National Library
I *l of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
Guality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

! pages are missing, contact the university which granted
the Jegree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter rinbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1870, c. C-30, and
subsequent amendments.

NL-339 (r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de ia
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
runiversité qui a cortére le grade.

La qualité d'impression de certaines pages peut iaisser &
désirer, surtout si les pages originales ont été dactylogra-
nhiées a 'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité iniérieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

Canadi

UNIVERSITY OF ALBERTA

A Framework for Regression Testing
by

Hareton Kam Nang Leung

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA
SPRING, 1992

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Caniada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
Que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve fa propriété du droit d’auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73993-5

Canadil

UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR: Hareton Kam Nang Leung
TITLE OF THESIS: A Framework for Regression Testing
DEGREE: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in associatior with the copyright
in the thesis, and exc=pt as hereinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author's prior written permission.

5638 Lanark Street
Vancouver, British Columbia
Canada V5P 2Y3

March 18, 1992

UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A Framework for Regression
Testing submitted by Hareton Kam Nang Leung in partial fulfillment of the requirements

for the degree of Docior of Philosophy.

i s "
. Ao
\\\ IR

Dr. Plotr Rud icki

di Lyl

ne
l / //;Ll C{ i .
. T “ o 7
. i .
Dr. Stan Cabay
/4"/ ,//ll,;’— p . A N

Dr. Jonathan §chaeffer

.o I .
/"' ’ "J'I',‘{ 4 ‘/

S 7

Dr‘ John Rowland
G . 1

| v

PN A T e

Dr..Jack Mowchenko

March 18, 1992

ABSTRACT

Regression testing is a testing process used to revalidate a modified software system.
Current research has focused mainly on unit (module) level regression testing. This
dissertation develops a comprehensive strategy for software regression testing at unit,
integration and system level, based on selecting a subset of the previous tests (selective
retest). As part of the development of these strategies, I have also classified the common
errors and faults in combining modules into a working system, and describe a test selection
strategy for integration. The concept of a firewall is introduced to reduce regression
integration effort. It is shown that re-integration of all modules 3 not needed for all
modifications. This result implies that large saving can be realized through selective retest.

The proposed regression testing framework has been evaluated based on four
successive modifications of a program. The experimentation shows that this strategy is
more cost-effective than the rerest-all strategy which reruns all previous test cases, using
only 34 percent of the tests used by the retest-all strategy.

Global variables continue to be widely used despite their many undesirable effects on
software maintenance. This dissertation also analyzes the complication in regression testing
associated with the use of global variables. It is shown that global variables testing is not
more difficult than parameters testing.

This dissertation also answers the question on the economical advantage of using a
selective retest strategy and the retest-all strategy. A cost model has been developed and the
conditions urder which the selective strategy will be more economical than the retest-all
strategy have been established. This result can be used to identify the most cost-effective
regression strategy o be used for a given change situation.

Acknowledgements

I would like to express my deepest appreciation to my thesis supervisors: Dr. Lee
White and Dr. Piotr Rudnicki for their guidance, encouragement and continuous support.

I would like to thank other members of the supervisory committee: Dr. Stan Cabay

and Dr. Jonathan Schaeffer for their critical review and suggestions which helped to
improve the thesis.

I would like to thank Dr. Jack Mowchenko, Dr. Paul Sorenson and Michael Lewchuk
for many constructive comments, and Paul Godreau, Allan Randall, and Dr. Keith Smillie
for supplying the test programs.

Table of Contents

Page
Chapter One: InmodUuCtON iiiiiiiii it 1
1.1. Research OVeIVIeW. . ittt 2
1.2. Basic Concepts and Terminologycoviniiiiiiieiieieiieiiinenn. 4
1.3. Regression TesURG. . o.coviiiieiiieiiiiiiiiiiia ittt tnnaas 6
1.4. Relationship 10 TESHNE «..ovuiiiiiiiii e 7
1.4.1. Testing Techniques.......ooiiiiiiiiiiiiiie, 7
1.4.2. Differences between Testing and Regression Testing.............. 9
1.4.3. Similarities between Testing and Regression Testing.............. 10
1.5. Review of Regression Testing Methods...........oocoiviiiiiiiiiieiienn. 10
1.6, Overview of DiSSertationooieuriiiitiiiriniieeenaiacensienntisieataaacaae. 12
Chapter Two: Characterization of Regression Testing..........ooooiiiiiiiiiiiiiiiinn. 14
2.1. Regression Testing ASSUMPLONS....occeiiiuiiiiiiimmiite 14
2.2. Types of Regression Testing.......cccccoooiiiiniiiiininnees rebeerereararaas 19
2.3. Principles of Regression Testing.......ccoooiiiiiiiiiiiiiiaiieiiiiinees 21
2.4. Problem DecompoSiion........oiiiiiiiiiiiiiiiiiiiiiiiiiiiaiiiiiieiaieneee 22
Chapter Three: Impacts of Modifications on the Test Set......ccooeviieiennne eeeneeans 24
3.1. Test Classes for Regression Testingcoovieniniiiiiiiiiaiiii, 25
3.1.1. Evolution of a Test Set...cciiiiiiimimiiiiiiiiens 26
3.1.2. Levelsof Use Of TeStS.couiiiiiiiiiiiiiiniiiiiiiiiaiieiiiiiiieannss 27
3.1.3. ANEXample ..c..coiiiiiiiiiiii 29
3.2. Non-redundant Test Set......ooiiiiiiiiiiiiiiiiiiiiiiiiiiiaaie e 30
Chapter Four: Regression Testing at the UnitLevel ..o 35
4.1. Corrective Regression Unit Testing Strategy (CRuT)o.oooil 35
4.2. Progressive Regression Unit Testing Strategy (PRuT)..................... 38
4.2.1. A Srrategy for Progressive Regression Unit Testing............... 40
4.2.2. Test Selection Considerations........ccoceeiveieieiiiiiuinininenaee. 41

Chapter Five: Regression Testing at the Integration Level ..., 44

S5.1. AnlIntegration Testing Model............o.ooo 45

5.2. Common Errors and Faults in Calling Another Module 37

5.3. Seclecting Tests for Integration Testing..........coooccooiiiiin 19

5.3.1. INterface TeSIS ..ucnuuurneeenetnentatta e iieeeeeaaas 50

5.3.2. Functiona! TestS ..ouumiiiiiiiii i 50

5.4. Regression Integration Testing ... 51

5.4.1. Independent InStructionscooceiiiiiiiiiiiiiiiii 52

5.4.2. Basis Cases for Re-integraton of Two Modules................... 53

5.5. TheNotionofaFirewallo 59

5.5 Consvuectinga Firewall oo 63

5.5.2. Anlovanple. ...l e e 65

5.5.3. Practical Application of the # ir2=yatl Concept.......ooooeiieenine. 65

Chapter Six: Regression Testing at the System Level.......c...ooooi 67
6.1. A Model for System Testingcevvniinennnnnae. e 67

6.2. A Test Coverage CriterioN.......cooiiiiiiiiiiiiiiiiiiiiiii 68

6.2.1. Interface SUDCIIEION ..o vvrni i 70

6.2.2. Structural Subcriter on. ... 73

6.3. Regression System TeSUNEouviiiriiiiiiiiiiiiiiie 79

6.3.1. Corrective Regression System Testing (CRsT)....ccccccenniiinnn. 50

6.3.2. Progressive Regression System Testing (PRST)................... 80

Chapter Seven: Regression Testing Programs Containing Global Variables............ ..84
7.1, ATestngModel...coovnnnniiiiiiiiiii e 85

7.2. Basis Cases for Testing Parameters................coiiiiiiiiiiiiiiia 87

7.3. Global Variables as Parameters..........ooooviiiiiiiiiiiiii i 88

7.4. Testing Global Variablesccoooiii i 91

7.5. A Regression Testing Strategy for Global Variables........................ 92
Chapter Eight: A Regression Testing System and a Cost Modelo.ooinn 96
8.1. AnOverview of ReTestS......ccooiiiiiiiiiiiiiiiiiiiii e 96

8.2. Components of ReTestS. ..o 99

8.3. Comparing the Relative Cost of Regression Testing Strategies............ 101

8.3.1. ATestCostModeloouniiiiiiii i 102

8.3.2. Cost of Regression Strategies........ccccooiiniiiiiiiini, 103

Chapter Nine: Empirical Results ..o s 107
9.1. Applying the Regression Strategyc..ovvnminiianiieiieiin. 107

9.1.1. The Program Under Test........cooooiiiiiiiiiiiiiiiiiiiieiinn. 107

9.1.2. The EXPEriMent..oiuimiitieiieaiiitiiiiiiiaaeitaeaeenea e 108

9.1.3. Testing the Original Programooiiiiiiiiiiiiie. 110

9.1.4. Program Modifications and Regression Testsc...... 111

0.1.5. RESUIS . ..iititiiieiiiiatteataationaeienaseeneeenssontasasennnaeneanns 114

9.1.5.1. Test Effort Results.....c.ccooiiiiiiiiieiiiiiiiiiii. 115

9.1.5.2. Test Effectiveness Results............ooooiiiiiiiin. 115

9.1.5.3. Additional Resultsooiiiiiiiiiiniiiieiiia, 116

0.2, Test COSt StUAY..ccieirieiiimimiiiiieiir ittt 117

9.2.1. Test Selection and Result Checking Costsoiiviiian. 118

0.2.2. Test EXecution CoOSt.uuuueuiiiiiiianaee e iiaiiiianaaaasns 119

Chapter Ten: Concluding Remarks........coiiiiii 120
10.1. SUMMATY ittt ittt iiaeeaaaetaa et ettt nnaaaaananneenes 120

10.2. Future Researchccoouiiiiiiiiiiiiiiiiiieiiieiiia ittt e eaaaaes 122

S (=) 4= 11 = R 124
Appendix I: An Overview of Integration Strategiesoooiiiiiiiiiiiiiiinn. 130
Appendix II: Independence of Regression Testing and Integration Strategies............. 135
Appendix III: Glossary of Terms and Symbolsccoooiiiiiiiiiiiiiiiee 137

VITA 141

...

List of Tables

Page
Differences between Corrective and Progressive Regression Testing................ 21
Classification of Tests According to Changes......c..ccoocviiiiiiiiiininiinnne, 26
The Effect of Modificaiononthe Test Plan..............coooooiiiiii it 10
Breakdown of Tests Used for Regression Integration Testing........................ 58
Representing a Global Varnable asaParameter ... 91
Modification Characteristics and Regression Tests............ooooviiiiiiin i 114
Detected Seeded EITOrsuuuuiiiiiiiiiiiiii e 116
Average Execution Time per Test......cooiiiiiiiiiiiiiiiiiiiie, 119
Integration Order for Bottom-up Testing ... 131
Integration Order for Top-down Testing.........cooooooiiii 132
Integration Order for Sandwich Testingcocoiiiiiiiiii 133
Integration Order for Build Testing...........cccoooiiiiiiiii . 134

-
.

A A o o

[S I e e e e
© v ® N W A~ W N = O

21.

List of Figures

Page
Specification and Implementation of FindStudentbyNamecooiiieninne 20
FEvolution Of @ Test S t. .. iiiiietiiitaiaaaiie ettt iiiaaaasaeniiaseeenasotteenenaieeeens 28
An Example Program ..ot 29
NTS: Algorithm to Compute a Non-redundant Test Set............ooooiiiiiiinnns 32
A Component-Test MatriXuiiieiioiiiniiiiiiiiiii i 33
The Regression Testing Process of CRuT........cooooiiiiiiiii. 36
Notations for Progressive Regression Testing...................... e ieaeeeenaas 39
Algorithm for PRUT ..o 42
Algorithm for Computing Scope of Influence...........cccooiiiiiinniiiininnn 53
Boundary Cases for Firewall ConstruCtion........c.cocooiiiiiiiiiiiiiiiiien 60
A Use of Basis Cases and a Calculationof aFirewall ..., 66
Data Structures Used for System TeStNg.......oocoiiiiiiiiiiiiiii.. 69
A Subsection of the Input Graph of StudentDatabase..............ccooiiiiiiiiin. 72
Constructing a Calling Order Graph.........cooiiiiiiiii 75
The Procedure for Constructing a Calling Order Grapho.ooini veeen 16
An Example Construction of a Calling Order Graph..............ooooii e, 76
Calling Order Graph of Program StudentDatabaseccoociiiiininn. 78
The Procedure for Corrective Regression System Testing ... 81
The Procedure for Progressive Regression System Testing.......cccccooveeeneneeene. 83
Potential Effect of a Global Variable on Other Modules ..., 84
Different Pairs of References to a Global Variableooiiiiiiin, 89
Relations between a Global Variable and Changed Code..............ccoooiailaen. 93
Some Examples Where Global Variable Testing are Required........................ 95
Structure of ReTestS ... oo i i et e 98
Cost Relationship Between the Retest-all and Seiective Strategies 105
Call Graph of Program StudentDatabasecoceveiiiiiiiiiiiiiiiiiiiinn 109

A Section of the Call Graph of Program StudentDatabase.........ccocceveerinneiis 131

Chapter One

Introduction

Many people have realized that software and its applications will evolve as it is
adapted to changing environments, changing needs, new concepts and new technologies.
Software will grow in the number of functions, components and interfaces. Old modules
may be expanded for uses beyond their original design. Thus, software modification and
evolution are inevitable [30, 46, 71, 80]. Much of the time spent on software maintenance
is in modifying and retesting the software. Efficient and effective regression testing can
reduce the cost of maintenance.

Regression testing is a testing process which is applied after a program modification
to detect errors introduced during modification and to increase one's confidence that the
modified progr.m still meets its specification. It involves exercising the modified program
with some existing tests and new tests to re-establish confidence that the program will
perform according to the (possibly modified) specifications.

The problem of regression testing is not the same as the problem of testing, as most
people have assumed. Regression testing generally involves testing the portion of the
program affected by the modification, instead of the whole program. It is needed
throughout the life of a product, once after every modification, while testing is done during
the development of the product or its enhancements.

The traditional regression testing strategy was to repeat all the previous tests and re-
testing all the features of the program [9, 69], even for small modifications. For
programming-in-the-large, the cost of retesting the entire system is expensive if attempted
after every modification. This practice is becoming increasingly difficult because of the
demand for testing the new functionalities and correcting errors with limited computer and
human resources.

An efficient solution to regression testing can bring great benefits to software
developers. Several studies have indicated that software maintenance and modificetion can
require over 50 percent of the total life-cycle cost [S1, 82]. For some projects, the
maintenance cost can be higher. For example, for a given weapuis system, about 25
percent of the software life-cycle costs are for development, and 75 percent for maintenance
[70]. Also, the increasing number of software applications being deployed may turn
software maintenance into a major subindustry by the close of the century, if not sooner
[15]. Much of this maintenance activity involves modifications to, and regression testing
of, existing programs. Therefore the importance of the regression testing process in
software development cannot be overstated. Yet, there has been little work done in this
significant area.

A good solution to the regression testing problem brings two key benefits:

(1) Improved product quality
Given that there is no accepted sirategy for regression testing and the
practitioners seem to retest in an ad hoc manner, any systematic strategy
would, on average, increase the software reliability. The resulting product
should have fewer errors and fewer failures. Another benefit of following a
systematic strategy is that the software can be subjected to the same degree of
retesting by anyone who follows the strategy. The process of retesting no
longer depends on the experience and expertise of test analysts. As a result,
software developed with the strategy will have the same predictable quality.

(2) Reduced maintenance cost
Regression testing is an essential component of every maintenance job. If we
can find a method which requires less testing, but also thoroughly tests the
program, the saving in human and machine resources can be tremendous.

1.1. Research Overview

Although regression testing is a key component of software development and
maintenance, the state of the practice is highly individualized and no systematic strategy is
followed. Regression testing can be made more efficient with strategies that emphasize
partial retesting rather than rerunning all existing tests after a software modification (that s,
the retest-all strategy). The reest-all strategy is usually costly due to program size and
testing frequency, but this is currently a common practice. The underlying hypothesis of
partial retesting is that a small modification to a system often has a small impact and
therefore a "focused" retest will be more efficient than the retest-all strategy and equally
effective.

This dissertation represents a fundamental study of the rcgression testing problem.
An effective, efficient and systematic approach to regression testing has been developed. In
particular, I have developed a regression testing framework which can provide a significant
saving over the retest-all strategy. Although regression testing is currenty receiving more
attention, most proposed methods are restricted to testing at the unit level [3, 23, 79]. There
is a lack of research in strategies for regression integration and regression system testing.
In this dissertation, I h.ve analyzed all three phases of the regression testing problem: unit,
integration and systen iesting, and developed regression testing strategies for each of these
phases.

Two types of regression testing have been identified: one involves only
implementation changes while the other includes specification changes. This classification
is important because each type of regression testing requires different degree of testing
effort. The first type of regression testing requires a simpler testing process than the second
type because more tests can be reused.

The effect of system modifications on the existing test set is also studied. The tests
can be categorized into five major classes depending on the modification. This classification
provides a basis for the test selection process. By focusing on the impact of the
modifications on the existing tests, it is possible to identify which tests will be useful in
retesting the system, which tests have become obsolete, and which tests should not be
repeated because they will give the same resuits as before.

-2.

Integration testing is an important phase of the testing process which has not been
thoroughly studied. Although integration strategies are well-understood, there is a lack of
research on the test selection problem. This dissentation has developed an error model and
identified the common errors in software integration. These errors usually arise because of
a misunderstanding of the specification of the called module. I have developed a regression
testing strategy based on the integration testing of a set of basis cases involving a pair of
modules with at least one of them modified. Various use levels of the integration tests have
also been identified. These results can be used to estimate the retesting effort for a given
change situation.

The notion of a firewall is introduced to encapsulate all the modules which should be
re-integrated after a modification. It is shown that a complete re-integration of all modules
is generally not required. This result can be used to substantially reduce the retesting effort
while maintaining the same test effectiveness.

Before developing a regression system testing strategy, I first introduce a test
coverage criterion which can be used as a termination criterion for system testing. All too
often, system testing is based purely on functional tests. My system testing strategy is
based on both functional testing and the testing of the user interfaces and a special set of
module combinations derived from the calling order of modules. An experimentation of the
retesting framework indicates that this system testing strategy is easy to apply and effective
in detecting faults.

Despite the existence of global variables in many software systems, testing global
variables has traditionally been overlooked by the testing community. A global variable is
a variable which is referenced by a module other than the one containing its declaration.
This dissertation also analyzes the problem of regression testing programs that contain
global variables. It is shown that global variables can be treated as extra parameters for
testing purposes. Thus, global variable testing should not be more difficult than parameter
testing.

The dissertation also answers the question of the relative cost benefits of the selective
retest and retest-all strategies. A cost model for comparing regression testing strategies has
been proposed. This model is based on realistic assumptions that are supported by
empirical data. The conditions under which a selective retest strategy .; more economical
than the retest-all strategy has been established. The result can be used to identify the most
cost-effective retesting strategy to be used for a given change situation.

Finally, the proposed framework was used to test four successive modifications of a
550 line Pascal program and the results indicated that this framework can save over 65
percent of the tests required by the retest-all strategy, while providing the same test
effectiveness. This experiment suggested that the strategy is superior to the retest-all
strategy since it requires fewer tests and has the same test effectiveness. Empirical data was
also collected to validate the cost model assumptions. The data from a case study suggested
that the assumptions on the dependency of selection, execution and result checking costs on
the number of tests are valid.

The remainder of this chapter describes the background information for the research.
Section 1.2 introduces the basic concepts and terminology to be used throughout the
dissertation. Section 1.3 describes regression testing. Section 1.4 gives an overview of the
testing techniques and discusses the relationship between regression testing and testing.
Section 1.5 reviews several regression testing methods and points out their common

-3-

weaknesses. Since many new concepts and terms will be introduced in the foilowing
sections and chapters, a glossary is provided in Appendix III for easy reference.

1.2. Basic Concepts and Terminology

To facilitate the presentation, this section defines the basic concepts and terminology
that will be used. A module is a discrete and identifiable part of a program with respect to
compiling, combining and loading with other program units. A module may invoke other
modules and may be invoked by other modules. A module can be viewed as a logically
separable part of a program and is constructed to encapsulate a single system function or
opcration such as sorting a list of names in alphabetical order. Our view of module is more
limited than other definitions. For our purposes, a module is not the same as a class in
SIMULA, a module in MODULA, or a package in Ada, but is like a procedure or a
function in Pascal.

A call instruction is an instruction which invokes another module; the common
syntax of a call instruction is the name of the called module, followed by thie actual
parameter list. For simplicity of presentation, the module parameiers will not be shown
unless they are required for the discussion. Call(B) will be used to denote a call instruction
to module B.

A modified module is a module which has undergone some modifications such as
additions, deletions, or changes to some instructions within the module. A new module is a
module which was added to the program. A deleted module is an existing moduie which
was removed from the program. An affected module refers to a modified, new or deleted
module. Similarly, an affected instruction refers to a modified, new or deleted instruction.

A program usually consists of 2 number of modules. The calling relationship between
these modules can be represented by a call graph or a structure chart. A call graph is a
directed graph showing the control hierarchy of a prograra with rectangles representing
modules. An arrow from module A to module B indicates that module A may call module
B. Module A is an ancestor of module B if there exists a path (a sequence of calls) in the
call graph from module A to B; B will be called a descendant of A.

A structure chart describes the system as a hierarchy of parts in the form of a tree. It
is derived from a data-flow diagram with each component formed from those components
lower in the tree. Each component may become a program module and is represented by a
rectangle. The links between rectangles are labeled with annotated arrows. An arrow
entering a rectangle implies input and that leaving a rectangle implies output. For the
following analysis, a call graph is sufficient to express the calling relationships between
modules.

To simplify the analysis, we assume that there is no recursive calls in the program
and therefore the call graph will be a tree. Observe that the call graph does not show the
invocation order of the modules during an execution of the program. A new graph structure
that captures this information will be introduced in Chapter Six.

The control structure of a module can be represented by a control flow graph,
G = (N, E, ng, np, where N is a set of nodes and E is a set of edges in N x N. Each node

in the graph represents an executable instruction, while the edge, denoted by (n;, n)),
indicates that a possible transfer of control exists from node n; to node n;. A node of the

control flow graph can represent an assignment statement, an input or output statement,

-4.

the conditional expression of an if-then-else, or the conditional ¢xpression of a while
statement. For example, a node representing a conditic- ~1 expression will be called a
conditional node. The conditional expression will be treu.ed as an instruction, called a
conditional instruction.

We assume there exists a single entry point, the start node, ng, and a single exit point,
the final node, ng, in the control flow graph. If necessary a null node can be added to the
graph for the start node and likewise for the final node to convert the graph into single-
entry, single-exit.

A subpatk from n;to n; ., ; of length k is a list of nodes (n;, ..., n; ;. ;) such that
for all j,1<j < i+k-2, (nj, n:, ;) € E and not all n; are necessarily distinct. A path isa
subpath that begins at the start node, ng, and ends at the final node, ne Some paths may be
nonexecutable due to contradictory conditions on the transfer of control along theni. A path
is feasible if there exists input data which causes the path to be traversed during program
execution. Each module is composed of a set of paths. Some modules may have an infinite
number of paths due to the presence of program loops. The control flow graph represents
all possible paths in a module.

An instruction trajectory is a feasible path that can actually be executed for some
input. An instruction trajectory can be used to compute the structural coverage of a test set.
We will consider an instruction trajectory modified if any instruction in the trajectory is
modified even though it contains the same sequence of instruction identifiers. A module
trajectory is a trace of modules executed by a single test. A module trajectory is similar to
an instruction frajectory except that the elements recorded are module identifiers rather than
instruction identitiers.

A use of variable v is an instruction in which this variable is referenced. A definition
of variable v is an instruction which assigns a value to v. Let USE(J) be a set of variables
whose values are used in instruction J and DEF(J) be a set of variables whose values are
defined in instruction J [28]. A path (n,, n,, ..., ny) containing no definition of variable

v in nodes n;, ..., n; is called a definition-clear path with respect to (w.r.t.) v from node n,

to node ny.

Given instructions J and K, there is a direct definition-use relation from J to K
(written as J>>K) if there exists a variable v such that

(1) ve USE(K),

(2) ve DEF(Q), and

(3) there exists a definition-clear path from n; to ng, w.r.t. v.

Given instructions J and K, ther is an indirect definition-use relation from J to K if
there exists instructions L, ..., L,, a2 1, such thatJ >> L, L; ; >>L;, L, >> K,
l<isn.

A program component is any subset of instructions of a program. It can be a single
instruction, a branch, a segment (basic block), a sequence of instructions between a
definition and a use of the same variable, or two instructions with one definition and
another use of the same variable. This notion of a program component is more general than
that of Weyuker [73]. Weyuker's component of a program is a contiguous sequence of
statements. By her definition, a component is a section of the program which is single-
entrant, and may consist of several subpaths. Weyuker’s program component is based on
the program text, while ours is based on the subpaths of the control flow graph and does
not need to be a contiguous sequence of statements.

-5-

The terms error, fault, and failure commonly cause confusion. An error is a mental
mistake made by a programmer or designer. A fault is a software defect which can cause a
failure. A faiiure occurs whenever the software system fails to perform the required
function according to its specification.

1.3. Regression Testing

Regression testing is a major component in the maintenance phase where the software
systemn may be corrected, adapted to new environments, or fine-tuned and enhanced to
improve its performance. Software maintenance is defined as the activities required to keep
a software system operational and responsive after it is accepted and placed into production
[52].

There are three types of modifications, each arising from a different type of
maintenance. According to Lientz and Swanson [50], corrective maintenance, commonly
called a "fix", involves correcting software failures, performance failures, and
implementatior: failures to keep the system working properly. Adapting the system in
response to changing data requirements or processing environments constitutes adaptive
maintenance. Finally, perfective maintenance covers any enhancements to improve the
system processing efficiency or maintainability. A study by Glass [20] has shown that 60
percent of the maintenance effort is spent improving the software product, 18 percent is
spent on changes required by environmental factors, 17 percent is spent fixing errors, and
5 percent is spent elsewhere.

Regression testing is also needed during the late stages of development, since
changes to a software system are not confined to the maintenance phase. Many changes are
made to the software system prior to delivery. After the coding phase, and near the end of
the testing phase, any change may entail regression testing, rather than testing anew. At this
stage, a well-developed test plan should be available. It makes sense to reuse the existing
tests, rather than designing all new tests, in retesting the program after it is corrected for
any errors.

Modification may involve implementation change, specification change, or both. The
code change may involve minor modifications such as adding, deleting, rewriting a few
lines of code, or major modifications such as adding, deleting or replacing one or more
modules or subsystems. During adaptive or perfective maintenance, new modules are
usually introduced. The specification of the system should be modified to reflect the
required improvement or adaptation. However, in corrective maintenance, the specification
is not likely to be changed and no new modules are likely to be introduced. Most
modifications involve adding, deleting and modifying instructions. Many program
modifications occurring during the development phase are similar to that of corrective
maintenance when faults identified during code inspection and testing are corrected. The
specification is unlikely to be modified for this kind of code modification. However, if a
conceptuai design error was made or the specification was misunderstood, the resulting
program modification is similar to the case of changing the program specification. In this
case, the program modification may be viewed as adaptive or perfective maintenance.

1.4. Relationship to Testing

Many people have assumed that regression testing is just a simple extension of testing
and there are no major differences between these two processes. This section first reviews
two common testing techniques and then compares the regression testing process to that of
testing. It will be shown that although regression testing is different from testing in many
respects, they both possess the same important characteristics.

1.4.1. Testing Techniques

There are two common tes:ing methods. The first method is to generate tests based on
the specification, that is, black-box testing. One common specification-based testing
method is functional testing as described recently by Howden [34, 35]. The key idea in
functional testing is that a program is considered as constructed of a series of functions,
ranging from very low level to high level functions, which are a synthesis of low level
functions. Program functions are represented by program components and represent
different programming ideas which should be individually tested. Testing is complete when
all elementary statement-.evel, intermediate design-level, and program-level functions are
tested.

Howden described two types of functions: requirements functions and design
functions. Requirements functions describe the overall functional capabilities of a program,
while design functions are used to implement requirements functions. For example, a text-
string processor requirements function may need design functions such as get-next-char-
type, extract-words and word-lengti:.

In functional testing, the test 2nalyst first identifies the functions which are supposed
to be implemented by the program, and then selects test data that can be used to check that
the program implements the functions correctly. The functions may be identified from the
design documents if they are available, or reconstructed from the code and specification
documents. Guidelines for the identification of functions and the construction of tests have
been developed by Howden [31, 34]. According to these guidelines, it is obvious that both
the identification of functions and the selection of tests require human guidance.

The second common testing method is white-box testing, which bases test selection
on the source code. The most popular white-box testing is structural testing which selects
tests based on the control or data flow structures of a program [36, 44, 45, 59, 61, 62].
Structural testing (for example, statement, branch, or data flow measures such as data
contexts [44], or required-pairs [59]) requires the test analyst to design tests to satisfy a
testing criterion, which usually requires ceriain components of a program, or some
combinations of them to be exercised. In practice, one test is selected to exercise each
component once and rarely more than once. If no error has been detected using this testing
strategy, then the test analyst's confidence in the reliability of the program is increased.
Software reliability is the probability that a software system will operate without failure for
a specified time in a specified environment. Tests created from black-box testing techniques
will be called specification-based tests and those from structural testing structural-based
tests.

Specification-based tests may be used as structural-based tests, but the converse is
not true. Since all specification-based tests execute some components of a program, their

-7-

trajectory results can be included for structural coverage measures. Consequently,
specification-based tests may be used to satisfy the structural coverage criteria. However,
not all structural-based tests can be used as specification-based tests because some of them
are designed to test a certain program component and this program component may have no
functional meaning by itself; it is solely used with other components to synthesize a
function.

Both structural-based and specification-based testing methods have deficiencies. In
structural-based testing, one test is usually selected to exercise each program component.
However, certain errors along a path can only be detected if the path is executed with
specific values from its input subdomain. Thus executing each program component with
one test may not be sufficient to discover these errors. Another shortcoming of structural
testing strategies is that if a part of the system specifications is not implemented by the
program, then it will not be tested. For example, the control structure of the program may
be incorrect so that a part of the specification is not implemented. Consequently, structural
testing will not have tests for testing this part of the specification.

Specification-based testing strategies also have their own weaknesses. For example,
there may be errors in the code that are encountered only under conditions specific to the
implementation, but these conditions are not indicated in the specification. Specification-
based testing will not create tests to test this section of the code.

Note that exercising the same program component or the same function with multiple
tests is necessary in some situations, although this is rarely done in practice. For example,
for functions which are critical to the operation of the system, it is advisable to run more
tests to validate its correctness. Another situation that would warrant more testing is when a
certain program component is expected to be error-prone. Then more tests should be
chosen to exercise this component even though the structural coverage will not be
increased.

The input partition concept [64] can be used to illustrate that multiple tests for a
program component or a function are beneficial. The test selection strategy of structural
testing or functional testing may be viewed as a way of partitioning the input domain. For
example, when we use a structural criterion such as all branches, we are grouping all input
which exercise a program branch into the same group. However, faults are not generally
“partitioned" the same way (with one fault per input partition) as assumed by the structural
testing criterion. Thus, there will be cases where more than one failure causing input are
present in an input partition. It follows that one iest from each input partition may not catch
all faults. This supports the common understanding that multiple tests for the sarne program
component or function are beneficial.

Empirical research indicates that using functional testing or structural testing alone
cannot detect all errors in a program [32]. Many researchers in the field have advocated that
both testing techniques be used to complement each other. A common pracsice in testing is
to first generate specification-based tests, and then augment a test set with additional
structural-based tests until the structural coverage criterion is satisfied.

In the following analysis, we will assume the following unit testing strategy is used
to test each module. This strategy is similar to the testing practice of leading edge software
orgaaizations. During unit testing, each module is tested in isolation, independent of other
modules. This testing may require the use of drivers and stubs to simulate the behavior of
other interacting modules of the module under test. Both functional and structural-based

-8-

tests are used. Functional tests are chosen from both the system and design specification,
and are executed first. Additional structural-based tests are chosen to satisfy the structural
coverage criterion. It is assumed that each program component as required by the structural
criterion will be exercised at least once and the test analyst will not try to select more tests
than required to satisfy the structural criterion.

1.4.2. Differences between Testing and Regression Testing

(D

2

3

4

&)

(6)

The major differences between testing and regression testing are described below:
Availability of test plan

Testing begins with a specification, an implementation of the specification and a test
plan with tests added during the specification, design and coding phases. All these
tests are new in the sense that they have not been used to exercise the program
previously.

Regression testing starts with a possibly modified specification, a modified program
and an old test plan which requires updating. All tests in the test plan should have
been previously run and can be assumed to be useful in testing the program.

Scope of test

The testing process aims to check the correctness of the whole program, including its
individual components and the interactions of these components. Regression testing
is concerned with checking the correctness of parts of a program. The portion of a
program which is not affected by modifications need not be retested.

Time allocation

Testing time is normally budgeted before the development of a product. This time can
be as high as half the total product completion time. However, regression testing time
is not normally included in the total product cost and schedule. Consequently, when
regression testing is done, it is nearly always performed in a crisis situation. The test

analyst is normally urged to complete retesting as soon as possible and most often is
given limited time to retest.

Development information

In testing, knowledge about the software development process is readily available
and up-to-date. In fact, the testing group and the development group may be the
same. Even if an organization has a separate testing group, test analysts can usually
query the developers about any uncertainty in the software. But in regression testing,
the program information may not be up-to-date. Since regression testing may be done
at a different time and place, the original developers may no longer be available. This
situation suggests that any relevant development information should be retained and
updated continuously if regression testing is to be successful.

Completion time

The completion time for regression testing should normally be less than that for
testing since only parts of a program are being tested.

Frequency

Testing is an activity which occurs frequently during code production. Once the
software product is put into operation, testing is completed and any further testing
wiil be considered as regression testing. Typically, regression testing is applied many
tumes throughout the life of a product, once after every modification.

-9.

1.4.3. Similarities between Testing and Regression Testing

Two fundamental aspects of regression testing are similar to that of testing.

Purposes

The purposes of testing and regression testing are quite similar. They both aim to:

(1) increase one's confidence in the correctness of a program, and

(2) detect errors in a program.

Some additional goals of regression testing are to:

(3) preserve the quality of the software
The modified software should be at least as reliable as its previous version; this
may be achieved in many ways. One possible method is to irisist that the new
software version achieves the same structural coverage as the old version (for
example, if the previous testing included tests that traversed all branches of the
program, then the new tests should also traverse all branches of the new
software version). Since the previous structural coverage is judged adequate to
ensure reliability, it is logical to apply the same criterion to the new software
version.

(4) ensure the continued operation of the software
This is an important goal because some users may become dependent on the
software product, and software developers have a responsibility to continue to
provide the same service to users.

Testing techniques

1.5.

Since tests in a test plan depend on the chosen testing technique, the testing technique
used by both testing and regression testing should be the same if the regression
testing process involves the reuse of existing tests.

Another reason for using the same testing technique is that it is easier to evaluate the
quality of two software products if they are tested by the same technique. With the
current state of the art, it is difficult to compare the relative effectiveness of two
different testing methods. For example, a program which has been successfully tested
using symbolic execution [4, 8] is not necessarily more "correct” than the same
program tested using functional testing. Thus, to quantify the degree of testing of two
versions of the same program, it is essential that the same testing techniques be
applied to both of them.

Review of Regression Testing Methods

Only a few regression testing methods have been introduced in the research literature.

Recently, regression testing research emphasized retesting only the modified and new
features of the program. Harrold and Soffa [23] describe an incremental approach to
regression testing. This approach assumes the modules are validated entirely using data
flow testing [62]. A major feature of this method is that only the parts of the module
changed or affected by a change will be reanalyzed and retested. Although this regression
testing method concentrates on unit regression testing using a white-box testing technique
(structural testing based on data-flow coverage), it has recently been extended to include

-10-

interprocedural testing by Harrold and Soffa [24]. A data flow testing method is combined
with incremental data flow analysis to aid in unit and integration regression testing.
Harrold and Soffa is developing a prototype tool which implements their strategy {23, 24].

Another regression testing tool that was based on input partition testing strategy was
introduced recently by Yau and Kishimoto [79]. Input partition testing strategy [64] divides
the input domain of a module into different classes using both the program specification
and code, and requires one test be selected from each input class. The objective of
regression testing is to execute each new or changed input partition at least once. Symbolic
execution is used to identify those input domains which are not modified and to aid in test
generation. This regression testing strategy selects a subset of the previous tests and some
new tests to exercise the modified code. Similar to most regression tools, this tool
concentrates on unit regression testing.

This approach does not work well for programs which are non-numeric because
symbolic execution is better suited to numeric programs than non-numeric programs. Also,
because symbolic execution has difficulty in evaluating symbolic expressions for programs
with logically complex paths, this approach cannot be applied to such programs.

Benedusi, et al. {3] recently describe a regression testing method for unit structural
testing based on path testing strategies. After a module is modified, path difference analysis
is performed on the two module versions. Different types of paths (cancelled, new,
modified, and unmodified) are then identified and the appropriate old tests are reused and
new tests are created. Like most regression tools, this tocl only deals with unit regression
testing.

Another regression tool has been introduced by Hartmann and Robson [27]. This tool
extends Fischer's method [16] for test selection from the previous test set. Fischer uses
zero-one integer programming to find a minimum set of tests which can cover all program
segments. Four tables are used to record the control flow relation between program
segments, reachability between segments, tests which cover the different segments, and
variable use and define information within each segment, respectively. A series of
inequality constraint expressions is created, one for each program segment, relating those
tests which traverse the segment. The objective function relates the cost of running every
test to individual tests. In this model, all costs are assumed to be the same and are setto 1.
Given the program segments that have been modified, standard linear-programming
techniques are used to solve for the objective function which can then be used to derive the
minimum number of tests that must be rerun to validate a given modification. Recall that the
linear programming problems may terminate with a non-integer solution. To arrive at a
zero-one solution, additional constraints and iterations may be needed.

The prototype tool under development by Hartmann and Robson [27] extends
Fischer's method to include programs writien in the C programming language, programs
with several modules, and segments that have multiple uses of variables. Since this tool
also uses zero-one linear programming, it suffers from the same set of computational
problems associated with other zero-one linear programming problems. Observe that this
tool implicitly assumes a white-box testing technique (segment cover) is used and cannot
be generalized to include black-box testing.

We can summarize the characteristics of the regression tools described in the literature
as follows:

¢ Most of them apply one testing method (either white-box or black-box testing).

-11-

« Most restrict themselves to unit testing and do not address integration or system
testing.

+ Most of them are either under development or in a primitive prototype form.
None of them is in production use, indicating the difficulty in producing such a
tool. This can be partly explained by the fact that any regression tool should be
coupled with a testing tool because both regression testing and testing should use
the same testing technique.

1.6. Overview of Dissertation

In the next chapter, we describe our testing model which assumes that the previous
testing had satisfied the testing criterion and a good test plan is available. Two types of
regression testing will be identified: corrective regression testing and progressive
regression testing. The principles of our regression testing strategies are described in
Section 2.3. Section 2.4 przsents a decomposition of the regression testing problem into
two subproblems: the test selction problem and the test plan update problem. This research
focuses primarily on the test szlection problem.

Chapter Three deals with the effect of program modification on a test set. We
categorize tests inio five classes and show the evolution of a typical test set in terms of
these five classes. Depending on the program modification, certain properties of a test may
be reused. Section 3.1.2 identifies three use levels of a test, based on the extent of usable
information associated with the test. A rarely described property of a test set is the
redundancy of tests. A redundant test is a structural test which exercises the same program
components as those exercised by another group of tests in the test set. Section 3.2 defines
a non-redundant test set to be a test set with no redundant tests and introduces an algorithm
for computing such a test set.

Chapters Four, Five and Six develop strategies for unit, integration and system
regression testing with no specific testing for global variables. Since global variables
require a new set of considerations, they are treated separately in Chapter Seven. The
regression testing strategies for corrective and progressive unit testing are presented in
Chapter Four. Section 4.1 gives the regression testing strategy for modifications that are
restricted to the implementation and Section 4.2 discusses the corresponding strategy for
specification changes.

Chapter Five deals with test selection for integration testing and regression integration
testing. Section 5.2 identifies the common errors and faults that may occur when one
module calls another module. A common mistake occurs whenever the calling module has
an incorrect expectation of the called module. Integration testing objectives and test
selection strategy are described in Section 5.3. Section 5.4 presents the regression testing
strategies for various basic types of modifications involving two modules with at least one
of them modified. The level of use of existing tests has been determined for these basic
cases. Section 5.5 introduces the concept of a firewa!l, and shows a procedure for its
construction.

In Chapter Six, a test coverage criterion that can be used as a termination criterion for
system testing is introduced. System testing is completed when all the software functions
are tested and the structural-interface criterion is satisfied. A regression testing strategy for
system testing is also presented. This strategy emphasizes reusing the previous analysis

-12-

and tests. Testing expenses are therefore reduced because fewer tests and less analysis are
needed.

Global variables have been widely used in practice, despite their undesirable impacts
on software maintenance. Chapter Seven studies the complication due to the occurrence of

global variables. Insights into regression te-. .. >rograms that contain global variables are
presented. It is shown that global variat. =~ an be treated as parameters and tested
accordingly.

In Chapter Eight, the design of a regression testing system - ReTestS is outlined.
Conceptually, ReTestS may be viewed as a single environment which provides many
capabilities useful for performing all aspects of the regression testing process. Section 8.3
analyzes the cost of testing and a model of test cost is developed. In Section 8.3.2, a cost
comparison of using a selective retest strategy and the retest-all strategy is presented.

Chapter Nine describes the application of our regression strategy to an actual software
system. It was found that our strategy was equally effective as the retest-all sirategy, but
required fewer tests (using approximately 34% of tests). Also, empirical data was collected
to support the assumptions used in building the test cost model in Section 8.3. Finally, a
summary of the dissertation and work for future research is given in Chapter Ten.

-13-

Chapter Two

Characterization of Regression Testing

Every regression testing strategy has its own set of assumptions: some are implicit
while others are clearly stated. In this chapter, we present our regression testing model. In
Section 2.1, assumptions about the testing process, test plan and change information are
described. This research focuses on functionality modifications and does not consider
modifications to resource dependencies and data structures. The all-essential assumption is
introduced to cut down on the amount of analysis and forms the basis of our test selection
criteria. A model for system specification is also outlined in this section.

Section 2.2 classifies regression testing into two major categories: progressive
regression testing and corrective regression testing. The former involves modification to the
specification while the latter does not and only involves implementation changes. The
principles of our regression testing strategy are described in Section 2.3. Section 2.4
breaks down the regression testing problem into two subproblems: the test selection and the
test plan update problems. Selecting tests for regression testing depends on three different
criteria. A given regression strategy may be characterized by its set of selection criteria.

2.1. Regression Testing Assumptions

Many of the following assumptions are based on the common testing practices.

Testing Process

The testing process is assumed to be structured into three phases: unit testing,
integration testing, and system testing. Each phase provides its own effectiveness with
respect to detecting certain faults. In a cost-effective testing process, each phase should
work in concert with the other phases, and should concentrate on finding faults which
cannot be easily detected by other phases. At the same time, for faults which can be
detected by several phases, resources should not be expended in duplicating the same
testing effort.

At the initial stage of our research, we were looking for new methods for regression
testing. However, we quickly realized that the testing method used for both the initial
testing and regression testing should be the same based on the identical procedure principle
to be described in Section 2.3. Thus, this thesis focuses primarily on regression testing and
does not attempt to introduce any new testing method, except in those situations when no
testing method is available. By assuming that the initial testing has adequately tested the
program, we then analyze the regression testing problem and develop regression strategies
based on the initial testing method. We will not concern ourselves with the intricate details
of test selection and strategy during the initial testing.

-14 -

Many test selection strategies have been advanced (8, 34, 44, 61, 64, 77] and the
relative effectiveness of these strategies has been compared [13, 22, 33]. No one strategy
has proven to be consistently superior than the others. It has been generally accepted that
multiple testing methods such as functional and structural testing should be used together
to test the software systems.

It will be assumed that the test set includes both types (spccification-based and
structural-based) of tests so that each module is unit tested with both functional and
structural tests. Furthermore, the functional testing is assumed to have sufficient tests to
test the identified functions of the modules [34]. For structural testing, a structural coverage
measure is used and tests are selected so as to provide the required coverage {7, 44, 62].
The coverage measure can be any control-flow or data-flow criteria such as all-branches
and all define-use pairs.

The key requirement of an adequare test set is that it has tested all the functions of the
software system, exercised all the required program components for satisfying the
structural testing criterion and provided confidence to the test analyst that the system is free
of error. If such an adequate test set can be regenerated for a changed program version,
then regression testing can terminate since this version has achieved the same "degree of
testing”" as the previous testing. Guidelines for generating an adequate test set can be found
in [10, 34, 38, 44, 62].

This test process model is similar to the current practices of many leading-edge
software organizations.

Test Plan

As described in Chapter One, a test plan storing the previous tests is needed if the
regression testing strategy aims to reuse some of the previous tests. We will assume that
the previous test plan is available. This assumption should hold in most large software
organizations, although the information stored in their test plans may not be as extensive as
our test plan.

There are three major components in a test plan: test component, dynamic
component, and static componert. The test component stores the tests used and their
expected output. The dynamic component stores the information collected during test
execution such as the instruction and module trajectories; it represents the behavior of the
program for different inputs. The sratic component of a test plan records some static
information about the program such as the control flow information in the form of a
control flow graph, and the data flow information in the form of define-use chains.

Some information that can aid the testing process can be extracted from the program
code and specification without exercising the program. Almost all the development
information (for example, functional analysis and design trade-off decisions) may be used
to design tests. Therefore, it is essential that this information forms part of the test plan and
is kept in a database for easy lookup. Also, by performing a static analysis of the source
code, information such as the location of branches, loops, and define-use chains can be
derived and used for computing the structural coverage measure.

One can actually store less information in the test plan. In fact, the test component is
the minimum data that should be stored since the other two components can be regenerated
when needed. The dynamic component can be generated by rerunning the tests, and the
static component can be obtained by repeating a static analysis of the program. However,

-15-

since this information is available during testing, it should be stored for later use, so that

effort for regeneration can be avoided.

Next, we introduce 2 simple data structure which is useful for storing the dynamic
information of the program. A component-test matrix records the program components
such as instructions. branches, segments, and modules exercised by each test. For
example, a branch-test matrix stores the program branches traversed by each test, while a
module-test matrix records the modules traversed by each test. The component-test matrix
is represented by [Aij], l1<i<ec, 1<j<t, wherec is the total number of components, t the
total number of tests, Aij = 1 if test j traverses component i, and Aij = 0 otherwise.

The actual component-test matrix produced will depend on the testing phase and the
type of structural testing. For unit testing, one can use an instruction-test, a branch-test or a
segment-test mawix, and for integration and sy stem testing, a module-test matrix may be
more space effective. Fischer. et al. [16] have previously called the segment-test matrix the
test case cross refererce matrix.

The Test Plan assumptions can be summarized as follows:

(1) The Test Plan stores all three components and the dynamic component is represented
by several component-test matrices.

(2) The Test Plan includes a resting guideline which is a complete specification of the
testing process given the test design strategy, the coverage measure achieved, and the
procedure for handling obsolete tests.

Some test analysts may decide to remove the obsolete tests from the test plan, while
others may keep them as illegal tests. The advantage of the latter approach is that repeatng
the obsolete tests provides some confidence that the program does not regress to the
previous versions. However, the test plan tends to grow larger and requires increasingly
more testing effort.

Changes information

The test analyst will obtain a list of modifications made to a software product from the
software maintainer. In particular, the test analyst is given the modified specification, and a
list of modified instructions, from which the modified modules can be determined. Without
this info:mation, the test analyst would have to retest the whole program and the cost of
testing cannot be reduced. This assumption is realistic and represents the current practices
of most software organizations. Some organizations may have automated tools to identify
the changes, while others may rely on a manual process.

The All-Essential Assumption

Not every instruction traversed during an execution affects the output. On a particular
path, there may be some instructions which do not affect any output variables {(in terms of
control flow and data flow), while the same instructions may affect output variables on
another path. More formally, each instruction in a module can be viewed as performing a
subcomputation. Each path can be viewed as performing a path computation which consists
of the subcomputations represented by every instruction in the path. Some instruction may
be executed and yet produces no effect on the path computation.

To reduce the required analysis after each modification, the following simplifying
assumption will be made:

-16-

All-Essential Instruction Assumption:
Every instruction on a path affects the overall path computaton.

The all-essential instruction assumption implies that if an instruction is executed by t
tests, then its subcomputation is used by all t tests. If an instruction J is modified, then all
tests which traversed J should be rerun because some change may have occurred to the path
computation.

Observe that the all-essential instruction assumption may not hold for ali modules.
For example, a common programming practice is to place all initializations of variables at
the beginning of the program. Some of these initializations may have no effect on a
particular execution of the program. For modules which do not satisfy the all-essential
assumption, the major effect of making this assumption is to produce a conservative
analysis. It is better to be safe by including more details rather than leaving out some
important ones.

There is another version of the all-essential assumption which applies at the system
level. In many cases, although the affected modules and their affected instructions are
known, it may require a detailed analysis at the instruction level to determine their impact
on the existing tests. To avoid this analysis, the following assumption can be made:

All-Essential Module Assumption:

Every module on a module trajectory affects the overall computation of the
module trajectory.

This assumption has similar implications as the all-essential instruction assumption: if
a module M is modified, then all integration and system tests which traverse M should be
rerun. Similar to the all-essential instruction assumption, this assumption may not hold for
all programs. Some modules only pass parameters on to other modules and may not affect
the overall computation of a particular execution of the program.

Specification

It will be assumed that during the specification phase, the software specification is
created and that it gives a precise and unambiguous description of the software
functionality. This specification describes what the software as a whole will do without
describing the means by which it will be accomplished. The focus is on the software's
intended behavior as seen from an external viewpoint. This specification will be used as an
oracle for gauging the correctness of the implementation and is the primary input to the
design phase.

During the design phase, the software specification is further refined into a detailed
specification. The detailed specification is a set of specifications about the overall program
structure, the interfaces and interconnections among modules, and the functionality of each
module. The detailed specification includes the design specification of each module which
gives all input and output or computation relationships of a module. The design
specification presents a low-level view of the software that focuses on the functionality of
each module. It is highly dependent on the design decisions made during the design phase.

The interdependencies between modules of a program can be formally described
using a Module Interconnection Language (MIL) [11]. The first MILs represented

-17-

intermodule dependencies simply by listing the resources provided by each module, and the
resources required by each module. A resource is an entity that had a representation in the
implementation language. For example, function, type definition and variables can be
resources. The interface of a module is characterized by the set of resources it provides and
the set of resources it requires. These early MILs all described the module interface using
the syntax of the implementation language.

Modern MILs use the notion of abstract interface specification, which is similar to the
specification of a typical abstract data type [58]. The functional properties of the resources
are specified in a nonprocedural, implementation independent language. This language
depends on the specification method used. For the purpose of this research, it will be
assumed that the module interdependencies are expressed with a language that resembles
the early MILs.

Before presenting the model for the design specification, we first define the inpuz
domain of a module. A given implementation of module M can be characterized by its
input domain and the computations for these inputs. An input variable of M is a variable
which appears in 2n input instruction or an input parameter of M. Typically, input variables
can be of different data types. LetI = (yy, ...,) be a vector of input variables of M, YJ-
be the domain of the input variables y;, which is a set of values that y; can be assigned.
The input domain of M is the cross proéuct DIMi=Y;x..xY . A module input to M is
defined to be a single point y in the m-dimensional input domain D[M].

The design specification of module M describes M at a higher level than the actual
implementation. A design specification can be viewed as describing a function, which can
be composed of partial functions. Each partial function defines a computation over a subset
of the input domain of the module, and can be viewed as a conceptual unit that can be tested
independently. Following Richardson and Clarke's model [64], each partial function will
be represented by a subspec. Each subspec S of module M is described by (C[S], D[S)),
where C[S] is the subspec compu® ‘tion, and D[S] the subspec domain. C[S] specifies the
computation to be done or the expected outputs for module inputs in D[S]; D[S] represents
the set of input data for which the subspec is defined. A design specification is assumed to
consist of a finite set of subspecs.

From the design specification, the specification domain of the module M is defined
to be the union of the subspec domains, DS[M] = D[S;] u ... U D[S;], where k is the total
number of subspecs in M. Any input from outside DS[M] is assumed to be unacceptable to
M and M shculd output an error message. If the implementation is correct, then the input
domain D[{M] should be the same as the specification domain DS[M].

Any specification language can be used for the design specification. However, in
applying our model, the description should be reformulated as subspec domains and their
associated computations. In the late stages of the design phase, the design specification is
assumed to be written in a language that is similar to a common programming language
that includes more abstract operations. For example, the specification language may
represent the repetition of 2 computation by a closed form expression using some high level
notations such as summation and user-defined functions.

For the purpose of our experimentation, we use SPA (Specification for Partition
Analysis) [63] as the design specification language. SPA is a hybrid language which
extends PDL and Ada and combines predicate calculus and procedural constructs. SPA
constructs include conditional values, existential and universal quantixication, finite

-18-

summation and product, assertions and encapsulations for abstract data types and the Ada
programming language constructs.

An example of the design specification and its implementation is given in Figure 1.
Procedure FindStudentbyName is one of the procedures in program StudentDatabase,
which will be studied in detail in Chapter Nine. This program allows the user to create a
student database which records the student names, identification numbers and assignment
marks, to enter new records and delete old records, to update assignment marks, and to
display statistical information about the class marks. We will use various parts of this
program to illustrate new concepts throughout the thesis. Procedure FindStudentbyName
checks whether an entered name is in the existing student database. A pointer to the student
record matching the entered name will be returned if such a name exists in the database;
otherwise a boolean flag will be set to indicate that the name is not in the database.
NameEnter is the symbolic name for the input value of the student name to be searched;
Studentlist represents the list of student records, and Found represents the boolean flag
indicating whether the entered name is in the student record list.

2.2. Types of Regression Testing

Two types of regression testing can be identified based on the possible modification
of the software specification. Progressive regression testing involves a modified software
specification. Whenever new enhancements or new data requirements are incorporated in a
system, the specification should be modified to reflect these additions. The regression
testing process involves testing a modified program against a modified specification.
Because of the changes to the specification, many existing tests no longer give the correct
input-output relation. Consequently, these tests cannot be reused to test the program.

In corrective regression testing, the specification does not change. Only some
instructions of the program and possibly some design decisions are modified. This has
important implications because the specification-based tests in the previous test set should
be valid in the sense that they correctly specify the input-output relation. Thus, many
existing tests may be used to test the modification. However, because of possible
modifications to the control and data flow structures of the program, some existing
structural-based tests are no longer testing the previously targeted program components.

Corrective regression testing is often done after some corrective action is performed
on the program. Some examples of corrective action include fixing an error that is
discovered during system testing, correcting a performance failure that occurs during
maintenance, and enhancing the program performance by optimizing its code. This type of
change usually involves minor modifications to the implementation.

Corrective regression testing will not include regression testing which is done after
correcting a misunderstanding of the specification. If the specification is misunderstood,
resulting in incorrect implementation of functionalities, then the correction required will be
major, that is, some modules may be deleted, and new maodules or invocation sequences
may be added. In other words, the calling structure of a program may be changed
significantly. Corrective regression testing should only involve changes to a few
instructions, possibly distributed in several modules. These changes usually do not affect
the calling structure of a program.

-19-

procedure FindStudentbyName
Resource required:
NameEnter: name to be searched
Studentlist: a list of student records
N: Number of records in the student record list
Resource provided:
StudentPointer: pointer to the student record which matches NameEnter
Found: a boolean flag showing whether NameEnter is in Studentlist
Case
NameEnter in Studentlist =>
StudentPointer = index of the student record which matches NameEnter
Found = true;
NameEnter not in Studentlist =>
Found = false;
endcase;

Specification of FindSudentbyN

procedure FindStudentbyName(Student: StudentList;
NameEntered: string;
var Found: boolean;
var StudentPointer: integer;
CountOfStudents: integer);
var
index: integer;
begin
Found := false;
for index := 1 to CountOfStudents do
begin
if (NameEntered = Student{index].Name) and (not Found)
then
begin
StudentPeinter := index;
Found := true;
end;
end;
end; { end of FindStudentbyName }

- o of FindStudentbyN

®igure 1. Specification and Implementation of FindStudentbyName

-20-

Table 1 lists the major differences between corrective and progressive regression
testing. Typically, progressive regression testing is done after adapiive or perfective
maintenance, while corrective regression testing is done near the end of the testing phase in
the development cycle and after corrective maintenance. Since adaptive or perfective
maintenance is typically done at a fixed interval, for example, every six months,
progressive regression testing is usually invoked at regular intervals. By contrast, program
failures can occur any time and most of them need to be corrected immediately. Thus,
corrective regression testing may be invoked after every correction.

Corrective regression testing Progressive regression testing
» Specification is not changed « Specification 1s changed
« Involves minor modifications to code « Involves major modifications
(e.g., adding and deleting statements) (e.g., adding and deleting modules)
e Usually done during development » Usually done during adaptive and
and corrective maintenance perfective maintenance
» Many tests can be reused » Fewer tests can be reused
 Invoked at irregular intervals « Invoked at regular intervals

Table 1. Differences between Corrective and Progressive Regression
Testing

The same two classes of regression testing can be applied to the unit testing level.
Progressive regression testing should be applied to those modules whose detailed
specification has been changed. If no change is made to the detailed specification, then
corrective regression testing can be applied to the changed modules. In general, a given
modification may involve both types of regression testing at different levels. For example,
the system level may require corrective regression testing while the unit level may require
both progressive and corrective regression testing.

2.3. Principles of Regression Testing

This section lists the underlying principles of our regression testing strategies.

Extensive Reuse Principle:

An economical way of retesting is to reuse as many previous tests and analyses as
possible, since this will reduce the effort needed to design new regression tests. Our
strategy places heavy emphasis on reusing the previous test plan.
Identical Procedure Principle:

The regression testing process should follow the same procedure as the testing
process and the same standard should be applied to both processes. In particular, if
the testing process requires storing certain dynamic information, then the regression
testing process should also store that information. If the testing process is required to
satisfy a certain structural coverage criterion, then the regression testing process
should strive to achieve the same coverage measure.

-21-

Dynamic Information Principle:
To selectively reuse tests in a test plan, information relating the tests to the program
code must be stored, along u+th the input-output relationships. For example, if the
instruction trajectory is stored for each test, this information can be examined to
identify whether the program modification has affected any instruction in the
trajectory. If the changes do not affect any of these instructions, the test, which can
be either specification-based or structural-based, need not be re-executed because it
will give the same result. The stored information should allow a test analyst to
determine those test results that may be affected by the code changes.

Adequate Testing Principle:
The correctness of software cannot be regression tested into it; the software should be
properly tested in the first place. If the software is poorly tested during development,
then large regression testing effort will be needed to improve the overall reliability of
the software. By applying both functional and structural testing techniques with
automated test tools, a software system can be validated to a reliable level where the
probability of a failure is minimal. The previous testing should have adequately tested

the program so that regression testing can concentrate on testing the modified and
affected code.

2.4. Problem Decomposition

The problem of regression testing may be broken down into two subproblems: the
test selection problem and the test plan update problem. The test selection problem is
concerned with the design and selection of tests to fully test a modified program. A
regression testing strategy which reuses previous tests must identify:

(1) Which previous tests to reuse?

(2) What new tests to design?

After the program modification, the test analyst must use two test selection criteria: a reuse
selection criterion, R, for selecting tests from the previous test set and a new selection
criterion, N, for selecting new tests.

_We will call the test selection criterion used to generate the previous test set the
original selection criterion, O,. This criterion can be any selection criterion such as data
flow analysis, functional testing, or a combination of them. A given regression testing

strategy can be characterized by its reuse, new and original selection criteria. For example,
Harrold and Soffa's strategy uses data flow testing as the test selection criteria for R, N,

and O, [23); Yau and Kishimoto use a partition analysis criterion for all three selection
criteria [79].

Although it is obvious that the regression testing strategy depends on N_ and R, itis
less clear that the strategy should depend on O_. Since O, provides the set of tests from
which R will make its selection, O, indirectly influences the tests that will be chosen by R,
and contributes to the effectiveness of the test selection strategy.

R, is unique to regression testing and different R have been proposed [23, 79].

Traditionally, every test in the current test set is repeated. Thus, the retest-all reuse selection
criterion selects all existing tests:

RAL{tlte T(OL))
-22-

where T(O,) represent the current test set created using O,.

Recently, many proposed regression testing strategies use a reuse selection criterion
that is the same as N and O, [23, 79]:

RS2Me = N_=O,.

The unstated objective of these strategies is to achieve the same degree of testing of the
modified software as the original program.

To achieve the same degree of testing, it is necessary for N, to subsume or equal to
O.. A test criterion TC, subsumnes another test criterion TC, if any test set which satisfies
TC, will also satisfy TC,. In some sense, TC, subjects the software to "more thorough™
testing than TC,. For example, path testing subsumes branch testing, which in turn
subsumes statement testing.

It is more cost-effective to use a N that is the same as O, since a more "powerful”
critérion usually requires more effort for test selection. Most of the proposed regression
strategies have N = O,.. Likewise, R can be any criterion which subsumes O in order to
achieve at least the same degree of testing of the modified program as the original one.

The reuse selection criterion of our regression testing strategy is

R.O:{t! texecutes the affected components or modules & te T(O,)}

Basically, we make use of the all-essential instruction and the all-essential module
assumptions. R © can be shown to subsume structural test selection criteria such as all-
branches and all-define-uses. One advantage of R © is that it does not require extensive
analysis in selecting the tests. Another obvious advantage is that fewer tests are selected
than the retest-all strategy (thatis, IT(R.9) | < IT(Rca“) 1, where ix | represents the cardinality
of the set x).

The second subproblem of regression testing is the test plan update problem which
deals with the management of a test plan as a program undergoes successive modifications.
After regression testing, the previous database storing the testing information must be
updated to reflect the new testing results. As described in Section 2.1, the test plan
includes the following information: test cases and their objectives, dynamic and static
components and the achieved structural coverage. Certain old tests will become obsolete
and new tests must be added to test the affected codes and features of the software. A
software feature is defined as a specific function in the software system and can be
identified from the software specification; it represents a user-perceived functionality of the
system and is usually implemented by a group of modules.

The test plan update problem may be defined as follows:

Test Plan Update Problem:
Given a program P, and its specification S, a test plan T which satisfies the
testing criterion A, a program P' which is a modified version of P, and its

specification S', generate a test plan T' which satisfies testing criterion A from
T, P, S, P and S

-23-

Chapter Three

Impacts of Modifications on the Test Set

Before reusing tests from the current test set, the effect of program changes on the
test set must be identified. Each test executes some program components and if any of these
is modified, then the test needs to be repeated because it may give a different result. Also, if
the program changes affect the original purpose of the test, then the test may need to be
examined to check its validity. For example, some test may be designed to execute a
specific instruction in the program; if this instruction is deleted, then the test may no longer
serve any useful purpose.

This chapter first looks at the effect of code changes on the previous test set. Section
3.1 introduces five test classes which can be used to determine the "reusable” tests. A
model of the evolution of the test set is also described. An example showing the
application of these test classes is given in Section 3.1.3.

A rarely analyzed property of a test set is the redundancy of certain tests. The
redundant tests are structural tests which can be removed from the test set without affecting
the achieved structural coverage. In Section 3.2, the concept of a non-redundant test set is
introduced to capture the idea of a test set which contains no redundant tests. A linear
algorithm is developed for computing such a test set.

We first give the definitions to be used to describe the implementation changes. A
change objective for program P is a user requirement which cannot be satisfied by P. This
requirement can be an existing requirement which was not implemented or a new
requirement added to the system, and can occur during maintenance or the testing phase of
the development cycle. Some examples are: adding or deleting a software feature, and
improving the efficiency of the program. Some change objectives may involve specification
modification, while others, such as those for debugging and spare-parts maintenance,
normally require only code modification. In spare-parts maintenance, an entire module is
replaced by another module which implements the same specification and has a "better"”
implementation. To achieve the change objective, a new version P* of P must be created.

An instruction change of an instruction J can be any change to J such as changing the
operands, operators, or the computation, the deletion of J, or the addition of a new J,
which accomplishes a change objective. A module change of a medule M is either a set of
instruction changes of M, the deletion of M, or the addition of a new M, which
accomplishes a change objective. A program change is a set of module changes which
accomplishes a change objective. Each change objective may involve many module
changes, which in turn may involve many instruction changes. A code change will be used
to refer to either a module change or an instruction change.

Some code changes also imply a specification change. Any change to a call
instruction will involve a specification changz to the called module because either the input

-24 -

parameters, output parameters, or both are changed; consequently, the input/output
specification of the called module is modified.

3.1. Test Classes for Regression Testing

A code change may affect the validity of tests in the previous test set. Some impact of
the changes may bz identified from the relationship between the source code and the actual
changes; others must be determined dynamically by executing the program. This section
first gives the test classification for progressive regression testing and then a simpler one
for corrective regression testing.

After a modification is made to the specification, tests in the previous test set can be
classified into the following mutually exclusive classes. Note that if a specification is

modified, then the program components implementing the specification must also be
modified.

(1) Reusable tests (RuT) - This class includes both specification-based and structural-
based tests. RuT test the unmodified parts of the specification, and their
corresponding unmodified program components. Observe that any tests which test
the unmodified parts of the specification will remain valid. Reusable tests need not be
rerun because they will give the same results as previous tests. Although reusable
tests will not be used to test the modification, they should nevertheless be kept in the
test set because they can be used for testing future modifications.

(2) Retestable tests (RtT) - This class includes both specification-based and structural-
based tests which should be repeated because the program components being tested
are modified, although their specification has not been affected. Observe that
although these tests specify the correct input/output relations, they may not be testing
the same program components as before the modification.

(3) Obsolete tests (OT) - This class includes specification-based and structural-based
tests that can no longer be used. There are at least three ways that a test may become
obsolete:

(a) Any test which identifies an incorrect input/output relation due to a modification
to the specification is obsolete.

(b) Any test which is designed to test a certain program component and is not
testing the same component due to changes in the scftware is obsolete. If the
targeted program component has been modified, some tests may correctly
specify the input/output relation, but may not be testing the same component.
For example, in domain testing [77], tests are derived to test the borders of each
domain. If some predicate in a program is modified, then some domain borders
may be shifted. Although some tests for the old borders still specify the correct
input-output relation, they no longer test the new borders effectively.

(¢) Any structural test which does not contribute to the structural coverage of the
program is obsolete. Since all structural tests are designed to increase the
structural coverage of the program, any structural test which does not increase
the coverage measure can be deleted during the testing phase.

-25.

Extensive analysis may be needed to distinguish retestable tests from obsolete tests.
The term unclassified tests will refer to tests which may either be retestable or obsolete.
After the modification, two new test classes may be introduced:

(1) New-structural tests (NsT) - This class includes structural-based tests that test the
modified program components. They are designed to increase the structural coverage
of the program.

(2) New-specification tests (NpT) - This class includes only specification-based tests.
These tests exercise the new or changed code implementing the affected part of the
specification.

Corrective regression testing can be viewed as a special case of progressive
regression testing where the specification is not modified. It is easy to show that corrective
regression testing may involve reusable, retestable, obsolete and new-structural tests. There
is no new-specification test in corrective regression testing because the problem
specification is not modified. Table 2 summarizes the change relationships between test
class, specification, and target component. The target component denotes the program
componenis exercised by the tests. For example, if the target component and its
specification are unchanged, tests for this component are reusable; if the target component
is changed, but its specification is unchanged, tests for this component are retestable.

A key step in regression testing is to identify the test classes in the current test set.
This would allow the test analyst to retain certain tests, rerun some other tests, and ignore
(or discard) the rest of the tests in the test set. As described in Chapter Two, different
regression testing strategies use different reuse selection criteria to identify the reusable,
retestable and obsolete tests. Recall that our reuse selection criterion is based on the all-
essential instruction and all-essential module assumptions. We will show how to apply this
reuse selection criterion to unit, integration and system testing in Chapters Four, Five and
Six, respectively.

est_Class Specification arget Component
reusable unchanged unchanged
retestable unchanged changed
obsolete unchanged changed/ removed
change unchanged/ changed
new-structural unchanged/changed | new
new-specification | changed new/ unchanged

Table 2. Classification of Tests According to Changes

3.1.1. Evolution of a Test Set

In general, a test set, T, may not include all types and classes of tests. For example,
if specification-based tests satisfy the structural coverage criterion, then there need not be

-26-

any structural-based tests in a test set. The test classes in a test set change with successive
modification to the program. An old test set may not include any structural-based tests, but
the new test set may have them due to changes to certain program components. Let Ty p
and Tygw denote the test set before and after the regression testing, respectively. For
corrective regression testing,

TOLD =RuTuUuRtTUOT
Trew = RUT U RIT U NsT.

For progressive regression testing,

ToLp = RuT U RIT U OT
Tnew = RuT U RIT U NsT U NpT.

The evolution of a test set under both types of regression testing is illustrated in
Figure 2. The total number of tests in a test set may change with each application of
regression testing. It should be noted that the specification domain of a module may also
change due to modifications occurring in the specification. For example, the specification
may change from accepting input of positive integers to accepting input of all integers.

3.1.2. Levels of Use of Tests

The difference between the reusable and retestable tests may be attributed to different
levels of reuse. This section identifies three levels of use for a test. A test can be
characterized by its input data, output values and trajectory. Any combination of these
components of a test may be changed. A trajectory will be considered changed if any
instruction in the trajectory is modified even though it contains the same sequence of
instruction identifiers. Also, a new test is assumed to be created whenever changes are
made to the input of an existing test.

Based on the above model, the allowable changes to a test are output change,
trajectory change or both. It is impossible that the output will be changed without a change
in the trajectory when the input is the same as before. Therefore, there are only two
possible set of changes to a test: trajectory change, and both. output and trajectory changes.

From the above observation, we can identify three levels of use of a test. The first
level of use is to use only the input of the test. In many cases, the testing objective is to
exercise some required program components. If the trajectory of an existing test indicates
that the required program components are traversed before the changed instructions, then
the test input can be used to exercise the same program components. Due to the changes in
the program, or the specification, or both, the complete trajectory and the test output may

be different from the previous execution. Therefore, tests belonging to the first level of use
shouid be rerun.

-27-

Reusable Reusable

Retestable Retestable
- NEW

Test

\f/ Plan

o Hy)
Test e
Plan
Obsolete New-structural
Corrective regression testing
Reusable Reusable
Retestable Retestable

s NEW

Test
Plan
abp
Test
Plan L)\
New-specification

Obsolete

New-structural

P , ion testi

Figure 2. Evolution of a Test Set

The second level of use is to use both the test input and output. Tests belonging to
this level include specification-based tests. When a module has only undergone code
modification with its functionalities preserved, then the previous specification-based tests
can be used to check the correctness of the implementation. Since the trajectory may be
altered or the output may be affected due to the code changes, these tests should be rerun.

The third (the highest) level of use is to use the input, output and the trajectory of a
test. In this case, none of the instructions in the trajectory of the test is modified. Therefore,
the test output will be the same as before. There is no need to rerun these tests.

Tests in a given test set S may be used at different levels. A test set S is usable at level
i, 1 <1< 3, if all its tests are usable at level i or higher. A test set will be given a usable
level O if it has at least one test which cannot be used at any level. Observe that a test set at
usable level O may nevertheless contain some tests that can be used at level 1, 2 or 3.

The relationship between usable levels and the different test classes can now be
established. Tests at either the first level or the second level of use correspond to the
retestable tests, while those at the third level of use correspond to the reusable tests.

3.1.3. An Example

The program shown in Figure 3 can be used to illustrate the above test classification
[62]. This program calculates x to the power y, with both x and y integers. x and y atc the
only input to the program and their values will be represented by (x, y) in the following
discussion. Suppose the specification-based tests include the following:

('290)! ('2?1)’ ('29'1)s ('190)’ ('191)’ ('1,'1)’ (0’0), (0’1)’
(O"l)a (1‘0)9 (1v1)9 (1"1): (2’0)- (211)9 (2"1)

X, ¥, power : integer
z, answer : real
read (x,y)
if (y < 0) then
power = -y
else
power =y
endif
z=1
while (power <> 0) do
z=z%x
power = power - 1
end
if (y < 0) then
z=1/z
endif
answer =z
write (answer)

—=\O O~ A WN-

=)

[]
[R

Figure 3. An Example Program

-29.

This prograra has infinitely many infeasible paths. For example, any path that
includes instructions numbered (1,2,3,...,9,1 1,12) is infeasible. Thus, test data cannot be
generated for each individual path Gomain.

Suppose the structurzi testing criterion is:

(1) exercise all siniple feasible paths,

(2) for a loop, iterate the loop one time and iterate the loop at least two times,

(3) if a loop -ontains several subpaths, tests should exercise all combinations of

each paur of these subpaths.
After running tie program with the above specification-based tests, the structural-based test
(4,2) is added to complete the structural testing requirement. No special test is needed to
satisfy criterion (3) because there is only one subpath within the while loop. Observe that
the set of structural-based tests may be different if a different structural criterion is used.

Consider the following modification. Suppose a faster program is needed. By taking
advantage of the binary representation of y, 2 method which performs the computation in
time proportional to log y can be used. Two extra instructions (6.2 and 8.2) are added to
the original program, as shown below. div is an integer division operator, and odd isa
built-in function which returns true if its parameter is an odd integer and false otherwise.
After the change, since there is no modification in the problem specification, corrective
regression testing should be performed. "

6 while (power < 0) do
6.2 if odd(power) then
7 z=z%x
endif
8 power = power div 2
8.2 X=x%¥*2
end

Now the original test set can be classified as follows. Retestable tests include those
specifica'ion-based tests which traverse the changed instructions: (-2,1), (-2,-1), (-1,1),
(-1-1), (0,1), (C.-1), (1,1), (1,-1), (2,1), (2,-1), and the structural-based test (4,2)
because it also traverses some affected instructions. Reusable tests include (0,0), (1,0),
(-2,0), (-1,0) and (2,0) because they do not traverse any affected instruction. To satisfy the
structural testing criterion, we need to have tests which include paths that traverse all
combinations of the two subpaths within the loop. Thus, three new-structural tests are
needed: input (2,5) for covering the true branch and then the false branch of instruction
€.2, input (2,7) for covering the true branch of instruction 6.2 two times, and input (2,8)
fo: covering the false branch of instruction 6.2 two times. There are no obsolete tests
tecause the original structural test covers the false branch and then the true branch of
instruction 6.2.

3.2. Non-redundant Test Set

The redundancy of tests has been ignored by most testing strategies. Programmers
usually assume all tests in the test set are essential and rarely remove any of them, although

-30-

some tests may no longer serve any useful purpose. A redundant test is a structural test
which exercises the same program components (for example, branches, define-use pairs)
as those exercised by another group of tests in the test set. Since redundant tests do not
contribute to structural coverage, they should be avoided whenever possible.

A test set is called non-redundant if it does not contain any redundant tests. A non-
redundant test set T is minima!l if there does not exist another non-redundant test set T’
with ITl <ITL.

The problem of computin; a minimal test set is NP-complete because it can be
transformed into the minimal cardinality covering problem [19]. Fischer [16] has been
successful in applying zero-one integer programming to solve the minimal test set problem.
Recently, Harrold, Gupta and Soffa [26] have developed an heuristic to find an
approximation of the minimal test set that has a worst case run-time complexity of
O(c(c+t)), where c is the number of program components and ¢ is the number of tests.

Although computing a minimal test set is NP-complete, computing a non-redundant
test set is algorithmically feasible. We present a solution to this problem below.

There are three advantages in generating a non-redundant test set:

(1) Some tests may be eliminated and this generally will lead to less testing effort

during software maintenance.

(2) Each test in the non-redundant test set serves a useful purpose in that it
contributes to the coverage measure. Executing any test from the set will
increase the coverage measure.

(3) The order of applying the tests in the non-redundant test set is immatenal since
they all contribute to the coverage measure. For a redundant test set, the order
of executing the tests will affect the final set of tests used to achieve the
coverage measure, because some tests may not "add” to the coverage measure
if another test is executed first. For example, suppose test ¢l exercises
components cl, ¢2 and c3, and test £2 exercises components c/ and c2. If t1 is
executed first, then when 12 is executed and is found not to contribute to the
coverage measure, tZ will not be added to the final test set. However, if 12 is
executed first, then when 1] is executed and is found to increase the coverage,
t1 will be added to the test set. In this case, the final test set will include both
tests t1 and £2.

We have developed an O(ct) algorithm for extracting a non-redundant test set froma
given test set, where c is the number of program components and ¢ the number of tests.
This algorithm computes one of many possible non-redundant test sets, and uses execution
count vectors, which are columns in the component-test matrix. Let the dynamic behavior
of test i be represented by an execution count vector v; of size c. The jth element of v;is 1if

the j! program component was executed by test i, and 0 otherwise. The NTS algorithm for
computing a non-redundant test set is given in Figure 4. Note that a given set of tests may
not cover all the required program components. The variable covered is used to identify
those components not covered by any tests.

We first show that algorithm NTS only removes redundant tests and then show that
the tests remaining each covers at least one program component not covered by other tests.
Consider steps 2a and 2b, a test is only removed when V - v, has no new zero
element. In other words, all program components covered by tests i are also covered by the
union of the other tests. Therefore test i is redundant and can be removed.

-31-

Algorithm NTS
Input: the set of count vectors v;, and the test set
Owpw: an non-redundant test set
redundant: a boolean variabz denoting that a test is redundant.
covered: a vector of size ¢ showing whether a program component
has been covered by a test.
V: a vector of size c.
begin
{ store sum of all v; in V, and}
{ mark down which component was not covered }
1 foreach j,j=1toc,do
VGl=0
foreachi,i=1tot do
VEI=VEl+vii)

end

if V[j]>0 then
covered[jl = ' ae

else
covered(j] = false

endif

end
2 foreachi,i=1tot,do

redundant = true
{for each test i, compute V=V-v,;}
2a foreachj,j=1toc, do
if covered(j] then
Vil = VIil -vi{i]
{if any element of V equal O, keep test i}
if V[j] =0 then
redundant = false
endif
endif
end
2b if redundant then
: test i is redundant, remove it from the test set
else
{test i should be kept, restore total count})
foreach j,j=1toc,do
Vil = VIl + vili]
end
endif
end
end NTS

Figure 4. NTS: Algorithm to Compute a Non-redundant Test Set

-32-

We next show that each test covers at least one unique component and it should be
kept in the test set. In step 2a, a test is retained if at least one covered element of V - v;
becomes zero. Let the zero element represent program component j. Test i is the only test
which covers component j among all the remaining tests. Since we do not take out the
counts of those tests remaining in the test set, each test in the final test set has the above
property. Observe that the order of analyzing the tests in step 2 may affect the final non-
recundant test set.

The complexity of NTS can be determined as follows. Step 1 requires ¢z additions
and ¢ comparisons. Step 2a requires at most ¢ subtractions and 2¢ comparisons for each
test. Step 2b requires at most ¢ additions. Since there are ¢ tests, step 2 requires a total of no
more than 4ct operations, assuming that the comparison requires the same amount of time
as the addition and subtraction. Thus, the total complexity of this algorithm is no more
than O(ct).

We next illustrate algorithm NTS with the following example.

Let the component-test matrix for a program be as shown in Figure 5. There are
5 program components and 4 tests. The count vectors for the four tests are:

v, = [01010]T, v, = [01100]T, v5 = [10100]T, and v, = [10111]T.

First, assume the tests are analyzed in their numerical order. V = [22321]T. For
the first test, since the new V =V - v, = (2131 I]T has no O element, test | is
redundant and is removed. For the next step, V = V - v, = [20211]T. Because

one element of V now becomes 0, test 2 is kept. Carrying out algorithm NTS to

completion, we obtain the final non-redundant test set which consists of tests 2
and 4.

If *he tests were analyzed in reverse order, the final non-redundant test set
would consist of tests 1 and 4.

Program Test
Component

Wb WA -

O Om O
SO~
OO O W
N = E+N

Figure 5. A Component-Test Matrix

If a structural testing strategy aims to maintain a non-redundant test set, it must
include a sub-strategy for eliminating redundant tests. It cannot rely on the order of
applying the tests to produce a non-redundant test set. The reason is that a new test may
render some previous structural-based tests redundant.

-33-

As shown above, maintaining a non-redundant test set will require some extra
computation. It is up to the test analyst to weigh the benefiis of such a test set and the cost

of the extra computation.

Chapter Four

Regression Testing at the Unit Level

After the software system is modified, the first step in the regression testing process
is to regression test each modified module. This chapter describes a generalized approach
which incorporates both functional and structural testing, and this approach can be used
with any structural testing strategy such as data flow or control flow structural coverage.
Section 4.1 presents the corrective regression testing strategy for a modified module.
Section 4.2 gives the corresponding strategy for progressive regression testing, which is a

simple extension of the corrective regression testing strategy. Test selection is described in
detail in Section 4.2.2.

4.1. Corr=ctive Regression Unit Testing Strategy (CRuT)

The corrective regression unit testing (CRuT) strategy tries to reuse the test setina
way that will reduce the requirement of new tests. The previous test set is used to assist in
test selection, and is analyzed in order to classify the various tests; only a subset of the
previous test set is rerun. Recall that for corrective regression testing, no new specification-
based test is need because the specification is assumed to be unchanged.

As shown in Figure 6, CRuT is divided into two major phases: the test classification
phase and the test plan update phase. The objectives of the test classification phase are to
analyze the changes, identify the reusable, retestable, and obsolete tests, and rerun the
retestable tests. The test plan update phase updates the test information so that future
modifications can utilize up-to-date test information. There is an intermediate step between
the two phases which involves developing and running new tests to ensure the structural
criterion is satisfied. In Figure 6, module static analyzer and module test repeater together
implement the test classification phase and the test plan updater implements the test plan
update phase. We next describe each component of the CRuT process.

Module Static Analyzer
Purpose: To classify the tests and compute the coverage measure.

Input: Change information.
Ouwput: Reusable, retestable, and unclassified tests, and the coverage measure.

-35-

Test

Test
Classi-
fication
Phase

Plan
Mod.ule \ Reusable
Analyser
Program y
Changes Unclassified
Tests
Retestable
Tests
Module
Test
Repeater
y Obsolete
Tests
Module
New Dynamic
Tests Tester

New
Test
Plan

Figure 6. The Regression Testing Process of CRuT

-36-

Test
Plan
Update
Phase

This component is static in the sense that no test is executed. All analysis is done
using the change information and the current database of the test plan. The static
analyzer uses this information to group the existing tests into three classes: reusable,
retestable, and unclassified. The reusable tests are those tests which do not exercise
any modified code; the retestable tests are those specification-based tests which
exercise any modified code, and the unclassified tests are those structural tests which
exercise the modified code. Another function of the static analyzer is to compute the
structural coverage measure achievable from the reusable tests, based on the stored
dynamic behavior of these tests. The coverage measure, the retestable and the
unclassified tests are passed to the Module Test Repeater.

Module Test Repeater

Purpose: To execute retestable and unclassified tests.
Input: Retestable and unclassified tests, and the coverage measure.
Outpur: New coverage measure.
This component executes the retestable and unclassified tests in order to
» test the program
e satisfy the structural coverage criterion
 classify the unclassified tests into obsolete and retestable test classes; the
unclassified structural tests need to be executed because their trajectory
results may change and some of them may not add to the structural
coverage.
The Module Test Repeater first executes all retestable specification-based tests and
updates the structural coverage with the new trajectory results. Next the unclassified
tests are executed in a random order. The order of applying the unclassified tests is
not a concern here because the redundant tests will be removed in a separate step
before the end of regression testing. Any unclassified structural test which does not
increase the structural coverage measure will be put into the obsolete test class. All
others are grouped into the retestable test class. The Module Test Repeater stops test
execution once the structural coverage criterion is satisfied. Any remaining
unclassified tests may be placed into the obsolete class, and handled according to the
testing guideline specified in the test plan.
An output of the Module Test Repeater is the coverage measure achieved by both the
reusable and the retestable tests. If this coverage measure is not satisfactory, then the

Module Dynamic Tester is invoked; otherwise the testing process enters the test plan
update phase.

Module Dynamic Tester

Purpose: To execute new tests.

Input: Total coverage measure from Module Test Repeater.

This component is similar to the Module Test Repeater and is invoked only when the
structural coverage criterion is not satisfied by both the reusable and retestable tests.
A major function of this component is to execute the new-structural tests which are
designed to exercise the modified code or to satisfy the structural coverage criterion.

-37 -

The same test selection strategy used earlier during the testing phase of the
development cycle can be used here. Only those tests which increase the structural
coverage measure will be stored. Once the structural coverage criterion is satisfied,
the NTS algorithm from Chapter 3 is applied to remove the redundant tests. The Test
Plan Updater is then invoked.

The major difference between the Module Test Repeater and the Medule Dynamic
Tester is that the former involves the execution of certain existing tests and the changing
and deleting of existing information in the test plan, while the latter involves the execution
of new tests and the addition of new information to the test plan.

There are two advantages in executing the unclassified tests before running the new-
structural tests:

(1) Some unclassified tests will test the modified code and therefore they can reduce
the number of new tests.
" (2) Some unclassified tests may be used to assist in test generation. Based on the
trajectory results of the unclassified tests, it is possible to adjust the input so that
the required program components are traversed. For example, Korel [40]
recently applies this idea by combining dynamic data flow analysis, a function
minimization method, and program execution for test generation purposes.

Test Plan Updater

Purpose: To update the test plan.

Input: Reusable, retestable, and new-structural tests, and their execution history.
Ouput: An updated test plan.

This component is invoked by the other three components to create a new test plan
from the reusable, retestable, and new-structural tests. The objective is to generate an
up-to-date test plan for the next cycle of modifications and regression testing. Most
of the information stored in the new test plan have actually been collected by the
Module Test Repeater and the Module Dynamic Tester.

4.2. Progressive Regression Unit Testing Strategy (PRuT)

If the specification of the module is affected by the modification, then progressive
regression unit testing (PRuT) should be done to revalidate the module. A major difference
between PRuT and CRuT is that the former has to deal with the effect of specification
changes on the test selection process. As described in Chapter Three, the design
specification Su is assumed to be represented by a set of subspecs {Juy, ... Suy}, where k
is the total number of subspecs. Any specification modification can be viewed as a
combination of the following basic modifications:

» adding a subspec

e deleting a subspec

e replacing a subspec.

Before describing the regression testing strategies, we first list the notations to be
used in the following analysis in Figure 7.

-38-

Notation Representation

Su the design specification of a module, Su = {Suy. ... Suy }, where k
is the total number of subspecs in the module

SM the set of subspecs to be modified

SD the set of subspecs to be deleted

SA the affected subspecs, SA = SM u SD

SwW the set of new subspecs added to the module

Tg(Su) the set of specification-based (functional) tests

Tg(Su) the set of structural-based tests

T(Su) Tr(Su) U Tg(Su)

Tg(Su;) the set of specification-based tests for testing subspec Suj
TF(SNb the set of specification-based tests for testing SM,
Te(SD) the set of specification-based tests for testing SD,
Te(SA) Te(SM) U T(SD)

MP the set of all program paths in the module

I(Su;) the set of instructions for implementing Su;

Ta(SM)

the set of instructions modified or deleted cfue to the modification to SM
Ia(SD) the set of instructions modified or deleted due to the deletion of SD
Ta(SA) Ia(SM) u Ia(SD)

Figure 7. Notations for Progressive Regression Testing

Several observations can be made from the definitions given in Figure 7:

(1) Su=SA>SD, SM.

(2) T(Su) = Te(Su) = TF(Suj) for all subspec Su;.

(3) Any giv.i instuction J may belong to scvexai I(Suj).

(4) Ia(SM) may not include all the instructions required to implement SM because the
specification modification may be accomplished by changing a few instructions.

We will define the resting set TS(J) of an instruction J to be the set of paths which
are affected by J. The testing set TS(S) of a set S of instructions {J;, ..., J;} is the set of

paths which are affected by the instructions in S.

TS(S) = TSUp) U ... v TS

The proportion of reusable tests depends on the modification to the program and its
impact on the specification. Table 3 lists the effects of the changes on the previous tests.
The first column shows the values of SA relative to Su. The second column lists the
different values of the testing set TS(Ia(SA)) relative to MP. If all the subspecs are affected,
then all the previous tests have to be re-examined to determine their validity. In the case that
only a subset of the subspecs are affected by the modification (SA is a subset of Su), then
the previous specification-based tests for the unmodified subspecs should still be valid

and can be reused. In addition, the structural tests which traverse those unmodified paths
can also be reused.

-39

If the testing set TS(Ia(SA)) includes all the paths in the program, then no structural
tests should be reused. If no subspec is affected (SA = @), corrective regression testing can
be used to revalidate the module. In this case, all the specificaton-based tests can be reused
and the structural tests which traverse those unmodified paths can also be reused.

Modification Effect on Test Plan

SA =Su no tests can be reused

Su> SA TS(Ia(SA)) = MP no reusable structural test,
some reusable spec. tests

Su>s SA MP > TS(I1a(SA)) some reusable structural tests,
some reusable spec. tests

SA=02 TS(Ia(SA)) = MP no reusable structural tests,
all spec. tests reusable

SA=0 MP > TS(Ia(SA)) some reusable structural tests,
all spec. tests reusable

Table 3. The Effect of Modification on the Test Plan

4.2.1. A Strategy for Progressive Regression Unit Testing

This section describes the PRuT strategy, concentrating on the case when the
functional specification of a module is modified. It is assumed that the functional tests for
testing each subspec have been recorded during the initial testing. Thus, only a simple table
lookup operation is needed to identify those tests which may be affected due to a
maodification to the subspec.

The strategy consists of the same two phases (the test classification and the test plan
update phases) as that of the CRuT strategy. The objective of the test classification phase is
to determine a set of tests which are not required to be re-executed, a set of tests which can
be discarded because they are no longer useful, and a set of tests which should be run to
test the program changes. There are three major steps in the test classification phase.

Step 1: Determine the valid specification-based tests. .
This is accomplished by identifying all the specification-based tests for SM and SD.
The remaining tests (the rest of the specification-based tests and all structural-based
tests) in the test plan will be used in step 2. New specification-based tests are then
created for SM and SW, if any. These specification-based tests are then applied to the
module. More details on test selection are described in Section 4.2.2.

Step 2: Classify the tests.
The remaining tests are grouped into reusable, retestable, and unclassified test
classes using a similar procedure as that for corrective regression testing. All
retestable tests should be executed first. The unclassified specification-based tests
should then be applied to the module to revalidate the unmodified functions. The
unclassified structural tests should be applied last. Any obsolete structural tests may

- 40 -

be removed from the test plan. The reusable tests need not be rerun because they will
give the same output as before.

Step 3: Achieve the previous structural coverage.
New-structural tests are added until the structural coverage is satisfied.

The second phase is the test plan update. This phase removes the obsolete tests, adds
new specification-based tests for SM and SW, and adds new structural tests for achieving
the required coverage to the test plan.

Figure 8 gives the algorithm for PRuT. Basically, PRuT includes a new component
Module Spec Tester and makes use of the components of algorithm CRuT.

4.2.2. Test Selection Considerations

In this section, we analyze the test selection process in more detail. A subspec Su; of
a module is modified if its domain D{Su;] is modified, or its computation C[Suj‘ is
modified, or both. A domain D[S uj] is modified if it is either enlarged (more input points
are added to the domain) or reduced (some input points are removed from the domain). For

example, a domain may be enlarged from accepting only positive even integers to all even
integers. A computation C[Su;] is modified to C'[Suj] if the output is changed for the same

input point (that is, C'[Su;(x)] # CISuy(x)], where xis an input point).

We next describe strategies for selecting specification-based tests for various
modifications to a subspec. It is understood that the specification-based tests for a subspec
may need to be repeated if any instruction implementing the subspec is modified. Assume

module M has undergone specification modification. Let the design specification Su of M
consist of the following subspecs: Suy, ..., Su;.

(1) Deleting a subspec Su;

There are two subcases:

(1a) DI[Su;] is deleted from the module and no input in D[Sy,] is allowed.
For this case, the previous tests for Su; should be repeated to confirm that
module M will not accept such input.

(1b) D[Sy} is "divided” among the other subspecs.
The input points in D[Sy,] are given a new computation from other subspecs. In
this case, some other subspec Su; is also modified because its domain is
enlarged. New tests should be created to check the new computation in D{Su;].
In some cases, the original test input can be —used to test the new computation.
However, other cases may require new tests be chosen from D[Suy;] and the
computation checked against the modified subspecs. For example, if D[Sy;] is
divided among many subspecs, tests should be chosen from D[Su;] for each
such subspec Suj.

In both cases, we should have tests chosen from the "deleted domain”. It is not

recommended to concentrate testing on the remaining subspecs alone. Note that the

tests for the "deleted domain" need not be kept in the test plan after they are executed.

-41 -

Algorithm PRuT(ii: module with its specification modified)

begin

Module-Spec-Tester(M)

CRuT(M) {invoke the corrective regression process}
end PRuT.

Algorithm Module-Spec-Tester(M)
Inpus: SMM):modified subspecs of M
SD(M):deleted subspecs of M
SW(M):new subspecs to be added to M
T: previous unit test plan
Owpuwt: ns_test: specification-based tests
begin
ns_test=2
foreach (subspec s e SM(M)) do
if (s computation is modified) then
Test = new specification-based tests for the computation
else if (only domain is modified) then
Test = new tests for the affected domai..
endif
ns_test = ns_test u Test
end
T=T-T[SMM)]
foreach (subspec s € SD(M)) do
if (domain of s is deleted) then
Test = TF[S]
else Test = union of tests from each subdomain
divided among the other subspecs
endif
ns_test = ns_test u Test
end
T=T - T[SDM)]
foreach (subspec s e SW(M)) do
if (domain of s is new) then
Test = new specification-based tests
else 'l;_est = @ {this is a complimentary case of other deleted subspec }
endi
ns_test = ns_test u Test
end
Run nis_test
end Module-Spec-Tester.

Figure 8. Algorithm for PRuT

-42 -

(2) Adding a subspec Suy;
There are two subcases:

(2a)

(2b)

D[Sy;] is a new domain added to the module.

In this case, the input points from D[Su,] were not previously accepted by the
module. New tests should be created from D[Su,] for testing Su;.

D[Suy,] is created from the existing D[Su].

In this case, some other subspec Su; is also modified because its domain is
reduced. At least one test should be created from D[Suy;} for each subspec that
has given up some input points to Su;.

(3) Modifying a subspec Su;
There are three subcases:

(3a)

(3b)

(3c)

D{Suy,] is unchanged and C[Su;] is altered.

The same test input from the previous testing for subspec Su; can be used to
check for the correct output.

D([Su;] is reduced and C[Su;] is unchanged.

Tests from the deleted domain should be created to check that the module is not
performing the same computation as before. These tests may be chosen from
some previous tests if they happen to lie in the deleted domain. This case is
similar to Case (1).

D[Sy} is enlarged and C[Su,] is unchanged.

New functional tests chosen from the added domain should be created. This
case is similar to Case (2).

Other types of modification can be modeled as a combination of the above basis

cases.

.43 -

Chapter Five

Regression Testing at the Integration Level

Integration testing is an important phase of the software verification process when all
the individual modules are combined to form a working program. Testing is done at the
module level, rather than at the statement level as in unit testing. Integration testing
emphasizes the interactions between modules and their interfaces. A recent study shows
that approximately 40% of software errors can be traced to component interaction problems
discovered during integration [1]. Most of these detected errors are due to a
misinterpretation of the module specifications.

Although many integration strategies have been described, few give any guidelines
for actually generating tests. Myers describes six integration strategies: bottom-up, top-
down, modified top-down, sandwich, modified sandwich and big-bang testing [56]. Carey
and Bendick discuss build testing [6]. Beizer introduces a "mixed bag" swrategy which
combines bottom-up, top-down, big-bang and build testing [2]. Appendix I gives an
overview of these integration strategies.

Bottom-up testing requires the uses of drivers which are modules designed to
transmit tests to those modules under test. A driver usually reads in tests from a file, calls
the module under test iteratively, and compares the responses with the expected outputs. A
top-down strategy requires the uses of szubs which are simplified modules designed to
provide the same responses as the real modules under the same input conditions.

The proposed integration strategies can be grouped into two types: the incremental
strategies merge a set of modules (usually just one module) ata time to the set of previously
tested modules, while the nonincremental strategies group all the modules together
simultaneously and test them. None of these integration techniques focuses on selecting the
tests.

The next section describes our integration testing model. Section 5.2 gives the
common errors and faults that may occur in calling another module. A major mistake
occurs when the calling module has an incorrect expectation of the called module.
Integration testing objectives, which aim at detecting errors not found during unit testing,
are described in Section 5.3; a test selection strategy is also presented.

After regression unit testing of the modified software, the next step is to re-integrate
the modified modules with the rest of the program. Section 5.4 presents the regression
testing strategies for various basic types of modifications; these strategies emphasize
reusing the previous analysis and tests. Section 5.5 describes the concept and construction
of a firewall and shows three interesting properties of program modifications. The firewall
notion is introduced to encapsulate all the modules which should be re-integration tested
after a modification. In general, it is not necessary to re-integrate all the modules. This
result can be used to reduce the retesting effort.

.44 -

5.1. An Integration Testing Model

To provide an analysis of regression testing for the integration process, a number of
additional assumptions (besides those given in Chapter Two) are made which will be
applied throughout this chapter:

(1) The change information is correci. The change information indicates those modules
and specifications which have been modified, and provides descriptions of the new
modules and specifications. Note that this assumption does not imply that the
modifications are correct. When specifications are modified, an extensive analysis is
required to ensure that the modification matches the actual intention. The only case
where a modified specification is assumed io be correct occurs when the system
specification (or the specification of the primary medule in the call graph) is
modified; in this case, there may be no other documentation or information available
indicating this specification to be in error.

(2) During regression unit tests and regression integration tests, since actual modules are
in place, there is no meed to use drivers and stubs from previous testing. In early
development, the test analwst might v.se drivers and stubs to return the information an
incomplete module should provide anc to simutate the behavior of that incomplete
module. During regression testing, all modules of the system should be available.

(3) There is no recursive calls between modules in the program and therefore the call
graph is a tree. Our general results should hold for programs with recursive calls,
except for certain change situations involving the recursion, additional testing may be
required.

(4) In general, substantial effort may be required to test for errors caused by global
variables or common data areas; since we are analyzing the call graph for the effects
of local data flows through formal parameters passing between modules, we will
assume that no global variables exist. In other words, there is no common or
external coupling among modules; all modules are data coupled [67]. Chapter Seven
analyzes the case when this assumption is relaxed to allow the presence of global
variables in a program.

(5) The use of pointers has to be restricted so as to avoid the same problem as with
global variables in assumption (4). Parameters are allowed > consist of pointers, and
these pointers can address external tables; however, there must be a strict separation
between input tables, which are read-only, and output tables, which are write-only.
If an external table could be accessed by pointers from within a module, and could be
used for both input and output functions, then this could lead to the same testing
problems as those encountered with global variables.

We next review the model of module inputs. Each input to a module M can be viewed
as a single point in the m-dimensional input space Y, where Y = Y| x ... x Y, and Y,
represents a single input variable, and where m is the total number of input variables.
When the designer of a module M develops the design, a number of constraints on the
input space must be taken into account. Thus the functionality of M is designed based upon
this subset of the input space. called the input domain D(M). Input points from D(M) will
allow M to achieve 1. :iesired functionality, whereas points from outside D(M) in the input

-45 -

space should result in an appropriate error message. For simplicity, it will be assumed that
only input points in D(M) will cause M to be executed.

It is important to associate practical program data structures with this theoretical view
of input domain. The input domain D(M) for module M can consist of:

« values of parameters passed to M by all modules which call M; these parameter

values may contain pointers to external input tables, as discussed in assumption
(5)

. all data that can be accessed through these pointers jiassed as parameter values,

such as the external input tables; and

. all data that becomes accessible based on authorization codes passed as parameter

values.
It should be emphasized that data internal to module M (such as tables of constant values)
are not contained in D(M).

Useful tests can be created by analyzing the input space of the called module and the
potential input from its calling module. In general, the input spaces of a calling module and
its called module will be different; in fact, the two modules may have different input
variables, and the number of these input variables may be different. Let A be a calling
module which calls module B. A subset of domain D(A) will cause the execution of the
calling instruction to B. Before A calls B, the input subdomain of A can be mapped to the
input space of B; the range of this mapped subdomain of A will be denoted as map(A, B),
a subset of the input space of B. This mapping may be one-to-one, many-to-one, or one-to-
many, depending upon the relationship between the input variables to A and those to B.
Map(A, B) may not contain all possible inputs to B, and some points from map(A, B) may
be outside domain D(B). The "difference" between Map(A, B) and D(B) is a good place to
look for errors.

Since both D(B) and map(A, B) are subsets of the input space to B, they can be
compared with each other. By intersecting these two sets, the input to B can be grouped
into three classes:

(1) inputs which are in both D(B) and map(A, B)

(2) inputs which are in map(A, B), but not in D(B)

(3) inputs which are in D(B), but not in map(A, B).

Input from both classes (2) and (3) are good tests because they can indicate errors in
the interactions of A and B. Class (2) occurs when A tries to call B with input outside the
specification of B. Class (3) occurs when there are input values in the specification of B
which are outside the specification of A's use of B. Unfortunately, these two classes of
errors are difficult to detect since it is not always possible to effectively compare D(B) and
map(A, B). Symbolic evaluation [8] may be used to evaluate map(A, B) and compare it
with the symbolic path domain of B, but there are several problems with symbolic
evaluation that remain to be solved [38, 55]. These problems include: (i) a high complexity
invoived in generating a symbolic path expression for paths that call a function or a
subroutine, or paths that have complex loop structures, (ii) difficulties in dealing with array
and pointer variables, and (iii) a high computational effort required for solving complex
path expressions for test data generation.

This chapter shows how to use this model of integration testing in a regression
testing mode, where, depending upon the extent of module changes and the interactions

- 46 -

between the modified modules and other modules, regression integration testing procedures
can be specified.

S.2.

Common Errors and Faults in Calling Another Module

In this section, we identify the common errors that may occur when one module calls

another module. Although most of these errors should be detected during unit testing,
there are some which cannot be detected before integration. These common errors will be
classified into two groups based upon whether they can be detected during unit or

integration testing, respectively. Let the calling module be denoted by A and the called
module by B.

@

Interpretation error.

It can be argued that there are three specifications of a module: First, the design
specification which is (or created from) the design document, second, the actual
specification which corresponds to the behavior of the module (reality), and third, the
interpreted specification as perceived by a user of the module. For simplicity and the
purposes of this analysis, it is assumed that the design specification is the same as
the actual specification S, of the module, and must be the source used to judge the
correctness of the use of a module. An interpretation error is a misunderstanding by
the module user about S, in that it differs from the interpreted specification S;.

Since it is difficult to reconstruct S;, testing should ensure that the user of the module
has not made a wrong assumption. A common problem in merging modules together
is that the kind of behavior expected by a user of a module may not be the same as the
functionality provided by the module. An interpretation error occurs whenever the

interpreted specification differs from the actual specification. The impleme: = fa
calling mcdule may misunderstand the functions of the called module -, .y be
given an incomplete specification of the called module. For exam ;.. . . .iling
module may wrongly assume that the called module will return a soited rather
than an unsorted list. In general, there is no testing method to guarzar... *%.. Jetection
of this type of error.

There are three classes of interpretation errors: wrong function, extra function and
missing funct.on error. Before presenting these common errors, we first introduce a
notation to facilitate the presentation. map;(A, B) will represent the user perceived
map(A, B). In many cases, the actual mapped domain map(A, B) is interpreted
incorrectly by the user of module B. The symmetric difference of sets D1 and D2
will be represented by D1 € D2.
The mapped domain of module B does not necessarily equal to the domain of B. This
difference is represented as map(A, B) ® D(B) # @. This difference may be
interpreted incorrectly by the user of module B. [map(A, B) 8 D(B)]; will be used to
represent the user perceived difference between map(A, B) and D(B).
(Ia) Wrong function error.
The functionalities provided by the called module B may not be those required
by the specification of A. The code developer may wrongly assume that B is
performing the operation that is needed by module A. In this case, the developer
has the correct interpretation between D(B) and map(A, B), that is,

-47-

map(A, B) = map;(A, B) and [map(A, B) ® D(B)] = [map(A, B) & D(B));.
Thus this error should be detected during unit testing of either module A or B
when the same person tests these two modules.
(Ib) Extrafunction error.
Given the specifications of moduies A and B, there are some functionalities of
B not required for A, and there are some inputs from A which may invoke
these functions and cause a failure in A. The developer has not considered other
functionalities of B which may be used by A. 1f some inputs cause these extra
functionalities of B to be executed, unexpected results may be generated. This
error occurs when map(A, B) # map,(A. B), and cannot always be detected
during unit testing.
(Ic) Missing function error.

There are some variable values from A used as input to B which are outside the
specification of B; this can be viewed as B failing to supply all the
functionalities required by A. Although some functionalities of B are exactly
those that are required by A, there are other functionalities required by A that
cannot be provided by B. If such functionalities are invoked by A with some
inputs to B, unexpected results will be generated. This error occurs when
[map(A, B) @ D(B)] # [map(A, B) & D(B)];, and cannot always be detected
during unit testing.

(II) Miscoded call error.
A miscoded call error is an error which causes the developer to place the call
instruction at the wrong point in the program. This error may manifest itself as three
possible faults:
Extra instruction fault: the call in: -:-ction is on a path which should not
contain the call.
Wrong placement fault: the call instruction is at the wrong location on the
path which should contain the call instruction.
Missing instruction fault: the call instruction is missing on the path which
should contain the call.
A new testing method which has received increasing attention is fault-based testing.
The goal of fauli-based testing is to demonstrate the absence of prespecified faults
[54]. Examples of fault-based testing include mutation testing [10] and weak mutation
testing [31]. The recently introduced RELAY model [65] uses a fault-based criterion
for test data selection and guarantees the detection of errors caused by any faultof a
chosen class.
Both wrong placement and missing instruction faults may be expensive to detect. To
detect a wrong placement fault, it is necessary to check all possible locations where
the call instruction may be placed in the path. Data flow information may be used to
reduce the number of checking points. The missing instruction fault may involve
many tests because it is not, in general, obvious which path is missing an instruction.
Therefore, all paths may have to be checked. However, if the anomalous path can be
identified, then the amount of testing required will be comparable to that needed for
detecting a wrong placement fault.

-48 -

(1Y) Interface error.

An interface error occurs whenever the interface standard between two modules is
violated. For example, the parameters may not be in the correct order and they may
not be of the right data types, formats, and input/output modes. Although some of
these errors may be detected by an "advanced” compiler, one cannot always rely on
such a compiler. A more serious problem occurs when the domains of the actual and
formal parameters do not match. For exampie, a module may be designed to process
a specific set of input values; if an actual parameter with a value outside this set is
transmitted to the module, unexpected results may occur.

Errors (Ia) and (II) (wrong function and miscoded call errors) should be detected
during the unit testing of A and B. Although a wrong function error involving B may not
be detected during the unit testing of A, this error should be detected during the unit testing
of B. Some errors in classes (Ib), (Ic) and (III) (extra function, missing function and
interface errors) may not be detected during the unit testing of either A or B because these
errors are not directly tested. Thus, their detection should be the primary objective of
integration testing. Consider error (Ib): during unit test of module B, we will test all the
functionalities of B, but we cannot test whether madule A will ever use some of B's
functionalities which are not in the specification of A. Likewise, during unit test of A, this
error may not be detected. It is obvious that some error in class (III) will not be detected

during unit testing of B or A since their interface cannot be thoroughly checked at that
time.

5.3. Selecting Tests for Integration Testing

This section describes our test selection strategy for detecting integration errors. Like
most other test selection strategies, this strategy does not guarantee the detection of these
errors. First we will identify the objectives of integration testing.

A practical objective of each testing phase is to detect errors which are uniikely to be
detected by the previous testing phases. Therefore, integration testing should aim at
detecting ersas that may not be discovered during unit testing. To begin, we will consider
integrating only two modules togethe:. When integrating more than two modules, we can
integrate them incrementally by adding one new module to the set of integrated modules.
From the previous discussion in Section 5.2, we can identify three practical testing
objectives when integrating module A with its called module B:

(1) ensure A will not use functionalities that cannot be provided by B (that is,

check for missing function errors),

(2) ensure A will not use other functionalities of B if B supplies more

functionalities than those required by A (that is, check for extra function errors),

(3) ensure that the interface standards between A and B are preserved (that is, check

for interface errors).

We propose to use two types of tests: interface tests and functional tests. Some of
these tests can be created using a subset of the tests applied during unit testing. By
analyzing the trajectory of each test, those tests which traverse the call instruction can be
identified and reused for integration purposes. A test of module A is said to traverse

-49 -

module B if the test input to A can be used to invoke a call of B, and when this occurs, an
input to B which is in the set map(A, B) can be obtained.

A new problem is encountered when we want to "reuse” the unit tests of the called
module B to test the interactions with its calling module A. This involves generating inputs
to A given the inputs to B. Inputs to B are said to be sensitized to A if we can find
corresponding inputs to A which cause the required inputs to B to be generated. A different
version of the problem of sensitizing a test occurs in several other testing methaods [5, 37].

Sensitizing a test is a difficult problem, and such inputs to the calling module may not
even exist. When a test input to B cannot be sensitized to its calling module A, this
indicates a potential error if the functionality of B should be used by A. Further analysis of
A is required to ascertain that A will not use this functionality.

5.3.1. Interface Tests

Interface tests aim to check the calling interface between two interacting modules.
There are two types of interface tests. The first type should be applied once to each
syntactic call and the second type should be applied to dynamic calls. The first type
includes tests which check the data type, format and the parameter passing rules of each
parameter, and the order and number of parameters. This can usually be accomplished
using static analysis.

The second type of interface tests consists of dynamic tests which check the domain
of input parameters. These tests will be called extremal tests, which are made up with the
extreme values of the input variables.

Although the primary benefit of using extrcmal tests is to detect interface errors, they
may also be used to detect a missing function or extra function error. When testing the
integration of module A and its called module B, we should execute those extremal tests of
A which also traverse module B. These tests may detect a missing function error. Since
extremal values of input variables of A do not necessarily give extremal values of input to
B, we should have tests which provide the extremal inputs of B. By sensitizing the
extremal tests of B to the input of A and applying these tests to A, an extra function error
may be detected.

§.3.2. Functional Tests

Both functional tests and structural tests should be applied to the module during unit
testing. Howden [31] has recently formalized the functional testing method and provided
guidelines for selecting functional tests. The test analyst first identifies the functions which
are supposed to be implemented by the program, and then selects test data that can be used
to check that the program implements the functions correctly.

Any functional tests which traverse a call to another module should be identified and
repeated, when the module is being integrated with its called module. These tests are useful
for detecting a missing function error. Also, by sensitizing the functional tests of B, we can
create another set of tests which may be used for detecting an extra function error. In the
case when the specification of A also describes the ways that A will use B, additional
functional tests can be created to test specifically for the correct usage of B.

-50-

The functional tests of module A will be denoted by f . For each instruction J in A,
we can determine a subset of f, which executes J. If J is a call instruction to module B,
fop Will be used to denote functional tests of A which also traverse the call to B. Observe
that f, g isa subset of f, because they both involve inputs to module A.

For each test in fg, we may be able to find the corresponding input to A. fg A 18
defined to be a set of test inputs to module A with the following property: each test in
fg<a» When executed by A, will traverse the call instruction of B and invoke B with a set of
input parameter values that corresponds to a test from fp. fg 4 is not likely to be a subset
of fg because tests in fg_ 4 require inputs to module A and likely require a different set of
input from that for module B.

The integration test set for modules A and B should include f5 g U fgca- A problem
arises when either some test data from A cannot reach B or when some test data ior B
cannot be sensitized to A. This does not occur when

faB =fa.and

We have a warning of a possible problem where additional testing and analysis may
be necessary if either

(a) fAD fA.B , Or
(b) Ilfg.al < Ifgl.

If (a) holds, there are some functional tests of A which do not use B. This implies
that there is some function in the specification for A whose effect does not reach B (that is,
some function of A does not require any functionality of B). An analysis is required to see
whether any input data involving this function would cause B to be invoked; if so, this
input should be added to the test set; if not, no furcher test data are needed. In short, we
have to make sure that some input data exercising this functionality do not cause an
untested condition to occur in B, the results of which are then returned to A, causing a
potential failure.

If (b) holds, there are some functional tests of B which cannot be sensitized to A.
This implies that some function in the specification of B may not be used by A. An analysis
is required to see whether any input data from A will cause B to be invoked and exercise
this function; if so, this input should be added to the test set; if not, no further test data are
needed. We have to make sure that some input data from A do not inadvertently cause an

untested condition to occur in B, the results of which are then returned to A, causing a
potential failure.

5.4. Regression Integration Testing

Afier a modified module is unit tested, it should be integrated with the rest of the
software. The effort involved in integration testing will depend on the extent of the
r.10d.fication and the calling relations between the modified modules and other modules.
"I hi section presents a regression testing strategy at the integration level for a set of basis
cz<ws. The test selection strategy is described in Section 5.4.2.

-51-

There are two types of modification: non-structural modification and structural
modification. Both types of modifications may involve changes to the actual specification
of the affected modules. In a non-structural modification, there is no modification of the
call graph. Observe that enhancing the performance of the system seldom requires
modification to the call graph. Also, no structural changes occur during spare-p~
maintenance - replacing the entire module by another module which has the same
specification and interfaces, but has a "better" implementation.

In a structural modification, the edges and nodes of the call graph may be added,
removed, or changed. Some possible structural modifications are:

« Adding a new module; an example is to break up a module into two new

modules.

« Deleting a module; an example is to merge two modules together.

5.4.1. Independent Instructions

The following analysis requires the notion of the independent relation between
instructions, which builds on the concept of scope of influence. Instruction K is in the
scope of influence of instruction J if

(1) there is a direct or indirect definition-use relation from J to K, or

(2) if] is a conditional instruction, the execution of K depends on the outcome of J

[49].
We will write S=>R to denote that the set R of instructions is in the scope of influence of
the set S of instructions.

Instruction K is independent of instruction J if X is not in the scope of influence of J
and J is not in the scope of influence of K. Instruction J is independent of a set of
instructions S = {Kj, ..., K} if J is independent of each K;, 1 < i < n. Observe that the
instructions in S are not necessarily independent of each other. S Il R will be used to denote
that the set R of instructions is independent of the set S of instructions.

Figure 9 shows the algorithm for computing the scope of influence to which an
instruction belongs. This algorithm consists of three steps. The first step determines, for
each instruction i, those conditional instructions which influence the execution of i. This
step makes use of a stack variable scopestack to store the nested scopes of the conditional
instructions. The second step uses any of the well-developed data-flow analysis algorithms
[29, 39, 72] to determine the define-use relations. The final step combines the results of the
previous steps to give, for each instruction i, a list of instructions whose scope of influence
include i.

The computation effort for Algorithm InScopeOf is O(n?), where n is the number of
instructions. Operations such as comparison, union, pop, push, addition and subtraction
are assumed to require the same computation time. The first step of Algorithm InScopeOf
can easily shown to require 2n operations. If we use the data-flow algorithm from [29],
the second step requires O(n?), if the number of basic blocks is the same as the number of
instructions. Note that the number of basic blocks is generally less than the number of
instructions. Thus, the second step of InScopeOf should require less than O(n?) in most
cases. The third step can be seen to require no more than n2/2 operations. Thus, the
complexity of Alge~*thm InScopeOf is o(r?).

-52-

Algorithm InScopeOf

n: total number of instructions in a module
scopestack: a stack for storing the current scope

T: temporary variable

begin
{ Step 1: find the scope under conditional instructions }
1 scopestack = @
foreach instruction i,i = 1 ton. do
inscopeofli] = scopestack
if i is a conditional instruction then
push i onto scopestack
endif
if 1 is an 'endif or 'end’ instruction then
pop the top element of the scopestack
endif
end

{ Step 2: compute define-use relations }
2 Use any dataflow algorithm to ideniify all define-use relations
Reformat these relations into the following form:
foreach instruction i, i =1 to n, do
compute dffi} = (j;, ..., j) if there are direct or indirect define-use
relations from instructions jy, ..., Jjpto i.

{ Step 3: combine the above results }
3 foreach instruction i, i =1to n, do
if inscopeofli] = @ then
inscopeofli] = dffi]
else
T = dffi]
foreach instruction j in inscopeofli] do
T=T u dffj]
end
inscopeofli] =T
endif
end
end InScopeOf.

Figure 9. Algorithm for Computing Scope of Influence

5.4.2. Basis Cases for Re-integration of Two Modules

This section first describes the integration testing strategies for a non-structural
modification, and then for a structural modification. A modification that involves many
modules can be viewed as consisting of a combination of basis modifications. Each basis
modification involves a pair of calling-called modules, with at least one of them modified.

-53-

Given integration strategies for each basis case, we can apply these strategies to any
modification.

In the sequel, NoCh(A) will denote that module A is not modified, CodeCh(A) will
denote that module A has undergone code modification but its specification is not modified,
and SpecCh(A) will denote that module A has undergone specification modification. In
most cases, a specification modification also implies a code modification. A special case
can occur when the specification of a called module is modified; it is possible that the
specification of its calling module will be affected although there is no actual code
modification.

There are eight basis cases for a non-structural modification, each requiring various
degrees of analysis and effort for test generation. These cases represent all the different
combinations of code change and specification change to either or both calling and called
modules. In each case, the integration tests should include the set of functional and
extremal tests described in Section 5.3. Some cases can be regression tested using many
previous tests while others may involve many new tests.

We next describe the integration strategies for each of the basis cases. As described in
Section 3.1.2, a test set is given a usable level 3 if all the components (input, output, and
trajectory) of every test in the set can be reused. A usable level 2 means that at least the
input and output components of every test in the set can be reused; a usable level 1 indicates
that at least the input of every test in the set can be reused. Finally, a test set is assigned a
usable level O if it contains at least one test which cannot be reused. Any test set at usable

level 3 does not need to be executed since the input, output and the trajectory will be the
same as before.

(1) NoCh(A), CodeCh(B)
Since this case does not involve any specification modification, both A and B's
functionalities and domains are unchanged. All the previous f, can be used at level 3
and fp can be used at level 2. The former integration tests f5 g v fg<a can be used at
level 2. Observe that although fg can be used at level 2, this does not imply that all fg
tests should be rerun. Only a subset of fg (fg.5) and a subset of f5 (f g) need to be
rerun. These tests can be repeated to confirm that the modification does not affect the
behavior of B. If these tests give the same result as before, then the interactions
between modules A and B are shown to be the same as before the change. Any

ancestor of A will not have to be tested because of the modificaticn to B reflected
through A.

(2) CodeCh(A), NoCh(B)
Since neither specification is modified, both f, and fg should remain valid. fg can
be used at level 3 because module B is not modified, while f, can be used at level 2
since only the code of A is modified. Because of the modification to A, some
program paths to B may be affected. The relation between the changes and the call

instruction will affect the required analysis and selection of tests. There are three
subcases to be considered:
(2a) Code changes il Call(B)

Because the code changes and the call instruction are independent, all the
previous f, g should still execute the call instruction and they can be used at

-54 -

(2b)

level 3 because the specification of A is not modified. Also, fg. 4 can be used at

level 3 since B and the program paths to B are not modified. No execution is
needed because the same results will be generated as before.
Call(B) => code changes

~ All the previous integration tests should remain valid because there is no

(2c)

change in the subpaths to the call instruction and the specification of A is not
modified. These integration tests can be repeated to check the interactions of A
and B.

Code changes => Call(B)

In this case, f, are still valid, but they may go through different instructions.
Therefore, new f'4 g should be created. By the same token, we may need to
sensitize new tests f'g_,.

(3) CodeCh(A), CodeCh(B)
"~ This case is the same as case (2) except

the use level of fg is downgraded to level 2 because the code of B is modified,

for subcase (a), the previous integration tests should be repeated to revalidate
the interactions between A and B.

(4) SpecCh(A), NoCh(B)
This case is different from case (2) because it involves specification changes.
Consequently, progressive regression testing of module A is needed, the use levels of
the integration tests are reduced, and more new tests need to be selected. Because B is
not modified, the previous fy are usable at level 3. However, new f', may need to be
created because of the specification modification to A. Since there is a modification to

A, we have to consider the relations between the code changes and the call
instruction.

(4a)

(4b)

(40)

Code changes Il Call(B)

Although the code changes and the call instruction are independent, some f, are
modified. Therefore, we should compute new f 4 g. fg 5 Can be used at level 3
since B and the program paths to B are not modified. There is no need to repeat
fp<a since they will give the same results as before the modification.

Call(B) => code changes

f<a can be used at level 1 because its input will cause the same subpaths to the
call instruction to be executed. However, the output of fg_, may be changed

due to the specification modification to A. For the same reason, we should
create new f', p-

Code changes => Call(B)

Because the code changes may affect the call instruction, we should compute
new f5 p from the new f 5. By the same token, we need to sensitize new tests

fpea-

(5) SpecCh(A), CodeCh(B)
This case is the same as case (4) except:

the use level of fg is downgraded to level 2, and
for subcase (a), fg 5 should be repeated to check the modification to B.

-55-

(6) NoCh(A), SpecCh(B)
Because of modification to the specification of B, all f5 are usable at level 2 although
there is no change to A. It follows that f, g are usable at level 2. New fg may need
to be created because of the specification modification to B. From the new f'g, we
can generate the new fig_,. Also for this specific case, as we shall argue

subsequently, A should also be unit tested since the specification of B is changed.

(7) CodeCh(A), SpecCh(B)
Since A has only undergone code modification, the previous f are usable at level 2.
New f'g are needed to test B because of the modification to B. Since there is a
modification to A, we have to consider the relations between the code changes and
the call instruction.
(7a) Code changes Il Call(B)

Because the code changes and the call instruction are independent, all the
previous f, g should still execute the call instruction and give the correct

output. However, because of the specification modification in B, new fg_p
should be created.

(7b) Call(B) => code changes
f, p can be used at level 2 because the subpaths to the call instruction and the
specification of A are not modified. Because of the specification modification to
B, new g, should be created.

(7¢) Code changes => Call(B)
Since f, may go through different paths, we should compute new f 4 . We
may need :~ co-sitize new tests fg o because of the new tests in fg.

(8) SpecCh(A), SpecCh(B) _

This case is similar to integration testing du:+ tie development phase. New f 4 and
f'g need to be created. Observe that small c::anges in the specification may produce
large or small changes in the test set; for examg!e, such a change may render all the
previous tests obsolete. On the other hand, a major change in the specification may
not affect many tests. For example, the specification of A and B may undergo many
changes so that they are better "matched" (that is, B is supplying exactly the required
functionalities of A). Since the two modules are better matched, less integration
testing may be needed after the modification. For all threc subcases, new f', 5 and
fpea tests are needed.

There is one special case to be considered. It is possible that the code modifications
only occur in B and the implementation of A is not modified. The specification of A is

modified because of the modification to the specification of B. In this case, we can
reuse those test inputs of f, g for the unmodified functionalities of A because there is

no change in the paths to B. Nevertheless, we need new fg_, because of the
modifications in A and B.

Observe that the sets f, and fg usually include some tests from f, and fg

respectively, because not all the functionalities of a module are normally affected by the
modification. It follows that some tests from f g and fg_, may also be includedin f 5 g

-56-

and f'g_p respectively. Also, for those basis cases (2), (3), (4), (5) and (7), where there
are multiple subcases, and a modification falls into more than one subcase, the union of the
subcases would determine the test set to rerun.

The basis cases which affect the call graph structure are described next.

(9) Adding a new called module

Let the new module be denoted by B and its calling module by A. There are two

subcases:

(9a) CodeCh(A)
From the unit testing of B, we can obtain fz. Although A has to be unit tested,
there is no change in its functions and f, can be usable at level 2. Based on the
location of B, we can compute f , g U fg 4 and use this to regression test the
modification.

(9b) SpecCh(A)
In this case, A should be unit tested and new f', generated. The integration
tests should include £, g U fgca-

(10) Adding a new calling module
Let the new module be denoted by A, which calls module B. Since B is assumed to

be unchanged, no unit testing of B is required. In this case, module A should be unit
tested and f', generated. The previous fg can be used for generating fg_a.

(11) Deleting a called / calling module
Let the affected module be denoted by A and the deleted module by B. No integration

testing is needed for A and B, and for the case of deleting a called module, A should
be unit tested.

Table 4 sumrnarizes the new test requirements and use levels of previous tests under
various change conditions. Columns 3 to 6 list the usable levels of each test set. Under the
new columns, a Y is used to indicate that new tests should be created.

Given a change situation, Table 4 can be used to d<termine the use levels of the
previous test sets, identify the testing requirement, and estimate the effort required for
integration testing. For example, if case (2a) occurs, there is no need to do any integration
testing. If case (2b) is encountered, we only have to repeat the previous integration tests
and no new tests need to be created. In those cases when new tests are required, they can
be selected by following the guideline provided for functional testing [31]. The same
procedure for the initial testing can be used to generate these tests.

From Table 4, we can compare the relative impact of different changes on the
previous test sets and the effort for regression testing. From the proportion cf reusable and
new tests, we can rank the basis cases according to the analysis and effort required to
obtain the integration tests. The following relations can be established:

(D} > {(2) 3} -> {4 (5)} -> {(8)}, and
{(HO} > (O} > (D} -> {(®)}.

-57-

Level of Use New
Case}] Changes fa fg

1 NoCh(A),CodeCh(B) 3 2
2 CodeCh(A),NoCh(B)
a ChangesltiCall(B)
b Call(B)=>Changes
C Changes=>Call(B)
2 CodeCh(A),CodeCh(B)
a Changes!ICali(B)
b Call{B)=>Changes
c Changes=>Cali(B)
4 SpecCh(A),NoCh(B)
a ChangesliCall(B)
b Call(B)=>Changes
c Changes=>Call(B)
5 SpecCh(A),CodeCh(B)
a ChangesliCall(B)
b Call(B)=>Changes
C Changes=>Call(B)
6 NoCh(A),SpecCh(B)
7 CodeCh(A),SpecCh(B)

F B<A

E"ﬁ
—
B
o}
w
-
>
tw

(%]

NN
wWww

SRS NS
[RS
(@3 SH M [«} SAVA

wWww
O =W

o ke SN (oo
K KK X
=<

NIC OO OC O

a ChangesiiCall(B)
b Call(B)=>Changes
C Changes=>Call(B)
8 SpecCh(A).SpecCh(B)
9 New(B)

a CodeCh(A)

b SpecCh(A)
10 New(A) 3
11 Delete A or B 0 0 0 0

olobpn |voco |[ococo jonw [onw Nl
o

SIoOC O QN
o] (e NNl (o] [oR o

(=] SRS

e T (o (ol S e

oN

<l =[x [<|=

a9 oS L4 Lo

<<=

Table 4. Breakdown of Tests Used for Regression Integration Testing

Case (1) requires the least effort in generating the regression tests, while case (8) requires
the most effort. In general, test selection for corrective regression testing is easier than that
for progressive regression testing. We have put cases (2) and (3) in the same group and (4)
and (5) in th= <ame group because each pair requires roughly the same effort.

Table - r1ay also be used to select the most cost-effective change alternatives if
several exist. If several change alternatives involving different set of basis cases are
possible, we can use Table 4 to estimate the regression testing effort of each alternative,
and select the one likely to require the least testing effort.

To implement this selection strategy, an accurate recording of the functions being
exercised by each test must be available. This information can be stored in tabie form.
After the modification, the first step is to trace the specification changes to the affected
functions and then examine the table to find tests related to these functions. Note that none
of the regression analysis will depend explicitly on the type of integration originally used
(see Appendix II).

-58 -

§.5. The Notion of a Firewall

During regression integration, it is not clear what strategy should be used to integrate
the modified modules with the rest of the system. There are two common re-integration
strategies. The first strategy tests only the integration of modified modules, which is
insufficient because some important module interactions may not be tested. The second
strategy repeats the entire integration testing process beginning with the modified modules.
This is usually unnecessary and a more cost-effective solution based on the concept of a
firewall is presented in this section.

A firewall is used to discompose the modules of a modified system into two disjoint
sets: a "regression set"” which includes all modules that should be integration tested and
another set consisting of the remaining modules. The firewall is the set of module
invocations which encloses the regression set and separates the modules into the two
disjoint sets. We will show that under certain change conditions, only those modules
within the firewall needed be re-integrated and regression tested. Because full integration is
avoided, the testing effort can be substantially reduced at no reduction in test effectiveness.

Although the concept of a firewall is fairly simple and intuitive, it has important
implicatons and uses:

» The firewall shows that regression testing all modules is not needed for all cases.

If there is no error in the integration of the changed modules and their ancestors
or the changed modules with their descendants, then integration testing can stop
and there is no need to re-integrate the other modules.

« The size of the firewall gives an estimate of the retesting effort for integration and

systern testing. It may be used to schedule the regression testing tasks.

« The firewall can be used during system testing to focus testing effort on the area

which most likely contain errors.

Before giving a formal defining of a firewall, we first establish three change
properties. The construction of the firewall will involve consideration of all those modules
which are not modified, but directly interact with the modified modules. These are the
direct ancestors and direct descendants of modified modules. As shown in Figure 10, the
module-pairs for these modifications correspond to basis cases (1), (6), (2), and (4). In the
following formal results, our objective is to prove that all modules in these basis cases must
be included as modules within the firewall, but given that certain conditions are met, no
other unchanged modules need to be considered, and thus retested.

In this development, we need to consider both cutcomes of integration testing these
basis cases, one for which no error is detected, and another when an error is detected and
must be corrected. To argue formally, it is assumed that both unit tests and integration tests
are reliable, in that unit tests guarantee that the computation of a module is functionally
equivalent to its specification, and that integration tests guarantee that all integration errors
of the types identified in Section 5.2 are detected. Moreover, all errors in the system are
assumed to be due to the modification, and residual errors from previous development or
modifications have been removed. If the above assumptions are not satisfied, then our
regression testing strategy will not detect all errors, especially those which were undetected
from the previous testing. If the test analyst suspects that there are residual errors from
previous development, he should first subject the unreliable program unit to extensive

-59.

testing using the testing techniques described earlier, then applies the regression testing
strategy presented in this chapter.

Lemma 1
NoCh(A)
Basis Case (6) ¢
SpecCh(B)
Lemma 2
NoCh(A)
Basis Case (1) l
CodeCh(B)
Lemma 3
CodeCh(A) SpecCh(A)
NoCh(B) NoCh(B)
Basis Case (2) Basis Case (4)

Figure 10. Boundary Cases for Firewall Construction

First consider basis case (6) as shown in Figure 10; it is unlikely that this will occur,
for ordinarily one would expect at least the code of module A 0 be modified. Two practical
situations might have caused this case to arise:

+ only a performance enhancement to B has be¢n made, but no real functional

change relative to A, sc A can remain unchanged; and

other modules which call B have required a corresponding change in B; the
designer feels that the functionality provided by B to A is suill the same.
Y .mma 1 shows that if an error is detected, module A may have to be modified after

all.

Lemmal
Consider the basis case (6), where module A is not modified, and A calls module B,
whose specification is assumed to have been modified. Assume modules A and B are
reliably unit tested, and A-B are reliably integration tested. If an error is detected, then
either module A or B (or both) may have to be changed. If no error is detected, then
any ancestor of A will not have to be tested because of the modification to B reflected
through A.

Proof

First assume that an error is detected: If the error is detected during unit test of A,
either A or B will have to be changed (A may have to be code changed). If the error
is detected during unit test of B, only B will have to be changed. There are three cases
to be considered if an error is detected during integration test of A-B. If the error is an
interface error, then it can be corrected in B. If the error is an extra function error,
either A or B may have to be changed. If the error is a missing function error, then B
can be changed.

Next assume that no error is detected; the unit test of module A ensures that it mecets
its specifications; the integration test with B ensures that A and B de not have
interface errors. Any ancestor of A can be sure that the interface with A is correct, as
no changes have occurred. For errors that can be caused by a parameter which
"passes-through" module A and interacts with the modified module B, we are surc
that they will also be detected. Since this parameter is an input to module A, there
must be a function in the specification of A which dcals with this parameter, even
though the computation with this parameter does not occur until module B (or some
descendant of B). This function must be tested during unit test of A, and is also
considered during the integration test of A-B, and thus should be correct.

Basis case (6) is unusual in that module A may have to be changed as indicated in
Lemma 1; however, this follows because basis case (6) si:ould rarely occur, and the
interfacz =hove a modified module B should be that described in basis case (1), where only
the code of B has been changed. This also provides a guideline for designing the
modification, as a code change in a module is preferable to a specification change, to keep
the firewall from spreading upward through the call graph.

Next consider basis case (1). We want to argue that when this case is encountered,

and it should be encountered in most practical cases, then a "firewall" can be estabiished
above the modified modules.

lemma2
Consider the basis case (1), where module A is not modified, and A calls module B,
whose specification is assumed to be unchanged, but its code is modified. Assume
module A is reliably unit tested, and A-B are reliably integration tested. If an error is
detected, then only module B has to be changed, and neither the specification nor the

-61 -

code of A have to be modified. If no error is detected, then A or any ancestor of A
will not have to be tested because of the modification to B reflected through A.

Proof
First observe that a unit test for A need not be rerun since the specification for
modules A and B have not changed. The unit test of B will assure that the
functionality in B's specification will be met, but an integration test of A-B is
required. If an error occurs in the unit test of B, clearly a further code change in B can
correct this. If an error is detected in the A-B integration test, then since the
specification and code of A have not chaaged, the only possibility is that module B
must have been invoked. Moreover, since A has not changed, the same parameter
values are communicated to B from A. Thus the input-output behavior of B must be
different than it was previously, for A has not changed to explain a different output,
and this cannot kappen given the unit test of B. Since the specification of B has not
changed, extra function errors and missing function errors cannot occur; if an
interface error has occurred, it can clearly be corrected in module B.
Next assume that no error is detected; the argument that no ancestor of A need be
retested because of the A-B interface is the same as Lemma 1, except that we can use
the unit test of B to ensure that a parameter "passing-through” module A does not lead
to an error in the module which originated that parameter or in any module in
between.

Lemma 2 shows that for basis case (1), a "firewall” can be established at A, and since
A will not change, no ancestors of A need be examined for testing; it is possible, however,
that these modules might be affected through interactions with other modified modules, but
not through A.

Next consider basis cases (2) and (4), where a modified module A calls an unchanged
module B, and under what conditions descendants of B also need to be examined.

Lemma3l
Consider the basis cases (2) and (4), where module A is either modified in code but
not in specification, or its specification is modified, respectively, and A calls B,
where B is unchanged. If either the unit tests of A or the integration tests of A-B are
in error, then for either case (2) or case (4), we can correct the error by only
modifying the code of A. If no error is discovered by either the unit test of A or
integration test of A-B, then nc descendant of B need be examined or tested because
of the change of module A reflected through B.

Proof
An error in either the unit test of A or integration test of A-B is due to an improper
design of the new module A. Since the specification of B is unchanged, any detected

oY~

integration error is due entirely to the change in module A, and :0 can be corrected in
module A alone.

If no error is detected in either the unit test of A or integration test of A-B, then since
the specification and code of B are unchanged, no other descendant of B has to be
examined or tested. If we are concerned about the effects of a parameter from module
A which may e in error, passing-through module B, and affecting some descendant

-62-

of B, then the unit test of A should suffice to adequately test the functionality of that
parameter.

Lemma 3 shows the very serious effect of a design error during maintenance. In the
modification of either the code or specification of module A, a common error is to
misinterpret the effect of a call to module B during the execution of A. We have shown that
it is always possible to correct the error by further modification of A. However, there may
be constraints imposed upon such changes, or complexities in such a modification of A. If
the designer chooses to modify the specification of B, because it is consider to be
"simpler", then one consequence is that now the "firewall” must be extended, as B is
changed, and any modules which B calls might also have to be modified in tum if there are
errors, thus extending the "firewall” further down in the call graph. Moreover, if any other
modules call B, the effect of its change upon their performance must also be established.
Thus the potential cost of a design error during maintenance and the decision to modify B
rather than simply modifying A is clear.

5.5.1. Constructing a Firewall

Having given the intuitive notion of a firewall, this concept can now be formally
defined. A graph component is connected to a set S of arcs of the cail graph if every arc in
S is connected to exactly one node of that component. Define a graph component C as all
those nodes of the call graph which correspond to modified modules, together with all
modules which are their direct ancestors and all modules which are their direct descendans,
and all arcs with both nodes in this defined set of nodes.

A firewall is composed of the subset E of arcs in the call graph with the following
properties:

(1) Graph component C is connected to the set of arcs E.

(2) The removal of the firewall arcs E separates graph component C from the

rest of the call graph.
Then every module interaction within C must be integration tested while those outside C
need not be retested. The function of the firewall E is to clearly separate graph component
C from the rest of the call graph.

We next describe a procedure for constructing the firewall. Recall that the call graph
is assumed to be a tree. For simplicity, first assume that the set W of all modified modules
and arcs between them comprise a connected subgraph of the ce!l graph. Later we wili
indicate how to handle more complex situations when this constraint is relaxed. The
firewall E for W can be constructed as follows:

(a) [Initially set E is empty.

(b) Carry out all unit and integration tests using the basis cases within W. If errors
are detected between modified modules, then either incorrect specifications or
incorrect code should be corrected. For the firewall calculations, we are only
interested in the unit and integration tests involving those unchanged modules
directly connected to the modules in W.

(¢) Foreach unchanged module A which calls a modified module B in W:

.63 -

This will likely occur as basis case (1), because basis case (6) is less probable
to occur.
If case (6) occurs and no error is detected, then by Lemma 1 there is no need to
check the ancestor of A. Add module A, and all arcs from A to modified
modules in W, to W. Add all other arcs into and out of module A to the firewall
E under construction.
If case (6) occurs and an error is corrected by changing the code of A, then
module A is now modified and added by definition to subgraph W sogether with
all arcs from modified modules. All modules connected to A in any way must
now be considered for integration testing, and in particular. step (c) must be
repeated if A has any ancestors in the call graph.
Lemma 2 indicates that for case (1) even if an error should be detected in the
operation of modules A and B, then B can be corrected to recti fy the problem
and neither the specification nor the code of A need be chariged. Thus add
module A, and all arcs from A to modified modules in W, to W. Add all other
arcs into and out of A to the firewall E under construction.

(d) For each unchanged module B which is called by a modified module A in W:
If no error is detected by unit or integration test, then B can be added to W,
together with all arcs from modified modules in W to B. Add all other arcs into
and out of B to the firewall E under construction.
If an error is detected invulving modules A and B, Lemma 3 assures us that the
error can be corrected hy changing A. But if the error is corrected by modifying
the specification of B, then B is now modified and added by definition to
subgraph W together with all arcs from modified modules. All modules
connected to B in any way must now be considered for integration testing, and
in particular, (d) must be repeated if B has any descendants in the call graph.

(e) After all unchanged modules recursively described in steps (c) and (d) have
been considered, the firewall E is complete. If the arcs in E are deleted, the set
of modules and arcs in subgraph W form a separate component in the call
graph.

In the above procedure for constructing the firewall for integration testing, we
assumed that the set W of modified modules and the arcs between them comprised a
connected subgraph of the call graph. Because of the distributed nature of computation,
and also because several unrelated modifications might be implemented at the same time,

this assumption might not always be valid. In this case, W might consist of several
connected subgraphs W, ..., W, where each consists only of modified modules, but is

maximal with respect to the property of being connected.

The only difference between the case where W consists of multiple connected
subgraphs and that analyzed in the above procedure is that if the calculated firewalls for two
of these subgraphs overlap, then they should be coalesced into one connected subgraph.

More specifically, this will occur when a single unchanged module A is called by a
modified module in a connected subgraph W;, and A also calls a modified module in a

connected subgraph Wj; then a new cennacted subgraph should be formed by W, u W,
together with module A and the two arcs iavolved. For any other connected subgraph W,
where a modified module in W is also connected to module A, then W should also be

.64 -

added to this connected subgraph. On the other hand, if an unchanged module calls a
number of distinct connected subgraphs W, ..., W, but is not called by any connected
subgraph W, then these subgraphs should not be coalesced. Note, however, that the
unchanged module should be integration tested within each of these connected subgraphs
Wl, ooy Wn. The situation is similar for the case of a single unchanged module which is
called by a number of distinct connected subgraphs W, ..., W

n

5.5.2. An Example

Figure 11 shows an example of the use of the basis cases on a given modification to

a call graph, and the subsequent calculation of a firewall. The modified modules are
labeled A;, 1 <i <4, and they form a connected subgraph W. Modules A, Aj and A, all

have code modification and module A, has specification modification. The unchanged
modules are labeled U;, 1 <j <21. All the basis cases are represented in this example
except cases (6) and (8). The firewall E is calculated by first identifving those arcs into and
out of unchanged module U, which calls a modified module in W. Inidally, the subgraph
W consists of {A|, Ay, Az, Ay, (A, Aj), (A, Ag), (A,, Ay)}. Then U,, arcs (Ujp, A))
and (Uz, A,) would be added to W and arcs (U 1> Up) and (U,, Uy) would be added to E
by step (c). Next we identfy unchanged modules which are called by modules in W. If the
integration tests yield no errors, then we can add more arcs to E. Specifically, arcs (A,,
Uy, (A3, U7, (Aj, Ug), (Ay, Us), (Ay, Ug), and Uy, U, Ug, Us, Ug would be added to
W and (Us, Uzo), (Us, Uzl), (US’ Ulg), (Us, U19) would be added w0 E by stcp (d). If
the arcs in E are deleted from the call graph, W is a component in which all modules must
be integrarion tested. The firewall E is indicated by bold arrows in Figure 11.

5.5.3. Practical Appiication of the Firewall Concept

In general, the reliable testing assumptions of individual modules and integration
errors will only hold for simple programs with straightforward interactions between
modules. For programs that cannot be reliably tested, the firewall concept will not
guarantee the detection of all integration errors identified in Section 5.2. Nevertheless, this
does not diminish the practical uses of the firewall concept because:

(1) The firewall can be used to target testing to the areas which likely contain most errors.

(2) The firewall concept provides a systematic procedure in testing the module
interac:ions. Given limited resources available for testing, this procedure will identify
the important interactions to be tested as a high priority.

(3) Since the firewall concept is built on top of the existing testing techniques, it does not
preclude the testing of convoluted interactions involving modules within the firewall
and those outside. Thus, if the test analyst knows what interactions to test, he can test
them. However, if he is not aware of these complex interactions, then applying the
firewall concept will not directly test these otherwise unknown interactions

U u
20 21

Figure 11. A Use of Basis Cases and a Calculation of a Firewall

Chapter Six

Regression Testing at the System Level

System testing is the third phase of testing. Before system testing begins, unit testing
has established that each module is correct with respect to its own design specification, and
integration testing of each pair of calling-called modules has established that the calling
module uses the correct functionalities and only the correct functionalities of the called
module. If the software is thoroughly unit and integration tested, then system testing may
not detect many errors.

System tests have traditionally been created largely based on the specification of the
system, and not on its implementation. Black-box testing strategies are commonly used.
Some system tests aim to stress the system to uncover its limitations and gauge its full
capabilities. These tests should test every possible condition under which the system will
be used, including invalid situations to check that the system will give appropriate
responses. For example, if the user input is controlled by a menu system, then as many
combinations of input options as possible should be executed within the time and resource
constraints. A cause-effect graph may be used for test design purposes [14, 57].

Our regression testing strategy for system testing assumes that the all-essential
module assumption holds. The implication is that any change to a module is assumed to
affect the results of all those previous system tests which traverse the module. Thus, these
system tests should be rerun to check the changes.

The objective of regression testing at this phase is the same as the other regression
test’ng phases: achieve the previous level of confidence about the correctness of the
software using a reasonavle amount of effort. This is accomplished by reusing as many
existing tests as possible. In the next section, we present a model for system testing. Most
test analysts concentrate on testing as many functionalities of the system as possible, but
they do not necessarily use a test termination criterion. Section 6.2 introduces a test
coverage criterion which can be used as a termination criterion for system testing. This
criterion makes use of the calling hierarchy of the system and the system input to measure

the "adequacy” of system testing. Section 6.3 describes our regression system testing
strategies.

6.1. A Moeodel for System Testing

This section reviews the assumptions made about the system testing process. The
first four assumptions are derived from the test process assumption described earlier in
Chapter 2. The last assumption represents a key component of our system testing strategy.
The experimentation to be described in Chapter 9 has shown that this strategy is effective in
detecting errors and does not require large testing effort.

-67 -

(D

(2)

3)

4

(3)

6.2.

There exists a mapping between the software features and the software specifications.
This mapping will be called the feature-specification (FS) mapping. During the design
phase, the system specification should be analyzed and each software feature should
be mapped to a portion of the specification. The software features should not overlap
each other. Those portions of the specificazion which cannot be mapped to any
software feature can be grouped into a feature class called other.

Other program information which can be generated during the development phase is
the set of dependencies between modules and software features. For both the design
and implementation, each software feature can be identified as the set of modules
which together implement the feature. This relation is stored in a feature-module
(FM) matrix. The feature-module matrix is represented by [FMij], 1sisf,1<j<m,
where f is the total number of feature classes, m the total number of modules,
FM;; = 1 if module j is a part of the implementation for feature i, and FM;; =0
otherwise. The feature-module matrix can be used by the maintainer to identify the
potentially affected modules for a given specification change and the potentially
affected software features for a given implementation change.

Since functional or black-box tests are created to test each software feature, we can

store the tests for each software feature in a matrix called the feature-test (FT) matrix.
The feature-test matrix is represented by [FT;], 1< i<f, 1<js<t, where f is the total

number of feature classes, t the total number of system tests, FTj; = 1 if test j is
designed to test feature i, and FI‘ij = 0 otherwise. It is unlikely that there are unique
tests for each individual feature. A number of tests are usually required to test a
feature effectively, and some of them can also be used for testing other features.

During system testing, a module-test matrix is used to record the dynamic behavior of
the program under test. Other component-test matrices such as instruction-test and

branch-test matrices may consume too much storage and therefore are not used.
Recall that a module-test matrix is represented by [MTij], 1<ism,1<j<t, wherem

is the total number of modules, t the total number of system tests, MT;; = 1 if test j
traverses module i, and MT;; = O otherwise. The module-test matrix will be used to

identify the tests which should be repeated after changes are made to the
implementation. Since the module-test matrix only records the modules traversed by
each test, it is impossible to deduce from it the precise effect of a small program
change (such as a single instruction change) on the tests.

The set of data structures used for system testing is shown in Figure 12.

System testing will continue until a termination criterion is satisfied. Section 6.2
develops one such criterion.

A Test Coverage Criterion

In this section, we provide a candidate for a termination criterion for system testing.

Most test analysts try to execute all the functionalities of the system but they do not
necessarily have a termination criterion. We introduce the Structural-Interface (SI) testing
criterion which is a hybrid coverage criterion that requires the coverage of a certain set of
user input combinations and the coverage of some combinations of modules. Thus, it
emphasizes the testing of the user interface and the idiosyncrasies of the implementation at

.68 -

the module level. The SI criterion is simple to compute and is based on the following

observations:

(1) The system must be able to respond properly to all the possible combinations of input
from the user. When the aser is interacting with a system that accepts several different
options, he may enter the requested input in any of the possible combinations. For
example, a database system may have three user options: insert a record, delete a
record and change a record. The user may request an insertion, followed by a change
and then a deletion, or any other combination of input requests. Obviously, a
complete set of system tests should exercise as .nany different input sequences as
possible. A formal definition of input sequence will be given later when we define
the SI criterion.

Feature - specificaton Mapping
feature 1 | specification a
feature 2 | specification b
feature 3 | specification ¢
other remaining specification
Feature - module Matrix
Feature Module
1 2 3 4
1 1 0 1 0
2 1 1 0 0
3 0 0 1 1
other 1 1 1 O
Feature - test Matrix
Feature Test
1 2 3 4 S
1 1 1 0 1 0
2 0 1 0 0 1
3 0 0 1 0 0
other 1 1 1 1 0
Figure 12. Data Structures Used for System Testing
(2) A set of system tests which covers all the input sequences may nevertheless fail to

exercise many interactions between different modules. This occurs to software
systems which are computation intensive or require only a few user inputs. If some
interactions between modules have never been exercised, then one cannot have
confidence that they will behave correctly if and when they are invoked in future
operations. It is likely that there are many possible interactions among the modules,

-69 -

besides those tested during integration testing. Although testing all interactions may
not be practical, one should exercise as many of them as time and computing
resources permit.

The structural-interface criterion (SI) consists of two subcriteria: the inierface
subcriterion and the structural subcriterion. A test set satisfies the SI criterion if it satisfies
both the interface subcriterion and the structural subcriterion. The interface subcriterion
requires the coverage of some input sequences. This criterion can be viewed as "user-
oriented” because it emphasizes testing user input combinations and thus provides a certain
degree of reliability that the user will not encounter errors during normal operations. This
may be viewed as another form of stress testing which emphasizes testing the system under
"different” input sequences.

The second part of the SI criterion is the structural criterion which is an extension of
the structural coverage of unit testing to the system level. In structural testing, tests are
selected to traverse some program paths which together exercise the program components
(for example, define-use pairs) required to satisfy a structural coverage criterion. Since
there are many program paths in a software system, it is not feasible to select tests based on
program paths for system testing purposes. One way to reduce the number of tests is to
treat each module as a black box and select tests based on the execution orderings of the
modules.

The structural subcriterion can be viewed as "implementation-oriented” because it
emphasizes testing the idiosyncrasies of the code. It requires the executions of some
modules or combinations of them. The required modules can be determined statically with a
data structure to be introduced in Section 6.2.2. One motivation for the structural
subcriterion is that one cannot have much confidence that the program will behave correctly
if the tests do not cause most of the possible module interactions to be executed.

The next two sections provide more formal definitions of the above notions.

6.2.1. Interface Subcriterion

Several interface subcriteria will be developed after we introduce the input sequence,
the option set sequence, and the input graph. An input option is one value chosen from a
set of input values which are viewed as treated similarly by the program. A set of input is
treated similarly if the user or test analyst believes that every input in the set will be
processed by the program in the same way. For example, a program that classifies an input
integer into prime and non-prime may be viewed as having two classes of inputs: prime
integers and all the other integers. The user or test analyst may think that all primes will be
processed similarly by the program.

A set of input options is defined to be the set of distinct input options expected by the
system at a certain execution point. Input options i and j are distinct if they belong to
different sets of input values. For example, a database program may prompt the user to
select an option from one of the following: (1) enter a student record, (2) delete a student
record, (3) update a student record, and (4) exit the system. In this case, there are four
distinct input options in this set of input options. Note that some sets of input options may
contain only one element. A null option set is defined to be an empty set of input options.

-70 -

An input sequence (IS} is a list of input options entered into the system. For each
input sequence IS = 0, ... 0 _;, there is a corresponding optior. set sequence (OS) which is
a list of sets of input options 10, ... 1O, suck that o, is an input option from the set 10;,
1 <isk-1, and IOy is a null option set. There are two kinds of option set sequences:
simple and cyclic. An option set sequence OS = 10, ... IO, is simple if every 10;,
1 <1i <k, is distinct. An option set sequence OS =10, ... IOy is cyclic if there exist some
IO; and IO; such that I0; =10;,i#), 1<ij< k. An input sequence is simple if s
corresponding option set sequence is simple. From :he previous definitions, a simple input
sequence consists of input options chosen from different sets of input options.

The input sequences and option set sequences of a system can be represented by an
input graph. An input graph is a directed graph with a start node S which denotes the first
set of input options. Each node with some outgoing edges represents a set of input options,
and the terminal node, which is a node with no outgoing edge, denotes a null option set.
The arrow which connects any two nodes represents an input option selected from the
originating node of the arrow. Thus, every arrow in the input graph represents an input
option. If the input graph is acyclic, then there is a finite number of input paths. An input
path is an input sequence which traverses the input graph from the start ncde to a terminal
node. An input path is simple if its corresponding input sequence is simple. By
successively traversing all edges from the start node to each terminal node of an acyclic
input graph, we can generate all the input paths.

An input graph may be constructed from a careful analysis of the software, design
specification, and the possible user interactions. By first listing all user input at each stage
of the system execution and then ordering them based on the dependence of onz input on
another, we can slowly build up the input graph. The input graph may be viewed as a
special case of a state transition diagram, with each state representing possibly a complex
sequence of computations and not an instantaneous state of the system. An example input
graph is shown in Figure 13. This input graph is actually a subsection of the input graph
of Program StudentDatabase which will be described in detail in Chapter Nine. Since the
input options occur at various modules, to identify where they occur, each node is labeled
with the module identifier of the module that includes the input option. To simplify the
graph, if a set of input options contains only one input option, the edge representing such
an input option will not be labeled.

We next define several interface subcriteria:

(1) All-option-sets

Every node of the input graph should be exercised by at least one test. If this
criterion is satisfied, then every input option set is exercised.

(2) All-input

Every branch of the input graph should be exercised by at least one test. If this
criterion is satisfied, then every input option is exercised.

(3) All-simple-input-paths-and-branches

Every simple input path and every branch of the input graph should be
exercised by at least one test.

=71 -

S Qe Q =

GAN Minid G Maxid

<WMii — > |
validnarne <0 . "'

>MaxAssign
7 >hlaxid) vald id
L) / >NumberofAssigns ¥
<Minid 7 RS
valid id <NumberofAssigns ‘
lYl

Module names:
CU-ClassUpdate %
ES-EnterCiudent
Gi-Getld

GAN-GetAssigniNo
RD-FeadUata
RS-RemcveStudent
SD-StudentDatabase

Figure 13. A Subsection of the Input Graph of StudentDatabase

-72 -

(4) Option-set-sequence of length n
Every option set sequence of length n should be exercised by at least one test,
where n > 2. Since any test set which satisfies the all-input criterion also
satisfies the option-set-sequence of length 2 criterion, there is no need to have a
criterion for option-set-sequence of length 2.

We will measure coverage of a test set T with respect to (w.r.t.) an interface criterion
IC as follows:

Coveragel(T) = E(IC) / N(1C)

where E(IC) is the number of required items executed and N(IC) is the total number of
required izems according to the interface criterion IC. For the all-option-sets criterion, the
required items are all nodes of the input graph. For the all-input criterion, the required
items are all branches of the input graph. For the all-simple-input-paths-and-branches
criterion, the required items are all simple input paths and all branches, and for the option-
set-sequence of length n criterion, the required items are all option set sequences of length
n. Total coverage w.r.t. an interface criterion is achieved when Coveragel = 1. Note that
total coverage may not be auainable because of resource constrainis.

It is easy to show that the all-simple-input-paths-and-branches criterion subsumes the
all-input criterion which in turn subsumes the all-option-sets criterior. We recommend the
use of the all-simple-input-patlis-and-branches criterion because (1) the set of tests which
satisfies this criterion may be viewed as testing most of the commonly encountered
operational scenarios of the system, and (2) it requires a non-trivial number of tests but
should require fewer tests than the option-set-sequence of length n criterion.

6.2.2. Structural Subcriterion

Before presenting the structural subcriterion of the SI criterion, we first introduce the
calling order graph which shows the invocation order of modules for every execution of the
system, and then describe a procedure for constructing a cailing order graph. The calling
order graph Gec = (N, E, ng, ny) is a directed graph where N is a set of nodes and E 1s a set
of edges in N x N. Each node represents a module, and each edge (n;, ny) indicates that
module n; may be invoked before module n;. Note that the existence of the edge (n;, n))
does not necessarily mean that n; calls n;; the two modules may be calied by another
module which invokes n; before invoking n;. "he start node, ng, is the only entry point to
the graph and represents the main module, where the execuiion of the system beginc. We
assume there exists one exit point, the final node, n;, which is a null node and does not
represent any module. A call path is a list of nodes (ng, 0y, ..., iy, Ny) such that (ng, ny),
(ny, ng), (0, g, 1) € E for all i, 1 i< k-1. Some call paths may be nonexecutable due to
contadictory ccaditions on the transfer of control from one module to another. A call path
is feasible if there exists input data which causes the call path to be traversed during
program execution. An atomic module is a module which does not call another module.

-73-

The calling order graph can be constructed from the program text. The construction of
the calling order graph is based on the three basic transformations shown in Figure 14.
These transformations correspond to the three basic programming constructs of
sequencing, alternative and iteration. The ellipses represent undescribed code. There is no
call instruction in an ellipsis. In these transformations, Q represents a null node which is
added to make each graph single-exit. Also, every call instructiocn is represented by one
node, even for different calls which invoke the same module. For example, if Call(C) is
changed to Call(B) in case I of Figure 14, the calling order graph for A should still have
the same structure as shown, that is, one node for each B on each branch. For the sake of
presentation, we show each module calls only two other modules. The basic
ransformations can be generalized to calls to more than two modules.

Figure 15 outlines the procedure for constructing a calling order graph. The first three
steps apply the basic transformations and generate a calling order graph that may contain
many null nodes. The last step is used to eliminate some of the null nodes.

Figure 16 gives an example of the construction process. The program text outlining
the call instructions of eacn moduiv is silown in Figure 16a. Module A is the main module
which calls moduies B, C and D. These mindules in turn call other modules. By assuming
every module is atomic, we first g- rerais the calling order graph of each module, shown
next to the respective program text of the four modules. Figure 16b shows the successive
substitution of the calling order graphs of modules B, C and D into the calling order graph
of A. Finally, the reduced graph is obtained by eliminating the null nodes using the two
rules given in Figure 135.

Another example of a calling order graph is shown in Figure 17, which presents the
cailing order graph of program StudentDatabase.

The calling order graph presents a higher level view of the system that does not
contain all the details at the source code level. It encodes more information than a call graph
and should help the test analyst and maintainer to understand the system. Each call path
represents a potential executior. of the program. On each call path, modules that are ahead
of a module A are invoked or executed before A, and therefore they may affect the
computation of A. From the calling order graph, we can develop a family of structural
ciiteria which are suitable for system testing.

(1) All-call-nodes.

Every node in the calling order graph should be exercised by at least one test. If
this criterion is satisfied, then every module is exercised at least once.

(2) All-call-branches.

Every edge in the czaliing order graph should be exercised by at least one test. If
this criterion is satisfied, then every module invocation is exercised at least
once.

(3) All-simple-call-paths-and-branches.

Every simple call path and every branch of the calling order graph should he
exercised by at least one =st. A simple call path is a path from the start node to
the final node in the calling order graph which does not iterate any loop. Each
simple call path represents a possible execution of the system and exercising all
the simple call paths provides some confidence that most module dependencies
have been tested.

.4 -

L. Sequencing

Module A: 9 B
C.z.a.lI(B) g

cali(C)

1L Alternative:

Module A:)R:
if condition1 then
Cali(B) 8 c
else
Call(C)

Q
L. fteration:
Module A: A
bgp ,,f’——-.\ 8
Call (B)
endloop Q

Calling Order Graphs

Figure 14. Constructing a Calling Order Graph

-75-

1 For each module i, use the basic ransformations shown in Figure 14
o zenerate a calling order graph for i assuming ai! its called
modules are atomic.

2 For each node in the calling order graph of the main module,
replace it with its corresponding calling order graph.

3 Repeat 2 until every node has been replaced by its calling order graph.

4 Reduce the calling order graph by applying the following rules:

« Two successive null nodes can be combined into one.
« If a null node is dominated by its immediate predecessor, then
combine these two nodes by eliminating the null node.

Figure 15. The Procedure for Constructing a Calling Order Graph

Module A: Module B:

(vy)

Call(B) call(E)

if cond2 then B E
Call(C) Call(F)
else F
CaliD) c D
Q Q
C Module D: D
i;éondZ then
E H
Call(G) G
|
O else o

Cali(H)

Module C:
loop
Call(E)

end

Figure 16a. An Example Construction of a Calling Order Graph

-76 -

Substitute C

Supstitute B

Substitute D Q

Reduced Graph

Figure 16b. An r.xample Construction of a Calling Order Graph
-77 -

‘.'14-'-'
. o

Q

Figure 17. Calling Order Graph of Program StudentDatabase

-8 -

We will measure coverage of a test set T w.r.t. a structural criterion SC as follows:
CoverageS(T) = E(SC) / N(SC)

where E(SC) is the number of required items executed and N(SC) is the total number of
required items according to the structural criterion SC. For the all-call-nodes criterion, the
required items are all nodes of the calling order graph. For the all-call-branches criterion,
the required itemns are all edges, and for the all-simple-call-paths-and-branches criterion, the
required items are all simple call paths and all branches of the calling order <raph. Total
coverage w.r.L. a structural criterion is ~chieved when CoverageS = 1. Note that total
coverage may not be attainable because of resource constraints.

One can show that the all-simple-call-paths-and-branches criterion subsumes the all-
call-branches criterion which in turn subsumes the all-cal!-nodes criterion. Since exercising
all simple call paths and all branches test more dependiencies among modules than the other
two criteria, it gives more confidence about the correctness of the systzm under test than the
other two criteria. Also. the number of tests required to satisfv tne all-simple-call-paths-
and-branches criterion should not be too large and will not require a kigh test generation
effort.

The structural-interface criterion provides a measure of the thoroughness of user input
coveragi: and module coverage that may be used to quantify the program reliability. We will
call tests that are created specifically to satisfy the SI criterion the S/ tests. Given a set T of
wests, the: ST coverage of T is computed as follows:

CoverageSI(T) = (Coveragel(T) + CoverageS(T)) / 2

When CoverageSI(T) = 1, the test set T satisfies the chosen structural-interface ¢riterion.

6.3. Regression Systemn Testing

Before regression system testing, the test analyst should first collect the "changes”
from the maintainer. From the change objective, the maintainer can identify the parts of the
specification which are affected, and determines the affected software features, before
making the changes to the coc:. Thus, the maintainer can suppi, .z ter i . i

. the affected parts of the specification

. the set of affected software features F,

° the set of affected modules M,, where

Fa = Fn v Fd U Fm
M, =M, uMyuM_,
Fn is the set of new features, Fd the set of deleted features, F the set of

modified features, M the set of new modules, Md the set of deleted modules,
and Mm the set of modified module::

Many errors may be made in the process of modifying the software. For example, the
maintainer may not identify all the affected software features and affected modules. Thus,

-79 -

besides testing for the modification, a reliable testing strategy should also test the
consistency of the information given by the maintainer. Although it is difficult to check
whether the main:ainer has not missed some change information and therefore supplied an
incomplete set of changes to the test analyst, such an omission should be detected by the
regression testing strategy.

Similar to the two previous testing phases, there are two types of changes for the
regression system testing: code change only and software specification change. We next
present the regression testing strategies for these two types of change. Our testing strategy
not only tests the modification, but also tests for the consistency of the given information.
This strategy does not rely on the maintainer identifying all the changes. It uses the stored
information to check whether the maintainer has not overlooked the effect of the changes on
all program features.

6.3.1. Corrective Regression Sysiem Testing (CRsT)

If the software has been subjected to code change only, then corrective regression
testing should be performed. In this case, the test analyst is only given a set of affected
modules. Figure 18 gives the procedure for corrective regression system testing (CRsT).
There are two sets of tests that can be repeated to test the software system. The first set
includes the tests that traverse the modified or deleted modules. These tests can be
identified from the module-test matrix.

The second set aims to test the new modules. Observe that some features may have
additional module dependency after the change. For example, a module implementing a
feature may be split up into two modules; consequently this feature will have a new module
dependency.

Some of the system tests may become obsolete and may be removed from the test
plan. A system test becomes obsolete if it was designed to test a feature that has been
deleted, or it is a SI test and does not increase the SI coverage. The former class of obsolete
tests can be identified from the feature-test matrix; the latter class can be determined by
generalizing the algorithm for computing the ndir-redundant test set to the system testing
level. From the module-test matrix, the input graph, and the calling order graph, it is
straightforward to identify those SI tests which cover input or calling paths that are covered
by other tests. In most cases, no new tests are needed to satisfy the structural-interface
criterion.

6.3.2. Progressive Regression System Testing (PRsT)

If the software specification is modified, then progressive regression system testing
(PRsT) should be performed. Changes to a software specification are different from
changes to a design specification. Some changes to the design specification may not affect
the software specification. This may occur for efficiency and maintenance purposes.
However, a change of the software specification always induces changes to both the design
specification and the program code. Likewise, a change of the design specification always
induces some changes to the implementation.

-80 -

After the modification, the test analyst is given the changes in the specification, the set
of affected features, and the set of affected modules. Based on this information, he can
identify a set of previous tests to be rerun.

Procedure CRsT
input: t: total number of system tests
m: total number of modules
begin
{From the module-test matrix, identify the set of tests T,
which traverse any modules in M, u My}
T,=@
foreach module i in M, U M,
for j=1tot,
if MT;; = 1 then
Tlu =T, v]
end
end
foreach module in M,
Determine its dependency relation with the software features,
Update the feature-module matrix,
F = the set of features with new module depcndency.
(From the feature-test matrix, identify the set of tests T¢ which test
any features in F}
Tf =0
foreach feature i in F,
forj=1tot,
if FT;; = 1 then
end
end
Repeat all tests in T,; u Ty
Delete obsolete tests.

Add new tests until the structural-interface criterion is satisfied.
end CRsT

Figure 18. The Procedure for Corrective Regression System Testing

There are three basic specification modifications: adding a new software feature,
deleting a software feature, and modifying a software feature. In each case, the reusable,
retestable, and obsolete tests are first identified. New tests may need to be created to test the
affected specificaiion. The regression testing strategies for each case are described below:
(1) Adding a new software feature

This case usually involves adding new modules and modifying some other modules.

New specification tests should be created to test the new feature. For the modified

modules, the module-test matrix can be used to identify all the affected tests. These
tests can then be rerun.

-81-

(2)

3)

A software feature is independent of the rest of the program if it is imr”’ mented by
its own set of madules and none of these modules is used by other icatures. An
independent feature can be studied and tested alone. In general, if the new software
feature is independent of the rest of the program, then regression testing is simplified
because none of the previous system tests need to be rerun.

Deleting a software feature

This case may involve deleting some modules and modifying other modules. If the
deleted feature is independent of the rest of the program, then some modules should
be deleted.

All system tests which traverse the modified modules or are designed to test the
deleted feature should be repeated to revalidate the changed software. Although tests
which execute the deleted features are obsolete, they should first be rerun and then
discarded because they can be used to check that the software indeed will not accept
any input which invokes the deleted features.

Modifying a sottware feature

This case can be viewed as a deletion of a software feature, followed by an addition
of another software feature. New tests should be created to test the new feature.
Tests which are designed for testing the modified feature should be repeated. Also,
those tests which traverse the modified and deleted modules should be rerun. Tests
for the latter can be removed from the test plan after testing.

Figure 19 shows the general procedure for progressive regression system testing.

-82-

Procedure PRsT
begin
From the changes in the specification, identify the set of affected
features F, from the feature-specification mapping.
Compare F to the ziven set of affected features F,.
if F, # F,, then
notify the maintainer about the inconsistency,
stop regression testing.
else
F=F_ uFy
From the feature-module matrix, identify the set of affected
features F' due to the deletion of modules in M.
if not (F o F), then
notify the maintainer about the inconsistency,
stop regression testing.
else
From the feature-te.. matrix, identify the set of tests
T; which test any features in F.
Fromi the module-test matrix, identify the set of tests
T, which traverse any modules in M, v M,
Repeat tests in Tg U T,

Delete entries for F and the obsolete tests from the
data struciures (See Note 1).

For new features,
add new entries to the feature-specification mapping,
add new entries to the feature-module matnx.

" .vise new tests for new features and update the
feature-test matrix. Let this set of tests be T,

Run T, and update the module-test matrix.

Add new tests until the structural-interface criterion is satisfied.

endif
endif
end PRsT

Note 1: Any test which is designed to test a deleted feature should be
checked to determine whether it also tests other features; if not,
this test can be removed from the test plan.

Figure 19. The Procedure for Progressive Regression System Testing

-83.

Chapter Seven

Regression Testing Programs (ontaining Global Variables

A global variable is a variable which is referenced by a modaule other than the one
containing its declaration. Using global variables uftects not only the understandability,
readability, and maintainability of the software, but also its testability. This is especially
apparent in integration testing. Global variables create data flow dependencies between
modules which are not directly callable and may be well separated in the call graph. For
example, in Figure 20, module A defines a global variable g which influences modules B
and C in other areas of the call graph. The use of global variables also causes the following
problems: (1) it is very difficult to determine the complete effect of a module without
looking at its implementation, and (2) the use of global variables may create many
maiutenance problems because a change in the computation of the globa) variable may
affect many modules and consequently may require the re-analysis of the whole program.

used

Global variable

4

Figure 20. Potential Effect of a Clobal Variable on Other Modules

-

Despite the existence of global variables in many software systems, testing global
variables has traditionally been overlooked by the testing community. Due to the difticulty
in designing tests for global variables, test analysts normally ignore them during the test
design and hope that the functional tests will test them indirectly. This state-of-the-practice
leads to the release of some software systems with untested properties, and must be
corrected to increase the software reliability.

The need for testing global variables can be¢ summarized as follows:

« Global variables are widely used. Al:+ -gh most development methodologies

recommend not using global variai i "= they are in fact widely used in practice.
Most programmers use them bec:: . their tendency to tc'-e short cuts in
programming. Any reliable testing, - .hod should test the effects of global
variables.

If global variables are not tested du: 3 unit or integration testing, then their effect
will not be examined other than & coincidence.

" This chapter presents some insights (o the problem of testing and regression testing
global variables. A basis set of testing p+:.-blems for parameters will be identified and the
testing problem of global variables will be mapped into a combination of these basis cases.
It will be shown that global variables can be treated as parameters and can be tested
accordingly. The existence of global variables does not introduce additional testing
problems other than those similar to testing parameters. Strategies for unit, integration, and
system testing global variables are described. Section 7.1 introduces some notations to be
used in the sequel and reviews the testing assumptions. Section 7.2 describes the basis
cases for testing parameters and they will be used in the presentation of Section 7.3, where
we illustrate that global variables can be treated as parameters and tested accordingly. The
objective here is not to solve the testing problem for global variables, which is a difficult
problem by itself, but to develop a solution to the regression testing problem for global
variables. Nevertheless, several observations on testing global variables will be presented
in Section 7.4. Section 7.5 describes a strategy for retesting global variables.

7.1. A Testing Model

Before listing the assumptions used in the following analysis, we first introduce
some terminology which will facilitate the presentation. A global variable or a parameter is
directly used in a module M if it is used by an instruction other than a call instruction in M.
M will be called a using module of the global variable or the parameter. A global variable or
a parameter is direcily defired in a module M i€ it is defined by an instruction other than a
call instruction in M. M will be called a defining module of the global variable or the
parameter. A call instruction defines a global variable or a parameter if the invoked module
assigns a new value to the global variable or the parameter. Since a defining module M of
variable v may contain many paths and some paths may not traverse the definition of v, v
may not be defined in every execution of M. Similarly, a using module of variable v may
nov use v ‘n every execution. A global variable or a parameter is directly referenced in 2
module M if it is directly used or direcily defined in M.

The definition of a global variable g from a defining module of g may reach other
modules. A definition of v at inodule A reaches another module B if

« there is a definition-clear path from the definition of v to the exit point of A, and

85

» there is a module invocation sequence from A to B such that v is not redefined on
at least one program path between the definition of v ai A and the use of v in B.

A definition of variable v which reaches a module M is killed by M if M redefines v
on all paths through M.

Note that a using module of a global variable g uses the definition of g from another
module. A define-use module pair is a defining module A and a using module B of the
same variable v such that the definition of v in A may reach B.

There are some modules which just pass the input parameters to another modiule, and
do not directly reference them. Module M is a rransferring module of variable v if M
satisfies the following conditions:

(1) v isan input parameter of M.

(2) Ms not a using or a defining module of v.

use(M,v) will denote that module M directly uses the variable v. def(M,v) will
denote that module M directly defines the variable v. trans(M,v) will denote that module M
is a wransferring module of the variable v. Since a global variable may be defined by several
modules and used by several modules, any definition of a global variable may be used by

several using modules, and any use of a global variable may be defined by one of several
defining modules.

The notation A->B(p,) represents that module A calls module B and passes an input
parameter p to B, and A->B(p,) represents that module A calls module B and B returns an
output parameter p to A.

The following analysis assumes:

(1) There exists an oracle for global variables. A global variable oracle of a
module is a relation that specifies acceptable behavior of the global variable for
any input to the module. It can be a functional representation, formal
specification or correct version of the module, or a test analyst who knows the
correct behavior of the global variable. Any uses of global variables should be
included in the design specification, and their use should not be left to the
discretion of programmers. This would prevent the common problem of the
undisciplined usage of global variables. To identify the correct usage and
behavior of global variables, a global variables oracle must be available.

(2) Anincremental integration strategy will be used. As described in Appendix I, an
incremental integration strategy is superior to a non-incremental strategy in that
it is easier to locate faults where they occur.

(3) The test analyst has a reliable strategy for testing the correct usage of
parameters. The following analysis focuses on the global variable testing
problem and does not try to solve the parameter testing problem, which is
beyond the scope of this thesis. Our objective is to transform the global variable
testing problem to the parameter testing problem. Thus, if there exists a reliable
testing strategy for parameters, the same strategy can also be applied to global
variables testing.

Before presenting the strategy for testing global variables, we first present the basic

testing problems for parameters. These testing problems can be classified into nine different
cases, which can be reduced to a set of four basis cases.

7.2. Basis Cases for Testing Parameters

Parameter passing is one way that two modules can communicate with each other.
The correct usage of parameters is tested during integration testing when they are actually
being referenced in both the defining and using modules. The testing problem for
parameters is complicated due to the presence of transferring modules. Some parameters
that are passed to a module may not be directly referenced by the module; they are merely
passed along to another module.

There are nine cases to be considered when testing a parameter passed between a
calling module and its calied module: the parameter is passed between

(1) adefining module and a using module,

(2) a defining module and a transferring module,

(3) a transferring module and a using module,

(4) two transferring modules,

(5) a using module and a transferring module,

(6) a transferring module and 2 defining module,

(7) ausing module and a defining module,

(8) two defining modules, and

(9) two using modules.

The first four cases may be viewed as basis cases because each of the last five cases
can be reduced to one of them. Case (5) can be treated as case (4) since the using module
does not kill the definition and it can be viewed as a transferring module of the definition.
Case (6) can be treated as case (4) if the defining module does not kill the definition;
otherwise no testing is needed for this case. Case (7) can be reduced first to case (6)
because the using module does not kill the definition, and then to case (4). Case (8) can be
treated as case (2) if the called defining module does not kill the definiton, or case (6) if the
calling defining module does not kill the definition; otherwise, no testing is needed. Case
(9) can be treated as case (3) since the calling using module does not kill the definition.

Of the four basis cases, only case (1) can be thoroughly tested during incremental
integration testing, since the define and use of the parameter can be tested together. For
case (4), it is impossible to test the parameter during either the unit or integration testing of
the two modules because the parameter is not directly referenced. For both cases (2) and
(3), the parameter should be extensively tested during unit testing of the defining module
and the using module respectively; incremental integration testing is not effective in testing
the parameter. Only after both the using and defining modules have been integrated can
testing be performed on the parameter.

Because of the difference between input and output parameters, each basis case can
be further divided into two subcases. Thus, there are a total of eight basis cases, which are
listed below. Let A be the calling module which calls module B.

(1) A->B(p;) & def(A,p;) & use(B.p;)
The input parameter p is defined in module A and is used by module B. This is a
common case that occurs in practice.

(2) A->B(p;) & def(A,p;) & trans(B,p)
The input parameter p is defined in module A and will be used by some descendant of
B; B is a transferring module of the definition of p in A.

-87-

(3) A->B(p;) & trans(A,p;) & use(B.p;)

The input parameter p is used by module B; A is a transferring module of the
definiton of p from an ancestor of A.
(4) A->B(p) & rans(A,p;)) & trans(B,p,)

Both modules A and B are transferring modules of the definition of p from an
ancestor of A.
The next four cases are "mirror images" of the previous four cases with the output
parameter being passed from the called module to its calling module.
(5) A->B(p,) & def(B,p,) & use(A,p,)
This case is another common case one would expect to occur in practice; the output
parameter is defined by module B and is used by module A.
(6) A->B(p,) & def(B,p,) & trans(A,p,)
The output parameter is defined by module B and will be used by an ancestor of A; A
is a transferring module of the definition of p in B.
(7) A->B(py) & trans(B,p) & use(A,p,)
B is the ransferring module of the definition of p from a descendant of B; A is the
using medule of p.
(8) A->B(p,) & trans(B,p,) & trans(A,p,)
Both modules B and A are transferring modules of the definition of p from a
descendant of B.

7.3. Global Variables as Parameters

This section shows that global variables can be treated as extra parameters for testing
purposes. If the usage of global variables in various modules is explicitly documented, then
the testing of global variables should not be more difficult than that for testing parameters.
We first analyze the base cases involving only one define-use module pair, and then
generalize the results to multiple define-use module pairs.

Figure 21 shows the different ways that a global variable may be referenced by two
arbitrary modules. A rectangle represents a module and a circle denotes a giobal variable.
An arrow from a module to another module indicates that the former calls the latter. An
arrow from a module to a variable shows that the module directly defines the variable, the
arrow 1is reversed for the case that the module directly uses the variable.

The relation between the defining module and the using module of the same global
variable can be grouped into two major categories:

(1) Both the defining and using modules are on the same chain of calls. A chain of
calls is a sequence of calls Call(M,), ..., Call(M,) such that module M; may call
module M, 1 <isk-1.

(2) The modules are on different chains of calls; in this case, they will have a least
common ancestor. A common ancestor C of modules A and B is a module in
the call graph which satisfies the following conditions:

« C and A are on the same chain of calls and C is called before A.

¢« Cand B are on another chain of calls and C is called before B.

A least common ancestor L. of modules A and B is a common ancestor of A and
B such that no descendant of L is also a common ancestor of A and B.

-88-

A define
Y \
B
()
L |
A

v

use

Hla

Figure 21. Different Pairs of References to a Global Variable

For the sake of illustration, we have divided the first category into three classes: I, 11,
and III. In Class I, there is no module separating the define-use module pair. In Class I,
there is exactly one module separating the define-use module pair. Class 111 represents the
case of many modules separating the define-use module pair. Class IV shows the case
when the defining module and the using module are on separate chains of calls.

Each of these classes can be shown to be a combination of the basis cases defined i
Section 7.2. Thus, the existence of a global variable between a using module and a defining
module can be viewed as an extra parameter being passed from the defining module :o the
using module via some transferring modules which may separate these two modules.

In the following analysis, we only consider the case when the definition of global
variable g in each of the defining modules is executed before the use of g in the using
modules in Figure 21. The reverse case can be ignored since no specific testing is required.
Class Ia can be viewed as A passing the giobal variable g to B as an extra input parameter
(A->B(g)) & def(A,g;) & use(B,g;)). Class Ib can be treated as B returning an extra output
parameter g to A, and can be represented by A->B(g,) & def(B,g,) & use(A,g,).

If we view the global variable as an input parameter of modules B and C, Class Ila
can be viewed as a combination of basis cases (2) and (3), and can be represented by
A->B(g;) & trans(B,g;) & B->C(g;) & def(A,g;) & use(C,g;). Similarly, Class IIb can be
represented by A->B(g,) & trans(B,g,) & B->C(g,) & def(C.g)) & use(A,g,) and is a
combination of basis cases (6) and (7), when the global variable is treated as an output
parameter of modules B and C.

In Class III, there are several transferring modules between A and C. If we use E and
F to represent any pair of consecutive moduies on the chain of calls between modules A
and C, the effect of these modules can be expressed by:

trans(E,g;) & E->F(g;) & trans(F,g;) when A is the defining module (case 1lia), and
trans(E,g,) & E->F(g,) & trans(F,g,) when A is the using module (case 111b).

In Class I'V, we only consider the case where module B is executed before module C
because the case of module C executing before module B can be ignored since C will be
using a definition of g frem another module. In deriving the representation for Class 1V,
we have used E and F to denote any pair of consecutive modules on the chain of calls
between modules A and B, and G and H to denote those between modules A and C.
trans(E,g,) & E->F(g,) & trans(F,g,) is used to represent the passing of g among the
transferring modules between B and A; trans(G,g;) & G->H(g;) & trans(H,g;) is used to
represent the passing of g among the transferring modules between A and C. Table 5
summarizes the representation of the four classes in terms of the basis cases.

We next analyze the more complex situation when there are multiple define-use
module pairs of the same global variable. We want to show that this situation is the same as
a parameter teing defined in many modules and used in many other modules. Consider the
case of one defining module and multiple using modules. Each define-use module pair can
be easily determined from an interprocedural data flow analysis [17, 25]. The previous
analysis can be used to show that the global variable can be viewed as a parameter. Some
define-use module pairs may not be feasible because the definition of the global variable
may not reach the using module due to contradiction in the control flow condition.

-90-

Class | Representaticn Basis Cases
Ia A->B(g;) & def(A,g;) & use(B,g;)) 4

13 A->B(g,) & def(B,g) & use(A.g) ©)]

IIa A->B(g;) & trans(B,g;) & B->((g)) (2) and (3)
& def(A,g;) & use(C.g;)
IIb A->B(g,) & trans(B,g,) & B->C(g,) (6) and (7)
& def(C,g,) & use(A,g;)
Iifa A->E(g;) & rans(E,g;) & E->F(g;) (2), (3), and (4)
& F->C(g) & trans(F,g;) & def(A,g;)
& use(C,g;)

ilIb A->E(g,) & trans(E,g) & E->F(g) {6), (1), and (8)
& F->C(g,) & trans(F,g) & dcf(C,go}
& use(A,g;)

v A->E(g,) & trans(A,g) & trans(E,g) (6), (8), (4), and (3)
& E->F(g,) & F->B(g,) & wrans(F,g,)
& A->G(g;) & G->H(g;) & rans(G,g))
& H->C(g;) & trans(H,g;) & def(B,g,)
& use(C.,gy)

Table 5. Representing a Global Variable as a Parameter

For the case of multiple defining modules for one using module, we can easily
generate all the possible define-use module pairs. Each such pair can be reduced to one of
the four classes above. One complication with this case is that some definitions of the
global variable may be killed by another defining module and some definitions may not
reach the using module because of contradiction in the control flow condition.
Interprocedural data flow analysis can be used to identify some of these occurrences.

Finally, for the case of multiple defining and multiple using modules, we can again
identify all define-use module pairs. Each pair can then be reduced to one of the four
classes considered earlier. In this case, the chance of a definition being killed is higher than
the previous two cases and there will be more define-use module pairs. Nevertheless, the
global variable can still be treated as an extra parameter being passed between the defining
and using modules. From the results of the above analysis, a global variable can be treated
as another parameter and tested accordingly.

7.4. Testing Global Variables
As described in Chapter One, the testing process is structiured into three phases: unit
testing, integration testing, and system testing. Global variables should be tested during

unit and integration testing. We describe below some observations and a test selection
strategy for testing global variables in each phase:

91-

(D

(2

3)

Unit Testing

The global variable can be treated as an extra input/output variable to the module and
the usual unit testing strategy can be used to test the global variable. Since the test
analyst is assumed to have an oracle for global variables, he can judge the correctness
of the test output with respect to the oracle. If the test analyst has a method for
generating reliable tests for parameters, then he can use the same method for
generating reliable tests for global variables. Let A be the defining module and B be
the using module of a global variable g. In the case of module A, g is treated as an
output variable and the test set should test every functional condition of A under
which g might change; the test set would come from functional and structural tests
which affect g. In the case of module B, the set of tests must range over sufficient
values of g so that all effects on B are represented by these tests. Extremal values of
g should be used whenever possible. To module B, g looks like another input
vaziable.

Integration Testing

As shown in Section 7.3, the global variable can be treated as a parameter and the
normal integration testing strategy can be applied. For each pair of defining module A
and using module B of the same global variable g, testing of g should be done after
all the modules separating A and B have been integrated together. Functional tests
may need to be sensitized from one module to another if A and B are on the same
chain of calls, or to a least common ancestor if they are on different chains of calls.
The test selection may be difficult if A and B are separated by many modules.

System Testing

The existence of a global variable is riot a concern here since system tests are based
largely on the system specification and not on the implementation details of the
software system. The use of a global variable will not complicate the testing strategy.

7.5. A Regression Testing Strategy for Global Variables

Many people have realized the importance of regression testing and recently several

research studies in this area have been reperted {23, 27, 47, 48, 79]. As in the case of most
testing research, global variables are not treated in these studies. We present below a
regression 1esting strategy for global variables:

(1)

Unit Testing

For corrective regression testing, only those tests which traverse both the modified
code and the instruction which references the global variable need to be repeated.
Figure 22 shows the four possible relations between the reference to the giobal
variable g and the changed code. Only cases 1 and 4 require regression testing of g.
No new tests are required since the specification of the module is not modified.
Observe that the specification states the correct usage of the global variable and since

the specification is unchanged, the previous tests for the global variable should be
valid.

changed code reference

g
reference to changed
global variable oode
g !
case 1 case 2
changed » reference reference
code g g
case 3
changed
code
case 4

Figure 22. Relations Between a Giobal Variable and Changed Code

)

3)

Let A be the defining module and B be the using module of a global variable g. From
the previous discussions, if just the implementation of A or B changes, but the
respective specification does not change, all we need to do is to rerun the given global
variable tests for A or B, respectively. In the case of module A, we should repeat the
global variable tests and check whether the previous values of g are replicated. In the
case of module B, we run the given global variable tests on g to check if the output
of B indicates any error. In both cases, if the tests give different results, then either
the specification should be modified or the changes are incorrect.

For progressive regression testing, if the specification change involves the global
variable, then new tests should be created; otherwise the retesting strategy is the same
as in corrective regression testing.

Integration Testing

If a global variable g is used between modules which are modified, we need to apply
the integraics wohniques described in Chapter Five, using g as an input or output at
the apprOpr it point in the integration *esting. The testing of g should be re-applied
if the mouiified :nodule references ¢ <.:#.iw e, %o global variable testing is required.
If a defiring module of g is modified, -h¢? the change may affect the definition of g
which is used by other using modules. In this case, integration testing should also be
performed with each of the using modules of g. If a using module of g is modified,
then the change may affect the way that g is used. In this case, integration testing
should be performed with each of the defining modules of g to check whether the
corresponding definition and use assumption has not becn violated. Some examples
are shown in Figure 23.

If the modified module has undergone code modification only, then some previous
tests can be repeated and the correctness of the global variable usage can then be
checked. If the specification is changed, new tests may be needed. It may be difficult
to design new tests but it is no different from the initial testing problem.

System Testing

As explained in Section 7.4, global variables can be ignored in this testing phase.
This chapter has shown that global variables can be treated like parameters for testing

purposes and can be tested accordingly. Insights into testing and regression testing global
variables have been described. An important assumption of our strategies is the requirement
that the global variable usage be explicitly stated in the design specification. The adoption
of this requirement entails two major advantages:

(1) The usage of global variables is controlled. The programmer is not allowed to
include unplanned and undocumented use of global variables. The interactions
of global variables and other components of the program are no longer hidden
in the code.

(2) Since the effect of global variables is known, there is no excuse for not testing
them. A common excuse for not testing global variables is that they may affect
many parts of the program and since there are many possible areas for testing
their effect, it is impossible to test them properly.

If one accepts the fact that an unknown program property cannot be thoroughly

tested, then the effects of global variables must be known for testing purposes. Once the
effects of global variables are known, testing them is not more difficult than testing
parameters.

-94-

define

| ()
4 L

B
Global variable testing is not needed
(In all cases, module B is the only one changed)
A A

/ [
L @) ()

B use B define

Global variable testing is needed in this two cases

Figure 23. Some Examples Where Global Variables Testing are Required

Chapter Eight

A Regression Testing System and a Cost Model

Because of the high volume of testing necessary to insure reliability, a test analyst
cannot rely solely on any manual testing approach; some form of automated system is
needed to ease the burden of testing. An automated system eliminates the labor intensive
and error-prone manual approach. Also, as described in previous chapters, regression
testing involves retaining tests and reusing some of them after each modification to the
software. This process involves many book-keeping chores which are especially suitable
for automation.

A large number of testing tools exist to assist in software development {66]; however,
very few of them can be applied directly to regression testing. Among those which claim to
be useful for regression testing, most provide no more than the capability to store the
previous tests and rerun them after every modification {12, 60, 69, 7¢]. They do not
provide any intelligent test selection capability, nor any estimation of the required testing
effort. Recently, several tools were introduced for regression testing at the unit level [3, 23,
79]. They do not automnate the entire regression testing process.

This chapter presents the design of a regression testing environment which addresses
all phases of regression testing and supports both black-box (functional) and white-box
(structural) testing. Section 8.1 presents the design objectives and an overview of our
regression testing system - ReTestS. Section 8.2 details each component of ReTestS.

This chapter also analyzes the relative cost of different regression testing strategies. It
is not obvious that a selective regression strategy will always require less effort than the
retest-all strategy. A selective regression testing strategy selects and repeats a subset of the
previous tests, rather than repeating all previous tests. Our regression strategy is an
example of a selective regression strategy. Section 8.3 provides a model of the cost of
testing and compares the relative cost of the retest-all and the selective regression testing
strategies. The conditions under which one strategy is more economical than the other
strategy are established.

8.1. An Overview of ReTestS

This section provides a high level view of our Regression Testing System,
ReTestS, which is designed with the following objectives:

(1) It should support a full spectrum of services required for regression testing,
ranging from unit to system testing, and including both specification-based and
structural-based testing. A modified program not only requires regression unit
testing, but also regression integration and regression system testing. A
"complete” regression tool should assist in all three testing activities. Also,
since a single testing technique is not effective in testing a program, a regression

-96-

tool should support both specification-based and structural-based testing
techniques.

(2) It should provide an interactive, easy to use, well-integrated and automated
environment with information (for example, tests and program analysis) shared
among the various tools.

ReTestS acts as a regression testing assistant which handles most of the routine
chores of regression testing, such as static analysis, test execution, and update of the test
plan. We envision that ReTestS will be used according to the following scenario: After the
modifications are entered into ReTestS, ReTestS performs a static analysis of the new
version of the software, comparing it to its previous version. The sets of reusable,
retestable, and obsolete tests for all three testing phases are then determined based on the
stored test plan and change information. ReTestS automatically executes the retestable tests,
evaluates the test coverage, identifies the program components that remain to be covered,
queries the test analyst for new tests if the testing criterion is not satisfied, collects the
testing results, and updates the test plan with the new dynamic information. Using
ReTestS, the test analyst's major task is to create new tests, as this cannot be completely
automated.

The structure of ReTestS is depicted in Figure 24. ReTestS consists of three separate
regression testers, one for unit, integration, and system testing, respectively. The unit
regression tester implements the strategy outlined in Chapter Four and consists of the
Module Spec Tester, Module Static Analyzer, Module Test Repeater and Module Dynamic
Tester. The regression integration tester implements the strategy described in Chapter Five
and consists of the Integration Test Repeater and Integration Dynamic Tester. Finaily, the
regression system tester implements the strategy outlined in Chapter Six and consists of
System Spec Tester and System Test Repeater.

With separate components for each phase of testing, the modular design of ReTestS
allows each tester to be implemented independent of the others and permits independent
upgrading of any single tester when new technology is available.

The main control module of ReTestS is the Source Code Analyzer whose major
functions include:

» interacts with the test analyst

« collects the changes information

- identifies affected modules, affected module interactions, affected features, and

invokes the regression unit tester, regression integration tester, and regression
system tester.

Another unique module, the Test Plan Updater, provides bookkeeping services to all
other modules. Other modules invoke the Test Plan Updater whenever data such as tests,
program structure, and test execution history need to be updated.

97-

Modification

|

iour‘oe Code Test Plan
nafyzer - Updater
Affected
Modules
- Module Spec Module Static Module Test

Tester + [Analyzer . ™1 Repeater .

Unclassified i

Tests
Module Dynamic
' Tester N
Affected Regression Unit Tester
Module
Interactions
Integ. Tést e} INtg. Dynamic

. > T y
e Repeater ester

Regression Integration Tester

Affected
Features

i System Spec System Test

fow\gm| TEStEr + " Repeater -
tests

Regression System Tester

* Invoke Test Plan Updater
Figure 24. Structure of ReTestS

8.2.

(hH)

(2)

3)

Componeats of ReTestS

The components of ReTestS can be classified into three categories:

Analyzers (for example, Source Code Analyzer and Module Static Analyzer) do not
execute the prograrn, but carry out an analysis of the program and changes based on
the stored information. In particular, they update the data flow and control flow
relations of affected modules, and the calling structure of the system. They identify
the specific changes and classify the tests.

Test Repeaters (for example, Module Test Repeater, Integration Test Repeater, and
System Test Repeater) are unique to regression testing. They first select the tests
using the reuse selection criterion, which is based on the all-essential assumptions.
They then execute the program with the retestable tests, and update the dynamic
behavior of the program. No interaction with the test analyst is needed. Test
Repeaters, unlike most regression testing tools, only repeat the tests that will exercise
the modification and do not always repeat all previous tests.

Testers (for example, Module Spec Tester, Module Dynamic Tester, Integration
Dynamic Tester, and Systern Spec Tester) are concerned with new test construction.
They query the user for new tests, execute them, and store the tests and the dynamic
behavior of the program. Observe that the functions of the Testers are exactly those
required during the testing phase. It is expected that some existing testing tools can
be easily modified as Testers for ReTestS.

We next give an overview of cach component of ReTes:S.

Source Code Analyzer

Purpose: To identify the affected modules, affected module interactions, and
affected software features, and update program information.

Inpus: Program modification and the affected software features.
Owput: Affected modules, affected module interactions, and affected software
features.

This component retrieves the program structure and feature information from the
database. and analyzes and compares the new source code to the existing code. Its
main function is to identify the affected modules, affected module interactions, and
affected software features. It iteratively invokes Module Spec Tester, passing down
one affecizd module at a time. After regression unit testing is completed, the Source
Code Analyzer then passes down one affected module interaction at a time to the
Integration Test Repeater. Finally, on completion of the regression integration testing,
it invokes the System Spec Tester, once for each affected software feature.

Module Static Analyzer, Module Test Repeater and Module Dynamic Tester
are described in Section 4.1.

Module Spec Tester

Purpose: To test the modified specification of an affected module.
Inpus: Modified subspecs, deleted subspecs and new subspecs of an affected
module, and new tests.

The algorithm for the Module Spec Tester is given in Section 4.2.1. This component
is invoked if the design specification of the affected module is modified. It queries the
test analyst for new specification tests and executes them. Its operation is very much
like the Module Dynamic Tester, but it only works with specification-based tests.

Integration Test Repeater
Purpose: To repeat the retestable tests.
Inpus: An affected module interaction.
This component identifies the basis case which corresponds to the affected module
interaction. It then sets up the integration testing environment by retrieving the
previous drivers and stubs, if required, for testing the module interaction. One
function of this component is to update the stored testing environment. All tests
which are usable at level 1 or 2 are identified and repeated.

Integration Dynamic Tester
Purpose: To complete testing of the affected module interaction.
Input: An affected module interaction and new tests.
This component queries the test analyst for additional tests for testing the affected
module interactions. It also updates the integration testing environment. Another
function of this module is to assist the test analyst in sensitizing the tests by
performing symbolic evaluation of program paths.

System Spec Tester
Purpose: To test the affected software featre.
Inpuz: The affected software feature and new system tests.
This component queries the test analyst for new system tests which can be used to
validate the software specification changes or to satisfy the structural-interface

criterion. This tester will be invoked if the specification is modified or the structural-
interface criterion is not satisfied.

System Test Repeater
Purpose: To repeat some existing tests for checking the behavior of the system.
Input: The affected modules.

This component automatically identifies and repeats the retestable tests. The

retestable tests will depend on the chosen structural-interface criterion and the
software modification.

Test Plan Updater
Purpose: To update all the information needed for regression testing.

This component is called by other components to update stored information about the
program, tests, and testing environment.

ReTestS addresses the full spectrum of tasks in a typical regression testing process,

and provides many automated tools to minimize the regression testing effort. Although it
provides much support specifically for regression testing, ReTestS may also be used for

-100-

testing since several components of ReTestS deal with new tests and the testing process.
We summarize below the services provided by ReTestS:
(1) Identfy required initialization

ReTestS can identify the parameters and global variables which require inital values.

These are accomplished by data flow analysis [60]. It can also identify the required

drivers and stubs to be supplied by the test analyst. The input to ReTestS includes:

change information, any required initial values for parameters and global variables,
new drivers and stubs, and new tests.
(2) Selecttest

ReTestS automatically identifies the reusable, retestable and obsolete tests using the

reuse selection criterion.

(3) Execute test, analyze and update results

ReTestS performs test execution of retestable tests and new tests entered by the test

analyst, compares the output with the expected results, and collects and updates all

program information, testing environments, and test results.
(4) Compute code coverage

ReTestS computes the structural coverage at the unit level and the structural-interface

coverage at the system level, and informs the testing analyst when the new selection

criterion is satisfied, so that testing can be terminated.
(5) Assist in test design

ReTestS assists in test design by informing the test analyst which program

components remain to be executed and by performing symbolic evaluation to help

sensitize tests.

The construction of ReTestS is a worthwhile project despite the fact that it is complex
and time-consuming. Some components of ReTestS may be created from existing testing
tools with minor extcnsions. For example, the Module Dynamic Tester can be developed
by modifying either the data flow tester of Korel and Laski [42] or the incremental data
flow tester of Harrold and Soffa [24].

Other components of ReTestS may make use of other tools described in the literature.
The symbolic execution tool of Clarke and Richardson [8] can be used for sensitizing the
test input. The Source Code Analyzer may be built on top of Kuhn's [43] source code
analyzer for computing both the calling relation of the system and the data flow and control
flow relations within each module. The system introduced by Dogsa and Rozman {12] may
be used to generate the driver module code.

Unfortunately, the components for implementing integration and system testing are
new and will reed extensive development effort. We estimate that the development time for
ReTestS to be at least two man-years.

8.3. Tomparing the Relative Cost of Regression Testing Strategies

A practical question that has not been answered is the cost of applying a particular
regression testing strategy. It seems that a selective strategy will require more time and
resources for test selection in order te realize a reduction in the number of tests executed. A
benefit is accrued only if the effort spent in test selection is less than the cost for executing
the extra tests. This section provides an analysis of the trade-off between using a selective
strategy and the retest-all strategy.

-101-

The cost of applying any testing strategy will be modeled in Section 8.3.1. Section
8.3.2 compares the relative cost of a selective st* ‘egy and the retest-all strategy. The
conditions under which the selective regression testing strategy is less costly than the
retest-all strategy will be derived.

8.3.1. A Test Cost Model

Testing requires not only test selection, test execution and result analysis, but also
understa::ding the software system in order to determine the system behavior to be tested.

The cost of applying a set of tests to a software system consists of the following
components:

(1) System Analysis Cost, Ca
Before a test set can be selected, the test analyst must become familiar with the
system specification, design and possibly the program. Time must be spent
studying the various requirements and design documents. The knowledge
gained in this phase will also allow the test analyst to judge whether the

program behavior is correct. The larger the system under test, the higher is this
cost.

(2) Test Selection Cost, Cs
After becoming familiar with the expected behavior of the system, the test
analyst can then select the tests for testing the actual system behavior. Some
cost is incurred in working out the test input, and identifying the correct output

or system behavior. This cost component will depend largely on the chosen test
strategy.

(3) Test Execution Cost, Ce

Test execution cost includes the cost of setting up the environment for testing
(such as loading and compiling required modules and entering the proper data
tables) and the cost of computing resources for the actual execution of the
system under test. The cost can be quite high for some applications. For
example, in the telecommunication industry, the cost of setting up a testing lab
to simulate an actual communication network can be as high as several million
dollars.

(4) Result Analysis Cost, Cr

The last step of testing involves checking the behavior of the system under test
against the specifie? behavior. The cost factors for Cr are: the test analyst's
time in collecting th: test outputs, the time to compare the test output to the
system specification, and the computing resource required for recording the
system behavior.

These cost components are dependent on several factors and some of them are
interrelated. The testing strategy used has a direct effect on the cost. For example, since a
black-box strategy cnly requires an analysis of the specification, the system analysis cost
for such a strategy will be less than that of a testing strategy which uses both white-box and
black-box testing. Note that the number of tests also depends on the test strategy. A test
strategy which requires that every definition-use pair be executed generally needs more
tests than one which only requires all instructions be executed.

-102-

All test cost components are related to the number of tests. Although it seems that Ca
is independent of the number of tests because the cost of understanding both the problem
specification and the system is roughly the same for designing either 10 tests or 100 tests,
one can argue that a complex system will require a high cost for understanding and also
many more tests than a simple system. Thus, the number of tests and the system analysis
cost are related to the same factor - the complexity of the system.

Also, the other three cost components, Cs, Ce, and Cr, should be dependent on the
number of tests; the higher the number of tests, the higher are the respective costs.

The system analysis and the result analysis costs are related in a subtle way. Suppose
the test analyst has spent a small amount of time in the system analysis phase. When he
does the result analysis, he will have to spend more time to determine whether the output is
correct because he had to first understand the expected program behavior by studying the
specification and other program documents. Thus by reducing Ca, it is likely Cr will
increase. By doing a thorough job at the system analysis phase, the test analyst will know
the expected behavior of the system and it will be straightforward to check whether the
program output is correct during the result analysis phase.

From the previous discussion, we will model the result analysis cost Cr as consisting
of two sub-components: the cost Cu for understanding the program and specification in
order to judge whether the program behavior or output is correct, and the cost Cc for
comparing the test output to the expected output. The checking cost Cc should be
proportional to the number of tests. Thus, Cr = Cu+Cc. Observe that Cu is directly related
to Ca because a thorough system analysis upfront will reduce the effort for understanding
the system during the result analysis phase.

In summary, our model is based on two key assumptions:

(1) the cost of applying a test strategy ts which uses a set T of tests is

C(ts) = Ca(T)+Cs(T)+Ce(T)+Cu(T)+Cc(T)
(2) Cs, Ce and Cc are linearly dependent on the number of tests.
8.3.2. Cost of Regression Strategies

In this section, we first analyze the cost of applying the retest-all strategy and then the
cost of the selective regression strategy. The retest-all strategy uses two test sets: all old
tests (To) and a set of new tests (Tn) for the modified specification, or modified code, or
both. Thus the testing cost is

C(retest-all) = Ca(To)+Cs(To)+Ce(To)+Cu(To)+Cc(To)
+[Ca(Tn)+Cs(Tn)+Ce(Tn)+Cu(Tn)+Cc(Tn)]

Since according to the retest-all strategy, the test analyst does not analyze the previous tests
before applying them and no effort is needed to select these tests, Ca(To) = Cs(To) = 0.
However, as argued in Section 8.3.1, one consequence of skipping the system analysis
and test selection phases is that the test analyst will pay a heavy price later in the result

analysis phase; that is, Cu(To) will be high. Thus the cost of applying retest-all can be
reduced to

-103-

C(retest-all) = Ce(To)+Cu(To)+Cc(To)
+[Ca(Tn)+Cs(Tn)+Ce(Tn)+Cu(Tn)+Cc(Tn)]

Next, consider the cost of applying a selective regression strategy where a subset Ts
of To, together with the new tests Tn, are used to test the modified software system.

C(selective) = Ca(Ts)+Cs(Ts)+Ce(Ts)+Cu(Ts)+Cc(Ts)
+[Ca(Tn)+Cs(Tn)+Ce(Tn)+Cu(Tn)+Cc(Tn)]

We will assume that the sum of Ca(Ts) and Cu(Ts) is approximately the same as Cu(To),
because in both cases the test analyst has to understand the effect of the modification on the

validity of the previous tests. Also, notice that the second set of terms in C(retest-all) and
C(selective) are identical.

Based on these observations, C(selective) is less than C(retest-all) if

C(selective) - C(retest-all) < 0

or

Cs(Ts)+Ce{735)+Cc(Ts)-[Ce(To)+Cc(To)] <0 (1)
because Ca(Ts)+Cu{Ts) = Cu(To). (1) can be rewritten as

Cs(Ts) < [Ce(To)-Ce(Ts)j+[Cc(To)-Cc(Ts)] (2)

In other words, the selective strategy is more economical than the retest-all strategy if the
cost for selecting a subset of the previous tests is less than the cost for executing and
checking the extra tests needed for the retest-all strategy.

To gain more insight into inequality (2), we will invoke the second assumption:

Cs(T), Ce(T) and Cc(T) are directly proportional to the number of tests in test set T. Thus,
we write

Cs(T) =sIT1
Ce(M=elTl
Ce(M=cITl

where s, € and ¢ are constants representing the cost per test for the selection cost,

execution cost and checking cost, respectively. The exact values of these constants will

depend on the complexity of the system, the particular implementation, and the testing

strategy. Also, these constants may vary with the experience and ability of the test analyst.
Substituting the above expressions, we can rewrite inequality (2) as

siTsl <e (ITol - ITsl) + ¢ (ITol - ITsl)
= (e+c) (ITo!l -1Tsl)

-104-

or
s < (e+c) (ITol /ITsl - 1) (3)

The inequality (3) depends on the values of s, e, ¢ and the ratio of ITsl to ITol. Suppose the
selective strategy only repeats half of the previous tests (ITsl = 0.5 ITol), then it is more cost
effective than the retest-all strategy if

s < (e+cC)

Figure 25 summarizes the conditions under which the selective strategy is more
economical than the retest-all strategy. The vertical axis represents s values and the
horizontal axis denotes the ratio iTs! / ITol. The graph (e+c)(ITol / ITsl -1) is plotted against
ITsINTol. If the selection cost of a selective strategy falls below the graph, using such a
strategy will provide some saving in test cost over the retest-all strategy. For example, if s
= (e+c) and the selected Ts = 0.4 To, then a selective regression strategy will cost less than
the retest-all strategy.

TN
(e+C)(|Toy[Ts| - 1)

3(e+<)

It s falls in this
region, a selective
= strategy is more

cost effective than
the retest-all strategy

(e+cC)

{Tol

Figure 25. Cost Relationship Between the Retest-all and Selective
Strategies

-105-

For a given change situation, inequality (3) can be used to select the more cost
effective regression testing strategy. The values for e, ¢ and s can be determined according
to the project type from historical data. Since ITol is known from previous testing, the only
parameter to be determined is ITsl. ITsl can be estimated by an analysis of the extent of
changes to the system specification, requirement, and source code.

-106-

Chapter Nine

Empirical Results

A first step in evaluating a new test strategy is to establish its effectiveness in
detecting errors. It would be desirable to apply our strategy in a realistic situation to assess
its practicality. Unfortunately, any experimentation could be misleading without a large
maintenance database. The retesting data and results collected regarding the maintenance
activity of a particular program may not be representative of the mainienance activity in
other programs. The major problem is that there are numerous types of maintenance tasks
and a reliable validaticn must include experimentation on a significant number of various
types of programs and a significant number of different modifications. A single experiment
will not be representative of a broad class of maintenance activities. Given this reality,
many proposed solutions to the various maintenance probiems are accepted largely based
on intuitive arguments, relying on programming practices and some general assumptions
about the change and testing process {78].

Section 9.1 presents a case study using our regression testing strategies for unit,
integration and system testing. Although the results may not be conclusive, as discussed
carlier, it is better to have some confirmation of the applicability of our concepts than none
at all. This study aims to investigate the effectiveness of our regression testing framework,
and the amount of saving in test effort, in terms of the number of tests, over the traditional
retest-all swrategy.

Section 9.2 describes data collected from a telecommunication company to validate
the linear assumptions of the test cost model. The data suggests that the test selection cost,
execution cost and result checking cost may be treated as linearly dependent on the number
of tests used.

9.1. Applying the Regression Strategy

Section 9.1.1 describes the program used in our experiment. Sections 9.1.2 and
9.1.3 discuss the experiment and the testing of this program. A description of the four
modifications and the regression testing experience are outlined in Section 9.1.4. The
results of the experiment are summarized in Section 9.1.5

9.1.1. The Program Under Test

The program under test is a database program which provides five major functions.
The user can:
+ create a student database which records the student names, identification
numbers, and assignment mark,
* enter new student records and new student marks,

-107-

* update a single assignment mark or all the marks of the students,

* delete a student record, and

 display statistical information about the class marks, including the highest,
lowest, and average marks for each assignment, the average mark of each
student, and the overall average marks of all the assignmerits.

The program also checks for valid student identification numbers and assignment
numbers.

The student database is stored in two files. A Headerfile stores the number of student
and the number of assignment entered. A second file, the Studentfile, stores all the student
records in the form of Student Name, Student I1d, mark 1, mark 2, ..., mark n, where n
represents the maximum number of assignments and is controlled by the constant
MaxAssign. The maximum number of student records is controlled by the constant Max.
The student id is constrained by the constants minimum identification number (Min/d) and
maximum identification number (Max/d).

The original version of this interactive program has been developed and used by an
instructor, an experienced programmer analyst, to demonstrate some database concepts.
The actual version used for our experiment contains a few minor modifications.

Figure 26 gives the call graph of program StudentDatabase. This program consists of
twenty distinct modules, thirty-one module interactions which involve the use of thirty-two
modules and over 550 lines of Pascal code. The calling order graph of program
StudentDatabase is given in Figure 17 of Chapter Six and a subsection of the input graph is
shown in Figure 13. This program contains 6 software features, 13 simple call paths, and
48 simple input paths.

This program is chosen for our experimentation for the following reasons:

e Its size is manageable. Since we have not implemented ReTestS, most of the
testing and regression testing are performed mainly by hand. A large program will
require a long time to analyze and test.

» The program is realistic, and its application is understood by most readers, thus
reducing the effort in comprehending our results by other researchers.

» Since the user is interested in improving the program and is available for
additional consultation, it is easy to obtain feedback from the actual user. In fact,
most of the modifications used for our study are enhancements suggested by the
user, and not just arbitrary modifications.

9.1.2. The Experiment

The experiment was carried out manually for the data flow static analysis, insertion
of probes, and result analysis. First each module was analyzed, and the all-use pairs were
identified and stored in a table. We then instrumented the program by hand to collect the
structural coverage information. The monitor statements were print statements which wrote
the branch identifiers to a trace file. The instrumented program was then executed with the
selected tests. The trajectory information was written to a file for later analysis. During the
initial testing, we created various tables for storing the functional tests of each subspec of
the module, the feature-specification mapping, the feature-module matrix, the feature-test
matrix, and the module-test matrix. These tables were kept up to date after each
modification. Most modules have only a few subspecs.

-108-

/

SetUp

)

z

ReadData

Meri —]

[P S—
Clear

Screen_' [Convert
]

Enter
Student

;

O~

Getld
Clear
Screen
Get
FindStudent | | ASSignNo
byName
‘ Single

Student

»

Database

Write Clear
Data Screen
Display

Class

P

I

Sonon\

Clear SortOn
Screen Name Average
Remove
T Student
FindStud Clear
entbyld Screen
Display
Student Swap Getld
Class
Update

Name Get .
AssignNo
i
Swap

* Calls to Built-in modules supplied by the Pascal complier are not shown

Figure 26. Call Graph of Program StudentDatabase

-100-

After each modification, the changed program was analyzed, all-use pairs were
updated based on the changed code, and new monitors were inserted into the new version
to collect trajectory information a* ‘e new instructions. The previously stored tables
were analyzed to identify the reusa :'+ .csts. New tests and retestable tests were then run
and new trajectory information was collected. New tests were added until the testing criteria
(all-use criterion for unit testing, and all-simple-input-paths-and-branches and all-simple-
call-paths-and-branches criteria for system testing) were satisfied.

Different types of monitors were used for unit testing and system testing, since the
former involved the tracking of define-use relations while the latter needed to track the
calling relations. Thus, during unit testing, the program was instrumented with monitors
which allowed us to deduce the all-uses coverage. For system testing, the program was
insrumented with a different set of monitors to track mainly the execution order of the
modules and the input instructions. The system level monitors were print statements which
wrote the module name or the input instruction identifiers to a trace file. The program was
not instrumented for integration testing.

9.1.3. Testing the Original Program

During unit testing, functional tests were first created from the specification of each
module. Additional structural tests for satisfying the all-uses structural coverage criterion
were then created [61]. Informally, a test set satisfies the all-uses criterion if the instruction
trajectories of these tests include at least one definition-clear subpath from each definition to
each use reached by that definition and each successor node of that use. The requirement
of traversing the successor nodes is to force all branches to be taken following a predicate.
Weyuker [74] has shown that, in the worst case, the all-uses criterion requires at most a
number of tests which is quadratic in the number of conditional instructions of the module
being tested. However, a recent study has shown that in practice the number of tests is
linearly dependent on the number of conditional instructions [75]. Our results also indicated
that only a small number of tests were needed to satisfy the all-uses criterion.

Most of the unit tests (approximately 90%) were functional tests. In most cases, we
only needed a few additional structural tests to satisfy the structural criterion. In designing
the unit tests, extremal values of the input variables were used for all the functional tests
whenever possible. This helped to reduce the number of required tests since each test can
be testing a function and a boundary of an input domain simultaneously. Besides using this
simple strategy to reduce the number of tests, no ¢iher minimization of the number of tests
was performed.

During integration testing, we applied both functional and extremal tests, as
described in Chapter Five. A bottom-up integration strategy was used. In most cases, the
integration tests were just the union of the unit tests of the two modules involved in the
module interaction.

System tests were designed mainly to test all the software features, and at the same
time, were required to satisfy the structural-interface criterion. The all-simple-input-paths-
and-branches and the all-simple-call-paths-and-branches structural-interface criteria were
used. This SI criterion was found to be easily satisfied by the functional tests.

Approximately 10% of the system tests were selected specifically to cover the components
required by the Sl criterion.

-110-

No special testing for global variables was needed because all global variables were
either program constants or were initialized (defined) once in the program. The normal unit
and integration testing automatically tested them. The total number of unit tests, integration
tests, and system tests were 120, 235, and 104, respectively.

Important errors found during testing were:

(1) Failure to check for exceeding the upper limit of the total number of student
records. The program did not check that the number of records entered will not
exceed the set limit. When this happened, an out-of-bound reference to the
student record would occur. This error was detected during the unit testing of
module EnterStudent.

(2) Failure to reset the record counter after all the records in the database were
deleted. When the user has entered some student records and subsequently
deleted all these records, the program failed to reset the number of assignments
entered to zero. This error was detected during system testing when trying to
satisfy the SI criterion.

The test selection effort was actually quite manageable, despite the large number of
tests. Over 80% of the integration tests (195) were the same as the unit tests, and many
systems icsts (65) were directly derived from the integration tests. It is likely that some of
the duplicate tests can be avoided if we delayed the execution of the unit tests. However,
this is not recommended because the earlier an error is detected, the less cost is required to
fix it. Also, the set of modules that were being tested were different between unit and
integration testing as integration testing involved more modules. Unit testing typically
involves a few modules, drivers and stubs using tests aimed at exercising the functionality
of one particular module. Integration testing generally involves more modules with tests
that exercise the interactions of two modules. Thus, although some unit and integration
tests were the same, they were exercising the system under slightly different conditions
and were not wasting testing resources. In addition, due to the potential masking effect,
th.c same test may detect an error during the unit testing and not during the integration
testing, and vice versa.

9.1.4. Program Modifications and Regression Tests

We next describe four modifications suggested by the user. Modifications (1), (2)
and (4) involved structural modification to the call graph, whereas modification (3) only
required non-structural modification. Each modification was applied successively to the
most recent program version. Thus, when modification (3) was made, the program version
being modified had undergone both modifications (1) and (2).

Change Objective I: Check for unique student identification numbers.

The current version of StudentDatabase does not check for a unique student id. The
user may accidentally type in a duplicate id. It is desirable to include a check which can flag
such an occurrence.

Modification 1:

Given this change objective, we came up with two possible modification alternatives.
The first modification alternative was to replace the module Gerld called by module

-111-

EnterStudent with another module which would read in a unique identification number. The
second alternative was to modify the code of EnterStudent. The first alternative was
adopted because we could limit all the code changes to one low level module and this
should reduce the amount of retesting. After the change, module EnterStudent called
module GetUniqueid instead of module Get/d. Therefore, there were two modified
modules.

Conceptually, there was a specification change to EnterStudent since the students ali
have unique identification numbers while some of them may have had the same
identification number before the modification. However, this property was not used by
other modules. Thus there was no change to EnterStudent from the viewpoints of the other
modules. Integration testing can stop after integrating modules GetUniqueld and
EnterStudent, and modules EnterStudent and StudentDatabase, respectively.

Change Objective 2: Add an option for plotting a mark distribution graph.
A desirable feature requested by the user was to be able to view the mark distribution
graphically. It was decided to add an extra option to the input menu so that the user can ask

for the plotting of a graph showing either the mark distribution of a particular assignment
or the overall average of the students.

Modification 2:

There were four affected modules (two new and two modified modules). Modules
PlotMarks and PlotGraph were introduced to perform the plotting of the mark distribution
graph. Two instructions in module Menu were affected. Module StudentDatabase had two
new declarations and one new instruction. Altogether, there were three new module
interactions, one new software feature, two extra simple call paths, and five exta simple
input paths.

Errors found during regression testing included:

(1) The new module PlotMarks did not check for the case when the database did
not have any student record entered. This error was detected during the unit
testing of PlotMarks.

(2) Module PlotMarks called module GetAssignNo to obtain an assignment number
for plotting the mark distribution. It should instead make sure that the
assignment numbers entered were below NumberOfAssign. A new section of
code was added to check for this condition. This error was detected during the
integration of modules PlotMarks and GetAssignNo.

Change Objective 3: Allow different maximum marks for each assignment.
The current version of StudentDatabase assumed that the maximum mark would be
the same for all assignments and validation of input marks was not performed. The user

requested that the program be changed such that the maximum marks of the assignments be
entered by the user and each input mark be validated.

Modification 3:

This change objective required many minor modifications to eight modules: Module
StudentDatabase had two extra declarations and two new instructions. Modules WriteData
and ReadData each had two extra instructions. Module GetAssignNo was enlarged by five

-112-

new instructicns. One inswruction of module Average was modified. Two and four
instructions were added to modules RemoveStudent and DisplayClass, respectively.
Finally, one instruction was modified in module PlotMarks. No new module was
introduced. Although no new software feature was added, all the existing features were
affected by the changes, and there were 16 affected module interactions.

Because of the distmributive nature of this change, we expected many more tests would
be required for regression testing of this modification than the previous two modifications.

A major error was found during regression unit testing of module DisplayClass. The
lowest murk was not computed properly. This error arose because a required change was
not made. The lowest mark for all the assignments were previousiy initialized to 10, the
previous maximum mark. In making the change, this was overlooked and consequently.
the program gave a lowest mark of 10 when it should have been larger. This was corrected
by inidalizing the lowest mark to Maxifarks.

The second error that was missed by both unit and integration testing occurred in the
module Average. When the marks of an assignment had not been entered, MaxMarks for
the assignment would be initialized to 0. If module DisplayStudent was called, then a
divide by zero error would be produced. It is difficult for the test analyst to test for this
condition at the unit or integration testing level because of the limited scope of testing.

Change Objective 4: Assign grades to all students.
Another feature suggested by the user was the capability to assign a grade point to
each student.

Modification 4:

It was decided to add a new option to .he main menu which would invoke the grade
assignment function. The changes included adding three new modules, one new software
feature, one extra simple call path, and four extra simple input paths, and modifying five
other modules. Also, one datafile was enlarged to store the grading scheme and the weights
of the assignments.

One important error was found during the integration of modules GradePoint and
AssignDisplayGrade. Since the program did not. check for an empty database, it produced a
meaningless message whenever the user asked for the assign grade option and there was
no record in ihe database.

During the testing of the modifications, we applied the regression strategies for unit,
integration, and system testing outlined in Chapters Four, Five and Six. Each affected
module was analyzed and the types of changes were identified. If the specification of the
module was changed, then progressive regression unit strategy was applied; otherwise, the
corrective regression unit strategy was used.

For regression integration testing, we first ideatified ali the affected modules and then
the basis cases involved in integrating the modified modules and their descendants and
ancestors. Test use levels were determined from Table 4 of Chapter Five. For basis cases
that involved modified specification, new functional tests were created to test the new or
changed functionalities.

Regression system testing was largely based on the affected features, the new calling
orders, and new user inputs. The affected features were used to identify a set of functional

-113-

tests that shoulc te rerun. The affected simple call paths and simple input paths were used
to identify the reusable, retestable and obsolete SI iests. New SI test were added until the
SI criterion was satisfied. It was critical that tables storing feature-specification mapping,
feature-module matrix, feature-test matrix, and module-test matrix be kept up-to-date so
that only the relevant tests be selected to test the modifications.

9.1.5. Results

Table 6 summarizes the actual changes and the number of regression tests used for
each modification. The total unit test represents the total number of new and old unit tests
for testing all the affected modules. This number is typically less than the total number of
unit tests used to test all the modules in the initial testing because only a few modules are
affected in each modification. The total integration test represents the total number of
integration tests required to test all the new and existing module interactions and the total
systemn test denotes the total number of system tests. The sum of these three sets of tests
represents the total number of regression tests used by the retest-all strategy. The last row
of Table 6 gives the ratio of the number of regression tests according to our strategy to that
of the retest-all strategy.

Modification 1 2 3 4
Number of Affected Source Lines 25 80 23 57
Number of Affected Modules 2 4 8 8
Number of Affected Module Interactions |2 3 16 10
Number of Affected Features 1 1 7 1
Number of Regression Unit Tests 15 22 50 40
Number of Regression Integration Tests 32 32 120 80
Number of Regression System Tests 46 24 130 38
Total Unit Test 27 40 67 66
Total Integratior: Test 246 278 275 307
Total System Test 106 130 130 158
Regression Tests/Total Tests 93/379 178/448 | 300/472 | 158/531
24% 17% 63% 30%

Table 6. Modification Characteristics and Regression Tests

One interesting observation is that the number of affected source lines does not seem
t¢ be the deciding factor in predicting the number of regression tests. The important factor
seems to be the "extent" of a modification, which can be represented by the number of
affected features and affected module interactions. Although modifications 2 and 4 involved
more affected source lines than modification 3, modification 3 actually required the most
regression tests. This occurred because modification 3 had the highest number of affected
module interactions (16) and affected features (7) among the four modifications.

-114-

9.1.5.1. Test Effort Results

To compare the effectiveness of our strategy relative to the retest-all strategy, we
reran all the tests in the test plan to check whether they would detect extra errors. No new
error was discovered. Thus, we conclude that extra testing by rerunning all the tests in the
current plan does not detect more errors than our strategy. As shown in the last row of
Table 6, the size of the test subsets for our regression strategy relative to the retest-all
strategy were 24%, 17%, 63% and 30% for the four modifications, respectively. Thus the
average reduced subset was 34%. These results reveal that using our strategy requises
significantly fewer tests than the retest-all strategy. The major reason for this saving is that
the concept of a firewall is effective in reducing the amount of integration testing.

The savings observed in this experiment would most likely be generalized to other
maintenance projects, although possibly not to the same degree. If further research
establishes consistency with this result, then our strategy can be adapted to most
maintenance projects.

9.1.5.2. Test Effectiveness Results

To test the effectiveness of our regression testing strategy in detecting errors, we
seeded some errors in the changes and reran the set of regression tests. All seeded errors
were placed in the affected modules to simulate possible errors made when the code was
modified. Table 7 shows the results. A total of 13 logic errors were inserted in the four
modifications. Two of these errors can be classified as extra function errors, one as a
missing function error, and the rest as wrong function errors. Table 7 also shows the
testing phases which detect the error. Under the Detected In column, a Y indicates that the
error was detected at that testing phase; otherwise a N is shown. All errors except one were
detected using our set of re -ession tests. 8 errors were detected during regression unit
testing, 11 during regression :ntegration testing, and 12 during regression system testing.
There were three errors which were not detected during regression unit testing but were
detected during regression integration testing.

The error which was not detected by our testing strategy was an extreme case of an
assignment blindness error [81]. Some blindness errors are undetectable by any testing
strategy. Our error was not detected because an incorrect program constant was used, but
by coircidence it had the same value as the correct program constant. In the program, if
constants Max and MaxAssigan have the same values, then an error in the loop
implementing the initialization of marks in modification 3 will not be detected. Since the
program constants were assigned values at the declaration stage, our error was
undetectable even if all program paths were exercised. This suggests that we should also
test the program by assigning different values to its program constants.

The last seeded error was missed by both the unit and integration testing because
they used a limited viewpoint of the system and did not consider other complicated
interactions among the modules. This error was similar to the second error detected after
Moadification 3.

Our results confirm the expectation that some errors are likely to be missed at a certain
testing phase and can only be detected in another testing phase. Although some errors can
only be detected at the unit testing level, a few errors cannot be detected at this level due to

-115-

the limited focus and incorrect assumption of the module's input and output. Most, but not
all, of these undetected errors were discovered during integration testing when the test
analyst considered a slightly larger "global viewpoint" of the software. Finally, some errors
were not detected until system testing because they required complex interactions between
modules that were not possible in the previous two phases of testing.

Moditicanon | Seeded Errors Integranon Errors | Detected In
Unit Integ.| Sys.
1 missing computation wrong function Y Y Y
wrong condition extra function Y Y Y
2 missing computation wrong function Y Y Y
wrong condition wrong function Y Y Y
off by 1 iteration extra function N Y Y
failure to initialize wrong function Y Y Y
3 wrong computation wrong function Y Y Y
extra change wrong function N Y Y
(undetected) | wrong change wrong function N N N
missing change wrong function N Y Y
4 wrong computation wrong function Y Y Y
missing condition missing function |Y Y Y
missing condition wrong function N N Y

Tabie 7. Detected Seeded Errors

The results from Table 7 seem to suggest that the system tests are more effective in
detecting the seeded errors than the other tests. A reason for this is that each system test
usually includes several unit and integration tests because it requires the execution of
system function that can involve many modules. In other words, executing all the system
tests may have the same effect as executing the combined unit and integration tests. Thus,
it is not surprising that the system tests tend to detect more errors than the other two types

of tests. In general, the set of system tests may not be more effective than the combined
sets of unit and integration tests.

2.1.5.3. Additional Resuits

An interesting discovery is that there are tests for unit testing which will never occur
during the normal operation of the system; that is, these tests cannot be sensitized to the
main module of the software system. For example, in unit testing of module Swap, tests
with O assignment, 3 assignments, and the maximum number of assignments were used.
But, in actual usage of the StudentDatabase program, Swap will not be called when no
assignment mark is entered. Thus, the test of 0 assignment was superfluous. However,
this test was required for satisfying the all-uses structural selection criterion for unit testing.

The above example does not imiply that the all-uses criterion is faulty. It only shows
that certain unit tests may not be effective in testing the actual behavior of the complete

-116-

system. Besides, no test selection criteria guarantee that all tests are useful for detecting
errors.

One unexpected result of this study is that the calling order graph provides more
benefits than anticipated. The availability of the calling order graph not only helps with
understanding and reasoning about the code, it can also help with code optimization. For
example, in the implementation of module RemoveStudent, by looking at the cailing order
graph, we found that module ClearScreen was called on every call path from module
RemoveStudent and it could be called once instead of being invoked at different points of
the various paths. Thus, the calling order graph may be used for analyzing the program,
and not just for testing purposes.

We also found that using the structural-interface criterion for system testing did not
require a large testing effort. The extra effort required to generate tests to satisfy this
criterion was found to be reasonable. About 10% of the systems tests were S/ tests
selected specifically to satisfy the SI criterion. Most of these tests were not difficult to
create.

The interface subcriterion of the S/ criterion was found to be easy to apply. It
basically requires the test analyst to try out all the various options available tc the user.
Unfortunately for programs which have very few input variables and rely heavily on stored
information, this criterion is not too useful for testing purposes.

The normalized relative effort for testing the program SmdentDatabase were found to
be approximately 0.25, 0.45, and 0.3 for unit testing, integration testing, and system
testing, respectively. Integration testing required the most testing effort. A contributing
factor to the high effort required for integration testing is the work required to code and set
up various drivers, stubs and modules, and the effort needed for sensitizing the integration
tests. On the other hand, there is only one entity to test for system testing, and test design
can be based largely on the specification.

Although in practice most software organizations place less emphasis on integration
testing and concentrate on extensive unit and system testing, our strategy has the advantage
of detecting most errors before system testing starts. During both regression testing of the
four modifications and the experimentation with the seeded errors, all but one of the
detected errors were discovered during unit and integration testing. This suggests that by
emphasizing integration testing, fewer errors are left to be discovered during system
testing. Our approach is recommended because the earlier an error is detected, the less
costly it is to fix. Thus, it is more desirable to detect an error during unit testing than at
integration testing time, with similar advantage of detection during integration testing rather
than waiting for the testing process to be completed.

2.2. Test Cost Study

Another study was conducted to validate the assumptions made in building the test
cost model presented in Chapter 8. In particular, we want to establish whether the
following assumptions on the selection cost Cs, execution cost Ce, and result checking cost
Cc are realistic and practical:

Cs(=sT
Ce(M=elTl
Cc(D=cim

-117-

where s, € and c represent the cost per test for the iest selection, execution, and result
checking, respectively, and ITI the number of tests. We collected data on the time required
to select a test, execute a test, and check the test result from a large telecommunication
company. Section 9.2.1 describes a survey which collected empirical data on Cs and Cc.

Section 9.2.2 presents data to support the assumption that Ce may be treated as linearly
dependent on the number of tests.

9.2.1. Test Selection and Result Checking Costs

A survey was recently conducted with test analysts in a large telecommunication
company. The return rate of the survey was over 70%. A total of 20 responses was used in
the following analysis. The respondents have between 1 to 10 years of testing experience.
These test analysts were testing software from 7 projects of a recent software release.
Typically, 3 to 4 test analysts were assigned to one project. The survey asked the
respondents to provide answer based on their experience with the most recent software
release. This provided a snap shot of the state-of-the-practice of the company.

The following questions on the survey were of particular interest to our study:

(1) After you have studied the necessary documents (specification, design etc.),
how long did it take, on average, to create one test case? This includes the time
to identify the test input, the expected output, pass/fail criterion, and enter this
test into the test plan?

(2) How long did it take, on average, to verify a test result was correct? After
running a test case, how much time was required to check that the system
behaved correctly and the output was correct?

For question (1), all responses were within one minute of either 8, 13, or 18 minutes
per test. We found that test analysts whose test suites contain fewer than 100 tests tended to
require longer time to create a test. This can be explained by the fact that these tests were
"larger” or testing more system behavior.

For question (2), the responses were within one minute of either 3, 8, or 13 minutes
per test. There was no direct correlation between the test selection time and the test result
checking time. In other words, a test analyst who required 8 minutes to create a test may
require 3, 8, or 13 minutes to verify a test result.

The data suggests that the time for test selection can be approximated by one of 8, 13,
or 18 minutes per test, and the checking time can be approximated by one of 3, 8, or 13
minutes per test in this development environment. This seems to indicate that the constants
s and c in the linear assumptions of Cs and Cc vary with the type of projects and possibly
on other factors. However, they only take on one of several possible values. In practice,
we can treat these costs as linearly dependent on the number of tests, although further
analysis is needed to determine the exact values to be used for s and ¢ for a given project.

Note that these results are specific to a particular development environment. We
believe that other organizations will also find that Cs and Cc only vary among a few values,
but likely different from the figures identified in this study.

-118-

9.2.2. Test Execution ¢ ost

To check the validity of the linear assumption of Ce, we make use of the data
available in the test result database from the same telecommunication company. After each
test lab shift, test analysts are required to enter the execution time of each test into a test
result database. A random sample of seven projects from a recent release was chosen for
the analysis to identify the relation of test execution effort and the number of tests.

Table 8 lists the number of tests used for testing and the average execution time per
test. The projects can be grouped into two classes based on the nature of the applications.
Projects A, B and C belong to one class while the other projects belong to another class of
application. As shown in Table 8, the average execution times of projects from each class
are very close to each other. In fact, the first class has an average of 12.4 minutes, a range
of 1.2 minutes and a standard deviation of 0.67 minutes, while the second class has an
average of 9.6 minutes, a range of 2.1 minutes and a standard deviation of (0.9 minutes.
This data indicates that the execution constant e will vary slightly depending on the nature
of the application, and similar applications tend to have almost identical value. Based on
this limited sample, there is strong indication that the test execution time for each type of
application in this software development environment can be treated as linearly dependent
on the number of test cases for practical purposes.

Project A B C D E F G
Number of Tests 2442 | 5966 | 6856 |3866 | 5432 | 7724 |8324
Average Execution Time per | 12.8 |12.7 [11.6 }10.7 |10 8.6 (9.3
Test (minute)

Table 8. Average Execution Time per Test

-119-

Chapter Ten

Concluding Remarks

Although regression testing is an important topic, a fundamental study of the issues
involved is long overdue. This dissertation studies the problem of regression testing and a
general framework for regression testing is proposed. In this framework, we provide
systematic procedures for selecting tests for all three phases of testing and for determining
when regression testing can be terminated. We summarize the key results in the next
section. Future research is described in Section 10.2.

10.1. Summary

We have identified two types of regression testing: corrective regression testing and
progressive regression testing. The key difference between the two is that the specification
stays the same in corrective regression testing, whereas progressive regression testing
involves a modified specification. These two types involve different degrees of retesting
effort. We have argued that corrective regression testing, in general, should be an easier
process than progressive regression testing because more tests can be reused.

One way to reduce the retesting effort is to reuse tests in the current test pian. This
entails the identification of various test classes. For regression testing purposes, tests in a
test set can be grouped into five classes: reusable, retestable, obsolete, new-structural, and
new-specification tests. We have identified the test classes associated with the two types of
regression testing. Corrective regression testing may involve reusable, retestable, obsolete,
and new-structural test classes, while progressive regression testing may involve all five
test classes.

For the class of strategies that we have analyzed, we found that every regression
testing strategy can be characterized by its original selection, reuse selection, and new
selection criteria. The original selection criterion is used to select tests for the previous
testing, the reuse selection criterion is used to choose tests from the current test set, and the
new selection criterion is used to select new tests. In our framework, the reuse selection
criterion is based on the all-essential instruction and all-essential module assumptions. This
criterion is simple to apply and the empirical results given in Chapter Nine show that it is
effective for testing purposes and does not involve many tests.

Regression testing strategies for ail three phases of testing were developed and
outlined in Chapters Four, Five, and Six. For regression unit testing, a framework has
been laid out which includes both functional and structural testing.

Integration testing is an area that has not been thoroughly explored. Although
integration strategies are well understood, the test selection problem has not been carefully
studied. We have identified the common errors in software integration which usually arise
because of a misunderstanding of the specification of the called module. To study this test

-120-

selection problem, we have proposed a model of integration testing, with some general
guidelines for selecting integration tests. Our regression integration testing strategy is based
on testing a set of basis cases that model two interacting modules under a variety of change
conditicns. Eleven basis cases have been identified and the use levels of previous tests have
been determined.

The concept of a firewall is introduced to encapsulate all the modules participating in
the integration testing. The firewall imposes a limit on those modules which must be
considered during regression integration testing. It identifies the area with the highest
potential of error and allows the test analyst to concentrate the testing effort on those
modules of the program where the error will likely be discovered. The firewall also dictates
a rational sequencing of integration testing and gives a strategy on scheduling the
integration order. In general, re-integration of all the modules is not required for most
modifications. In Chapter Nine, we show an application of the integration basis cases and
the concept of firewall to a practical program. Our experimental results indicated that this
approach is valuable in reducing the number of tests required to revalidate the modified
program.

For system testing, we introduce the structural-interface criterion which emphasizes
testing the user input combinations and extends the notion of structural coverage in unit
testing to the system level based on the calling order graph. This criterion can be viewed as
both "user-oriented” and "implementation-oriented”, and can be used to measure the
progress of testing.

Although the testing of global variables are important to the reliability of a software
system, they have been largely ignored by the testing community. We have shown that
global variables can be treated like parameters for testing purposes and can be tested
accordingly. Once the effect of the global variables is known, then their presence in a
program does not introduce any new testing problems, other than those similar to testing
parameters. However, if their effect is unknown, testing them is necessarily ad hoc and
attaining a high degree of reliability is impossible. Strategies for testing and regression
testing global variables were developed. These strategies rely heavily on the strategy for
testing parameters. If the parameter testing strategy is effective, then the global variable
testing strategy will also be effective.

This dissertation also presents the design of the retesting system ReTestS. ReTestS
provides the following capabilities: identification of initialization requirements, test
selection, test execution, test analysis and update, and test design assistance. Although
developing ReTestS will require considerable effort, it is envisaged that some components
of ReTestS can be developed by modifying some existing testing tools.

We also provide an answer to the question of the relative cost benefits of the selective
retest and retest-all strategies. A cost model for comparing regression testing strategies has
been proposed. This model is based on realistic assumptions that are supported by
empirical data. We have found that the relative cost depends on four factors: the selection,
the execution, the checking cost, and the ratio of the size of the selected previous test to the
size of the total previous test. The conditions under which a selective retest strategy is more
economical than the retest-all strategy have been established.

Since studies of large systems tend to be prohibitively expensive, we have carried out
an empirical experiment on a 550-line program. Chapter Nine reports on the case study in
which our concepts and strategies are applied to test this program. The results indicate that

-121-

our regression testing strategy is as effective as the retest-all strategy and can save over 65
percent of the tests used by the retest-all strategy. The data reported here shows the
potential savings that our strategy offers when implemented as a regression testing tool.
Empirical data is also collected to support the linear assumptions made in the test cost
model. Additional data is need to confirm our findings which suggests that the test
selection, execution and result checking costs are linearly dependent on the number of tests.

The major contributions of this work are:

(1) A framework for making regression testing a more systematic process has been

developed, and regression testing strategies for all three phases of the testing
have been identified.

(2) We have identified the common errors and faults in combining modules into a
working unit. Test selection strategies for integration testing and regression
integration testing have been developed.

(3) The concept of the firewall is introduced and it is shown that re-integration of ali
the modules may not be needed for all modifications. The firewall can assist the
test analyst in focusing on that part of the system where new errors may have
been introduced by a correction or a design change.

(4) Testing global variables is shown to be not more difficult than testing
parameters if we insist that the use of global variables be included in the
specification.

(5) A regression testing system is designed which, when implemented, will reduce
the current testing efforts, minimize human errors, and produce consistent-
quality software.

(6) A cost model has been developed which can be used to select the most cost-
effective regression testing strategy for a given change situation.

(7) Our regression testing strategy has been demonstrated on an interactive
program. Our approach was able to discover all errors found by the retest-all
strategy, while executing only 34% of the total number of tests.

10.2. Future Research

Several major problems remain to be addressed in regression testing. A regression
testing strategy for changes in data structure has not been developed. For example, a
record structure may be modified to include extra data fields. This will affect all references
to the variables of this data structure. This dissertation has concentrated on functional
modification and ignored the effect of data modification. Some data modifications may have
serious consequences on the program and may require extensive retesting.

More research should be done on developing other reuse selection criteria. Although
our reuse selection criterion, which is based on the all-essentiai instruction and all-essential
module assumptions, provides large savings over the retest-all strategy, there may exist
other reuse selection criteria which can further reduce the number of tests.

In the development of our strategy for testing global variables, we have assumed the
existence of a reliable test selection method for testing parameters. Unfortunately, the
parameter testing problem is an open research problem. In Chapter Seven, we have shown
that this problem can be reduced to a set of four basis cases. More studies are needed to
develop effective testing strategies for each of these cases.

-122-

A regression testing environment such as ReTestS should be implemented. This
effort will likely be a long term project requiring approximately two man-years to
complete. One possible strategy to develop ReTestS is to integrate several existing unit
testing tools by providing a consistent interface and standardizing information sharing.
Even by extensive use of available testing tools, many new developments are required for
regression testing at the integration and system levels because minimal research has been
done in these areas.

Once ReTestS is available, some large realistic software systems should be used to
assess our approach in a quantitative way. We also need more experimental work to verify
the assumptions, and to improve our understanding of the benefits and limitations of our
strategy. In particular, the three types of integration errors identified in Chapter Five
should be evaluated to see how often each occurs in practice. The concepts of integration
testing basis cases and of a firewall should also be evaluated with different types of
programs and under different types of maintenance scenarios.

A possible approach to regression testing is the use of dynamic assertions. These
assertions are logical expressions regarding program variables and are entered into the
program as comments. A preprocessor then generates and inserts the code for dynamically
checking the validity of these assertions. Several papers describe ways of using dynamic
assertions for testing software [18, 19, 53, 68]. It may be possible to extend these
approaches to regression testing.

Another area which warrants study is the concept of a regression testing metric which
can be used to estimate the retesting effort before the actual modification is made. The
availability of an estimator of the retesting effort provides several important benefits. It can
be used to estimate the resources, time, and effort for retesting a modified program. This is
extremely valuable for scheduling the regression testing process. Also, if the maintainer
comes up with several modification alternatives for a change objective, he can use the
regression testing metrics to perform an analysis to find the most cost-effective alternative.
All too often, the maintainer applies the first obvious modification that would achieve the
change objective and does not consider the testability of such a change. It is possible that
an alternative modification may reduce the cost of regression testing.

-123-

10.

11.

12.

References

V. R. Basili and B. T. Perricone, "Software errors and complexity: an empirical
investigation," Communications of the ACM, vol. 27 (1), pp. 42-52, Jan. 1984.

B. Beizer, in Software system testing and quality assurance, Van Nostrand, New
York, 1984,

P. Benedusi, A. Cimitile, and U. De Carlini, "Post-maintenance testing based on path
change analysis,"” Proc. Conf. Software Maintenance, pp. 352-361, Phoenix, 1988.

R. S. Boyer, B. E. Elspas, and K. N. Levitt, "SELECT - a formal system on testing
and debugging programs by symbolic execution,” Proc. 1975 Conf. on Reliable
Software, pp. 234-245, Los Angeles, CA, April 1975.

T. A. Budd, "Mutation analysis: ideas, examples, problems and prospects,” in
Computer Program Testing, ed. B. Chandrasekaran, S. Radicchi, pp. 129-148,
North-Holland, Amsterdam, 1981.

R. Carey and M. Bendick, "The control of a software test process,” Proc.
COMPSAC 77, pp. 327-333, Chicago, IL, Nov. 1977.

L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, "A comparison of data

flow path selection criteria,” Proc. 8th Int. Conf. Software Eng, pp. 244-251,
London, UK, 1985.

L. A. Clarke and D. J. Richardson, "Symbolic evaluation methods - Implementations
and applications,” in Computer Program Testing, ed. B. Chandrasekaran, S.
Radicchi, pp. 65-102, North-Holland, Amsterdam, 1981.

J. S. Collofello and J. J. Buck, "Software quality assurance for maintenance," /EEE
Software, pp. 46-51, Sept. 1987.

R. A. DeMillo, R. J. Lipton, and F. G. Sawyer, "Hints on test data selection: help
for the practicing programmer," Computer, vol. 11, pp. 34-41, April 1978.

F. DeRemer and H. H. Kron, "Programming-in-the-large versus programming-in-
the-small," JEEE Trans. Software Eng., vol. SE-2, pp. 80-86, June 1976.

T. Dogsa and 1. Rozman, "CAMOTE-computer aided module testing and design
environment," Proc. Conf. Software Maintenance, pp. 404-408, Photiix, 1988.

-124-

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. W. Duran and S. Ntafos, "An evaluation of random testing,” IEEE Trans.
Software Eng., vol. SE-10 (4), pp. 438-444, 1984.

W. R. Elmendorf, "Cause-effect graphs in functional testing," TR-00.2487, IBM
Systems Development Division, Poughkeepsie, N. Y., 1973.

R. G. Falkner, "Get the bugs out," Service News, pp. 39-42, Nov. 1989.

K. F. Fischer, F. Raji, and A. Chruscicki, "A methodology for retesting modified
software,” Proc. National Telecommunications Conf., pp. B-6-3(1-6), New Orleans,
LA, Nov. 1981.

P. G. Frankl, S. N. Weiss, and E. J. Weyuker, "ASSET: A system to select and
evaluate tests,” Proc. of the IEEE Conf. on Software Tools, pp. 72-79, New York,
NY, April 1985.

J. Gannon, P. McMullin, and R. Hamlet, "Data-abstraction implementation,
specification, and testing," ACM Trans. Program Lang. Syst., vol. 3, pp. 211-223,
1981.

M. R. Garey, D. S. Johnson, D. M. Andrews, and J. P. Benson, "An automated
program testing methodology and its implementation,” Proc. of the 5th International

Conference on Software Engineering, W. H. Freeman and Company, San Diego,
CA, March, 1981.

R. Glass, in Software Maintenance Guidebook, Prentice Hall, Englewood Cliffs,
N.J., 1979.

R. L. Glass, "Persistent software errors," IEEE Trans. Software Eng., vol SE-7),
pp- 162-168, March 1981.

D. Hamlet and R. Taylor, "Partition testing does not inspire confidence," Proc. of the
Second Workshop on Software Testing, Verification, and Analysis, pp. 206-215,
Banff, Canada, July 1988.

M. J. Harrold and M. L. Soffa, "An incremental approach to unit testing during
maintenance,”" Proc. Conf. Software Maintenance, pp. 362-367, Phoenix, 1988.

M. J. Harrold and M. L. Soffa, "An incremental data flow testing tool," 6¢h Int.
Conf. Testing Computer Software, Washington, D.C., 1989.

M. J. Harrold and M. L. Soffa, "Interprocedural data flow testing,” Proc. third
Symposium on Software Testing, Analysis and Verification, pp. 158-167, Key
West, 1989.

M. J. Harrold, R. Gupta, and M. L. Soffa, "A methodology for controlling the size
of a test suite," Proc. Conf. Software Maintenance, pp. 302-310, San Diego, 1990.

-125-

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

J. Hartmann and D. J. Robson, "Techniques for selective revalidation,” /EEE
Software, pp. 31-38, January, 1990.

M. S. Hecht, in Flow analysis of computer programs, North-Holland, Amsterdam,
1977.

M. S. Hecht, "A simple algorithm for global data flow analysis problems," SIAM J.
Computing, vol. 4, no. 4, pp. 519-532, Dec. 1975.

E. C. van Homn, "Software must evolve," in Software engineering, ed. P. M. Lewis,
pp. 209-226, Academic Press, 1980.

W. E. Howden, in Functional program testing and analysis, McGraw-Hill, 1987.

W. E. Howden, "Applicability of software validation techniques to scientific
programs,” ACM Trans. Program Lang. Syst., vol. 2 (3), pp. 357-370, July 1980.

W. E. Howden, "An evaluation of the effectiveness of symbolic testing and of testing
on actual data," Software-Practice and Experience, vol. 8, 1978.

W. E. Howden, "A functional approach to program testing and analysis," /EEE
Trans. Software Eng., vol. SE-12 (10), pp. 997-1005, Oct. 1986.

W. E. Howden, "Functionu testing and design abstractions,” The Journal of
Systems and Software, pp. 307-313, 1980.

W. E. Howden, "A survey of dynamic analysis methods," Tutorial: Software Testing
and Validation Techniques, 1981.

W. E. Howden, "Weak mutation testing and completeness of test sets," /EEE Trans.
Software Eng., vol. SE-8 (2), pp. 371-379, July 1982.

D. C. Ince, "The automatic generation of test data,” The Computer Journal, vol. 30,
no. 1, pp. 63-69, 1987.

K. W. Kennedy, "A comparison of two algorithms for global data flow analysis,"
SIAM J. Computing, vol. 5, no. 1, pp. 158-180, March 1976.

B. Korel, "Automated software test data generation," IEEE Trans. Software Eng.,
vol. SE-16 (8), pp. 870-879, Aug. 1990.

B. Korel and J. Laski, "Dynamic program slicing," Information Processing Letters,
pp. 155-163, Oct. 1988.

B. Korel and J. Laski, "A tool for data flow oriented program testing," Proc.
SoftFair 11, pp. 34-37, San Franciso, CA, 1985.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

D. R. Kuhn, "A source code analyzer for maintenance,”" Proc. Software Maintenance
Workshop, pp. 176-180, Austin, 1987.

J. W. Laski and B. Korel, "A data flow oriented program testing strategy,” /[EEE
Trans. Software Eng., vol. SE-9(3), pp. 347-354, 1983.

J. W. Laski, "On data flow guided program testing,” SIGPLAN Notices, vol. 17,
no. 9, pp. 62-71, Sept. 1982.

M. M. Lehman, "Programs, life cycles and laws of software evolution," Proc. of
ICEE, vol. 68, no. 9, pp. 1060-1076, Sept. 1980.

H. K. N. Leung and L. White, "Insights into regression testing," Proc. Conf.
Software Maintenance, pp.60-69, Miami, FL, Oct. 1989.

H. K. N. Leung and L. White, "A study of integration testing and software
regression at the integration level,” Proc. Conf. Software Maintenance, pp.290-301,
San Diego, Nov. 26-29, 1990.

H. K. N. Leung and L. White, "A study of regression testing,” Technical Report TR-
88-15, Dept. of Computing Science, Univ. of Alberta, Canada, Sept. 1988.

B. P. Lientz and E. B. Swanson, in Software Maintencnce Management, Addison-
Wesley, 1980.

B. P. Lientz and E. B. Swanson, "Characteristics of application software
maintenance,” Comm. ACM, vol. 21, no. 6, pp. 466-471, 1978.

Guideline on Software Maintenance, in Federal Information Processing Standards,

U.S. Dept. Commerce/National Bureau of Standards, Standard FIPS PUB 106, June
1984.

P. R. McMullin, J. D. Gannon, and M. D. Weiser, "Implementing a compiler-based
test tool," Software-Practic> and Experience, vol. 12, pp. 971-979, 1982.

L. J. Morell, "Theoretical insights into fault-based testing," Proc. of the Second
Workshop on Software Testing, Verification, and Analysis, pp. 45-62, Banff,
Canada, July 1988.

S. S. Muchnick and N. D. Jones, in Program flow analysis: Theory and
Applications, Prentice-Hall International, 1981.

G. J. Myers, in Software reliability: principles and practices, Wiley-Interscience,
New York, 1976.

G. J. Myers, in The art of software testing, Wiley-Interscience, New York, 1979.

-127-

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

K. Narayanaswamy and W. Scacchi, "Maintaining configurations of evolving
software systems," /[EEE Trans. Software Eng., vol. SE-13, no. 3, pp. 324-%33,
March 1987.

S. Ntafos, "On required iement testing,” /IEEE Trans. Software Eng., vol. SE-10
(6), pp- 795-803, 1984.

B. Raither and L. Osterweil, "TRICS: a testing tool for C,” Proc. First European
Software Engineering Conf., pp. 254-262, Strasbourg, France, Sept. 1987.

S. Rapps and E. J. Weyuker, "Data flow analysis techniques for program test data
selection,” Proc. Sixth International Conference on Software Eng., pp. 272-2738,
Tokyo, Japan, Sept. 1982.

S. Rapps and E. J. Weyuker, "Selecting software test data using data flow
information,” IEEE Trans. Software Eng., vol. SE-11 (4), pp. 367-375, 1985.

D. J. Richardson, "A partition analysis method to demonstrate program reliability,”
Ph.D dissertation, Univ. Masachuserts, Amherst, Sept. 1981.

D. J. Richardson and L. A. Clarke, "Partition analysis: a method of combining

testing and verification,” /EEE Trans. Software Eng., vol. SE-11 (12), pp.1477-
1490, 198s5.

D. J. Richardson and M. C. Thompson, "The RELLAY model of error detection and
its application,” Proc. of the Second Workshop on Software Testing, Verification,
and Analysis, pp. 223-230, Banff, Canada, July 1988.

Software Engineering Automated Tools Index, Software Research Associates, San
Francisco, 1982.

W. P. Stevens, G. Myers, and L. L. Constantine, "Structured Design," IBM
Systems Journal, vol. 13, 1974,

L. G. Stucki, "New directions in automated tools for improving software quality,"” in
Current trends in programming methodology (Vol. I1), ed. R. Yeh, Prentice-Hall,
Englewood Cliffs, N. J., 1977.

H. G. Stuebing, "A modem facility for software production and maintenance,"” Proc.
COMPSAC 80, pp. 407-418, Chicago, IL, 1980.

H. G. Stuebing, "A software engineering environment (SEE) for weapon system
software,” IEEE Trans. Software Eng., vol. SE-10 (4), pp. 384-397, July 1984.

D. Talbot and R. W. Witty, Alvey programme software engineering strategy, Alvey
Directorate, London, 1983.

-128-

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

J. D. Ullman, "A survey of data flow analysis techniques,” Proc. 2nd USA-Japan
Comp. Conf., Tokyo, Japan, Aug. 1975.

E. J. Weyuker, "Axiomatizing software test data adequacy,” IEEE Trans. Software
Eng., vol. SE-12 (12), pp. 1128-1138, Dec. 1986.

E. J. Weyuker, "The complexity of data flow criteria for test data selection,” Inf.
Process. Lett., vol. 19 (2), pp. 103-109, 1984.

E. J. Weyuker, "An empirical study of the complexity of data flow testing,” Proc. of
the Second Workshop on Software Testing, Verification, and Analysis, pp. 188-195,
Banff, Canada, July 1988.

E. J. Weyuker and T. J. Ostrand, "Theories of program testing and the application of
revealing subdomains," IEEE Trans. Software Eng., vol. SE-6 (3), pp- 236-246,
1980.

L. J. White and E. I. Cohen, "A _-:main strategy for computer program testing,"
IEEE Trans. Software Eng., vol. S£-6 (3), pp. 247-257, 1980.

S. S. Yau and J. S. Collofello, "Design stability measures for software
maintenance,” IEEE Trans. Software Eng., vol. SE-11 (9), pp. 849-856, Sept.
198s.

S. S. Yau and Z. Kishimoto, "A method for revalidating modified programs in the
maintenance phase," Proc. COMPSAC 87, pp. 272-277, Tokyo, Japan, 1987.

K. Yue, "What does it mean to say that a specification is complete,” Proc. 4th Int.
Workshop on Software Specification and Design, pp. 42-49, Monterey, CA, Apnil,
1987.

S. J. Zeil, "Testing for perturbations of program statements," JEEE Trans. Software
Eng., vol. SE-9 (3), pp. 335-346, May 1983.

M. V. Zelkowitz, "Perspective on software engineering,” ACM Computing Surveys,
vol. 10, no. 2, pp. 197-216, June 1978.

-129-

Appendix I

An Overview of Integration Strategies

Among the many integration strategies, some assume each module is unit tested
before the integration and others combine unit testing and integration into a single step.
There are eight common integration strategies. The first five strategies presented below are
incremental strategies. They merge a set of modules (usually just one module) at a time to
the set of previously tested modules. The set of merged modules increases incrementally.
The sixth strategy is a nonincremental approach (or a phased approach) because all the
modules are grouped together simultaneouzly and tested. The seventh strategy is a mixed
strategy which includes both the features of incremental and nonincremental strategies. The
last one can be viewed as a special version of the top-down strategy. These strategies can
best be illustrated with an example. We will use a section of the call graph of program
StudentDatabase, shown in Figure 1.1, as the running example.

Bottom-up Testing

In this approach the program is merged and tested from the bottom to the top of the
call graph. All the terminal modules are unit tested in isolation, where a terminal module is
a module which does not call another module. The next higher level modules are then
tested, one at a time, with these tested modules. The next module to be tested must have all
its called modules in the set of previously tested modules. This process is repeated until the
top module is merged. In our example, modules CS, S, A and GAN are each tested as a
stand-alone entity. Module SON is then added to the set of tested module and the resulting
set is then tested. This incremental process continues until the top module (SD) is added
and tested. If integration testing is done sequentially, one possible order of integration is
shown in Table I.1. Driver(M) represents the driver module of module M and stub(M)
denotes thz stub of module M.

A testing environment for testing a module interaction between modules A and B 1s
defined to be A, B, and all the modules, drivers, and stubs which participate in the testing.
The same testing environment may be used to test several module interactions. Different

integration strategies will likely have different testing environments for testing the same
module interaction.

Top-down Testing

This strategy starts with the top module in the call graph and adds one module at a
time to the set of merged modules. The top module is the only one which is unit tested in
isolation. There are two possible strategies in picking the next module to be merged. The
first strategy requires that the next module must have all its calling modules integrated. The
second strategy relaxes the previous requirement by picking any module which has at least
one of its calling modules tested previously. We will call the first strategy strict top-down

-130-

and the second non-strict top-down testing. Table 1.2 shows a possible strict top-down
integration order for our example.

S0
oC al
S A SN GAN

A-Average l

CS-ClearScreen
CU-ClassUpdate S
DC-DisplayClass
GAN-GetAssignNo
S-Swap
SD-StudentDatabase
SON-SortOnName

Figure 1.1. A Section of the Call Graph of Program StudentDatabase

Order | Tesiing knvironment ‘Module Interaction
1 CS, driver(CS) Unit test CS
2 A, driver(A) Unit test A
3 S, dniver(S) Unit test S
4 GAN, dnver(GAN) Unit test GAN
5 S, SON, dnver(SON) S-SON
6 CS, A, SON, §, DC, dnver(DC), CS-DC, A-DC, SON-DC
driver(SON)
7 S, SON, GAN, CU, driver(CU), "SON-CU, GAN-CU
driver(SON) _ _
8 CS, A, S, GAN, SON, DC, CU, SD DC-SD, CU-SD |

Table L.1. Integration Order for Bottom-up Testing

-131-

Order | Testing Environment Module Interaction

1 SD, stub(DC), stub(CU) Unit test SD

2 SD, DC, stub(CU), stub(CS), stub(A), stub(SON) | SD-DC

3 SD, DC, CU, stub(CS), stub(A), stub(SON), SD-CU
stub(GAN)

4 SD, DC, CU, CS, stub(A), stub(SON), DC-CS
stub(GAN)

5 SD, DC, CU, CS, A, stub(SON), stub(GAN) DC-A

6 SD, DC, CU, CS§, A, SON, stub(GAN), stub(3) DC-SON, CU-SON

7 SD, DC, CU, CS, A, SON, GAN, stub(S) CU-GAN

8 SD, DC, CU, CS, A, SON, GAN, S SON-S

Table 1.2. Integration Order for Top-down Testing

Modified Top-down Testing

One problem with top-down testing is that it may be impossible to test certain logical
conditicns within the merged program such as error checks conducted in individual
modules. This may prevent thorough testing of particular modules. The modified top-down
testing is designed to overcome this problem. This strategy is similar to the top-down
testing strategy except that it requires every module to be unit tested in isolaton before it is
integrated into the program. As in the case of top-down testing, we have strict and non-
strict modified top-down testing, depending on the conditions for selecting the next module
to be merged.

Sandwich Testing

This strategy combines both the top-down and bottom-up testing. The top-down and
bottom-up testing are applied simultaneously and the program is integrated from both the
top and the bottom of the call graph. Eventually the integration meet somewhere in the

middle of the call graph. Table 1.3 gives a possible integration order using the sandwich
testing strategy in our example.

Modified Sandwich Testing

As the name implies, this strategy is a modified version of sandwich testing. All
modules are unit tested before applying the sandwich testing strategy. This extra step
overcomes the problem described earlier with top-down testing.

Big-bang Testing

In this approach, each module is first unit tested in isolation. All the modules are then
merged together at once and tested; thus the name big-bang.

-132-

Order | Testing Environment Module Interaction
1 SD, stub(DC), stub(CU) Unit test SD
2 SD, DC, stub(CU), stub(CS), stub(A), SD-DC
stub(SON)
SD, DC, CU, stub(CS), stub(A), SD-CU
stub(SON), stub(GAN)
4 CS, dnver(CS) Unit test CS
5 A, driver(A) Unit test A
6 S, dniver(S) Unit test S
7 GAN, dnver(GAN) Unit test GAN
8 S, SON, dnver(SON) S-SON
9 SD, DC, CU, CS, A, SON, GAN, S DC-CS, DC-A, DC-SON,
CU-SON, CU-GAN

Table 1.3. Integration Order for Sandwich Testing

Mixed-bag Testing

The overall strategy is bottom-up, but top-down is also used when the control
structures are complicated. Finally big-bang strategy is used to test the backbone, which is
a partally integrated system that contains the facilities to perform input and output,
memory resources allocation and de-allocation, event recording, and run controls.
Integration is done in blocks that encompass several levels of the call graph, rather than one
level at a time.

Build Testing

Build testing integrates the modules according to builds. A build is a set of
functionally related modules of the software system. Each module in a build is unit tested
and integrated. The builds are then integrated one-by-one into the program. The order of
integration is based on the technical risks of each software feature. Modules which
implement critical software features are put in the first build and they will be integrated
first. Less important modules are integrated later. A major advantage of this strategy is
that the program is operational with increasing capabilities as integration of successive
builds continues. This strategy can be viewed as a non-strict modified top-down testing
which tests the software features in an order according to their technical risks and
characteristics. As an example, assume that modules SD, DC, SON and S implement a
critical software feature, modules SD, DC, CS and A implement a less critical software
feature, and modules SD, CU, and GAN implement the least critical software feature.
Modules SD, DC, SON and S will be put in the first build and will be integrated first. The
second build will include modules CS and A. These modules will be integrated next. The
last build contains modules CU and GAN, which will be the last ones to be integrated with
the rest of the modules. Table 1.4 shows the integration order.

Observe that there are only three major strategies among the eight common strategies:
top-down, bottom-up, and big-bang. The other strategies are simply compromises and

-133-

variations of these three. A major disadvantage of non-incremental testing is that it is hard
to pinpoint the module which may contain the fault when a test fails. Thus, we assume

these strategies (that is, big-bang, mixed bag) will not be used in a systematic testing
process.

Order | Testing Environment Module Interaction
1 SD, stub(DC), stub{CU) Unit test SD

2 SD, DC, stub(CS), stub(A), stub(SON), stub(CU) SD-DC

3 SD, DC, SON, stub(CS), stub(A), stub(S),jﬂxb(CU) DC-SON

4 SD, DC, SON, S, stub(CS), stub(A), stub(CU) SON-S

5 SD, DC, SON, S, CS, stub(A), stub(CU) DC-CS

6 SD, DC, SON, §, CS, A, stub(CU) DC-A

7 SD, DC, SON, S, CS, A, CU, stub(GAN) SD-CU, CU-SON

8 SD, DC, SON, S, CS, A, CU, GAN CU-GAN

Table 1.4. Integration Order for Build Testing

Appendix i

Independence of Regression Testing and Integration Strategies

This appendix shows that our regression testing strategy is independent of the
incremental integration strategy used in the previous testing cycle. In the original integration
testing, we assume that there are su.ficient tests for testing the module interactions. If we
can duplicate the same integration testing environment for regression testing, and the
software passes all the tests selected by the test selection criteria, then we achieve the same
"degree of testing” as before the modification.

The key in showing that the regression testing strategy is independent of the
incremental integration strategy is to recognize that the regression strategy is directly
dependent on the testing environment and not on a particular integration strategy. If the
testing environment for testing each module interaction is stored during testing, then
during regression testing it is immaterial to know the integration strategy used earlier
because the modified module interaction can be tested by retrieving its testing environment.
The testing environment encapsulates all the information that we need to know about the
previous integration strategy.

During regression integration testing, any stub of a module can be replaced by that
module and all its descendants since these modules have been integrated in the previous
testing, and the stub is supposed to emulate their behavior (at least for the applied tests).

There are two cases when there are no previous testing environments: adding a new
module and deleting an existing module. We next analyze these cases:

(1) Adding a new module

For simplicity of presentation, we will assume that the new module B is called by
only one module (A) and calls only one other module (C). There are two module
interactions to be tested: A and B, and B and C. There are two possible orderings of
integration: test module interaction between A and B, then that of B and C, or vice
versa. Any integration strategy will use one of these two orderings. The order does
not affect the effectiveness of the testing process. We desci_ e an integration strategy
below.

When testing the module interaction of A and B, we need a driver for A and a stub for
C. For the stub of C, we can just use C and its descendants since they are tested and
are available. For the driver for A, we have an option of using all the ancestors of A
or creating a new driver. The former approach has the advantage that no new code
needs to be created but it may be difficult to create tests to traverse A from the top
module of the call graph. A new driver will simplify testing since it is easier to design
test input to the driver. We will use the former approach because it is the same as top-
down integraton. Thus the testing environment for the module interaction of A and B
includes all the modules of the system.

-135-

When testing the module interaction of B and C, we need a driver for B and stubs for
the descendants of C. But since module A and its ancestors are available, they can be
used as a driver. Also, all the descendants of C are available and are tested, so we can
just use them rather than creating new stubs. Integration using the descendants of C
can be viewed as bottom-up testing. The testing environment includes all the modules
of the system.
For the general case when B calls several modules and is also called by other
modules, similar arguments as above can be applied. The testing environment again
includes all the modules of the system. The major difference is that more module
interactions need to be tested.

(2) Deleting a module
Let the deleted module be denoted by E. There are two basic cases to be considered:
(2a) A module interaction is deleted and no new module interaction is introduced.
(2b) A module interaction is deleted and a new module interaction involving the

immediate ancestor of E is created.

In case (2a), no integration testing is needed, but all testing environments which
include E must be updated by removing E. Case (2b) is similar to the last step of the
Sandwich integration strategy when the top and bottom portions of the call graph are
to be integrated together. The testing environment includes all the modules of the

system. All testing environments which include E should also be updated by
removing E.

For both cases (1) and (2), we can use all the modules as a testing environment for
the affected module interactions and this regression testing strategy obviously does not
depend on the previous integration strategy.

In the analysis of Chapter Five, we have assumed that all modules are unit tested
before the beginning of the integration process. This is a common and effective practice
since it is realistic to have each code developer to unit test his own modules before trying to
integrate different miodules together. But in some strategies, such as top-down integration,
unit testing of cerin modules is not performmed. We next consider modifications to our
strategy for these situations.

Let module A be the calling module which calls module B. Consider the case of
bottom-up integration when the non-terminal modules are not unit tested. We create fg
when testing module B and its descendants. Now, in testing the module interaction
between A and B, we first create f, which includes all f, 5. We then try to sensitize fg to
module A, generating fg_ 5. Thus integration testing includes the same tests fy g U fg-a.
The only difference between unit testing and no unit testing is that the testing environm -
for generating f, and fy are different. The case for top-down integration can be similarly
shown to include f, g u fg A, with f, and f; generated under different testing
environments from urnit testing, followed by integration testing. Thus, the only change to
our strategy when the modules are not unit tested is that the testing environment in
generating the functional tests may be different.

-136-

Appendix III

Glossary of Terms and Symbols

Affected module: A modified, new, or deleted module.

Ancestor: Module A is an ancestor of module B if there exists a sequence of calls in the call
graph from A to B.

Call graph: A graph showing the control hierarchy of the program with rectangles
representing modules. An arrow from module A to module B indicates that A
may call B.

Call instruction: An instruction which invokes another module.

Chain of calls: A sequence of calls Call(M,), ...,Call(M;) such that module M; may call
module M;,;, 1 i< k-1

Change information: The change information specifies the modules and/or the specification
which are modified.

Code change: Either a module change or an instruction change.

Common ancestor: A common ancestor C of modules A and B is a module in the call graph
which satisfies the following conditions: (1) C and A are on the same chain of
calls and C is called before A; (2) C and B are on another chain of calls and C is
called before B.

Component-test matrix: A matrix which records the program components exercised by each
test. The component-test matrix is represented by [A;:], 1 sisc, 1<jst,

where ¢ is the total number of components, t the total number of tests, A;; = 1if
test j traverses component i, and A;; = 0 otherwise.

Define-use module pair: A define-use module pair is a defining module A and a using
module B of the same variable v such that the definition of v in A may reach B.

Defining module: A defining module of a variable is a module which directly defines the
variable.

Definition: A definition of variable v is an instruction which assigns a value tov.

Definition-clear path: A path (n,, n;, ..., n;, n,) containing no definition of variable v in
nodes n;, ..., n; is called a definition-clear path with respect to v from node n,
to node ny. _

Definition-use relation: A definition-use relation exists from instruction J to instruction K if
there exists a variable v such that (1) v € DEF(Q), (2) v e USE(K), and (3)
there exists a definition-clear path from J to K w.r.t. v.

Descendant: Module B is a descendant of module A if there exists a sequence of calls in the
call graph from A to B.

Directly defined: A global variable or a parameter is directly defined in a module M if it is
defined by an instruction other than a call instruction in M.

-137-

Directly referenced: A global variable or a parameter is directly referenced in a module M if
it is directly used or directly defined in M.

Directly used: A global variable or a parameter is directly used in a module M if it is used
by an instruction other than a call instruction in M.

Error: A mental mistake by a programmer or designer.

Extremal tests: Tests which are made up with the extreme values of the input variables.

Failure: A failure occurs whenever the software system fails to perform its required
function according to its specification.

Fault: A software defect which can cause a failure.

Feasible: A path is feasible if there exists input data which causes the path to be traversed
during program execution.

Global variable oracle: A relation that specifies acceptable behavior of the global variable.

Incremental integration strategy: A strategy which merges a set of modules (usually just one
module) at a time to the set of previously tested modules.

Independent: Instruction J is independent of instruction I if J is not in the scope of influence
of I and I is not in the scope of influence of J.

Instruction change: Any change to an instruction J, a deletion of J, or an addition of a new
J, which accomplishes a change objective.

Instruction trajectory: A feasible path that has actually been executed for some input.

Kill: A definition of variable v which reaches a module M is killed by M if M redefines v on
all paths through M.

Least common ancestor: A least common ancestor L of modules A and B is a common
ancestor of A and B such that no descendant of L is also a common ancestor of
A and B.

Module change: Either a set of instruction changes of a module M, a deletion of M, or an
addition of a new M, which accomplishes a change objective.

Module trajectory: A trace of modules executed by a single test.

Nonincremental integration strategy: A strategy which groups all the modules together
simultaneously and tests them.

Non-structural modification: The modification does not affect the call graph.

Path: A subpatih that begins at the start node and ends at the final node of the control flow
graph.

Program change: A set of module changes which accomplishes a change objective.

Program component: Any subset of instructions of a ¢ .ogram.

Reliability: Software reliability is the probability that a software system will operate
without failure for a specified time in a specified environment.

Scope of influence: Instruction K is in the scope of influencz of instruction J if (1) there is
a direct or indirect definition-use relation frora £ to K, or (2) if J is a conditional
instruction, the execution of K depends on th¢ outcornes of J.

Sensitized: Inputs to module B are sensitized to its calling module A if the corresponding
inputs to A which cause the required inputs to B can be generated.

Software feature: A specific function in the software system and can be identified from the
software specification; it is usually implemented by a group of modules.

Structural modification: The edges and nodes of the call graph may be added, removed, or
changed.

-138-

Subpath: a subpath from n; to n;,, ; of length k is a list of nodes (n;, ..., nj k1) in the
control flow graph such that for all j, i <j < i+k-1, (nj, nj,9) € E, where E
represents the set of edges of the control flow graph.

Subsume: A test criterion C subsumes another test criterion D if any test set which satisfies
C will also satisfy D.

Testing guideline: A complete specification of the testing process giving the test design
strategy, the coverage measure achieved, and the procedure for handling
obsolete tests.

Transferring module: A transferring module of variable v is the module M which satisfies
the following conditions: (1) v is an input parameter of M. (2) M is not a using
or a defining module of v.

Use: A use of variable v is an instruction in which this variable is referenced.

Using module: A using module of a variable is a module which directly uses the variable.
A->B(p;): Module A calls module B and passes an input parameter p to B.

A->B(p,): Mcdule A calls module B and B returns an output parameter p to A.

Call(B): A call instruction to module B.

CodeCh(A): Module A has undergone code modification but its specification is not
modified.

DEF(J): A set of variables whose values are defined in instruction J.

def(M,v): Module M directly defines the variable v.
f o: Functional tests of module A.

f5 g: Functional tests of module A which also traverse the cali to module B.

fg<a: Functional tests of module B which can be sensitized to its calling module A.
I(Suj): the set of instructions for implementing Suj.

Ia(SM): the set of instructions modified or deleted due to the modification to SM.
Ia(SD): the set of instructions modified or deleted due to the deletion of SD.
Ia(SA): 1a(SM) u Ia(SD).

MP: the set of all program paths in a module.

NoCh(A): Module A is not modified.
n;: A node in a control flow graph.

(n;, nj): An edge in a control flow graph.

NsT: New-structural tests.

NpT: New-specification tests.

OT: Obsolete tests.

RuT: Reusable tests.

RtT: Retestable tests.

SpecCh(A): Module A has undergone specification modification.

S => R: The set R of instructions is in the scope of influence of the set S of instructions.

S Il R: The set R of instructions is independent of the set S of instructions.
S;: Interpreted specification.

S,: Actual specification.

Su: the design specification of a module, Su = {Su,, ..., Su; }, where k is the total number
of subspecs in the modulie.

SM: the set of subspecs to be modified.

SD: the set of subspecs to be deleted.

SA: the affected subspecs, SA = SM U SD.

-139-

SW: the set of new subspecs added to the module.

trans(M.v): Module M is a transferring module of the variable v.
TE(Su): the set of specification-based (functional) tests.

Tg(Su): the set of structural-based tests.

T(Su): T(Su) L Tg(Su).

T Su.): the set of specification-based tests for testing subspec Su .
Idl) the set of specification-based tests for testing SM.

TF(SD) the set of specification-based tests for testing SD.

Tg(SA): TR(SM) U TR(SD).

use(M,v): Module M directly uses the variable v.

USE(J): A set of variables whose values are used in instruction J.

-140-

VITA

NAME: Hareton Kam Nang Leung
PLACE OF BIRTH: Hong Kong

POST-SECONDARY EDUCATION:
M.Sc., Computing Science, May 1983, Simon Fraser University
B.Sc. (Honours), Physics and Astronomy, May 1980, University of British
Columbia

AWARDS:
NSERC Postgraduate Scholarship, 1983
The Sir Charles Tupper 1.O.D.E. Memorial Scholarship, 1975

PUBLICATIONS:

H.K.N. Leung and L. White, "A cost model to compare regression test strategies”,
Conf. on Software Maintenance, Oct. 1991, Sorrento.

H.K.N. Leung and L. White, "Insights into testing and regression testing global
variables", Journal of Software Maintenance, vol. 2, no. 4, Dec. 1990, pp209-
222.

H.K.N. Leung and L. White, "A study of integration testing and software regression
at the integration level", Conf. on Software Maintenance, Nov. 1990, San Diego,
pp290-301.

H.K.N. Leung and L. White, "Insights into regression testing"”, Conf. on Software
Maintenance, Oct. 1989, Miami, Florida, pp60-69.

H.K.N. Leung and H. Reghbati, "Cornments on program slicing", I[EEE Trans. on
Software Eng., 13(12), Dec. 1987, pp1370-1371.

E.M. Shoemaker and H.K.N. Leung, "Subglacial drainage for an ice sheet resting
upon a layered deformable bed", J. of Geophysical Research, Vol 92, No. B6,
May 1987.

-141-

