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Abstract

We introduce the background of the natural language processing field, outlining the

benefits and drawbacks of rule-based versus statistical methods. We present knowl-

edge graphs as a way to integrate the explainability of rule-based methods and

the power of statistical methods, large language models in particular. The accu-

racy of natural language processing methods is paramount in sensitive fields such as

biomedicine. We aim to create a knowledge graph to help practitioners, caretakers,

and patients affected by neurodevelopmental disorders.

We give a background of knowledge graphs, topic modeling, and reinforcement

learning. We talk about what knowledge graphs are, the creation process, and natu-

ral language processing methods for extracting data from text to populate a knowl-

edge graph. We give a short history of topic modeling, followed by an outline of

latent dirichlet allocation, dynamic topic models, topic model evaluation, and recent

advances in neural topic modeling. We explain what reinforcement learning is, and

outline the different approaches to reinforcement learning.

We develop a pipeline for creating a knowledge graph on neurodevelopmental dis-

orders. We scrape data from both professional academic sources and non-professional

webpages, including finances and services for caretakers and patients affected by neu-

rodevelopmental disorders. We take input from practitioners, caretakers, and patients

during the knowledge graph creation process in order to generate a knowledge graph

that is as useful as possible for non-professionals, in contrast to many existing medical

knowledge graphs that only incorporate academic sources.

To improve the topic modeling aspect of our knowledge graph creation pipeline,
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we develop a new topic model using reinforcement learning. We make additional

improvements to the topic model, including modernizing the neural network architec-

ture, weighting the ELBO loss, and using contextual embeddings. Our unsupervised

model outperforms all other unsupervised models and performs on par with or bet-

ter than most models using supervised labeling. We conduct an ablation study to

determine which changes to our model are the most important.

We look to directly extract triples from text using large language models. With

the assistance of volunteers, we create two new data sets about FragileX syndrome:

one for named-entity recognition and one for relation extraction. We compare a model

trained on our FrageileX data set to a model trained on a less specific data set. We

find strengths and weaknesses of both models. Our method is likely outdated due to

the rapid pace of advancements in large language models.

We give a short concluding statement summarizing what we have done, and pro-

vide some brief thoughts on the future of natural language processing for biomedical

applications.

iii



Preface

This thesis is an original work by Jeremy James Costello. Professor Marek Z. Refor-

mat has provided guidance for the work presented in this thesis and assisted with the

manuscript composition by providing editorial feedback.

Chapter 3 was written in collaboration with Manpreet Kaur, Marek Z. Reformat,

and Francois V. Bolduc. A version of this section is accepted in the Journal of Medical

Internet Research and is available at https://www.jmir.org/2023/1/e45268

A version of Chapter 4 is accepted in Findings of the Association for Computa-

tional Linguistics: ACL 2023. A preprint is available at https://arxiv.org/abs/2305.04843

iv

https://www.jmir.org/2023/1/e45268
https://arxiv.org/abs/2305.04843


“ If science is half the man it says it is

then I can build it

the machine that snaps all of time in half ”

- Dan Barrett

v



To those who’ve inspired me.

vi



Acknowledgements

Firstly, I would like to thank my family and friends.

I would also like to thank my supervisor, Dr. Marek Z. Reformat, for help and

guidance throughout the writing of this thesis and my whole degree. I am thankful

to all my collaborators in Dr. Reformat’s lab, and to Dr. Francois V. Bolduc and my

collaborators in his lab, Manpreet Kaur in particular.

Finally, I would like to thank the creators and maintainers of any and all open-

source software I used during the writing of this thesis and my whole degree, especially

Daniel R. Aldrich for his University of Alberta thesis template in LaTeX.

vii



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Knowledge Graph Creation . . . . . . . . . . . . . . . . . . . 8

2.2 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Early Topic Modeling Techniques . . . . . . . . . . . . . . . . 10

2.2.2 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Dynamic Topic Models . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Evaluation of Topic Models . . . . . . . . . . . . . . . . . . . 12

2.2.5 Neural Topic Modeling . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Action Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.6 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Automated Labeling of Neurodevelopmental Disorders Web Resources 16

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Named-Entity Recognition . . . . . . . . . . . . . . . . . . . . 23

viii



3.4.3 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Document Classification . . . . . . . . . . . . . . . . . . . . . 27

3.4.5 Location Detection . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Knowledge Graph Schema . . . . . . . . . . . . . . . . . . . . 30

3.5.2 Constructed Knowledge Graph: Overview . . . . . . . . . . . 33

3.5.3 Constructed Knowledge Graph: Utilization . . . . . . . . . . . 35

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Reinforcement Learning for Topic Models 49

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Topic Models – Approaches . . . . . . . . . . . . . . . . . . . 52

4.4.2 Topic Models – Evaluation . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 54

4.4.4 Contextual Embeddings . . . . . . . . . . . . . . . . . . . . . 56

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Modernizing ProdLDA . . . . . . . . . . . . . . . . . . . . . . 57

4.5.2 Document Embeddings . . . . . . . . . . . . . . . . . . . . . . 57

4.5.3 Single-step REINFORCE with a Continuous Action Space . . 57

4.5.4 Weighted Evidence Lower Bound . . . . . . . . . . . . . . . . 58

4.5.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.6 Model Parameter Count . . . . . . . . . . . . . . . . . . . . . 59

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.2 Comparison to Other Topic Models . . . . . . . . . . . . . . . 60

4.6.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 20 Newsgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.2 New York Times . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.3 Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.4 W2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.5 Wiki20K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.6 StackOverflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



4.7.7 Google News . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.8 Tweets2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.9 IMDb Movie Reviews . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.10 Wikitext-103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Ethics and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Extracting Knowledge Graph Triples from FragileX Abstracts 81

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Precision, Recall, and F1 Score . . . . . . . . . . . . . . . . . 84

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 89

Bibliography 91

x



List of Tables

3.1 Multi-label transformer model performance results . . . . . . . . . . . 29

3.2 Examples of text and their annotated categories . . . . . . . . . . . . 37

4.1 Initial Experiment Topic Words . . . . . . . . . . . . . . . . . . . . . 61

4.2 20 Newsgroups Categories . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Comparison on no stop words data . . . . . . . . . . . . . . . . . . . 62

4.4 Average metrics from best PTHT model (per metric) and our RL model 62

4.5 NPMI coherence comparison between PTHT model and RL model for

each number of topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Hyperparameter search and best results per data set for RL model . . 64

4.7 Comparison to CLNTM . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Highlighted results from ablation study . . . . . . . . . . . . . . . . . 64

4.9 Data Sets - Documents and Vocabularies . . . . . . . . . . . . . . . . 65

4.10 Data Sets - Training Document Lengths . . . . . . . . . . . . . . . . 66

4.11 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 BNTM Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 BNTM 20 Newsgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.15 BNTM W2E-title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.16 BNTM W2E-content . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Topic Modeling in Embedding Spaces (*We use K = 25 to calculate

topic diversity for the final model.) . . . . . . . . . . . . . . . . . . . 76

4.18 PTHT Data Set Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.19 Pre-training is a Hot Topic . . . . . . . . . . . . . . . . . . . . . . . . 76

4.20 CLNTM Data Set Seeds . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.21 Contrastive Learning for NTM . . . . . . . . . . . . . . . . . . . . . . 78

4.22 CLNTM Dropout Sweep . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.23 Full Results from Ablation Study . . . . . . . . . . . . . . . . . . . . 80

5.1 i2b2 2010 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



5.2 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



List of Figures

1.1 Bottom-up creation of a general medical KG . . . . . . . . . . . . . . 7

3.1 Resource website/pages annotations process . . . . . . . . . . . . . . 22

3.2 Knowledge graph schema: links of the same color represent the same

relations; dashed links represent relation ”is-a” . . . . . . . . . . . . 31

3.3 Example of annotated resources from raisingchildren.net.au/autism/

behaviour/common-concerns/aggressivebehaviour-asd: (left: a) most

relevant annotating nodes; (right: b) n-to-n relations between resources

and annotating nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Example of OCCURRED TOGETHER and IS ASSOCIATED WITH

connections between nodes. Entities from different sources are repre-

sented in different colors: HPO (orange), AIRS (blue), UMLS (green),

ERIC (purple), AGE (grey) . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Example of connection strength: (left: a) of relation CONTAIN be-

tween resource and annotating nodes; (right: b) of relationOCCURRED -

TOGETHER between annotating nodes . . . . . . . . . . . . . . . . 46

3.6 Question interface: obtained entities and unigrams for the query: ”ag-

gressive behaviour and kicking and spitting” . . . . . . . . . . . . . . 46

3.7 Question interface: list of top 10 most relevant resources for the query

”aggressive behaviour and kicking and spitting” . . . . . . . . . . . . 47

3.8 Normalized confusion matrix: rows show true labels, columns show

predicted labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Architecture Diagram: gray boxes - processing; white boxes - model-

s/data/information; arrows across boxes - tune-ability . . . . . . . . . 51

4.2 Loss (30 seeds): 20 Newsgroups . . . . . . . . . . . . . . . . . . . . . 60

4.3 Topic Coherence (30 seeds): 20 Newsgroups . . . . . . . . . . . . . . 60

4.4 Topic Diversity (30 seeds): 20 Newsgroups . . . . . . . . . . . . . . . 60

4.5 Comparison of RL model (ours) to BNTM models . . . . . . . . . . . 77

4.6 Dropout sweep for 20 Newsgroups . . . . . . . . . . . . . . . . . . . . 78

xiii



5.1 Envisioned KG generation flowchart . . . . . . . . . . . . . . . . . . . 85

5.2 Example abstract with entities outlined [197] . . . . . . . . . . . . . . 86

5.3 Example KG from abstract . . . . . . . . . . . . . . . . . . . . . . . . 87

xiv



Chapter 1

Introduction

The International Data Corporation (IDC) tracks and forecasts how much data is

created each year, which they call the Global DataSphere [1]. In 2021, the Global

DataSphere was 80 zettabytes, and was predicted to grow to 200 zettabytes by 2026

[2]. For reference, 1 zettabyte is 1 million terabytes. Capturing and making sense of

this massive amount of data is a huge source of value with a lot of untapped potential.

The explosion in popularity of machine learning and deep learning in recent years is

largely due to the performance of these algorithms being correlated to how much data

they are trained on.

Much of the data being created each year is text data, or can be converted to text

data (e.g. by extracting text from video with automatic speech recognition [3]). It

is estimated that the current amount of available high-quality text data is between

4.6 trillion and 17 trillion words, and the amount of low-quality text data is between

70 trillion and 70 quadrillion words [4]. The field concerned with making sense of

this text data is called Natural Language Processing (NLP). While the amount of

text data available for NLP grows each year, it is uncertain whether this growth will

be sufficient to keep up with the growing data requirements for current and future

data-hungry NLP algorithms.

Historically, there have been two overarching approaches to NLP: using large text

corpuses to create statistical models of language, and using rule-based (i.e. symbolic)
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methods to define the semantics and syntactics of language [5]. A leading proponent

of rule-based methods is Noam Chomsky, who believes that linguistic knowledge

is governed by a set of rules (i.e. grammars) inherent to the human brain [6, 7].

This is in opposition to Claude Shannon, who thought of language as a stochastic

process that can be probabilistically determined [8], and to B.F. Skinner, whose

psychological research was a precursor to computational Reinforcement Learning (RL)

[9] and believed that linguistic knowledge was learned and reinforced through social

interaction [10].

Statistical models of language have come to dominate in recent years, and the

most powerful of these are known as large language models (LLM). The popularity

of LLMs was kicked off by the scaling work done by OpenAI [11] (based on earlier

work by Baidu [12]) to create the GPT series of models. The most recent GPT

model, GPT-3, has 175 billion parameters and can perform many text-based tasks

at or near human level [13]. This is evidenced by the explosion in popularity of

ChatGPT [14], a model based on GPT-3.5 (a later version of GPT-3) and fine-tuned

using reinforcement learning from human feedback (RLHF) [15, 16]. A later LLM,

Chinchilla, outperformed GPT-3 despite having only 70 billion parameters [17]. This

was because the authors found that the amount of text data required to optimally

train these models was much higher than previously thought. OpenAI has since

released GPT-4 [18].

LLMs are usually pre-trained in a self-supervised manner, where the model has

some way to generate its own optimization targets from unlabeled text (e.g. [19–

22]). There are a few self-supervised paradigms for pre-training language models, but

the most popular is the generative uni-directional approach [20]. In this approach,

models are trained to predict the next word in a sequence based on a context window

of previous words in the sequence. Models trained using this approach are referred to

as causal language models [23]. Other paradigms include masked language modeling

[21] and ELECTRA [22]. Once an LLM is pre-trained, it can be fine-tuned on a variety
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of tasks. Fine-tuning is usually done through supervised learning, where input-output

pairs for a task are fed to the model and the pre-trained weights are slightly updated

to optimize performance on the required task.

LLMs are based on the Transformer architecture [24], which originally found suc-

cess in NLP but has more recently found success in computer vision [25] and RL [26].

Vision Transformers have been combined with LLMs to translate between these two

modalities (e.g. describing an image or video in text). Contrastive Language-Image

Pre-training (CLIP) is one such model that learns to match text-image pairs [27].

While statistical language models currently dominate, they would not be where

they are without advances made in rule-based NLP methods. The Chomsky Hi-

erarhcy, which defines the classes of formal grammars from Turing machines down

to finite-state automata, was an influence on the creation of many programming lan-

guages [6]. While not related to NLP, Chomsky’s context-free grammars are also used

widely in program synthesis. Additionally, ideas such as Cloze deletion [28] and the

quote ”you shall know a word by the company it keeps” [29] influenced the window-

and context-based methods of models such as Word2Vec [30] and BERT [21]. Early

chatbots, such as ELIZA [31], also used rule-based methods.

Another advantage of rule-based methods is their explainability. LLMs are prone

to halluciations, a phenomenon where the model generates an answer that is false,

but usually in a convincing manner [32]. This is a problem in sensitive domains such

as the medical field. The greater explainability of rule-based methods means the

designer has much more control over the algorithm and can be much more confident

in its outputs, but also means they give up the much greater power of statistical

methods such as LLMs. Successfully combining these two methods to harness the

power of statistical methods and the explainability of rule-based methods should be

the goal of anyone looking to apply NLP algorithms to a sensitive field.

Causal Masked Multimodal Model of the Internet (CM3) [33] attempts to under-

stand the current unstandardized nature of HTML pages on the Internet using LLMs
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and vision Transformer models. Text, images, hyperlinks, and simplified HTML are

extracted from the raw HTML for millions of documents from Common Crawl News

and English Wikipedia and a multimodal Transformer model is trained on this data.

As an already-existing alternative to the creation of language models from unstruc-

tured Internet data, the Semantic Web [34] proposes the standardization of HTML

tagging with something like the Resource Description Framework (RDF) [35]. This

standardized data tagging would allow Internet data to be more easily understood

with rule-based NLP algorithms. This tagging would require modifying existing web-

sites to become part of the Semantic Web, and wide-spread adoption from web devel-

opers to ensure newly-created websites conform to the Semantic Web standard. The

standardized tagging of the Semantic Web would allow easier machine understanding

of web data.

1.1 Motivation

One approach for combining rule-based and statistical NLP methods is the knowl-

edge graph (KG) [36]. These are graph-based knowledge representations of (subject,

relation, object) triples, where subject and object entities are represented by graph

nodes and relations between these entities are represented by graph edges. Similar

to SQL, these KGs can be efficiently queried using graph query languages such as

SPARQL. KGs are a great way to represent large groups of documents, and there are

a few ways to go about this. Triples can be directly extracted from text, or relations

between documents can be represented as triples. Some methods for creating these

triples include named-entity recognition (NER), entity disambiguation, coreference

resolution, relation extraction, and topic modeling. These methods can be performed

using statistical methods or rule-based methods.

Some people view LLMs as a replacement to KGs [37], but the knowledge contained

within a LLM is often incorrect, as can be seen from the hallucination problem, and

correcting knowledge in an LLM is much more difficult than correcting knowledge in
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a KG. Incorrect nodes and edges in a KG can be directly edited, while knowledge

in a LLM can only be updated by changing model weights, the outcome of which is

currently impossible to fully verify. Some work has been done on combining LLMs

and KGs, such as ERNIE [38], Pretrained Encyclopedia [39], SKILL [40], BertNet

[41], and KGLM [42].

One domain where KGs could excel is the medical domain. There exist many LLMs

specifically created for medical or general science domains. Examples of these LLMs

include BioBERT [43], SciBERT [44], [45], BioMegatron [46], ElectraMed [47], SciFive

[48], BioElectra [49], BioM-BERT [50], BioGPT [51], BLOOM [52], Galactica [53],

and Med-PaLM [54]. Of these LLMs, those that can be used for text generation still

suffer from the hallucination problem. An example of this is the demo for Galactica by

Meta (formerly Facebook) being taken down after 3 days because of many examples

being shared online of its incorrect text generations [55].

Some examples exist of augmenting medical LLMs with additional knowledge, in

a similar vein to how they could be augmented by KGs. Tian et al. [56] additionally

provide syntactic information to the LLM, which results in superior predictions to

the base model. Yuan et al. [57] augment a LLM with information from the Unified

Medical Language System (UMLS) knowledge base, outperforming other models in

most tasks on which they were tested. KGs are a type of knowledge base. Yasunaga

et al. [58] uses links between documents (e.g. hyperlinks for internet documents) to

model connections between documents during LLM pre-training. They pre-train a

BioLinkBERT model specifically on biomedical literature. This model was state-of-

the-art on various biomedical tasks.

1.2 Thesis Objectives

We aim to combine the power of LLMs and the explainability of KGs for accurate

and truthful NLP in the medical domain. Many existing medical KGs are built for

general medical knowledge in a top-down manner from academic medical literature.
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We envision two main objectives of the work.

• We aim to build a general medical KG in a bottom-up manner by combin-

ing domain-specific medical KGs. We believe this will result in more accurate

knowledge because medical professionals in a domain can be in the loop for

creating the KG for their domain. These KGs can then be combined to create

more general medical KGs. We also believe including patients and caretakers in

the KG creation process will result in more widely useful KGs containing knowl-

edge useful for those directly affected, not only academic medical knowledge.

Figure 1.1 illustrates out vision for the bottom-up creation of a general medical

KG. We will outline the first step in our vision by creating a KG for neurode-

velopmental disorders (NDD) with input from medical professionals, patients,

and caretakers.

• During the process of creating this KG for NDDs, we expect to discover areas

where algorithms for creating the KG can potentially be improved. We expect

to apply topic modeling to the KG creation process, a method that is not widely

used in the creation of KGs. We think there may be room for the development

of an improved topic modeling algorithm for creating KGs, or even an improved

general topic modeling algorithm. Additionally, recent progress in LLMs has

unlocked the potential to directly extract triples from text. We aim to show

how this can be done by curating a data set and outlining how this data set can

be used to directly extract triples from new documents.

1.3 Thesis Outline

This thesis presents the following subjects:

• Introducing a short history and the current state of the NLP field, the motiva-

tion behind our work, and what we aim to complete through this work.
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Figure 1.1: Bottom-up creation of a general medical KG

• Giving background knowledge on KGs, topic modeling, and RL.

• Outlining a methodology for creating a KG from web resources and show the KG

about NDDs we created using this methodology, along with some applications

of this KG.

• Developing a new topic modeling method using RL that is state-of-the-art on

many data sets.

• Using human labeling to create a data set of KG triples from FragileX abstracts

to illustrate the ability of LLMs to automatically annotate triples in academic

medical text.
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Chapter 2

Background

2.1 Knowledge Graphs

KGs are a method for representing knowledge in a structured and machine-readable

way [36, 59]. The form of a KG is as a mathematical graph containing nodes connected

by edges [60]. The nodes can be a person, a place, or pretty much any other piece of

information. Nodes are connected by directed edges labeled with information on how

connected nodes are related. For example, if there are two nodes labeled ”Alberta”

and ”Edmonton”, they could be connected by an edge from ”Edmonton” to ”Alberta”

labeled ”capital of”. These three pieces of information are usually called a triple [61].

The first node, or subject, is connected to a second node, or object, by an edge,

or predicate. Triples are of the form (subject, predicate, object); following on the

previous example, the triple would be (Edmonton, capital of, Alberta). The subject

and object are collectively referred to as entities. The predicate is also often referred

to as the relation.

2.1.1 Knowledge Graph Creation

Creating a KG usually consists of three steps [62–64].

1. Data Integration. The process of collecting data from one or many sources

and modifying this data into a suitable format.
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2. Schema Modeling. The creation of a desired structure for the KG. Based on

the domain of information the KG will handle, a vocabulary describing entities

and relations for that domain should be defined. Next, an ontology should be

defined to provide a hierarchy to the vocabulary. Finally, possible properties of

entities and relations in the KG should be defined.

3. KG Construction. Processing the data to extract relevant entities and con-

nect these entities together with relations as defined by the schema.

There are many methods for extracting entities and relations between these entities

from data, such as unstructured text, for the KG construction step.

Named-entity Recognition

NER is the process of identifying important entities within unstructured text [65].

Named entities can refer to people, organizations, locations, dates, times, monetary

values, or many other things. For example, in the sentence ”Charlie Kaufman directed

the movie Synecdoche, New York.” the named entities would be ”Charlie Kaufman”

and ”Synecdoche, New York”. These entities can be recognized by rule-based methods

such as vocabulary matching, or through statistical methods such as a fine-tuned

LLM.

Named-entity Disambiguation

Named-entity disambiguation is the process of determining the true entity for a name

that could refer to multiple entities [66]. For example, the term ”St. John’s” could

refer to the capital of Newfoundland and Labrador, or to the capital of Antigua and

Barbuda. Based on the context surrounding an entity, the true entity should be

able to be disambiguated. This disambiguation can be performed using rule-based

methods such as another KG, or statistical methods such as a fine-tuned LLM.
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Coreference Resolution

Coreference resolution is the process of identifying expressions in a text that refer

to the same entity [65]. This technique is most frequently needed for pronouns,

abbreviations, and aliases. For example, in the sentences ”Benjamin Reichwald, also

known as Bladee, is a professional musician. He was born in Stockholm, Sweden.”

the expressions ”Benjamin Reichwald”, ”Bladee”, and ”He” all refer to the same

entity. This resolution can be performed by rule-based methods such as vocabulary

matching, part-of-speech tagging, or dependency parsing. It can also be performed

by statistical methods such as a fine-tuned LLM.

Relation Extraction

Relation extraction is the process of identifying and extracting relations between

entities in a text [65]. For example, in the sentence ”The Book of the New Sun

is a four-volume science fiction and fantasy novel series written by Gene Wolfe.” the

relation between ”The Book of the New Sun” and ”GeneWolfe” could be ”written by”.

This extraction can be performed by rule-based methods such as pattern matching,

or through statistical methods such as a fine-tuned LLM.

2.2 Topic Modeling

Topic modeling is a NLP method that tries to find consistent themes across a set of

documents [67]. These themes are called topics, and for each topic a set of words is

identified that correspond to that topic. Latent Dirichlet Allocation (LDA) [68] has

historically been the most popular topic modeling technique, but has been overtaken

recently by Neural Topic Modeling (NTM) techniques [69].

2.2.1 Early Topic Modeling Techniques

Two of the precursors to LDA were the mixture of unigrams (MoU) model [70] and the

probabilistic latent semantic indexing (pLSI) model [71]. For a document of length
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N , the generative process of the MoU model is to choose a topic z and then generate

N words from a multinomial conditioned on z. The pLSI model improved on the

MoU model by assuming that a document could belong to multiple topics. The main

downside of pLSI is that a model created from a training set cannot be easily applied

to unseen documents.

2.2.2 Latent Dirichlet Allocation

LDA is a topic modeling technique that represents each document in a corpus as a

mixture over latent topics, and each topic as a multinomial distribution over vocab-

ulary words [68]. LDA is a generative model; the generative process is outlined in

algorithm 1.

Algorithm 1: Latent Dirichlet Allocation

Input: A corpus of documents, D
Input: A vocabulary of length V
Input: A number of topics, K
Algorithm Parameters:

Dirichlet hyperparameter α > 0
A word probability matrix, β, of size K × V

1 for each document w in D do
2 Draw topic distribution θ ∼ Dirichlet(α)
3 for each word wn in document w do
4 Sample topic zn ∼ Multinomial(θ)
5 Sample word token wn ∼ Multinomial(wn|zn,β)
6 end

7 end

2.2.3 Dynamic Topic Models

Dynamic topic models capture the temporal aspect of a corpus of documents, if it

exists. The topics discussed in a corpus of documents can evolve through time, and

dynamic topic models are one method to capture this evolution. For example, the

paper that introduced dynamic topic models analyzed papers from the journal Science

from the years 1880 to 2000 [72].
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2.2.4 Evaluation of Topic Models

Early topic models were evaluated using perplexity [73]. Perplexity is a metric of

how well a language model can predict a text document [74]. This can be how well it

predicts the next word(s) in a document, or in the case of topic models how well the

model can predict the unordered words in that document. The lower the perplexity

of a model, the better.

Research found that a topic model having low perplexity didn’t necessarily mean it

had interpretable topics [73]. To remedy this, a new topic model performance metric

was introduced called coherence [75]. This coherence metric correlated much more

strongly with interpretable topics. There are many different ways to calculate the

coherence of a topic model, but the method which was found to correlate best with

human judgement is normalized pointwise mutual information (NPMI) [76, 77].

Some topic models have high coherence, but have a lot of overlap in words between

topics. A way to measure this is topic diversity, which measures the ratio of unique

topic words to total topic words across the top-k words of each topic [78].

2.2.5 Neural Topic Modeling

NTMs combines topic models with neural networks (NN). Different types of NN meth-

ods have been used for topic modeling, including variational autoencoders (VAE),

autoregressive models, generative adversarial networks, graph NNs, and more [69].

2.3 Reinforcement Learning

RL is one of the main paradigms of machine learning, the others being supervised

learning and unsupervised learning [79]. In a RL problem, an agent traverses some

environment attempting to maximize its cumulative reward. A RL problem is usually

represented as a Markov decision process (MDP) [80].
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2.3.1 Markov Decision Processes

A discrete-time, infinite-horizon, finite MDP is a tuple M .
= (S,A, p, r, µ0), where

S is a finite (non-empty) set of states, A is a finite (non-empty) set of actions,

p : S × A × S → [0, 1] gives the probability of transitioning to state s′ when action

a is taken in state s, written p(s′|s, a), r : S × A → R gives the expected reward

when action a is taken in state s, and µ0 is the initial state distribution [79, 80].

Here we only consider the case where actions are chosen according to a stationary,

deterministic policy, a function π : S → A. Such a policy, together with a MDP,

generates a sequence (St, At, St+1, Rt+1)
∞
t=0 as follows:

1. Sample the initial state s0 from µ0.

2. Repeat for t = 0, 1, 2 . . .

(a) Take action at = π(st).

(b) Transition to state st+1 sampled p(·|st, at) and receive reward rt+1 = r(st, at).

2.3.2 Environments

There are two types of environments for RL. The first is the episodic environment,

in which the agent traverses the same environment over many episodes. There is

some criteria for when an episode ends, and when this happens the agent is reset to

some starting state. The other type of environment is the continuing environment.

In continuing environments, the agent traverses the environment without reset, so it

must learn to act within the environment without the luxury of getting to start over

every so often.

RL algorithms can be model-based, in which the agent attempts to create an

internal model of the environment and its transition probabilities, or model-free, in

which the agent only cares about the optimality of its policy, π.
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2.3.3 Policies

RL policies can be based on state-value functions, action-value functions, or policy

gradients. State-value functions assign a value to each state in S. From a state, s,

the agent’s policy, π, chooses an action, a, based on the values of states adjacent to s

(e.g. always choosing the highest value adjacent state). Action-value functions assign

a value to each state-action pair in S × A. From a state s, the agent’s policy, π,

chooses the best action, a, to take from that state (e.g. always choosing the highest

value action).

The policy gradient method differs from the two methods above in that it directly

computes the policy, π, rather than basing the policy off of the value of a state or

action. The policy is usually parameterized by some function approximator and is

optimized by an optimizer such as stochastic gradient ascent.

RL algorithms can be on-policy, where the value function is updated based on the

action the agent took, or off-policy, where the value function is updated based on

actions other than the action the agent took.

2.3.4 State Spaces

Environments with small S can have S stored in a table, such as for tic-tac-toe. As

environments grow larger, storing each s ∈ S as a unique entry in a table becomes

infeasible, such as for chess. When this happens, S should be represented by a

function approximator.

2.3.5 Action Spaces

For a RL agent, A can be discrete or continuous. Discrete A are finite, and the

agent chooses to perform some subset of A on each time step. For example, in chess

the agent chooses one of the finite number of moves (actions) in a position (state).

Continuous A are infinite, with each a ∈ A represented as a probability distribution,

such as a Gaussian. A can contain both discrete and continuous actions, such as for
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a video game where the controller buttons are represented as discrete actions and the

analog sticks are represented as continuous actions.

2.3.6 Rewards

The cumulative reward obtained by a RL agent is called the return, G. In the return,

rewards are usually time-discounted by some discount factor (γ < 1) so more recent

rewards are emphasized over older rewards.

Gt+1 = γ ∗Gt + rt+1 (2.1)

An alternative to time-discounting is the average reward formulation, where the

average reward is optimized rather than the discounted return. Discounting works

fine in episodic environments, but it is better to use average reward in continuing

environments.
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Chapter 3

Automated Labeling of
Neurodevelopmental Disorders
Web Resources

3.1 Abstract

BACKGROUND. Providing patients and families with trusted information is

needed more than ever with the abundance of online information. Several organi-

zations aim to build databases which can be searched based on the needs of target

groups. One such group is individuals with neurodevelopmental disorders (NDDs)

and their families. NDDs affect up to 18% of the population and have major social

and economic impacts. Current limitations in communicating information for indi-

viduals with NDDs include the absence of shared terminology and the lack of efficient

labeling processes for web resources. These limitations lead to an inability for health

professionals, support groups, and families to share, combine, and access resources.

OBJECTIVE. We aim to develop a natural language-based pipeline to label re-

sources by leveraging standard and free-text vocabularies obtained through text anal-

ysis, and then represent those resources as a weighted knowledge graph.

METHODS. Using a combination of experts and service/organization databases,

we created a dataset of web resources for NDD. Text from these websites was scraped
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and collected into a corpus of textual data on neurodevelopmental disorders. This

corpus was used to construct a knowledge graph suitable for use by both experts and

non-experts. Named entity recognition, topic modelling, document classification, and

location detection were used to extract knowledge from the corpus.

RESULTS. We developed a resource annotation pipeline using diverse natural lan-

guage processing algorithms to annotate web resources and stored them in a struc-

tured knowledge graph. The graph contains 78,181 annotations obtained from the

combination of standard terminologies and a free-text vocabulary obtained using

topic modelling. An application of the constructed knowledge graph is illustrated:

a resource search interface using the ordered weighted averaging operator to rank

resources based on a user query.

CONCLUSIONS. We have developed an automated labeling pipeline for web re-

sources on NDDs. This work showcases how AI based methods such as natural

language processing and knowledge graphs for information representation, can en-

hance knowledge extraction and mobilization, and could be utilized in other fields of

medicine.

3.2 Introduction

Access to curated medical information has become more important than ever due

to the growing amount of information available on the internet and many challenges

faced with sharing information about medical topics. Neurodevelopmental disorders

(NDD) are a range of conditions including autism spectrum disorder, intellectual

disability, and attention deficit hyperactivity disorder. These disorders affect up to

18% of the population [81–87] and are affected by the growing amount of online

information and misinformation [88, 89]. NDDs have complex medical features and

the needs of affected individuals and their families tend to be quite diverse [90–92].
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There exists a large amount of information relating to NDDs on the internet, but

this information is scattered across many websites, often using different terminology,

and containing both reliable information and misinformation. Finding information

that is specific, relevant, and trusted is therefore difficult for caregivers of children

with NDDs. To remedy this, a knowledge repository containing the available NDD

resources annotated with appropriate labels and terms could be constructed. This

repository would enable discovery of relevant, trusted resources based on phrases of

interest provided by users.

We propose using a knowledge graph (KG) to represent web resources together

with terms and phrases annotating them. The utilization of a KG enables web links

(i.e., resources), terms, and phrases to be represented as nodes with the relevance

between them represented as edges.

A KG indexing web links and information on NDDs would allow experts and non-

experts to have a primary repository of NDD knowledge. With this knowledge, doc-

tors could make quicker and more accurate selections of relevant resources/websites,

and caregivers of children with NDDs could quickly find appropriate information,

services, and financial support. Accurate identification and early help are critical

to quality of life (QoL) outcomes for those with NDDs. The proposed graph-based

repository could improve many peoples’ lives.

The paper describes the methodology of constructing a KG-based repository of

NDD resources, called hereafter NDD-KG. It presents:

• an automatic processing of text extracted from websites relating to NDDs and

identifying the most accurate terms/phrases describing them based on Named

Entity Recognition (NER), topic modeling, location detection, and resource

classification.

• a process of determining degrees of relevance between Knowledge Graph entities

and resources and storing them as weights of relations in the graph.
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• an application of an Ordered Weighted Aggregation (OWA) operator [93] for de-

termining the most relevant resources using the aggregated weights of relations

between resources and terms/phrases describing them.

• an example of using the constructed KG-based repository of NDD resources

for retrieving a ranking of resources related to a phrase representing the user’s

interests.

The paper reviews some related works and describes the methodology used for

constructing a KG. It also includes an overview of the KG schema, gives an in-depth

look at individual techniques used to annotate scraped web resources, and introduces

an aggregation process. Finally, a brief overview of the utilization of the constructed

graph is presented and an outline of conclusion and possible future work.

The novelty of our constructed KG lies in the domain specificity, the inclusion

of patient-focused information from different sources, and application of combining

different information extraction methods. Most other medical KGs focus on the

entire medical field, and will therefore lose granularity on specific medical topics.

We created a KG for NDDs involving input from patients and caretakers affected by

NDDs, along with medical professionals who specialize in NDDs. This resulted in a

KG containing more extensive knowledge about NDDs than a general medical KG.

Input from patients and caretakers allowed us to include resources related to core

knowledge, financial help, education, and services. This is in contrast to most other

medical KGs, which only focus on extracting medical knowledge from literature.

In addition to the named-entity recognition (NER) pipeline to detect standard ter-

minologies used by medical professionals, we use topic modeling to capture resource

specific keywords. Using both the NER and topic modeling allows us to better an-

notate the resources. Furthermore, document classification is applied to categorize

and label the resources into core knowledge, financial help, education, and services.

Representing the extracted knowledge along with the resources in KG leads to a cen-
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tralized hub that combines resources from different areas of need around NDD to

maximize knowledge capture.

3.3 Related Works

KGs have been used for many areas, including medical, cyber security, financial, news,

and education. There have been a wide range of KG applications within the medical

field. Applications include general KGs across the whole medical domain, and across

specific areas such as depression, thyroid disease, and COVID-19 as described below.

Several KGs spanning the entire medical field have been created. For example,

Ernst et al. [94] created KnowLife. They used advanced information extraction

methods, including NER, pattern mining, and consistency reasoning, to populate

entities and relations from scientific literature and online communities, in contrast to

many previous works which were manually curated.

Shi et al. [95] developed methods to extract syntactic, semantic, and structural

information from conceptual KGs. They used a similar method to KnowLife for

creating the KGs, and extended understanding of the resultant KGs by using machine

learning methods to prune meaningless relations in the graphs and extract semantic

knowledge.

Sheng et al. [96] created DEKGB, a KG of various diseases using prior medical

knowledge and electronic medical records (EMR), along with guidance from doctors.

Li et al. [97] used quadruplets instead of triples to represent their KG, with the extra

information relating to relation strength. Zhang et al. [98] used a clinician-in-the-loop

to fine-tune an automated KG construction method.

KGs have also been created for specific medical domains. Huang et al. [99] made

a KG solely focused on depression after observing the prohibitive size and high-

level nature of general medical KGs. A low-level KG for depression would allow

more convenient use by doctors, easier understandability by the public, and higher

computational efficiency.
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Chai [100] used a KG about thyroid disease as the backbone for an intelligent

medical diagnosis system. Vector embeddings were calculated for each entity and

relation in the KG. These embeddings were then used to train a bidirectional long

short-term memory (LSTM) network as a disease diagnosis model, outperforming

other tested machine learning models.

Flocco et al. [101] used tweets related to COVID-19 in the Los Angeles area, along

with policy announcements and disease spread statistics, to construct a KG repre-

senting the real-world spread of COVID-19 in the Los Angeles area. The sentiment of

each tweet was calculated using a rules-based method, and topic modeling was used

to extract popular keywords from tweets.

3.4 Methodology

Constructing a KG requires data and methods to represent this data in a format

suitable to be a part of the KG. The following sections outline how data has been

collected and the methodology used to process it for graph construction purposes.

The proposed and applied methodology is illustrated in Figure 3.1. Data processing

methods used to analyze texts from websites include NER, topic modeling, document

classification, and location detection.

3.4.1 Data Collection

Two sources were used to construct the NDD corpus of text required for the KG.

The first source included individuals with lived experience who are part of the fam-

ily advisory board or have been recruited through advertisement for the project and

community support groups focused on NDD: AIDE Canada [102], the Alberta Chil-

dren’s Hospital NDD Care Coordination Project [103]. These individuals/parents

were asked to provide links to websites relating to NDDs in such categories as core

knowledge, education, services, and funding. The corpus created from these sources

will be referred to as the NDD Caregiver subset.
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The second source of relevant web pages used for scraping was the Inform Alberta

website [104]. These resources are referred to as the Inform Alberta subset. Finally,

the combined list of web pages from both sources and some relevant pages added by

the authors was scraped using the Python Scrapy library. For homepages, the entire

site was scraped, while for specific/single web pages only those pages were scraped.

As a result, the obtained corpus consisted of 200,000 web pages, with 80,000 pages

from the NDD Caregiver subset and 120,000 pages from the Inform Alberta subset.

HTML text was extracted for each page and cleaned by removing boilerplate text

using the Python BoilerPy3 library. The collection of cleaned HTML text from the

web pages formed the corpus of documents used for the construction of NDD-KG.
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Figure 3.1: Resource website/pages annotations process
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3.4.2 Named-Entity Recognition

The list of NDD resources contains a mixture of website, homepage, and web page urls.

To perform web page level indexing, when a given url refers to a homepage/website,

the Scrapy framework was used to scrape all the web pages of that website. Repetitive

urls were removed from the final list of all the web pages. Many web pages contained

the same HTML boilerplate, such as headers, navigation bars, and footers. The

Boilerpy3 python library was used to remove this boilerplate HTML.

Entity Vocabulary

The dataset contains various web pages related to services, education, financial help,

and core health knowledge within the NDD field. Different standard terminologies,

including Unified Medical Language System (UMLS), Human Phenotype Ontology

(HPO), Education Resources Information Center (ERIC) thesaurus, and a taxonomy

by the Alliance of Information and Referral Systems (AIRS), were extracted from the

pages. In the constructed graph, they were used to annotate the web page URLs.

UMLS is a collection containing over 4 million concepts from over 100 controlled

vocabularies including but not limited to ICD10, MeSH, and SNOMED CT [105]. It

covers all the medical and related entities. HPO provides a standardized vocabulary

of phenotypic abnormalities encountered in human diseases. It currently contains over

13,000 terms [106]. ERIC thesaurus is a list of topics in education and comprises about

11,818 terms, including 4,552 unique terms called descriptors and 7,133 synonyms of

descriptors [107]. AIRS taxonomy is the North American standard for indexing and

accessing human service resource databases [108]. The taxonomy is a hierarchical

system containing more than 9,000 terms covering the complete range of human

services.

As some web pages were more specific to a particular age as well as location, a list

of age terms and all Canadian cities and provinces was used to index web pages. As

behavioral issues are common in individuals with NDD, with expert’s feedback, 10
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categories of challenging behavior were considered: sleep issues, sensory issues, hyper-

activity, inattention, repetitive behavior, speech and language development, adaptive

behavior, cognitive development, social skills, and behavioral concerns. For each cat-

egory, we collected commonly used phrases or synonyms with the help of the parent

advisory group, as well as a manual search on the UMLS interface [109].

Named-Entity Recognition Process

NER is a sub-task of Natural Language Understanding used to detect named entities

that refer to specific objects. The named entities we used were domain-specific terms

such as medical terms, educational terms, services, challenging behaviors, age, and

location. All controlled vocabulary terms were given an entity label the same as

their source vocabularies (i.e., HPO, ERIC, AIRS, age, and location). Similarly,

All challenging behavior phrases or vocabulary were labelled with their respective

categories. They were lemmatized using the NLTK library [110]. A single pattern

file was created as an input into SpaCy’s rule-based entity recognition component

called EntityRuler. A pattern file is a dictionary with two keys: a ‘label’ specifying

the label to be assigned to the entity if the pattern is matched, and a ‘pattern’

indicating the phrase to be matched. Webpage text was preprocessed by removing

stop words and lemmatizing the text and passed to EntityRuler to annotate the text.

The UMLS entity Entity Linker from an open-source framework SciSpaCy [111] was

used to extract UMLS entities from text and only the respective canonical concepts

of UMLS entities were considered for further analysis.

Entity Relevance Calculation

Indexing the web pages with the existence or non-existence of an entity does not

provide information if a document is more relevant to a given entity. A document

that mentions a given entity more often than the other documents could be considered

more relevant to this entity. Depending upon the number of occurrences of an entity,
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a weight is assigned to each entity – it is called an entity relevance weight. The weight

provides information on how relevant an entity is to a document. However, using the

term (entity) frequency alone will favor common words as well as long documents

[112].

It is essential to normalize the term (entity) frequency to incorporate such factors as

high term frequency and document length. This is especially so in the case of HTML

documents because of keyword stuffing, a process where website owners deliberately

add specific keywords to their site in order to improve its search engine ranking. We

use logarithmic term frequency as a way to de-emphasize high-frequency terms and

adjust within-document term frequency.

For normalization, the pivoted unique normalization method was used, which con-

siders the document length as a factor. The principle of the pivoted normalization is

as follows: the higher the value of the normalization factor for a document, the lower

the chances of its retrieval. Therefore, to boost the chances of retrieving documents

of a certain length, the normalization factor for those documents should be lowered.

Singal et al. [112, 113] suggested considering the average document length in a cor-

pus as a reference point, called the pivot, and using a parameter called the slope to

penalize longer documents and give higher weight to shorter documents. Normalized

term relevancy weight is defined as:

relevance =
1 + log(tf)

(1− slope) ∗ pivot+ (slope ∗ dl)
(3.1)

where tf is the term frequency in the document, and slope is set to 0.2 as suggested

in Singal’s work. The value of pivot is set to the average number of distinct named

entities per document in the entire collection, and dl is the length of the documents

referred to by a unique number of entities in a document. Documents with the length

dl = pivot are not penalized as the normalization factor is equal to the pivot. For

dl > pivot, documents are penalized and have lower chances of retrieval, while for

dl < pivot, documents are rewarded with a smaller normalization factor.
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3.4.3 Topic Modeling

Topic modeling using latent Dirchlet allocation (LDA) was used to extract similar

topics across the corpus for inclusion in the KG. A novel form of topic modeling,

referred to as hierarchical topic modeling (HTM), was used to extract more specific

topics from the corpus. Topic modeling was performed separately on the NDD Care-

giver subset and on the Inform Alberta subset of the corpus due to computational

constraints. Unigram topics were extracted.

Data Preparation

Each web page (document) in a subset of the corpus was pre-processed before being

transformed into a count vector for modeling with LDA. The first step was to remove

all punctuation from the document, followed by changing all words to lowercase. Next,

the document was tokenized and lemmatized. Finally, a stop list was used to remove

unwanted words from the document. The stop list used here was the default English

stop list from NLTK augmented with some words added by the authors through

iterative testing and analysis of the topic modeling outputs. Finally, pre-processed

documents were transformed into a count vector for LDA.

Topic Modeling Process

The HTM algorithm initially performed LDA on the corpus subset and re-performed

LDA on topics containing several documents greater than a chosen threshold. Then,

the process was repeated until each topic included less than the threshold number of

documents, or no more progress was made. It resulted in more specific topic words

than running LDA once over the whole corpus, as found by a subjective analysis

comparing the outputs of both methods. The LDA algorithm from the Python scikit-

learn library was used with the following hyperparameters: max iterations of 10, the

online learning algorithm, learning decay of 0.7, batch size of 128, and max features

of 50,000.
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For the NDD Caregiver subset of the corpus, the initial LDA was set to have 200

topics, and for the Inform Alberta subset to have 300. These numbers were chosen to

be in proportion to the number of documents in each corpus subset. The threshold

for hierarchy termination was set to 300 documents for both corpus subsets. Only the

lowest level of the topic hierarchy was used for the KG construction, as these topics

seemed to be the most relevant following a subjective analysis.

Topic Relevance Calculation

It is essential to have information about the ‘strength’ of connections between iden-

tified topics, documents (web pages), and unigrams, i.e., words identified by LDA as

describing each topic and indirectly representing documents associated with a given

topic. In the case of LDA, such information was extracted from the LDA algorithm.

3.4.4 Document Classification

There were five categories of web pages in the corpus: ‘financial help’, ‘education’,

‘services’, ‘core knowledge/health’ and ‘other’. To automatically label each web page

a few classification models were investigated. To construct models, a subset of the

corpus was hand-labeled as belonging to one or more of the five categories. This is

a multi-label classification task, as documents (web pages) can belong to more than

one category.

The hand-labeled data consisted of 2158 documents, with 116 labeled as ‘financial

help’, 420 as ‘education’, 1419 as ‘services’, 1024 as ‘core knowledge/health’ and 143

as ‘other’. This data set was highly unbalanced. The data set was split into train,

validation, and test sets, with 80% of the data used for training, 10% for validation,

and 10% for testing. The data was split equally along categories where possible.

We tested three groups of models for classifying these documents: (1) multi-

label k-nearest-neighbors, (2) five single-label transformers, and (3) a multi-label

transformer. Among these models, we ultimately chose the multi-label transform-
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ers, due to it achieving the highest macro f1 score on a held-out test set. The

multi-label transformer was the 6-layer version of MiniLM-v2 fine-tuned on the pre-

pared training data set. The pre-trained model found on the HuggingFace website

named nreimers/MiniLM-L6-H384-uncased was used; it is the same model as the

all-MiniLM-L6-v2 from Sentence-BERT [114]. A dropout layer, with dropout prob-

ability of 0.3, and a final sigmoid activation layer with 5 outputs were added to the

base model as a multi-label classification head.

Training hyperparameters for this model were as follows. The loss function used

for training was the binary cross entropy loss that was optimized using the AdamW

optimizer. The optimizer learning rate was 3 × 10−4, with a linear warmup to this

value and cosine decay to one-tenth of this value during training. The other optimizer

hyperparameters were β1 = 0.9, β2 = 0.95, ϵ = 1× 10−8, and a weight decay of 0.01.

The batch size was 64, and all gradients were clipped to a norm of 1.0 to mitigate

gradient explosion.

The model was fine-tuned for 20 epochs. This is higher than the 2-3 epochs used

in the original BERT paper [21], but we mitigated possible overfitting by increasing

the dropout probability and evaluating model performance on a held-out validation

set after each epoch. The model with the best performance on the validation set

was chosen as the final model. The model outputs five probabilities between 0.0 and

1.0. A threshold value was chosen where values above this threshold were considered

members of the corresponding class. Finally, a more fine-tuned macro f1 score was

calculated on the validation data set for threshold values from 0.0 to 1.0 in intervals

of 0.1.

The best version of the multi-label transformer model, determined based on the

validation set, achieved a macro f1 score of 0.504, and an accuracy of 84.1% on the

test set. For reference, the training set macro f1 score was 0.804 with an accuracy of

93.8%. Details of the selected model’s performance can be found in Table 3.1.
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Label
Financial
Help

Education Services Other
Core

Knowledge
/ Health

Train

Cases 89 331 1131 111 815

Precision 0.745 0.769 0.920 0.756 0.860

Recall 0.787 0.764 0.984 0.532 0.977

F1 0.765 0.767 0.951 0.624 0.914

Test

Cases 12 40 141 14 101

Precision 0.143 0.333 0.840 0.400 0.743

Recall 0.083 0.500 0.965 0.286 0.832

F1 0.105 0.400 0.898 0.333 0.785

Table 3.1: Multi-label transformer model performance results

3.4.5 Location Detection

Using regular expressions, link text was matched to scrape specific pages such as

”contact us”, ”our locations”, and ”locate us”. Then Canadian/US postal codes were

matched using regular expressions and queried using the Google Maps API to get

the city and province for a given postal code. Named entities were detected, along

with cities and provinces. To get the final annotations, results from both modules

were combined. As it was challenging to remove false positive location entities due

to the manual annotation requirements, each city/province was given a weight equal

to the proportion of entities that refer to a city/province. This way, for a given

city/province, resources could be ranked based upon the score.

3.5 Results

The presented methodology of processing resources (i.e. web pages) provides a col-

lection of items (i.e., entities, unigrams, age ranges, locations, web page categories)

and challenging behaviours used to annotate the web pages. The integration of this

information is done using a knowledge graph – NDD-KG. The web pages and items
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mentioned above are nodes, while the relevance between them is represented as edges

labeled with a relevancy strength.

3.5.1 Knowledge Graph Schema

NDD-KG, as any KG, is a network of entities connected through relations. Each

piece of knowledge in a KG is represented as a triple, with two entities connected

through a relation. These triples are in the form of ⟨subject, relation, object⟩. For

example, to represent the piece of information that Edmonton is the capital of Alberta

in a graph, the following triple is used: ⟨Edmonton, capital of, Alberta⟩.

To effectively utilize a KG, names representing types of KG nodes and relations

between the nodes must be established. This set – called the vocabulary – is one of

the essential aspects of constructing a KG. The vocabulary is often called the KG

schema.

The NDD-KG schema is shown in Figure 3.2. Names of node types are repre-

sented by circles, differing in colour by node type. Some of them are labeled with

extra information, shown in the text inside the node. Links between the nodes rep-

resent relations between entities. Some relations are labeled with extra information,

shown in text on the relation arrow. Each node type and relation type are outlined

in the following sections. All collected data was represented as triples and fed into

Neo4j to construct the graph automatically.

Entities as Nodes

There are a total of 11 node types in the NDD-KG. The primary node type is re-

source. It represents all the documents (web page URLs) in the corpus. Each of these

resources is labeled with their associated URL from the corpus, the resource source

(NDD Caregiver or InformAlberta), and the resource type (web page/video/pdf).

The document text was not saved in the KG for size reasons. Instead, an external

file was kept with processed document text for each URL, and each URL could be
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Figure 3.2: Knowledge graph schema: links of the same color represent the same
relations; dashed links represent relation ”is-a”

accessed through the Internet, assuming the web page is still active.

The other node types are linked by edges, either directly or indirectly, to a re-

source node. HPO, UMLS, EricTerm, AIRs and challenging behaviour nodes were

extracted using Named-Entity Recognition methods. EricTerm nodes are from the

ERIC database and are labeled by the canonical term for the recognized entity. UMLS

nodes are from the UMLS database and are marked by the canonical term for the

recognized entity, its semantic type, and concept unique identifiers (CUI). HPO nodes

are from the HPO-DDD database and are labeled by the canonical term for the rec-

ognized entity and unique HP and CUI identifiers. AIRs nodes are from the AIRs

database and are labeled by the canonical term for the recognized entity.
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Two types of nodes represent terms extracted from the topic modeling method.

First, unique topic nodes were placed into the NDD-KG, and then each resource

(web page) was linked with the unigram topic. Further, each unique topic node

was connected with the corresponding unigram terms that were represented as the

NDD-KG nodes.

The remaining four node types are Province, City, Age, Category, and Challeng-

ingbehaviour. The Province and City for each resource were extracted using methods

outlined in the location detection method. The age associated with each resource

was also extracted using similar methods. Possible subtypes for Age are Child, Teen,

and Adult. The node type Category has five subtypes: Services, Education, Financial

Help, Core Knowledge, and Others. Resources were linked to one of the subtypes

after the classification method outlined in document classification was executed.

Relations and Weights

Nodes are connected by edges to one of eight types of relations. Web pages scraped

from a parent website, and both represented as resource nodes, are connected to the

relation hasParent. Location nodes, for both cities and provinces, are connected to the

relation isLocatedIn. City nodes are connected to their corresponding province nodes

with the relation inProvince. NER-related nodes, Age, and ChallengingBehaviour

nodes are connected to corresponding resource nodes with the relation CONTAINS.

NER-related nodes are also connected to identically named entities from different

databases with the IS ASSOCIATED WITH relation. NER-related nodes and Age

are connected to each other with a relation OCCURRED TOGETHER.

Topic nodes are connected to corresponding resource nodes with the relation be-

longsToTopic. The relation describedBy was used to connect topic nodes to their

contained topic word – unigram nodes. Finally, resources are directly connected to

relevant unigrams with the containsNgram relation.

Relations were assigned a weight using various methods if applicable. The in-
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Province, hasParent, and describedBy have no weights. The relations CONTAINS,

IS ASSOCIATED WITH, and isLocatedIn are weighted using term relevancy as out-

lined in the named entity recognition method. The relationOCCURRED TOGETHER

is labeled with several co-occurrences of connected entities (nodes).

The relations belongsToTopic, containsNgram, and topic-related describedBy have

weights calculated as the output of the LDA process. Weights for the belongsToTopic

represent a degree of how strongly a resource belongs to each topic. Weights for

the topic-related describedBy relations indicate how strongly each word in the topic

vocabulary belongs to each topic. The containsNgram weights were obtained by

matrix multiplication of the belongsToTopic and topic-related describedBy weight

matrices.

3.5.2 Constructed Knowledge Graph: Overview

The constructed NDD-KG contains 264,167 nodes. There are 185,986 resource

nodes. For NER-related nodes, there are 2,448 AIRs nodes, 11,617 EricTerm nodes,

4,181 HPO nodes, and 41,599 UMLS nodes. For topic modeling, there are 14,373

unigram nodes and 2045 unigram topic nodes. In addition, there are 3 Age nodes,

5 Document Category nodes, 10 Challenging behaviour nodes, 1832 City nodes, and

68 Province/State nodes. The graph contains a total of 22,621,522 relations.

To illustrate interesting features of the graph, a single resource is extracted from

NDD-KG together with several annotated nodes on the left (a) of Figure 3.3. The

resource, a light brown circle in the middle, is linked with a group of unigrams (blue

circles on the left), two types of Challengingbehaviour nodes (yellow circles), Age

(gray), UMLS (green), AIRs (blue), EricTerm (violet), and HPO (orange) nodes.

These terms and unigrams define/describe the resource. The relations between

resources and the annotating nodes are n-to-n. This means that a single annotating

node is also linked with multiple resources. Such a scenario is illustrated on the right

(b) of Figure 3.3. Two terms – HPO ’s autism and EricTerm’s community – are
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(b)

Figure 3.3: Example of annotated resources from raisingchildren.net.au/autism/
behaviour/common-concerns/aggressivebehaviour-asd: (left: a) most relevant

annotating nodes; (right: b) n-to-n relations between resources and annotating
nodes

connected to multiple resources.

Besides the relations resource-annotating node, the graph contains multiple rela-

tions between annotating nodes. These are two types of relations OCCURRED TO-

GETHER and IS ASSOCIATED WITH. A fragment of the graph illustrating these

relations is shown in Figure 3.4.

The existence of these many relations creates a highly interconnected representa-

tion of resources and their annotated nodes. However, it introduces an issue if a user

tries to identify the most relevant resources, as there would be no difference in rele-

vance between nodes. Therefore, a degree of relevance is added to denote the most

appropriate resources. The relevance represents the connection strength between a

resource and an annotating node (entity).

There are two types of relevance weights used in NDD-KG. One weight is linked

with the relation CONTAIN. Its value is determined using the procedure presented in

the entity relevance calculation method. The other weight is linked with the relation

OCCURRED TOGETHER. This weight is a measure of the co-occurrence of different
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annotating nodes.

The first type of weight is illustrated on the left (a) of Figure 3.5. Although all

connected nodes contribute to the description of a resource, their contributions are

of different strengths. The second type of weight is illustrated on the right (b) of

Figure 3.5. A snippet of the graph shows connections between annotating nodes:

HPO, AIRs, and EricTerm. The weights are represented as integer numbers that

indicate how often both terms co-occurred in the extracted texts (i.e., degrees to

which given nodes are ‘related to each other’).

3.5.3 Constructed Knowledge Graph: Utilization

The NDD-KG can be perceived as a source of valuable information about connec-

tions between resources and annotating nodes. The graph can be used to identify the

most relevant resources when a user provides a textual phrase expressing her interests.

The richness of connections of the graph and a need to provide a user with the

best possible match to the entered phrase has led to the application of an aggregation

operator that combines the weights (i.e. the values of relevance between resources

and annotating nodes) in a ‘controlled’ way. It means that if a user wants to find the

most relevant resource satisfying multiple nodes, an aggregation function is invoked

and combines all suitable relevance values.

A simple use case showing the abilities of NDD-KG to provide the user with

relevant NDD resources is included.

User Interface for Resource Extraction

NDD-KG can be used to identify the most relevant resources when a user provides

some text input. A simple web-based interface has been developed to enable users to

use NDD-KG when they want to obtain a list of relevant resources. The interface

allows the user to enter a text query containing several phrases representing their

interest. Considering that end users can search with verbose queries, such as “my child
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hits other children at school,” to infer one of the 10 challenging behaviour categories,

we have also trained a text classification model that will classify the intent of the

entered user text (section 3.5.3).

Additionally, the richness of connections of the graph and the need to provide users

with the best possible match to their text query led to the need for an aggregation

operator that combined the weights (i.e. the values of relevance between resources

and annotating nodes) in a controlled way. This meant that if a user wanted to find

the most relevant resource for a text query that satisfied multiple nodes, an OWA

aggregation function was invoked. OWA combines all suitable weights for these nodes

to rank the resources based upon their relevance (section 3.5.3).

The entered text is processed with the following steps:

1. Extract unigrams and entities (HPO, UMLS, ERIC, AIRS, and challenging

behaviour) using the developed natural language processing pipeline.

2. Classify user text as one of the 10 challenging behaviour categories using the

transfer learning–based text classification model. Then, add the detected cate-

gory to the entities list obtained in step 1.

3. Query the KG-based repository of NDD resources to retrieve all resources that

are connected to nodes representing entities and unigrams obtained in the above

steps 1 and 2. For each retrieved resource, all annotating nodes are extracted

together with the weights of the relations.

4. The weights are aggregated using OWA to determine the relevance of each

retrieved resource.

5. A list of “sorted by relevance” resources is displayed to the user.

The text query, along with extracted entities and unigrams, is shown for a simple

example in Figure 3.6. As can be seen, HPO and UMLS entities have been identified

(“abnormal, aggressive, impulsive, or violent behavior” and “spitting,” respectively).
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Additionally, behavioural concerns as a category of challenging behaviour has been

recognized. Two unigrams (“aggressive” and “behaviour”) are extracted from the

text. The resulting list of the most relevant sites has been determined and is shown

in Figure 3.7. The list contains web pages and a video, all from the category core

knowledge.

Challenging Behaviour Detection

We fine-tune a BERT model [21] to detect mentions of challenging behaviour within

text queries. The training data set included 1,219 natural language descriptions of

challenging behaviours, each annotated by the recruited parents group into one of

the ten available categories. These ten categories are: Cognitive development, Sleep

issues, Speech and language development, Sensory issues, Social skills, Hyperactivity,

behavioural concerns, Inattention, Adaptive behaviour, and Repetitive behaviour. A

few examples of the text and their annotated categories can be seen in Table 3.2.

Text Category

He just can’t deal with the work he needs to do in
order to have help

Adaptive Behaviour

Tendency to be over-sensitive to noise Sensory Issues

He isn’t particularly interested in our weekday routines
and mostly sleeps through them

Sleep Issues

Table 3.2: Examples of text and their annotated categories

A pre-trained BERT language model with a fully-connected classification head was

used to classify the natural language text into one of the ten annotated categories.

The smaller version of the pre-trained BERT model, called the base model, was used

to have faster inference time while still resulting in acceptable accuracy. The BERT-

base model has almost 110 million parameters. The output of the pre-trained BERT

model was passed through a dropout layer with a probability of 0.1 to avoid overfitting

to the training data [115]. The fully-connected layer has an output of ten features in
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order to be able to classify between the different classes.

The data set was split randomly with a seed of 66 to training and validation sections

with an 80/20 ratio. The pre-trained model used was BERT-base. The input text

was truncated, and the maximum input size set to 128 tokens. The classifier model

was trained using the AdamW optimizer [116] with a learning rate of 2 × 10−5 and

weight decay of 0.01 for ten epochs. The code was written in PyTorch. Fine-tuning

was done using an NVIDIA Titan RTX GPU.

The fine-tuned model resulted in an accuracy of 85.7% on the validation dataset.

Among the different classes, the model was the most confused when text regarding

repetitive behaviour was given, and it incorrectly predicted behavioural concerns.

The full confusion matrix can be found in Figure 3.8.

The final trained model has a disk space size of 433 MB. The model is hosted on a

remote server and is served using an API. Remote hosting of the classification model

results in leaner code for the chatbot. This modular architecture also results in an

easy and independent update of the classification model without adversely affecting

the rest of the chatbot architecture. The model is currently hosted on HuggingFace

server 1 and, on average, has an inference time of less than 200 ms, which makes it a

good fit for time-sensitive applications, such as our case of chatbots.

OWA

One of the most interesting and commonly used aggregation operators is the Ordered

Weighted Averaging (OWA) operator [93]. In the simplest possible statement, this

operator is a weighted sum of ordered pieces of information. In a formal representa-

tion, the OWA operator, defined on the unit interval I and having dimension n, is a

mapping OWA : In −→ I such that

OWA(a1, a2, ..., an) =
n∑︂

j=1

wj ∗ bj (3.2)
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where bj is the j
th largest of the ai’s. W = {w1, w2, ..., wn} is a weighting vector such

that 0 ≤ wj ≤ 1 and
∑︁n

j=1 wj = 1.

To obtain a weighting vector W associated with an OWA, a family of RIM quan-

tifiers Q has been introduced. A fuzzy subset Q represents a RIM quantifier if:

1. Q(0) = 0;

2. Q(1) = 1;

3. Q(r1) > Q(r2) for all r1 > r2

Assuming a RIM quantifier Q, the weighting vector W can be determined such

that for j = 1 to n:

wj = Q(
j

n
)−Q(

j − 1

n
). (3.3)

A function Q can be of different form and be associated with different linguistic

quantifiers, such as for all, mean, most, or as many as possible [117]. In the paper,

the quantifier most is used, which leads to the following form of Q:

Q(r) =

⎧⎪⎨⎪⎩
0 if 0 ≤ r ≤ α
r−α
β−α

if α ≤ r ≤ β

1 if β ≤ r ≤ 1

(3.4)

where α = 0.3 and β = 0.8.

Resource Ranking Process

Identifying a list of most relevant resources is represented as an Algorithm 1. The

algorithm takes NDD-KG and the user’s phrase as its input. The phrase is pro-

cessed, and sets of entities and unigrams are obtained, lines 11 and 12. Based on

both sets, a Neo4j query is created, and a set of resources is obtained, line 14.

The weights associated with the relations CONTAIN are used to determine degrees

of relevancy. In the beginning, the weights of all relations CONTAIN are extracted,

lines 16 to 19. Similarly, the weights of links connecting the resource and unigrams

are retrieved.
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The retrieved weights – WeightEi and WeightUG
i – for a resource Resi are ag-

gregated individually using OWA, and then the results are multiplied, line 24. The

obtained value – significancei – is used to determined a ranking of all resources that

satisfy the user’s phase.

Algorithm 2: Resource Ranking Algorithm

1 Input:
2 NDD-KG
3 UInput // User Input Phrase

4 Output:
5 RRL // Ranked Resource List

6 Initialization:
7 set: UEntity = {} // Entities extracted from UInput
8 set: UUniGram = {} // Unigrams extracted from UInput
9 set: SRes = {} // Selected Resources

10 list: RRL = []

11 UEntity ← entityExtraction(UInput)
12 UUniGram ← unigramExtraction(UInput)
13 Neo4j query ← queryConstruction(UEntity ∪UUniGram)
14 SRes ← execute(Neo4j query)

15 for each Resi from SRes do
16 for each entityj from UEntity do
17 weightEi,j ← getWeight(Resi − contains− entityj)

18 WeightEi ← weightEi,j
19 end
20 for each unigramj from UUniGram do
21 weightUG

i,j ← getWeight(Resi − contains− unigramj)

22 WeightUG
i ← weightUG

i,j

23 end
24 significancei = OWA(WeightEi ) ∗OWA(WeightUG

i )
25 ResListsignificance ← ⟨Res1, significancei⟩
26 end

27 RRL ← ranking(ResListsignificance)
28 return
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3.6 Discussion

This paper describes the methodology for processing texts extracted from web pages

to generate a set of entities and terms used for annotating these web pages. Both

web pages and entities/terms are the basis for constructing a knowledge base of re-

sources. This base — built as a graph called NDD-KG — is a highly interconnected

network linking resources with annotating terms and entities. Furthermore, edges in

NDD-KG have weights representing relevance between resources and annotating

terms/entities. Edge weights, aggregated using a specialized aggregation operator,

are used to rank resources. The constructed NDD-KG is a repository of resources

about NDD that can be queried using textual phrases, with relevant results shown to

the user using an interface.

Most of the prior work in building medical knowledge graph uses scientific literature

such as PubMed and electronic medical records and only specific types of entities such

as diseases, chemicals, and genes are considered [97, 118, 119]. Ernst et. al. [120]

uses the patient-oriented online health portals to build KG indicating the importance

of medical information spread across different sources. Shi et al. [95] represented

heterogeneous textual medical knowledge as one KG to utilize it further for semantic

reasoning. Yu et. al. constructed a KG for traditional chinese medicine to integrate

terms, documents, and databases in one base to facilitate sharing and utilization of

TCM health care knowledge [121].

To our knowledge, this is the first method which integrates credible online informa-

tion from different areas of need around NDDs (i.e. financial help, services, education,

and core knowledge) into a single location. Our developed NLP pipeline can be used

to annotate resources from the above-mentioned areas. Representing the extracted

knowledge into a KG would allow finding connections among different resources on

a scale that would be impossible for a single human. Many ontologies and scattered

information sources, both on a professional and layperson level, exist on the internet.
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Our KG compiles all this information into a single place. Connecting all this infor-

mation will open up many areas of improvements for the NDD field. These could

include new research directions, new treatment opportunities, and the possibility of

collaboration between services.

The methodology used to construct this KG is scalable and could be expanded

to other medical domains besides NDDs. In creating more of these domain-specific

medical KGs with the guidance of medical professionals, patients, and caretakers, we

can provide information in a similar way to patients afflicted with other conditions.

These specific KGs could even be connected on a higher level to slowly create a field-

wide medical KG, which would be of great benefit in complex medical conditions

where individuals present with multiple hyper-specialized domains. The bottom-up

nature of the creation of this may result in a better product than the top-down

field-wide medical KGs that currently exist.

While having more documents means more information is available, there is also

a trade-off between number of documents and KG query speed [122]. Some ways

to overcome this include indexing the KG [123], and pruning irrelevant nodes and

edges on the KG [124]. Another limitation of KG construction is that pivoted unique

normalized logarithmic term frequency is used to calculate weights for edges labeled

CONTAINS, which affects the performance of the resource retrieval method when

the size of the document is significantly greater than the average document length in

the corpus. Pivoted unique normalization over-penalizes longer documents as shown

in the original paper [125]. When the length of a document is much larger than

the average document length in the corpus, a higher normalization factor could yield

almost zero relevance score for that document’s entities [125]. This limitation can

be overcome by implementing a term relevance method which not only considers

the term frequency but also co-occurring terms (represented with the OCCURRED -

TOGETHER relationship in NDD-KG) [126].

As future work, NDD-KG based semantic search methods will be further studied
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to address the exact keyword matching issue in the resource retrieval system. Poten-

tial solutions include using query expansion techniques [127–129]. The application of

OWA in identifying the most relevant list of resources opens another possibility of

enhancing a user query interface. OWA is known for its ability to include linguistic

quantifiers such as SOME, MOST, ALL, and AT LEAST n in the aggregation pro-

cess. So far, we only use MOST to aggregate query results, yet a user can control to

what degree documents should satisfy different criteria using different quantifiers.

To further improve the user’s experience with the NDD-KG based resource re-

trieval process, we aim to build a transparent interface that will enable path-based

explanations in NDD-KG to provide relevant background knowledge in a human-

understandable format [130, 131] using interpretable machine learning approaches.

Explainable Artificial Intelligence is an emerging research field which not only fo-

cuses on the performance of the models but also the interpretability of what factors

led the model to make a particular decision. This promotes credibility and trust in

the suggested results [132, 133].

Although patients and caretakers were included in some of the vital steps of cre-

ating this KG such as collecting resources and challenging behavior vocabulary, user

feedback is an important step in the process of validating our created KG. We will

design the evaluation strategy to validate the NDD-KG based document retrieval

system by collecting the gold standard relevance assessment from the human judges.

Douze et. al. [134] found that the relevance assessments provided by the human

judges also depend upon their subjective needs. Therefore, we will collaborate with

a group of parents of children with NDDs to create a gold standard test collection

to evaluate the model to check if the NDD-KG based document retrieval satisfies

their needs.

43



3.7 Conclusion

The need for helping families with NDDs could leverage the potential that online

information has to offer (e.g. to supplement gaps in the health/social support system).

This need became more important than ever during the COVID-19 pandemic and

will continue gaining importance into the future. Building an efficient repository of

trusted web resources has proven challenging due to the lack of uniformly labeled

resources. This challenge is not unique to NDD and is seen across other medical

fields as well. Such repositories of online resources should provide users with an

intelligently generated ranking of resources based on a simple text query entered

by the users. Experts and non-experts can use NDD-KG to improve the QoL of

people with NDDs. Future work includes enhancements of user interface for resource

retrieval as well as mechanisms for continuous modifications of NDD-KG when new

information is discovered, or old information is found to be outdated.
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Figure 3.4: Example of OCCURRED TOGETHER and IS ASSOCIATED WITH
connections between nodes. Entities from different sources are represented in

different colors: HPO (orange), AIRS (blue), UMLS (green), ERIC (purple), AGE
(grey)
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(a)

Figure 3.5: Example of connection strength: (left: a) of relation CONTAIN
between resource and annotating nodes; (right: b) of relation

OCCURRED TOGETHER between annotating nodes

Figure 3.6: Question interface: obtained entities and unigrams for the query:
”aggressive behaviour and kicking and spitting”
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Figure 3.7: Question interface: list of top 10 most relevant resources for the query
”aggressive behaviour and kicking and spitting”
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Figure 3.8: Normalized confusion matrix: rows show true labels, columns show
predicted labels
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Chapter 4

Reinforcement Learning for Topic
Models

4.1 Abstract

We apply reinforcement learning techniques to topic modeling by replacing the varia-

tional autoencoder in ProdLDA with a continuous action space reinforcement learning

policy. We train the system with a policy gradient algorithm REINFORCE. Addition-

ally, we introduced several modifications: modernize the neural network architecture,

weight the ELBO loss, use contextual embeddings, and monitor the learning process

via computing topic diversity and coherence for each training step. Experiments are

performed on 11 data sets. Our unsupervised model outperforms all other unsuper-

vised models and performs on par with or better than most models using supervised

labeling. Our model is outperformed on certain data sets by a model using super-

vised labeling and contrastive learning. We have also conducted an ablation study

to provide empirical evidence of performance improvements from changes we made

to ProdLDA and found that the reinforcement learning formulation boosts perfor-

mance.

4.2 Introduction

The internet contains large collections of unlabeled textual data. Topic modeling is

a method to extract information from this text by grouping documents into topics
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and linking these topics with words describing them. Classical techniques for topic

modeling, the most popular being Latent Dirichlet Approximation (LDA) [68], have

recently begun to be overtaken by Neural Topic Models (NTM) [69].

ProdLDA [135] is a NTM using a product of experts in place of the mixture model

used in classical LDA. ProdLDA uses a variational autoencoder (VAE) [136] to learn

distributions over topics and words. ProdLDA improved on NVDM [137] by explicitly

approximating the Dirichlet prior from LDA with a Gaussian distribution and using

the Adam optimizer [138] with a higher momentum and learning rate.

Perceiving Reinforcement Learning (RL) as probabilistic inference has brought

practices of such an inference into the RL field [139] [140]. New algorithms using

these techniques include MPO [141] and VIREL [142]. MPO optimizes the evidence

lower bound (ELBO), which is the same optimization objective used in VAEs.

Inspired by the adoption of probabilistic inference techniques in RL, we look to

apply RL techniques to probabilistic inference in the realm of topic models. We use

REINFORCE, the simplest policy gradient (PG) algorithm, to train a model which

parameterizes a continuous action space, corresponding to the distribution of topics

for each document in the topic model. We keep the product of experts from ProdLDA

to compute the distribution of words for each document in the topic model.

We additionally improve our topic model by using Sentence-BERT (SBERT) em-

beddings [114] rather than bag-of-word (BoW) embeddings, modernizing the neural

network (NN) architecture, adding a weighting term to the ELBO, and tracking topic

diversity and coherence metrics throughout training. The model architecture is shown

in Figure 4.1. Our method outperforms most other topic models. It is beaten only on

some data sets by advanced methods using document labels for supervised learning,

while our procedure is fully unsupervised.
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Figure 4.1: Architecture Diagram: gray boxes - processing; white boxes -
models/data/information; arrows across boxes - tune-ability

4.3 Related Work

Zhao et al. [69] provide a survey of NTMs. Variations of VAEs are presented which use

different distributions, correlated and structured topics, pre-trained language mod-

els, incorporate meta-data, or model on short texts rather than documents. Methods

other than VAEs are also used for NTMing, including autoregressive models, gener-

ative adversarial networks, and graph NNs.

Doan and Hoang [143] compare ProdLDA and NVDM, along with six other NTMs

and three classical topic models, in terms of held-out document and word perplexity,

downstream classification, and coherence. Scholar [144], an extension of ProdLDA

taking document metadata and labels into account where possible, performed best

in terms of coherence. NVDM and NVCTM [145], an extension of NVDM which

additionally models the correlation between documents, performed best in terms of
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perplexity and downstream classification. The other NTMs were GSM [146], NVLDA

[135], NSMDM [147], and NSMTM [147]. The classical topic models were non-

negative matrix factorization (NMF) [148], online LDA [149], and Gibbs sampling

LDA [150].

BERTopic [151] and Top2Vec [152] use dimensionality reduction and clustering

to group document embeddings from pre-trained language models into meaningful

clusters. Contextualized Topic Models (CTM) [153] augments the BoW embeddings

used in ProdLDA with SBERT [114] embeddings, resulting in an improved topic

model.

Dieng et al. [78] develop the embedded topic model (ETM) by using word embed-

dings to augment a variational inference algorithm for topic modeling. Their method

outperforms other topic models, especially on corpora with large vocabularies con-

taining common and very rare words. Nguyen and Luu [154] augment Scholar [144]

with contrastive learning [155] and outperform all topic models compared against.

Gui et al. [156] use RL to filter words from documents, with reward as a combina-

tion of the resulting topic model’s coherence and diversity, or how few words overlap

between topics. Kumar et al. [157] use REINFORCE [158], a PG RL algorithm, to

augment ProdLDA. Their model slightly outperforms ProdLDA in terms of topic

coherence.

4.4 Background

We briefly outline topic models, RL process, KL divergence, and contextual embed-

dings.

4.4.1 Topic Models – Approaches

Latent Dirichlet Allocation (LDA) [68] is a three-level hierarchical Bayesian

model: documents→ topics→ words. Each document is a mixture over latent topics,

where the topic distribution θ is randomly sampled from a Dirichlet distribution. Each
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topic is a multinomial distribution over vocabulary words.

Autoencoding Variational Inference for Topic Models (AVITM) [135] is a

neural topic model using a VAE to learn a Gaussian distribution over topics. VAEs use

a reparameterization trick (RT) to randomly sample from the posterior distribution

to remain fully differentiable. At the time, there was no known RT for Dirichlet

distributions, so AVITM used a Gaussian distribution and a Laplace approximation

of the Dirichlet prior.

AVITM contains two models: NVLDA and ProdLDA. NVLDA uses the mixture

model from LDA to infer a distribution over vocabulary words, while ProdLDA uses

a product of experts.

Evidence Lower Bound (ELBO) is the optimization objective for AVITM. ELBO

optimization [159] simultaneously tries to maximize the log-likelihood of the topic

model and minimize the forward Kullback–Leibler (KL) divergence [160] between the

posterior P and prior Q topic distributions.

ELBO = DKL(P ||Q)− log-likelihood (4.1)

4.4.2 Topic Models – Evaluation

Topic Coherence is a metric for evaluating topic models. It uses co-occurence in

a reference corpus to measure semantic similarity between the top-K words in a topic.

Topic model coherence is the average of each topic’s coherence.

Normalized pointwise mutual information (NPMI) [76] was the coherence measure

found to correlate best with human judgment [77]. When computing NPMI, a window

size of 20 for co-occurrence counts is used in Srivastava and Sutton [135], while Dieng

et al. [78] uses full document co-occurrence.

NPMI coherence is calculated for each of the top-K words in a topic and averaged

to obtain the coherence for that topic. The overall topic-coherence is the average
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of the coherence for each topic. For a word i, the NPMI coherence is calculated

according to Equation 4.2.

NPMI(wi) =
K−1∑︂
j

log
P (wi,wj)

P (wi)P (wj)

− logP (wi, wj)
(4.2)

where P (wi) is the probability of word i occurring in a document in the corpus, and

P (wi, wj) is the probability of words i and j co-occurring in a document in the corpus.

Topic Diversity is another metric for evaluating topic models. It measures the

uniqueness of the top-K words across all topics. Dieng et al. [78] use K = 25 for

reporting topic diversity.

topic-diversity =
number-of -unique-words

K ∗ number-of -topics
(4.3)

Topic Quality is a topic modeling metric introduced by Dieng et al. [78].

(4.4)topic-quality = topic-coherence ∗ topic-diversity

4.4.3 Reinforcement Learning

RL is a sequential decision-making framework focused on finding the best sequence of

actions executed by an agent [79]. An agent takes actions a ∈ A to traverse between

states s ∈ S in an environment, receiving a reward r on each transition. The goal

of an RL task is to find the best set of actions —referred to as the policy —which

maximizes the reward. RL problems can be episodic, where the agent completes the

environment and is reset, or continuing, where the agent continuously traverses the

environment without reset. Through traversing the environment, the agent learns a

policy π of which actions in each state will maximize return. Return is the cumulative

reward received by the agent in an episode or its lifetime. It is usually discounted

by a factor γ to favor near-term reward over long-term reward. An alternative to

discounting is the average reward formulation.
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Policy Gradient (PG) Algorithms Many RL algorithms learn a value function

– representing values associated with selecting specific actions – and a corresponding

policy that chooses the action or subsequent state with maximum value. PG algo-

rithms [161] provide an alternative approach directly learning a parameterized policy.

The parameters of the policy function are optimized through stochastic gradient as-

cent.

REINFORCE is a Monte Carlo PG algorithm for episodic problems [158]. See

algorithm 3, where ρ is a vector of optimized parameters.

Algorithm 3: REINFORCE

Input: A differentiable parameterized policy function π(a|s,ρ)
Algorithm Parameters:

step size α > 0,
discount factor γ < 1

1 Initialize ρ (e.g. ρ ∼ N(0, 0.02))
2 for each episode do
3 Generate an episode
4 s0, a0, r1, . . . , sT−1, aT−1, rT
5 following policy π
6 for each step in the episode (t from 0 to T − 1) do

7 G←
∑︁T

k=t+1 γ
k−t−1rk

8 ρ← ρ+ αγtG∇ ln π(at|st,ρ)
9 end

10 end

Continuous Action Spaces are one advantage of PG algorithms [79]. Parameter-

ized policies allow action spaces that are parameterized by a probability distribution,

such as a Gaussian. For Gaussian action spaces, the mean µ and standard deviation

σ are given by function approximators parameterized by ρ. For a state s, an action a

is sampled from the distribution and the policy is updated according to Equation 4.5.

π(a|s,ρ) .
=

1

σ(s,ρ)
√
2π

exp

(︃
−(a− µ(s,ρ))2

2σ(s,ρ2)

)︃
(4.5)
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Kullback-Leibler (KL) Divergence [160] measures the similarity between two

probability distributions P and Q. It is used in AVITM [135] to force the poste-

rior distribution parameterized by the VAE to be the Laplace approximation of the

Dirichlet prior. The KL divergence calculation for N topics is shown in Equation 6.

DKL(P ||Q) =
1

2

N∑︂
1

(︄
(µP − µQ)

2

σ2
Q

+
σ2
P

σ2
Q

− log
σ2
P

σ2
Q

− 1

)︄
(4.6)

KL divergence has recently become popular in continuous action space RL algo-

rithms. One application is to prevent policy updates from making large changes to

the policy that could result in poorer performance. Two algorithms using KL diver-

gence for this are TRPO [162] and MPO [141]. Another application is for optimistic

RL [163] [164]. Vieillard et al. [165] investigate the usage of KL divergence as regu-

larization in RL. KL divergence has also been used in optimal control [166], which is

closely related to RL.

4.4.4 Contextual Embeddings

Contextual embeddings dominate NLP tasks, replacing earlier methods, including

Word2Vec [30], GloVe [167], and BoW. Words and sequences of words are encoded

into vector embeddings by large Transformer models [24].

The BoW document representation used in ProdLDA is augmented with contex-

tual embeddings from SBERT Bianchi et al. [153]. They test three models: one

with BoW, one with contextual embeddings, and one with both. They find that us-

ing both embeddings produces the best results, and the other two methods perform

almost as well. One advantage of using solely contextual embeddings is that multilin-

gual language models can encode documents from different languages into the same

embedding space, enabling easy creation of multilingual topic models [168].

Sentence-BERT is an extension of BERT using a Siamese network to extract

semantically meaningful sentence embeddings [114]. In contrast to BERT, this allows
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SBERT embeddings to be compared using dot product or cosine similarity, making

SBERT more suitable for tasks such as semantic similarity search and clustering.

4.5 Methodology

4.5.1 Modernizing ProdLDA

Following Liu et al. [169], we contemporize the architecture of the inference network

within ProdLDA. We replace the SoftPlus activation function [170] with a GELU

activation function [171], replace batch normalization [172] with layer normalization

[173], and replace all Xavier initialization [174] with ρ ∼ N(0, 0.02).

For the inference network, we increase the number of units in each layer from 100

to 128, add weight decay of 0.01 to each layer, and place dropout layers [115] after

each fully connected layer.

We replace the softmax activation after the topic distribution with an RL policy

formulation (Equation 4.5). We use a training batch size of 1024. We clip all gradients

to a maximum norm of 1.0 to prevent gradient explosion [175]. Following Bianchi et

al. [153], we set both distributional priors as trainable parameters. We lower the

learning rate from 2× 10−3 to 3× 10−4 and momentum from 0.99 to 0.9.

4.5.2 Document Embeddings

Following Bianchi et al. [153], we replace the BoW used by ProdLDA with contextu-

alized embeddings from SBERT. We use the ”all-MiniLM-L6-v2” model for encoding

unpreprocessed documents as embedding vectors. BoW embeddings, used to calculate

the log-likelihood of the topic model, are created using preprocessed documents.

4.5.3 Single-step REINFORCE with a Continuous Action
Space

We adopt the view of RL as a statistical inference method [140]. The modernized

inference network from ProdLDA is used to parameterize a continuous action space
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from which an action is sampled, and the policy is computed according to Equa-

tion 4.5. The topic model distribution over vocabulary words uses the product of

experts from ProdLDA. We use REINFORCE to train the network, with a weighted

version of ELBO as the reward. Each document embedding is a state in the environ-

ment, and each episode terminates after a single step (i.e., action). Each action is a

sample from the topic distribution.

4.5.4 Weighted Evidence Lower Bound

Following Higgins et al. [176], we allow modifiable relative entropy between the prior

and posterior by weighting the KL divergence term in the ELBO. We define a hyper-

parameter λ as a multiplier on the KL divergence term.

ELBOweighted = λDKL(P ||Q)− log-likelihood (4.7)

4.5.5 Evaluation Metrics

We track topic diversity, coherence, perplexity, and loss for the training and test sets

if applicable. Topic diversity and coherence are calculated based on the top-K words

in each topic, with K noted for each experiment. We use NPMI coherence with

co-occurence based on full document windows.

Most previous NTMs have only reported the coherence of the final model, pre-

sumably because coherence is not tracked during training for computational reasons.

To enable tracking of coherence during training, we modify a vectorized implementa-

tion of UMass coherence1 to calculate NPMI coherence and add caching for further

speed-up. We also implement a GPU-optimized algorithm to calculate topic diversity

during training.

Tracking these metrics during training provides two main benefits. The first benefit

is that if training is going poorly, it can be terminated. Poor training could be

1https://github.com/maifeng/Examples UMass-Coherence
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caused by component collapse (low topic diversity), or if the model is unable to fit to

coherent topics (low coherence). The second benefit is enabling deeper performance

comparisons between models and between training runs for a single model. Most

existing NTMs only track loss and perplexity during training, so additionally tracking

topic diversity and coherence could provide additional insights on model performance.

4.5.6 Model Parameter Count

The number of parameters (P) in the model differs based on the total number of pa-

rameters across all inference layers (L), the number of topics (N), and the vocabulary

size (V). Trainable parameters are the inference layers, the prior distribution of topics

(N x 1), and the distribution of words over topics (V * N). Total parameters can be

calculated with Equation 4.8.

P = L+N + V ∗N (4.8)

The largest model we use is for the Wikitext-103 data set with 200 topics. This

model has 4,001,224 parameters.

4.6 Results

4.6.1 Initial Experiments

We initially evaluate our topic model on the 20 Newsgroups data set with 20 topics.

Results averaged over 30 random seeds are shown: loss in Figure 4.2, topic coherence

in Figure 4.3, and topic diversity in Figure 4.4. Mean and 90% confidence intervals

are plotted. Topic diversity and coherence are calculated with K = 10. Documents

are preprocessed following Bianchi et al. [153] with the additional step of removing

all words with less than three letters. Models are trained for 1000 epochs with the

AdamW optimizer (α = 3e − 4, β1 = 0.9, β2 = 0.999). We use λ = 5, inference

network dropout of 0.2, and no dropout after the RL policy (policy dropout). All
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other experiments use these same settings unless otherwise noted.

Figure 4.2: Loss (30 seeds): 20
Newsgroups

Figure 4.3: Topic Coherence (30 seeds):
20 Newsgroups

Figure 4.4: Topic Diversity (30 seeds): 20 Newsgroups

Topic Words from Initial Experiments We choose one example of the top 10

words for all 20 topics from the initial experiments on the 20 Newsgroups data set.

We choose the seed with the 15th highest coherence (out of 30 seeds). Topic words

are shown in Table 4.1. Each document in the Twenty Newsgroups data set is labeled

as belonging to one of 20 categories. These 20 categories are shown in Table 4.2.

4.6.2 Comparison to Other Topic Models

We compare our method to recent topic models found in the literature.
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Topic Words

max giz bhj chz pts buf air det pit bos

morality objective cramer moral livesey optilink keith homosexual clayton gay

window xterm widget lib windows font usr mouse motif application

gun guns militia firearms weapons cops weapon amendment semi arms

team players hockey game season nhl games play teams leafs

max giz bhj sale chz shipping offer monitor copies condition

jesus god bible christ christians faith church christian heaven lord

geb banks msg patients gordon pitt disease pain doctor medical

fbi batf koresh compound atf waco sandvik udel fire kent

car insurance cars dealer oil saturn honda engine bmw miles

jpeg image bits display gif file program files format color

clipper encryption key chip escrow keys privacy crypto secure nsa

wire ground circuit connected cable atheism electrical universe keyboard output

israel israeli arab jews arabs peace palestinian attacks bony villages

turkish armenian armenians armenia turks serdar argic turkey genocide soviet

pub ftp anonymous tar graphics privacy mailing archive motif faq

moon space lunar orbit nasa spacecraft henry launch shuttle solar

dog bike dod riding ride motorcycle rider bmw went cops

scsi ide drive controller drives bus disk floppy bios isa

stephanopoulos president jobs myers russia russian administration package launch clinton

Table 4.1: Initial Experiment Topic Words

Category

alt.atheism

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

misc.forsale

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

soc.religion.christian

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

Table 4.2: 20
Newsgroups
Categories

Benchmarking Neural Topic Models (BNTM)

In the beginning, our approach is compared with all models evaluated by Doan and

Hoang [143]. We use their preprocessed documents and replicate their results using

K = 10 to calculate topic coherence. Following the authors, we sweep from 0.5*N

topics to 3*N topics in intervals of 0.5*N (N being the ”correct” number of topics

for each data set). Next, we do a hyperparameter sweep over λ of 1, 3, 5, and 10.

Results are averaged over ten random seeds and shown in Figure 4.5.

Topic Modeling in Embedding Spaces

Next, the comparison is done with Dieng et al. [78] on the New York Times data

set with 300 topics and without using stop words. Results are shown in Table 4.3.
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We increase batch size to 32768 and only train for 20 epochs on one random seed.

Additionally, we increase the number of units in each layer of the inference network

to 512, increase dropout in the inference network to 0.5, and decrease λ to 1. Topic

diversity is calculated using K = 25.

Model Coherence Diversity Quality

ETM 0.18 0.22 0.0405

RL model (ours) 0.24 0.32 0.0778

Table 4.3: Comparison on no stop words data

Pre-training is a Hot Topic (PTHT)

We also compare our model, using all metrics, with the best model as evaluated by

Bianchi et al. [153]. Results are shown in Table 4.4. Metrics are averaged over 25,

50, 75, 100, and 150 topics: 30 seeds for each number of topics. We use the same

preprocessing as the authors. We use λ = 1.

Data Set Paper NPMI Word2Vec Inverse RBO

Wiki20K PTHT best 0.1823 0.2110 0.9950

RL model (ours) 0.2509 0.2368 0.9799

StackOverflow PTHT best 0.0280 0.1598 0.9914

RL model (ours) 0.1249 0.1617 0.9860

Google News PTHT best 0.1207 0.1325 0.9965

RL model (ours) 0.3563 0.1485 0.9934

Tweets2011 PTHT best 0.1008 0.1493 0.9956

RL model (ours) 0.3559 0.1417 0.9962

20 Newsgroups PTHT best 0.1300 0.2539 0.9931

RL model (ours) 0.2696 0.1798 0.9932

Table 4.4: Average metrics from best PTHT model (per metric) and our RL model
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Data Set Paper
NPMI Coherence (N = number of topics)

N = 25 N = 50 N = 75 N = 100 N = 150

Wiki20K PTHT 0.17 0.19 0.18 0.19 0.17

RL model (ours) 0.33 0.30 0.25 0.22 0.19

StackOverflow PTHT 0.05 0.03 0.02 0.02 0.02

RL model (ours) 0.17 0.14 0.12 0.11 0.10

Google News PTHT 0.03 0.10 0.15 0.18 0.19

RL model (ours) 0.38 0.41 0.38 0.34 0.30

Tweets2011 PTHT 0.05 0.10 0.11 0.12 0.12

RL model (ours) 0.36 0.39 0.38 0.35 0.31

20 Newsgroups PTHT 0.13 0.13 0.13 0.13 0.12

RL model (ours) 0.35 0.30 0.27 0.25 0.22

Table 4.5: NPMI coherence comparison between PTHT model and RL model for
each number of topics

Contrastive Learning for NTM (CLNTM)

We compare results with the contrastive Scholar model from Nguyen and Luu [154].

For each data set we perform a hyperparameter search with 50 topics. Search ranges

and best results for each data set are shown in Table 4.6. We use the best hyperpa-

rameters from this search for final training runs with 50 and 200 topics. We train for

2000 epochs. Results are averaged over 30 random seeds and shown in Table 4.7.

To show the tradeoff between topic diversity and coherence, we perform a sweep

over policy dropout from 0 to 0.9 at intervals of 0.1 using the 20 Newsgroups data set

with 50 topics. Other hyperparameters are kept the same. We train for 2000 epochs.

Results are averaged over 30 random seeds and shown in Figure 4.6.

4.6.3 Ablation Study

To provide empirical evidence that performance improvements come from the RL

policy formulation, we do a study ablating relevant changes from the final RL model
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Experiment Layer Size Inference Dropout Policy Dropout λ

Hyperparameter Search {128, 512} {0.2, 0.5} {0.0, 0.25, 0.5} {1, 5}

20 Newsgroups 128 0.5 0.5 1

IMDb Movie Reviews 512 0.5 0.25 1

Wikitext-103 512 0.5 0.25 5

Table 4.6: Hyperparameter search and best results per data set for RL model

Model
20 Newsgroups IMDb Movie Reviews Wikitext-103

50 Topics 200 Topics 50 Topics 200 Topics 50 Topics 200 Topics

Contrastive Scholar 0.334 0.280 0.197 0.188 0.497 0.478

RL model (ours) 0.449 0.308 0.199 0.139 0.432 0.268

Table 4.7: Comparison to CLNTM

down to the original ProdLDA model. All comparisons are performed on the 20

Newsgroups data set with 20 topics and use the same settings as subsection 4.6.1.

Results are averaged over 30 random seeds and shown in Table 4.8.

RL Policy Embedding λ θ Softmax θ / Policy Dropout Coherence Diversity

✓ SBERT 5 × 0.0 0.3848 0.9530

× SBERT 5 × 0.0 0.2795 0.453

✓ BoW 5 × 0.0 0.3379 0.9403

✓ SBERT 1 × 0.0 0.3414 0.9070

✓ SBERT 5 ✓ 0.0 0.1932 0.6927

✓ SBERT 5 × 0.2 0.3769 0.7315

× BoW 1 ✓ 0.2 0.2650 0.7390

Table 4.8: Highlighted results from ablation study

4.7 Data Sets

We evaluate models on the test set where available, and on the training set if there

is no test set. Coherence and diversity for the training and test set are the same,

as they are evaluated on the word distribution over topics which doesn’t change per
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document. In the code, training coherence and diversity are computed after each

batch, while test coherence and diversity are computed after each epoch. Number

of training/test documents and vocabulary sizes are shown in Table 4.9. Average

original and preprocessed training document lengths are shown in Table 4.10.

Data Set Comparison Paper Training Docs Test Docs Vocab Size

20 Newsgroups

This one

11,314 7,532 2,000[153]

[154]

[143] 15,465 N/A 4,134

New York Times [78] 1,864,470 N/A 10,283

Snippets [143] 12,295 N/A 4,666

W2E-title [143] 105,457 N/A 3,703

W2E-content [143] 83,548 N/A 10,508

Wiki20K [153] 20,000 N/A 2,000

StackOverflow [153] 16,407 N/A 2,236

Google News [153] 11,108 N/A 8,099

Tweets2011 [153] 2,472 N/A 5,097

IMDb Movie Reviews [154] 25,000 25,000 5,000

Wikitext-103 [154] 28,472 60 20,000

Table 4.9: Data Sets - Documents and Vocabularies

4.7.1 20 Newsgroups

The 20 Newsgroups data set [177] consists of around 19,000 newsgroup posts from 20

topics. We perform experiments on this data set with three different preprocessing

methods. For our initial experiments, we follow the preprocessing in Bianchi et al.

[153] and additionally remove all words with less than 3 letters. For the comparisons

with Bianchi et al. [153] and Nguyen and Luu [154], we follow the preprocessing in

Bianchi et al. [153]. For the comparison with Doan and Hoang [143], we use their

already preprocessed data set.
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Data Set Comparison Paper
Average Training Document Length

Original Preprocessed

20 Newsgroups

This one 287.5 95.9

[153]
287.5 107.6

[154]

[143] N/A 73.5

New York Times [78] 558.1 484.5

Snippets [143] N/A 14.4

W2E-title [143] N/A 6.8

W2E-content [143] N/A 209.1

Wiki20K [153] 49.8 17.5

StackOverflow [153] N/A 4.9

Google News [153] N/A 6.2

Tweets2011 [153] N/A 8.6

IMDb Movie Reviews [154] 233.8 101.7

Wikitext-103 [154] 295.8 133.2

Table 4.10: Data Sets - Training Document Lengths

4.7.2 New York Times

The New York Times data set [178] consists of over 1.8 million articles written by the

New York Times between 1987 and 2007. We follow the preprocessing from Bianchi

et al. [153], but do not remove stopwords.

4.7.3 Snippets

The Web Snippets data set [179] consists of around 12,000 snippets of text from

websites linked on ”yahoo.com”. The snippets are grouped into 8 domains. We use

the already preprocessed data set from Doan and Hoang [143].
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4.7.4 W2E

The W2E data set [180] consists of news articles from media channels around the

world. The W2E-title subset is the titles from the news articles, while the W2E-

content subset is the text content of the articles. The articles are grouped into 30

topics. We use the already preprocessed data set from Doan and Hoang [143].

4.7.5 Wiki20K

The Wiki20K data set [168] consists of 20,000 English Wikipedia abstracts randomly

sampled from DBpedia. We follow the preprocessing from Bianchi et al. [153].

4.7.6 StackOverflow

The StackOverflow data set [181] consists of around 16,000 question titles randomly

sampled from 20 different tags in a larger data set crawled from the website ”stack-

overflow.com” between July and August 2012. We use the already preprocessed data

set from Qiang et al. [181].

4.7.7 Google News

The Google News data set [181] consists of around 11,000 titles and short samples

from Google News articles clustered into 152 groups. We use the already preprocessed

data set from Qiang et al. [181].

4.7.8 Tweets2011

The Tweets2011 data set [181] consists of around 2,500 tweets in 89 clusters sampled

from the larger Tweets2011 corpus [182] crawled from Twitter between January and

February 2011. We use the already preprocessed data set from Qiang et al. [181].

4.7.9 IMDb Movie Reviews

The IMDbMovie Reviews data set [183] consists of 50,000 movie reviews, each with an

associated sentiment label, from the website ”imdb.com”. We follow the preprocessing
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from Bianchi et al. [153].

4.7.10 Wikitext-103

The Wikitext-103 data set [184] consists of around 28,500 Wikipedia articles classified

as either Featured articles or Good articles by Wikipedia editors. We follow the

preprocessing from Bianchi et al. [153].

4.8 Discussion

For the initial experiments on the 20 Newsgroups data set, the average loss (Fig-

ure 4.2) reaches a near plateau around the 200th epoch. Past this epoch, coherence

(Figure 4.3) continues to increase slowly, and topic diversity (Figure 4.4) increases

substantially until around the 400th epoch, past which it also continues to increase

slowly. It shows that training beyond a plateau in loss can still improve NTM per-

formance.

Compared to Doan and Hoang [143], the RL model performs on par with or better

than other models across all four data sets, while the performance of other models

varies greatly between data sets. On the Snippets, 20 Newsgroups, and W2E-content

data sets, the RL model with lower values of λ usually performs better as the number

of topics increases. However, it reverses on the W2E-title data set where λ = 10

outperforms λ = 1 on the two highest number of topics.

The RL model outperforms the Labeled ETM model from Dieng et al. [78] in

topic diversity, coherence, and quality. Furthermore, this comparison had no pruning

of stop words, showing the RL model can deal with vocabularies containing many

common words.

Compared to Bianchi et al. [153], the RL model significantly outperforms all other

models on all data sets evaluated in terms of NPMI coherence. Furthermore, the RL

model performs similarly to the best of the other models in terms of inverse RBO.

We state the topic diversity used by Dieng et al. [78] is a more useful metric than
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inverse RBO, as it usually has a higher variance in values and is more intuitive to

understand. For Word2Vec coherence, the RL model performs on par with the best

of the other models, except when compared to ETM [78] on the 20 Newsgroups data

set.

If we consider models from Nguyen and Luu [154], our RL model performs simi-

larly on 50 topics but worse on 200 topics. The RL model’s performance on larger

topic sizes and vocabularies could be improved by adding supervised labels, applying

contrastive learning, scaling up inference layer sizes, or performing a hyperparameter

sweep with 200 topics.

Topic diversity and coherence values should be provided when reporting topic

model performance. In Figure 4.6, the highest topic quality is achieved when there

is no policy dropout. Topic diversity can be sacrificed for some gain in coherence.

Applications of topic models may want to maximize topic diversity, coherence, or

both. The description of topic model performance should reflect this.

In the ablation study, removing the RL policy formulation causes the model to per-

form worse than the original one. It confirms RL policy augments the improvements

from other changes to the model. Performance suffers the most when the softmax

distribution is re-added to the topic distribution during training. To recapture the

softmax distribution of topics, it can be applied to the topic distribution during infer-

ence. Adding policy dropout significantly reduces topic diversity and leads to a slight

coherence reduction. Performance improves with SBERT embeddings, and the model

can still reconstruct the BoW within the ELBO without direct access. Increasing λ to

5 improves performance, but as seen from other experiments, this is only sometimes

the case.

4.9 Conclusion

Inspired by the introduction of probabilistic inference techniques to RL, we take the

approach to develop a NTM augmented with RL. Our model builds on the ProdLDA
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model, which uses a product of experts instead of the mixture model used in classical

LDA. We improve ProdLDA by adding SBERT embeddings, an RL policy formula-

tion, a weighted ELBO loss, and the improved NN architecture. In addition, we track

topic diversity and coherence during a training process rather than only evaluating

these metrics for the final model. Our fully unsupervised RL model outperforms

most other topic models. It is only topped by contrastive Scholar —a method using

supervised labels during training —in a few select cases.

We have identified some possible paths for future work. The SBERT embeddings

could be fine-tuned during training rather than calculating them during pre-processing

and freezing them during training. The RL formulation of our model could be ex-

tended to dynamic topic models [72]. More complex PG RL algorithms could be used

rather than REINFORCE, or a baseline could be added to REINFORCE. Exploration

techniques from RL could be applied. The influence of hyperparameters (e.g. infer-

ence network layer sizes) on varied corpora (e.g. those with large vocabularies) could

be explored. The Laplace approximation of the Dirichlet prior could be replaced by

a true Dirichlet prior, making use of the Dirichlet RT [185] and a Dirichlet RL policy

[186]. Finally, λ and the policy dropout could be scheduled during training to provide

an automated tradeoff between topic diversity and coherence.

4.10 Ethics and Limitations

4.10.1 Ethics

All data sets used in this paper are cited. The New York Times data set2 is licensed

under ”The New York Times Annotated Corpus Agreement”3. The Tweets2011 cor-

pus4 is available under the ”TREC 2011 Microblog Dataset Usage Agreement”5 which

2https://catalog.ldc.upenn.edu/LDC2008T19
3https://catalog.ldc.upenn.edu/license/the-new-york-times-annotated-corpus-ldc2008t19.pdf
4https://trec.nist.gov/data/tweets/
5https://trec.nist.gov/data/tweets/tweets2011-agreement.pdf
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additionally requires following the ”Twitter terms of service”6. All other data sets

are obtained from the recent literature. No sensitive information is used or inferred

in this paper. The risk of harm from our model is low. Any artifacts in this paper

are used following their intended use cases.

4.10.2 Limitations

The main limitation identified for our RL model is decreased performance as the vo-

cabulary size increases. Our RL model also has a higher variance than some other

topic models to which we compared. While our RL model performed well on all the

data sets tested, this performance may not generalize to different data sets. The in-

sights from the policy dropout sweep conducted may not apply to other topic models.

The performance difference for NPMI coherence compared with Bianchi et al. [153]

may be overstated since the model in that paper used a deprecated SBERT model

that produces sentence embeddings of low quality7. For the comparison to Nguyen

and Luu [154], we used slightly different preprocessing than the authors. While the

model can work on any languages with associated embedding models, all data sets

used in this paper were in English. Our model has additional hyperparameters com-

pared to some other models. So, it may require more tuning and, therefore, more

GPU computing. The initial model was developed on a system with 8GB of RAM

and a Nvidia GTX 1060 with 3GB of VRAM for a total of approximately 100 GPU

hours. A single run of the model for 1000 epochs on this GPU requires less than an

hour. Experiments using the New York Times data set were run on a system with

256GB of RAM and a Nvidia RTX 3090 for approximately 100 GPU hours. All other

experiments were run on a system with 128GB of RAM and a Nvidia TITAN RTX

for approximately 600 GPU hours.

6https://twitter.com/en/tos
7https://huggingface.co/sentence-transformers/stsb-roberta-large

71



4.11 Reproducibility

4.11.1 Hyperparameters

We show the hyperparameters for each experiment we performed. Experiment seeds

are generated with a meta-seed for reproducibility. The meta-seed is randomly chosen

from integers between 0 and 232. Values in {curly brackets} indicate a search over

multiple parameters. Values in [square brackets] indicate NN layer sizes (e.g. [128,

128] represents two layers of size 128).

Initial Experiments and Ablation Study

We use the same meta-seed for the ablation study as we did for the initial experiments.

Hyperparameters for the initial experiments can be found in Table 4.11. Further

tables for all experiments will only show hyperparameters that differ from this table.

Hyperparameters for the ablation study can be found in Table 4.12.

Benchmarking Neural Topic Models

We show hyperparameters for the comparison with Doan and Hoang [143]. Hyper-

parameters for Snippets can be found in Table 4.13. 20 Newsgroups in Table 4.14.

W2E-title in Table 4.15. W2E-content in Table 4.16.

Topic Modeling in Embedding Spaces

Hyperparameters for the comparison with Dieng et al. [78] can be found in Table 4.17.

Pre-training is a Hot Topic

We show hyperparameters for the comparison with Bianchi et al. [153]. Data set and

seed information can be found in Table 4.18. All other hyperparameters are the same

for each data set; these can be found in Table 4.19.
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Hyperparameter Value(s)

Meta-seed 4174224060

Num. Seeds 30

Num. Epochs 1000

Data Set 20 Newsgroups

Vocab Size 2000

Embedding SBERT

Num. Topics (N) 20

Inference Dropout 0.2

Policy Dropout 0.0

Inference Layers [128, 128]

Activation GELU

Initialization ρ ∼ N(0, 0.02)

Normalization Layer

λ 5

Topic Words (K) 10

RL policy ✓

θ Softmax ×

Learning Rate (α) 3e-4

Adam β1, β2 0.9, 0.999

Weight Decay 0.01

Batch Size 1024

Gradient Clipping 1.0

Table 4.11: Initial Experiments

Contrastive Learning for NTM

We show hyperparameters for the comparison with Nguyen and Luu [154]. Some

hyperparameters are already shown in Table 4.6 and won’t be shown again here.

Data set and seed information can be found in Table 4.20. Other hyperparameters
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Hyperparameter Value(s)

Meta-seed 4174224060

Num. Seeds 30

Data Set 20 Newsgroups

Embedding {BoW, SBERT}

θ / Policy Dropout {0.0, 0.2}

λ {1, 5}

RL policy {✓, ×}

θ Softmax {✓, ×}

Table 4.12: Ablation Study

Hyperparameter Value(s)

Meta-seed 193270011

Num. Seeds 10

Data Set Snippets

Vocab Size 4666

Num. Topics (N) {4, 8, 12, 16, 20, 24}

λ {1, 3, 5, 10}

Table 4.13: BNTM Snippets

Hyperparameter Value(s)

Meta-seed 1216545997

Num. Seeds 10

Data Set 20 Newsgroups

Vocab Size 4157

Num. Topics (N) {10, 20, 30, 40, 50, 60}

λ {1, 3, 5, 10}

Table 4.14: BNTM 20 Newsgroups
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Hyperparameter Value(s)

Meta-seed 4014169843

Num. Seeds 10

Data Set W2E-title

Vocab Size 3703

Num. Topics (N) {15, 30, 45, 60, 75, 90}

λ {1, 3, 5, 10}

Table 4.15: BNTM W2E-title

Hyperparameter Value(s)

Meta-seed 1359128464

Num. Seeds 10

Data Set W2E-content

Vocab Size 10508

Num. Topics (N) {15, 30, 45, 60, 75, 90}

λ {1, 3, 5, 10}

Table 4.16: BNTM W2E-content

are the same for each data set; these can be found in Table 4.21. Hyperparameters

for the policy dropout sweep can be found in Table 4.22.

4.11.2 Ablation Study

We show full results from the ablation study in Table 4.23.
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Hyperparameter Value(s)

Meta-seed 2337766308

Num. Seeds 1

Num. Epochs 20

Data Set New York Times

Vocab Size 10283

Num. Topics (N) 300

Inference Dropout 0.5

Inference Layers [512, 512]

λ 1

Topic Words (K) 10*

Batch Size 32768

Table 4.17: Topic Modeling in Embedding Spaces (*We use K = 25 to calculate
topic diversity for the final model.)

Data Set Vocab Size Meta-seed Num. Seeds

Wiki20K 2000 359491602 30

StackOverflow 2236 1459046441 30

Google News 8099 925040003 30

Tweets2011 5097 1321150024 30

20 Newsgroups 2000 3277797161 30

Table 4.18: PTHT Data Set Seeds

Hyperparameter Value(s)

Num. Topics (N) {25, 50, 75, 100, 150}

λ 1

Table 4.19: Pre-training is a Hot Topic
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Figure 4.5: Comparison of RL model (ours) to BNTM models

Data Set Vocab Size Meta-seed Num. Seeds

20 Newsgroups 2000 1553571489 30

IMDb Movie Reviews 5000 3747305026 30

Wikitext-103 20000 2672751736 30

Table 4.20: CLNTM Data Set Seeds
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Figure 4.6: Dropout sweep for 20 Newsgroups

Hyperparameter Value(s)

Num. Epochs 2000

Num. Topics (N) {50, 200}

Table 4.21: Contrastive Learning for NTM
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Hyperparameter Value(s)

Meta-seed 3432645033

Num. Seeds 30

Data Set 20 Newsgroups

Num. Epochs 2000

Num. Topics (N) 50

Inference Dropout 0.5

Policy Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Inference Layers [128, 128]

λ 1

Table 4.22: CLNTM Dropout Sweep
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RL Policy Embedding λ θ Softmax θ / Policy Dropout Coherence Diversity

× BoW 1 ✓ 0.0 0.2906 0.8457

× BoW 1 × 0.0 0.2373 0.6943

✓ BoW 1 ✓ 0.0 0.2748 0.8905

✓ BoW 1 × 0.0 0.2738 0.8707

× BoW 5 ✓ 0.0 0.2526 0.6598

× BoW 5 × 0.0 0.2619 0.6928

✓ BoW 5 ✓ 0.0 0.2032 0.5965

✓ BoW 5 × 0.0 0.3379 0.9403

× BoW 1 ✓ 0.2 0.2650 0.7390

× BoW 1 × 0.2 0.2193 0.5195

✓ BoW 1 ✓ 0.2 0.2082 0.5692

✓ BoW 1 × 0.2 0.2798 0.7740

× BoW 5 ✓ 0.2 0.2526 0.6222

× BoW 5 × 0.2 0.2257 0.5768

✓ BoW 5 ✓ 0.2 0.1222 0.314

✓ BoW 5 × 0.2 0.3284 0.8092

× SBERT 1 ✓ 0.0 0.2845 0.6207

× SBERT 1 × 0.0 0.2948 0.5995

✓ SBERT 1 ✓ 0.0 0.2158 0.8080

✓ SBERT 1 × 0.0 0.3414 0.9070

× SBERT 5 ✓ 0.0 0.2726 0.4458

× SBERT 5 × 0.0 0.2795 0.4530

✓ SBERT 5 ✓ 0.0 0.1932 0.6927

✓ SBERT 5 × 0.0 0.3848 0.9530

× SBERT 1 ✓ 0.2 0.2532 0.6063

× SBERT 1 × 0.2 0.2554 0.5430

✓ SBERT 1 ✓ 0.2 0.1133 0.5520

✓ SBERT 1 × 0.2 0.3649 0.7663

× SBERT 5 ✓ 0.2 0.2435 0.4478

× SBERT 5 × 0.2 0.2080 0.3698

✓ SBERT 5 ✓ 0.2 0.0967 0.9227

✓ SBERT 5 × 0.2 0.3769 0.7315

Table 4.23: Full Results from Ablation Study
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Chapter 5

Extracting Knowledge Graph
Triples from FragileX Abstracts

5.1 Abstract

We collect two volunteer-labeled data sets from FragileX syndrome PubMed abstracts:

one for named-entity recognition and one for relation extraction. We fine-tune a

biomedical large language model on our FragileX relation extraction data set. We

compare our model to a baseline model fine-tuned on the i2b2 2010 data set. Our

model has lower precision than the baseline, but much higher recall. Our methodology

is slightly outdated due to rapid advancements in language modeling, so we present

some alternatives.

5.2 Introduction

Fragile X syndrome (FXS) is a disorder associated with intellectual disabilities such as

autism spectrum disorder (ASD) and attention deficit-hyperactivity disorder (ADHD)

[187–189]. Large amounts of academic literature exists on FXS, but extracting suc-

cinct and actionable information from this text corpus is difficult. Representing this

information in a compact and readable format, such as a knowledge graph (KG),

would allow trends across FXS literature to be readily accessed and understood.

KGs represent data in the form of triples: a subject entity, an object entity, and

the relation between these entities [61]. Natural language processing (NLP) methods
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have become increasingly popular in recent years for understanding large text corpora.

Two NLP techniques in particular can be combined to discover triples in free text:

named-entity recognition (NER) and relation extraction (RE) [65].

This paper outlines a methodology for collecting a corpus of FXS text, obtaining

human labels of entities and relations within the text, and using this labeled corpus

to train models for predicting entities and relations in unseen FXS text.

5.3 Background

Triples consist of two entities connected by a relation [61]. Extracting triples from

free text requires two steps; relevant entities in the text must be identified, and each

combination of entities must be labeled with a suitable relation, or as unrelated if

no suitable relation exists. NER is a NLP method for identifying entities within free

text. NER involves a model classifying words in a text as entities or non-entities based

on an exact match or sufficient similarity to words from some database or training

corpus [65].

RE is a NLP method for predicting relations between entities [65]. There are

three popular RE data sets for medical relation extraction: drug-drug interactions

(DDI) [190], chemical-protein interactions (CHEMPROT) [191], and the informatics

for integrating biology and the bedside (i2b2) 2010 relations challenge data set [192,

193]. The i2b2 2010 data set, consisting of labeled patient discharge summaries, is

the most similar to this paper’s application and will be used as a starting point for

labeling the new FXS data set. Since its creation, the i2b2 data set has been renamed

as the national NLP clinical challenges (n2c2) data set but will still be referred to

as the i2b2 data set within this paper [194]. The i2b2 2010 data set consists of nine

labeled relations, as outlined in Table 5.1.

An accurate method for RE is fine-tuning a masked language model (MLM) on

some RE data set. MLMs are transformer-based neural network models trained to

predict ”masked” tokens in sentences from large text corpora, and in the process
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Table 5.1: i2b2 2010 Relations

Relation Abbreviation

Medical problem indicates medical problem PIP

Test conducted to investigate medical problem TeCP

Test reveals medical problem TeRP

Treatment is administered for medical problem TrAP

Treatment causes medical problem TrCP

Treatment improves medical problem TrIP

Treatment is not administered because of medical problem TrNAP

Treatment worsens medical problem TrWP

Does not fit into one of the above defined relationships false

learn an approximation of the syntactic and semantic structure of language. Within

sentences from the corpora, certain tokens (i.e. full or partial words) are ”masked”

(i.e. hidden) from the model and the model must predict the correct token. This

process is referred to as pre-training, and a pre-trained MLM can be fine-tuned to

perform some specific task.

The original transformer-based MLM, bidirectional encoder representations from

transformers (BERT), is a popular MLM pre-trained on large text corpora [21]. While

BERT would learn some medical knowledge from sources within its pre-training cor-

pora such as EnglishWikipedia and BooksCorpus, a larger corpus of medical literature

would allow a similar model to perform better on medical tasks. To facilitate this,

a few MLMs were pre-trained on the BERT corpora with an additional corpus of

PubMed abstracts.

One such MLM is ouBioBERT, which was pre-trained on English Wikipedia (2.20

billion words), BooksCorpus (0.85 billion words), and PubMed abstracts (3.11 billion

words) [45]. At the time, ouBioBERT was state-of-the-art on nine of ten tasks in

the BLUE benchmark, including the DDI, CHEMPROT, and i2b2 2010 RE tasks,
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and was therefore chosen as the most appropriate model to fine-tune for this paper’s

applications.

5.3.1 Precision, Recall, and F1 Score

A common metric for evaluating classification models is the F1 score, which is based

on two other metrics called precision and recall [195, 196]. The equations for each

are shown below.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5.1)

precision =
TP

TP + FP
(5.2)

recall =
TP

TP + FN
(5.3)

The abbreviations in these equations are as follows. TP is true positives, or positive

examples labeled correctly by the model. FP is false positives, or positive examples

labeled incorrectly by the model. FN is false negatives, or negative examples labeled

incorrectly by the model. There also exist true negatives (TN), or negative examples

labeled correctly by the model, but this is not used in the above equations.

Precision measures how many of the examples labeled positive by the model were

ground truth positives. Recall measures how many of the ground truth positives were

labeled correctly by the model.

5.4 Methodology

The FXS corpus is created from 78 abstracts relating to FXS. These abstracts were

obtained through a PubMed search. Each abstract is split into its constituent sen-

tences, and for each sentence the medical named entities are identified using the

scispaCy python package. For each combination of two entities within the sentence,
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a relation is predicted from the i2b2 2010 relations (Table 5.1). This prediction was

performed by a version of ouBioBERT fine-tuned on the i2b2 2010 data set by the

authors. A flowchart summarizing this process is shown in Figure 5.1.

Figure 5.1: Envisioned KG generation flowchart

Labeling the corpus of FXS abstracts was performed by twelve volunteers. Ab-

stracts were split up so each abstract would be labeled by three volunteers. For each

subset of abstracts, a volunteer labeled each identified entity as a ”medical problem”,

”test”, or ”treatment”, as these are the three possible entities for relations in the i2b2

2010 data set (see Table 5.1). Entities could also be labeled as none of the above.

For each 2-entity combination from the remaining entities, ouBioBERT predicted the

relation (from a cache of prediction for each possible entity type combination) and

this prediction was presented to the volunteer, who could either agree with the label

or suggest a new label from the i2b2 2010 relations (Table 5.1). Only relations within

the same sentence were considered. An example abstract with entities outlined is

shown in Figure 5.2, and the resulting KG from this abstract labeling is shown in

Figure 5.3.

Two new data sets are created from this volunteer labeling, one for NER and one

for RE. Each data set is split into training, validation, and test subsets. Abstracts

are randomly placed into one of the subsets; 48 abstracts are placed in the training

subset, 10 in the validation subset, and 20 in the test subset. Evaluation of a baseline

model is performed on the new data sets by fine-tuning ouBioBERT on the training
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Figure 5.2: Example abstract with entities outlined [197]

subset and reporting performance on the test subset. The validation subset is used

for comparing model checkpoints during training. For the NER data set, ouBioBERT

is fine-tuned to predict each word as a ”medical problem”, ”test”, ”treatment”, or

none of the above. For the RE data set, ouBioBERT is fine-tuned to predict each

relation as one of the i2b2 2010 relations. Performance on the RE data test subset

is compared between the model fine-tuned on the RE data training subset and the

model fine-tuned on the i2b2 2010 data set.

5.5 Results

We perform experiments on the RE data set created from the volunteer labeling. We

fine-tune an ouBioBERT model on the training subset of the FXS data set, with

early stopping using the validation subset of the same data set. As a baseline, we use

ouBioBERT fine-tuned on the training subset of the original i2b2 2010 data set, with

early stopping based on the validation subset of the same data set. We compare the

results of both models on the test subset of the FXS data set. Results are show in

Table 5.2.
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Figure 5.3: Example KG from abstract

5.6 Discussion

Both models perform fairly well on our FXS data set. The FXS model has slightly

lower precision than the i2b2 model (0.757 vs. 0.847), but has much higher recall

(0.730 vs. 0.528). This shows that our model has much fewer false negatives, but

also more false positives. This shows that there are benefits to both models, and

the larger i2b2 2010 data set teaches the model some things that were not learned

from the smaller FXS data set. Training on both data sets may improve performance

further.

The model we used, ouBioBERT [45], was state-of-the-art in many biomedical

machine learning tasks at the time of doing this research. Since then, many improve-

ments have been made in language modeling and biomedical machine learning. The

current state-of-the-art as of writing this is probably GPT-4 [18], which could be

prompted with a few examples to extract triples from medical text, requiring much

less labeling than was required for our experiments. For reference, GPT-4 got an 84%

(zero-shot) on the United States Medical Licensing Exam [198].

GPT-4 is closed-source, so if one was looking for an open-source alternative there

are a few options. BioGPT was specifically trained for biomedical tasks [51]. Cerebras-
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Label Support
Precision Recall F1 Score Accuracy

FXS i2b2 FXS i2b2 FXS i2b2 FXS i2b2

PIP 304 0.799 0.975 0.717 0.391 0.756 0.559 0.843 0.791

TeCP 254 0.746 0.870 0.776 0.528 0.761 0.657 0.862 0.844

TeRP 58 0.351 0.556 0.224 0.690 0.274 0.615 0.923 0.944

TrAP 136 0.797 0.882 0.926 0.770 0.857 0.823 0.953 0.950

TrCP 4 0.667 0.400 0.500 0.500 0.571 0.444 0.997 0.994

TrIP 5 0.333 1.000 0.200 0.400 0.250 0.571 0.993 0.997

TrNAP 1 0.000 0.500 0.000 1.000 0.000 0.667 0.999 0.999

TrWP 1 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.999

false 137 0.401 0.259 0.474 0.803 0.435 0.392 0.812 0.621

Total 900 0.757 0.847 0.730 0.528 0.742 0.650 0.931 0.904

Table 5.2: Model Comparison

GPT [199] and Pythia [200] were both trained on The Pile [201], which includes a lot

of text from PubMed.

5.7 Conclusion

We compare the performance of two models on the test subset of a volunteer-labeled

FXS data set. Our model is fine-tuned on the training subset of the same data set,

and we compare to a baseline model fine-tuned on the i2b2 2010 data set. Our model

has much higher recall than the baseline, but has lower precision. Our model could

be improved by collecting more data or fine-tuning on both data sets. We believe

there now exist better alternatives for extracting triples from text, such as prompting

GPT-4.
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Chapter 6

Conclusion

We built a domain-specific KG about NDDs to assist medical professionals, caretakers,

and patients. We had multiple medical professionals in the loop during the creation

of our KG, which combines academic knowledge along useful to professionals using

the KG and online information that is more useful to patient and caretakers who

require information in non-academic areas such as financing and services. We hope

our methodology can be applied to other medical domains on the same level as NDDs,

and that these lower-level KGs can be combined into a general medical KG that

contains more accurate information that is more useful to non-professionals.

While creating the KG, we noticed that the topic modeling annotation we used

as one of the annotation methods while creating the KG was not to the level we

would have liked. To remedy this, we began to explore potential improvements to

topic modeling algorithms. We eventually came to the idea of using RL as a topic

model. Our RL topic model outperformed all other unsupervised topic models on

11 different data sets, and even performed favourably against topic models using

supervised labeling. This new RL topic model can be used to augment our KG

creation process, and also for any other application requiring topic modeling.

We also noticed that recent advances in NLP could be applied to directly extract

triples from text. To do this, we created a training set from student annotations

of the abstracts of medical literature about FragileX. We then used this training
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set to fine-tune ouBioBERT, a medical LLM. Due to the rapid advances in NLP, this

method is likely already outdated, as there are better medical LLMs such as BioGPT.

Alternatively, the zero-shot or few-shot learning power of GPT-3 and GPT-4 may be

able to be used to extract triples from text with only a few annotated examples rather

than the many annotated examples we required for fine-tuning.
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