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Abstract

The world offers unprecedented amounts of data in real-world domains, from which

we can develop successful decision-making systems. It is possible for reinforcement

learning (RL) to learn control policies offline from such data but challenging to deploy

an agent during learning in safety-critical domains. Although an environment is

essential, offline RL learns from historical data without access to an environment.

Therefore, it is essential to find a technique for estimating how a newly-learned agent

will perform when deployed in the real environment before actually deploying it. For

instance, in medical domains, we cannot afford to deploy a bad policy. Moreover, if

data is costly, we would like to know how much data is needed to learn a good enough

policy so that we stop paying for data and let the new policy take over.

To achieve this, we introduce a framework for safe evaluation of offline learning using

approximate high-confidence off-policy evaluation (HCOPE). We focus on safety so

that the probability that our agent performs below a baseline is approximately δ,

where δ specifies how much risk is reasonable. In our setting, we assume access to data,

which we split into a train-set to learn an offline policy, and a test-set to estimate a

lower-bound on the offline policy using off-policy evaluation with bootstrap confidence

intervals. A lower-bound estimate allows us to decide when to deploy our learned

policy with minimal risk of overestimation. We verify our proposed framework on a

range of tasks as well as real-world medical data. Since current offline RL methods

rely on some environment for evaluation, this thesis fills a real gap on how offline

agents can be evaluated while learning given data only and with high confidence.
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Preface

This thesis is an original work by Hager Radi. Part of this thesis has been previously

presented at NeurIPS 2021 Workshop on Deployable Decision Making in Embodied

Systems (DDM)

iii



To my father, who left my world very early, this is one story of the millions I didn’t

get the chance to tell you.

Till we meet again..

iv



Acknowledgements

My journey as a graduate student was really dense and it helped me grow on both

professional and personal levels. First and foremost, I would like to thank my advisor,

Matthew E. Taylor, for his support throughout this thesis. Other than the technical

part, Matt is a very supportive and understanding human who always knows how to

make things better for everyone. I was lucky to work with him and always inspired

by his vision for solving real-world problems with RL. Secondly, I would like to thank

Josiah P. Hanna, for advising and mentoring me even before he was officially a co-

supervisor. I am grateful to them for helping me pursue this research and advance

my knowledge. I would also like to thank Martha White, for being part of the thesis

committee, being a great professor and a mentor during an early research project

as well as TAing with her. Martha is a true inspiration for me and there is always

more to learn from her. I would like to thank Peter Stone for his input and guidance

for this work whenever needed. I would like to thank Rich Sutton for inspiring me

during the first RL course I took with him, which boosted my confidence to pursue

RL research. I would like to thank everyone of the IRL and RLAI lab whom i

interacted with throughout my masters, specifically, Alex L, Manan, Sriram, Archit,

Andy Patterson, Shivam, Sahir, Rohan and Fatemah.

Most importantly, I would like to thank my family, Mama, Reham and Rabab for

their love and support, my bigger family, as well as my partner’s family. I would like

to thank my true friend, Hadeer, for being the real support through all the ups and

downs over the past 8 years. Finally, I wouldn’t have done all of this without my

partner’s support on all levels starting from submitting the application to UoA up

v



until this moment. Thank you Mo’men for always believing in me even when I lose

it all.

vi



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 On-policy and Off-policy RL . . . . . . . . . . . . . . . . . . . 6

2.1.4 Offline RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Offline Reinforcement Learning . . . . . . . . . . . . . . . . . 7

2.2.2 Batch Reinforcement Learning . . . . . . . . . . . . . . . . . . 9

2.3 Gap in The Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Framework 13

3.1 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Methodology: Offline Policy Learning . . . . . . . . . . . . . . . . . . 14

3.3 Methodology: Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Methodology: Policy Evaluation . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Importance Sampling with Bootstrapping . . . . . . . . . . . 20

vii



3.4.2 Direct Model-Based Bootstrapping . . . . . . . . . . . . . . . 20

3.4.3 Weighted Doubly-Robust with Bootstrapping . . . . . . . . . 21

4 Experiments: Simulated Environments 23

4.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 MountainCar-v0 . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Pendulum-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Analysis of Evaluation Methods . . . . . . . . . . . . . . . . . . . . . 29

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Applicability on Real-World Data 34

5.1 Problem: Sepsis Treatment . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Challenges, Conclusions & Future Work 42

6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 46

viii



List of Tables

3.1 Categories for offline Learning: This table shows different cate-

gories for offline learning methods for both discrete and continuous

control, with examples of algorithms used in our experiments . . . . 17

3.2 Different OPE methods categorized: This table shows the three

main categories of OPE methods, importance sampling, direct methods

and hybrid methods with examples. . . . . . . . . . . . . . . . . . . . 19

4.1 Mean error between HCOPE estimates and true value of πθ

on MountainCar-v0: This table shows the mean error of HCOPE

estimates, vδ̂(πθ), over all training iterations and multiple runs given

each offline improvement method. Lowest mean errors are in bold.

Importance sampling (WIS) achieves the lowest error with imitation

learning. MB and WDR achieve the lowest error when the offline policy

is optimal, as in the case for Double DQN. . . . . . . . . . . . . . . . 29

ix



4.2 Mean error between HCOPE estimates and true value of πθ

on Pendulum-v0: This table shows the mean error of HCOPE esti-

mates, vδ̂(πθ), over all training iterations and multiple runs given each

offline learning method. Lowest mean errors are in bold. Importance

sampling (WIS) achieves the lowest error with imitation learning. MB

and WDR achieve the lowest error when the offline policy is optimal, as

in the case BEAR, which is also quite close for BCQ. We omit results

on learning a target policy by SAC since it failed to learn a policy that

outperforms the behavior policy. . . . . . . . . . . . . . . . . . . . . . 30

x



List of Figures

1.1 A framework for continual safety-evaluation of offline RL: This

figure illustrates the loop of interaction between an offline agent and

data while the agent is trained, evaluated and deployed if it passes the

safety test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Classification of offline vs. batch RL algorithms: This figure

shows how we can draw boundaries between online, batch, and offline

RL algorithms as adapted from the state-of-the-art RL book []. Pure

online RL algorithms do not store data for later use. Batch and semi-

batch RL algorithms store data for reuse in future episodes of learning.

Offline RL algorithms do not interact with the environment nor collect

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Results of offline learning and high-confidence evaluation on

MountainCar-v0: This figure shows results of evaluating the per-

formance of the target policy with HCOPE as it is training offline.

Weighted importance sampling (WIS) failed to detect that the offline

policy outperforms πb. The model-based estimator (MB) and weighted

doubly-robust (WDR) were able to determine when an offline agent

outperforms πb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



4.2 Results of offline learning and high-confidence evaluation on

Pendulum-v0: This figure shows results of evaluating the perfor-

mance of the target policy with HCOPE as it is training offline. Weighted

importance sampling (WIS) failed to detect that the offline policy out-

performs πb. The model-based estimator (MB) and weighted doubly-

robust (WDR) were able to determine when an offline agent outper-

forms πb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Divergence between π̂b & πθ over training iterations: This

figure shows the total variation (TV) distance between π̂b & πθ on

MountainCar-v0 & Pendulum-v0 over all training iterations. For MountainCar-

v0, behavior cloning (BC) learns a policy that is very similar to π̂b.

Discrete BCQ and Double DQN do not limit the distance with the be-

havior policy, and their TV distance is quite large as opposed to BC.

For Pendulum-v0: behavior cloning (BC) also learns a policy that is

very similar to π̂b and achieves the lowest TV distance. BEAR limits

the divergence compared to BCQ since BEAR’s objective is constrained

to be close to πb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Results of off-policy evaluation without bootstrapping on MountainCar-

v0: This figure shows results of evaluating a policy with OPE. The

target policy is optimized offline with behavioral cloning and evalu-

ated with OPE without bootstrapping. Results show that OPE over-

estimates the true value of the policy, and it is better to trust high-

confidence OPE in safety-critical applications. . . . . . . . . . . . . . 32

xii



4.5 The empirical error rate on MountainCar-v0 with HCOPE:

This figure shows the empirical error rate on MountainCar given dif-

ferent HCOPE methods. The lower bound is computed z times for

each method (z = 40 for Mountain Car) and we count how many

times the lower bound is above the true v̂(πθ) computed in the true

environment. Given 200 trajectories only for evaluation, all methods

correctly approximate the allowable 5% error rate for a 95% confidence

lower bound. However, there are two instances of WIS and WDR that

slightly exceed 5% which can be mitigated with more data. . . . . . . 33

5.1 Flowchart of how to apply our framework on sepsis data: This

figure shows the flow for how to use the sepsis data to optimize an

offline policy and evaluate it with HCOPE. . . . . . . . . . . . . . . . 37

5.2 Results of offline learning and high-confidence off-policy eval-

uation on sepsis data: This figure shows results of evaluating the

performance of the target policy with OPE and HCOPE as it is train-

ing offline. We show the lower-bound estimate from HCOPE vδ̂(πθ)

and the OPE estimate v̂(πθ) without bootstrapping for each method. 40

5.3 Divergence between π̂b & πθ over training iterations on sepsis

Data: This figure shows the total variation (TV) distance between

π̂b & πθ on sepsis data across training. TV distance slowly decreases

over time, making it bounded and limiting the divergence of the target

policy from π̂b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



Chapter 1

Introduction

Suppose someone else is controlling a sequential decision making task for you. This

could be a person trading stocks for you, a hand-coded controller for a chemical plant,

or even a PID for temperature regulation. Offline reinforcement learning (RL) allows

us to learn policies from historical data. But when would one want to switch from

the existing controller to the learned policy? This decision may depend on the cost

for continued data collection from the existing controller (e.g., someone is getting

paid to manage your stock portfolio), your risk appetite, and your confidence in the

performance of the policy you have learned. This thesis takes a critical first step

towards the following question: how to best learn offline and simultaneously evaluate

that policy with confidence when we have no access to the environment nor the policy

generating the data?

Offline reinforcement learning is a way to train off-policy algorithms using already

existing data. Learning with offline data is challenging because of the distribution

mismatch between the data collected by the behavior policy, that collected the data,

and the offline agent, which we aim to learn from data [1]. What is even more

challenging is evaluating offline agents in the offline RL setting if we assume no

access to the environment; in some domains, we cannot execute our learned policy

until it is good enough. This limitation raises the question about the possibility of

using off-policy policy evaluation (OPE) methods, where we can estimate the value
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of a policy using trajectories from another policy, to predict what the performance

of the offline agent is, at any point of time during learning. Further, we investigate

if we can use high-confidence off-policy evaluation (HCOPE) to control the risk of

overestimating the policy’s performance.

 Safety Test for

 Train 

TrueFalse

Figure 1.1: A framework for continual safety-evaluation of offline RL: This
figure illustrates the loop of interaction between an offline agent and data while the
agent is trained, evaluated and deployed if it passes the safety test.

We present a framework for safe evaluation of RL agents learning offline. Safe refers

to defining a lower bound on our policy value estimates, a point where we think the

new policy is at least as good as it is in practice, which is important for safety-critical

applications. The thesis tackles the setup where we combine offline policy learning

with high confidence off-policy evaluation; we learn a policy from pre-existing data,

and evaluate it to provide a confidence lower-bound estimate on its return. The setup

we are tackling is under-studied in the literature when the new policy, that we learn

offline, is not necessarily similar to the behavior policy. The goal is to learn a target

policy purely out of a data buffer, and evaluate its performance while learning so

that we can tell when it is ready for deployment. The framework is summarized in

Figure 1.1: we have some source of data, from which we use samples. At each step,

data is split into training and testing. After each offline training step, we evaluate
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the policy using approximate1 high-confidence off-policy evaluation (HCOPE). We

continue the process of training/testing for a few iterations until the testing shows

the policy can outperform the data with a confidence level δ. We dynamically receive

samples, continuously perform RL updates, and continuously monitor a confidence

interval on the changing policy until it reaches a sufficient level for deployment. We

prefer high-confidence off-policy evaluation to off-policy evaluation (OPE) because

OPE is prone to overestimation, which is problematic for safety-critical problems.

1.1 Motivation

Offline RL presents a great opportunity for learning data-driven policies without

environment interaction, as we discuss in Section 2.2.1. In safety-critical applications

such as in healthcare or autonomous driving, there is a large amount of data that we

can use to learn RL policies and hence use for decision making [2]. This data is not

infinite nor free, so there are domains where data efficiency is essential as the data

collection process is either expensive or dangerous. If we want to learn policies in

such domains, we need to find a way to tell how good the performance of a policy is

before actually deploying it to the real-world environment. However, the execution

of a new policy can be costly or dangerous if it performs worse than the current

policy or controller. Hence, in this thesis, we focus on safety when evaluating offline

agents such that the probability that the performance of our agent below a baseline

is at most δ, where δ specifies how much risk is reasonable for a certain domain.

This will allow us to identify when we can trust a policy to take control in the real

world. Given access to trajectories generated by an unknown behavior policy, we

assume an iterative setting where, at each iteration, we can either use another batch

of trajectories to continue learning or deploy our own policy. Our objective is to only

deploy our own policy if a 1 − δ lower bound on its expected return is greater than

1We refer to HCOPE as approximate because bootstrapping lower bounds may have error rates
larger than δ but provide a practical alternative to guaranteed bounds that are too loose to use.
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the expected return of the unknown behavior policy (the data distribution).

1.2 Thesis Objectives

In this thesis, the proposed framework acts as a workflow for offline improvement and

evaluation in safety-critical domains. The thesis contributions are summarized as:

• A framework combining offline RL and approximate high-confidence off-policy

evaluation for both discrete and continuous control tasks.

• Studying the feasibility and challenges of offline evaluation without access to

the environment or the behavior policy.

• Exploring the effect of offline improvement on HCOPEmethods given constantly-

improving target policy (as opposed to a fixed policy, as previously studied in

the literature).

• Presenting a case study on the applicability of safe evaluation for medical data.

1.3 Thesis Outline

We start with a background in chapter two, discussing the preliminaries, literature

review and, the gap in current research. In chapter three, we discuss the proposed

framework and the methodologies used. Then, we talk about the experimental work

and results in chapter 4 on the simulated environments. In chapter 5, we test our pro-

posed framework on real-world data. We end the thesis by discussing the challenges,

conclusions, and future work in chapter 6.
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Chapter 2

Background

This chapter introduces the main preliminaries, a review of the current literature

of offline reinforcement learning and high-confidence off-policy evaluation. We also

discuss the gap in research that this thesis fills.

2.1 Preliminaries

In this section, we introduce reinforcement learning (RL), the Markov decision process

(MDP), on-policy vs. off-policy RL, and the offline RL notation.

2.1.1 Reinforcement Learning

Reinforcement learning (RL) algorithms are designed to learn to obtain goals through

the interaction between an agent and an environment. An agent follows a policy π

to take an action at at any point of time given the current state of the environment

st. By taking an action, an agent receives a reward rt and moves to the next state

st+1. The goal is to find a policy that maximizes the accumulated reward received

over time.

2.1.2 Markov Decision Process

We define a control system by a Markov decision process or an MDP. An MDP is

defined as ⟨S,A, P, r, γ, d0⟩, where S is a set of states, A is a set of actions, P is a

set of probabilities defining the transition from the current states to the next state,
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and d0 is the initial state distribution. An agent acts in an episodic environment by

sampling actions from a policy π given state St.

A trajectoryH of a non-fixed horizon L is a state-action history, s0, a0, ..., sL−1, aL−1

where s0 ∼ d0, at ∼ π(.|st) and st+1 ∼ P (.|st, at). The return of a trajectory g(H)

is the sum of its discounted rewards, g(H) =
∑︁L−1

t=0 γR(St, At). The value of a pol-

icy v(π) is defined by the expected return over all the trajectories generated while

following the policy, v(π) = EH∼π[g(H)].

2.1.3 On-policy and Off-policy RL

On-policy RL methods estimate the value of the policy π used for control, such

that the current data is collected with the same policy [3]. In off-policy RL, there

is one policy used to generate the data, called the behavior policy πb. A different

policy is being evaluated and improved, called the target policy πθ [3]. Off-policy RL

is important for exploration as an agent can follow a stochastic behavior policy to

explore the environment while optimizing a deterministic target policy.

2.1.4 Offline RL

Offline reinforcement learning refers to RL algorithms learning from a fixed dataset

D without environment interaction or further data collection. Such data is the tran-

sition tuples D = ⟨st, at, rt, st+1, γt+1⟩ resulting from historical agent-environment

interaction. We learn a new policy πθ, a target policy that is not necessarily simi-

lar to the behavior policy πb. In this work, we assume we have access to a dataset

D = {H1, H2, ..., Hn} as a set of n trajectories generated by an unknown behavior

policy πb.

2.2 Literature Review

The literature of off-policy RL algorithms learning from fixed datasets, without en-

vironment interaction, lies under offline RL. However, Offline RL is a relatively new
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term that had been previously referred to as Batch RL. There are a few inconsisten-

cies in how the methods are grouped and cited. In the literature, Batch RL is the

traditional term for off-policy evaluation and improvement, where early offline RL

work could be found. Below, we distinguish between the two camps in the literature.

In a book for state-of-the-art RL [4], one chapter on batch RL discusses how we can

identify batch RL algorithms. A batch RL algorithm is about the data perspective,

whether we use immediate data or previously stored data. An offline vs. online RL

algorithm is about the interaction between the agent and an environment. Figure 2.1

is our adaptation from the book terminologies to the current terms and algorithms

in the literature. A batch RL algorithm relies on the agent storing and reusing data

collected from the environment as the policy is being optimized. An offline RL al-

gorithm does not allow an agent to interact with the environment or collect further

data. Note that every offline RL algorithm is a batch RL algorithm; however, not

every batch algorithm is an offline algorithm.

2.2.1 Offline Reinforcement Learning

Offline RL is the fully off-policy way of learning a policy from historical data for

control, not just evaluation. Fully off-policy/offline means that the target policy has

no access to the environment and only observes the data collected without having

access to the behavior policy [5]. This setting is recently referred to as offline RL [1].

It is an approach for creating data-driven algorithms and reusing already collected

data by training fully off-policy agents from scratch. Offline RL can be viewed as

similar to supervised learning, where a fixed amount of data is available and we

try to learn the best policy out of such data. This contrasts with normal off-policy

methods relying on the growing batch concept where further data collection is possible

through interacting with the environment [6].

For offline RL, a survey paper [1] categorizes offline RL algorithms into model-free

methods and model-based methods. This thesis only considers model-free approaches

7
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used later?
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Pure Online
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Figure 2.1: Classification of offline vs. batch RL algorithms: This figure shows
how we can draw boundaries between online, batch, and offline RL algorithms as
adapted from the state-of-the-art RL book []. Pure online RL algorithms do not store
data for later use. Batch and semi-batch RL algorithms store data for reuse in future
episodes of learning. Offline RL algorithms do not interact with the environment nor
collect data.
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for offline RL as they are more stable. Model-free methods are sub-categorized into

policy constraints that constrain the learned policy to be close to the behavior policy

and uncertainty-based methods that attempt to estimate the epistemic uncertainty

of Q-values to reduce distributional shift. For policy gradient methods, a policy

constraint can be enforced directly on the actor update to keep the new policy as

similar as possible to the behavior policy while learning. This constraint can be im-

plicit KL-divergence, which does not model the behavior policy such as the case in

Advantage-weighted regression [7] or Advantage Weighted Actor-critic [8]. A con-

straint can also be an explicit divergence constraint that require an estimation for

the behavior policy as done in the WOP algorithm [9]. In practice, policy constraint

methods so far seem to outperform pure uncertainty-based methods, as shown with

the batch constrained Deep Q-learning paper [6]. In Bootstrapping Error Accumu-

lation Reduction (BEAR) [10], authors identify bootstrapping error as the source of

instability of offline RL methods; they propose doing distribution-constrained back-

ups via maximum-mean discrepancy (MMD) [10]. In Behavior-Regularized offline

Reinforcement learning [11], a general framework, Behavior Constrained Actor-Critic

(BRAC), is introduced to cover different ways of regularization to offline policies,

whether as a value penalty or a policy penalty. Non-constrained methods can include

the traditional Q-learning [12], Double DQN [13] or Soft-Actor Critic [14], which are

not always successful in the fully offline setup. Behavioral cloning (BC) [15], as a

main method for imitation learning, is another way for learning offline policies from

historical data; BC proved to perform well compared to offline RL methods under

medium-quality and expert data [10].

2.2.2 Batch Reinforcement Learning

Three main directions under the classical Batch RL research are off-policy policy

evaluation (OPE) [16], high confidence off-policy policy evaluation (HCOPE) [17],

and safe policy improvement (SPI) [18]. Safe refers to defining a lower bound to our
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policy estimates, which is important for safety-critical applications.

We start with OPE methods for policy evaluation which refers to evaluating a

target policy πθ from data generated by a behavior policy πb. When the off-policy

estimate is guaranteed with some confidence that its performance is not worse than

the behavior policy πb, it is called HCOPE. An empirical study of OPE methods [16]

discussed the applicability of both methods and presented method selection guide-

lines depending on the environment parameters and the mismatch between πθ and

πb. This study categorized OPE methods into importance sampling (IS) methods,

direct methods, and hybrid methods that combine aspects from both IS and di-

rect methods. Importance Sampling (IS), or Inverse Propensity Scoring, as known

in statistics, is one of the widely used methods for off-policy evaluation where re-

wards are re-weighted by the ratio between πθ and πb [19]. This weighting results

in a consistent and unbiased off-policy estimator. Later versions of importance sam-

pling provide lower-variance estimates such as weighted importance sampling (WIS)

[20], per-decision importance sampling (PDIS), and per-decision weighted importance

sampling (PDWIS) [19]. Then, there are direct methods that rely on regression tech-

niques to directly estimate the value function of the policy. This category includes

model-based methods where the transition dynamics and reward are estimated from

historical data via a model. Then, the off-policy estimate is computed with Monte-

Carlo policy evaluation in the model [21]. Another direct method is fitted q-evaluation

(FQE) [22], a model-free approach that acts as the policy evaluation counter-part to

batch Q learning or fitted q-evaluation (FQI) [23]. The last category contains the

hybrid methods that combine different features from IS and direct methods. This

category mainly involves doubly-robust methods [24] that use a direct model to lower

IS variance. A few other methods improve upon this approach, such as weighted

doubly-robust (WDR) [25], where IS weights are normalized. Another approach is

MAGIC [25] which adaptively mixes IS and model-based methods.
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2.3 Gap in The Literature

In the offline RL literature, there is no defined way to evaluate a policy while learning

offline; most of the literature still evaluates the performance of offline algorithms in

the environment or in a simulator, by running a policy online. A workflow for offline

RL [26] recently proposed a set of metrics to indicate how the algorithm can be

further improved, such as detecting over-fitting and under-fitting, providing no clear

workflow for estimating policy performance.

At the Intersection of Offline RL and OPE, there has been recent work combining

these two research areas. One paper discussed the applicability of FQE [22] to test

the performance of offline policies under different hyper-parameters and select the

best performance [27]. Active offline policy selection [28] uses OPE to warm-start the

evaluation process and choose which policy to evaluate online when given a limited

budget of online interactions. In Benchmarks for Deep Off-Policy Evaluation [29],

the authors evaluate offline policies learned on continuous control tasks using various

OPE methods ranging from importance sampling, model-based methods, and doubly-

Robust estimators. They show how challenging OPE is as an evaluation method [29].

Given the previous work [27] [29], none discuss the feasibility of evaluating offline

RL agents during learning πθ, and how much we can trust HCOPE as an approach

for testing. The setup we are studying is quite different from the current literature

because previous work for off-policy evaluation assumed a behavior policy πb and a

target policy πθ, where both policies are fixed and may be related. For example, in

a study for HCOPE methods [17], the target policy is initialised as a subset of the

behavior policy such that they are close to each other. In another study for safe

improvement [18], the Daedulus algorithm learns a safe target policy as a continuous

improvement over the behavior policy. This is quite relevant to what we have here;

however, their algorithm uses data from an older version of the policy it currently

improves to perform both the improvement step and safety tests, so it is not offline
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learning. With the doubly-robust estimator, results are presented with different ver-

sions of πθ such that πθ is always a mixture of πb and πθ with different degrees to

ensure their relevance [24].

Recent work on offline RL focuses on continuous control in near-complex domains

and environments [1]. As detailed above, Batch RL focuses on much simpler domains

in discrete and continuous control [16]. None of the previous work discussed the

feasibility of using HCOPE to evaluate offline reinforcement learning. There is a gap

in how HCOPE methods would perform if the target policy is improved independently

from the behavior policy, which is the case for offline RL.

12



Chapter 3

Framework

This chapter introduces our novel framework. This includes the methods used for

offline policy learning, bootstrapping for high-confidence estimation, and off-policy

evaluation.

3.1 Proposed Framework

Our framework couples offline RL algorithms with approximate high-confidence off-

policy evaluation as a feasible evaluation method for offline agents in safety-critical

domains. In this framework, we sample data dynamically at each iteration, perform

policy updates, and continuously monitor its performance with a confidence interval

until it reaches a reasonable performance and is ready to be deployed. The policy

learning offline does not interact with the environment unless it passes the safety

test. Specifically, we have k iterations where, in each iteration i, the data Di of

size n is sampled from the main data source. Di is split between Dtrain to train

our target policy πθi and Dtest to perform the safety test using approximate high-

confidence off-policy evaluation methods. We return when the learned policy is ready

to be deployed with appropriate confidence. Instantiating our framework requires

selecting an offline policy learning method and an off-policy evaluation method for

computing off-policy estimates. We study various methods for offline policy learning

and off-policy evaluation as our methodology.
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Pseudo-Code

We summarize an interaction between an agent and a source of data as follows:

1. An agent uses a set of data Di without knowing the behavior policy.

2. We optimize a policy πθi offline using Dtrain with an offline RL algorithm from

Section 3.2.

3. We perform a safety check using Dtest with a high-confidence evaluation method

from Section 3.4.

4. Our new policy is either ready to be deployed or we go back to step 1.

We refer to each offline policy learning method with Φ and each high-confidence off-

policy evaluation method with Ψ. Our safe evaluation framework is further explained

in Algorithm 1. The inputs are a dataset of trajectories D, a confidence level δ

appropriate for the problem in hand, offline policy learning method Φ, and an off-

policy evaluation method Ψ to combine with bootstrap confidence intervals (BCI)

shown in Algorithm 2. The output will be a policy trained offline πθ and a high-

confidence lower-bound estimate of its return vδ̂(πθ). Since the stopping condition

in Algorithm 2 is not always satisfied if no HOPCE method can detect an improved

policy, we set a maximum number of iterations for training and evaluation in our

experiments.

3.2 Methodology: Offline Policy Learning

Is it possible to learn a good policy offline given data and no environment interaction?

In one of the early offline RL papers [5], authors tried to answer the question: Can

standard off-policy RL algorithms with no environment interactions succeed? Their

approach paved the way for how capable RL algorithms are in the offline setting,

since they were able to learn a successful DQN agent totally offline when provided

14



Algorithm 1 Offline Safe Evaluation Framework

Input: initial πθ, dataset D of m trajectories, confidence level δ ∈ [0, 1], number of
bootstrap estimates B, offline learning method Φ, and an OPE method Ψ
Output: πθ, vδ̂(πθ): 1− δ lower-bound on v̂(πθ)

1: Let i = 0
2: while vδ̂(πθ) ≤ v̂(πb) do
3: Sample a subset of trajectories Di with size n
4: Split Di into Dtrain and Dtest

5: Optimize policy πθi = Φ(Dtrain)
6: Evaluate policy vδ̂(πθ) = BCI(πθ, Dtest, δ, B,Ψ)
7: end while
8: return πθ, vδ̂(πθ)

with diverse data. However, a benchmark on batch RL [30] shows how RL without

correction can fail in the offline setting given ordinary data.

Given our setup, we investigate different techniques for learning from offline data,

ranging from normal off-policy RL algorithms (off-policy), imitation learning tech-

niques (imitation learning), and policy constraint methods specific for offline learning

(offline). Imitation learning is a form of supervised learning and is good at learning

from expert data or demonstrations. Policy constraint methods are designed to miti-

gate the challenges for normal off-policy to learn offline, such as bootstrapping error

[1]. This categorization is inspired by the offline RL tutorial [1] and is further shown

in Table 3.1.

For continuous control, we investigate a few approaches in the three categories

mentioned above. For the off-policy category, we use Soft Actor-Critic (SAC) [14]; this

means a SAC agent is optimized offline using a fixed buffer of data without interaction

with the environment or control over the buffer. For the imitation learning category,

we study Behavioral Cloning (BC) [15]; BC is a supervised learning algorithm where

the model learns how to predict actions from the current state.

In the offline category, we study batch-constrained Q-learning (BCQ) [6] and boot-

strapping error accumulation reduction (BEAR) [10]. Batch-constrained Q-learning

[6] argue that off-policy algorithms often fail in the offline setting due to the extrap-
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olation error such that unseen state-action pairs will have unrealistic values [6]. This

is a result of the mismatch between the state-action visitation of the current policy

and the state-action pairs in the offline dataset. To solve this, the policy should in-

duce a similar state-action visitation to the offline data. BCQ [6] proposed the use

of a state-conditioned generative model to produce only likely actions to the current

offline data. Then, this generative model, effectively a variational auto-encoder [31],

is combined with a network which aims to optimally perturb the generated actions

in a small range. When this is combined with the Q-network, the network will only

select the highest valued actions similar to the data in the batch [6].

BEAR [10] argues that the source of instability for off-policy algorithms learning

offline is the bootstrapping error. This error results from bootstrapping with actions

that lie outside of the training data distribution, and it accumulates via the Bellman

backup operator [10]. BEAR is built on top of any actor-critic algorithm, such as

SAC [14], by modifying the policy improvement step to use a distribution-constrained

backup. To apply the constraint, the sampled version of maximum-mean discrepancy

is used between the unknown behavior policy πb and the current actor πθ to constrain

the distribution of the actor to the support of the behavior policy [10]. Hence, BEAR

allows the actor to maximize the Q-function while being constrained to remain in the

valid support space of the behavior policy defined by the data samples [10].

For discrete control, we use Double DQN [32] as a normal off-policy RL algorithm;

similar to SAC, Double DQN is used to learn solely from offline data. For the imitation

learning category, we use behavioral cloning (BC) [12] in a supervised learning manner

with cross-entropy loss. In the offline category, we experiment with the discrete

version of BCQ [30]. Discrete BCQ is much simpler than its continuous version,

such that it trains Q-learning with a constrained argmax operator. This only allows

actions in the backup with probability, given by the generative model, above some

threshold τ . The generative model is a behavioral cloning network trained in standard

supervised learning with a cross-entropy loss [30]. BCQ is also based on Double DQN,
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and we use the threshold to be τ = 0.3 as reported in their original paper. If the

threshold τ is 1, the algorithm returns an imitator of all the actions in the dataset,

while a threshold τ = 0 returns the Q-learning objective.

- Off-policy Imitation
Learning

Offline

Continuous
Control

SAC Behavioral
Cloning

BCQ /
BEAR

Discrete
Control

Double DQN Behavioral
Cloning

BCQ

Table 3.1: Categories for offline Learning: This table shows different categories
for offline learning methods for both discrete and continuous control, with examples
of algorithms used in our experiments

Given the data samples used from a data source, we aim to learn a policy totally

offline with no environment interaction. This offline policy should be at least as good

as the behavior policy in case of imitation learning and better in the case of other

algorithms, after a few iterations.

3.3 Methodology: Bootstrapping

Consider a sample D of n random variables Hj for j = 1, 2, ..., n where we can sample

Hj from some i.i.d. distribution of data. From the sample of data D, we can compute

a sample estimate x̂ of a parameter x such that x̂ = f(D) where f is any function

that estimates x. Given a dataset D, we create B resamples with replacement, where

B is the number of bootstrap resamples, and compute an estimate for x, x̂, on each of

these resamples. Bootstrapping [33] allows us to estimate the distribution of x̂ with

confidence bounds. The estimates computed with different resamples will determine

the 1−δ confidence interval. In our setup, the parameter of interest x is the expected

return of a policy v(πθ).

Hence, with a confidence level δ ∈ [0, 1] and B resamples of the dataset of trajec-

tories D, we use bootstrapping to approximate a lower-bound confidence interval of
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Algorithm 2 Bootstrap Confidence Intervals: BCI

Input: a target policy πθ, dataset Dtest of m trajectories, confidence level δ ∈ [0, 1],
number of bootstrap estimates B, an estimate of the behavior policy πb̂, and off-policy
estimator Ψ
Output: vδ̂(πθ): 1− δ lower-bound on v̂(πθ)

1: for j ∈ [1, B] do
2: Dj

˜ = Hj
1 , .., H

j
m where Hj

i is sampled uniformly
3: v̂ = Ψ(πθ, Dj

˜ , πb̂)
4: end for
5: sort(vĵ|j ∈ [1, B]) // ascending
6: l = ⌊δB⌋
7: return vl̂

v(πθ) on v(πθ) such that vδ(πθ) ≤ v(πθ) with probability at least 1−δ. This bootstrap

method is referred to as the percentile bootstrap for confidence intervals [34]. After

obtaining B resamples of the dataset, we compute v̂(πθ) with each of these resamples.

Then, all the off-policy estimates v̂(πθ) are sorted ascendingly and the index δ×B is

chosen, to get vδ̂(πθ)

As the size of data n → ∞, bootstrapping has strong guarantees, but it lacks guar-

antees for finite samples [21]; this is because it assumes that the bootstrap distribution

is representative of the true distribution of the statistic of interest, which may be false

for finite samples [21]. As a result of this false assumption, bootstrapping is considered

semi-safe; an algorithm is called semi-safe if it ensures safety while making a reason-

able assumption that may be false. Previous work [35] shows that bootstrapping is

still safe enough for high-risk medical predictions with a known record of producing

accurate confidence intervals. Moreover, other exact concentration inequalities may

be too loose with small amounts of data so bootstrapping is practically more useful

for our setup.

When bootstrapping is combined with off-policy evaluation methods, we can esti-

mate the distribution of v(πθ), and use it to estimate v̂δ(πθ) with probability at least

1− δ.
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3.4 Methodology: Policy Evaluation

While a policy is being improved offline, we are interested in evaluating such a policy.

Off-policy evaluation is a promising technique to evaluate a policy that is continuously

learning given access to fixed data. An off-policy estimator is a method for computing

an estimate v̂(πθ) for the true value of the target policy v(πθ) using trajectories D

collected while following another policy πb, which is what OPE methods do. For

HCOPE, this extends OPE to lower-bounding the performance of the target policy,

πθ. When evaluating, we use new samples for testing each time to avoid the multi-

comparison problem2. This is also to ensure that we do not over-fit our OPE estimates

or tune training parameters to reduce the estimate error.

Below, we detail one method in each category of the OPE methods as discussed

in Section 2.2.2. Each method is combined with the bootstrapping method to ap-

proximate a confidence lower bound of vδ̂(πθ) on v̂(πθ) such that vδ̂(πθ) ≤ v̂(πθ) with

probability at least 1 − δ. Table 3.2 shows the three categories of OPE methods,

with examples under each category. The methods in bold are the ones we use for

evaluation.

Importance
Sampling

Direct Hybrid

IS[19] Fitted q-evaluation
[22]

Doubly-robust[24]

WIS[20] Model-Based[25] Weighted
doubly-robust [25]

PDIS[19]/PDWIS[19] - MAGIC [25]

Table 3.2: Different OPE methods categorized: This table shows the three
main categories of OPE methods, importance sampling, direct methods and hybrid
methods with examples.

2The problem occurs when conducting multiple statistical tests simultaneously with reusing data,
so the confidence bound does not strictly hold anymore

19



3.4.1 Importance Sampling with Bootstrapping

Importance Sampling (IS) [19] is a method for handling mismatch between distribu-

tions and hence presented as a consistent and unbiased off-policy estimator. For a

trajectory H ∼ πb of length L, as H = S1, A1, .., SL, AL, we can define the importance

sampling up to time t for policy πθ as follows:

IS(πθ, πb, D) =
m∑︂
i=1

ρHLR
i, ρHt :=

t∏︂
j=0

πθ(Aj|Sj)

πb(Aj|Sj)
(3.1)

By re-weighting the returns, we can tell how likely each reward is under πθ versus

πb. However, IS often assumes a known πb, which is not always the case for off-policy

policy evaluation. Since we assume no access to πb in our setting, we estimate a

behavior policy π̂b from data with a behavior cloning model [36]. To come up with

a high confidence estimate, we first compute the importance-weighted returns then

use bootstrapping, described in Section 3.3, to get the lower-bound estimate. In our

experiments, we use weighted importance sampling (WIS) [20] with bootstrapping as

a representation for importance sampling family of estimators.

WIS (πθ, D, πb) =
m∑︂
i=1

ρiL−1∑︁m
j=1 ρ

j
L−1

g(Hi) (3.2)

3.4.2 Direct Model-Based Bootstrapping

Model-based estimation is another off-policy estimator that falls under direct meth-

ods. The model-based off-policy estimator (MB) computes v̂(πθ) by building a model

using all the available trajectories D to build a model M̂ = (S,A, P̂ , r, γ, d0̂) where

P̂ and d0̂ are estimated with trajectories sampled from πb. Then, MB will compute

v̂(πθ) as the average return of trajectories simulated in the estimated model M̂ while

following πθ. Despite having lower variance than IS methods, MB is a biased estima-

tor for: 1) we lack data for particular state-action pairs, so we assume their transition

probabilities, 2) we assume that the model class includes the true model for the tran-

sitions. As a result, as n → ∞, the model estimates may converge to a value different
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from the true v(πθ). This effect is due to its dependency on the modeling assumptions

we make whether we assume a linear or a non-linear model.

To get a confidence lower-bound on the MB estimate, we use bootstrap confidence

intervals as one of the approximate confidence intervals for OPE, as discussed in

Section 3.3. So, the model-based estimator is combined with bootstrapping for high-

confidence off-policy evaluation. To clarify, as mentioned in Section 2.2.1, we rely

mainly on model-free policy optimization algorithms for learning a policy offline.

However, we use model-based estimation to evaluate a policy, which is independent

from the policy optimization part.

3.4.3 Weighted Doubly-Robust with Bootstrapping

Weighted doubly-robust (WDR) [25] is a hybrid method for off-policy estimation,

presented as an extension to the doubly-robust (DR) method [24]. DR is an unbiased

estimator of v(πθ) that uses an approximate model of the MDP to reduce the vari-

ance of importance sampling [24]. Although biased, WDR is based on per-decision

weighted importance sampling (PDWIS) and improves upon the DR method as it bal-

ances the bias-variance trade-off. In addition, the approximate model value functions

act as a control variate for PDWIS.

PDWIS (πθ, D, πb) =
m∑︂
i=1

L−1∑︂
t=0

ρit∑︁m
j=1 ρ

j
t

γtRi
t (3.3)

WDR(πθ, D, πb) = PDWIS (πθ, D, πb)−
n∑︂

i=1

L−1∑︂
t=0

γt(wi
tq̂πθ

(Si
t , A

i
t)− wi

t−1v̂piθ(S
i
t))

(3.4)

Similar to direct model-based methods, we use bootstrapping with WDR to provide

a confidence lower-bound estimate on v̂(πθ). WDR with bootstrapping is guaranteed

to converge to the correct estimate as n increases, given the statistical consistency

of PDWIS [21]. For the approximate model, a single model is estimated with the
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available trajectories D, then used to compute the value functions of WDR for each

bootstrap data. We choose the weighted doubly robust estimator to represent OPE

hybrid methods in our study.
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Chapter 4

Experiments: Simulated
Environments

This chapter discusses the experiments and the results of the proposed framework on

simulated offline setups in discrete and continuous control tasks.

4.1 Environments

In our experiments, two simulated environments were used to demonstrate the frame-

work in discrete and continuous control. This shows how the complexity of the en-

vironment, state and action dimensions, and horizon are affecting high-confidence

off-policy evaluation. To mimic the setup where there exists a source of pre-collected

trajectories without access to the environment itself, we simulate a source for data in

each environment as an online partially-trained policy that collects data of a medium

quality. A medium-quality data that is not optimal nor random resembles real-world

data and leaves room for improvement by offline RL algorithms.

• MountainCar-v0: we use discrete MountainCar [3] with a continuous state

(velocity and position) and 3 possible discrete actions. At each time-step, the

reward is −1, except for the terminal state when it is 0. However, we used

the modified version of Mountain-Car as described here [37]. The horizon is

shortened by holding an action at constant for 4 updates of the environment

state. We also change the start state such that an episode starts with a ran-
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dom position in the range of ⟨−1.2, 0.6⟩ and random velocity in the range of

⟨−0.07, 0.07⟩ [24, 37]. The data collector we use for this environment is an

online actor-critic [3] agent that is partially trained with added 30% random-

ization when generating data. This means when collecting the offline data, an

agent takes a random action 30% of the time instead of following the online

policy, to include exploratory transitions.

• Pendulum-v0: inverted pendulum swing-up problem is a classic problem in

the control literature with one continuous action [38]. In this version of the

problem, the pendulum starts in a random position, and the goal is to swing it

up to stay upright. We also shorten the horizon following the same procedure

as done in MountainCar [37] by holding an action constant for 4 updates of the

environment state. This limits the horizon of the environment to 50 instead of

200. The data source we use for this environment is a soft actor-critic [14] agent

that is trained partially, with added 30% randomization when generating the

dataset. This means when collecting the offline data, an agent takes a random

action 30% of the time instead of following the online policy to resemble real-

world data.

4.2 Experimental Details

For each environment, a policy is optimized offline using three different offline learn-

ing methods and evaluated simultaneously using three different off-policy evaluation

methods. We follow algorithm 1, but the loop is limited to a maximum of 10 iterations

because we cannot rely on all HCOPE methods detecting vδ̂(πθ) > v̂(πb). We have m

trajectories from the source of data which we split between training and testing; we

use more data for testing since HCOPE requires more data to estimate tight bounds.

For each improvement method, we load the train split into the training buffer and do

k policy updates where k is tuned per algorithm such that the offline policy converges
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within the total number of iterations. Since we have access to the true environment

in these simulated domains, we rely on the environment to compute the true value

of the offline policy; hence, we use this information to optimize an offline policy that

can outperform the behavior policy.

For bootstrapping, we use δ = 0.05 to get a 95% confidence lower-bound using

B = 2000 bootstrap estimates as recommended by practitioners [33]. In weighted

doubly-robust with bootstrapping 3.4.3, we use a value of B = 224 for the num-

ber of bootstrap estimates to avoid heavy computation; this can still get us a good

approximation as suggested by MAGIC [25].

Since we have no access to πb, we estimate πb̂ given the test data [36] with a

behavior cloning model that is improved gradually as more test data gets in.

4.3 Results

Below, we show experimental details and results on MountainCar-v0 and Pendulum-

v0.

4.3.1 MountainCar-v0

In each iteration, 300 trajectories are sampled, where 20 trajectories are used for

training the policy and 280 trajectories are used for evaluation. This totals to 3000

trajectories over the 10 iterations. Each iteration includes performing k policy up-

dates to the offline policy; a policy update is a single optimization step of the policy

over a batch of data. k is set to be 29 for BCQ and Double DQN, while BC does 26

policy updates in one iteration. Figure 4.1 shows how different offline policy improve-

ment methods perform given medium-quality data along with HCOPE estimators,

indicating which method can tell when vδ̂(πθ) > v̂(πb). Behavior cloning, as an offline

policy improvement method, can only perform as well as the data distribution πb.

Double DQN and BCQ were able to outperform πb. The true value of a target policy

is calculated as the average return when running the policy in the actual environment
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Figure 4.1: Results of offline learning and high-confidence evaluation on
MountainCar-v0: This figure shows results of evaluating the performance of the
target policy with HCOPE as it is training offline. Weighted importance sampling
(WIS) failed to detect that the offline policy outperforms πb. The model-based es-
timator (MB) and weighted doubly-robust (WDR) were able to determine when an
offline agent outperforms πb.
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(not possible in practice) for 1000 episodes. All reported results are an average of 40

runs, while the shaded area shows the standard error. The value of the behavioral

policy, v̂(πb), is the sum of undiscounted rewards of all trajectories in the data set.

Since πb is unknown, we first estimate πb̂ with a behavior cloning model [36] given

the test data and improve our estimate as we sample more test data over iterations.

For high-confidence evaluation of each offline agent, weighted importance sampling

(WIS) with bootstrapping failed to detect that the offline policy outperforms πb for

all learning methods. The model-based estimator (MB) and weighted doubly-robust

with bootstrapping (WDR) have much less error with respect to the true value of a

policy and were able to infer when an offline agent outperforms πb and hence is ready

to be deployed. For instance, with 95% confidence, in the case of offline improvement

with Double DQN, we were able to tell that our new target policy is better than the

behavior policy at iteration 4 using two different estimators (MB and WDR).

4.3.2 Pendulum-v0

In each iteration, 500 trajectories are sampled, where 100 trajectories are used to train

the policy and 400 trajectories for evaluation. This totals 5000 trajectories over the 10

iterations. Figure 4.2 shows how different offline policy improvement methods perform

given medium-quality data along with HCOPE estimators, indicating which method

can tell when vδ̂(πθ) > v̂(πb). Behavior cloning as an offline policy improvement

method can only perform as well as the data by πb, while BEAR and BCQ were able

to outperform πb. We did not report results on SAC [14] since it failed to learn a

policy better than the behavior policy. The true value of a target policy is calculated

as the average return when running the policy in the actual environment (not possible

in practice) for 1000 episodes. All reported results are an average of 40 runs, while

the shaded area shows the standard error. The value of the behavioral policy v̂(πb)

is the sum of undiscounted rewards of the data set. Since πb is not known, we first

estimate πb̂ [36] given the test data and improve it as we sample more test data.
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Figure 4.2: Results of offline learning and high-confidence evaluation on
Pendulum-v0: This figure shows results of evaluating the performance of the target
policy with HCOPE as it is training offline. Weighted importance sampling (WIS)
failed to detect that the offline policy outperforms πb. The model-based estimator
(MB) and weighted doubly-robust (WDR) were able to determine when an offline
agent outperforms πb.
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Similar to the results on MountainCar-v0, WIS with bootstrapping failed to detect

that the offline policy outperforms πb. The model-based estimate (MB) achieve a

very tight lower-bound with the true value of a policy and were able to inform when

an offline agent outperforms πb and hence is ready to be deployed. Weighted doubly-

robust with bootstrapping (WDR) estimates are also affected by the improvement

methods as in the case with WIS.

4.4 Analysis of Evaluation Methods

To better understand how evaluation is affected by how the offline learning method,

multiple measures can show the similarity between two probability distributions (as a

policy is a distribution over actions). One simple measure is the total variation (TV)

distance. TV distance measures the difference between action probabilities taken

under two policies given the data set in hand. TV would be the sum of differences in

probabilities between the behavior policy πb and the target policy πθ for each state-

action pair in the test dataset. Since πb is not known, we estimate πb̂ given the test

data [36].

HCOPE Off-policy
(Double DQN)

Imitation
Learning (BC)

Offline(BCQ)

WIS 49.032 ± 0.57 28.742 ± 1.22 43.66 ± 0.84

MB 7.85 ± 0.72 22.716 ± 1.09 13.645 ± 0.65

WDR 6.18 ± 1.45 17.642 ± 2.79 12.81 ± 2.42

Table 4.1: Mean error between HCOPE estimates and true value of πθ on
MountainCar-v0: This table shows the mean error of HCOPE estimates, vδ̂(πθ),
over all training iterations and multiple runs given each offline improvement method.
Lowest mean errors are in bold. Importance sampling (WIS) achieves the lowest error
with imitation learning. MB andWDR achieve the lowest error when the offline policy
is optimal, as in the case for Double DQN.

Some HCOPE methods, such as importance sampling (IS), rely on the similarity

between the behavior policy πb and the target policy πθ. We analyze how the im-
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HCOPE Off-
policy(SAC)

Imitation
Learn-
ing(BC)

Offline(BCQ) Offline(BEAR)

WIS - 268.5 ±
28.93

602.49 ±
78.05

432.22 ±
47.5

MB - 33.48 ± 0.77 25.02 ± 2.5 19.0 ± 5.1

WDR - 161.1 ±
13.47

307.11 ±
37.3

54.75 ±
10.43

Table 4.2: Mean error between HCOPE estimates and true value of πθ on
Pendulum-v0: This table shows the mean error of HCOPE estimates, vδ̂(πθ), over
all training iterations and multiple runs given each offline learning method. Lowest
mean errors are in bold. Importance sampling (WIS) achieves the lowest error with
imitation learning. MB and WDR achieve the lowest error when the offline policy is
optimal, as in the case BEAR, which is also quite close for BCQ. We omit results on
learning a target policy by SAC since it failed to learn a policy that outperforms the
behavior policy.

provement method is affecting TV distance between πb̂ and πθ and hence affecting

the high-confidence off-policy evaluation estimates. TV distance is correlated to KL-

Divergence, showing how two policies are different from each other. Figure 4.3 shows

the total variation distance between the offline policy πθ and the estimated behav-

ior policy π̂b across the different offline learning methods. For discrete control, it

shows that behavioral cloning (imitation learning) can achieve a much lower distance

than other improvement methods whether they are constrained or non-constrained

(batch-constrained Q-learning and Double DQN). This is because behavioral cloning

forces its target policy to be close to the behavior policy while other methods do not.

The same applies to continuous control in Pendulum-v0; behavior cloning achieves

the lowest error between πb̂ and πθ. BEAR achieves a higher distance but much less

than BCQ; this is because BEAR enforces explicit divergence minimization between

πb̂ and πθ while exploiting the data [10]. This insight on divergence explains why

weighted importance sampling achieves the lowest error between the estimate and

the true value of a policy in the case of behavioral cloning, as shown in Tables 4.1
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Figure 4.3: Divergence between π̂b & πθ over training iterations: This figure
shows the total variation (TV) distance between π̂b & πθ on MountainCar-v0 &
Pendulum-v0 over all training iterations. For MountainCar-v0, behavior cloning (BC)
learns a policy that is very similar to π̂b. Discrete BCQ and Double DQN do not
limit the distance with the behavior policy, and their TV distance is quite large as
opposed to BC. For Pendulum-v0: behavior cloning (BC) also learns a policy that is
very similar to π̂b and achieves the lowest TV distance. BEAR limits the divergence
compared to BCQ since BEAR’s objective is constrained to be close to πb.

and 4.2; the error grows for other methods that do not constrain the policy to be

close to the data distribution.

Other than the divergence between π̂b & πθ, the horizon of the trajectory affects

importance sampling such that it suffers from high variance with longer horizons

[39]. The MB estimator performs well when it is possible to model the environment

dynamics such as the case for both MountainCar-v0 and Pendulum-v0 environments.

The WDR estimator also performs well because q-values can get more accurate when

it is easy to learn a model of the environment. However, the WDR estimator is still

affected by the divergence between π̂b & πθ as in the case for BC and BCQ algorithms.

WDR estimates get worse as the divergence increases.

4.5 Discussion

It is important to question whether high-confidence off-policy evaluation (HCOPE)

is worth the added complexity and computation over off-policy evaluation (OPE).

OPE can provide good estimates of an offline target policy. OPE is challenging; the
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Figure 4.4: Results of off-policy evaluation without bootstrapping on
MountainCar-v0: This figure shows results of evaluating a policy with OPE. The
target policy is optimized offline with behavioral cloning and evaluated with OPE
without bootstrapping. Results show that OPE overestimates the true value of the
policy, and it is better to trust high-confidence OPE in safety-critical applications.

same challenges apply to high-confidence off-policy evaluation (HCOPE). However,

HCOPE estimates ensure safety by underestimating the value of the offline policy.

Empirical results on simulated environments showed how OPE estimates overestimate

the true value of the offline policy, even if it achieves less error between the estimate

and the true value, as shown in Figure 4.4. On the other side, HCOPE lower bounds

are guaranteed to overestimate the true value of the offline policy only within the

allowable 5% error rate for a 95% confidence, as shown in Figure 4.5.

Our ability to detect an improved policy and decide when to deploy, is a function

of how much better the policy is and how good our high-confidence OPE methods

are. It is better to rely on estimators that do not take πb into account (e.g., direct

methods or at least hybrid methods) so that value estimates are less affected by

the divergence between πθ π̂b (as the case for WIS). Accordingly, high-confidence

off-policy estimators (e.g., direct methods or hybrid methods) are considered a safe
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Figure 4.5: The empirical error rate on MountainCar-v0 with HCOPE:
This figure shows the empirical error rate on MountainCar given different HCOPE
methods. The lower bound is computed z times for each method (z = 40 for Mountain
Car) and we count how many times the lower bound is above the true v̂(πθ) computed
in the true environment. Given 200 trajectories only for evaluation, all methods
correctly approximate the allowable 5% error rate for a 95% confidence lower bound.
However, there are two instances of WIS and WDR that slightly exceed 5% which
can be mitigated with more data.

evaluation method for offline learning with enough confidence that minimizes the risk

of overestimating the true performance of an offline policy. In contrast, off-policy

evaluation suffers from overestimation to the true values so it makes sense to rely on

HCOPE instead, specially for safety-critical applications.

Finally, we would like to point out that the safety guarantee for the confidence

bound specified is per-iteration [37]. If we want to consider this guarantee over

multiple iterations, the probability 1 − δ decreases for the early iterations as we

perform more tests. As a result, we should only consider this guarantee for the last

iteration of our loop, such that the error rate in the last iteration is at most δ.
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Chapter 5

Applicability on Real-World Data

The main motivation for this thesis is to find a way to evaluate RL agents learning

offline, to determine when to deploy such agents without access to the real environ-

ment. In this chapter, we test our proposed framework on real-world medical data to

see how applicable it is and what the challenges are. Below, we describe the problem,

data, experiments, challenges, and results.

5.1 Problem: Sepsis Treatment

Problems in healthcare can be considered a form of sequential decision making, such

as clinical physicians making decisions about the best next step to take in care [40].

Current advances in artificial intelligence can provide personalized care that is equal

to or better than humans by finding an optimal decision making policy given clinical

data [40]. Sepsis, a severe infection with organ failure, is a leading cause of mor-

tality in intensive care units (ICUs) in hospitals [41]. There are continuous efforts

in research to understand and cure sepsis and, hence, increase the survival rates for

ICU patients. Reinforcement learning for sepsis treatment is preferred over super-

vised learning because the ground truth of good treatment strategy is unclear in the

current medical literature [42]. Sepsis data is a form of offline data, from which we

can learn an offline policy given no access to an environment. The challenge lies in

evaluating such policies while learning to determine when it is good enough to be
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used in reality.

In this chapter, we use the well-known MIMIC III data [43] for sepsis treatment.

Current literature in reinforcement learning for health [44] [45] finds it challenging to

evaluate policies learned from such data when learning a decision-making policy given

no agent-environment interaction. Using a deep reinforcement learning approach, one

approach [45] relies on learning a policy from MIMIC III data with dueling DQN

[13]. To assess the performance of the learned policy, authors [45] use the doubly-

robust estimator [24] to estimate the value of their agents. They suggested that it is

better than just comparing the Q-values of the learned policy to the Q-values of the

estimated physician’s policy. A following work [44] suggests that it is not enough to

trust the doubly-robust estimator [24], and it is better to rely on qualitative analysis

for this problem. This is because they are learning a deterministic RL policy; a

deterministic target policy leads to importance sampling weights going to zero if the

behavior and learned target policy take different actions at any given time-step [44].

Their qualitative analysis relies on the SOFA (measuring organ failure) score, given in

the data, by categorizing the state space into low, medium, and high SOFA cohorts.

Then, the actions taken by the RL policy, at each of these cohorts, are compared

against the clinician’s policy to see if there is an improvement [44].

For this problem, given no further data collection, it is better to rely on offline

RL learning methods to optimize a policy from a fixed dataset. A recent paper [46]

explores different representation learning techniques to learn a good policy offline

with discrete BCQ [30]. To evaluate their policies, they rely on Weighted Importance

Sampling [20] to compare the different representation learning techniques. A target

policy learned by discrete BCQ [30] will not suffer from the same problem with im-

portance sampling as Dual DQN [44] because BCQ is bounded to imitate actions in

the dataset so no action will have a probability of 0. We build upon their work to

apply our proposed training-evaluation framework.

The problem at hand is widely researched but, only one previous work [46] relies
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on offline learning with off-policy evaluation. Relying on importance sampling for

evaluation is good when comparing different approaches; however, we believe it is

essential to perform high-confidence evaluation for this critical application.

Data Description

To build a decision-making policy for the treatment of septic patients, we use data

from the Medical Information Mart for Intensive Care (MIMIC-III) dataset (v1.4)

[43]. We follow previous relevant work [47] to extract and preprocess vital and lab

measurements and build a cohort of 19418 patients; this cohort has an observed mor-

tality rate just above 9% (determined by death within 48h of the final observation).

Data extraction, preprocessing, and splitting follow the previous work [46].

A dataset D is a collection of trajectories; a trajectory H of a non-fixed horizon

L refers to a single patient that ends by the survival or death of a patient, with

a maximum horizon L of 19. A transition is composed of current observation Ot,

the action taken by the clinician at to move to the next observation Ot+1 receiving

reward of rt until a patient survives or dies. We treat the problem as a Markov

decision process (MDP). Data consists of a continuous state space of a dimension 38

and a discrete action space of 25 actions. Observed actions are the administration of

fluids or vasopressors that can be given, categorized by volume, and put into 5 discrete

bins per action type resulting in 25 actions [46]. The data has sparse reward such that

a trajectory has a terminal reward of +1 if a patient survived, -1 if a patient died,

and 0 otherwise. The observations used as our state space are a combination of time-

varying continuous features (33), such as heart rate, glucose, etc., and demographic

features (5), such as gender, age, weight, etc. [46].

5.2 Experiment Design

To re-iterate, there is good progress on learning RL policies for sepsis treatment using

the data mentioned above. However, there is no standard way for evaluation. A
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safety-critical application like this one is where our framework is the most applicable.

We would like to perform high-confidence off-policy evaluation for the target policy

learning offline and see if we can trust our RL policy to make decisions in the real-

world.

Clinical Data

Optimize an offline
agent with BCQ

Yes, deploy!

Train
Data

Test  
Data

Evaluate policy     
using HCOPE

Is the agent good
enough?

No

Figure 5.1: Flowchart of how to apply our framework on sepsis data: This
figure shows the flow for how to use the sepsis data to optimize an offline policy and
evaluate it with HCOPE.

To apply our framework, there are a few design decisions to make first. These

decisions include: how much data to use for training/testing, bootstrapping size,

confidence level, and choice of algorithm to optimize a policy offline. For the train

and test dataset, we do a 70/30 train/test split using stratified sampling [46], which

maintains the same proportions of each terminal outcome (survival or mortality).

For the bootstrapping size, we use B = 2000 as in the previous chapter. We also

use a confidence level δ = 0.05. We optimize a policy offline using batch-constrained

Q-learning (BCQ) for discrete control [30], coupled with an auto-encoder for better

state representation learning. Another important decision is to decide how often we
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will run our high-confidence evaluation methods because of its computational cost.

For this, we train the policy for 300k updates, where we evaluate the policy every 10k

updates. To estimate the behavior policy πb, which is referred to as the clinician’s

policy, we rely on behavior cloning [36] as discussed in Chapter 4.

As the offline agent is training, we do not have a way to evaluate how it performs

except for using off-policy estimators (OPE) and high-confidence off-policy estimators.

As done in Chapter 4, we use weighted importance sampling (WIS), model-based

estimator (MB), and weighted doubly-robust estimator (WDR) with bootstrapping

to provide high-confidence lower-bound estimates vδ̂(πθ) for πθ. We also report vπθ

using the same estimators without bootstrapping as the mean estimate. A flow chart

of the training-evaluation cycle on sepsis data is shown in Figure 5.1. Data is split

between training and evaluation. Train data is used to optimize a BCQ agent while

test data is used for evaluation with HCOPE methods. For this experiment, we face

the multi-testing problem in this experiment as we used the same data split for each

evaluation iteration; this is because the size of the test data is too small to split

among iterations. After evaluating, we check if the agent is good enough to deploy

in the real-world, or not so we can continue improving our offline agent.

For this problem, we hypothesize that importance sampling [19] can provide good

estimates given the short horizon and the fact that the target policy is constraining

the action value to be close to the data distribution. The transition dynamics for this

problem are challenging for the model-based estimator so we hypothesize that MB

will not perform as well.

5.3 Results & Discussion

For sepsis data, there is no ground-truth to compare against, as opposed to the

simulated environments we presented in Chapter 4. While learning our offline policy,

we would like to see how well it performs over time and when it outperforms the

behavior policy so we can deploy it into the real world. Figure 5.2 shows the results
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of off-policy evaluation and high-confidence off-policy evaluation estimates on the

offline target policy. The value of the behavior policy, v(πb), is the return of the data

in hand.

Figure 5.2 shows the results of training an offline RL policy and evaluating it with

OPE and approximate HCOPE, as an average of 10 runs with the standard error

indicated. With WIS, the lower-bound estimate vδ̂(πθ) and the mean estimate v̂(πθ)

show the improvement of the policy over training iterations. The mean estimate of

WIS can outperform the behavior policy but this can overestimate the true value. We

focus on the lower-bound estimate which did not show our target policy outperforms

the behavior policy. Figure 5.3 shows how the divergence of the offline target policy πθ

from π̂b is bounded, which makes WIS estimate more reliable. The estimates by the

model-based estimator (MB) failed to detect the improvement of the policy over time.

This has to do with failing to model the complex dynamics of the dataset; as a result,

it failed to estimate the true value of the target policy. In a model-based estimator,

we model all the environment dynamics, the next state, reward, and terminal state.

In MountainCar-v0, we only modeled the next state since the reward and terminal

state can be computed deterministically from the current state. In Pendulum-v0,

the environment always terminates at the maximum horizon, so we only modeled

the next state and reward. With sepsis data, it was hard enough to model the next

state because the state dimension is large; it is also hard to model the terminal state

indicating when a patient terminates and whether they survive or not.

Weighted doubly-robust, values of vδ̂(πθ) and v̂(πθ) can show the improvement of

the offline policy as it is training. WDR combines per-decision weighted importance

sampling with an approximate model; the approximate model only fits q-values so it

does not suffer from the modeling complexity as the MB estimator. The estimates

by WDR go outside the range of typical values, which are ⟨−1.0, 1.0⟩, so we clip the

estimates to remain in that range. Results imply that the offline target policy can

get as good as the data then the performance drops, if we rely on high-confidence
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Figure 5.2: Results of offline learning and high-confidence off-policy evalua-
tion on sepsis data: This figure shows results of evaluating the performance of the
target policy with OPE and HCOPE as it is training offline. We show the lower-bound
estimate from HCOPE vδ̂(πθ) and the OPE estimate v̂(πθ) without bootstrapping for
each method.
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estimates vδ̂(πθ) as shown by WDR. Another observation is that this offline BCQ

policy may require further tuning to provide a better policy. Relying on the lower-

bound estimate is important to determine whether a policy is good enough to deploy

in the real world or not.
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Figure 5.3: Divergence between π̂b & πθ over training iterations on sepsis
Data: This figure shows the total variation (TV) distance between π̂b & πθ on sepsis
data across training. TV distance slowly decreases over time, making it bounded and
limiting the divergence of the target policy from π̂b.

For real-world sepsis data, it is possible to learn an optimal target policy offline

and use OPE/HCOPE to evaluate the offline policy as it is training. We propose

that relying on OPE only is not enough for a such a critical application, and it

is better to rely on high-confidence estimates by HCOPE to minimize the risk of

overestimation. More specifically, WIS can be reliable for this problem given the short

horizon but WDR can provide better estimates as a hybrid method that improves

upon importance sampling. It is challenging for the MB estimator to detect an

improved policy given the complex environment dynamics. Fitted q-evaluation [22]

is another good direction to use for evaluation in this problem.
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Chapter 6

Challenges, Conclusions & Future
Work

We conclude this thesis by discussing challenges, conclusions, and future work.

6.1 Challenges

High-confidence off-policy evaluation (HCOPE) is a feasible technique for evaluating

offline RL algorithms, but there are a few challenges for the approximate HCOPE

discussed below. Most of these challenges initially apply to off-policy evaluation

(OPE).

Quality of Dataset: In our experiments, we tried to simulate data that mimics

real-world data, such that it is suboptimal data that contains random trajectories.

However, some OPE methods, such as importance sampling, become more challenging

under this assumption of data quality. Since we assume no access to the policy that

collected the data πb, we estimate πb̂ with a behavior cloning model in a supervised

learning manner such that each state maps to an action. Importance sampling with

an estimated behavior policy [36] corrects for the errors due to sampling in the action

space. Even though IS with an estimated πb provides better estimates than ordinary

importance sampling [36], it is empirically challenging to learn a good estimate when

the data contains random exploratory trajectories, which is essential for learning a

good offline RL policy.
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Hyper-parameter Tuning: high-confidence off-policy estimators depend on hyper-

parameters that should be tuned for a better performance. These parameters in-

clude bootstrapping size B, normalization of rewards and returns, as well as other

hyper-parameters for the models in direct and hybrid methods. To fit a model for

model-based evaluation [21] or fitted q-evaluation [22], tuning of hyper-parameters

is essential, such as learning rates, batch size, number of layers, number of nodes,

and the loss functions. Moreover, data usually suffers from class imbalance when

modeling terminal states, or modeling success vs. failure states in real data. To make

better predictions, this requires different tuning such as dataset oversampling, loss

weighting, and regularization .

Modeling Assumptions: among high-confidence off-policy methods, the model-

based estimator relies on a few assumptions related to how we model the environment.

Simple environments/domains can be easily modeled compared to more complex do-

mains. For instance, it is hard to model the state transitions, reward function, and

terminal function altogether since errors resulting from the different models accumu-

late over time steps. Some of our empirical work failed to learn tight bounds with

model-based estimator because of the complex environment dynamics, such as the

LunarLander environment [38] or the real-world Sepsis data. MB has the potential

for offline RL evaluation because if we were able to model the environment dynamics

successfully, we can end up with a simulated environment which will be ideal for

evaluation in the offline setting.

Bootstrapping: bootstrapping comes with heavy computational needs depending

on the number of bootstrap samples B. This forces us to reduce the frequency at

which we evaluate our learning policy with high-confidence. As a solution, we can

rely on off-policy estimates without bootstrapping to get a sense of how the policy

performs and then perform high-confidence evaluation once the mean estimates show

improvement of the offline policy.

Multiple Testing Problem: this problem occurs when conducting multiple sta-
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tistical tests simultaneously with the same data, so the confidence bound does not

strictly hold anymore and the confidence decreases by the number of tests you per-

form. To avoid the multiple testing problem, more trajectories have to be allocated

for evaluation to discard trajectories used in one iteration of evaluation. This is inef-

ficient as the size of the data may be limited for real-world applications, or data can

be costly. As a solution, we can only perform high-confidence evaluation once OPE

estimates show improvement of the offline policy, and rely on the last iteration for

the safety guarantee.

6.2 Conclusions

This thesis proposed a framework for evaluating offline RL methods with high-confidence

to ensure safety. First, we studied the feasibility of different categories of off-policy

estimators along with bootstrapping and how they are affected by offline learning

algorithms. We propose how high-confidence evaluation is better for safety-critical

applications since off-policy evaluation suffers from overestimation. So, we tested our

proposed framework on real-world medical data for Sepsis treatment. While dynami-

cally receiving data, we optimize offline RL agents and run safety tests to estimate a

lower-bound on the value of the offline policy and control the risk of overestimating its

true value. This is essential for safety-critical applications to be able to tell when it is

safe enough to deploy a new policy. Although bootstrap confidence intervals provide

approximate high-confidence estimates, they provide a practical approach with small

data compared to exact concentration inequalities that may be too loose to use.

We believe safe evaluation is an important step for offline RL; offline RL has great

potential for control in the actual environment, if they are good enough, where our

proposed framework is most applicable. We can always use historical data to optimize

an offline policy then continue learning online in the real environment; our framework

can also determine when we can do that switch.

In conclusion, approximate high-confidence off-policy evaluation proved to be a
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reliable evaluation method for offline agents that do not have access to a simulated

environment. When combined with bootstrapping, direct and hybrid OPE meth-

ods can be trusted for testing offline agents. The horizon of the trajectory and the

environment dynamics affect the choice for the off-policy estimator to rely on.

6.3 Future Work

In future work, we need to tackle learning offline from multiple data sources with

different qualities and explore how the quality of the data affects offline learning

and high-confidence evaluation. In addition, we can explore more OPE methods

such Fitted Q-evaluation [22] to eliminate the challenges of model-based estimator.

We also need to study how off-policy evaluation can work better with longer-horizon

environments. We can also use different confidence intervals other than bootstrapping

to mitigate its challenges.

To help high-confidence off-policy evaluation, we can use some policy convergence

measures to detect to see if a policy still improving and rely more on high-confidence

off-policy evaluation in later iterations of training.

Since data efficiency is essential, safety testing can be used to develop algorithms

that are able to estimate how much data is needed before the policy can take over a

real-world environment. Another important direction is how to do offline safe policy

improvement such that we do not have to worry about the policy evaluation while

safety is incorporated into the improvement part.
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