
Leveraging Large Language Models for Speeding Up
Local Search Algorithms for Computing Programmatic

Best Responses

by

Quazi Asif Sadmine

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Quazi Asif Sadmine, 2024

Abstract

Despite having advantages such as generalizability and interpretability over

neural representations, programmatic representations of hypotheses and strate-

gies face significant challenges. This is because algorithms writing programs

encoding hypotheses for solving supervised learning problems and strategies

for solving games must conduct searches in very large and discontinuous search

spaces—the spaces programming languages induce. Previous studies have in-

troduced self-play algorithms to learn programs that encode game-playing

strategies. These algorithms compute a sequence of approximate best re-

sponses against target strategies. In this dissertation, we introduce a new

approach that leverages the ability of large language models (LLMs) to write

computer programs to provide initial candidate solutions in the programmatic

space for best responses. These candidates can be a best response or serve

as a seed to begin the search for a best response. Empirical results in three

games that are challenging for programmatic representations show that LLMs

can speed up local search and facilitate the synthesis of strategies.

ii

Preface

I am excited to present this dissertation titled “Leveraging Large Language

Models for Speeding Up Local Search Algorithms for Computing Program-

matic Best Responses”, which showcases my original and unpublished research

conducted under the supervision of Dr. Levi Lelis.

Given the collaborative nature of this project, the inclusive pronoun ‘we’

is employed throughout this document. However, I accept complete responsi-

bility for any technical or presentational errors that may occur.

Quazi Asif Sadmine

May, 2024

iii

To my parents, sister, and nephew

Who sacrificed living miles away so I could chase my dreams

iv

So, surely with hardship comes ease.

– Al Quran (94:5-6)

v

Acknowledgements

I express my deepest respect and gratitude to my supervisor, Dr. Levi Lelis.

Before starting my o�cial work under his guidance, I had limited knowledge

of this research area. Through his course, he sparked in me a profound interest

and dedication to this field of research. Throughout my Master’s program, he

has served as an exceptional mentor, always available to assist me in overcom-

ing my weaknesses and filling my knowledge gaps. His patience and tireless

work ethic have greatly influenced my research endeavors. Working with him

has been an invaluable learning experience. Additionally, I would like to ex-

press my gratitude to Dr. Hendrik Baier for his valuable advice throughout

this work.

I also express my gratitude to my research colleagues, Rubens O. Moraes,

Habib Rahman, Thirupathi Reddy, Tales Henrique Carvalho, Kenneth Tjhia,

David S. Aleixo, Zahra Bashir, Zaheen Ahmad, Mahdi Alikhasi, Mahdieh

Mallahnezhad, Parnian Behdin, Amirhossein Rajabpour, Jake Tuero, and Paul

Saunders for constantly supporting and guiding me throughout this journey.

My friends here in Canada, including Samiul Anwar, Salima Sharmin Khan,

Rayhan Kabir, Alif Rahman, Nashid Rahman, Sk Abdul Alim, and Abrar

Fahim, have also played an important role in this journey.

The University of Alberta and the Alberta Machine Intelligence Institute

(Amii) have played a crucial role in supporting me with funds and resources.

This research could not have even begun without the support of these institu-

tions, for which I am deeply grateful.

Finally, I extend my heartfelt thanks to my parents and sister for their

unwavering love and support. Your immense love and support have been the

driving force behind my success.

vi

Contents

1 Introduction 1
1.1 Contributions . 3

2 Background 5
2.1 Problem Definition . 5

2.1.1 Domain-Specific Language & Abstract Syntax Tree . . 6
2.2 Learning Algorithms . 7

2.2.1 Iterated Best Response (IBR) 7
2.2.2 Fictitious Play (FP) 8
2.2.3 Local Learner (2L) . 9

2.3 Searching for Programmatic Best Responses 10

3 Related Work 14
3.1 Synthesizing Programmatic Strategies in Games 14
3.2 Application of LLMs in Games 15
3.3 Synthesizing Programmatic Policies in Non-Game Domains . . 15
3.4 Application of LLMs in Search and Optimization 15
3.5 Other Related Works . 16

4 Local Search with LLM (LS-LLM) 17

5 Empirical Methodologies 21
5.1 Problem Domains . 21

5.1.1 Poachers & Rangers (PR) 21
5.1.2 Climbing Monkey (CM) 23
5.1.3 MicroRTS . 24

5.2 Baseline Systems . 26
5.3 Language Model and Prompts 26
5.4 Experiments Performed . 27

5.4.1 Other Specifications 28

6 Empirical Results 29
6.1 Programmatic Best Responses 29
6.2 Ablation Experiments . 32

7 Conclusion 34
7.1 Future Work . 34

References 36

vii

A Supplementary Materials 41
A.1 MicroRTS Maps . 42
A.2 MicroRTS Prompts . 43

A.2.1 Initial Attempt (Example for 9x8 Map) 43
A.2.2 First Attempt (Example for 24x24 Map) 48
A.2.3 Feedback Attempt (Example for 32x32 Map) 52
A.2.4 Encrypted DSL . 57

A.3 Poachers and Rangers Prompts 61
A.3.1 Initial Attempt . 61
A.3.2 First Attempt . 62
A.3.3 Feedback Attempt . 64

A.4 Climbing Monkey Prompts . 66
A.4.1 Initial Attempt . 66
A.4.2 First Attempt . 67
A.4.3 Feedback Attempt . 68

viii

List of Tables

2.1 Illustration of Fictitious Play (FP) for the Poachers & Rangers
(PR) Domain . 9

2.2 Illustration of Local Learner (2L) for the Poachers & Rangers
(PR) Domain (Moraes et al., 2023) 10

ix

List of Figures

2.1 An example DSL and the abstract syntax tree for program “if
b1 then c1 c2” written in that DSL 6

2.2 An example of synthesizing a programmatic strategy using the
production rules of the DSL 11

2.3 An example of generating a neighbour from a given initial can-
didate . 12

5.1 Visual representation of the Poachers & Rangers (PR) domain 22
5.2 Visual representation of the Climbing Monkey (CM) domain . 23
5.3 Visual representation of the MicroRTS domain 25

6.1 Average number of gates covered and branches climbed by the
number of games played for LS-LLM, 2L, FP, and IBR in the
games of PR and CM. The average and the 95% confidence
interval are over 30 independent runs of the systems. 30

6.2 Average winning rate by the number of games played for LS-
LLM, 2L, FP, and IBR in three maps of MicroRTS. The win-
ning rate is computed by having the strategy a system syn-
thesized, at a given number of games played, play against the
strategies each of the other systems synthesized after the max-
imum number of games was played (50,000). The average and
the 95% confidence interval are over 30 independent runs of the
systems. 31

6.3 Average winning rate by the number of games played for 2L(LS-
LLM-Enc) (left) and 2L(LS-LLM-No-FB) (right) in three
maps of MicroRTS. The average and the 95% confidence inter-
val are over 30 independent runs of the systems. 33

A.1 NoWhereToRun (9x8) . 42
A.2 DoubleGame (24x24) . 43
A.3 BWDistantResources (32x32) 44

x

Chapter 1

Introduction

Programmatic representations have received significant attention due to their

ability to generalize to unseen scenarios (Inala et al., 2020) and their inter-

pretability, which allows users to understand and possibly modify the solu-

tions (Aleixo & Lelis, 2023; Verma et al., 2018a). Programmatic represen-

tations have been used to address various problems, including program syn-

thesis (Ameen & Lelis, 2023; Barke et al., 2020; Gulwani, 2011, 2016; Odena

et al., 2021; Shi et al., 2022) and sequential decision-making problems (Aguas

et al., 2018; Bastani et al., 2018; Bonet et al., 2010; Liang et al., 2023; Moraes

et al., 2023).

The di�culty in using programmatic representations lies in searching through

large and discontinuous program spaces, typically defined by a domain-specific

language (DSL). A common approach to seeking programmatic representations

of hypotheses to address supervised learning problems involves learning a func-

tion that guides the search within the program space. (Alur et al., 2013; Balog

et al., 2017; Odena & Sutton, 2020; Solar-Lezama, 2009). This function is

learned in a self-supervised manner, leveraging the structure of the language.

For instance, in program synthesis, given input-output pairs, one must find a

program that maps each input to its output (Gulwani, 2011). A guiding func-

tion can be learned by generating random programs from the language and

creating training problems with random inputs, resulting in target outputs.

The guiding function is then trained to solve these problems.

However, a challenge arises when this self-supervised method for learning

1

guiding functions is employed to solve sequential decision-making problems,

particularly in the multi-agent scenario, where the agent improves its skill

in the game through a self-play process. This is because the distribution of

“problems” the algorithm needs to learn to solve is only discovered during

self-play, making it di�cult to learn a guiding function before self-play.

To better understand why the agent only knows the distribution of prob-

lems it needs to solve after learning has started, consider the following exam-

ple of a self-play process for a two-player zero-sum game titled “Poachers and

Rangers” (Moraes et al., 2023). In this game, poachers can attack the gates

of a national park, and rangers need to defend them. The DSL defining the

programmatic search space includes one or more “attack(gate number)” in-

structions for poachers and one or more “defend(gate number)” instructions

for rangers. The self-play algorithm known as Iterated-Best Response (IBR)

considers a current strategy for each player, which is used as the “target”, i.e.,

the strategy to be defeated. The target strategy for rangers is the most recent

strategy played by the poachers, and vice-versa. Suppose, initially, that the

poachers’ strategy is randomly determined as “attack(3)”. The rangers must

then find the best response to it (for now, we can consider a best response

a strategy that is able to “defeat” the target strategy). The best response

is approximated by employing a local search algorithm (e.g. stochastic hill

climbing) that randomly initializes at a point in the programmatic space and

looks for the strategy in its neighbors that can defeat the target strategy. In

this example scenario, a best response could be “defend(1) defend(3)”—any

strategy that defends gate 3 is a best response, as the rangers will successfully

defend the national park from the poachers attack (more information about

this game is given in Chapter 5). After computing such a best response to the

target strategy, this new strategy of the rangers becomes the target strategy

for the poachers, and the iterative process continues (Lanctot et al., 2017).

The sequence of best responses that needs to be computed is only known after

learning starts, making it di�cult to learn a guiding function a priori.

Due to our inability to learn a guiding function a priori, the challenge of

computing best responses arises in complex game environments with very large

2

search spaces. Often, the self-play process takes a long time to converge into

a dominant strategy due to the absence of any guidance to the local search

algorithms approximating best responses. Considering the ability of LLMs to

write computer programs, we propose the incorporation of an LLM within the

local search framework, which can perform the task of a guiding function. We

chose to use the LLM only in the initialization of the search, as opposed to in

every step of the search, due to its computational cost.

Hypothesis We hypothesize that the inclusion of an LLM may enable the

search to initiate at a more promising part of the search space, leading to

faster computation of the best response compared to existing methods.

Thesis Statement In this dissertation, our aim is to decide whether the

general knowledge embedded within a language model can assist in guiding

the local search within discontinuous programmatic search spaces, speeding

up the computation of approximated best responses to a target strategy in the

context of zero-sum two-player games.

1.1 Contributions

The dissertation introduces Local Search with LLM (LS-LLM), an integration

of an LLM into local search with the goal of speeding up the search for approxi-

mate best responses within the programmatic space. The “general knowledge”

of an LLM is encoded into programmatic strategies the model generates that

are either a best response to a target strategy or close in the search space to

a best response, which could ease the process of searching for a programmatic

best response. As input, the LLM takes a description of the game, a context-

free grammar describing the domain-specific language, an explanation of the

domain-specific functions used in the grammar, and a programmatic strategy

for which a best response must be approximated. The LLM writes a program

that encodes a possible best response to the target strategy in the language

described by the context-free grammar. If the strategy the LLM writes is not

3

the best response, it is used as a seed to initiate the search in the programmatic

space for an approximated best response.

LS-LLM has been evaluated in three deterministic two-player zero-sum

games that are challenging for current systems that generate programmatic

strategies: Poachers & Rangers (PR), Climbing Monkey (CM), and MicroRTS.

The results provide strong evidence that LS-LLM outperformed the baselines

considered in the experiments. The dissertation also shows that LS-LLM’s

performance drops when the name of the functions and terminal symbols used

in the domain-specific language are encrypted (i.e., we replace the meaningful

names of the functions with meaningless names), suggesting that the knowl-

edge the LLM leverages comes from interpreting those names. Additionally,

our results show evidence that a feedback system we developed for the LLM

while it attempts to generate a best response to the target strategy is an

important factor in achieving better results.

This dissertation is organized as follows: Chapter 2 o↵ers a comprehensive

background on key concepts, including problem definition, domain-specific lan-

guages, abstract syntax trees, self-play learning algorithms, and local search

algorithms. Chapter 3 comprises related works that describe the relationship

between our work and existing literature. These concepts are essential for un-

derstanding the subsequent discussions. Chapter 4 introduces our proposed

approach—Local Search with LLM (LS-LLM), providing the algorithm, a

detailed step-by-step explanation, and an example for a comprehensive under-

standing of its functionality. Chapter 5 presents the empirical methodologies,

which include three distinct problem domains, baseline systems, language mod-

els and prompts, and the details of the experiments performed, along with all

relevant specifications. Chapter 6 illustrates and explains the results of our

experiments. Chapter 7 concludes the dissertation with a summary of the con-

tributions. It also outlines future directions for research that can be explored

in subsequent studies. The appendix of this dissertation includes supplemen-

tary materials containing all information required to reproduce the results

presented in this dissertation.

4

Chapter 2

Background

2.1 Problem Definition

Let G = (P, S, sinit, A, T, U) be a deterministic two-player zero-sum game.

Here, P = {i,�i} is the pair of players, S is the set of states, and sinit 2 S

is the initial state. A is the set of actions where Ai(s) ✓ A and A�i(s) ✓ A

are the actions taken by players i and �i respectively, either alternatively or

simultaneously (e.g. real-time strategy games) from any state s ✓ S. This

action is chosen by a deterministic strategy, which is a function �j mapping

states to actions. A function �j maps states to actions, hence determining this

action through a deterministic strategy. A state and an action for each player

is sent to a deterministic successor function T, which returns the next state of

the game. The function U determines the utility value of the terminal states.

Ui(s) = U�i(s), since G is a zero-sum game. The objective for player i is to

maximize the utility value, while the objective for player �i is to minimize

it. We also utilize the function U to represent the value of a given state

from the point of view of player i, based on the strategies employed by the

players. For instance, if player i and�i follow strategies �i and ��i respectively

starting at state s, then U(s, �i, ��i) is the value of the terminal state. We

consider programmatic strategies that encode �i and ��i in programs written

in a domain-specific language.

5

2.1.1 Domain-Specific Language & Abstract Syntax Tree

A domain-specific language (DSL) is defined to write programmatic strate-

gies. The set of programs a DSL accepts is defined as a context-free grammar

(M,⌦, R, I), where M , ⌦, R, and S are the sets of non-terminals, terminals,

the production rules of the grammar, and the grammar’s initial symbol, re-

spectively. Figure 2.1 shows an example of a DSL, where M = {I, C,B},
⌦ = {c1, c2, b1, b2, if, then}, R are the production rules (e.g., C ! CC), and I

is the initial symbol.

I ! if(B) then C

C ! C C | c1 | c2
B ! b1 | b2

I

if B

b1

then C

C

c1

C

c2

Figure 2.1: An example DSL and the abstract syntax tree for program “if b1
then c1 c2” written in that DSL

A DSL D defines the possibly infinite space of programs JDK, which we

call programmatic search space, or programmatic space. Each program p in

JDK represents a programmatic strategy of the game G.

The programs are represented as abstract syntax trees (AST). The initial

symbol is the root of the tree, the non-leaf nodes are non-terminals, and the

leaf nodes are the terminals of the grammar. Figure 2.1 shows an example

of an AST for program “if b1 then c1 c2”. The terminal symbols forming the

program are given by a left-to-right traversal of the leaf nodes of the tree.

Given all the strategies defined in the programmatic space, we would like

to find those that satisfy the following equation.

max
�i2JDK

min
��i2JDK

U(sinit, �i, ��i) . (2.1)

Strategies �i and ��i that satisfy Equation 2.1 represent a Nash equilibrium

6

profile in the programmatic space. Learning algorithms approximate a solution

to Equation 2.1. The profile (�i, ��i) is a Nash equilibrium profile if �i is a

best response to ��i and ��i is a best response to �i.

2.2 Learning Algorithms

Learning algorithms are required to conduct the self-play process that ap-

proximates the solution to Equation 2.1. There are a few learning algorithms

such as Iterated Best Response (IBR) (Lanctot et al., 2017), Fictitious Play

(FP) (Brown, 1951), Double Oracle (DO) (McMahan et al., 2003), and Local

Learner (2L) (Moraes et al., 2023). In this section, we will explain the di↵erent

approaches of IBR, FP, and 2L to learn programmatic strategies in an example

domain. These three learning algorithms have been selected for explanation

due to their utilization in our empirical evaluations.

We choose the game called Poachers & Rangers (PR) as an example do-

main to explain the learning algorithms. PR is a two-player zero-sum game

without ties, where two players, called poachers and rangers, compete to win.

Rangers are trying to defend the gates of a national park, whereas, poachers

are attempting to enter through an undefended gate. Rangers receive the util-

ity of 1 if they protect all attacked gates and �1 otherwise. In this chapter,

we consider games with six gates.1

2.2.1 Iterated Best Response (IBR)

IBR is the simplest of all the learning algorithms. IBR starts with an arbitrary

strategy �0 2 JDK for one of the players, for example �i, and approximates

a best response to �0 for the other player i: �1 = argmax�i2JDK U(sinit,�i,�0).

Then it approximates a best response to �1 for player �i: �2 = argmin��i2JDK

U(sinit,�1,��i). This process is repeated a number of times n, which is normally

determined by a computational budget. The last resulting strategies �n and

�n�1 are returned as IBR’s approximate solution to Equation 2.1.

In PR, if the previous strategies of poachers are attack[1], attack[4],

1A more comprehensive description about PR can be found in Chapter 5

7

attack[6], where the action to attack the n-th gate is “attack(n)”, the best

response for rangers will be any strategy that defends at least gate number

6. This is because IBR only considers the latest strategy while computing the

best response. So, defend[6] can be one of the possible best responses for

rangers in this scenario. Similarly, in the next iteration, the best response for

poachers will be a strategy that attacks any gates other than the gate number

6.

Achieving a dominant strategy with the help of IBR is rarely possible. In

the above example, the dominant strategy for rangers is to defend all the gates

starting from 1 upto n. In the above example, approximating defend[6] as

the best response to the target strategy attack[6] is way easier than finding

the dominant strategy (which is also a best response to the target strategy) in

the search space. This is due to the fact that the AST of defend[6] is much

smaller than the AST of the dominant strategy. So it is easier to find for

the local search algorithm. So in this scenario, the poachers may respond to

defend[6] with attack[5], leading the rangers to counter with defend[5],

followed by the poachers responding with attack[6], resulting in a loop of

best responses. Hence, in practice, IBR tends to converge very slowly.

2.2.2 Fictitious Play (FP)

Unlike IBR, FP takes into account all the previous strategies of the opponent

when approximating a best response. This makes FP capable of providing

better search signals compared to IBR. Additionally, there is no possibility of

creating a loop of best responses.

In FP, �2 is the same as IBR, i.e., �2 = argmin��i2JDK U(sinit,�1,��i). But

from �3 of player i, it considers a target strategy �t, which is a combination of

�0 and �2 of player �i. Similarly, the computation of �4 of player �i requires
a target strategy �t, which is a combination of �1 and �3 of player i. This

implies that in FP, the best response for player i will always require a target

strategy that combines all the previous strategies played by player �i, and
vice versa.

Table 2.1 shows an example of the learned strategies of Poachers & Rangers

8

Poachers Rangers
attack[1] defend[1]

attack[3] defend[1,3]

attack[6] defend[1,3,6]

Table 2.1: Illustration of Fictitious Play (FP) for the Poachers & Rangers
(PR) Domain

after three iterations. In the first iteration, poachers attacked gate number 1,

prompting rangers to defend that gate as the best response to the poachers’

strategy. In the next iteration, poachers attacked gate number 3 as the best

response to defend[1]. Consequently, rangers defended gates number 1 and 3

as the best response to all previous strategies of the poachers, i.e., attack[1]

and attack[3]. In the third iteration, poachers attacked gate number 6 as the

best response to defend[1] and defend[1,3]. As the best response, rangers

defended all three gates attacked by poachers, i.e., gates number 1, 3, and 6.

In FP, the best response is computed for a mixture of all strategies com-

puted for the other player. For example, in the iteration in which FP returns

defend[1,3,6], this best response is for the strategy that plays attack[1],

attack[3], or attack[6] with equal probability (i.e., 1
3 probability in this

case). This type of strategy is known as a mixed strategy �. The strategies

that can be played with a non-zero probability are said to be in the support

of �.

2.2.3 Local Learner (2L)

In 2L, in contrast to FP that uses all previous strategies encountered in learn-

ing, only the strategies that are “useful” to compute a best response are con-

sidered. The determinant factor here is whether a strategy is useful or not.

2L considers a strategy � useful if � provides information that is not provided

by any other strategy in the set, as we will explain in the following example.

Table 2.2 illustrates the learned strategies of poachers and rangers af-

ter three iterations of 2L. If we compare Table 2.1 and Table 2.2, we find

that the di↵erence is the absence of defend[1] and defend[1,3]. This

means, these two strategies are not useful in the context of 2L. The rea-

9

son is, defend[1,3,6] is already a superset of the strategies defend[1] and

defend[1,3]. This implies that the best response to defend[1], defend[1,3],

and defend[1,3,6] will have the same constraints as the best response to only

defend[1,3,6].

Poachers Rangers
attack[1] defend[1,3,6]
attack[3]
attack[6]

Table 2.2: Illustration of Local Learner (2L) for the Poachers & Rangers (PR)
Domain (Moraes et al., 2023)

Approximating best responses can be a costly operation in complex do-

mains when highly informative learning algorithms are used, such as FP. This

is because one needs to play a potentially large number of games for every can-

didate best response evaluated. In the case of FP, each candidate is evaluated

against all previous strategies encountered in learning. Even in a simple do-

main such as PR, 2L is able to reduce the overall computational cost because

it is selective with respect to the set of strategies against which one needs to

evaluate candidate solutions. In more complex domains, 2L can have a large

impact in terms of sample e�ciency of the learning process. 2L tends to per-

form better than IBR, FP, and DO (Moraes et al., 2023), and this explains

our choice for it in our experiments.

2.3 Searching for Programmatic Best Responses

The computation of a programmatic best response to a strategy is conducted

within the programmatic search space defined by the DSL. We consider local

search algorithms for approximating programmatic best responses. In par-

ticular, we use an implementation of stochastic hill-climbing (SHC). Given a

target programmatic strategy �, SHC starts with an arbitrary strategy �
0 as

a candidate for a best response to �. In SHC, an initial candidate �
0 from

which the search is initialized using the following process. We start with the

initial symbol S of the DSL and apply a production rule to replace S; the

10

rule is chosen uniformly at random. One of the non-terminal symbols in the

resulting string is then replaced with the symbols on the right-hand side of a

production rule that is also chosen uniformly at random. This process contin-

ues until a string with only terminal symbols is generated. Figure 2.2 depicts

an example of the process for generating an initial candidate for the search.

The image shows how the AST is built after the production rules S ! A,

A! defend(N), and N ! 1 are applied.

S ! A

A! AA | defend(N)

N ! 1 | 2 | 3 | 4 | 5 | 6

(a) An example DSL for rangers

S

(b) Synthesis start-
ing from initial sym-
bol S

S

A

(c) S is expanded to
non-terminal sym-
bol A

S

A

defend N

(d) A is expanded
to production rule
defend(N)

S

A

defend N

1

(e) N is expanded
to terminal symbol
1

Figure 2.2: An example of synthesizing a programmatic strategy using the
production rules of the DSL

SHC searches a space defined by a neighborhood function Nk(�) that re-

ceives a candidate � and returns a set of k strategies—the neighbors of � in the

search space. SHC evaluates all k neighbors in terms of U -value and selects

the best neighbor of �. For example, if we are computing a best response to

a strategy of player �i, then we need to find a � that maximizes U , so SHC

11

selects the neighbor whose U is the largest. This process is repeated with the

newly selected candidate solution. SHC stops its search if none of the neigh-

bors has a U -value that is better than the current candidate, i.e., the algorithm

reaches a local optimum. We implement SHC with a restarting strategy: once

SHC reaches a local optimum, we restart the search from another randomly

chosen initial candidate solution. SHC with restarts returns the best solution

encountered across multiple runs of the search.

S

A

defend N

1

(a) Initial candidate

S

A

A A

(b) Subtree rooted
at A is replaced us-
ing another produc-
tion rule

S

A

A

defend N

1

A

defend N

1

(c) New neighbour of the initial candidate

Figure 2.3: An example of generating a neighbour from a given initial candi-
date

SHC is stochastic because the selection of the initial candidate and the

neighborhood function are stochastic. The neighbors Nk returns are generated

as follows. Each of the k neighbors is generated by randomly choosing a node

n in the AST of the program � that represents a non-terminal symbol (e.g.,

the nodes representing S or A in Figure 2.2) and replace the subtree rooted

at n with a randomly generated sub-tree. This new sub-tree is generated by

following the same process described to generate the initial candidate. For

12

instance, in Figure 2.3, the subtree rooted at A is replaced by non-terminal

symbols AA following the production rule of A. Then the A on both sides are

expanded until terminal symbols are reached.

Although other local search algorithms can be used, such as Simulated

Annealing (Husien & Schewe, 2016; Kirkpatrick et al., 1983), we use SHC

in our experiments because previous work showed that it performs well with

programmatic strategies (Carvalho et al., 2024; Moraes et al., 2023). Moreover,

the idea of generating the initial candidate of the search with an LLM can, in

principle, be used with any local search algorithm.

13

Chapter 3

Related Work

Our work intersects with several areas, including program synthesis, program-

matic reinforcement learning, the application of LLM in game domains, synthe-

sis of programmatic policies, and optimization. This chapter aims to explore

the connections between our work and these areas, highlighting the unique

aspects of our approach compared to existing literature.

3.1 Synthesizing Programmatic Strategies in
Games

There is a growing interest in the synthesis of programmatic strategies in

games. Previous works have demonstrated success in generating programs to

solve reinforcement learning (RL) problems (Inala et al., 2020; Qiu & Zhu,

2022; Trivedi et al., 2021; Verma et al., 2018b). Our work is closely related to

these RL studies. The synthesis of programs for game-playing strategies also

extends to puzzle and logic games, with an SMT solver employed for single-

player puzzles (Butler et al., 2017) and a SAT solver for logic games (Farzan

& Kincaid, 2018). In multi-agent settings, some studies have focused on ex-

tracting interpretable policies from trained neural models (X. Liu et al., 2023;

Milani et al., 2022). Closest to our work, various approaches have been used

to find strategies for two-player zero-sum games—from genetic programming

(Mariño & Toledo, 2022), to Monte Carlo Tree Search (Medeiros et al., 2022)

and local search (Mariño et al., 2021; Moraes et al., 2023).

14

3.2 Application of LLMs in Games

Previous work has leveraged LLMs in games, but not for generating program-

matic strategies. They have been used to perceive, plan, and act (Park et al.,

2023), often decomposing long-term goals into subtasks and monitoring their

execution (Z. Wang et al., 2023), and/or integrating additional agent features

such as memory (Zhu et al., 2023) and/or automatic learning curricula (G.

Wang et al., 2023). Much of this work has focused on online planning in open-

world games such as Minecraft or Sims-like social simulations. Our work aims

at the o✏ine generation of programmatic strategies to play games that are not

modified or re-planned in an online fashion during execution.

3.3 Synthesizing Programmatic Policies in Non-
Game Domains

Some previous work has used LLMs for the synthesis of programmatic policies,

but not for games. In generalized planning (GP), LLMs have shown much

promises (Silver et al., 2023) where the objective is to synthesize programs

that solve classical planning problems (Celorrio et al., 2019). One of the very

recent works has employed LLMs in the code generation for robot decision-

making (Liang et al., 2023; Singh et al., 2023). In contrast to our work,

these fields have so far considered single-agent problems, while we use LLMs

for learning zero-sum two-player games. However, it should be noted that

the generation of best responses, which we use iteratively in self-play, can be

viewed as a single-agent problem, as it involves keeping the strategies of all

agents except one constant in each iteration.

3.4 Application of LLMs in Search and Opti-
mization

Outside the context of competitive games, another way to view our work

is as using LLMs to guide local search within a programmatic search space.

Some studies have explored integrating LLMs into di↵erent search approaches.

15

LLMs have been used for optimization in a simple interactive prompting loop

that asks for new solutions based on past solutions and their values (Guo et

al., 2023; Yang et al., 2023); they have been used to guide Monte Carlo Tree

Search by providing a common-sense world model and a heuristic policy (Zhao

et al., 2023); and LLMs have been integrated as selection, crossover, and/or

mutation operators into a variety of evolutionary algorithms (Chen et al., 2023;

Lehman et al., 2022; S. Liu et al., 2023; Meyerson et al., 2023), including multi-

objective (F. Liu et al., 2023) and quality-diversity EAs (Nasir et al., 2023).

To our knowledge, we are the first to integrate LLMs into local search. Also

note that most prior work is relatively time-consuming and resource-intensive

(F. Liu et al., 2023) due to calling the LLM in every step of the search, while we

aim at reducing LLM calls by seeding/initializing a traditional (local) search

algorithm with it. Trade-o↵s between computational cost and performance

could be explored in future work by varying the frequency of LLM calls.

3.5 Other Related Works

Some recent studies have demonstrated techniques for generating domain-

specific languages (DSL) using LLMs (Jain et al., 2023; B. Wang et al., 2023).

In our approach, instead of generating the DSL with LLMs, we provide a

prewritten DSL and tasked the LLM with writing programs that follow the

DSL’s constraints. In a separate study, closed-source LLMs were analyzed in

the context of data contamination (Balloccu et al., 2024). The study demon-

strated the potential for iterative improvement of LLMs using data extracted

from the prompt. Our work is related to this study involving closed-source

LLMs, as there is a potential concern that these models may be trained on

data embedded within the prompt, demanding further investigation.

16

Chapter 4

Local Search with LLM
(LS-LLM)

In this chapter, we introduce Local Search with LLM (LS-LLM) with the

goal of speeding up the local search for finding programmatic best responses.

LS-LLM benefits from the ability of LLMs to encode common knowledge

derived from its training data. This includes the skill of writing computer

programs that can potentially speed up the search to find programmatic best

responses. LS-LLM first requests a best response from the LLM to a target

strategy. If the LLM fails to generate one, LS-LLM uses the LLM’s output

to seed the search for a best response in the programmatic space. The idea

here is that, although the LLM may not directly produce a best response, its

attempt to do so could result in a response that closely approximates one in

the programmatic space. In the following, we describe our proposed algorithm.

Algorithm 1 shows our proposed LS-LLM. It receives a strategy �t for

which one needs to compute a best response, the initial state of the game sinit,

a large language model M , a budget B specifying the number of model queries

that is allowed, a domain-specific language D, and a local search algorithm

LS. LS-LLM returns an approximate best response to �t.

The programmatic best response is denoted as �BR. LS-LLM first requests

a �BR written in D from M (line 1). If �BR is able to achieve a higher utility

value than �t following the learning algorithm, it is returned (line 3). For

instance, if U = {1, 0,�1}, when �BR is a strategy of i, we consider �BR as

the best response if U(sinit, �BR, �t) = 1. On the other hand, for player �i, it

17

Algorithm 1 LS-LLM

Require: Target strategy �t, initial state sinit, large language modelM , model
budget B, domain-specific language D, local search algorithm LS.

Ensure: An approximate best response �BR to �t.
1: �BR ask M for a best response to �t written in D

2: if �BR is indeed a best response to �t then
3: return �BR

4: for i = 1, · · · , B � 1 do
5: F evaluate U(sinit, �BR, �t) and return feedback
6: �BR ask M for a best response to �t written in D while providing F

as input to M

7: if �BR is indeed a best response to �t then
8: return �BR

9: return LS(sinit, �t, �BR)

should be U(sinit, �t, �BR) = �1. Based on the learning algorithm, �t might

be a mixture of several strategies. For example, FP includes in the support of

�t all the best responses encountered in the learning process.

If �t represents a mixed strategy, U(sinit, �BR, �t) is given by the weighted

sum
P

�2�t
w� ·U(sinit, �BR, �). In the summation, we abuse the notation and

denote �t as the set of strategies in its support, and w� is the weight of �

in the support of �t. The value of each U(sinit, �BR, �) is obtained by having

�BR and � play the game from the initial state sinit. In the case of a mixed

strategy, the algorithm terminates early (lines 3 and 8), if U(sinit, �BR, �) = 1

for all � in the support of �t. For some strategies �t, the best response will

not yield U(sinit, �BR, �t) = 1 or U(sinit, �BR, �) = 1 for all � in the support

of �t. This is because sometimes the best a player can do is to draw or even

lose the game. If this is the case for a given �t, then Algorithm 1 returns an

approximated best response by searching in the space of programs while using

the �BR the LLM generates as the seed to the search, as we explain below.

If M fails to generate a best response to �t in the first attempt, it is

requested B � 1 more times. In those attempts, LS-LLM employs the feed-

back information obtained from the computation of the utility U(sinit, �BR, �t),

which involves playing �BR against all strategies in the support of �t (line 5).

Feedback could be provided in di↵erent forms to the LLM. We provide as

18

feedback some of the information from the match played between �BR and the

last strategy added to the support of �t as feedback. We use the last strategy

added to �t because it is the most recent strategy added to the support and

is often the strongest. In our experiments, we consider two di↵erent ways of

providing feedback, depending on the problem domain. These are: a sample

of actions that �BR and one of its opponents (the last strategy added to the

support of �t) took in a match between them, or a textual description of the

last state of this match. If any attempt of the LLM is successful at comput-

ing a best response, then LS-LLM returns it (line 8); otherwise, the for-loop

continues and the LLM gets another chance to generate a best response.

Finally, if M is not successful in generating the best response in any of

the attempts, LS-LLM calls the local search function LS (line 9). LS uses the

strategy �BR generated by M that has so far achieved the best utility value

against �t as the search seed to achieve the best response to �t. Note that,

due to the possibly large number of strategies in the support of �t, the utility

of the strategies �BR against �t can vary widely.

In practice, LLMs have limitations on the size of their input. Due to this

limitation, we choose to use an approximation of �t in the prompt. We provide

only the last strategy added to the support of �t i.e., if �t is a mixed strategy

of �1, �2, · · · , �n, we describe �n as the target strategy, and request the best

response from M . This is similar to assuming that all self-play algorithms can

remember as much as IBR remembers: the last strategy computed to the other

player. Note that this is only a limitation of the LLM’s attempt to generate a

best response. When using the search algorithm LS (line 9), the evaluation is

carried out with all strategies in the support of �t. Even with this limitation,

our empirical results show that the LLM can provide helpful initial candidates

for the search for the best responses to the mixed strategies 2L considers.

In addition to helping with the computation of the best responses, we also

use the LLM to generate an initial strategy (�0). In this case, the prompt is

not conditioned on a target strategy, but we request a “strong” strategy to

play the game. The details of the prompts used are in the Appendix A.

19

Example 1 Consider a PR instance with 6 gates as the initial state and �t =

attack(1) attack(3), B = 2. M is asked to generate a best response in D

using an input prompt and it returns �BR = defend(1) defend(2). Now �BR

is sent for verification to check if it is indeed a best response to �t. The result

comes as negative, as �BR fails to defend gate number 3. Since B � 1 = 1,

U(sinit, �BR, �t) gets evaluated and returns F = “gate number 3 attacked by

poachers is not yet defended”. Now, M is again asked for a best response to �t.

This time, F is appended to the previous input prompt. Now, �BR is assigned

a new response defend(1) defend(2) defend(3). Now �BR is sent again

for verification and the result shows that it is indeed a best response to �t.

Therefore, �BR is returned as the result.

20

Chapter 5

Empirical Methodologies

In this chapter, we will describe our test domains and experimental setup.

5.1 Problem Domains

We evaluate our hypothesis in three games: Poachers & Rangers (PR) and

Climbing Monkey (CM) (Moraes et al., 2023), and MicroRTS (Ontañón et

al., 2018). PR and CM are challenging for current algorithms synthesizing

programmatic strategies but easy for humans; MicroRTS is a challenging real-

time strategy game with an annual competition.1

5.1.1 Poachers & Rangers (PR)

As previously mentioned in Chapter 2, PR is a two-player zero-sum game

without ties, where two teams, called poachers and rangers, compete against

each other. The environment consists of a national park where the rangers are

trying to defend the gates of the park from inside. On the other hand, poachers

are outside the park and trying to enter through the gates. Given a number of

gates N , rangers win the game if they defend all attacked gates; poachers win

the game if they attack an unprotected gate. One of the key features of PR is

that this game is unconstrained. This is because rangers can choose to defend

all N gates and poachers can choose to attack all N gates. Programs encoding

strategies for rangers are of the form defend(1), defend(20), while encoding

strategies for poachers are of the form attack(1), attack(2), attack(10).

1https://sites.google.com/site/micrortsaicompetition/

21

https://sites.google.com/site/micrortsaicompetition/

Although the optimal strategy for rangers is trivially defend(1), defend(2),

· · · , defend(N), the synthesis of this strategy through self-play was shown to

be di�cult (Moraes et al., 2023). This is because the program can be long,

depending on N , and the algorithm needs to independently discover that each

of the gates must be defended. The DSL for this game has been intentionally

made complicated by disallowing loops, which can dramatically simplify the

task. We use this domain with a DSL without loops in our experiments because

it represents a challenging system for synthesizers performing search, but it

can potentially be simple for systems that leverage general-knowledge systems

such as LLMs.

Figure 5.1 shows a simple example of the PR environment. Here, there are

six gates in total, denoted by 1, 2 · · · , 6. The area inside the hexagon represents

the national park. The poachers are depicted as red circles, and the rangers

are depicted as blue triangles. In Figure 5.1a, the rangers are winning the

game as they successfully defended gate number 4 from the poachers’ attack.

Here, the strategy for poachers is attack(4), and the strategy for rangers is

defend(4). In Figure 5.1b, the poachers are winning, as the rangers failed to

defend gate number 5, which was attacked along with gate number 4. Here, the

strategy for poachers is attack(4) attack(5), and the strategy for rangers

is the same as Figure 5.1a.

1

2

3

4

5

6

(a) Rangers winning to poachers

1

2

3

4

5

6

(b) Rangers losing to poachers

Figure 5.1: Visual representation of the Poachers & Rangers (PR) domain

22

5.1.2 Climbing Monkey (CM)

CM is a game in which two monkeys compete to climb a tree with an infi-

nite number of branches. The game concludes when a budget is reached, and

the winning monkey is the one that has climbed higher than the other. If

both monkeys end up on the same branch, the result is a draw. The primary

constraint of this game is that a monkey must climb to branch i + 1 from

branch i; in other words, no branch can be skipped. For example, the strategy

climb(1), climb(2), climb(20) allows the monkey to reach the branch 2 of

the tree; instruction climb(20) is ignored. Similarly to PR, the optimal strat-

egy is trivial, but hard to achieve with current systems: climb(1), climb(2),

· · · , climb(N), for a tree with N branches. The DSL of CM also prohibits

loops, similar to PR. For the synthesizer, finding the optimal program in CM

is a challenging task (Moraes et al., 2023), unlike for humans.

2
1

4
3

6
5

8
7

Figure 5.2: Visual representation of the Climbing Monkey (CM) domain

A simple example of the CM environment is shown in Figure 5.2. The ver-

tical lines represent the trunk of the tree, while the dotted lines represent both

infinite height and an infinite number of branches. The branches are labelled

as 1, 2, · · · , 8. The monkeys, represented by gray and brown circles, are lo-

cated in branches 3 and 6, respectively. Here, the strategy of the first monkey

is climb(1) climb(2) climb(3), and the strategy of the second monkey is

climb(1) climb(2) climb(3) climb(4) climb(5) climb(6). The second

monkey is the winner, since it was able to climb more branches than the first

monkey.

23

For both PR and CM we provide as feedback F to the model a textual

description of the end-game state of the match played between �BR and the

last strategy added to the support of �t. For PR, the feedback describes which

gates were protected and which undefended gates the poachers attacked. For

CM, the feedback reports how many branches the monkeys climbed and if

they won or lost the match. The prompts with the feedback are given in the

Appendix A.

5.1.3 MicroRTS

MicroRTS is a real-time strategy (RTS) game that is popularly used in artifi-

cial intelligence research for evaluating intelligent systems. The agent in this

game needs to control potentially large number of units in real time, which

makes the game challenging for learning and planning systems. The game is

played on a gridded map as shown in Figure 5.3. This RTS game can include

various units such as Bases, Barracks, Resources, Workers, Heavy, Light, and

Ranged units. The size of the map can also vary, resulting in the potential

requirement of di↵erent strategies. In MicroRTS, the player starts with a Base

and, depending on the map, with other units. The Base allows the player to

train Worker units and store resources; Workers can build structures (Base or

Barracks), collect resources, and attack opponent units. Barracks can train

combat units, including Light, Ranged, and Heavy units. Heavy units require

more resources to train. They move at a slower pace compared to other com-

bat units but have the highest health points, making them very challenging

to eliminate. Light units, on the other hand, are the fastest but possess fewer

health points than heavy units, thus placing them at a disadvantage. Although

ranged units are relatively easy to eliminate due to their lower health points,

their primary strength lies in their ability to attack opponents from a longer

distance. This creates the possibility that they may damage or eliminate other

melee units even before the latter can attack them. A player wins the game if

they eliminate all units and structures of the other player.

Figure 5.3 illustrates an example scenario of the MicroRTS game. This

match is played on a 9 ⇥ 8 gridded map, with units depicted as squares or

24

circles. A blue border indicates units belonging to player 1, while a red border

indicates units belonging to player 2. Green cells represent neutral Resource

cells, each containing 10 Resources. Squares with a light gray color represent

Bases, each containing 5 Resources. Squares with a dark gray color represent

Barracks. Workers are represented by circles of the same color as Barracks.

Heavy, Light, and Ranged units are represented as yellow, orange, and blue

circles, respectively.

5

5

10

10

10

10

10

10

10

10

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

Figure 5.3: Visual representation of the MicroRTS domain

We use the following maps from the MicroRTS repository,2 with the map

size in brackets: NoWhereToRun (9⇥8), DoubleGame (24⇥24), and BWDis-

tantResources (32 ⇥ 32). We use these maps because they di↵er in size and

structure; images of the maps are provided in the Appendix A. We use GPT

3.5 in our experiments. We used a GPT 3.5 model that was trained with data

collected not past January 2022, when no programmatic strategy for MicroRTS

had been published online.

The programmatic strategies for MicroRTS are written in the Microlan-

guage, a domain-specific language developed for the game Mariño et al., 2021.

2https://github.com/Farama-Foundation/MicroRTS/

25

The Microlanguage includes functions such as harvest and moveToUnit, which

allow one to encode strong strategies even in short programs. The Microlan-

guage uses for-loops to o↵er a priority scheme over actions. That is, functions

called earlier in a loop have higher priority over those called later in the loop.

We describe the Microlanguage in detail in the Appendix A.

MicroRTS is not a symmetric game, as it depends on the starting location

of the players. For example, if strategy �1 defeats �2 when the former starts

in location 1 and the latter in location 2, it does not mean that �1 will defeat

�2 if we swap their initial locations. To ensure a fair evaluation, each pair of

strategies plays two matches on each map, so that each player can start in

each of the two initial locations on the map.

5.2 Baseline Systems

We evaluate LS-LLM with 2L as the learning algorithm and SHC as the search

algorithm; i.e., we use 2L to determine the target strategies �t used in every

iteration of the algorithm, and LS-LLM with SHC to approximate a best

response to �t. In the results plots, we denote our system as 2L(LS-LLM).

We use 2L because it was shown to outperform IBR, FP, and DO in the three

games that we use in our experiments Moraes et al., 2023. Furthermore, 2L

was used as a baseline in the 2023 MicroRTS competition and was second

in the competition, only behind another baseline, which was a programmatic

strategy written by human programmers.3 Thus, 2L with SHC (without LLM)

is our main baseline. We also use FP and IBR (also with SHC as the search

algorithm) as baselines to o↵er a larger pool of strategies.

5.3 Language Model and Prompts

We use three di↵erent prompts for each domain: one for the initial strategy

of the first iteration of 2L (called “initial”), one for the model’s first attempt

to generate a best response to �t (called “first-attempt”), and one for the

3https://sites.google.com/site/micrortsaicompetition/competition-results/
2023-cog-results

26

https://sites.google.com/site/micrortsaicompetition/competition-results/2023-cog-results
https://sites.google.com/site/micrortsaicompetition/competition-results/2023-cog-results

remaining B� 1 attempts (called “feedback-attempt”). We provide a descrip-

tion of the domain-specific language in all three prompts. The description is

given as a context-free grammar with explanations of the functions used in

the language. We also provide a description of the environment or map to the

LLM. It is important to note that we do not disclose the key idea for finding

the best response. For instance, in the context of CM, we do not explicitly

explain that the monkey that reaches a higher branch than its opponent wins.

Instead, we simply state that the goal for one monkey is to defeat the other.

In first-attempt and feedback-attempt we also provide the target strategy �t

and explain that this is the strategy that needs to be defeated. Finally, in

feedback-attempt, we provide a sample of 10 actions of the model’s previous

attempt at a best response to �t issued in a match against �t. We do not pro-

vide all actions issued in the match due to the model’s limited input length.

We provide all three prompts in the Appendix.

5.4 Experiments Performed

We performed three experiments. In the first experiment, we compare 2L with

LS-LLM to three other algorithms with local search: 2L, FP, and IBR on PR,

CM, and three MicroRTS maps. In this experiment, we compare the di↵erent

approaches in terms of gates protected (PR), branches climbed (CM), and

winning rate (MicroRTS). The winning rate of a strategy is computed for a

set of opponent strategies, which are given by the strategies generated by the

other evaluated systems; we sum the number of victories and half the number

of draws and divide this sum by the total number of matches played (Ontañón,

2017). For example, the winning rate of a strategy that wins 5, loses 2, and

draws 3 matches is 5+1.5
10 = 0.65. The performance metric of each domain is

evaluated in terms of the number of games each system needs to play to achieve

a level of performance; the results are presented in plots where the y-axis shows

the performance and the x-axis the number of games played (Figure 6.1 shows

two examples). This experiment is meant to evaluate our hypothesis that LS-

LLM can speed up, in terms of the number of games played, the computation

27

of best responses.

The second and third experiments are intended to improve our understand-

ing of LS-LLM. In the second, we evaluate LS-LLM while removing from

feedback-attempt the set of actions sampled from the match played between

�BR and �t. This is to measure the impact of feedback on producing a best

response or an initial candidate for search.

In the third experiment, we “encrypt” the names of the functions and ter-

minal symbols in the Microlanguage. We still explain in the prompt what each

function does, but we use meaningless names for them. For example, in the

prompts used in the first and second experiments, we explain that the function

hasNumberOfUnits(T, N) checks if the ally player has N units of type T . In

the third experiment, this function is called b1, with the same explanation

provided. Our goal is to verify how important the names of functions and

nonterminals are to the LLM in understanding the problems and providing

helpful suggestions of best responses.

5.4.1 Other Specifications

All experiments were run on computers with 2.6 GHz CPUs and 12 GB of

RAM available. GPT-3.5 was used with OpenAI’s API. We used a budget

B = 5 for LS-LLM. In PR, we set the number of gates to 60 and leave the

number of branches for CM unbounded. We use the value of k = 1, 000 in

the function Nk. SHC is run with a time limit of 2, 000 seconds. Once SHC

reaches a local optimum, if there is still time allowed to search, it restarts the

search from the initial candidate the LLM has suggested. After reaching the

time limit, the SHC with restarts returns the best program encountered across

di↵erent runs. This is SHC’s approximation to a best response to the strategy

�t.

28

Chapter 6

Empirical Results

In this chapter, we present the results of three experiments in two distinct

sections— Section 6.1 (“Programmatic Best Responses”) and Section 6.2 (“Ab-

lation Experiments”). Section 6.1 includes the results from the three domains,

covering the findings of three di↵erent maps within the MicroRTS environ-

ment. Section 6.2 focuses solely on the results derived from a specific map

(9⇥8) in MicroRTS.

6.1 Programmatic Best Responses

Figure 6.1 presents the results for PR and CM. 2L(LS-LLM) represents our

contribution, which uses 2L as the learning algorithm, and LS-LLM to ap-

proximate the best responses. Note that each result in this chapter includes

the average and the 95% confidence interval over 30 independent runs of the

corresponding system. IBR(LS), FP(LS), and 2L(LS) are our baselines,

which use IBR, FP, and 2L, respectively, with the same local search algorithm

we use with LS-LLM: SHC. In this section, we refer to the algorithms as

LS-LLM, IBR, FP, and 2L.

LS-LLM outperforms all baselines by a large margin. In PR, LS-LLM

learns to defend all 60 gates with less than 20 games played. Interestingly,

from the “initial-attempt” prompt, the agent learns to defend all the gates in

most runs. In these cases, the agent was able to obtain the optimal strategy

without any search involved, relying solely on the LLM. By contrast, progress

for systems that rely only on search is slow. The LLM not only generates best

29

Figure 6.1: Average number of gates covered and branches climbed by the
number of games played for LS-LLM, 2L, FP, and IBR in the games of PR
and CM. The average and the 95% confidence interval are over 30 independent
runs of the systems.

responses, but the best responses it generates cover more gates than is required

to best respond to the poachers strategy. For example, if the current poachers

strategy �p is attack(1), then the simplest best response to it is defend(1),

which is the response an algorithm searching in the space of programs will

most likely find, due to the minimal size of the program. Instead of returning

this simplest best response, the LLM often returns strategies that cover more

gates than needed, for example, the LLM could return “defend(1) defend(2)

defend(3)” for �p, which is also a best response, but allows faster progress to

the dominant strategy covering all 60 gates.

In CM, the result shows that LS-LLM was able to generate programs

that climb to much higher branches than the baselines can generate. Within

only 100 games, LS-LLM was able to find a strategy that allows the monkey

to climb almost 700 branches, while the baselines could not even climb 100

branches. In this domain, we observe similar behavior of generating very strong

best responses by the LLM. If the current strategy is climb(1) climb(2)

climb(3) climb(4), the LLM often returns a strategy such as, climb(1)

climb(2) climb(3) climb(4) climb(5) climb(6) climb(7) climb(8) climb(9)

climb(10) as the best response. An interesting point to mention is that we

observed strategies that followed di↵erent arithmetic or geometric patterns

from the LLM, such as climb(1) climb(2) climb(4) climb(8) climb(16),

30

Figure 6.2: Average winning rate by the number of games played for LS-LLM,
2L, FP, and IBR in three maps of MicroRTS. The winning rate is computed by
having the strategy a system synthesized, at a given number of games played,
play against the strategies each of the other systems synthesized after the
maximum number of games was played (50,000). The average and the 95%
confidence interval are over 30 independent runs of the systems.

climb(1) climb(3) climb(5) climb(7) climb(9), etc. This is as if the

LLM were exploring the space of common sequences to see which one would

represent a best response to the target strategy. For these types of responses,

the “feedback-attempt” helped the LLM to gain insights about what went

wrong and come up with a better strategy.

Figure 6.2 shows the results for MicroRTS, where the winning rate is com-

puted by having the strategy a system generated, for a given number of games

played, play against the strategy each of the other systems generated after

the maximum number of games used in the experiment (50,000). LS-LLM

outperforms all baselines by a large margin in the three maps. The programs

it generates reach higher winning rates than the baselines. Especially for the

31

larger maps, 24⇥24 and 32⇥32, LS-LLM generates stronger strategies much

more quickly than the baselines. For example, 2L has to play approximately

10 times more games than LS-LLM on the 32⇥32 map to reach the winning

rate of approximately 60%.

Although the results on MicroRTS are similar to those in PR and CM,

the explanation why LS-LLM performs better than the baselines is di↵erent

in MicroRTS. The LLM is only able to directly compute best responses to

�t in the early iterations of learning, when the strategies are weak. Later,

as the system generates stronger strategies, the LLM fails to generate a best

response. However, LS-LLM is more sample e�cient in MicroRTS due to

its initialization of the search in the neighborhood of a best response. Thus,

the LLM helps the search explore di↵erent types of strategy. For example,

the stronger strategies in the 9⇥8 map require the use of Ranged units. The

LLM quickly generates programs that can reach game states whose features,

such as Ranged units, would require the search alone many more iterations to

reach. Often, the LLM generates a best response that incorporates a variety

of combat units in response to a strategy that relies solely on workers for

attacking the opponent. Moreover, it also focuses on returning strategies for

defending the Base. For instance, it may suggest deploying ranged units to

protect the Base, enabling attacks on the opponent before they come closer.

These behaviors significantly accelerate the overall learning process.

6.2 Ablation Experiments

Figure 6.3 shows the results of the second (left plot) and third (right plot) ex-

periments. 2L(LS-LLM-Enc) is the version of LS-LLM where we “encrypt”

the name of the terminals of the DSL. In this experiment, 2L(LS-LLM-Enc)

performs similarly to IBR and is worse than FP and 2L. We observed that

the LLM struggles to generate strategies with encrypted symbols. The unsat-

isfactory winning rate indicates that it was unable to approximate a strategy

that resides near the best response in the search space. At times, it produced

flawed strategies, such as constructing a combat unit instead of training (units

32

Figure 6.3: Average winning rate by the number of games played for 2L(LS-
LLM-Enc) (left) and 2L(LS-LLM-No-FB) (right) in three maps of Mi-
croRTS. The average and the 95% confidence interval are over 30 independent
runs of the systems.

cannot be constructed, but only trained), which failed to meet the domain’s

constraints. These results show that much of the general knowledge that the

LLM leverages to suggest initial candidates for search comes from the names

of the functions and terminals.

2L(LS-LLM-No-FB) is the version of LS-LLM that does not provide

feedback to the LLM. 2L(LS-LLM-No-FB) performs comparable to the

baselines, suggesting that the feedback encodes valuable information. We con-

jecture that the feedback allows the LLM to verify whether the program it

generates achieves the goals that the LLM sets to it. We make such a conjec-

ture because the LLM often explains why it generated a strategy. For example,

it could state that its strategy will train Ranged units to protect the Base. The

feedback could show that no Ranged units are being trained because of not

having enough resources, allowing the LLM to modify its strategy by priori-

tizing the harvest action to achieve its goal.

33

Chapter 7

Conclusion

In this dissertation, we presented LS-LLM, a novel approach designed to speed

up local search for computing programmatic best responses in discontinuous

programmatic search spaces, leveraging large language models (LLMs). Our

approach involves retrieving the candidate strategy for the best response to a

target strategy from the LLM. The LLM is used sparingly, only to initialize

the search in the programmatic space, which makes LS-LLM a viable method

given the often high monetary costs of using LLMs. We hypothesized that

the use of an LLM would speed up the process of computing best responses

in terms of the number of games that the system needs to play. We tested

our hypothesis in three games that are challenging for current state-of-the-

art systems, including a real-time strategy game. Our results supported our

hypothesis, as the programmatic strategies LS-LLM generated were substan-

tially stronger than those generated by current state-of-the-art systems.

7.1 Future Work

Future work involves investigating our approach in multi-player general-sum

games, which would require additional computational e↵ort to approximate

the U value. Furthermore, potential connections to areas such as general-

ized planning and single-agent programmatic reinforcement learning can be

explored. While we currently use LLMs to initialize the search, an exten-

sion could involve utilizing LLMs during the search for programmatic best

responses. Enhancing the feedback on the LLM’s previous attempt to find a

34

best response could also be beneficial. For instance, in microRTS, a textual

summary of the last match between the last strategy to the target’s support

and the best response obtained from LLM could show more promising direc-

tion than the sample of action sequences. Additionally, an interesting direction

for further research is to explore methods for selecting a subset of strategies to

provide as input to the LLM, rather than only providing the last strategy to

the target’s support. One interesting area for future work could involve pro-

viding images of consecutive states following a sequence of actions, allowing

the LLM to determine the reasons behind achieving those states due to the

actions taken. Subsequently, the LLM could approximate the final state given

a sequence of actions, and vice versa. Given that our approach was solely

investigated with a closed-source LLM, conducting experiments with an open-

source LLM and analyzing any potential data leakage that may arise could be

considered as a potential future work.

35

References

Aguas, J. S., Jiménez, S., & Jonsson, A. (2018). Computing hierarchical finite
state controllers with classical planning. Journal of Artificial Intelli-

gence Research, 62, 755–797. https://doi.org/10.1613/jair.1.11227
Aleixo, D. S., & Lelis, L. H. S. (2023). Show me the way! Bilevel search for syn-

thesizing programmatic strategies. Proceedings of the AAAI Conference
on Artificial Intelligence.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M., Seshia,
S. A., Singh, R., Solar-Lezama, A., Torlak, E., & Udupa, A. (2013).
Syntax-guided synthesis. Proceedings of the IEEE International Con-

ference on Formal Methods in Computer-Aided Design, 1–17.
Ameen, S., & Lelis, L. H. S. (2023). Program synthesis with best-first bottom-

up search. Journal of Artificial Intelligence Research, 77, 1275–1310.
Balloccu, S., Schmidtová, P., Lango, M., & Dušek, O. (2024). Leak, cheat, re-

peat: Data contamination and evaluation malpractices in closed-source
llms. arXiv preprint arXiv:2402.03927.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. Deep-
coder: Learning to write programs. In: In Proceedings international con-

ference on learning representations. OpenReviews.net, 2017.
Barke, S., Peleg, H., & Polikarpova, N. (2020). Just-in-time learning for bottom-

up enumerative synthesis. Proceedings of the ACM on Programming

Languages, 4 (OOPSLA), 1–29.
Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learn-

ing via policy extraction. Advances in Neural Information Processing

Systems, 2499–2509.
Bonet, B., Palacios, H., & Ge↵ner, H. (2010). Automatic derivation of finite-

state machines for behavior control. Proceedings of the AAAI Confer-

ence on Artificial Intelligence, 1656–1659.
Brown, G. (1951). Iterative solution of games by fictitious play. Activity Anal-

ysis of Production and Allocation, 374–376.
Butler, E., Torlak, E., & Popović, Z. (2017). Synthesizing interpretable strate-

gies for solving puzzle games. Proceedings of the 12th International Con-

ference on the Foundations of Digital Games, 1–10.
Carvalho, T. H., Tjhia, K., & Lelis, L. (2024). Reclaiming the source of pro-

grammatic policies: Programmatic versus latent spaces. The Twelfth In-

36

https://doi.org/10.1613/jair.1.11227

ternational Conference on Learning Representations. https://openreview.
net/forum?id=NGVljI6HkR

Celorrio, S. J., Aguas, J. S., & Jonsson, A. (2019). A review of general-
ized planning. Knowl. Eng. Rev., 34, e5. https ://doi .org/10.1017/
S0269888918000231

Chen, A., Dohan, D. M., & So, D. R. (2023). Evoprompting: Language models
for code-level neural architecture search. CoRR, abs/2302.14838. https:
//doi.org/10.48550/ARXIV.2302.14838

Farzan, A., & Kincaid, Z. (2018). Strategy synthesis for linear arithmetic
games. Proc. ACM Program. Lang., 2 (POPL), 61:1–61:30. https : //
doi.org/10.1145/3158149

Gulwani, S. (2011). Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices, 46 (1), 317–330.

Gulwani, S. (2016). Programming by examples (and its applications in data
wrangling). Verification and Synthesis of Correct and Secure Systems.

Guo, P., Chen, Y., Tsai, Y., & Lin, S. (2023). Towards optimizing with large
language models. CoRR, abs/2310.05204. https://doi.org/10.48550/
ARXIV.2310.05204

Husien, I., & Schewe, S. (2016). Program generation using simulated annealing
and model checking. International Conference on Software Engineering

and Formal Methods, 155–171.
Inala, J. P., Bastani, O., Tavares, Z., & Solar-Lezama, A. (2020). Synthesizing

programmatic policies that inductively generalize. International Con-
ference on Learning Representations.

Jain, R., Ni, W., & Sunshine, J. (2023). Generating domain-specific programs
for diagram authoring with large language models. Companion Proceed-

ings of the 2023 ACM SIGPLAN International Conference on Systems,

Programming, Languages, and Applications: Software for Humanity,
70–71.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Sim-
ulated Annealing. Science, 220 (4598), 671–680. https://doi.org/10.
1126/science.220.4598.671

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J.,
Silver, D., & Graepel, T. (2017). A unified game-theoretic approach
to multiagent reinforcement learning. Advances in neural information

processing systems, 30.
Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., & Stanley, K. O.

(2022). Evolution through large models. CoRR, abs/2206.08896. https:
//doi.org/10.48550/ARXIV.2206.08896

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence,
P., & Zeng, A. (2023). Code as policies: Language model programs
for embodied control. IEEE International Conference on Robotics and

Automation, ICRA 2023, London, UK, May 29 - June 2, 2023, 9493–
9500. https://doi.org/10.1109/ICRA48891.2023.10160591

37

https://openreview.net/forum?id=NGVljI6HkR
https://openreview.net/forum?id=NGVljI6HkR
https://doi.org/10.1017/S0269888918000231
https://doi.org/10.1017/S0269888918000231
https://doi.org/10.48550/ARXIV.2302.14838
https://doi.org/10.48550/ARXIV.2302.14838
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.48550/ARXIV.2310.05204
https://doi.org/10.48550/ARXIV.2310.05204
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.48550/ARXIV.2206.08896
https://doi.org/10.48550/ARXIV.2206.08896
https://doi.org/10.1109/ICRA48891.2023.10160591

Liu, F., Lin, X., Wang, Z., Yao, S., Tong, X., Yuan, M., & Zhang, Q. (2023).
Large language model for multi-objective evolutionary optimization.
CoRR, abs/2310.12541. https://doi.org/10.48550/ARXIV.2310.12541

Liu, S., Chen, C., Qu, X., Tang, K., & Ong, Y. (2023). Large language models
as evolutionary optimizers. CoRR, abs/2310.19046. https://doi.org/
10.48550/ARXIV.2310.19046

Liu, X., Chen, W., & Tan, M. (2023). Fidelity-induced interpretable policy
extraction for reinforcement learning. CoRR, abs/2309.06097.

Mariño, J. R. H., Moraes, R. O., Oliveira, T. C., Toledo, C., & Lelis, L. H. S.
(2021). Programmatic strategies for real-time strategy games. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35 (1), 381–389.

Mariño, J. R. H., & Toledo, C. (2022). Evolving interpretable strategies for
zero-sum games. Applied Soft Computing, 108860. https ://doi .org/
https://doi.org/10.1016/j.asoc.2022.108860

McMahan, H. B., Gordon, G. J., & Blum, A. (2003). Planning in the presence
of cost functions controlled by an adversary. Proceedings of the 20th

International Conference on Machine Learning (ICML-03), 536–543.
Medeiros, L. C., Aleixo, D. S., & Lelis, L. H. S. (2022). What can we learn

even from the weakest? Learning sketches for programmatic strategies.
Proceedings of the AAAI Conference on Artificial Intelligence, 7761–
7769.

Meyerson, E., Nelson, M. J., Bradley, H., Moradi, A., Hoover, A. K., &
Lehman, J. (2023). Language model crossover: Variation through few-
shot prompting. CoRR, abs/2302.12170. https://doi.org/10.48550/
ARXIV.2302.12170

Milani, S., Zhang, Z., Topin, N., Shi, Z. R., Kamhoua, C. A., Papalexakis,
E. E., & Fang, F. (2022). MAVIPER: learning decision tree policies
for interpretable multi-agent reinforcement learning. Machine Learning

and Knowledge Discovery in Databases - European Conference, 13716,
251–266.

Moraes, R. O., Aleixo, D. S., Ferreira, L. N., & Lelis, L. H. S. (2023). Choos-
ing well your opponents: How to guide the synthesis of programmatic
strategies. Proceedings of the International Joint Conference on Artifi-

cial Intelligence, 4847–4854.
Nasir, M. U., Earle, S., Togelius, J., James, S., & Cleghorn, C. W. (2023). Ll-

matic: Neural architecture search via large language models and quality-
diversity optimization. CoRR, abs/2306.01102. https ://doi .org/10 .
48550/ARXIV.2306.01102

Odena, A., Shi, K., Bieber, D., Singh, R., Sutton, C., & Dai, H. (2021).
BUSTLE: bottom-up program synthesis through learning-guided ex-
ploration. International Conference on Learning Representations.

Odena, A., & Sutton, C. (2020). Learning to represent programs with property
signatures. International Conference on Learning Representations.

Ontañón, S. (2017). Combinatorial multi-armed bandits for real-time strategy
games. Journal of Artificial Intelligence Research, 58, 665–702.

38

https://doi.org/10.48550/ARXIV.2310.12541
https://doi.org/10.48550/ARXIV.2310.19046
https://doi.org/10.48550/ARXIV.2310.19046
https://doi.org/https://doi.org/10.1016/j.asoc.2022.108860
https://doi.org/https://doi.org/10.1016/j.asoc.2022.108860
https://doi.org/10.48550/ARXIV.2302.12170
https://doi.org/10.48550/ARXIV.2302.12170
https://doi.org/10.48550/ARXIV.2306.01102
https://doi.org/10.48550/ARXIV.2306.01102

Ontañón, S., Barriga, N. A., Silva, C. R., Moraes, R. O., & Lelis, L. H. S.
(2018). The first microrts artificial intelligence competition. AI Maga-

zine, 39 (1).
Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., & Bernstein,

M. S. (2023). Generative agents: Interactive simulacra of human be-
havior. Proceedings of the Annual ACM Symposium on User Interface

Software and Technology, 2:1–2:22.
Qiu, W., & Zhu, H. (2022). Programmatic reinforcement learning without ora-

cles. The Tenth International Conference on Learning Representations,

ICLR 2022, Virtual Event, April 25-29, 2022. https://openreview.net/
forum?id=6Tk2noBdvxt

Shi, K., Dai, H., Ellis, K., & Sutton, C. (2022). Crossbeam: Learning to search
in bottom-up program synthesis. arXiv preprint arXiv:2203.10452.

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling, L. P., & Katz, M.
(2023). Generalized planning in PDDL domains with pretrained large
language models. CoRR, abs/2305.11014. https://doi.org/10.48550/
ARXIV.2305.11014

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D.,
Thomason, J., & Garg, A. (2023). Progprompt: Generating situated
robot task plans using large language models. IEEE International Con-

ference on Robotics and Automation, ICRA 2023, London, UK, May

29 - June 2, 2023, 11523–11530. https://doi.org/10.1109/ICRA48891.
2023.10161317

Solar-Lezama, A. (2009). The sketching approach to program synthesis. Asian
Symposium on Programming Languages and Systems, 4–13.

Trivedi, D., Zhang, J., Sun, S., & Lim, J. J. (2021). Learning to synthesize pro-
grams as interpretable and generalizable policies. Advances in Neural

Information Processing Systems, 25146–25163.
Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. (2018a). Pro-

grammatically interpretable reinforcement learning. Proceedings of the

International Conference on Machine Learning, 5052–5061.
Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. (2018b, October).

Programmatically interpretable reinforcement learning. In J. Dy & A.
Krause (Eds.), Proceedings of the 35th international conference on ma-

chine learning (pp. 5045–5054, Vol. 80). PMLR. https://proceedings.
mlr.press/v80/verma18a.html

Wang, B., Wang, Z., Wang, X., Cao, Y., A. Saurous, R., & Kim, Y. (2023).
Grammar prompting for domain-specific language generation with large
language models. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M.
Hardt, & S. Levine (Eds.), Advances in neural information processing

systems (pp. 65030–65055, Vol. 36). Curran Associates, Inc. https://
proceedings.neurips.cc/paper files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-
Paper-Conference.pdf

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., &
Anandkumar, A. (2023). Voyager: An open-ended embodied agent with

39

https://openreview.net/forum?id=6Tk2noBdvxt
https://openreview.net/forum?id=6Tk2noBdvxt
https://doi.org/10.48550/ARXIV.2305.11014
https://doi.org/10.48550/ARXIV.2305.11014
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://proceedings.mlr.press/v80/verma18a.html
https://proceedings.mlr.press/v80/verma18a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf

large language models. CoRR, abs/2305.16291. https ://doi .org/10.
48550/ARXIV.2305.16291

Wang, Z., Cai, S., Liu, A., Ma, X., & Liang, Y. (2023). Describe, explain, plan
and select: Interactive planning with large language models enables
open-world multi-task agents. CoRR, abs/2302.01560. https : / / doi .
org/10.48550/ARXIV.2302.01560

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., & Chen, X. (2023).
Large language models as optimizers. CoRR, abs/2309.03409. https :
//doi.org/10.48550/ARXIV.2309.03409

Zhao, Z., Lee, W. S., & Hsu, D. (2023). Large language models as commonsense
knowledge for large-scale task planning. CoRR, abs/2305.14078. https:
//doi.org/10.48550/ARXIV.2305.14078

Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C., Huang, G., Li, B.,
Lu, L., Wang, X., Qiao, Y., Zhang, Z., & Dai, J. (2023). Ghost in the
minecraft: Generally capable agents for open-world environments via
large language models with text-based knowledge and memory. CoRR,
abs/2305.17144. https://doi.org/10.48550/ARXIV.2305.17144

40

https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2302.01560
https://doi.org/10.48550/ARXIV.2302.01560
https://doi.org/10.48550/ARXIV.2309.03409
https://doi.org/10.48550/ARXIV.2309.03409
https://doi.org/10.48550/ARXIV.2305.14078
https://doi.org/10.48550/ARXIV.2305.14078
https://doi.org/10.48550/ARXIV.2305.17144

Appendix A

Supplementary Materials

In this document, we provide the maps used in the MicroRTS experiments, and

the prompts used in all three domains. The domain-specific languages (DSLs)

used in the experiments are presented in the prompts. Section A.2.4 shows the

encrypted domain-specific language used for one of the ablation experiments.

In Sections A.2.1, A.2.2 and A.2.3, we present descriptions of the three maps

within the prompts used.

Note that the First Attempt and Feedback Attempt prompts for MicroRTS

also present examples of strategies written in the Microlanguage.

41

A.1 MicroRTS Maps

Figures A.1, A.2, and A.3 show the three MicroRTS maps used in our experi-

ments.

Figure A.1: NoWhereToRun (9x8)

42

Figure A.2: DoubleGame (24x24)

A.2 MicroRTS Prompts

A.2.1 Initial Attempt (Example for 9x8 Map)

Consider a 9x8 gridded map of microRTS, a real-time strategy game. Consider
this map as a 2 dimensional array with the following structure:

– There are a total of 8 neutral resource cells situated along the central
column of the map, dividing the map into two parts. Each resource cell
contains 10 units of resources.

– The base B1 of player 1 is located at index (1,1), which is located on
the left side of the map.

– The base B2 of player 2 is located at index (7,6), which is located on

43

Figure A.3: BWDistantResources (32x32)

the right side of the map.

– Each player controls one base, which initially has 5 units of resources.

– The only unit a player controls at the beginning of the game is the base.

Consider this Context-Free Grammar (CFG) describing a programming lan-
guage for writing programs encoding strategies of microRTS. The CFG is
shown in the < CFG >< /CFG > tag bellow:

44

< CFG >

S ! SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | �
B ! u.hasNumberOfUnits(T,N)

| u.opponentHasNumberOfUnits(T,N)

| u.hasLessNumberOfUnits(T,N)

| u.haveQtdUnitsAttacking(N)

| u.hasUnitWithinDistanceFromOpponent(N)

| u.hasNumberOfWorkersHarvesting(N)

| u.is Type(T)
| u.isBuilder()
| u.canAttack()
| u.hasUnitThatKillsInOneAttack()

| u.opponentHasUnitThatKillsUnitInOneAttack()

| u.hasUnitInOpponentRange()

| u.opponentHasUnitInPlayerRange()
| u.canHarvest()

C ! u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N)

| u.attackIfInRange() | u.moveAway()

T ! Base | Barracks | Ranged | Heavy
| Light | Worker

N ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 15 | 20 | 25 | 50 | 100

D ! EnemyDir | Up | Down | Right | Left
Op ! Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp ! Ally | Enemy

< /CFG >

This language allows nested loops and conditionals. It contains several
Boolean functions (B) and command-oriented functions (C) that provide ei-
ther information about the current state of the game or commands for the
ally units.
The Boolean functions (‘B’ in the CFG) are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

45

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.

12. u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

13. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

14. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions (‘C’ in the CFG) are described below:

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

46

6. u.attackIfInRange(): Commands a unit to stay idle and attack if an
opponent unit comes within its attack range.

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base.

‘T’ represents the types a unit can assume. ‘N’ is a set of integers. ‘D’
represents the directions available used in action functions.
‘O p’ is a set of criteria to select an opponent unit based on their current
state. ‘T p’ represents the set of target players.

The following 5 are some guidelines for writing the playing strategy:

1. There is NO NEED TO write classes or initiate objects such as Unit,
Worker, etc. There is also NO NEED TO write comments.

2. Use curly braces like C/C++/Java while writing any ‘for’ or ‘if’ or ‘if-
else’ block. Start the curly braces in the same line of the block.

3. Do not write ‘else if(B) {’ block. Write ‘else { if(B) {...}}’ instead.

4. A strategy must be written inside one or multiple ‘for’ blocks.

5. You must not use any symbols (for example: &&, k, etc.) outside the
CFG. In case of code like ’if (B1 && B2)’, write ’if (B1) { if (B2) {...}}’
instead.

Now your tasks are the following 7:

1. Understand the Boolean (B) and command (C) functions from above
and try to relate them in the context of microRTS playing strategies.

2. Write a program in the microRTS language encoding a very strong game-
playing strategy for the 9x8 map described above. You must follow the
guidelines for writing the playing strategy while writing your program.

3. You must not use any symbols (for example &&, k, etc.) that the CFG
does not accept. You have to strictly follow the CFG while writing the
program.

4. Look carefully, the methods of non-terminal symbols B and C have
prefixes ‘u.’ in the examples since they are methods of the object ‘Unit
u’. You should follow the patterns of the examples.

5. Write only the pseudocode inside ‘< strategy >< /strategy >’ tag.

6. Do not write unnecessary symbols of the CFG such as, ‘S !’, ‘!’, etc.

7. Check the program and ensure it does not violate the rules of the CFG
or the guidelines for writing the strategy.

47

A.2.2 First Attempt (Example for 24x24 Map)

Consider a 24x24 gridded map of microRTS, a real-time strategy game. Con-
sider this map as a 2 dimensional array with the following structure:

– There is a wall in the middle of the map consisting of two columns that
has a small passage of 4 cells. The small passage consists of 4 resource
cells each having only 1 resource.

– There are 28 resource cells at the top-left, top-right, bottom-left and
bottom-right corners of the map respectively where each of them con-
tains 10 units of resources.

– The bases of player 1 are located at indices (3,2) and (20,2), located on
both sides of the wall.

– The bases of player 2 are located at indices (20,21) and (3,21), also
located on both sides of the wall.

– Each player controls two bases, which initially have 5 units of resources
each.

– There are 2 workers beside each base. So a total of 4 workers for each
of the players.

Consider this Context-Free Grammar (CFG) describing a programming lan-
guage for writing programs encoding strategies of microRTS. The CFG is
shown in the < CFG >< /CFG > tag bellow:

48

< CFG >

S ! SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | �
B ! u.hasNumberOfUnits(T,N)

| u.opponentHasNumberOfUnits(T,N)

| u.hasLessNumberOfUnits(T,N)

| u.haveQtdUnitsAttacking(N)

| u.hasUnitWithinDistanceFromOpponent(N)

| u.hasNumberOfWorkersHarvesting(N)

| u.is Type(T)
| u.isBuilder()
| u.canAttack()
| u.hasUnitThatKillsInOneAttack()

| u.opponentHasUnitThatKillsUnitInOneAttack()

| u.hasUnitInOpponentRange()

| u.opponentHasUnitInPlayerRange()
| u.canHarvest()

C ! u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N)

| u.attackIfInRange() | u.moveAway()

T ! Base | Barracks | Ranged | Heavy
| Light | Worker

N ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 15 | 20 | 25 | 50 | 100

D ! EnemyDir | Up | Down | Right | Left
Op ! Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp ! Ally | Enemy

< /CFG >

This language allows nested loops and conditionals. It contains several
Boolean functions (B) and command-oriented functions (C) that provide ei-
ther information about the current state of the game or commands for the
ally units.
The Boolean functions (‘B’ in the CFG) are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

49

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.

12. u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

13. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

14. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions (‘C’ in the CFG) are described below:

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

50

6. u.attackIfInRange(): Commands a unit to stay idle and attack if an
opponent unit comes within its attack range.

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base.

‘T’ represents the types a unit can assume. ‘N’ is a set of integers. ‘D’
represents the directions available used in action functions.
‘O p’ is a set of criteria to select an opponent unit based on their current
state. ‘T p’ represents the set of target players.

Now consider the following program encoding a strategy for playing microRTS
written inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

for(Unit u){
for(Unit u){

u.build(Barracks , Right , 50)
}
u.train(Worker , Up , 4)
u.attack(Strongest)
for(Unit u){

u.harvest (5)
}
u.moveToUnit(Ally , Closest)
for(Unit u){

u.train(Ranged , Up , 5)
}

}

< /strategy � 1 >

Now your tasks are the following 3:

1. Analyze strategy-1 and try to analyze its weaknesses.

2. Write a new strategy that defeats strategy-1.

3. You need to only write this new strategy inside ‘< counterStrategy ><

/counterStrategy >’ tag.

51

A.2.3 Feedback Attempt (Example for 32x32 Map)

Consider a 32x32 map of microRTS, a real-time strategy game. Consider this
map as a 2 dimensional array with the following structure:

– There are two L-shaped obstacles on the map, each with a passage of 4
cells located at the middle of left and right sides.

– There are a total of 12 neutral resource cells R located at the top-right
and bottom-left corners of the map. Each resource center contains 20
units of resources.

– The base B1 of player 1 is located at index (6,14), which is located on
the left side of the map.

– The base B2 of player 2 is located at index (25,17), which is located on
the right side of the map.

– Each player controls one Base, which initially has 20 units of resources.

– There is one worker for each player besides their bases.

Consider this Context-Free Grammar (CFG) describing a programming lan-
guage for writing programs encoding strategies of microRTS. The CFG is
shown in the < CFG >< /CFG > tag bellow:

52

< CFG >

S ! SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | �
B ! u.hasNumberOfUnits(T,N)

| u.opponentHasNumberOfUnits(T,N)

| u.hasLessNumberOfUnits(T,N)

| u.haveQtdUnitsAttacking(N)

| u.hasUnitWithinDistanceFromOpponent(N)

| u.hasNumberOfWorkersHarvesting(N)

| u.is Type(T)
| u.isBuilder()
| u.canAttack()
| u.hasUnitThatKillsInOneAttack()

| u.opponentHasUnitThatKillsUnitInOneAttack()

| u.hasUnitInOpponentRange()

| u.opponentHasUnitInPlayerRange()
| u.canHarvest()

C ! u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N)

| u.attackIfInRange() | u.moveAway()

T ! Base | Barracks | Ranged | Heavy
| Light | Worker

N ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 15 | 20 | 25 | 50 | 100

D ! EnemyDir | Up | Down | Right | Left
Op ! Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp ! Ally | Enemy

< /CFG >

This language allows nested loops and conditionals. It contains several
Boolean functions (B) and command-oriented functions (C) that provide ei-
ther information about the current state of the game or commands for the
ally units.
The Boolean functions (‘B’ in the CFG) are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

53

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.

12. u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

13. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

14. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions (‘C’ in the CFG) are described below:

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

54

6. u.attackIfInRange(): Commands a unit to stay idle and attack if an
opponent unit comes within its attack range.

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base.

‘T’ represents the types a unit can assume. ‘N’ is a set of integers. ‘D’
represents the directions available used in action functions.
‘O p’ is a set of criteria to select an opponent unit based on their current
state. ‘T p’ represents the set of target players.

Now consider the following program encoding a strategy for playing microRTS
written inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

for(Unit u){
for(Unit u){

u.build(Barracks , Right , 50)
}
u.train(Worker , Up , 4)
u.attack(Strongest)
for(Unit u){

u.harvest (5)
}
u.moveToUnit(Ally , Closest)
for(Unit u){

u.train(Ranged , Up , 5)
}

}

< /strategy � 1 >

Here is a strategy that could not defeat the above strategy:
< strategy � 2 >

for(Unit u){
for(Unit u){

u.build(Barracks ,Left ,1)
}
u.train(Heavy ,Down ,4)
u.train(Worker ,Up ,4)
u.attack(Strongest)
for(Unit u){

u.harvest (5)
}
u.moveToUnit(Enemy ,Closest)

55

for(Unit u){
u.train(Ranged ,Up ,5)

}
}

< /strategy � 2 >

The following is an encoding of the units, which we will use to give you
information about a match played between strategy-1 and strategy-2 above.
Base : B
Worker : W
Ranged : Rg
Light : Li
Heavy : Hv
Barracks : Br

The following is an encoding of the actions:
attack location : att loc
return : ret
wait : wt
move : mv
produce : prod
harvest : har

The following is an encoding of the directions:
left : l
right : r
up : u
down : d

The following is a randomly sampled sequence of actions of the match played
between strategy-1 as player 0 and strategy-2 as player 1:
{ (B(4)(0, (1,1), 10, 0),prod(u,W)) },

{ (B(6)(1, (7,6), 10, 0),prod(u,W))(W(16)(1, (6,5), 1,
1),mv(u))(W(18)(1, (6,6), 1, 0),mv(l)) },
{ (W(17)(0, (0,3), 1, 1),mv(u))(W(19)(0, (1,0), 1,
0),mv(r))(W(21)(0, (2,1), 1, 1),ret(l))(B(4)(0, (1,1), 10,
0),wt(10)) },
{ (W(15)(0, (1,2), 1, 0),mv(d))(W(19)(0, (3,0), 1,
1),mv(l))(W(21)(0, (3,1), 1, 1),mv(l))(B(4)(0, (1,1), 10,
0),wt(10))(W(17)(0, (0,1), 1, 0),wt(10))(Br(23)(0, (2,2), 4,
0),wt(10)) },
{ (W(18)(1, (7,7), 1, 0),mv(l))(W(22)(1, (5,6), 1,
1),mv(r))(Rg(26)(1, (5,4), 1, 0),mv(u))(B(6)(1, (7,6), 10,

56

0),wt(10))(W(16)(1, (6,5), 1, 0),wt(10))(W(20)(1, (7,5), 1,
0),wt(10))(Br(24)(1, (5,5), 4, 0),wt(10)) },
{ (Rg(25)(0, (3,2), 1, 0),wt(10)) },
{ (Rg(28)(0, (2,5), 1, 0),att loc(5,5)) },
{ (B(6)(1, (7,6), 10, 0),prod(l,W))(W(33)(1, (7,5), 1,
0),mv(u))(W(37)(1, (7,7), 1, 0),mv(l))(Br(36)(1, (6,5), 4,
0),wt(10)) },
{ (Rg(25)(0, (5,4), 1, 0),att loc(7,6))(Rg(31)(0, (6,4), 1,
0),att loc(7,6))(Rg(28)(0, (3,6), 1, 0),wt(10)) },
{ (B(6)(1, (7,6), 2, 0),wt(10)) }
The strategy-2 failed to defeat strategy-1.

Now your tasks are the following 3:

1. Analyze strategy-1 and try to analyze its weaknesses. For this analysis,
you may take help from the sequence of actions from the match between
strategy-1 and strategy-2 we provided.

2. Write a new strategy that defeats strategy-1.

3. You need to only write this new strategy inside ‘< counterStrategy ><

/counterStrategy >’ tag.

A.2.4 Encrypted DSL

Consider this Context-Free Grammar (CFG) describing a programming lan-
guage for writing programs encoding strategies of microRTS. The CFG is
shown in the < CFG >< /CFG > tag bellow:

57

< CFG >

S ! SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | �
B ! u.b1(T,N)

| u.b2(T,N)

| u.b3(T,N)

| u.b4(N)

| u.b5(N)

| u.b6(N)

| u.b7(T)
| u.b8()
| u.b9()
| u.b10()
| u.b11()
| u.b12()
| u.b13()
| u.b14()

C ! u.c1(T,D,N) | u.c2(T,D,N) | u.c3(Tp, Op)

| u.c4(Op) | u.c5(N)

| u.c6() | u.c7()
T ! t1 | t2 | t3 | t4

| t5 | t6
N ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 15 | 20 | 25 | 50 | 100
D ! d1 | d2 | d3 | d4 | d5
Op ! op1 | op2 | op3 | op4

| op5 | op6 | op7
Tp ! tp1 | tp2

< /CFG >

This language allows nested loops and conditionals. It contains several
Boolean functions (B) and command-oriented functions (C) that provide ei-
ther information about the current state of the game or commands for the
ally units.
The Boolean functions (‘B’ in the CFG) are described below:

1. u.b1(T, N): Checks if the ally player has N units of type T.

58

2. u.b2(T, N): Checks if the opponent player has N units of type T.

3. u.b3(T, N): Checks if the ally player has less than N units of type T.

4. u.b4(N): Checks if the ally player has N units attacking the opponent.

5. u.b5(N): Checks if the ally player has a unit within a distance N from a
opponent’s unit.

6. u.b6(N): Checks if the ally player has N units of type Worker harvesting
resources.

7. u.b7(T): Checks if a unit is an instance of type T.

8. u.b8(): Checks if a unit is of type Worker.

9. u.b9(): Checks if a unit can attack.

10. u.b10(): Checks if the ally player has a unit that kills an opponent’s
unit with one attack action.

11. u.b11(): Checks if the opponent player has a unit that kills an ally’s
unit with one attack action.

12. u.b12(): Checks if an unit of the ally player is within attack range of an
opponent’s unit.

13. u.b13(): Checks if an unit of the opponent player is within attack range
of an ally’s unit.

14. u.b14(): Checks if a unit can harvest resources.

The Command functions (‘C’ in the CFG) are described below:

1. u.c1(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.c2(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.c3(T p, O p): Commands a unit to move towards the player T p
following a criterion O p.

4. u.c4(O p): Sends N Worker units to harvest resources.

5. u.c5(N): Sends N Worker units to harvest resources.

6. u.c6(): Commands a unit to stay idle and attack if an opponent unit
comes within its attack range.

59

7. u.c7(): Commands a unit to move in the opposite direction of the
player’s base.

‘T’ represents the types of units as the following:

1. t1: Base

2. t2: Barracks

3. t3: Ranged

4. t4: Heavy

5. t5: Light

6. t6: Worker

‘D’ represents directions as the following:

1. d1: EnemyDir

2. d2: Up

3. d3: Down

4. d4: Right

5. d5: Left

‘O p’ is a set of criteria to select an opponent unit based on its current state
like the following:

1. op1: Strongest

2. op2: Weakest

3. op3: Closest

4. op4: Farthest

5. op5: LessHealthy

6. op6: MostHealthy

‘T p’ represents the set of target players like the following:

1. tp1: Ally

2. tp2: Enemy

Finally, ‘N’ is a set of integers.

60

A.3 Poachers and Rangers Prompts

A.3.1 Initial Attempt

We have an environment called ‘Poachers and Rangers’ where 2 teams called
poachers and rangers are competing with each other in a national park and
its surroundings. The park has 60 gates in total. The goal for each team is
to defeat the opponents.

Now I have the following CFG to write programs for poachers in the above
environment:
CFG for Poachers:

S ! SA | A
A! attack(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the CFG to write programs for rangers:
CFG for Rangers:

S ! SA | A
A! defend(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions.

A: Refers to the action taken by the team.

attack(n): Refers to the action to attack the n-th gate of the park

defend(n): Refers to the action to defend the n-th gate of the park

n: Any positive integer up to 60.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Poachers,
Rangers, Gates, etc. There is NO NEED TO write comments.

61

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

3. Write only the action or the sequence of actions such as ‘attack(a)’ or
‘attack(a) attack(b) attack(c)’ where a, b and c are positive integers.

Now your tasks are the following 5:

1. Understand all the symbols of the given CFG in the context of this given
‘Poachers and Rangers’ environment.

2. Write a very strong strategy for poachers/rangers considering the given
environment, the above CFG and the strategy writing guidelines.

3. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, etc.) out-
side the given CFG. Write only the action or the sequence of action as
mentioned in the strategy writing guideline.

4. Replace ‘...’ with contents meant by this symbol if there are any, then
write only the strategy program inside ‘< strategy >< /strategy >’
tag.

5. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

A.3.2 First Attempt

We have an environment called ‘Poachers and Rangers’ where 2 teams called
poachers and rangers are competing with each other in a national park and
its surroundings. The park has 60 gates in total. The goal for each team is
to defeat the opponents.

Now I have the following CFG to write programs for poachers in the above
environment:
CFG for Poachers:

S ! SA | A
A! attack(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the CFG to write programs for rangers:

62

CFG for Rangers:

S ! SA | A
A! defend(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions.

A: Refers to the action taken by the team.

attack(n): Refers to the action to attack the n-th gate of the park

defend(n): Refers to the action to defend the n-th gate of the park

n: Any positive integer up to 60.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Poachers,
Rangers, Gates, etc. There is NO NEED TO write comments.

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

3. Write only the action or the sequence of actions such as ‘attack(a)’ or
‘attack(a) attack(b) attack(c)’ where a, b and c are positive integers.

Now I have the following strategy program for the poachers that satisfies the
CFG, written inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

attack(1)
< /strategy � 1 >

Now your tasks are the following 5:

1. Understand all the symbols of the given CFG in the context of this given
‘Poachers and Rangers’ environment.

2. Write an improved strategy for rangers that can defeat strategy-1.

63

3. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, etc.) out-
side the given CFG. Write only the action or the sequence of action as
mentioned in the strategy writing guideline.

4. Replace ‘. . . ’ with contents meant by this symbol if there are any, then
write only the new strategy program inside the ‘< rangersStrategy ><

/rangersStrategy >’ tag.

5. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

A.3.3 Feedback Attempt

We have an environment called ‘Poachers and Rangers’ where 2 teams called
poachers and rangers are competing with each other in a national park and
its surroundings. The park has 60 gates in total. The goal for each team is
to defeat the opponents.

Now I have the following CFG to write programs for poachers in the above
environment:
CFG for Poachers:

S ! SA | A
A! attack(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the CFG to write programs for rangers:
CFG for Rangers:

S ! SA | A
A! defend(n)

n! 1 | 2 | 3 | . . . | 59 | 60

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions.

A: Refers to the action taken by the team.

attack(n): Refers to the action to attack the n-th gate of the park

defend(n): Refers to the action to defend the n-th gate of the park

64

n: Any positive integer up to 60.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Poachers,
Rangers, Gates, etc. There is NO NEED TO write comments.

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

3. Write only the action or the sequence of actions such as ‘attack(a)’ or
‘attack(a) attack(b) attack(c)’ where a, b and c are positive integers.

Now I have the following strategy program for the poachers that satisfies the
CFG, written inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

attack(1)
< /strategy � 1 >

Here is a strategy written inside ¡strategy2¿¡/strategy2¿ tag for rangers that
failed to defeat the given poachers’ strategy1:
< strategy � 2 >

defend(60)
< /strategy � 2 >

The rangers following this strategy-2 defended 1 gate(s), but could not defend
gate 1, whereas, the poachers following the strategy-1 attacked gate 1.
Now your tasks are the following 6:

1. Understand all the symbols of the given CFG in the context of this given
‘Poachers and Rangers’ environment.

2. Analyze why strategy-2 could not defeat strategy-1.

3. Write an improved strategy-2 for rangers that can defeat strategy-1.

4. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, etc.) out-
side the given CFG. Write only the action or the sequence of action as
mentioned in the strategy writing guideline.

5. Replace ‘. . . ’ with contents meant by this symbol if there are any, then
write only the new strategy program inside the ‘< rangersStrategy ><

/rangersStrategy >’ tag.

6. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

65

A.4 Climbing Monkey Prompts

A.4.1 Initial Attempt

We have an environment called ‘Climbing Monkey’ where 2 monkeys are
competing with each other to climb a tree. The tree has an infinite number
of branches. The goal for one monkey is to defeat another monkey.

Now I have the following CFG to write programs for the above environment:
CFG:

S ! SA | A
A! climb(n)

n! 1 | 2 | 3 | . . . | infinity

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions

A: Refers to the action taken by the monkey.

climb(n): Refers to the action to climb the n-th branch of the tree.

n: Any positive integer upto infinity.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Monkey,
Tree, etc. There is NO NEED TO write comments.

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

3. Write only the action or the sequence of actions such as ‘climb(a)’ or
‘climb(a) climb(b) climb(c)’ where a, b and c are positive integers.

Now your tasks are the following 5:

1. Understand all the symbols of the given CFG in the context of this given
‘Climbing Monkey’ environment.

2. Write a very strong strategy considering the given environment, the
above CFG and the strategy writing guidelines.

66

3. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, ‘. . . ’ etc.)
outside the given CFG. Remove these symbols if there are any.

4. Replace ‘. . . ’ with contents meant by this symbol if there are any, then
write only the strategy program inside ‘< strategy >< /strategy >’
tag.

5. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

A.4.2 First Attempt

We have an environment called ‘Climbing Monkey’ where 2 monkeys are
competing with each other to climb a tree. The tree has an infinite number
of branches. The goal for one monkey is to defeat another monkey.

Now I have the following CFG to write programs for the above environment:
CFG:

S ! SA | A
A! climb(n)

n! 1 | 2 | 3 | . . . | infinity

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions

A: Refers to the action taken by the monkey.

climb(n): Refers to the action to climb the n-th branch of the tree.

n: Any positive integer upto infinity.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Monkey,
Tree, etc. There is NO NEED TO write comments.

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

67

3. Write only the action or the sequence of actions such as ‘climb(a)’ or
‘climb(a) climb(b) climb(c)’ where a, b and c are positive integers.

Now I have the following strategy program that satisfies the CFG, written
inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

climb(1) climb(2) climb(3)
< /strategy � 1 >

Now your tasks are the following 5:

1. Understand all the symbols of the given CFG in the context of this given
‘Climbing Monkey’ environment.

2. Write an improved strategy that will help the monkey defeat another
monkey following strategy-1.

3. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, etc.) out-
side the given CFG. Write only the action or the sequence of action as
mentioned in the strategy writing guideline.

4. Replace ‘. . . ’ with contents meant by this symbol if there are any, then
write only the new strategy program inside the ‘< newStrategy ><

/newStrategy >’ tag.

5. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

A.4.3 Feedback Attempt

We have an environment called ‘Climbing Monkey’ where 2 monkeys are
competing with each other to climb a tree. The tree has an infinite number
of branches. The goal for one monkey is to defeat another monkey.

Now I have the following CFG to write programs for the above environment:
CFG:

S ! SA | A
A! climb(n)

n! 1 | 2 | 3 | . . . | infinity

The following is the explanation of the above CFG:
CFG Explanation:

S: Starting symbol that can contain one or multiple actions

68

A: Refers to the action taken by the monkey.

climb(n): Refers to the action to climb the n-th branch of the tree.

n: Any positive integer upto infinity.

. . . : It is not part of the CFG. It has been used to indicate all positive
numbers in between.

The following are some guidelines for writing the strategy program:
Strategy Writing Guidelines:

1. There is NO NEED TO write classes or initiate objects such as Monkey,
Tree, etc. There is NO NEED TO write comments.

2. DO NOT write ‘. . . ’ in the program, since it is not a part of the CFG.

3. Write only the action or the sequence of actions such as ‘climb(a)’ or
‘climb(a) climb(b) climb(c)’ where a, b and c are positive integers.

Now I have the following strategy program that satisfies the CFG, written
inside ‘< strategy � 1 >< /strategy � 1 >’ tag:
< strategy � 1 >

climb(1) climb(2) climb(3)
< /strategy � 1 >

Here is a strategy that could not improve the given strategy written inside
‘< strategy � 2 >< /strategy � 2 >’ tag:
< strategy � 2 >

climb(1) climb(2) climb(4) climb(8) climb(16)
< /strategy � 2 >

The monkey following strategy2 could climb 2 branches, whereas, the
opponent monkey following strategy1 could climb 3 branches.

Now your tasks are the following 6:

1. Understand all the symbols of the given CFG in the context of this given
‘Climbing Monkey’ environment.

2. Analyze why strategy-2 above could not improve strategy-1.

3. Write an improved strategy-2 that will help the monkey defeat another
monkey following strategy-1.

4. You must not use any symbols (for example ‘S !’, ‘!’, ‘|’, etc.) out-
side the given CFG. Write only the action or the sequence of action as
mentioned in the strategy writing guideline.

69

5. Replace ‘. . . ’ with contents meant by this symbol if there are any, then
write only the new strategy program inside the ‘< newStrategy ><

/newStrategy >’ tag.

6. Check the strategy program and ensure it does not violate the rules of
the CFG or the guidelines for writing the strategy.

70

	Introduction
	Contributions

	Background
	Problem Definition
	Domain-Specific Language & Abstract Syntax Tree

	Learning Algorithms
	Iterated Best Response (IBR)
	Fictitious Play (FP)
	Local Learner (2L)

	Searching for Programmatic Best Responses

	Related Work
	Synthesizing Programmatic Strategies in Games
	Application of LLMs in Games
	Synthesizing Programmatic Policies in Non-Game Domains
	Application of LLMs in Search and Optimization
	Other Related Works

	Local Search with LLM (LS-LLM)
	Empirical Methodologies
	Problem Domains
	Poachers & Rangers (PR)
	Climbing Monkey (CM)
	MicroRTS

	Baseline Systems
	Language Model and Prompts
	Experiments Performed
	Other Specifications

	Empirical Results
	Programmatic Best Responses
	Ablation Experiments

	Conclusion
	Future Work

	References
	Supplementary Materials
	MicroRTS Maps
	MicroRTS Prompts
	Initial Attempt (Example for 9x8 Map)
	First Attempt (Example for 24x24 Map)
	Feedback Attempt (Example for 32x32 Map)
	Encrypted DSL

	Poachers and Rangers Prompts
	Initial Attempt
	First Attempt
	Feedback Attempt

	Climbing Monkey Prompts
	Initial Attempt
	First Attempt
	Feedback Attempt

