Search
Skip to Search Results- 2Abdi Oskouie, Mina
- 2Birkbeck, Neil Aylon Charles
- 2Cai, Zhipeng
- 2Chen, Jiyang
- 2Chowdhury, Md Solimul
- 2Chubak, Pirooz
- 83Machine Learning
- 76Reinforcement Learning
- 42Artificial Intelligence
- 37Machine learning
- 24Natural Language Processing
- 23reinforcement learning
-
A Framework for Associating Mobile Devices to Individuals Based on Identification of Motion Events
DownloadFall 2020
The ubiquity of the Internet-of-Things (IoT) devices in everyday life allows various sensors to be utilized in networked systems for solving a number of real-world problems. Models utilizing specific sensing modalities achieve impressive performance in understanding human activity and are used in...
-
Spring 2021
Cavalcante Araujo Neto, Antonio
HDBSCAN* is a hierarchical density-based clustering method that requires a single parameter mpts, a smoothing factor that implicitly influences which clusters are more detectable in the resulting clustering hierarchy. While a small change in mpts typically leads to a small change in the...
-
Spring 2022
The world offers unprecedented amounts of data in real-world domains, from which we can develop successful decision-making systems. It is possible for reinforcement learning (RL) to learn control policies offline from such data but challenging to deploy an agent during learning in safety-critical...
-
Spring 2010
We propose a framework for semi-automatically verifying relational database schema mappings for data exchange. Schema mappings for data exchange formally describe how to move data between a source and target database. State-of-the-art schema mapping tools propose several mappings, but require...
-
A Framework for Synthesis of Musical Training Examples for Polyphonic Instrument Recognition
DownloadFall 2018
Music information retrieval (MIR), an interdisciplinary field involving the classifying or detection of structure in music, is essential for processing, indexing, querying and making recommendations from the vast amount of musical data available on the web and in audio library collections. Deep...
-
Spring 2010
In this work, we present a unified, general approach to variance reduction in agent evaluation using machine learning to minimize variance. Evaluating an agent's performance in a stochastic setting is necessary for agent development, scientific evaluation, and competitions. Traditionally,...