) used to sample ζt is sampled based on the values of

wi in memory, but we compute ∂wi

∂θw
with respect to the parameters at time t.

With online updating, this introduces a potential issue with stale gradients,

which we suspect will vanish in the limit of sufficiently small learning rate, but
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leave further theoretical investigation to future work.

Another potential issue stems from the use of Chao sampling to manage

the memory of our agent online, rather than sampling from the history ac-

cording to equation 5.2 directly. This introduces a complication when the

memory contents are used for control. In the single item case, Chao sampling

ensures, for a fixed sequence of state variables and associated weights, that the

marginal probability of a given state variable being present in memory at time

t is given by equation 5.2. However, when we use the current item in memory

to condition a RL control agent, it is no longer quite true that Pt(mt = ϕi) will

be given by equation 5.2. This is because the inclusion probabilities specified

by Chao sampling implicitly assumes that the data stream is not influenced

by the content of the memory at any particular time. If the agent is making

decisions based on the contents of memory at each time this assumption is

surely violated. In this case Pt(mt = ϕi) will depend on not only the proba-

bility of sampling ϕi under a fixed history, but also the probability of certain

items being in memory in past time-steps given the history. For example if

a certain action aτ in the trajectory is highly correlated with a certain item

mτ = ϕ being in memory, then given that aτ was selected at time τ it is much

more likely that mτ = ϕ. If mτ = ϕ it is also more likely that mt = ϕ, and less

likely that mt is any state variable observed before ϕ, due to the nature of the

reservoir sampling approach. In turn the selected actions may influence latter

observed state variables. The final result is that the state variable trajectory

may contain information about memory contents at past times which is not

captured by equation 5.2. We do not account for this interaction and simply

treat the state variable trajectory as an arbitrary data stream for the purpose

of managing the memory. The question of whether this can be theoretically

justified or improved upon is left to future work.

5.2 OPGOR for a Multiple-State Memory

In the multiple-state case, the external memory will be managed by the full,

multiple-item, version of Chao sampling, which we reviewed in Chapter 4.

40



Instead of just one state variable mt stored in memory at each time we will now

have a reservoir Mt of some fixed number of state variables n. We will continue

to use mt to refer to the particular state variable returned by the query from

the network at time t. With this notation we can write the expected return

as:

Et[Gt] =
t−1∑︂
k=0

Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(ϕk ∈ Mt)Pt(mt = ϕk|ϕk ∈ Mt)∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a]

=
t−1∑︂
k=0

Pt(ϕk ∈ Mt)Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt]∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a].

To compute a gradient estimate for the multiple-state case, we will make a sim-

plifying approximation, using a form of semi-gradient, and take ∂Et[Q(ϕk|ϕt,Mt,θ)|ϕk∈Mt]
∂wi

≈

0 for all k and i. Note that in reality since Q(ϕk|ϕt,Mt, θ) is a function of not

just ϕk but all the other items in memory at time t this derivative will actu-

ally be non-zero. Nonetheless, we suggest that propagating gradients through

Pt(mt = ϕk) while treating Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt] as constant with re-

spect to the importance weights wi will adequately capture the primary effect

of the write process, while Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt] can be optimized with

respect to the query process alone. Investigating the implications of this ap-

proximation is left to future work. With the above approximation in place

we compute the gradient with respect to the write network parameters θw as

follows:

∂

∂θw
Et[Gt] ≈

t−1∑︂
k=0

(︄
∂Pt(ϕk ∈ Mt)

∂θw
Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt](︄∑︂

a∈A

π(a|ϕt, ϕk)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

+ Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)
∂Et[Gt|At = a]

∂θw

)︄
. (5.10)
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In addition to the approximation outlined above, we have subtracted a con-

stant baseline of v̂(ϕt, θ), independent of mt, as is common practice in policy

gradient methods to reduce the variance of the gradient estimate. Note that

this baseline does not effect the value of the expectation because ∂Pt(ϕk=Mt)
∂θw

must sum to zero to maintain the sum of probabilities at one and v̂(ϕt, θ) does

not depend on k, meaning it can be pulled out of that sum. We could have

done this in the single state variable case as well, however, in that case it would

have given the same final answer, as is easily verified. Modifying equation 4.2

slightly to use exponentiated weights, the single item inclusion probabilities

will be given by:

Pt(ϕi ∈ Mt) =

⎧⎨⎩1 if i ∈ Ωt
n exp(wi)∑︁

j∈Ωt

exp(wj)
if i ̸∈ Ωt,

(5.11)

where Ωt = arg min
ω⊂[0,..,t]

|ω| s.t. ∀i ∈ [0, .., t] \ ω, (n−|ω|) exp(wi)∑︁
j∈[0,..,t]\ω

exp(wj)
< 1 is the inad-

missible set. Recall from Chapter 4 that the inadmissible set refers to those

indices where the inclusion probability of the associated state variable would

be greater than one if computed naively. Applying this to work out the first

term from the right hand side of equation 5.10 gives, for all i ̸∈ Ωt:

t−1∑︂
k=0

∂Pt(ϕk ∈ Mt)

∂θw
Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt](︄∑︂

a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
∑︂
k ̸∈Ωt

∂ log(Pt(ϕk ∈ Mt))

∂θw
Pt(ϕk ∈ Mt)Et[Q(ϕk|ϕt,Mt, θ)|ϕk ∈ Mt](︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
∑︂
k ̸∈Ωt

Pt(mt = ϕk)
∂

∂θw

(︄
wk − log

(︄∑︂
j ̸∈Ωt

exp(wj)

)︄)︄
(︄∑︂

a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
∑︂
k ̸∈Ωt

Pt(mt = ϕk)

(︄
∂wk

∂θw
−
∑︂
i ̸∈Ωt

Pt(ϕi ∈ Mt)

n− |Ωt|
∂wi

∂θw

)︄
(︄∑︂

a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄
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=
∑︂
k ̸∈Ωt

Pt(mt = ϕk)
∂wk

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

−
∑︂
i ̸∈Ωt

Pt(ϕi ∈ Mt)Pt(mt ̸∈ Ωt)

n− |Ωt|
∂wi

∂θw
(Et[Gt|mt ̸∈ Ωt] − v̂(ϕt, θ))

≈
∑︂
k ̸∈Ωt

Pt(mt = ϕk)
∂wk

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄
.

In the final line we have approximated Et[Gt|mt ̸∈ Ωt] ≈ v̂(ϕt, θ). This

could be considered dubious since v̂(ϕt, θ) is trained not to approximation

Et[Gt|mt ̸∈ Ωt] but the unconditioned expectation Et[Gt]. The accuracy of

this approximation in situations where inadmissible items are common will

depend on the effectiveness of the query network. When inadmissible items

are highly important in a given state, the gradient with respect to weights

of admissible items should be negligible anyway. Since inadmissible items are

guaranteed to be present, they should be selected with very high probabil-

ity, meaning Pt(mt ̸∈ Ωt) will be small. If, on the other hand, inadmissible

items are not important in a state, Et[Gt|mt ̸∈ Ωt] ≈ v̂(ϕt, θ) should be a

good approximation. One could in principle train a separate conditional value

function to approximate Et[Gt|mt ̸∈ Ωt], however we deemed it unlikely to

be worthwhile and did not do so in our experiments. In any case, OPGOR-

DS, introduced in Section 5.7 makes no assumption on the accuracy of the

subtracted baseline, and thus eliminates this issue.

With the approximations we applied, the multiple-state memory version of

OPGOR works out very similarly to the single-state memory version discussed

in Section 5.1. The only difference is the condition that we only propagate

gradients through admissible items. Local modifications of the importance

weights have no effect on items whose inclusion probability is saturated at

one, hence we don’t update those weights further. Likewise, the second term

of equation 5.10 works out the same as the second term of equation 5.4 and no

modification to its derivation is necessary, thus applying the same reasoning

as in the single-state memory case we use the gradient estimator:

ζt =

{︄
δt

∂w(mt,θt)
∂θ

mt ̸∈ Ωt

0 otherwise
. (5.12)
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The associated online update rule for OPGOR with a multiple-state memory

is:

θw,t+1 = θw,t + α1(mt ̸∈ Ωt)δt
∂w(mt, θw,t)

∂θw
. (5.13)

5.3 OPGOR with Multiple Read Heads

In practice it can be useful to use multiple read heads to allow the network to

access multiple state variables at each time-step. In this case the heads can

learn to specialize such that each provides a different kind of useful information

to the policy network. To train the write network for this case we simply

produce one gradient estimate for the item queried by each read head and

average them to provide the training signal for the write network. In this

case, define mt(j) to be the state variable returned by the query of the jth

read head and let NQ be the total number of heads. Likewise each head j

will be associated with its own query probability over the items in memory

Qj(Mt(i)|ϕt,Mt, θ). Explicitly, we use the estimate

∂E0[G0]

∂θw
≈ E0

⎡⎣∑︂
t≥0

δt
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωt)
∂w(mt(j), θw)

∂θw

⎤⎦ , (5.14)

for each parameter θw of the write network. Leading to the online update rule,

for OPGOR with a multiple-state memory and multiple read heads:

θw,t+1 = θw,t + αδt
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωt)
∂w(mt(j), θw)

∂θw
. (5.15)

5.4 OPGOR(λ), OPGOR with Generalized Ad-

vantage Estimation

Instead of using only the one step TD error it is possible to introduce an el-

igibility trace to the training process for the write network to allow training

using an advantage estimate based on the λ-return. The idea behind this more

general use of eligibility traces is discussed by Schulman et al. (2015) under

the name generalized advantage estimation (GAE). In addition to potentially
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facilitating faster learning, multi-step updates can help with partial observ-

ability by allowing information to propagate across aliased states. Since the

focus of this thesis is partially-observable problems this could be particularly

helpful. We will now illustrate how to derive a version of OPGOR which uses

online GAE to construct an advantage estimate. We refer to this version of

OPGOR as OPGOR(λ).

Consider the most general gradient estimate derived so far (for multiple

state variables stored in memory, as well as multiple read heads) in equation

5.14. Recall the δt term used there serves as an estimate of

Et[Gt|At = a] − Et[Gt]. In this case Rt+1 + γv̂(ϕt+1, θ) is used to estimate

Et[Gt|At = a]. We could equally well use any estimate of the action conditional

expected return to estimate this value. One such estimate is the λ-return Gλ
t ,

for which we will use the expression given in equation 2.1 to derive a new

advantage estimate as follows:

Et[Gt|At = a] − Et[Gt] ≈ Et[G
λ
t − v̂(ϕt, θ)]

=
∞∑︂
k=t

(γλ)k−tδk.

Substituting this into equation 5.14 in place of δt gives:

∂E0[G0]

∂θw
≈ E0

⎡⎣ ∞∑︂
t=0

∞∑︂
k=t

(γλ)k−tδk
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωt)
∂w(mt(j), θw)

∂θw

⎤⎦
= E0

⎡⎣ ∞∑︂
t=0

δt

t∑︂
k=0

(γλ)t−k 1

NQ

NQ−1∑︂
j=0

1(mk(j) ̸∈ Ωt)
∂w(mk(j), θw)

∂θw

⎤⎦ .

Now define an eligibility trace:

zw,t =
t∑︂

k=0

(γλ)t−k 1

NQ

NQ−1∑︂
j=0

1(mk(j) ̸∈ Ωt)
∂w(mk(j), θw)

∂θw
, (5.16)

such that:
∂E0[G0]

∂θw
≈ E0

[︄
∞∑︂
t=0

zw,tδt

]︄
. (5.17)
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We will compute zw,t as well as the update for θw online leading to the update

equations for OPGOR(λ):

zw,t = γλzw,t−1 +
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωt)
∂w(mt(j), θw,t)

∂θw
,

θw,t+1 = θw,t + αδtzw,t.

5.5 Soft-OPGOR(λ), OPGOR with Soft Queries

In addition to the algorithm described so far, in which the query mechanism

stochastically selects a single state variable per read head from memory, we

experimented with an agent using soft queries. In this case rather than inter-

preting the query weights given by equation 3.1 as selection probabilities, each

read head returns a sum over all state variables in memory, weighted by the

associated query weight, as follows:

mt(j) =
n∑︂

k=0

Qj(Mt(k)|ϕt,Mt, θt)Mt(k). (5.18)

This means that the query process is now differentiable and can be trained

directly by backpropagation from the policy gradient signal.

Our derivation of OPGOR(λ) no longer applies directly in the soft query

case. Instead we will adopt a heuristic update rule, motivated by the hard

(stochastic) query case. In particular, where in the hard query case we would

add only the gradients of the importance weights for the selected state variables

to the trace, in the soft query case we will add gradients for each item in the

memory weighted by its associated query weight. With this modification the

update equations for soft-OPGOR(λ) can be summarized as follows:

zw,t = γλzw,t−1 +
1

NQ

n∑︂
k=0

NQ−1∑︂
j=0

1(Mt(k) ̸∈ Ωt),

Qj(Mt(k)|ϕt,Mt, θw,t)
∂w(Mt(k), θw,t)

∂θw
θw,t+1 = θw,t + αδtzw,t.
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Note that in the limit where the query is deterministically focused on one

index, as well as in the single-state memory case, the hard and soft query

versions of the algorithm become identical.

5.6 Integrating OPGOR with Actor-Critic

In our experiments we will test OPGOR(λ) as described in Section 5.4, which

we will from now on refer to as the hard-OPGOR(λ). In addition, we will

test the version using differentiable queries described in section 5.5, similarly

referred to as soft-OPGOR(λ). For simplicity we will train the value, policy

and query network with eligibility traces using the same λ as OPGOR. Also

for simplicity, in this work the policy, value, query and write networks will use

independent parameters. In the general case they may share some parameters.

We will represent the complete vector of network parameters by θ. Parameter

sharing can be accommodated by using a combined trace updated with the

sum of the 4 different trace vectors as follows for hard-OPGOR(λ):

zt = γλzt−1 +
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωt)
∂w(mt(j), θt)

∂θ

+
∂v̂(ϕt, θt)

∂θ

+
1

2

∂ log(π(at|ϕt,mt, θt))

∂θ

+
1

2NQ

NQ−1∑︂
j=0

∂ log(Qj(mt(j)|ϕt,Mt, θt))

∂θ
,

θt+1 =θt + αδtzt,

where now mt = mt(0), ...,mt(NQ − 1). Aside from the write network update,

which uses OPGOR, this algorithm is essentially actor-critic with eligibility

traces as outlined in Section 2.1. Each head of the query network is treated

as a policy with the items in memory as the space of possible actions. With
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soft-OPGOR(λ), we use the combined update rule:

zt = γλzt−1+
1

NQ

n∑︂
k=0

NQ−1∑︂
j=0

1(Mt(k) ̸∈ Ωt)Qj(Mt(k)|ϕt,Mt, θt)
∂w(Mt(k), θt)

∂θ

+
∂v̂(ϕt, θt)

∂θ

+
1

2

∂ log(π(at|ϕt,mt, θt))

∂θ

,

θt+1 =θt + αδtzt,

where again mt = mt(0), ...,mt(NQ − 1), but mt(j) is given by equation 5.18.

Note that with soft queries, the trace update no longer explicitly incorporates

a term for the query network gradient. Rather the query network parameters

are included in the parameters for π(at|ϕt,mt, θ) and trained by the error

backpropagated from the policy gradient directly.

5.7 Online Policy Gradient Over a Reservoir

with Denominator Sampling (OPGOR-DS)

It’s interesting that, under the assumption of a perfect critic, OPGOR can

obtain unbiased gradients without storing any information about the denom-

inator of the inclusion probabilities (aside from incrementally computing its

value for use in Chao sampling). We will see in our experiments in Chapter 6,

however, that when this assumption is violated, performance degrades quickly

and OPGOR’s behaviour can be unpredictable. In this section, we will show

that it is possible to compute an online sample of the denominator as well,

and by doing so we can remove the assumption that an unbiased critic is sub-

tracted from the advantage estimate. We will refer to this alternative version

of OPGOR as OPGOR with denominator sampling (OPGOR-DS).

We will again begin by deriving OPGOR-DS for the single-state memory

case, with no eligibility traces. We begin our derivation of OPGOR-DS for

a single-state memory from the following expression for the gradient of the
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expected return with respect to the write network parameters θw:

∂

∂θw
Et[Gt] =

t−1∑︂
k=0

(︄
∂Pt(mt = ϕk)

∂θw

∑︂
a∈A

(π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ))

+ Pt(mt = ϕk)
∑︂
a∈A

π(a|ϕt, ϕk, θ)
∂Et[Gt|At = a]

∂θw

)︄
. (5.19)

In this case we subtract a baseline v̂(ϕt, θ) purely for variance reduction. Work-

ing out the first term in equation 5.19:

t−1∑︂
k=0

∂Pt(mt = ϕk)

∂θw

(︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂ log(Pt(mt = ϕk))

∂θw(︄∑︂
a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
t−1∑︂
k=0

Pt(mt = ϕk)
∂

∂θw

(︄
wk − log(

t−1∑︂
j=0

exp(wj))

)︄
(︄∑︂

a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄

=
t−1∑︂
k=0

Pt(mt = ϕk)

(︄
∂wk

∂θw
−

t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

)︄
(︄∑︂

a∈A

π(a|ϕt, ϕk, θ)Et[Gt|At = a] − v̂(ϕt, θ)

)︄
.

Note that this is essentially identical to the derivation of ordinary policy gra-

dient (Sutton et al., 2000) except that we have explicitly expanded:

∂ log(Pt(mt = ϕk))

∂θw
=

(︄
∂wk

∂θw
−

t−1∑︂
i=0

Pt(mt = ϕi)
∂wi

∂θw

)︄
,

in order to emphasize the term
∑︁t−1

i=0 Pt(mt = ϕi)
∂wi

∂θw
which we note can be

estimated by single-item Chao sampling. All that is necessary is to maintain a

second reservoir of size one, which maintains an independently Chao sampled

state variable m̃t using the same importance weights as the external memory.

Each time we compute the gradient with respect to the importance weight of
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the state variable mt we subtract the gradient of the importance weight of the

state variable m̃t. More precisely, we use the following online update rule for

OPGOR-DS, analogous to the parameter update given in equation 5.9:

θw,t+1 = θw,t + αδt

(︃
∂w(mt, θw,t)

∂θw
− ∂w(m̃t, θw,t)

∂θw

)︃
. (5.20)

By similar reasoning we can derive corrected algorithms for the hard-

OPGOR(λ) and soft-OPGOR(λ), for the multiple-state memory case. Note

that, in the multiple-state case, the gradient of the denominator we wish to

sample remains almost the same. The main difference is that m̃t should be

sampled only from admissible state variables. This can be achieved easily by

only streaming items to the denominator reservoir when they become admis-

sible in the external memory. Regardless of the size of the external memory,

we use a single item m̃t for the denominator sample; one could use arbitrarily

large reservoirs to obtain a lower variance estimate of the denominator gra-

dient. The corresponding trace and parameter updates are straightforward

modifications of the uncorrected algorithm. For hard-OPGOR-DS(λ) we get:

zw,t = γλzw,t−1 +
1

NQ

NQ−1∑︂
j=0

1(mt(j) ̸∈ Ωk)

(︃
∂w(mt(j), θw,t)

∂θw
− ∂w(m̃t, θw,t)

∂θw

)︃
,

θw,t+1 = θw,t + αδtzw,t,

and for soft-OPGOR-DS(λ):

zw,t = γλzw,t−1+
1

NQ

n∑︂
k=0

NQ−1∑︂
j=0

1(Mt(k) ̸∈ Ωt)

Qj(Mt(k)|ϕt,Mt, θt)

(︃
∂w(Mt(k), θw,t)

∂θw
− ∂w(m̃t, θw,t)

∂θw

)︃,
θw,t+1 = θw,t + αδtzw,t.

The combination with the other components of our agent is a straightforward

extension of the update rules outlined in Section 5.6.

To understand intuitively why subtracting the gradient of an independently

sampled state variable negates the need for subtraction of an accurate base-

line, note that this amounts to an estimate of the expected gradient of the
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importance weight of a state variable in memory at time t. By subtracting

the expected gradient we no longer have to worry about emphasizing state

variables whose presence is merely predictive of high expected return. The av-

erage gradient for state variables in the history is captured by m̃t and removed,

meaning only state variables which facilitate better than average expected re-

turn relative to the current history will be emphasized.

5.8 Time Complexity

Limiting run-time to O(k) per time-step, where k is the total number of pa-

rameters involved in the function approximation, is widely considered to be

an important restriction for online RL algorithms. Generally, inference, the

process of extracting an output for a given input, for a ANN based architec-

ture requires O(k) time, so limiting the learning to the same timescale implies

the algorithm will scale well as the number of parameters increases, and learn-

ing will never become a major bottleneck. This requirement is met by the

backpropagation algorithm for training ANN weights, which makes up the

majority of the computation in our agent. Aside from this we should consider

the computational complexity of the remaining parts of our agent.

The process of querying memory requires O(nm) where n is the size of the

memory and m the length of the state variables stored therein. This applies

whether soft or hard queries are used, since in either case we have to compare

every item in memory to the query to compute the query weights Q. In the soft

query case, we additionally have to sum over each item weighted by their query

weight and backpropagate through each, however this also requires O(nm) and

thus does not change the big O complexity, though it will somewhat increase

the constant factor compared to the hard query version.

Computing the write network gradients for hard-OPGOR(λ) requiresO(kw)

where kw is the number of parameters in the write network. soft-OPGOR(λ)

on the other hand requires O(nkw) since we need to compute a gradient for

each state variable in memory. hard-OPGOR-DS(λ) and soft-OPGOR-DS(λ)

both add just one more write network gradient computation on top of the
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associated algorithm without denominator sampling.

The complexity of Chao sampling as a write mechanism is discussed in

Chapter 4. In the common case where inadmissible items are relatively rare,

this requires approximately constant time for the reservoir sampling process

plus O(m) to actually write the state variable to memory. Even in the worst

case where each item is inadmissible when it is added it will require only at

most O(n) if implemented efficiently and thus does not affect the overall, per

time-step, big O complexity of the agent given the complexity of querying

memory.
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Chapter 6

Experiments

We have established the architectural framework, and the theoretical founda-

tion for OPGOR, and are ready to empirically investigate its performance and

limitations. Recall that OPGOR is an online algorithm for training an ANN

to generate weights for use in Chao sampling, which in turn is applied to man-

age which state variables are written to and retained in an external memory.

It does so by applying a variant of policy gradient to emphasize retention of

state variables which lead to high advantage when they are recalled later on.

Our experiments here will investigate the ability of OPGOR, and a number of

other selective memory strategies, to learn to selectively store and recall use-

ful information. We will empirically evaluate how RL agents’ augmented with

OPGOR perform on a set of episodic, partially-observable problems designed

to test an agent’s capacity to inform present decisions based on past experi-

ences within the same episode. We will also show how OPGOR can fail when

a key assumption involved in our derivation does not hold. Specifically we

illustrate the reliance of OPGOR on a state representation which is sufficient

to accurately predict the history conditional expected return Et[Gt] at each

time. We will also show that adding denominator sampling, as in OPGOR-DS,

mitigates this issue while still running online.

We evaluated OPGOR on three psychology inspired environments designed

to test the ability of an agent to learn to remember salient information from

earlier in an episode and apply it to select good actions. The problems are

inspired to varying degrees by problems explored by Wayne et al. (2018).
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In each case, we simplified the problems to use a hand-coded binary feature

vector and relatively small state space, as opposed to the more realistic high

dimensional visual representation and virtual reality environments used in that

work. Our main focus in the present thesis is on the mechanism for deciding

what should be written to, and retained in, memory, hence we side-step the

representation learning problem to more clearly isolate that component. A

natural extension would be to apply OPGOR within a more sophisticated

agent like the MERLIN architecture introduced by Wayne et al. (2018) to

solve more realistic problems.

In addition to the three psychology inspired environments, in Section 6.5

we present a simple counterexample designed to illustrate the reliance of OP-

GOR on the availability of a state representation which is highly predictive of

the history conditional expected return Et[Gt] at each time. The counterex-

ample we present is a particularly pathological case, where because the state

representation is insufficient, OPGOR learns importance weights that focuses

on state variables that are predictive of high return, and neglects to remem-

ber those that help to condition good action selection. We will also see that

OPGOR-DS has no such problem.

The primary architecture in which we applied OPGOR in all our exper-

iments was the one shown in Figure 3.1, with the addition of multiple read

heads as described in Section 5.3. In addition to the update rules described

in Section 5.6, we applied entropy regularization to the policy, as well as L2

regularization to the generated importance weight w(ϕt, θt). Entropy regular-

ization helps to maintain exploration, and prevent premature convergence to

suboptimal policies. L2 regularization was added to the importance weights

to prevent weights from growing arbitrarily large, potentially leading to over-

flow. With these two additions our parameter update on each time-step (for

the applicable eligibility trace zt depending whether hard-OPGOR(λ) or soft-

OPGOR(λ) was used) was:

θt+1 = θt + α

(︃
δtzt + ψ

∂Ht

∂θ
− η

∂w(ϕt, θt)
2

∂θ

)︃
,

where Ht =
∑︁

a∈A π(a|ϕt,mt, θt) log(π(a|ϕt,mt, θt)) is the single-step policy
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entropy. Following Mnih et al. (2016) we fixed ψ = 0.01 in all our experiments.

We set η to a small value of 0.0001 to minimize its influence beyond avoiding

numerical overflow and keeping the importance weights more-or-less centered

about 0. We also fixed γ = 0.99 and λ = 0.8 unless otherwise specified, other

hyperparameter values were selected in a manner described in each individual

experiment.

6.1 Single Decision Keychain

We began with a straightforward test of the ability of an OPGOR augmented

RL agent to learn to recall a single important state variable among a number

of distractors. Recalling the important state variable at the right time would

allow the agent to select the correct action to obtain a reward. Taking advan-

tage of the simplicity of this environment we investigated how an RL agent,

using OPGOR to manage its memory, performs with a variety of parameter

settings.

The first environment we present is similar to the secret informant problem

found in the work of Young et al. (2018). It is also vaguely similar to the

latent learning in a T-Maze environment explored by Wayne et al. (2018).

We call it keychain because the agent moved through a directed chain of

cells which contained a single key observation. In each cell there were three

available actions, which we label as forward, up, and down. Recalling the key

observation would allow the agent to select the single rewarding action in the

decision cell at the end of the chain. In every cell except for the decision cell,

the forward action moved the agent to the next cell in the chain, while the

other two actions caused it to remain in the same cell. If the correct action was

selected in the decision cell at the end of the chain, a reward of one was given,

otherwise no reward was given. The correct action varied each episode, and

was specified by a one hot action indicator forming part of the state variable

of the informative cell, which was placed at a random location in the chain in

each episode.

The informative cell was distinguished from all the other cells in the chain,
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Figure 6.1: Visualization of single decision keychain environment. Here there
are 5 cells before decision to keep the diagram small, in our experiments there
will be 10. The informative cell (marked in pink) specifies what actions to take
in the decision cell at the end of the chain in order to receive a reward. The
agent must learn to distinguish informative from uninformative cells, through
trial and error, in order to reliably receive a reward.

called uninformative cells, by two bits in the state variable. These bits were

(1, 0) for the informative cell and (0, 1) for an uninformative cell. Thus, we

refer to these bits as the informative indicator and uninformative indicator

respectively. Other than that, the informative cell was indistinguishable from

the uninformative cells, however for uninformative cells the associated action

indicator was randomly generated with no correlation to the rewarding action

in the decision cell. In total there were 10 cells before the decision cell in each

episode, precisely one of which was informative.

An illustration of an instance of the single decision keychain problem is

shown in Figure 6.1. Table 6.1 outlines the feature representation for the state

variable presented to the agent in each cell.

Our first experiment used OPGOR(λ) with a single-state memory. We

swept over α values in the set {2−i : i ∈ {3, 4, ..., 8}}. Note that hard and soft

OPGOR(λ) are identical in the single-state memory case. The results for this

experiment are summarized in Figure 6.2.

Figure 6.2 (a) shows average return over training episodes for a variety of

α values. Note that the maximum expected return is 1.0 if the agent reli-

ably chooses the correct action in the decision cell. Figure 6.2 (b) shows the
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Feature Name Length Meaning

Cell Index Length of chain Node in the chain the agent cur-
rently occupies.

Action Indicator Number of actions Suggested action indicated by
current cell.

Informative Bit 1 Indicates the suggested action
and decision cell are accurate.

Uninformative Bit 1 Indicates the suggested action
and decision cell are random.

Decision Cell Identifier 1 Always 1 in this environment, dif-
ferent in multiple decision key-
chain, but included here for uni-
formity.

Decision Cell Indicator 1 Indicates the current cell is the
decision cell.

Table 6.1: Feature representation for single decision keychain environment.
Features are listed in the same order they appear in the state variable.

difference between average importance weight for informative state variables

and uninformative state variables for α = 2−5, which was the optimal value in

terms of average return over the last 100 episodes.

In this experiment, the agent reached essentially perfect performance with a

range of α values. The write network was able to learn to significantly separate

the informative cell from the uninformative cells with an average difference of

roughly 100 by the end of training. Since in the single-state memory case there

are no inadmissible weights, the inclusion probability is always proportional

to the exponential of the importance weights. This means there was negligible

probability of storing an uninformative state variable once an informative state

variable had been observed.

In our next experiment we increased the memory to 3 states in order to

test whether OPGOR(λ) is still able to manage the memory effectively in this

slightly more complex case. Recall that in extending OPGOR to multiple

state variables in Section 5.2 we made some additional approximations, hence

this experiment will serve as an initial test of whether these approximations

were reasonable. For this experiment we held the α value fixed at 2−5, the
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optimal value from the single-state memory experiment. The results of this

experiment are shown in Figure 6.3.

Figure 6.3 (a) shows returns for agents using hard-OPGOR(λ) and soft-

OPGOR(λ). Figure 6.3 (b,d) shows the difference between average importance

weight for informative state variables and uninformative state variables, for the

hard and soft query case respectively. Figure 6.3 (c,e) shows the evolution of

the average query vector element, generated in the decision cell associated

with the informative indicator, uninformative indicator, and first decision cell

identifier.

For both the agent using hard queries with hard-OPGOR(λ) and the agent

using soft queries with soft-OPGOR(λ) we see similar performance to using a

single-state memory, with the soft-query agent appearing to reach optimal per-

formance somewhat faster. This makes some sense, since with soft queries, as

long as the informative state variable occupies one of the three available mem-

ory slots the agent will have some signal indicating its presence. This could

allow the agent to consistently benefit from having the informative state in

memory, even with relatively imprecise queries. Both the importance weights

and the query vector elements associated with the relevant bits were learned

as expected. The query vector element associated with the decision cell iden-

tifier remained near zero in both cases, since the fact that there was only one

decision cell made it irrelevant. In both hard and soft query cases there was a

significant separation between the importance weights assigned to informative

and uninformative cells, though somewhat less than in the single-state mem-

ory case. This makes sense because the agent had three chances to remember

the single informative cell, making it more likely to appear in memory at a

given importance weight difference. Also, in the multiple-state memory case,

importance weights may become inadmissible if they are high enough, which

guarantees a state variable’s presence in memory and halts further updates.

Our final experiment in this section evaluated the effect of disabling eligi-

bility traces, fixing λ = 0. Again, we held α fixed at 2−5. Eligibility traces are

not really necessary in this environment since the only decision which directly

impacts received reward gives immediate feedback. In other environments,
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(a) Return (b) Importance Weights

Figure 6.2: Results for single decision keychain with single-state memory
OPGOR(λ) agent. In the single-state memory case the query module is un-
necessary, and the soft and hard versions of the algorithm are identical. The
x-axis shows training episodes. (a) shows the average return for a variety of
settings of the step-size α. (b) shows the difference between the average impor-
tance weight assigned to informative and uninformative cells for the optimal α
value of 2−5. All curves are smoothed with a running mean over 100 episodes
and show an average of 30 runs with error bars showing standard error in the
mean.

they will be useful or, due to partial observability, even necessary to achieve

good performance. Hence we wish to confirm they don’t significantly hurt the

performance of OPGOR(λ) in simpler cases. This experiment served as an

initial check that the performance is not significantly impacted by applying

eligibility traces when they are not needed. These results are shown in Figure

6.4.

We observed that disabling eligibility traces had negligible impact in both

the hard and soft query case. This is reassuring since we would not expect

them to be necessary for the keychain problem. It is nonetheless informative

to note that performance does not suffer by having them enabled. In the

next section we will show an environment where eligibility traces are crucial

to propagate information across aliased states.

6.2 Two Decision Keychain

In the previous section we verified the feasibility of OPGOR in the simple

case where only one crucial state variable must be remembered. We are now

interested in how OPGOR scales as the problem becomes more complex. In
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(a) Return

(b) Importance Weights
(Hard Queries)

(c) Queries (Hard Queries)

(d) Importance Weights
(Soft Queries)

(e) Queries (Soft Queries)

Figure 6.3: Results for single decision keychain with 3 state memory
OPGOR(λ) agent. The x-axis shows training episodes. (a) shows returns
for the hard and soft variant of the algorithm. (b,d) shows the difference
between the average importance weight assigned to informative and uninfor-
mative cells. (c,e) shows three important elements of the query vector output
by the query network in the single decision cell. All curves are smoothed with
a running mean over 100 episodes and show an average of 30 runs with error
bars showing standard error in the mean.
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(a) Return

(b) Importance Weights
(Hard Queries)

(c) Queries (Hard Queries)

(d) Importance Weights
(Soft Queries)

(e) Queries (Soft Queries)

Figure 6.4: Results for single decision keychain with 3 state memory OPGOR
agent, with eligibility traces disabled (λ = 0). The x-axis shows training
episodes. (a) shows returns for the hard and soft variant of the algorithm.
(b,d) shows the difference between the average importance weight assigned
to informative and uninformative cells. (c,e) shows three important bits of
queries output by query network in the single decision cell. All curves are
smoothed with a running mean over 100 episodes and show an average of 30
runs with error bars showing standard error in the mean.
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particular, in this section, we modified the environment from Section 6.1 by

adding a second decision cell, as well as a second informative cell. In this case,

the agent had to select the correct action in each of the two decision cells at

the end of the chain in order to obtain a reward. Each decision cell corre-

sponded to a separate informative cell located at a different random position

in the chain. Informative cells additionally indicated which decision cell they

provided information about, via a decision cell identifier in the state variable.

For uninformative cells both the decision cell identifier and action indicator

were set randomly.

The two decision version of keychain provided a substantial increase in

difficulty compared to the single decision version. In this case, a random

agent had only a 1/9 chance of receiving reward, and the agent had to learn to

make queries conditional on which decision cell it occupied in order to select

the correct action. Also, since the agent had no way to tell whether its first

decision was correct until after making its second decision, there was a delay in

credit assignment and eligibility traces were necessary to perform well on this

problem. Without eligibility traces the agent could learn to correctly select the

action in the second decision cell, but would have no way to receive positive

reinforcement for its first choice.

An instance of this modified version of the problem is shown in Figure 6.5.

Table 6.2 shows the associated feature representation.

Our first experiment with this environment used agents with hard queries

using hard-OPGOR(λ) and agents with soft queries using soft-OPGOR(λ) all

with a 3 state memory. Again, we swept alpha values from the set {2−i : i ∈

{3, 4, ..., 8}}. The results are summarized in Figure 6.6.

Figure 6.6 (b,c) shows returns for the full range of tested α values for

the hard and soft query case respectively. Figure 6.6 (a) compares returns

for the optimal α value for each, in terms of average performance over the

final 100 episodes. Incidentally the optimal α value was 2−7 for both versions.

Figure 6.6 (d,g) shows the difference between the average importance weight

assigned to informative and uninformative cells for the optimal α. Figure 6.6

(e,h) shows the evolution of the average query vector element generated in
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Figure 6.5: Visualization of two decision keychain environment. The two
informative cells (marked in blue and pink) specify what actions to take in
the corresponding decision cell at the end of the chain in order to receive a
reward. The agent must learn to distinguish informative from uninformative
cells, through trial and error, in order to reliably receive a reward.

Feature Name Length Meaning

Cell Index Length of chain Node in the chain the agent cur-
rently occupies.

Action Indicator Number of actions Suggested action indicated by
current cell.

Informative Bit 1 Indicates the suggested action
and decision cell are accurate.

Uninformative Bit 1 Indicates the suggested action
and decision cell are random.

Decision Cell Identifier Number of decisions For a decision cell, identifies the
current cell. Otherwise indicates
which decision cell the current
cell provides information about
(if informative, otherwise it’s ran-
dom).

Decision Cell Indicator 1 Indicates the current cell is a de-
cision cell.

Table 6.2: Feature representation for keychain environment. Features are
listed in the same order they appear in the state variable.

the first decision cell, associated with the informative indicator, uninformative

indicator, first decision cell identifier and second decision cell identifier. Figure

6.6 (f,i) shows the same thing but for the query vector generated in the second
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decision cell.

In this case, both versions of the agent performed reasonably well (far better

than the 1/3 return that would be expected from only handling one decision

correctly for example), with the soft-query agent significantly outperforming

the hard-query agent. However neither reached perfect performance. The

primary cause of this was likely the small memory of size 3, which had only

one more slot than necessary to complete the task.

While both hard-OPGOR(λ) and soft-OPGOR(λ) learned to separate in-

formative from uninformative, as evident from the importance weight curves,

there was still a risk of lingering in a certain informative cell and adding

three copies of one of the two informative cells rather than at least one of

each. A quick calculation shows that if we assume all other aspects of the

agent were perfect, but each of the three state variables in memory were oc-

cupied equiprobably by either informative cell, the expected return is given

by 3/4 + 1/4 · 1/3 = 0.83 (i.e., the odds that both decision cells are contained

in memory at least once, plus the odds that they aren’t times the expected

return for one random decision). This highlights a limitation of OPGOR in

its current form which is that it does not account for the history when de-

ciding inclusion probability for the current state variable. In particular, the

algorithm is unaware when observing a certain informative state variable for

the second time that it has already recorded it in memory. This issue could

be partially addressed by using a recurrently updated state variable, which

could perhaps learn to note that certain information has already been stored

in memory. We also see that the query network is able to learn queries appro-

priately, increasing the weight assigned to the informative bit, decreasing the

weight assigned to the uninformative bit, and increasing the weight assigned

to the associated decision cell identifier in each decision cell.

Our next experiment tested the effect of adding a second read head to

the agent, as described in Section 5.3. We fix alpha to 2−7 the optimal value

from the first experiment of this section, and maintain all other parameter.

Note that two read heads are by no means necessary in this problem since

only one informative state variable is needed to make the correct decision
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in each decision cell. Nonetheless, we may expect to see a benefit to early

improvement resulting from providing the agent with more chances to select

useful information. The results are shown in Figure 6.7.

The second read head did not appear to speed initial improvement sig-

nificantly. However, importantly there was no significant detriment to final

performance in either the hard or soft query case. In more complex problems,

the idea of having multiple read heads is that each can specialize to a partic-

ular purpose. This specialization among individual read heads was observed

for example in the work of Wayne et al. (2018).

Next we observed the effect of increased length of temporal dependencies

by increasing the number of cells prior to the decision cells from 10 to 20,

again using 2 read heads, holding α and all agent parameters fixed. We refer

to this new environment as two decision, double length keychain. Figure 6.8

shows the result. Note the increased number of training episodes in the x-axis

of each plot.

The primary effect of this doubling of environment length was an increase in

training time by roughly a factor of three. Final performance did not appear

to be affected in the soft query case. In the hard query case learning does

not appear to have plateaued, but the performance at 300000 episodes in the

double length environment was comparable to that at 100000 episodes in the

original two decision keychain environment. This experiment gives an early

indication of how OPGOR scales with length of temporal dependencies.

Next, again using the double length environment, we expanded the memory

size from 3 to 5 to give the agent a better chance to store the two relevant

state variables. Here, again, we use the version of the architecture with 2

read heads. With this version of the architecture and keychain environment

we tested the hard-OPGOR(λ) and soft-OPGOR(λ) along with a number

of alternative selective memory strategies and baselines. This allowed us to

assess the difficult of the problem when approached with other methods, as

well as to frame the performance of hard and soft OPGOR(λ) against possible

alternatives. In what follows we describe each of the agents we compared

against, and describe their role in our evaluation. Figure 6.9 shows a rough
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(a) Return
(Best α)

(b) Return
(Hard Queries)

(c) Return
(Soft Queries)

(d) Importance Weights
(Hard Queries)

(e) Decision 1 Queries
(Hard Queries)

(f) Decision 2 Queries
(Hard Queries)

(g) Importance weights
(Soft Queries)

(h) Decision 1 Queries
(Soft Queries)

(i) Decision 2 Queries
(Soft Queries)

Figure 6.6: Results for two decision keychain with 3 state memory, single read
head OPGOR(λ)(λ) agent. The x-axis shows training episodes. (b,c) shows
the average return for a variety of settings of the step-size α for the hard and
soft variants of the algorithm. (a) compares the results for optimal α, in terms
of average return over the final 100 episodes. (d,g) shows the difference between
the average importance weight assigned to informative and uninformative cells
for the optimal α value of 2−7. (e,h) shows four important bits of queries output
by the query network in the first decision cell. (f,i) shows four important bits
of queries output by the query network in the second decision cell. All curves
are smoothed with a running mean over 100 episodes and show an average of
30 runs with error bars showing standard error in the mean.

taxonomy of the agents we include in our comparison, illustrating how the

various approaches relate. We also compared hard and soft OPGOR(λ) against

the same set of agents in the next two sections of this chapter.

Memoryless: This agent uses no memory at all. Instead it consists of a
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(a) Return

(b) Importance Weights
(Hard Queries)

(c) Decision 1 Queries
(Hard Queries)

(d) Decision 2 Queries
(Hard Queries)

(e) Importance Weights
(Soft Queries)

(f) Decision 1 Queries
(Soft Queries)

(g) Decision 2 Queries
(Soft Queries)

Figure 6.7: Results for two decision keychain with 3 state memory, 2 read
head OPGOR(λ) agent. The x-axis shows training episodes. (a) shows the
average return for the hard and soft variants of the algorithm. (b,e) shows
the difference between the average importance weight assigned to informative
and uninformative cells. (c,f) shows four important bits of queries output by
one of the two read heads in the first decision cell. (d,g) shows four important
bits of queries output by one of the two read heads in the second decision cell.
All curves are smoothed with a running mean over 100 episodes and show an
average of 30 runs with error bars showing standard error in the mean.

value network identical to our main architecture, along with a policy network

with the same number of hidden units and layers as the main architecture but

using only the current state variable as input. Since the problems here were

designed to test memory we expected this agent to perform very poorly, but
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(a) Returns

(b) Importance Weights
(Hard Queries)

(c) Decision 1 Queries
(Hard Queries)

(d) Decision 2 Queries
(Hard Queries)

(e) Importance Weights
(Soft Queries)

(f) Decision 1 Queries
(Soft Queries)

(g) Decision 2 Queries
(Soft Queries)

Figure 6.8: Results for two decision, double length keychain with 3 state mem-
ory, 2 read head OPGOR(λ) agent. The x-axis shows training episodes. (a)
shows the average return for the hard and soft variants of the algorithm. (b,e)
shows the difference between the average importance weight assigned to in-
formative and uninformative cells. (c,f) shows four important bits of queries
output by one of the two read heads in the first decision cell. (d,g) shows four
important bits of queries output by one of the two read heads in the second
decision cell. All curves are smoothed with a running mean over 100 episodes
and show an average of 30 runs with error bars showing standard error in the
mean.

provide an idea of how important memory is in each problem.

Uniform Reservoir Sampling: This agent is similar to our soft-OPGOR(λ)

agent with soft queries, but with importance weights fixed to one instead of
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Figure 6.9: Taxonomy of different memory mechanisms we test in our ex-
periments. Selective memory mechanisms span everything between the two
extremes of memoryless agents, which rely on only the immediate observation,
and full memory agents which remember the full history and need only learn
how to use it. We divide selective memory into recurrent memory and external
memory. Mechanisms we include in our experiments are marked in green, with
parenthesis indicating multiple variations of a particular mechanism.

learned using soft-OPGOR(λ). This reservoir sampling procedure reduces to

the simple procedure for sampling items uniformly introduced in Chapter 4.

This agent gave us an idea of how effective OPGOR(λ) was at tuning impor-

tance weights, and how important this was in each problem. We only tested

the soft query version of this agent because in general we found soft queries

performed better.

Full Memory with Hard Queries: This agent performs queries over

the state variables of all visited states, rather than a small bounded memory,

hence no selective memory procedure is necessary. It is otherwise identical to
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our main architecture. In general we expected this agent to perform better

than OPGOR(λ), since it always keeps around all the necessary information,

and simply had to learn to correctly retrieve it. However, it required much

more memory, and more computation to perform the query, which would scale

poorly to larger problems. This agent gave a sense of how much our selective

memory agents lost by restricting their memory to a small set of state variables.

Full Memory with Soft Queries: This agent is similar to the “full

memory with hard queries” agent described above except using the soft query

mechanism described in Section 5.5. The comparison between the hard and

soft query variants was broadly interesting, as hard and soft query and write

mechanisms are both used in various places in the literature and each appears

to have advantages and disadvantages.

Least Recently Used (LRU): For each item in memory, this agent keeps

track of a usage timer equal to the number of time-steps passed since each item

in memory was either written or returned as a query result. It always replaces

the item with the largest usage timer with the current state variable. This is

based on the reasoning that items which the query network has determined

would be useful to query in the recent past are also likely to be more useful

in the future. This served as a simple, though potentially powerful, heuristic

against which to test OPGOR(λ).

Gated Recurrent Neural Network (GRU): This agent replaces the

entire memory module of our main agent with a GRU. Note however that

as in the other agents the value function approximation is not recurrent, but

rather uses the same feed forward architecture as the other agents in order to

make the architectures as comparable as possible. Of all the agents we test the

GRU is the most distinct from our main agent, replacing the entire read write

semantics of the external memory with the differentiable single step updates

of a GRU. We fix the number of GRU cells to 32, matching the number of

units in each of the hidden layers of our architecture.

We tested this agent with 2 different truncation lengths for backpropaga-

tion through time. First, length 5 which requires similar memory and compute

time to our external memory based agents with 5 memory slots, which is the

70



setting we used in our comparison. Second, length 20 which more reasonably

captures the length of temporal dependencies in the problems we tested on.

In our implementation, a truncation length of 20 made the agent roughly 3.5

times slower per time-step than the reservoir based agent when running on

a single CPU. Like all the other agents we trained the GRU agent online,

computing gradients and updating at each time-step. More precisely, at each

time-step we computed a forward pass starting from the earliest time in the

truncation window, then propagated back the full truncation length. The GRU

hidden state was propagated forward each time an observation was dropped

from the truncation window.

We see external memory, and by extension OPGOR, as complementary

to, not a replacement for, the incremental state updates used in architectures

such as GRUs. Nonetheless, it was interesting to see how a GRU alone can

perform on the tasks in our test suite, hence the inclusion of this mechanism.

We test agents using hard and soft OPGOR(λ) along with each of the above

alternatives on two decision, double length keychain. The OPGOR(λ) agents,

along with the uniform reservoir sampling agent, and LRU agent all use a 5

state memory. All of the external memory based agents used 2 read heads.

The α values used by each agents was tuned from α ∈ {2−i : i ∈ {3, ..., 8}}

to maximize average return over the final 100 episodes. Figure 6.10 shows the

evolution of the average return for each of these agents.

Both the hard and soft OPGOR(λ) based agents improved significantly

over the memoryless agent and unweighted reservoir agents, indicating that

OPGOR(λ) learned useful weights on this problem. The soft query agent

slightly outperformed the hard query agent.

The soft full memory agent was, perhaps unsurprisingly, the best overall.

This agent obtained essentially perfect performance in a very short time, set-

ting the bar for what can be done with immediate access to the full history.

The hard full memory agent also did quite well, though not nearly so well as

the soft query version.

With truncation length 5, the GRU agent eventually began to improve,

though significantly slower than any of the external memory based methods.
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With truncation length 20, the GRU agent was quite competitive, obtaining

final performance similar to that of the soft reservoir agent. However, as we

noted earlier, its computation time per step was around 3.5 times longer in

this case.

The LRU agent performed surprisingly well, similarly to the hard version

of the full memory agent, with which it shares a query method, over the last

half of training. It’s interesting to note that the queried values, on which the

LRU agent depends to decide which memories to maintain, are only relevant

at the end of the episode. This means that the LRU agent most likely relies on

harmless over-generalization, wherein the values that will be useful at the end

are also queried throughout the episode. Another interesting thing to note is

that in principle the LRU agent could learn to make queries intentionally to

reset the usage timer of an item in order to keep it around. This is somewhat

analogous to a human mentally repeating something to themselves so that

they can remember it when needed. This is, however, only possible if the

memory reading policy is trained using a trial and error mechanism directly,

and not if it receives policy gradients directly from the policy as in the soft

query case. This highlights an interesting potential advantage of the hard

query mechanism, it has the ability to learn to exploit any potential secondary

effects of remembering a particular state variable, an ability which is missing

from a differentiable query mechanism trained on the policy gradient alone.

To get a better idea of what the write network of each OPGOR(λ) agent

learned, we ran an additional 1000 episodes using the trained OPGOR(λ)

agents from the previous experiment. During these 1000 episodes we recorded

the importance weights associated with each observed state variable. The

results of this experiment are summarized in Figure 6.11.

Figure 6.11 (a) shows the result for the hard query version of the algo-

rithm, while Figure 6.11 (b) shows the result for the soft query version of

the algorithm. To show as clearly as possible the effect of the importance

weights we use the exponentiated importance weights, which are proportional

to the selection probability. In addition, we applied two normalizations before

plotting the average importance weights as a function of agent, and active
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state variable element. First, we divided the value of each importance weight

by the maximum importance weight observed within the same episode, this

ensured the plots were not affected by variability in importance weights be-

tween episodes. Since state variables only compete with those within the same

episode for a spot in memory, this better highlights the relative magnitude in

case there was large intra-episode variation. Second, we normalized by the

maximum over state variable elements for each agent, such that the highest

weighted element was always set to one.

The results for the importance weights in both the hard query case and soft

query case were somewhat unexpected. In each case, the largest importance

weights were usually associated with decision indicators. We hypothesize that

this was a vestige from early learning which persisted because it was not sig-

nificantly harmful. Before the value function was well trained, any positive

reward received will result in a significant positive TD error. Since rewards

are only received at the end of the episode, and it is only possible to have

a decision cell in memory at the end of an episode, the system may learn to

associate receiving a decision cell as the result of a query with a positive TD

error. One might assume this bias should have been unlearned as the value

function becomes more accurate, allowing the agent to learn that being in a

decision cell, as opposed to querying the decision cell indicator, is what tends

to result in a positive reward. However, if the high importance weight is al-

ready learned when the system learns not to query the decision cell indicator,

the importance weight will rarely be updated further, as it is rarely received

as a response to a query. Thus the importance weight may be stuck at a high

value even when the state variable is learned not to be useful.

Note that the high importance weight attached to decision cells was nearly

harmless, as the memory held five state variables and needed to store only two

informative state variables to succeed. Since there were only two decision cells,

and it was impossible to stay in a decision cell for more than one time-step,

the worst case scenario was that the first decision cell was in memory when the

agent reached the second. Replacing a single informative cell with a decision

cell before the final decision was unlikely to matter much. Furthermore, we can
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Figure 6.10: Comparison of returns v.s. training episodes for hard-OPGOR(λ)
and soft-OPGOR(λ) agents along with various alternatives on two decision,
double length keychain environment. The step-size parameter α is tuned sep-
arately for each agent by selecting for best average performance over the last
100 episodes over values from the set {2−i : i ∈ {3, 4, ..., 8}}. All curves are
smoothed with a running mean over 100 episodes and show an average of 30
runs with error bars showing standard error in the mean.

also see in both Figure 6.11 (a) and Figure 6.11 (b) that the importance weight

associated with the second decision cell identifier tended to be significantly

higher than the first. Since storing the second decision cell is entirely harmless,

as the episode ends immediately after, this likely indicates that the agent

partially learned to correct the minor bias. We can tell from the reasonably

high performance, as well as the many plots of importance weight ratios for

informative and uninformative cells in this section, that the agent was still able

to learn to separate the informative and uninformative cells. This is, however,

hardly visible in Figure 6.11 due to the high weight attached to the decision

cell indicator.

6.3 Rapid Reward Valuation

The keychain problem served as a simple and direct instantiation of the kind of

problem a memory system may be expected to handle. Keychain is, however,

limited in the sense that recalled information is only required to condition

action selection at the very end of an episode. In more realistic cases, history

74



(a) Importance Weights
(Hard Queries)

(b) Importance Weights
(Soft Queries)

Figure 6.11: Average, normalized, exponentiated importance weights asso-
ciated with activation of various features for the hard-OPGOR(λ) and soft-
OPGOR(λ) agent on the keychain environment. Average is taken over 1000
episodes generated after 300,000 episodes of training. The y-axis shows dif-
ferent independent training runs, the x-axis shows the different features of
the state variable. Two max normalizations are applied. First, we divide the
value for each feature observed in a given episode by the maximum importance
weight value observed in the same episode, this is done because importance
weights from different episodes will not affect the inclusion probability of a
given state variable. Second, we divide the weights of all features by the max
over all features for each training run separately, this is done for readability
so the highest weighted feature over each run is set to one.

conditional decisions must be made at many points in time and a selective

memory agent must learn to balance storing information required for each

individual decision. In addition, determining what information is relevant

to a particular decision may not be as simple as matching a single salient

feature. Instead, relevant information may rely on a more subtle relationship

between the decision to be made and the information which informs it. In

this section, we evaluate hard-OPGOR(λ) and soft-OPGOR((λ), along with

the alternative selective memory strategies discussed in the previous section,

on a problem designed to highlight these more complex aspects of selective

memory.

This environment is a simplified version of the rapid reward valuation task
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outlined by Wayne et al. (2018). The task consisted of a 5x5 grid world

populated by an agent along with 15 food items of 3 distinct types. The agent

could determine its position on the grid via a cell index which formed part of

the state variable. The presence of each item in a cell was represented to the

agent by a random binary food type indicator (of length 5 in our experiments),

which was included in the state variable. Each food type was also classified

as either good or bad, mandating that there be at least one good and one bad

item. When occupying the same cell as a food item, the agent could choose

to select the eat action or discard action. Eating a good item gave +1 reward

while eating a bad item gave −1. Conversely discarding a good item gave −1

reward while discarding a bad item gave +1. When an item was either eaten

or discarded it was removed from the map and the next state variable seen

by the agent included the food type indicator along with a two bit good/bad

food indicator, indicating whether it was good or bad. Selecting eat or discard

in a cell which contained no food item had no effect. In addition to the eat

and discard actions, the action space consisted of moving in the four cardinal

directions (up, down, left, right). The agent also received, as part of the feature

representation, a remaining food map indicating the location of remaining food

items on the board. The remaining food map would allow the agent to quickly

navigate between food items once it had learned to do so.

At the start of each episode, 3 new item types were generated with random

quality and keys, and 15 items from this set were placed at random positions

on the grid. An episode ended either when all food items were consumed or a

fixed number of time-steps had elapsed (500 in our experiments). Ideally, to

solve this task the agent would learn to store the quality indicator associated

with an item after trying it once. On subsequent encounters with the same

item, the agent could query the item in memory and use the quality indicator

to decide whether to eat or discard it.

Note that associating a positive reward with each item regardless of its

quality was necessary for the assumption, used in the derivation of OPGOR,

that the state variable is highly predictive of Et[Gt] to hold. If instead, only

eating a good item gave positive reward while eating a bad item gave negative
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reward, as in the task used by Wayne et al. (2018), the value of sitting on

a good item and bad item would differ in a manner not observable from the

immediate state variable alone. The central issue here is that if the state

variable is not sufficient to provide a good estimate of Et[Gt], the agent may

learn to remember state variables whose presence in the history is predictive

of higher return, as opposed to state variables that cause higher return by

conditioning the policy. In Section 6.5 we will explicitly examine how this can

cause problems. Having a state variable which is in itself highly predictive

of future return mitigates this distinction such that a greater than expected

return is more likely due to the way the remembered state variable conditions

the policy, not simply the fact that it occurred in the history. We emphasize

that in a more realistic application, the state variable should be trained to

be predictive of return, perhaps using a recurrent network, which would help

to address this limitation. OPGOR-DS, introduced in Section 5.7 provides

another possible solution by subtracting a sample of the denominator gradient

from the importance weight gradient, which removes the need to subtract an

accurate baseline from the return estimate.

An illustration of an instance of the rapid reward valuation problem is

shown in Figure 6.12. Table 6.3 outlines the feature representation presented

to the agent in each cell.

In the rapid reward valuation environment, we again tested agents based

hard-OPGOR(λ) and soft-OPGOR(λ), along with each of the alternative se-

lective memory strategies discussed in the previous section. Again, we used

a 5 state memory for each OPGOR(λ) agent and each alternative in which a

limited slot based memory was used. Parameters of the other agents were set

in the same way discussed in the previous section with one exception; finding

the useful step-size range to be drastically different from the keychain environ-

ment, we swept α from α ∈ {2−i : i ∈ {6, ..., 11}}. Once again, α was tuned to

yield the highest average return over the final 100 episodes. Figure 6.13 show

the results of this experiment.

Again, both hard-OPGOR(λ) and soft-OPGOR(λ) improved on the un-

weighted reservoir sampling agent, indicating both versions of OPGOR(λ) were
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Figure 6.12: Visualization of rapid reward valuation environment.

Feature Name Length Meaning

Cell Index grid width × grid height Index of grid cell the agent cur-
rently occupies.

Food Type Indicator 5 Randomly generated key corre-
sponding to food type in current
cell, all zeros if no food in cell.
Remains active one time-step af-
ter food is eaten. Normalized by
dividing by half of the key length.

Remaining Food Map grid width × grid height Indicates grid cells in which food
remains. Normalized by dividing
by initial number of food items for
stability.

Good Food Indicator 1 Indicates agent just ate or dis-
carded good food.

Bad Food Indicator 1 Indicates agent just ate or dis-
carded bad food.

Table 6.3: Feature representation for rapid reward valuation. Features are
listed in the same order they appear in the state variable.
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able to learn to generate useful importance weights. The hard-OPGOR(λ)

agent and soft-OPGOR(λ) agnet performed similarly in terms of final perfor-

mance. However, for the optimal α value, the soft query version showed some

degradation after initial improvement. This behaviour was not observed in the

hard query version.

From the performance of the hard and soft full memory agents, we can see

that having access to the full history gives these agents a large advantage over

the others, indicating the difficulty of the selective memory problem. Inter-

estingly the hard query version of the full memory agent eventually exceeded

the final performance of the soft memory agent in this case, though with much

slower initial improvement. This perhaps indicates a trade off in which the

precision of single item queries can be more stable in the long run after dealing

with the initially noisier signal due to selecting state variables from memory

stochastically. This could also explain the observed difference in behaviour

observed between the hard-OPGOR(λ) and soft-OPGOR(λ) on this task.

The GRU agent was not very competitive in this case, with the truncation

length of 20 showing fairly minor improvement over truncation length 5. We

hypothesize that the main reason for the worse performance on this problem

was due to the fairly precise comparison between state variables needed to

determine the correct action associated with a food item. To determine the

correct action for a given item it was necessary to compare the full five element

key to that of another visited food item. If state variables are stored in full in

memory they can be later recalled and compared to the current food item in

a relatively straightforward manner. For a GRU to learn such an association

from strictly recurrent updates is likely to be much more complex. This high-

lights another potential benefit of using external memory when a task requires

precise relational reasoning between observations at different times.

The LRU agent was essentially indistinguishable from the hard version of

the reservoir algorithm with which it shared a query method. Indicating that

LRU, and by association other usage based strategies, may be a surprisingly

viable selective memory strategy. Based on this result, and the considerations

mentioned in the Section 6.1, it would be interesting to compare to a soft
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query version of LRU as well. This could perhaps be achieved by degrading

the usage timer toward zero by a fraction equal to the associated query weight.

As with the keychain environment, we investigated the learned importance

weights for rapid reward valuation by running an additional 1000 episodes with

the trained hard and soft OPGOR(λ) agents and recording the importance

weights generated for each observed state variable. The same importance

weight normalization used in the keychain importance weight experiment was

also used in this experiment. The results of this experiment are summarized

in Figure 6.14.

The main thing to note in Figure 6.14 is that the largest importance weights

are generally associated with the final two elements of the state variable which

correspond to the good and bad indicator. Interestingly, for hard query OP-

GOR, the agents generally place significantly emphasis on one indicator over

the other. This is actually a reasonable strategy here, as if a particular food

is not remember the agent can simply assume it is associated with the less

emphasized indicator. Either it will be correct and get +1 reward or it will

be wrong and get −1 but gain an opportunity to add that item to memory to

remember next time. Emphasizing both indicators is in some sense a waste of

memory space.

6.4 Randomized Maze

So far we have evaluated OPGOR(λ), and various alternative selective memory

strategies, on problems that were explicitly designed to test an agent’s ability

to recall details from specific past observations. A common real-world situation

where memory is important is the task of navigation in a novel environment.

Given a fixed environment and goal, a RL agent without memory could learn

to navigate to the goal, assuming individual locations are distinct enough to

be locally recognizable. However, when approaching a novel environment, the

ability to selectively remember key route information could allow an agent

to successfully navigate more efficiently than learning a memoryless policy

from scratch. In this section, we will evaluate various memory strategies,
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Figure 6.13: Comparison of returns v.s. training episodes for hard and soft
OPGOR(λ) agents along with various alternatives on rapid reward valuation
environment. The step-size parameter α is tuned separately for each agent by
selecting for best average performance over the last 100 episodes over values
from the set {2−i : i ∈ {6, 7, ..., 11}}. All curves are smoothed with a running
mean over 100 episodes and show an average of 30 runs with error bars showing
standard error in the mean.

including hard and soft OPGOR(λ), on a simplified navigation task where the

environment changes between episodes.

This environment was designed as a significantly simpler version of the goal-

finding navigation task outlined by Wayne et al. (2018). The task consisted

of an 8x5 grid world in which the agent received a reward of +1 every time it

reached a goal cell, after which it was teleported to a new random location.

This continued until a fixed number of steps (500 in our experiments) had

elapsed at which point the episode terminated. The agent’s path was impeded

by two walls at fixed horizontal positions, each of which had a single hole,

or passage the agent could pass through. The passage through each wall

was located at a vertical position chosen randomly at the beginning of each

episode. The action space consisted of moving in the four cardinal directions

on the grid.

At the start of each episode the agent location, goal location and vertical

position of the passage through each wall were randomly chosen. Passage lo-

cation and goal location were then held fixed for the duration of the episode
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(a) Importance Weights
(Hard Queries)

(b) Importance Weights
(Soft Queries)

Figure 6.14: Average, normalized, exponentiated importance weights associ-
ated with activation of various features for the hard and soft(λ) OPGOR(λ)
agent on the rapid reward valuation environment. Average is taken over 1000
episodes generated after 100,000 episodes of training. The y-axis shows dif-
ferent independent training runs, the x-axis shows the different features of
the state variable. Two max normalizations are applied. First, we divide the
value for each feature observed in a given episode by the maximum importance
weight value observed in the same episode, this is done because importance
weights from different episodes will not affect the inclusion probability of a
given state variable. Second, we divide the weights of all features by the max
over all features for each training run separately, this is done for readability
so the highest weighted feature over each run is set to one.

with only the agent location being randomized each time the goal was reached.

If the agent could remember the location of the goal upon first reaching it,

along with the locations of the passages in each wall, it could use this infor-

mation to more quickly navigate back to the goal on subsequent trials within

an episode. The state variable in this case consisted of a cell index unique to

each location in the grid world, along with a goal indicator active when the

goal was reached, passage indicator active when standing in a passage, and

goal near indicator. The goal near indicator was active when the agent was in

the same room as the goal, and was intended to approximate vision.

An illustration of an instance of the randomized maze problem is shown

in Figure 6.15. Table 6.4 outlines the feature representation presented to the
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Figure 6.15: Visualization of randomized maze environment.

Feature Name Length Meaning

Cell Index grid width × grid height Index of grid cell the agent cur-
rently occupies.

Passage Indicator 1 Indicates that agent is currently
standing in a passage (gap in a
wall).

Goal Indicator 1 Indicates that agent has reached
goal cell.

Goal Near 1 Indicates that agent is in same
room as goal cell.

Table 6.4: Feature representation for randomized maze environment. Features
are listed in the same order they appear in the state variable.

agent in each cell.

Note that this environment violates our assumption regarding the state

variable providing enough information to estimate Et[Gt]. The expected return

in this case is highly dependent on the agent location relative to the goal, as

well as the particular layout of passages and the goal, neither of which were

available to the agent in the current state variable.

Once again, for the randomized maze environment, we tested agents using

hard and soft OPGOR(λ) along with each of the alternative memory strategies

discussed in Section 6.1. Again, we used a 5 state memory for the hard and soft
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OPGOR(λ) agents, as well as each alternative in which a limited slot based

memory was used. Parameters of the other agents were set as in Section 6.4

with α again tuned separately for each agent from α ∈ {2−i : i ∈ {6, ..., 11}} to

optimize performance over the final 100 training episodes. Figure 6.13 shows

the results of this experiment.

In this case both hard and soft OPGOR(λ) failed to outperform the un-

weighted reservoir sampling agent. Initially, we hypothesized that the poor

performance of OPGOR(λ) was due to the violation of the assumption that

the state variable provides enough information to estimate Et[Gt]. OPGOR-

DS on the other hand does not require this assumption. We tested agents

using hard-OPGOR-DS(λ) and soft-OPGOR-DS(λ) on this problem to see if

they performed better.

Unfortunately, the hard and soft OPGOR-DS(λ) agents also failed to out-

perform the unweighted reservoir sampling agent. However, both hard and soft

OPGOR-DS(λ) agents did appear to be stable at higher α than the other meth-

ods tested. In particular, the optimal α value in the set {2−i : i ∈ {6, ..., 11}}

for both the hard and soft OPGOR-DS(λ) agent was the highest tested, 2−6,

and these algorithms still appeared to be showing improvement at the end of

the training period. Motivated by this, we also tested OPGOR-DS(λ) with

α = 2−5 which was found to yield similar final performance to α = 2−6 for

both hard and soft OPGOR-DS(λ).

The failure of OPGOR-DS(λ) to outperform unwieghted reservoir sampling

suggests that the weakness of OPGOR(λ) on this problem was not entirely

due to the violation of our ideal critic assumption. Another hypothesis, to

explain the relatively poor performance of OPGOR(λ) (and OPGOR-DS(λ)),

is that the uniform reservoir sampling strategy may actually have some non-

trivial advantages on this problem. With uniform sampling, each visit to the

goal results in positive feedback, making it more likely that state variables

in a uniform sample lie on a shortest path, which provides information that

helps to reach the goal more quickly the next time. The simplicity and relative

stability of this mechanism allows the query network to co-adapt over time. On

the other hand, a mechanism like OPGOR(λ) quickly learns to greedily recall
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state variables with the goal and goal near indicator active. This is helpful at

first, but provides less robust route information in the long run. For example,

because of the inability of the the agents using OPGOR(λ) to account for

when something has already been written to memory, the memory buffer can

rapidly fill up with redundant copies of the goal location. This wastes space

that could otherwise be used to store, for example, the location of passages.

Nonetheless, it is possible OPGOR-DS(λ) would outperform uniform sampling

given enough training episodes.

As expected the full memory agents significantly outperformed all the se-

lective memory strategies. In this case we see a large advantage of the soft

query version of the full memory agent over the hard query version.

The LRU agent outperformed the uniform reservoir agent, despite both

versions of OPGOR(λ) failing to, giving further evidence of its relative ro-

bustness as a selective memory strategy.

The GRU agent also excelled at this problem, obtaining final performance

even better than the hard full memory agent, and close to that of the soft

full memory agent, albeit somewhat more slowly. This was true regardless of

whether a truncation length of 5 or 20 was used. This indicates a significant

ability to generalize over larger horizons than it was trained for, as it is common

for there to be significantly more than 5 time-steps between subsequent visits

to the goal (dividing the 500 time-steps in an episode by the final performance

of around 50 gives an average of around 10, even at the end of training). It

would be interesting to see how much this was due to the use of an eligibility

trace, to do so one could also test a GRU with λ = 0 in future work. We

also hypothesize that the GRU is particularly useful for the kind of short-term

reasoning necessary for effective navigation. Specifically, we expect the GRU

would be useful for things like remembering where you just came from so you

don’t go back immediately. For this reason it is likely that a combined system

using external memory along with recurrent state updates, which is often how

external memory systems are applied in practice, could do better on such tasks

than either alone.

At this point it is worth briefly discussing the complementary role of eligi-
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bility traces and recurrent state updates in capturing temporal dependencies.

Eligibility traces allow reinforcement of actions when the positive impact is

only observable with some temporal delay, for example the choice to move

toward the goal in the randomized maze task when the goal itself is only

seen many time-steps later. They do not, however, facilitate conditioning that

action on observations from several time-steps earlier, for example the last

time the goal was observed, for this we require something like a recurrent up-

date. The combination of the two means that as long as recalling information

benefits action selection within the truncation length, the agent can learn to

propagate it forward to subsequent time-steps outside the truncation length.

In the randomized maze task in particular the agent can, for example, see the

benefit of recalling the location of a goal observed within the truncation length,

even if the goal is only revisited several steps later when the last observation of

the goal is no longer within the truncation length. Remembering the location

of the goal will continue to be useful at each step until it is reached, because

remembering the goal allows the agent to continue to move toward it. Eligibil-

ity traces give credit to each action taken on the way, thus in principle, with

a sufficiently large λ, the GRU agent can learn to propagate this information

far past the truncation length

One could ask: what general feature allows the GRU with relatively short

truncation length, but with eligibility traces, to perform so well on the random

maze task? A plausible answer is that information which is important to

remember for immediate decisions, such as the goal or passage location, is

likely to remain important at latter steps. When this is true, optimizing recall

for the recent past can easily allow the important information to be carried

forward into the future over distances significantly larger than the truncation

length. Note that this does not hold on the keychain task where we observe a

significant negative impact on performance with reduced truncation length. In

keychain, remembered information is only relevant near the end of the episode.

Information must be propagated recurrently from arbitrary earlier time-steps

without being useful for action selection at any intermediate step.

Despite OPGOR performing very poorly on the randomized maze problem,
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Figure 6.16: Comparison of returns v.s. training episodes for hard and soft
OPGOR(λ) agents along with various alternatives on randomized maze en-
vironment. The step-size parameter α is tuned separately for each agent by
selecting for best average performance over the last 100 episodes over values
from the set {2−i : i ∈ {6, 7, ..., 11}}. All curves are smoothed with a run-
ning mean over 100 episodes and show an average of 30 runs with error bars
showing standard error in the mean.

we again investigated the learned importance weights to get a sense of what it

learned. As before we ran an additional 1000 episodes with the trained hard

and soft OPGOR(λ) agents and recorded the importance weights generated

for each observed state variable. The results are summarized in Figure 6.15.

In both the hard and soft query case the goal indicator was often the most

emphasized feature. This is more pronounced in the hard query case, which

also shows a fairly clear secondary emphasis on the goal near indicator. This

is intuitively reasonable as it is certainly useful to know where the goal is

located in order to navigate toward it; failing that, it is also useful to know

which room the goal is located in. In addition, in the hard query case, there

appears to be a noticeable emphasis on cells on the far left and right side of

the grid, for which we do not currently have a good hypothesis. Neither hard

nor soft OPGOR(λ) seems to have learned to emphasize the passage indicator

to any significant extent, despite its apparent utility in finding a path to the

goal.
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(a) Importance Weights
(Hard Queries)

(b) Importance Weights
(Soft Queries)

Figure 6.17: Average, normalized, exponentiated importance weights associ-
ated with activation of various features for the hard and soft OPGOR(λ) agent
on the randomized maze environment. Average is taken over 1000 episodes
generated after 100,000 episodes of training. The y-axis shows different in-
dependent training runs, the x-axis shows the different features of the state
variable. Two max normalizations are applied. First, we divide the value
for each feature observed in a given episode by the maximum weight value
observed in the same episode, this is done because importance weights from
different episodes will not affect the inclusion probability of a given state vari-
able. Second, we divide the weights of all features by the max over all features
for each training run separately, this is done for readability so the highest
weighted feature over each run is set to one.

6.5 Simple Counterexample

In this section we present a very simple environment demonstrating an impor-

tant limitation of OPGOR (without denominator sampling). Specifically, this

example illustrates the reliance of OPGOR on a state representation which

gives sufficient information to estimate the history conditional expected re-

turn Et[Gt] at each time. We tested one version of this environment where

the state variable is always sufficient to predict Et[Gt]. We then made a small

change, making the state variable in the final cell insufficient to predict Et[Gt].

We will see in the latter case OPGOR tended to emphasize retention of state

variables which were predictive of high expected return but did not help to

select the optimal action, which in this case led to catastrophic failure. On
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the other hand OPGOR-DS, the version of OPGOR augmented with denom-

inator sampling, performs well even with the insufficient state representation.

This simple counterexample, with and without sufficient state representation,

is illustrated in Figure 6.18. Table 6.5 outlines the feature representation for

the state variable presented to the agent in each cell.

An instance of the simple counterexample task always consisted of moving

sequentially through three cells before terminating with a reward dependent

on both the final action selected and which of two possible branches the agent

was located on. The state variable of the starting cell contained an action

indicator, indicating which action would give the highest reward in the final

cell. Thus an optimal selective memory agent should remember the first state

variable and use it to select its final action. After the first cell, the agent

transitioned to either the top or bottom branch with uniform probability. The

second cell contained a branch identifier, indicating which branch the agent

had ended up on. The top branch contained higher rewards on termination,

giving +2 for the optimal action and +1 for the suboptimal action. The bottom

branch contained lower rewards, giving −1 for the optimal action and −2 for

the suboptimal action. Finally, the agent transitioned deterministically to the

third cell of whichever branch it was on. In the sufficient state variable case,

the final cell also indicated which branch the agent was located on. In the

insufficient state variable case the final cell contained no information about

either the current branch or the optimal action. In addition, the state variable

always included a cell index indicating which of the 3 steps in the problem the

agent was currently on.

We tested a simple OPGOR(λ) agent with single-state memory on the

simple counterexample. We will see that when the state variable was sufficient,

OPGOR(λ) learned to remember the optimal action specified by the first cell.

When the state variable was insufficient, however, the agent instead prioritized

the second cell on the top branch, which was predictive of increased reward, but

did not help the agent to attain higher reward than it would have otherwise.

In the process, the retention probability of the first cell was dropped toward

zero, causing OPGOR(λ) to perform no better than random. The results for
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(a) Insufficient State Variable (b) Sufficient State Variable

Figure 6.18: Visualization of an instance of our simple counterexample with
insufficient (a) and sufficient (b) state variables. In each example the first cell
indicates the optimal action to take in the final cell. However, the magnitude
reward the agent will receive will also depend on whether the first transitions
moves it to the top or bottom branch. (a) is an example where the state
variable is insufficient to predict history conditional expected return in the
final cell. (b) is an example where the state variable is sufficient to predict
expected return in all cells. Because of this OPGOR(λ) will work well in (b)
but fail catastrophically in (a).

Feature Name Length Meaning

Cell Index 3 Node position the agent currently
occupies (0, 1 or 2).

Action Indicator 2 Zero except in starting cell (posi-
tion 0), where it indicates optimal
final action.

Branch Identifier 2 Zero except for position 1 in insuf-
ficient state representation case
and positions 1 and 2 in sufficient
state representation case. When
active it indicates whether the
agent is on the top or bottom
branch.

Table 6.5: Feature representation for simple counterexample environment.
Features are listed in the same order they appear in the state variable.

OPGOR(λ) in the sufficient and insufficient state variable cases are shown in

Figure 6.19.

In Figure 6.19 (a), we see that when the state variable was sufficient, the

OPGOR(λ) agent is able to reliably select the optimal action on both the

top and bottom branch, reaching near the optimal expected return of 0.5.
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In Figure 6.19 (b), we see that this was a consequence of learning to retain

the state variable of the first cell, which specified the optimal action, over

the second cells which indicated which branch the agent was on. On the

other hand, Figure 6.19 (c), shows the result when the state variable was

insufficient in the last cell, meaning the last cell gave no indication of which

branch the agent was located on. In this case the OPGOR(λ) agent never

obtained significantly better than the expected return of 0.0 for a random

agent. In Figure 6.19 (d), we see that this was a consequence of the first cell

being deemphasized in favor of the second cell on the top branch which was

predictive of high return, but useless for informing action selection. Despite

the second cell on the bottom branch being predictive of low return it was not

deemphasized to the extent of the first cell. This had the consequence that

the emphasis on the second cell of the top branch destroyed the agents ability

to select the correct action on both branches.

The failure of OPGOR when the state variable is insufficient stems from

using v̂(ϕt, θ) as a baseline for OPGOR. When the obtained λ-return is higher

than this baseline OPGOR will learn to emphasize the recalled state variable.

In the example shown here the return tends to be higher when the second

cell of the top branch is recalled simply because whenever the agent is on the

top branch the return is guaranteed to be higher than the bottom branch.

What we actually want is for the agent to remember things only if they lead

to higher return by informing action selection. One solution to this is to use

a baseline which is itself trained, perhaps using a RNN variant, to be highly

predictive of return given the history. In that case only remembered state

variables which facilitate better action selection than average will be able to

improve on the baseline and be increasingly emphasized. Another solution is

to use OPGOR-DS which corrects the policy gradient update by subtracting

a sample from the denominator of the inclusion probability. In this case the

gradient estimator does not require subtraction of a baseline at all, though we

still subtract v̂(ϕt, θ) for variance reduction.

Keeping the same architecture and hyperparameters, we tested OPGOR-

DS(λ) on the simple counterexample. We will see that with denominator
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(a) Return
(Sufficient State Variable)

(b) Importance Weights
(Sufficient State Variable)

(c) Return
(Insufficient State Variable)

(d) Importance Weights
(Insufficient State Variable)

Figure 6.19: Results on simple counterexample with single-state memory
OPGOR(λ) agent. The x-axis shows training episodes. (a,c) show return,
(b,d) show average importance weight in the first cell, the second cell on the
top branch, and the second cell on the bottom branch. The step-size parameter
α is tuned separately for the sufficient and insufficient problems by selecting
for best average performance over the last 100 episodes over values from the
set {2−i : i ∈ {3, 4, ..., 8}}. All curves are smoothed with a running mean over
100 episodes and show an average of 30 runs with error bars showing standard
error in the mean.

sampling, the agent correctly learns to emphasize the first cell containing the

action indicator, regardless of whether the state variable is sufficient for esti-

mating Et[Gt]. The results for OPGOR-DS(λ) in the sufficient and insufficient

state variable cases are shown in Figure 6.20.

In Figure 6.20 (a), we see that when the state variable was sufficient, the

OPGOR-DS(λ) agent is able to reliably select the optimal action on both the

top and bottom branch, reaching near the optimal expected return of 0.5. In

92



Figure 6.20 (b), we see that this was a consequence of learning to retain the

state variable of the first cell, which specified the optimal action, over the

second cells which informed which branch the agent was on. On the other

hand, Figure 6.20 (c), shows the result when the state variable was insufficient

in the last cell, meaning the last cell gave no indication of which branch the

agent was located on. OPGOR-DS(λ) still reached near the optimal expected

return of 0.5. In Figure 6.20 (d), we see that unlike OPGOR(λ), OPGOR-

DS(λ) is able to correctly learn to emphasize the first cell while deemphasizing

the other two, even with an insufficient state variable. The slower improvement

in the insufficient state variable case is largely due to a lower optimal α value.

However, even with the highest α value that achieved comparable performance,

the insufficient state variable case still required somewhat longer to learn.

Additionally with an insufficient state variable performance began to suffer

significantly with α > 2−5, while with a sufficient state variable learning was

stable up to α = 2−3.
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(a) Return
(Sufficient State Variable)

(b) Importance Weights
(Sufficient State Variable)

(c) Return
(Insufficient State Variable)

(d) Importance Weights
(Insufficient State Variable)

Figure 6.20: Results on simple counterexample with single-state memory
OPGOR-DS(λ) agent. The x-axis shows training episodes. (a,c) show re-
turn, (b,d) show average importance weight in the first cell, the second cell
on the top branch, and the second cell on the bottom branch. The step-size
parameter α is tuned separately for the sufficient and insufficient problems by
selecting for best average performance over the last 100 episodes over values
from the set {2−i : i ∈ {3, 4, ..., 8}}. All curves are smoothed with a running
mean over 100 episodes and show an average of 30 runs with error bars showing
standard error in the mean.
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Chapter 7

Conclusion

In this chapter, we summarize the contributions and insights presented in this

thesis. We also provide directions for future work and improvements based on

the insight gained.

7.1 Contributions and Insights

Our primary contribution was to present OPGOR, a new algorithm for selec-

tive memory in an online, partially observable, reinforcement learning setting

with external memory. OPGOR makes use of the statistical technique of reser-

voir sampling, which enables us to select a weighted sample of n states from the

full history, without ever storing more than n states. Using this capability, we

are able to apply policy gradient to learn to assign importance weights that

emphasize retaining states which are useful for future decision making, and

dropping those which are not. We call this policy gradient procedure online

policy gradient over a reservoir (OPGOR). Most of the prior work using ex-

ternal memory in a reinforcement learning setting uses either backpropagation

through time, which is computationally intensive, or a heuristic mechanism

for deciding what to retain in memory. This thesis represents a first step

toward deriving mechanisms for this purpose which are both principled and

computationally tractable for an online agent.

Beyond the specific mechanism presented here, we hope this thesis high-

lights reservoir sampling as an interesting general technique, which may be

useful in various RL areas where it is necessary to sample a set of items from a
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large history (whether those items are state variables, transitions or something

else). If one is not familiar with reservoir sampling it may be non-obvious that

it is possible to draw weighted samples from a stream online in this manner.

The fact that this is possible could allow for a variety of interesting algorithmic

innovations, of which OPGOR is one example.

A secondary contribution was to evaluate several versions of OPGOR, along

with a number of other selective memory strategies on a set of three simple

environments designed to test an agent’s ability to store and recall important

information for future decisions. In the process we identify limitations of our

proposed method which lead to directions for improvement. We also gain

insight into the challenges involved in selective memory for online RL, and

partial observability in general, and to what extend various techniques address

these challenges.

We found that our original version of OPGOR, with both hard and soft

queries, was able to learn useful importance weights in settings where the

assumptions involved in its derivation held. In particular, when the state

variable was adequate to produce a value function that was a good estimate of

the expected return. In these cases, OPGOR was able to considerably improve

on the unweighted reservoir sampling baseline. However, we demonstrate on

a simple problem that, when this assumption is violated, the weight tuning

may fail catastrophically. We identify the central issues to be that, if the state

is not sufficient to provide a good estimate of history conditional expected

return, the agent may learn to remember things that are merely predictive of

higher return, as opposed to things that cause higher return by conditioning

the policy.

To address this weakness, we derive another version of OPGOR, OPGOR-

DS, which makes no assumption on the accuracy of the subtracted baseline.

We show that as a consequence, OPGOR-DS succeeds on the simple coun-

terexample where OPGOR fails.

Nonetheless, in the randomized maze problem, both OPGOR and OPGOR-

DS performed worse than the uniform reservoir sampling baseline. We hypoth-

esize that this is due in part to the simplicity of uniform sampling, which facil-
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itates co-adaptation of the other components of the agent. Such co-adaptation

is more difficult when the distribution of stored states is constantly changing

due to learning of the importance weights.

During our evaluation we also found the least recently used heuristic to be

surprisingly robust, even when the memory size is relatively small. This result

warrants further evaluation to determine what allows this method, and by ex-

tension other usage-based heuristics, to perform well, where they might fail,

and how they could be further improved. Once again, this suggests that there

is some advantage to using a simple heuristic instead of an adaptive method,

when a simple heuristic is sufficient. In particular, codependent learning pro-

cesses can be difficult to synchronize, while a stable heuristic can be easily

adapted to.

7.2 Future Work

Based on the insight gained from applying policy gradient to the selective mem-

ory problem, we suggest a number of avenues for future work. First we note

that, in this work, we experiment only with toy examples, designed to illustrate

certain aspects of the challenges of selective memory. The full complexity of

the problem may be better illustrated with more realistic simulated environ-

ments, with high dimensional sensory spaces. In this case it would probably

be necessary to use a learned state representation, which introduces its own

set of challenges. On the theoretical side, we used a number of assumptions

and approximations in our derivations, which would be good to clarify and

better understand. Finally, we suggest a couple of tangential research direc-

tions, motivated by our interest in exploring applications of reservoir sampling

to reinforcement learning, and by our desire to explore the space of selective

memory strategies.

7.2.1 Learned State Representation

In realistic applications we would not want apply an external memory sys-

tems to store observation directly. This is limiting, and relies on individual
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observations providing sufficient context to condition later decisions. Indi-

vidual observations are unlikely to be sufficient for this purpose in general,

thus we would like to apply a mechanism like OPGOR with a learned state

representation, perhaps generated by an RNN.

There may be challenges in applying OPGOR with learned state represen-

tations. We would need to learn query and write policies over states which

are themselves changing over time, opening the possibility for difficult multi-

ple timescale issues. This is made even more difficult if we continue to work

within the online case, without utilizing experience replay or multiple parallel

actors.

Assuming we can apply OPGOR with a learned state representation, using

recalled sates only to condition the policy is still limiting. We would like to

use these remember states in the state update itself, as done by Wayne et al.

(2018). This would further help towards making the states stored in memory

highly expressive, however again this presents some interesting challenges. In

this case it would not make sense to optimize retention with only the advantage

estimate, as we have done here. We also wish to utilizing remembered states to

improve our value estimate, and perhaps other predictions. More work needs

to be done to determine whether the framework can be modified to handle

these additional objectives.

7.2.2 Assumptions and Approximations

Another avenue for improvement is in the derivation of OPGOR, where we

made a number of assumptions and approximations which should be investi-

gated theoretically and empirically, and perhaps improved upon. In the single

state memory case, the primary approximation was to ignore the influence

of past memory contents on the history, effectively treating the history as an

arbitrary stream for the purposes of memory selection. This assumption is

broken in RL control, because past decisions are conditioned on what is in

memory at the time.

In the multiple state memory case we used this approximation as well as

two others. Firstly, we ignore ∂Et[Q(Sk|St,Mt,θ)|Sk∈Mt]
∂wi

in the gradient estimate,

98



optimizing importance weights only with respect to the term associated with

whether a queried item is available in memory, and not whether it is actually

queried. Secondly, we use Et[Gt|mt ̸∈ Ωt] ≈ v̂(St, θ) in our gradient estimate

for admissible items even though v̂(St, θ) is trained instead to approximate

Et[Gt]. This second approximation could be easily relaxed by introducing a

conditional value function approximation to predict Et[Gt|mt ̸∈ Ωt] directly.

This approximation was made primarily for the sake of simplicity. Further-

more, this approximation is not limiting when OPGOR-DS is used. Unlike

OPGOR, OPGOR-DS makes no assumption about the accuracy of the sub-

tracted baseline. The first approximation however is more difficult to relax, as

it is unclear how we could account for ∂Et[Q(Sk|St,Mt,θ)|Sk∈Mt]
∂wi

in our gradient

estimates in an online manner.

7.2.3 Improved Understanding of Soft Query OPGOR

The soft query version of OPGOR is essentially a heuristic derived by analogy

to the hard query version. It would be interesting to look into whether a more

principled version could be derived for the case of soft queries, especially given

that our results demonstrate they often perform better. One possibility is to

produce a system which stores only a fixed set of states, but when queried

produces an estimate of a differentiable query made over the full history. Ag-

garwal (2006) provides a possible direction to approach this, with a framework

for using the contents of a reservoir to sample unbiased estimates of certain

types of queries over a stream.

Also along these lines, one could ask whether it is possible to design a

similar reservoir sampling based algorithm which uses soft writes as well as

soft reads. Standard reservoir sampling techniques manage a set of discrete

items, hence it is non-obvious how they could be applied with soft reads and

writes. Note, however, that it may still be possible to apply an algorithm

like OPGOR to stochastically select a subset of states for which to modify

importance weights, without actually applying it to select a discrete set to

store in memory.
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7.2.4 Additive Networks with Stochastically Sampled
Updates

The recurrent structure of RNNs means it is not possible to look at the contri-

bution of a specific observation to the current hidden state without accounting

for subsequent observations. If instead each observation was incorporated into

the hidden state in a purely additive fashion (i.e., by summing embeddings

that are each a learned function of the associated observations) we could look

at the gradient of the hidden state with respect to each update in isolation.

See the work of Garnelo et al. (2018) for an example of an architecture based

on such additive integration of state information.

Within such an additive architecture, we could select only a subset of

observations from the history and update their contribution to the hidden state

independently of the others. Such a selection could for example be handled

online with a reservoir sampling algorithm. By scaling the gradients by the

inverse of the inclusion probability, we could then obtain unbiased gradient

estimates while only ever storing a fixed-size subset of observations at a time.

This could be an interesting mechanism to explore, and may provide another

valuable application of reservoir sampling for handling partial observability in

an online manner.

A similar learning algorithm could be implemented for an eligibility trace

like structure, maintaining a weighted sum of recently viewed states, perhaps

with learned, discounted weights. This would allow learning of a summary of

only recent observations, as opposed to an order independent summary of the

entire observation history.

7.2.5 Value Based Selective Memory

Having explored policy gradient methods for selective memory, it would be

interesting to look at the analogy to action value methods. In particular

one could assign a value to each state variable equal to its estimated future

value added. That is, how much having that state variable in memory will

improve expected return compared to not having it. This could be estimated,
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for example, by maintaining a prior value function before recalling a state

variable from memory, along with a posterior value function given the recalled

state variable. The difference between these two value would contribute to the

value of the recalled state variable. For now, we leave open the question of

exactly how this system would be trained. An interesting advantage of such

a mechanism is that it could not only ranking the utility of state variables in

memory, but could also credit the agent for actively seeking high value state

variables. This latter usage is similar to the idea of temporal value transport

from work by Hung et al. (2018).

7.3 Summary

We have demonstrated how reservoir sampling may be combined with policy

gradient to yield OPGOR, a new approach to deciding what to write to and

retain in an external memory in an online RL setting. External memory

mechanisms are an area of growing interest for handling partial observability

in RL. Our empirical results reveal that while OPGOR is capable of learning

a good selective memory policy in ideal circumstances, it is currently limited

in other problems of interest. In addition we found that a simple heuristic,

dropping the least recently used, performs similarly to, or better than OPGOR

in many cases. This is an intriguing result and opens questions of why such

heuristics perform so well, as well as where they might fail.

We are encouraged by these early results to further explore the potential

of reservoir sampling based algorithms to help deal with partial observability

in an online fashion. More generally we are interested in exploring the space

of potential strategies for selective memory in an online RL setting.
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