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Abstract

In this work, we present a unified, general approach to variance reduction in agent evaluation using

machine learning to minimize variance. Evaluating an agent’s performance in a stochastic setting

is necessary for agent development, scientific evaluation, and competitions. Traditionally, evalu-

ation is done using Monte Carlo estimation (sample averages); the magnitude of the stochasticity

in the domain or the high cost of sampling, however, can often prevent the approach from result-

ing in statistically significant conclusions. Recently, an advantage sum technique based on control

variates has been proposed for constructing unbiased, low variance estimates of agent performance.

The technique requires an expert to define a value function over states of the system, essentially a

guess of the state’s unknown value. In this work, we propose learning this value function from past

interactions between agents in some target population. Our learned value functions have two key

advantages: they can be applied in domains where no expert value function is available and they can

result in tuned evaluation for a specific population of agents (e.g., novice versus advanced agents).

This work has three main contributions. First, we consolidate previous work in using control variates

for variance reduction into one unified, general framework and summarize the connections between

this previous work. Second, our framework makes variance reduction practically possible in any

sequential decision making task where designing the expert value function is time-consuming, dif-

ficult or essentially impossible. We prove the optimality of our approach and extend the theoretical

understanding of advantage sum estimators. In addition, we significantly extend the applicability

of advantage sum estimators and discuss practical methods for using our framework in real-world

scenarios. Finally, we provide low-variance estimators for three poker domains previously without

variance reduction and improve strategy selection in the expert-level University of Alberta poker

bot. This work is an elaboration of published work [White and Bowling, 2009].
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Chapter 1

Introduction

Evaluating an agent’s performance is a common task. It is a critical step in any agent development

cycle: to improve the agent, a measure of its current skill is necessary. For example, a blackjack-

playing agent may act optimally, receive an unlucky deal and lose value. The lost value suggests

that the agent’s strategy should be modified, but the action was actually optimal. Accurate evalu-

ation is needed to properly improve the agent. Agent evaluation is also important for agent-agent

interaction. For example, to adjust strategies against opponents, it is necessary to evaluate their skill

against your strategy. Finally, objective agent (or algorithmic) comparison is necessary for ranking,

such as in competitions, which have become popular in the artificial intelligence community. The

Trading Agent Competition, Reinforcement Learning Competition and Poker Competitions all rely

on the ability to accurately rank agents. To pursue worthwhile algorithmic avenues in research, it is

necessary to have an accurate estimate of performance.

The most common approach for agent evaluation is Monte Carlo estimation. The agent com-

pletes a number of repeated independent trials of interaction in the domain, and a sample average

of its performance is used as an estimate. The magnitude of the stochasticity in the domain, how-

ever, may prevent the approach from resulting in statistically significant conclusions, particularly if

the cost of trials is high. Since the estimate of the standard deviation is inversely proportional to

the square root of the number of trials, the number of runs must be increased by a factor of 100 to

reduce the error by a factor of 10.

For example, imagine pricing options for the stock market (i.e., estimating the value of stocks).

Usually, a model is constructed to represent the expected changes in the option value. The model

enables approximate predictions of the option’s projected value and so provides a better estimate

of its current value. Certain models have a closed form solution, such as the well-known Black-

Scholes model. In many cases, however, the differential equations governing the model dynamics

are too complex to solve in closed form due to the number of influencing variables. Instead, the

value is estimated through Monte Carlo simulation: possible paths for the option are simulated and

the resulting values averaged. For many option pricing problems, however, the number of samples

required for accurate estimation can be prohibitively large [Lemieux and La, 2005]. In high-venture
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environments, like option pricing, accurate estimation is pivotal. Since Monte Carlo estimation is

commonly the only feasible option, variance reduction methods are key to precise evaluation.

The method of control variates is a powerful technique for variance reduction and has been stud-

ied in a number of fields, including statistics, operations research and game theory. Independently

in operations research and game theory, an advantage-sum technique based on control variates was

proposed for constructing a low-variance, unbiased estimate of an agent’s performance. The esti-

mator examines the complete history of interaction for a trial, unlike Monte Carlo which uses only

the single value (utility) of the agent’s per-trial performance. As the estimator is provably unbiased

(matching the player’s realized utility in expectation), a sample average using the estimator provides

an alternative, potentially lower-variance, estimate of an agent’s performance.

Unfortunately, the approach requires a domain-specific value function to be provided, which

must satisfy certain constraints. Furthermore, the variance reduction of the resulting estimator de-

pends entirely on the quality of the provided value function. This limits the applicability of the

approach to well-understood domains for which a value function can be constructed. Although the

approach was successfully used to achieve dramatic variance reduction in evaluating play for two-

player, limit Texas hold’em poker [Billings and Kan, 2006], the difficulty in hand-crafting appropri-

ate value functions for other domains is limiting. In Chapter 3, we discuss these previous evaluation

techniques and unify the work on control variates in these disjoint fields. With this insight, we con-

struct a more general framework that facilitates the application of advantage sum estimators to a

generic class of domains.

Our main contribution in this work is to develop a framework that uses machine learning to find

a value function for the advantage-sum estimator. The estimator is guaranteed to be unbiased and,

with a reasonable well-approximated value function, would reduce variance over the Monte Carlo

estimate. Learning the value function results in two distinct advantages. First, it can be more easily

applied to new domains. Instead of requiring a hand-crafted, domain-specific value function, our

approach only requires a set of domain-specific features along with data from previous interactions

by similar agents. In fact, if a good hand-crafted value function is already known, it can be provided

as a feature, and the optimization can result in further variance reduction. Second, our approach

can find an estimator for agent evaluation that is tuned to a specific population of agent behavior

(e.g., advanced behavior or novice behavior) by providing such data in training. The approach is

general, applying to a wide variety of domains: single agent and multi-agent domains; fully and

partially observable settings; as well as constant-sum and general-sum games. To learn the value

function, we define an optimization to directly minimize the estimator’s variance on a set of training

data and derive a closed form solution for this optimization in the case of linear value functions. The

framework for learning the value function will be presented in Chapter 4.

In Chapter 6, we prove the optimality of our approach and illustrate that our optimization is an

improvement over the optimization in previous advantage sum work. In Chapter 7, we illustrate
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that our formalism encapsulates many domains outside finite extensive games and Markov chain

processes (the previous domain classes for advantage sum estimators). In Chapter 5, we demonstrate

the efficacy of the approach on the classic two-player limit poker game and three poker domains

for which no previous variance reduction estimator exists: a two-player no-limit, a three-player

limit and a six-player limit game. In addition, we provide a lower variance estimator with limited

information in two-player limit, which better enables the University of Alberta poker bot to judge

opponents while playing them and so adjust its strategy. Finally, in Chapter 8, we conclude this

work, summarizing the contributions and discussing avenues for future work.
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Chapter 2

Domain Formalism

In this chapter, we define the domain class for which we provide a general variance reduction frame-

work. In Chapter 7, we will explore the broad scope of this formalism.

2.1 Sequential Decision Making Tasks

Definition 2.1.1 1 An extensive game Λ has the following components:

• A finite set, {1, . . . , N}, of players. Note that N can be 1.

• An action set A ⊆ Rk specifying all possible actions

• A bounded set of sequences,H , the possible histories of actions, such that the empty sequence

is in H and every prefix of a sequence in H is also in H . Z ⊆ H are the terminal histories

(those which are not a prefix of any other sequences). We write h v z to denote that history

h is a prefix of terminal history z. H and Z can be finite, countably infinite or uncountably

infinite, but must be bounded to ensure that a terminal history is reached.

• A(h) = {a ∈ A : ha ∈ H} are the actions2 available after a non-terminal history h ∈ H .

A(h) must be measurable ∀ h ∈ H .

• A player function P that assigns to each non-terminal history, h ∈ H\Z, a member of

{1, . . . , N}∪{c}, where c represents chance. P (h) is the player who takes an action after the

history h. If P (h) = c, then chance determines the action taken after history h.

• A function fc on {h ∈ H : P (h) = c} associating to each such history a probability distri-

bution fc(·|h) on A(h) (fc(a|h) is the probability that a occurs given h). If A is uncountable,

then fc(·|h) must be an integrable function ∀h ∈ H .

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the property that A(h) =

A(h′) whenever h and h′ are in the same block of the partition. Ii is the information partition

of player i; a set Ii ∈ Ii is an information set of player i.

1Adapted from the extensive game definition [p. 200][Osborne and Rubinstein, 1994]
2We write ha to refer to the sequence with action a concatenated to history h.
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• For each player i ∈ {1, . . . , N}, a bounded utility function ui : Z → R. If A is continuous,

then ui must be continuous ∀ i ∈ {1, . . . , N}.

A strategy of player i, σi : A × {h ∈ H : P (h) = i} → [0, 1], in an extensive game is

a function where σ(a|h) is the probability that player i choses action a at history h. The strategy

must respect the information sets: ∀Ii ∈ Ii, ∀h, h′ ∈ Ii, σi(·, h) = σi(·, h′). A strategy profile σ

consists of a strategy for each player, σ = (σ1, σ2, . . . σN ). The only assumption made in this work

is that the game Λ (but not the players’ strategies) is known. This assumption is common and we

will discuss it further in Chapter 7, illustrating that it only minorly affects the scope of applicability.

2.1.1 Extensive Game Examples

Extensive games are a general model of sequential decision-making tasks. They encapsulate finite-

horizon MDPS and POMDPs; finite extensive games, such as N -player general-sum or N -player

constant-sum3 games; and continuous actions decision tasks. MDPs are a widely used model, often

used for tasks such as controllers and autonomous agents. Finite extensive games model multi-agent

interaction, including domains such as poker, trading agents and multi-robot interaction. Finally,

the continuous action settings that extensive games encapsulate are often used in robotics, such as

for control of velocities and directions. Notable continuous action sequential decision making tasks

include robotic arms for grasping and autonomous vehicles. We further discuss the generality of our

domain class in Chapter 7.

Figure 2.1: An extensive game with imperfect in-
formation.

To obtain a more intuitive understanding of

extensive games, let us look at the example of

an imperfect information, 1-player game with

finite actions. In the game, the player guesses

whether a deal is a high or low card. Figure

2.1 is the corresponding game tree. The card

is dealt first: chance C is first to act. The dot-

ted line represents that the player cannot see the

cards, i.e., cannot see chance’s action. Chance

has two actions: deal a low card (L) or a high

card (H). Player 1 has two actions: guess low

(L’) or high (H’). The terminal histories are

Z = {LH ′, LL′, HL′, HH ′}. We assume that

chance deals low or high with equal probabil-

ity: fc(L|∅) = 0.5 and fc(H|∅) = 0.5. There

are four utility scenarios:

1. low deal with the player guessing high: u(LH ′) = 0
3Constant-sum games require that for some C,

PN
i=1 ui(z) = C, ∀z ∈ Z.
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2. low deal with the player guessing low: u(LL′) = 1

3. high deal with the player guessing low: u(HL′) = 2

4. high deal with the player guessing high: u(HH ′) = 3

This is an imperfect information game because, before termination, a low and high deal appear

equivalent to player 1: I1 = {{L,H}}.

In general, a game tree represents an extensive game by representing player ordering; all possible

action sequences and their corresponding utilities; probability measures; and incomplete informa-

tion. A game tree can similarly be constructed for continuous actions.

2.1.2 Agent Evaluation

The goal of agent evaluation is to estimate the expected utility of some player j ∈ {1, . . . , N}

given a strategy profile, i.e.,

Uj = Ez [uj(z)|σ] . (2.1)

This expectation is dependent on the distribution Pr(z|σ), giving the probabilities of each outcome

given the players are following strategy profile σ,

Pr(z|σ) = Π havz
P (h)=c

fc(a|h)Π havz
P (h)6=c

σP (h)(a|h).

If the extensive game is small, one can compute this expectation exactly by enumerating the

terminal histories for a given σ. For example, in the extensive game in Figure 2.1, given σ(H ′|L) =

σ(H ′|H) = 1 (always chose H ′), the expected value is

Ez [u1(z)|σ] = 0.5u1(LH ′) + 0.5u1(HH ′) = 1.5

.

In large games, however, this approach is not practical. Chapter 3 illustrates different approaches

for approximating this expectation to obtain a performance estimate for an agent. This thesis focuses

on a general approach to improving the accuracy of this estimation problem.
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Chapter 3

Performance Evaluation

Reducing variance in performance estimation has been a long researched topic in operations re-

search, including methods such as common random numbers, antithetic variates, control variates,

importance sampling, conditional Monte Carlo and stratified sampling (for an overview of these

techniques, see [L’Ecuyer, 1994]). The technique that we use for our work is a special case of con-

trol variates, called advantage sum estimators, introduced to reduce variance specifically in extensive

games [Zinkevich et al., 2006] and separately for Markov chain processes [Dahl, 2001]. Indepen-

dently, Dahl and Zinkevich discovered an approach to make construction of control variates simpler,

when restricting the class to extensive games or Markov chain processes. This section begins with

a discussion of the standard performance measure, Monte Carlo and then describes control variates

and advantage sum estimators. Finally, we discuss several specific performance evaluators designed

for four domains: blackjack, poker, the Trading Agent Competition and option pricing.

3.1 Monte Carlo Estimation

The common approach to agent evaluation is to estimate the expectation in Equation (2.1) by sam-

pling. The agents repeatedly interact with the environment, drawing independent samples z1, . . . , zT

from the distribution Pr(z|σ). The estimator is simply the average utility,

Ûj =
1
T

∑
t

uj(zt). (3.1)

This estimator is unbiased (i.e., E[Ûj |σ] = E[uj(z)|σ]), and so the mean-squared-error (MSE) of

the estimate is its variance,

MSE(Ûj) = Var
[
Ûj |σ

]
=

1
T

Var [uj(z)|σ] . (3.2)

This approach is effective when the domain has little stochasticity (i.e., Var [uj(z)] is small), trials

are readily available (i.e., T can be made large), and/or the required precision is not small (i.e.

large Var[Ûj ] is tolerable). If trials are expensive relative to the domain’s stochasticity and required

precision, then it may not be possible to make statistically significant conclusions based on the
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Monte Carlo estimate. This limitation often arises in situations involving human or physical robot

participants. For example, in one particular poker game (two-player $1/$2 limit Texas hold’em),

the standard deviation of a player’s outcome is around $6 and a typical desired precision is around

$0.05. This precision would require more than fifty thousand trials to achieve. If one or more of

the players is a human (or many agent pairings must be evaluated), this large number of trials is

impractical.

One approach to improving the Monte Carlo estimator is to find a better estimate of per-trial

utility. The goal is to identify a real-valued function on terminal histories ûj(z) where,

∀σ Ez [ûj(z)|σ] = Ez [uj(z)|σ] . (3.3)

In other words, Equation (3.3) means that ûj(z) is an unbiased estimator of uj(z). If the variance

of ûj(z) is lower than the variance of uj(z), then we can use ûj in place of uj in Equation (3.1) to

get an improved estimator. Many variance reduction tools focus on finding a low-variance ûj(z),

enabling statistically significant conclusions to be drawn in a fewer number of trials. The next

three sections summarize the background on using this approach for variance reduction. First, we

explain the variance reduction techniques on which we base our framework: control variates and

advantage sum estimators—an instantiation of the control variates method for extensive games.

Then we summarize the previous work on constructing low-variance estimators for specific domains.

3.2 Control Variates

An intuitive technique for obtaining low-variance estimates is to try to extract more information from

the given data: control variates are one approach to exploiting auxiliary information [L’Ecuyer, 1994].

The idea is to find control variates, random variables C = (C1, . . . , Cn)T , that are correlated to the

random variable X whose expectation, µ, we are approximating with Monte Carlo. Using this cor-

relation and assuming that we know the expectation E[C] = ν = (ν1, . . . , νn), the variance of the

estimator can be reduced using the controlled estimator:

Xc = X − βT (C − ν) = X −
n∑
k=1

βk(Ck − νk)

with β = (β1, . . . , βn)T a vector of weights on the control variates. In the following, we illustrate

the unbiasedness of the controlled estimator and the relationship between the controlled and Monte

Carlo estimate.

If we let ΣC = Cov[C] and σXC = (Cov[X,C1], . . . ,Cov[X,Cn])T , then we can see that:

E[Xc] = E[X]− βTE[C − ν] = E[X] (unbiasedness)

Var[Xc] = Var[X] + βTΣCβ − 2βTσXC

The variance is minimized with β = β∗ = Σ−1
C σXC , giving Var[Xc] = (1 − R2

XC)Var[X],

where R2
XC = σTXCΣ−1

C σXC
Var[X] is the coefficient of determination. The variance, therefore, can be
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reduced by either positive or negative correlation, the magnitude of the variance reduction indicated

by the coefficient of determination. Notice that if RXC is ±1, the variance is reduced to zero; if

there is no correlation, the variance is the same as the Monte Carlo estimator’s variance.

To obtain this variance reduction in practice, the weights β are usually approximated with the

sample covariance matrices: β̂ = Σ̂−1
C σ̂XC . If the covariance matrices are estimated on separate

data (i.e. independent samples), the estimator is unbiased and should reduce variance over the

Monte Carlo estimate. Typically in the control variates literature, however, the covariance matrices

are estimated on the same samples used for the performance estimate, making the estimator biased.

To see why, letXc,t = Xt− β̂(Ct−ν) whereXt, Ct are the tth samples ofX,C with t = 1, . . . , T .

Let Xc and s2
c be the sample average and sample variance of those Xc,t. Recall that E[XY ] 6=

E[X]E[Y ] if random variables X and Y are dependent. Then we can see that

E[Xc] = E

[
T∑
t=1

Xt − Σ̂−1
C σ̂XC(Ct − ν)

]

= E[X]− E

[
Σ̂−1
C σ̂XC

T∑
t=1

(Ct − ν)

]

6= E[X]− E
[
Σ̂−1
C σ̂XC

]
E

[
T∑
t=1

(Ct − ν)

]
︸ ︷︷ ︸

=0

= E[X]

because Σ̂−1
C σ̂XC and

∑T
t=1(Ct − ν) are estimated with the same samples and so are dependent.

If Σ̂C and σ̂XC were estimated with independent samples {T + 1, ..., n}, the ‘ 6=’ turns into an ‘=’

above and the estimate would be unbiased.

Fortunately, if the controlled estimator is biased, the bias will likely increase the variance only

for small T . Asymptotically, as T → ∞, the mean squared error of Xc is smaller than X , i.e.

Var(Xc) + (Bias(Xc, µ))2 < Var(X) + (Bias(X,µ))2 = Var(X) [Nelson and Richards, 1990].

In cases with small T , techniques like jackknifing and splitting can be used to reduce the bias (see

[Avramidis and Wilson, 1993] and [Nelson and Richards, 1990]).

Though control variates have enabled successful variance reduction in several applications, their

general application has been hindered due to the need to find control variates with known expectation.

In most cases, the expectation of the control variates has been estimated, which adds bias (see

Section 3.5.3). In other cases, restricting the domain class has enabled a generic control variate. This

approach has been taken for extensive games with the advantage sum framework and for Markov

chain processes. With our work, we further facilitate construction of control variates for a general

domain class.
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3.3 Advantage Sum Estimators

Recently, Zinkevich and colleagues [Zinkevich et al., 2006] developed a specification of control

variates for finite extensive games. By focusing on finite extensive games, they make construc-

tion of the control variates simpler and so make the technique more practically applicable. Their

low-variance estimators are called advantage sum estimators: this section describes the advantage

sum formalism on which we build our system and which we expand to extensive games.

Assume one is given a real-valued function on histories Vj : H → < such that Vj(z) =

uj(z), ∀z ∈ Z, for a given position j ∈ {1, . . . , N}. Define the following real-valued functions on

terminal histories,

SVj (z) =
∑
havz
P (h)6=c

Vj(ha)− Vj(h) (3.4)

LVj (z) =
∑
havz
P (h)=c

Vj(ha)− Vj(h) (3.5)

PVJ = Vj(∅). (3.6)

We will call SVj the skill for player j, LVj the luck for player j, and PVj the value of player j’s

position (a constant). We label these functions skill and luck because the skill is obtained from

changes in the value function due to the agents’ actions (i.e. its advantages) and the luck from

changes in the value function due to actions by chance. Notice that the skill function for player j

includes actions for all players, and so all the players’ actions affect all players’ skill terms. In this

way, SVj is a joint skill: it does not represent a particular players global or overall skill but rather its

skill when playing with these specific players.

The advantage sum estimator is now simply,

ûVj (z) = SVj (z) + PVj (z). (3.7)

We now need to investigate the conditions under which the skill plus position is an unbiased

estimator. Because terms cancel when summing skill, luck, and position, we can rewrite the utility

as a function of the skill, luck and position.

SVj (z) + LVj (z) + PVj =

= Vj(∅)

+ Vj(a1)− Vj(∅)

+ Vj(a1a2)− Vj(a1)

. . .+ Vj(z)− Vj(a1 . . . a|z|−1)

= Vj(z)

= uj(z)
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If Vj is chosen carefully so that E
[
LVj (z)|σ

]
is zero (the zero-luck constraint), then ûVj is an

unbiased estimator:

E
[
ûVj (z)|σ

]
= E

[
SVj (z) + PVj (z)|σ

]
= E

[
SVj (z) + PVj (z) + LVj (z)|σ

]
. . . if E

[
LVj (z)|σ

]
= 0

= E [uj(z)|σ]

In particular, they suggest using the expected utility from a given history, h, to guarantee the

zero luck constraint: Vj(h) = E [uj |h, σ]. Chapter 6 reiterates their optimality results justifying

this choice. We suggest a different choice for Vj , illustrating that it is an more appropriate when

learning approximations for Vj .

3.4 Markov Chain Processes

Independently, a very similar advantage sum framework was discovered for Markov chain processes

[Dahl, 2001]. A Markov chain process {Xk} ⊂ H , is a random process with given initial state

X0 ∈ H , governed by the transition probabilities P (Xk+1 = y|Xk = x). The term Markov

means that the current state fully captures any information influencing future states; the probability

function, therefore, relies solely on the current state and is independent of past states. This section

briefly explains any differences arising from using Markov chain processes as the domain class,

making it clear how we unify previous work into one general framework.

To enable evaluation for Markov chain processes, two assumptions are needed. First, we must

assume that there exists a set of terminal histories Z ⊂ H in which the process X stops and which

X reaches with probability 1. Secondly, we must assume that we have a function u : Z → R for

which we are estimating the expectation. With these additions, we can build a similar framework

to the advantage sum framework. The expected change to V (h) is computed at each point in the

history because there are no agents; there is only a position term for the initial X0 and no skill term.

Interestingly, like with advantage sum estimators, they suggest that the value function predict the

utility, i.e. V (h) = E [u|h, σ]. Using this suggestion, they test their framework on a toy combat

application, obtaining a variance reduction factor of approximately 1660 using a neural network to

learn the value function predicting the utility.

There remain two subtle differences that can easily be overcome to unite the two frameworks.

First, Markov chains require the Markov property. We can, however, circumvent this difference by

noting that an extensive game becomes Markov if each state includes the complete history from

all the previous states. Second, Markov chains do not explicitly mention agents and assume that

transition probabilities are known on each time step. Though we cannot compute Pr(Xk+1 =

y|Xk = x), Xk+1 a player action, without knowing the strategies, we can ignore the player actions
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using ûV (z) = SV (z) + PV (z) = u(z)− LV (z). Because of the Markov property, we will still be

able to compute Pr(Xk+2 = y|Xk+1 = x), with Xk+1 a player action and Xk+2 a chance action,

which is all that is need to compute LV (z). In addition, their framework can easily incorporate the

multi-player setting by using a vector utility function u = (u1, . . . , uN ).

Despite some minor differences, the frameworks designed for extensive games and Markov chain

processes are essentially identical; for the remainder of this thesis, when mentioning advantage sum

estimators, we are referring to both the work in extensive games and in Markov chain processes.

3.5 Evaluators for Specific Domains

There have been several low-variance analysis tools developed for specific domains: blackjack,

poker, the Trading Agent Competition and option pricing. In particular, each is specific to its own

domain; none provide a general analysis tool. This section briefly explains the different approaches

taken by these previous tools; the following chapters will illustrate how we go beyond this previous

work to provide a more general technique for creating low-variance agent analysis tools.

3.5.1 Blackjack

Wolfe [Wolfe, 2002] reduced variance in performance evaluation for blackjack by indirectly using

the idea of control variates. Blackjack is a imperfect information, one player card game with high

variance. We can obtain significant variance reduction in blackjack by computing a near-optimal

baseline strategy for comparison (possible because blackjack is a relatively small game). The ex-

pected value of any possible sequence of player actions can be very accurately approximated because

of the single player scenario and relatively small number of moves in one game. Correspondingly,

a near-optimal strategy can be computed as the baseline policy. The player’s winnings on a given

hand are compared with the winnings the baseline policy would have attained had it been employed

with the same sequence of deals. The resulting unbiased estimator is this difference added to the

baseline policy’s known expected winnings (computed analytically). Wolfe showed the approach

could result in a 50-fold reduction in the standard deviation of the resulting estimator for evaluation

in blackjack. The approach, however, is limited to single-agent settings because the expectation of

an unbiased baseline policy is difficult to compute without knowing the other players’ strategies.

3.5.2 Texas Hold’em Two-Player Limit Poker

There has been a significant amount of work on reducing variance for agent evaluation in Texas

hold’em two-player limit poker. The first tools introduced included the Expected Value Assessment

Tool (EVAT) and the Luck Filtering Analysis Tool (LFAT), an improvement on EVAT. Both of

these tools, however, were based on heuristic approaches for reducing variance, rather than on a

mathematically justified framework such as control variates. The first tool that enabled low-variance,
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unbiased estimators in Texas hold’em two-player limit poker was the Ignorant Value Analysis Tool

(DIVAT) [Billings and Kan, 2006].

DIVAT uses the advantage sum framework with a hand designed function shown to satisfy the

zero-luck constraint. Similar to blackjack, they construct a baseline policy for comparison, but use it

slightly differently. They estimate the skill of a player on any round in the game using the difference

between the expected value of the player’s action and the baseline’s value on that round, assuming

both play the baseline policy from that point to complete the game. These differences are summed

for all rounds to obtain a gain or loss over the baseline policy. This estimate is an advantage sum

estimate where the value function is the expected value of the current history assuming that both

players follow the baseline strategy to a terminal history. From careful design of the baseline policy,

the estimate is provably unbiased. Because we are now in a two-player game, the baseline policy

is more difficult to define as we cannot compute a near optimal strategy. They construct a base-

line policy by essentially splitting up a player’s strategy based on aggression thresholds, optimized

empirically. For a more in-depth discussion, read Billings and Kan [2006] or Kan [2007].

The resulting estimator has proven to be very powerful, with approximately a three-fold reduc-

tion in per-trial variance. As a result, nine-times fewer hands are required to draw the same statisti-

cal conclusions. Augmenting DIVAT with importance sampling [Bowling et al., 2008] and common

random numbers1, the University of Alberta Poker group were able to draw statistically significant

conclusions about their performance against expert human players in only 500-1000 hands. For ex-

ample, in both the first and second Man-vs-Machine matches, none of the results were statistically

significant using Monte Carlo. With DIVAT, they could statistically significantly conclude that in the

first Man-vs-Machine match against two-expert human players, they had two wins and two draws.

In the second Man-vs-Machine against six expert human players, they were able to conclude that

they had three wins and three draws.

Though DIVAT has been successful in two-player limit poker, the hand-designed value function

does not extend to other games (even other poker games). Specifically, no useful reduced-variance

estimator has been identified for no-limit poker or games involving more than two players.

3.5.3 Trading Agent Competition

The Trading Agent Competition for Supply Chain Management (TAC/SCM) is a market simulation

in which autonomous agents act as manufacturers in a two-tier supply chain marketplace. Agents

purchase components from the supplier, manufacture a particular finished product and compete with

each other to sell these products to customers in a reverse auction. Stochasticity in the simulation

occurs from probability distributions on availability of supplies and customer demand. The perfor-

mance of an agent is an average of their profit for each round of the reverse auction. This estimate,

1The University of Alberta Poker group ran duplicate matches for the Man-vs-Machine poker matches by running two
instances of the program against two human players. If the first human player and bot received C1C2 and C3C4 respectively
in the deal, then the second human player and bot would de dealt C3C4 and C1C2 respectively
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however, has produced statistically insignificant ordering of the agents since the first competition in

2002.

To reduce the variance of this estimate, Estelle et al. define a control variate based on the known

underlying stochastic process: the demand [Estelle et al., 2004]. With only a specification for the

stochastic demand process and no closed-form probability density function, however, they cannot

compute the mean of the control variate. Instead, they estimate the density function of the demand

using Monte Carlo samples of demand trajectories over simulated games with a kernel-based density

estimation method. The resulting estimator is slightly biased due to approximations in the density

function; they illustrate, however, that in realistic scenarios, the contribution of bias to the MSE is

small compared to the variance. They obtain a variance reduction factor of up to 1.4, decreasing the

number of required samples by up to a factor of 2. The difficulty in constructing control variates and

the relatively small amount of variance reduction in TAC illustrates the likely benefit of a general

purpose variance reduction framework facilitating construction of control variates.

Note that a similar approach to variance reduction was also used in the Trading Agent Competi-

tion Classic, where agents act as travel agents designing travel packages for customers. In addition,

like in poker, variance was further reduced with common random numbers [Sodomka et al., 2007].

3.5.4 Option pricing

Another field where control variates has had an important influence is option pricing. An option

is a contract between a buyer and seller stating that a buyer has the option to either buy or sell a

particular asset for an agreed upon amount. Pricing options is a difficult task in a complex, dynamic

environment, in particular for real time trading where time is restrictive. Variance reduction tech-

niques can be crucial for producing an acceptably accurate price in a limited amount of time. Three

methods for using control variates have been proposed for option pricing: ordinary control variates,

a replicating delta hedge and re-simulation [Lidebrandt, 2007]. Here, we will only discuss the use

of ordinary control variates.

Lidebrandt suggests two options to be used as control variates: an Asian option or a Cliquet

option. In order to use these options as control variates, their expected values need to be calcu-

lated. In the case of a few types of Asian options, the expected value of the option can be exactly

computed and for others reasonably approximated. For the more complicated Cliquet option, the

approximation is computationally restrictive and more complex to compute. In combination with

their other methods, in particular re-simulation, they obtain a significant speed-up (in one case, 500

times shorter simulation time using some Cliquet options); the ordinary control variates on their

own, however, except in very simplified scenarios, decrease the variance minorly.

Interestingly, the idea of using comparative options is similar to the idea of using a baseline pol-

icy. Intuitively, a reasonable predictor to compare against seems like it should remove a significant

amount of stochasticity: the reasonable predictor should be similarly affected by stochasticity. The
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work in options pricing, however, again illustrates the difficulty in designing this baseline policy.

In the remainder of this thesis, we present a general approach to constructing control variates and

illustrate its theoretical and empirical advantage.
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Chapter 4

MIVAT

A more general approach to using the advantage sum estimator from Equation (3.7) is to automat-

ically construct a good value function from past interactions between players. This approach has

two advantages. First, designing a value function can be difficult, particularly in the case of limited

domain knowledge. Second, learning a more specific value function to a group of players (using

a population of such players as the training data) can further reduce variance in the assessment for

those players. This chapter describes the MIVAT approach, a framework for learning the value func-

tion in extensive games. First, we define a simplified approach to learning the value function and

present a novel optimization to find the ideal value function. We then derive a closed form solu-

tion for this novel optimization and provide an example of how constraints can be enforced on the

optimization by finding a closed form solution for N -player constant-sum games. Note that for the

presentation, we assume that we have a discrete set H and so, to estimate expectations, use sums

rather than integrals. This choice is for clarity of the presentation. The final section will discuss how

these results remain applicable for continuous actions.

4.1 Learning the Value Function

Our goal is to minimize the variance of ûVj (z). Using the equivalence between the utility and sum

of the skill, luck and position, we can rewrite the advantage sum estimator only in terms of the

outcome’s utility and luck,

ûVj (z) = uj(z)− LVj (z). (4.1)

In order to ensure Vj satisfies E
[
LVj (z)|σ

]
= 0 (the zero-luck constraint), let’s assume that Vj(ha)

is only provided for histories where P (h) = c, i.e. on histories directly following a chance node.1

We then define Vj for the remaining histories, where chance is next to act, to explicitly satisfy the

1For simplicity, we assume that if P (ha) = c then P (h) 6= c, i.e., the chance player never gets consecutive actions. A
trivial modification can always make a game satisfy this constraint.
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zero-luck constraint 2,

Vj(h s.t. P (h) = c) ≡
∑

a′∈A(h)

fc(a′|h)Vj(ha′), (4.2)

so then,

LVj (z) =
∑
havz
P (h)=c

Vj(ha)−
∑

a′∈A(h)

fc(a′|h)Vj(ha′)

 , (4.3)

giving

E[LVj |σ] =
∑
havz
P (h)=c

E[Vj(ha)|h]− E[
∑

a′∈A(h)

fc(a′|h)Vj(ha′)︸ ︷︷ ︸
=E[Vj(ha)|h]

]

 = 0. (4.4)

This reformulation of the advantage-sum estimator has two benefits. First, we need only define

a value function for the histories directly following chance nodes. Second, the value function is

guaranteed to be unbiased. Because of this guarantee, we are now almost unconstrained in our

choice of value function. In the discrete case, we are unconstrained in our choice of value function.

In the continuous state case, the value function must be an integrable function (which is not a strong

restriction).

Our goal is to find a value function that minimizes the variance of the advantage-sum estimator.

The variance of the estimator depends upon the unknown agent strategies in the target population.

We presume that we have samples of outcomes z1, . . . , zT from agents in this population, and use

the estimator’s sample variance as a proxy for the true variance. This gives us the following target

optimization.

Minimize:
Vj

T∑
t=1

(
ûVj (zt)−

1
T

T∑
t′=1

ûVj (zt′)

)2

(4.5)

4.2 Derivation of Linear Optimization

In order to make the optimization in Equation 4.5 tractable, we focus on the case where Vj is a linear

function. Let φ : H → Rd map histories to a vector of d features. We require,

Vj(h) = φ(h)T θj , (4.6)

for some θj ∈ Rd. We will use ûθj as shorthand for the advantage-sum estimator, ûVj from Equation

(4.1), with Vj defined as the linear function above.

2This explicit formulation to satisfy the zero-luck constraint is used in both the extensive games and Markov chain work,
though presented slightly differently
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We now derive a closed-form solution, θ∗j , to our optimization. Let ut = uj(zt). From Equations

(4.1) and (4.3), we get,

ûθj (zt) = ut −

 ∑
havzt
P (h)=c

φ(ha)−
∑

a′∈A(h)

fc(a′|h)φ(ha′)



T

θj (4.7)

Define the following shorthand notation,

At =
∑
havzt
P (h)=c

φ(ha)−
∑

a′∈A(h)

fc(a′|h)φ(ha′)



A =
1
T

T∑
t=1

At u =
1
T

T∑
t=1

ut

Then, ûθj (zt) = ut−ATt θj and 1
T

∑T
t′=1 ûθj (zt′) = u−AT θj , and we get the following optimiza-

tion.

Minimize:
θj ∈ Rd

C(θj) =
T∑
t=1

[
(ut − u)− (At −A)T θj

]2
As our objective is convex in θj , we can solve this optimization by setting the objective’s derivative

to 0.

∂C(θj)
∂θj

= 0

= −2
T∑
t=1

(At −A)
[
(ut − u)− (At −A)T θj

]
= −2

T∑
t=1

[
(At −A)(ut − u)− (At −A)(At −A)T θj

]

θ∗j =

[
T∑
t=1

(At −A)(At −A)T
]−1 [ T∑

t=1

(At −A)(ut − u)

]

=

[(
T∑
t=1

AtA
T
t

T

)
−AAT

]−1 [( T∑
t=1

Atut
T

)
− uA

]
(4.8)

We call ûθ∗j the MIVAT estimator.

4.3 Extension for Constant-Sum Games

We have derived a closed-form solution for the MIVAT estimator in the linear case, but have not

allowed any constraints on the optimization which in practice may be important for the success of

the estimator. In this section, we illustrate how to impose the constant-sum constraint for extensive

games on the MIVAT estimator. This derivation demonstrates at least one scenario in which the
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MIVAT estimator has a closed form solution with constraints and hopefully suggests a method to

add other desired constraints to the optimization.

For two-player, constant-sum games, we only need to learn a single estimator ûθ∗1 , since its

negation is the variance minimizing estimator for the second player. InN -player, general-sum games

(N > 2), we must learn individual θj for each position j. In the case of N -player, constant-sum

games, however, the condition
∑N
j=1 ûθ∗j (z) = c may not be satisfied when each of the functions

are learned independently.

To satisfy the constant-sum constraint for an estimator with a linear value function θ =
[
θT1 , . . . , θ

T
N

]T
,

we need

c =
N∑
j=1

ûθj (zt)

=
N∑
j=1

uj(zt)−ATt θj

=

 N∑
j=1

uj(z)

−
 N∑
j=1

ATt θj


= c−

 N∑
j=1

ATt θj


It is therefore sufficient, and, if the features are linearly independent on the sampled data, necessary

to require,

θN = −
N−1∑
j=1

θj .

To satisfy this constraint, set θN = −
∑N−1
j=1 θj and then only learn θ = (θ1, . . . , θN−1). We can

then optimize the column vector of unconstrained parameters θ =
[
θT1 , . . . , θ

T
N−1

]T
to minimize

the sample variance averaged over all players.

Define S1, . . . , SN to be n× (N − 1)n selection matrices such that:

1. ∀ j ∈ {1, . . . , N −1}, Sj has the identity matrix in the jth n×n column block of the matrix,

and is zero elsewhere.

2. SN has the negative n× n identity matrix in all N − 1 column blocks.

We can then write the target optimization as:

Minimize:
θ ∈ R(N−1)d C(θ) =

N∑
j=1

T∑
t=1

[
(ut,j − uj)
−(At −A)TSjθ

]2

where the selection matrices pick out the proper θj from θ.

As our objective is again convex in θ, we can solve this optimization by setting the objective’s

derivative to 0. Stepping through the derivation as before, we obtain the solution
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θ∗ =

 N∑
j=1

STj

(
T∑
t=1

(At −A)(At −A)T
)
Sj

−1

 N∑
j=1

T∑
t=1

STj (At −A)(ut,j − uj)


=

 N∑
j=1

STj

(
T∑
t=1

AtA
T
t

T
−AAT

)
Sj

−1

 N∑
j=1

STj

(
T∑
t=1

ut,jAt
T

− ujA

) (4.9)

The estimator for player j is then ûSjθ∗ , where
∑
j ûSjθ∗(z) = 0, ∀z ∈ Z.

4.4 Continuous Action Space

The above results were presented assuming we had a discrete set of histories, H . The results still

hold, however, if we consider continuous state spaces. The important factor is knowledge of the

chance node dynamics, enabling us to define Vj to satisfy the zero luck constraint,

LVj (z) =
∑
havz
P (h)=c

Vj(ha)−
∑

a′∈A(h)

fc(a′|h)Vj(ha′)

 .

Now, instead of the discrete expectation
∑
a′∈A(h) fc(a

′|h)Vj(ha′), we need the (Lebesgue) in-

tegral
∫
A(h)

fc(a|h)Vj(ha)da. Notice that since the product of two integrable functions is integrable,

we need only require that fc(·|h),∀ h ∈ H and Vj are integrable to ensure that the MIVAT estimator

is well-defined. As was shown in the discrete case, if |A(h)| is reasonably small in the discrete case

∀ h ∈ H , then we can exactly compute the expectation. Otherwise, if |A(h)| is in-feasibly large

or infinite, and the expectation unknown, then the expectation has to be approximated. Similarly in

the continuous case, if we have a closed form solution for the integral, then we can exactly compute∫
A(h)

fc(a|h)Vj(ha)da for each history h v zt. Without a closed form solution for the integral,

however, it must be approximated. We will briefly discuss situations where the integral has a closed

form solution and, if there is no closed form solution, approaches for approximating the integral.

For certain forms of the value function and probability measures fc(·|h), we can guarantee a

closed form solution for the integral. Due to the large scope of the topic, we will only briefly discuss

possible options to be illustrative rather than complete. First, let us assume we are using a linear

value function. Because of the linearity of integration, we need only require that we have features

φ and probability measures fc such that fc(·|h) ◦ φ(h·) is integrable ∀h ∈ {h ∈ H|P (h) = c}. To

obtain a closed form solution, however, we need to make some assumptions about φ and fc. Most

simply, if we assume that the features and probability measure follow a Gaussian distribution, then
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the product of two Gaussians is again a Gaussian, giving a solution for the integral. If we only want

to assume that the dynamics are Gaussian, there are several limited forms for the features, including

forms using an, sinn, cosn and ln (see [Wikipedia, 2009a] for a more complete list of exponential

function integrals). The feature form an, i.e., polynomial on the feature, is a common approach to

increasing modeling power of the linear value function. If we want to look at other distributions for

the dynamics, we can similarly look at known antiderivatives for integrals involving that distribution

function. In some scenarios, however, the limitations on the feature functions due to the choice of

distribution may too negatively impact the variance reduction of the estimator. In this case, it may

be desirable to find a numerical approximation of the integral, rather than requiring a closed form

solution.

For the more general case with an unknown integral value, there are a host of integral approxi-

mation techniques for definite integrals. Recall that a definite integral is an integral over an interval

[a b]; in practice, its common for A(h) to be an interval because each real-value corresponds to

choosing a state and because A must be bounded. If the function fc(·)Vj(h·) can be written explic-

itly, there are several techniques for estimating the integral, including divide and conquer, dyadic

decomposition (a special case of divide and conquer) and dimensional analysis [Tricki, 2009]. If the

function cannot be represented explicitly, then the integral can be approximated based on sample

points. There is a huge literature on numerical approximations for a definite integral, including (1)

the Newton-Cotes formulas such as the midpoint rule, the trapezoidal rule and Simpson’s rule; (2)

the typically more accurate quadrature rules such as Gaussian quadrature, Clenshaw-Curtis quadra-

ture and Gauss-Kronrod quadrature; and (3) Monte Carlo integration [Wikipedia, 2009b]. There are

many software packages that provide efficient implementations of these methods.

The integral approximation techniques rely on the number of samples n provided; there are

several methods for using samples more effectively for more accurate estimates. For example, Monte

Carlo integration uses uniform sampling; two adaptive algorithms that improve results over Monte

Carlo integration use importance sampling and stratified sampling. Richardson extrapolation is used

to accelerate the convergence of a sequence; it modifies an O(hn) estimation to a O(hm) estimate

where m > n. In general, many variance reduction techniques could be used to improve the sample

estimate of the expectation
∫
A(h)

fc(a|h)Vj(ha)da.
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Chapter 5

Results

In the previous chapter, we developed the MIVAT framework. In this chapter, we explore its use-

fulness in the context of poker, a family of games involving skill and chance. We will first briefly

explain the rules of the game and give an illustrative example of why poker is representative of do-

mains requiring variance reduction. Then, we will describe the features used for poker and present

results in four poker domains: two-player limit, two-player no-limit, three-player limit and six-

player limit poker. We illustrate that, with basic features, we are able to outperform DIVAT, which

has been highly successful in two-player limit poker. Moreover, we illustrate that by tuning a value

function to particular players, we can further reduce variance. We then illustrate significant variance

reduction in the other three poker domains, for which its has been difficult to design a value func-

tion. Finally, we also reduce variance in two-player limit poker when only one of the player’s cards

is known (two-player limit poker with limited information). This result allows for lower variance es-

timation of performance during play, which can be used in a process that adapts the agent’s strategy

to its opponent’s strategy.

5.1 Texas Hold’em Poker

Texas hold’em poker is an illustrative game of skill and luck where high variance in outcome can

greatly hinder proper assessment. This section explains the rules of Texas hold’em poker and why

we have chosen it as a motivating domain.

Texas hold’em is a card game for 2 to 10 players. A single hand consists of dealing two private

cards to each player from a shuffled 52-card deck. The players act over the course of four rounds,

in which each player in turn calls (matching the maximum amount of money anyone has put into

the pot), raises (increasing the amount of money everyone has to put into the pot), or folds (giving

up the hand and losing whatever money they already placed into the pot). In between each betting

round, public cards are revealed (3, 1, and 1 after rounds 1, 2 and 3, respectively). Among the

players who have not folded after the fourth round, the player who can make the best five card poker

hand from their cards and public cards wins the money placed in the pot. If all but one player folds,
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they win the pot regardless of their hand.

Texas hold’em can be played with fixed betting sizes (limit) or no fixed betting sizes (no-limit).

Each In limit Texas hold’em poker, there is a limit of four raises per round of a fixed amount. The

fixed raise amount in the first two rounds is called the small bet, which is doubled in the last two

rounds and called the big bet. In no-limit, each round can have any number of raises of any amount

greater than or equal to the minimum bet, bounded by each player’s amount of money (set to some

maximum stack size). Consequently, no-limit poker has much higher variance in the Monte Carlo

estimate than limit poker. In this thesis, we illustrate the application of our analysis tool in three

poker domains: two-player limit, two-player no-limit, and six-player limit poker.

The following example illustrates the luck and skill in two-player limit Texas hold’em poker and

motivates the need for a value analysis tool in poker. The motivating example is from Morgan Kan’s

thesis on DIVAT [Kan, 2007]. Suppose Alice is dealt a T♠−6♠ and Bob a J♦−5♦with Bob first to

act. Though his hand is not particularly strong, it has potential and so he calls. Alice, with a similar

strength hand, checks. The flop, T♦−5♥−T♥ gives Alice an extremely strong hand of three of

a kind (3 tens, T). Bob has a pair (two fives) and likely to have the best hand. Deceptively, Alice

checks to show weakness; Bob bets with his reasonable hand. Since Bob has shown some strength,

Alice now raises without fear of Bob folding and thus losing her strong hand. Bob simply calls,

possibly because Alice’s move was unexpected and he is caught off guard. Bob receives a flush

draw on the turn with a 2♦, giving him the chance to obtain a stronger hand than Alice if he receives

a ♦ on the river. Alice bets her strong hand and Bob raises, because he believes he still might have

the best hand (especially with a flush-draw) and potentially because Alice is an aggressive player

who often check-raises with marginal hands. Alice re-raises and Bob calls due to an already large

pot and his flush draw, though he suspects he is beat. The river is the 2♥, making it possible for

Alice to lose to only one hand (2♠−2♣). Alice bets and Bob calls because the pot is already large

and folding would be a big mistake. Alice wins the 22 small bets in the pot.

Now the question is: who was the better player in this game? Alice seems to be the stronger

player, but maybe was mostly lucky to receive a stronger hand than Bob’s also seemingly strong

one, which caused the pot to get large. Did Alice make as much money as possible under the

circumstances? Did Bob play as well as he could? These questions are difficult to answer by only

looking at the winnings, which suggest that Alice was an exceptional player.

We can see that poker is a prime example of a domain requiring variance reduction for accurate

performance estimates. As we have seen in this thesis, with a good value function, we can de-

crease the variance significantly. Learning a linear value function, we obtain considerable variance

reduction in three poker domains. The next section explains the feature choices for the linear value

function and then we present results for the three poker domains.

23



5.2 Feature Selection

We employed variations on five basic poker hand features. Hand-strength (HS) is the expected

probability over the yet-to-be-seen public cards of the evaluated hand beating a single other hand

chosen uniformly at random from the remaining cards. Hand-strength-squared (HS2) is the second

moment of HS: the expected squared probability of the evaluated hand beating a single other hand

chosen uniformly at random. It is similar to hand-strength but gives a bonus for higher variance.

Pot equity (PE), requiring knowledge of all players’ hands, is the probability that the evaluated hand

wins the pot assuming no additional player folds. The base features involved taking these values

for each player and multiplying them by pot size (PS), the amount of money in the pot, to make the

features more representative of the potential utility (the final pot size).

In the two-player games, therefore, we had 7 base features. In order to allow for additional

modelling power we took products of the basic features to get quadratic functions of the features

instead of just linear functions. In some experiments in the two-player, limit domain, we included

an additional feature: the hand-crafted value function used by DIVAT. We did this to illustrate that

we can improve on well-designed value functions by using it as a feature. In the six-player game,

we did not use the pot equity feature due to its expensive computation1.

Finally, we also learned separate functions for different betting scenarios. The idea of splitting

on the betting is that players in specific betting scenarios should react similarly to previously being

in this scenario, making the data on this split lower variance. The possible betting options are check

(k) if there are no raises to call (c), bet (b) to initiate a bet when no raises are pending and raise

(r) to increase a previous bet. For example, the first player may place a bet of two small bets, the

second player will raise by two small bets and the first player will call, giving the sequence brc. If

the first player does not wish to bet, he checks, the second player may then bet and the first player

call, giving the sequence kbc. Betting scenarios for two-player limit poker included the following

splits:

1. A = {kk}, B = {bc, kbc, brc, kbrc, brrc, kbrrc, brrrc, kbrrrc} (i.e. everything else)

2. A = {kk}, B = {bc, brrc, kbrc, kbrrrc}, C = {brc, brrrc, kbc, kbrrc}

3. A = {kk}, B = {bc, kbc}, C = {brc, kbrc}, D = {brrc, brrrc, kbrrc, kbrrrc}

The first split separates out complete passive play from some agression. The second splits the

betting based on which player last raised. The third splits the betting based on how much goes in

the pot, with the most and second most being grouped together. We only used the betting-splits in

two-player limit poker with restricted information, not for the general estimator compared against

DIVAT. We found that the betting splits had no impact over the significant variance reduction already

being obtained in two-player limit poker.
1In two-player games, these features were pre-computed in a table for all possible hand combinations. The two-player

tables can be used for hand-strength and hand-strength-squared in a six-player game, but pot equity cannot.
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For two-player no-limit poker where there is not a finite number of possible betting sequences,

we split the data based on the pot-size. For example, we learned a different function for data with

a potsize below 5; between 5 and 15; between 15 and 40; between 40 and 70; between 70 and 100;

between 100 and 130; and finally above 130. We tried many different splits and found this split to

be the best for our no-limit data. The stack size was 1000.

5.3 Domains

We examine the effectiveness of MIVAT using a number of different sources of poker hands. In three

domains we used data from programs playing against each other in the 2008 AAAI Computer Poker

Competition (this involved nine agents for two-player limit, four for two-player no-limit, and six for

six-player limit) and for three-player nine-bots from the 2009 AAAI Computer Poker Competition.

We call this data “Bots-Bots”. For the two-player limit domain, we also used a dataset involving a

single strong poker program playing against a battery of weak to strong human players. We call this

data “Bot-Humans”. For each experiment we separated the data into 450,000 training hands and

50,000 testing hands, and then trained a linear value function using the MIVAT optimization. For

each experiment we compare MIVAT’s performance to that of Money (the estimator that just uses

the player’s winnings on each hand) and, when appropriate, DIVAT.

We tested for the statistical significance of differences between the variances of the estimators

using the Brown-Forsythe test. For two sample variances σ̂2
1 , σ̂

2
2 of sample sizes N1, N2, the null

hypothesis is H0 : σ2
1 = σ2

2 and the alternate hypothesis Ha : σ2
1 6= σ2

2 . If the test statistic

W > Fα(2, (N1 + N2) − 2), the F-table for a given α, then we can say that the difference is

statistically significant with 1 − α confidence. We used α = 0.05 and F-table2 with degrees of

freedom up to 1000, making the critical value = 1.04.

The test statistic W is defined as

W =
(N − k)
(k − 1)

∑k
i=1Ni(Zi· − Z··)2∑k

i=1

∑Ni
j=1(Zij − Zi·)2

where

• k is the number of different groups of samples (for our comparison, k = 2)

• N = N1 +N2

• Sij is the skill value for the jth sample from the ith group

• Zij = |Sij − S̃i·|, where S̃i· is the median of the ith group

• Zi· = 1
Ni

∑Ni
j=1 Zij , the mean of Zij for group i

• Z·· = 1
N

∑k
i=1

∑Ni
j=1 Zij , the mean of all Zij

2http://www.ma.utexas.edu/users/davis/375/popecol/tables/f005.html
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Data MIVAT MIVAT+ DIVAT Money
Bot-Humans 2.387 2.220 2.238 5.669

Bots-Bots 2.542 2.454 2.506 5.438

Table 5.1: Standard deviation of estimators for two-player, limit poker.

MIVAT MIVAT
Data Bot-Humans Bots-Bots DIVAT Money

Bot-Humans 2.169 2.253 2.238 5.669
Bots-Bots 2.461 2.418 2.506 5.438

Table 5.2: Standard deviation of tailored estimators for two-player, limit poker.

Note that the Brown-Forsythe test with the median is used because it is robust to many types of non-

normal data (unlike the F-test) [Brown and Forsythe, 1974]. Other options include using the mean or

trimmed mean as opposed to the median, given more knowledge about the underlying distribution.

5.3.1 Two-Player Limit Poker

We first compare the MIVAT optimization to the hand-crafted DIVAT estimator for two-player, limit

poker. We computed two estimators: one with the DIVAT value as a feature (MIVAT+) and one

without (MIVAT). Both estimators were trained using an equal mixture of Bot-Humans and Bot-

Bots data. The standard deviation of these two estimators on testing data from both the Bot-Humans

data and the Bot-Bot data is shown in Table 5.1. First, MIVAT without the DIVAT feature was still

able to reach comparable variance reduction to the hand-crafted estimator, a dramatic improvement

over the Money estimator. Further variance reduction was possible when DIVAT was used as a

feature. MIVAT+’s improvement over DIVAT is statistically significant for both the Bots-Bots and

Bots-Humans data.

MIVAT can also be used to train specific estimators for specific populations of players. We

trained an estimator specifically for the Bot-Humans setting using the DIVAT feature and exploiting

the fact that we knew whether the bot was the dealer on each hand. We also trained an estimator

specifically for the Bots-Bots data also using the DIVAT estimator. Table 5.2 compares how well

these functions and DIVAT perform on the two datasets: one they were trained for, and the other

they were not. As expected, the functions perform better on their respective datasets than the more

general functions from Table 5.2. Using the specific function, we now statistically significantly

outperform DIVAT on both datasets without using the DIVAT feature. Notice that the estimator

trained specifically for the Bots-Bots dataset did not outperform DIVAT on the Bot-Humans data,

suggesting that the estimators can be tailored to different populations of players.
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Data MIVAT Money
Bots-Bots 31.354078 44.239889

Table 5.3: Standard deviation of estimators for two-player, no-limit poker. All three-wise products
of features were used.

Data MIVAT Money
Bots-Bots 2.830141 4.489903

Table 5.4: Standard deviation of estimators for three-player, limit poker.

5.3.2 Two-Player No Limit Poker

In two-player no-limit poker, the betting is only limited by a player’s stack (their remaining money),

which in the AAAI competition was kept at $1000. As a result the standard deviation of a player’s

winnings is generally much higher than in limit poker. Table 5.3 shows the resulting standard devi-

ation on test data from the AAAI no-limit competition. MIVAT resulted in a 29% reduction on the

standard deviation in a game where no hand-crafted value function was yet to be successful. The

less dramatic reduction (as compared to limit) may be a result of players’ strategies being inherently

high variance, or more sophisticated features may be required. Features on the betting rather than

just the cards or further splits on the potsize may result in additional improvements. We might also

obtain better splits on the pot-size with a more systematic search or by generating many randomly

chosen splits, rather than manual exploration.

5.3.3 Three-Player Limit Poker

As in two-player, no-limit poker, there is no known reduced-variance estimator in three-player, limit

poker. We obtain considerable variance reduction using a split on the number of players left in the

game. A separate estimator is learned for when there are three or two players in the game, with

pot-equity added as a feature when only two players are left.

Table 5.4 shows a variance reduction of about 40% using MIVAT over the Money. Because it

is a limit game, this amount of variance reduction is expected. In particular, in many scenarios,

one player folds, enabling the use of pot-equity as a feature. We expect that variance reduction

comparable to two-player limit is possible with betting splits. For three-player limit poker, there

would be more betting scenarios than with two-player limit. If these scenarios could be grouped

into a relatively small number of categories, however, the betting splits would likely produce a

lower-variance estimator by allowing value functions to be learned on lower-variance segments of

the data.
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Data MIVAT Money
Bots-Bots 4.201377 5.601836

Table 5.5: Standard deviation of estimators for six-player, limit poker.

5.3.4 Six-Player Limit Poker

We expect that even in limit poker, moving to a larger number of players is going to introduce

variance. With six-player limit poker, again having no known reduced variance estimator, we do not

obtain the same wins as three-player limit poker. MIVAT was trained with the same player split as

in three-player, limit poker: separate functions are learned depending on the number of non-folded

players. The standard deviation of MIVAT and the Money estimators are shown in Table 5.5. MIVAT

shows only a modest 25% variance reduction. This result is somewhat surprising, as the variance

of the money is similar to both two-player and three-player limit poker and much lower than the

variance in no-limit poker.

The inability to match the success in two-player or three-player limit poker is likely due to the

limited feature set for the majority of scenarios (no pot-equity). Similarly to two-player limit, we

could learn separate functions for different betting scenarios. Because the amount of players makes

enumerating the set of betting strings much more computationally intense, we could look at splits

rating player aggression, such as the number of bets or raises from the player. Another option is to

explore using pairwise pot-equity for the players, adding more information than hand-strength alone.

This result demonstrates that MIVAT does not completely remove the need for domain knowledge:

informed identification of features could have considerable impact on the resulting estimator.

5.3.5 Two-Player Limit Poker with Limited Information

The University of Alberta expert-level poker bot, Polaris, which competed in the Second Man-vs-

Machine Poker Championship, selects between five different strategies depending on their opponent:

passive to aggressive. Currently, they are using a biased version of DIVAT to judge their opponents

play. This estimator uses the DIVAT estimate when the game ends in a showdown and all the cards

seen; else, it uses the winnings. In practice, the amount of variance reduction overcomes the bias

introduced; the gain, however, is small [Bowling et al., 2008].

To obtain an unbiased estimator, we can learn a lower-variance estimator using only one player’s

cards, the player we are evaluating. This estimator can be used during play when the opponent’s

cards are not revealed, i.e., when play is terminated due to a fold. In this case, we can only use

HS and HS2, as pot-equity relies on knowledge of both hands. With just these simple features and

the betting split option using the last player to raise, we obtain a variance reduction of 18% (about

1 small bet). This amount of variance reduction makes it worthwhile for the University of Alberta

Poker Group to incorporate the MIVAT estimator into their two player limit poker bot, Polaris.
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Data MIVAT Money
Bot-Humans 4.607391 5.608046

Table 5.6: Standard deviation of estimators for limited-information two-player, limit poker on data
of Polaris playing a variety of human players.

In this chapter, we have seen the practical usefulness of MIVAT in Texas hold’em poker. In the

next two Chapters, we show the optimality and the general applicability of MIVAT.
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Chapter 6

Optimality of Approach

In the previous chapters, we developed a general framework to facilitate construction of control

variates and illustrated its merit in Texas hold’em poker. In this chapter, we prove the optimality

of our approach for selecting control variates in extensive games. First, we rest ate the optimality

results from the advantage sum work in finite extensive games. Then, we extend these results to

the continuous action case when using linear value functions. Finally, we illustrate the optimality

of MIVAT when approximating the value function. In particular, we demonstrate the importance of

using the MIVAT optimization as opposed to the optimization proposed in the advantage sum work.

Note that to simplify the notation, we will write V with the implicit assumption that we mean Vj .

6.1 Optimality of Advantage Sum Estimators

Zinkevich et al. [2006] proved that predicting the expected utility, V (h) = Eσ[u|h], produces the

optimal value function for variance reduction. The following theorems from the work on advantage

sum estimators illustrate the optimality.

Definition 6.1.1 Given a finite extensive game Γ and strategy profile σ, û∗ is a minimum variance

unbiased estimator for Γ under σ if û∗ is an unbiased estimator and for any unbiased estimator

for Γ, û:

Varσ[û∗] ≤ Varσ[û]

We will call a value function V exact if ûV is a minimum variance unbiased estimator for Γ under

σ.

Theorem 6.1.2 Assume you are given a finite extensive game Γ. Given strategy profile σ, define

V σ : H → R as V σ(h) = Eσ[u|h]. Then, the advantage sum estimator ûV σ is a minimum variance

unbiased estimator for Γ under σ.

If we can exactly represent the exact value function, then the advantage sum estimator is guar-

anteed to be a minimum variance estimator. If our representation or data are inadequate to learn the
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exact value function, there is a relationship between the variance of the approximate estimator and

the exact estimator. The next theorem shows that if the approximate value function is close to the

exact value function, then correspondingly the variance of the approximate advantage sum estimator

is close to the variance of the minimum-variance estimator.

Theorem 6.1.3 Assume you are given a finite extensive game Γ. Given strategy profile σ and V, V ′ :

H → R, define umax = maxz∈Z (max(ûV (h), ûV ′(h))). It is the case that:

Varσ[ûV ]−Varσ[ûV ′ ] ≤ 4umax

∑
h∈H

Prσ[h]|V (h)− V ′(h)| (6.1)

In the next section, we extend the optimality results of advantage sum estimators to the contin-

uous action setting for linear value functions. In the following two sections, we explore approxi-

mations and inadequate representations for the value function, justifying minimizing the variance as

opposed to predicting the utility as suggested in the advantage sum analysis.

6.2 Optimality of MIVAT

The optimality result for advantage sum estimators applies only to finite extensive games. In this

section, we prove the optimality of the MIVAT framework for the continuous action setting when

the exact value function is linear. The more general result on non-linear value functions is left for

future work.

Definition 6.2.1 For an extensive game Γ and C(H) = {ha|h ∈ H, a ∈ A(h), P (h) = c} (all

histories following chance nodes), let F ⊆ [C(H) → R], a subset of the set of all possible value

functions. We will say that V is representable by F (or implicitly just representable) if V ∈ F .

First, we show that the MIVAT estimator is optimal in finite extensive games for any class of

value functions, F .

Theorem 6.2.2 For a finite extensive game Γ, strategy profile σ and function class F , let V ∗var ∈ F

be a value function minimizing Equation 4.5 (i.e. minimizing the variance) and V ∗w ∈ F with

V ∗w(h) = E[u|h, σ] the advantage sum value function. Then Var(ûV ∗var ) = Var(ûV ∗w ).

Proof: Assume ∃ V ∗w , V ∗var ∈ F such that Var(ûV ∗var ) > Var(ûV ∗w )

=⇒ Var(ûV ∗w ) < Var(ûV ∗var ) = minV ∈F Var(ûV )

which is a contradiction.

To prove that the MIVAT estimator is optimal for extensive games, we will assume that for given

feature function φ : H → Rd, the exact value function is linear,

V ∗ ∈ Fφlin = {θ ∈ Rd : V (h) = φ(h)T θ, ∀h ∈ H}
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Theorem 6.2.3 Assume you are given an extensive game Γ and strategy profile σ where V ∗ ∈ Fφlin.

The MIVAT estimator ûθ is a minimum variance unbiased estimator for Γ under σ.

Before proving this theorem, we need to prove that there exists a minimum variance unbiased

estimator. Then the MIVAT optimization is well-defined and will find the minimum variance esti-

mator.

First, we will provide some labels for convenience. Given an extensive game Γ, strategy profile

σ and feature function φ : H → Rd with φ1 = u, let

1. A(z) be the feature changes in z, for z ∈ Z

A(z) =
∑
havz
P (h)=c

(
φ(ha)−

∫
a′∈A(h)

fc(a′|h)φ(ha′)

)

2. Ub the set of unbiased estimators with linear value functions, Ub = {ûθ =
[

1
θ

]
: θ ∈ Rd}.

3. M = supz∈Z u(z) (which exists because Z is bounded and u finite)

4. Uo,σ = {û ∈ Ub : |û(z)| ≤M ∀z ∈ Z and Var[û|σ] ≤ Var[u|σ]}

We will drop σ for convenience when it is clear that we are talking about a specific σ.

Lemma 6.2.4 For a given σ, Var[ûθ|σ] is continuous on Uo.

Proof: Then notice that

Var[ûθ|σ] =
∫
Z

Pr
σ

(z)
(
u(z)−A(z)T θ

)2
dz −

(∫
Z

Pr
σ

(z)
(
u(z)−A(z)T θ

)
dz

)2

=
∫
Z

Pr
σ

(z)
(
u2(z)− u(z)A(z)T θ + θTA(z)A(z)T θ

)
dz − (E[u|σ])2

= E[u2|σ]−
(∫

Z

Pr
σ

(z)u(z)A(z)T dz
)
θ + θT

(∫
Z

Pr
σ

(z)A(z)A(z)T
)
θ − (E[u|σ])2

= Var[u|σ]−
(∫

Z

Pr
σ

(z)u(z)A(z)T dz
)
θ + θT

(∫
Z

Pr
σ

(z)A(z)A(z)T
)
θ

Since Var[·|σ] is quadratic on a subset of a vector space (Uo ⊂ Rd), it is continuous.

Lemma 6.2.5 Given σ, Uo is a non-empty, compact set.

Proof: Uo is non-empty because ûθ ∈ Ub for θ = 0.

Since Uo ⊂ Rd, we need only show that it is closed (by definition, it is bounded).

Recall that for a continuous function f : K → R, for a convergent sequence {ki} ⊂ K with

ki →∞ k, then {f(ki)} converges to f(k).
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Take any convergent sequence {θi} ⊂ Uo, with θi → θ. This means that

ûθi =
[

1
θi

]
→ ûθ =

[
1
θ

]
Claim 1: |ûθ(z)| ≤M ∀z ∈ Z

Assume that ∃z ∈ Z such that |ûθ(z)| > M . Then there must exist ε > 0 such that |ûθ(z)| = M+ε.

Then we know that there are infinitely many |ûθi(z)| ∈ Bε(ûθ(z))

. =⇒ ∃n ∈ N such that |ûθn(z)| > M

which is a contradiction.

Claim 2: Var[ûθ|σ] ≤ Var[u|σ]

Because the Var[·|σ] is a continuous function, the same argument as in Claim 1 applies.

Therefore, û ∈ Uo.

Because we have a continuous function on a non-empty compact set, we can now show that

the variance function attains a minimum on Uo. The remaining question, however, is whether Uo

contains all the estimators with variance lower than the utility. The following lemma addresses this

issue, allowing us to finally conclude that a minimum variance unbiased estimator exists.

Lemma 6.2.6 Given σ, if û /∈ Uo then ∃û′ ∈ Uo with Var[û′|σ] ≤ Var[û|σ].

Proof: Let Z ′ = {z ∈ Z : û(z) > M}.

If m(Z ′) = 0, then we can set û(Z ′) = M , leaving the mean and variance unchanged but now

obtaining û ∈ Uo.

Else, let B =
∫
Z′

Prσ(z)û(z)dz and µ = E[u|σ]. Let

û1(z) =
{

M if z ∈ Z ′
û(z) if z /∈ Z ′

giving ∫
Z′

Pr
σ

(z)û1(z)dz = m(Z ′)M

The estimator û1 now satisfies û1(z) ≤ M ∀z ∈ Z, but is biased. To make û1 unbiased, we will

distribute B −m(Z ′)M amongst Zµ = {z ∈ Z\Z ′ : û(z) ≤ µ}. If we assume that

m(Zµ)µ−
∫
Zµ

Pr
σ

(z)û(z)dz ≥ B −m(Z ′)M

(which we prove later), then ∃Z ′′ ⊂ Zµ with∫
Z′′

Pr
σ

(z)û(z)dz = m(Z ′′)µ−B +m(Z ′)M
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Set û1(Z ′′) = µ. This means that

E[û1|σ] = m(Z ′)M +m(Z ′′)µ+
∫
Z\(Z′UZ′′)

Pr
σ

(z)û(z)dz

= B +m(Z ′)M +m(Z ′′)µ−B +
∫
Z\(Z′UZ′′)

Pr
σ

(z)û(z)dz

= B +
∫
Z\Z′

Pr
σ

(z)û(z)dz

= E[û|σ]

This means that û1 is now an unbiased estimator. Notice that values above and below µ were shifted

closer to µ for û1. Consequently, û1 has lower variance than û.

The remaining problem is that we assumed

m(Zµ)µ−
∫
Zµ

Pr
σ

(z)û(z)dz ≥ B −m(Z ′)M

Assume that m(Zµ)µ−
∫
Zµ

Prσ(z)û(z)dz < B −m(Z ′)M . Then

E[û|σ] =
∫
Z′

Pr
σ

(z)û(z)dz +
∫
Zµ

Pr
σ

(z)û(z)dz +
∫
Z\(Z′UZµ)

Pr
σ

(z)û(z)dz

≥ B + µm(Zµ)−B +m(Z ′)M + (1−m(Z ′)−m(Zµ))µ

= m(Z ′)M + (1−m(Z ′))µ

> µ

which is a contradiction.

In this section, we have illustrated that the MIVAT framework is optimal for finite extensive

games in continuous action settings when the exact value function is linear. In the next section,

we demonstrate the importance of the MIVAT optimization when approximating the value function

from data or when using inadequate representations for the learned value functions.

6.3 Significance of the MIVAT Loss Function

The question remains as to the importance of choosing the MIVAT optimization over predicting

the expected utility, as both optimizations produce a minimum-variance estimator. The difference

between these optimizations becomes important when we approximate the exact value function.

Intuitively, minimizing the variance (our ultimate goal) is the appropriate approach for obtaining a

minimum variance approximation, as opposed to the indirect approach of predicting the utility. In

the previous sections, we have seen that Var[ûVvar |σ] ≤ Var[ûVw |σ]. If the two estimators have

different variance, then V ar(ûVvar ) < V ar(ûVw). As the two loss functions optimize different

criteria, we would often expect that the variance be different when approximating the value function.

34



This section formalizes this intuition. First, we prove a data-dependent result illustrating when

MIVAT is more likely to reduce variance on testing data. Then, we provide an example showing that

minimizing the variance produces a lower-variance estimate than predicting the expected utility.

Finally, we further verify the importance of using the MIVAT optimization by comparing empirical

results on two poker domains: two-player limit and two-player no-limit poker.

6.3.1 Significance of the Loss Function for Learning Approximations

In this section, we prove a data-dependent result showing scenarios where the MIVAT estimator is

more accurate than the advantage sum estimator. To compare the two approaches, we need to define

an optimization for predicting the expected utility. A common optimization is the L2 loss: the mean-

squared error between the value function and the utility. We will show later that the choice of L2

loss was not pivotal for the comparison. With the L2 loss, we obtain the following optimization:

Minimize:
V

T∑
t=1

 ∑
havzt
P (h)=c

(V (ha)− u(zt))
2

 (6.2)

In the following proof, we will illustrate the relationship between the variance of the MIVAT es-

timator and the predict utility estimator. Interestingly, we obtain a data-dependent result illustrating

that, with enough training data and a substantial difference in the training losses, the superiority of

the MIVAT estimator on the training data extends to test data.

Before beginning the proof, we will need the following definitions.

1. Let XT be the training data with T samples and d columns.

2. Let the MIVAT loss function on XT be

L̂var(ûV ) =
T∑
t=1

[
(ûV (zt)−

T∑
t=1

ûV (zt)

]2

.

3. Let X be the testing data with n samples and d columns.

4. Let the MIVAT loss function on X be

Lvar(ûV ) =
n∑
t=1

[
(ûV (zt)−

n∑
t=1

ûV (zt)

]2

.

Definition 6.3.1 The Rademacher complexity of a class of real-valued functions F for a sample

z = (z1, . . . , zd) ∈ Z of size d is

Rd(F) = E[R̂z(F)]
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where R̂z(F) is the empirical Rademacher complexity of F

Rz(F) =
2
d
E[sup

f∈F

∣∣∣∣∣
d∑
i=1

σif(zi)

∣∣∣∣∣
The independent random variables σ1, . . . , σd satisfy Pr(σi = 1) = Pr(σi = −1) = 1

2 for any

i = 1, . . . , d.

Definition 6.3.2 The Lipschitz constant of a function f : X → Y of two metric spaces (X, dX), (Y, dY )

is the smallest K ≥ 0 such that

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

We will call the Lipschitz constant of a function K(f). Notice that Var[·|σ] : F → R for F a

bounded set has a finite Lipschitz constant.

Theorem 6.3.3 Given any extensive form game Γ, any δ ∈ (0, 0.5) and classes of bounded functions

F with bounded Rademacher complexity Rd(F), then for a given XT if

L̂var(ûVw)− L̂var(ûVvar ) ≥ 4K(Lvar)E[Rd(F(XT ))] +B

√
2log( 2

δ )
T

for constant B, then

Pr(Lvar(ûVvar , X) < Lvar(ûVw , X)) > 1− δ.

Proof: Let L = Lvar for ease of notation. Notice that we can compute γ = L̂(ûVw) − L̂(ûVvar )

empirically, with γ > 0.

From Boucheron et al. (Section 4.1)[2005], we can see that with probability δ
2

L(ûVvar ) ≤ L̂(ûVvar ) + sup
V ∈F

(L(uV )− L̂(uV ))

≤ L̂(ûVw)− γ + sup
V ∈F

(L(uV )− L̂(uV ))

≤ L̂(ûVw)− γ + 2E[Rd(L ◦ F(XT ))] +B1

√
2log( 2

δ )
T

≤ L̂(ûVw)− γ + 2K(L)E[Rd(F(XT ))] +B1

√
2log( 2

δ )
T

where L ◦ F is composition. Refer to Boucheron et al. work [2005] for a proof of these steps.

Similarly, with probability δ
2

L̂(ûVw) ≤ L(ûVw) + sup
V ∈F

(L̂(uV )− L(uV ))

≤ L(ûVw) + 2K(L)E[Rd(F(XT ))] +B2

√
2log( 2

δ )
T
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The event spaces not satisfying these two inequalities may be disjoint, but each has at most proba-

bility δ
2 . Therefore, we can combine the two inequalities (with B = B1 +B2)

Pr

(
L(uVvar ) ≤ L(ûVw)− γ + 4K(L)E[Rd(F(XT ))] +B

√
2log( 2

δ )
T

)
≥ 1− δ

Now we can see that if

γ ≥ 4K(L)E[Rd(F(XT ))] +B

√
2log( 2

δ )
T

then

Pr
(
L(ûVvar ) ≤ L(ûVw)

)
≥ 1− δ

Interestingly, in the above proof, choosing the estimator uVw was irrelevant. For any loss func-

tion L 6= Lvar producing a bounded estimator ûV with bounded Rademacher complexity, we would

find γ > 0. The superiority of the MIVAT estimator, however, will differ over the uV and XT ; the γ

difference will vary from significant to negligible.

6.3.2 Significance of the Loss Function with Inadequate Representations

Another important factor when approximating the exact value function is the representation. For

example, if the exact value function is non-linear and we are using linear value functions, then our

representation is inadequate. We have already seen that when approximating the value function,

ûθvar is likely to have lower variance than ûθw . Similarly, with an inadequate representation for the

value function, we would expect the variance to be different, causing Var[ûVvar |σ] < Var[ûVw |σ].

The below theorem provides an example of this phenomena when using a linear value function to

represent a non-linear exact value function.

Theorem 6.3.4 There exists a game Γ where for any σ, Var[ûθvar |σ] < Var[ûθw |σ].

Proof: Lets look at the following single player game and assume that Vvar and Vw are linear. The

game begins by dealing the player one card from the two-card deck, {K, Q}. If the player is dealt a

K, then he wins 4; else he loses 1. The features are 2 if a K is dealt and −1 if a Q is dealt.

Since we can only use a linear weighting of the features, we will not be able to predict the utility:

u = φ|φ|. The two samples where P1 is dealt a Q on the first game and a K on the second game

encapsulate all possible hands. Because the {K, Q} are dealt uniformly,∑
a′∈A(h)

fc(a′|h)φ(ha′) = 0.5 · (−1) + 0.5 · 2 = 0.5

Below are the ut, At values for the two game samples:
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u1 = −1, φ1 = −1, A1 = φ1 − 1
2 = − 3

2

u2 = 4, φ2 = 2, A2 = φ2 − 1
2 = 3

2

A = 0, u = 1
2 (−1 + 4) = 3

2

We can compute θvar by substituting these values into the MIVAT estimator solution (Equation 4.8):

θvar =

(
2∑
t=1

A2
t

2

)−1( 2∑
t=1

Atut
2

)

=
5
3

This gives us skill computations for the two games

uθvar1 = −1 +
3
2
∗ 5

3
= 1.5

uθvar2 = 4− 3
2
∗ 5

3
= 1.5

with a variance of 0.

Similarly, we can solve for θw

∂C(θw)
∂θw

=
2∑
t=1

p(ut − φtθw)p−1(−φt)

= (−1 + θw)p−1(−1) + 2(4− 2θw)p−1

= 2p(2− θw)p−1 − (−1 + θw)p−1 and p = 2

= 4(2− θw)− (−1 + θw)

=⇒ θw =
9
5

The corresponding skill calculations are

uθw1 = −1 +
3
2
∗ 9

5
= 1.7

uθw2 = 4− 3
2
∗ 9

5
= 1.3

with a variance of 0.08, as opposed to a variance of 0 for the MIVAT estimator. Because it was not

possible to predict the utility, using the advantage sum optimization needlessly introduced variance.

The remaining question is the importance of using the L2 loss. In the above proof, we illustrated

that minimizing the variance outperforms minimizing the L2 loss. But what about other Lp norms,

which do not have a closed form solution for general problems? One interesting thing to notice in

the above example is that using the L1 or L∞ norm instead of L2 gives the same solution as θvar.

38



Poker Domain MIVAT Predict Winnings Money
2-Player Limit 2.108126 2.348987 5.608015

2-Player No-Limit 31.354078 32.909832 44.239889

Table 6.1: Comparison of the standard deviation of small bets for two estimators in two poker
domains.The comparison is obtained from the same train-test splits and feature choices described in
the results section. For two-player limit poker, the DIVAT feature was not used.

Moreover, for increasing p > 2 for the Lp loss, θw converges to θvar. This phenomena, however,

only occurs when there is one feature; with more than one feature, this equivalence will not occur

generally.

In a more complicated game not included in the proof for computational clarity, we see that the

solutions using the Lp norm ∀ p are different from θvar. The game involves two deals of {1, 2, 3, 4}

without replacement. If the sum of the player’s two cards is higher than the sum of the two undealt

cards, then the player receives u = 4; else, he receives u = −1.

We have seen that when approximating the value function, the MIVAT optimization is the prin-

cipled approach. We complete the discussion on the optimality of MIVAT by comparing minimizing

the variance and predicting the utility in a real application: Texas hold’em poker.

6.3.3 Empirical Evidence

We expect that MIVAT would be an improvement over predicting the expected utility in general

when learning the value function. We compare two Texas hold’em poker domains to illustrate

differences on real-world problems in Table 6.1. For both poker domains, minimizing the variance

on the training set results in a statistically significant lower-variance estimate than predicting the

utility. Because predicting the expected utility is proven to obtain the minimum variance estimator

in ideal settings, we see that it is still comparable to MIVAT.

We have seen from this section, that in theoretical and practical scenarios, MIVAT is the optimal

approach for obtaining unbiased, low-variance performance estimates using control variates. In the

next Chapter, we discuss the broad applicability of the MIVAT framework, making it both an optimal

and a general approach.
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Chapter 7

Generality of Extensive Games and
the MIVAT Framework

We have seen that MIVAT is an optimal approach to facilitating the use of control variates, but how

applicable is the framework? The term extensive game may make the scope of the domain class

unclear. Moreover, it may seem difficult in practice to provide all constituents in the extensive game

definition.

In this Chapter, we discuss these issues and illustrate the generality of MIVAT. We first discuss

the many domains that fit into the formalism. As a representative example, we show that the widely

used domain class, finite-horizon (partially-observable) Markov decision processes, are extensive

games. In the following section, we discuss the three major assumptions in our domain class: (1)

the requirement for a finite number of interactions (finite-horizon); (2) the knowledge of the chance

node dynamics; and (3) the discrete-time assumption. Though discrete time and knowledge of the

dynamics are common assumptions, relaxing these assumptions may be important for practical sce-

narios. We demonstrate relaxations to these assumptions, further illustrating the broad applicability

of the MIVAT framework.

7.1 Scope of Extensive Games

Extensive games represent sequential decision making domains, common in real-world scenarios.

Consequently, many prevailing domain models fit into our formalism, corresponding to three com-

mon scenarios. The first is the single agent scenario usually modeled by finite-horizon (partially-

observable) Markov decision processes (MDPs and POMDPs). This scenario is useful for tasks such

as learning controllers or option pricing agents. Second, the multi-agent scenario generalizes beyond

single-agent, incorporating N -player general and constant-sum games such as poker, trading agents

and multi-robot interaction. The final generalization is to the continuous action settings, useful for

applications such as robotic arms for grasping, self-balancing robots and autonomous vehicles. In

this section, we illustrate that finite-horizon MDPs and POMDPs are extensive games. The goal
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is to illustrate, with MDPs as a representative domain class, that seemingly complex, widely-used

domains naturally fit into the extensive game formalism.

7.1.1 Finite-horizon MDPs and POMDPs

MDPs and POMDPs are a general model of decision making tasks and have been extensively used

and studied [Puterman, 1994]. Many domains can be modeled as MDPs, including real-world

tasks such as inventory management, highway pavement maintenance and communication mod-

els (for a more detailed discussion and more examples, see [Puterman, 1994]. Notable successes

using MDPs include elevator control superior to the state-of-the-art [Crites and Barto, 1996] and

autonomous helicopter control that can perform maneuvers beyond a human controller’s capabili-

ties [Ng et al., 2004].

An MDP models the relationship between an agent and its environment, formally represented by

the tuple (S,Ap, P r,R) where:

1. S is a finite set of states

2. Ap a finite set of actions

3. T a probability function giving the probability, T (s′|s, a), of transitioning to state s′ after

taking action a in state s and

4. R : S ×Ap × S → R is a reward function.

The term Markov means that the current state is only dependent upon the previous state: the

transition probabilities are governed only by the previous state and action, T (s′|s, a). Starting from

some initial state s0 determined by T (s0|∅), each time step the agent is in some state s ∈ S, takes

action a ∈ Ap, transitions to state s′ with probability T (s′|s, a) and receives reward R(s, a, s′).

On each step, to enable appropriate decision-making, the agent observes the current state of the

environment. Finite-horizon MDPs require terminal states (such as goals); the agent must reach a

terminal state in n or less steps.

Note that the majority of MDP literature uses two types of MDPs: finite and infinite-horizon

MDPs [Puterman, 1994]. The reinforcement learning community defines three types: finite, indef-

inite and infinite-horizon MDPs. In indefinite-horizon MDPs, interaction can be arbitrarily long

but must eventually terminate [Sutton and Barto, 1998]. MIVAT still applies to indefinite-horizon

MDPs because there is a finite length of interaction. Moreover, in practice, the length of interaction

can always be bounded by some n to allow for the idea of indefinite interaction. Finite-horizon and

indefinite-horizon are almost equivalent, as neither make assumptions about the agents knowledge of

the length of interaction and we can make n large (as the agent only needs to terminate at some time

before n steps). For this reason and because the majority of the MDP community uses finite-horizon

MDPs, we will focus on the finite-horizon form.
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In a partially observable MDP (POMDP), the agent cannot directly observe the state. Instead, it

receives an observation representing the state. A POMDP includes a finite set of observations O and

probabilities of seeing an observation in a state s′ after taking action a: Pr(o|s′, a). This formalism

is a general one for modeling real-world scenarios, but is much more computationally complex than

MDPs.

It is not immediately clear that finite-horizon MDPs and POMDPs are extensive games. In the

following, we explicitly describe the relationship.

Fact 7.1.1 Finite-horizon MDPs are extensive games.

Proof: Define the equivalent extensive game as follows:

1. Set the number of players, N = 1

2. Let Ac = {c1, . . . , c|S|} be chances actions where ci corresponds to choose state si ∈ S =

{s1, . . . , s|S|}. The extensive game action set A is the union of the agent’s actions Ap and

chances actions Ac.

3. The histories, H , is a finite set of possible agent-chance action sequences.

4. Set the player function P (∅) = c (chance acts first, choosing the start state s0) and else to

alternate between chance and the agent:

P (h) =
{

1 if mod(|h|, 2) 6= 0
c if mod(|h|, 2) = 0

5. For a given history h = ci1ai1 , . . . , ciinain , for all possible cin+1 ∈ A(h), the Markov prop-

erty gives the probability measure:

fc(cin+1 |h) = T (sin+1 |h) = T (sin+1 |sin , ain)

6. There is complete observability, so the information sets are simply the histories:

I1 = {{h} : h ∈ H,P (h) = 1}

7. The utility function u1(z) is the return, the cumulative reward until reaching some terminal

state sm, m ∈ N:

u1(z) = R0(z) =
m−1∑
j=1

R(sij , aij , sij+1).

For many trials T , we want to estimate the expected return of the agent: E[R0(z)|σ]1.

1To unify notation, σ for MDPs is usually called the policy, π
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Fact 7.1.2 Finite-horizon POMDPs are extensive games.

Proof: The justification for Fact 7.1.2 is similar to above, but now we need to redefine the proba-

bility measures to incorporate the observations probabilities.

fc(o|ha) =
∑
s

Pr(o|s, a)Pr(s|h)

where, Pr(s|h) can be calculated recursively.

Pr(s|h′ao) =
∑
s′

Pr(s′|h′)Pr(o|h′, a)

Pr(s|∅) = initial belief distribution (which is required in a finite horizon framework).

The remaining problem is that the restriction to an finite-horizon excludes the class incorporating

continuing interaction. Infinite-horizon MDPs and POMDPs are also widely used and in the next

section (Section 7.2.1), we illustrate how infinite-horizons scenarios can also be evaluated in our

framework.

7.2 Relaxations of Assumptions

The three major assumptions in our domain class include the requirement for a finite number of

interactions; the knowledge of the chance node dynamics; and the discrete-time assumption. With

certain modifications, however, we can extend the applicability to scenarios without these assump-

tions. This section describes these relaxations and completes the discussion on the generality of our

framework.

7.2.1 Infinite-horizon Extension

MIVAT, as presented, can only be applied to scenarios with a finite number of interactions; a utility

on terminal histories is required for the (Monte Carlo) estimator to be well-defined. Certain sce-

narios, however, are more naturally formulated assuming interaction continues infinitely without

guaranteed termination. For example, a robot with a long life-span would be formulated as a con-

tinuing task [Sutton and Barto, 1998]. We illustrate how MIVAT can be applied to infinite-horizon

MDPs to relax the finite-interactions requirement.

In infinite-horizon MDPs, the agent-environment interaction cannot be broken down into iden-

tifiable episodes, but continues indefinitely. Because the number of steps n = ∞, the return

Rn =
∑∞
k=n rk+1 could be infinite. Most commonly, returns are extended to the continuous case

by discounting rewards into the future. This definition, however, is required for defining values of

states. We are devising a metric for the agent. An accurate reflection of the agent’s skill is E[R|σ],
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the expected average reward for policy σ in the MDP. Below we show that average expected re-

ward is well-defined and enables evaluation using MIVAT for infinite-horizon MDPs without using

discounting.

To make evaluation unbiased, we need to assume that the infinite-horizon MDP is ergodic. First,

we define ergodicity and then illustrate that average reward is a suitable utility for infinite-horizon

MDPs.

Definition 7.2.1 [Neal, 1993] For a Markov chain {St} with (time-homogenous) transition proba-

bilities T : S × S, pt(s) is the probability of a state s ∈ S occurring at time t, computed using the

transition probabilities

pt(s) =
∑
s′∈S

pt−1(s′)T (s′, s)

Given the initial probabilities p0 : S → [0, 1], pt determines the behaviour of the chain.

A distribution over the states of a Markov chain, ρ, is invariant if

ρ(s) =
∑
s′∈S

ρ(s′)T (s′, s)

A Markov chain is ergodic if

1. there exists an invariant distribution ρ

2. pt(s), converges to this invariant distribution as t→∞ regardless of the choice of p0(s)

Intuitively, an ergodic Markov chain does not allow transitions into a part of the state space without

some probability of transitioning out. More formally, the probabilities pt(s) cannot converge to a cy-

cle of distributions. For example, a state space with the probability of transitioning into two separate

games (each unreachable from the other) is not ergodic because there are two invariant distributions

dependent on the choice of p0(s). A large class of Markov chains are ergodic [Neal, 1993], mak-

ing ergodicity a reasonable assumption. Notice that we are using time time-homogenous transition

probabilities: T does not depend on time t.

Definition 7.2.2 An infinite-horizon MDP is ergodic if for each policy σ, the Markov chain induced

by σ is ergodic.

Fact 7.2.3 An ergodic infinite-horizon MDP can be evaluated under the MIVAT framework as an

extensive game with H = S (i.e., episode length 1).

Proof: Assume we are given a trajectory, h = ci1 , ai1 , . . . , cin , ain , cin+1 , generated by σ and

(time-homogenous) transition probabilities T , where ij ∈ {1, ..., |S|} and n can be∞. Define the

utility for each state sij (corresponding to chance action cij ):

u(sij ) = R(sij , aij , sij+1)

Because of the ergodicity assumption, we know that [Ortner, 2007]
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1. for a finite n, 1
n

∑n−1
j=1 u(sij ) is an unbiased estimate of E[R|σ]

2. limn→∞
1
n

∑n−1
j=1 u(sij ) = E[R|σ].

The length of an episode is one with the horizon now representing the number of samples,

allowing n→∞. The MIVAT estimator removes luck on each time step, giving

ûV1(sij ) = u(sij )−

[
V1(sij )−

∑
s′∈S

T (sij , aij , s
′)V1(s′)

]

which is unbiased because

E
[
V1(sij )

]
=
∑
s∈S

∑
a∈A

∑
s′∈S

σ(a|s)T (s, a, s′)V1(s′)

= E

[∑
s′∈S

T (sij , aij , s
′)V1(s′)

]

In practice, agent interaction with the environment is often terminated after some maximum

number of steps M : the performance measure is the cumulative reward2 from the M steps averaged

over t runs (for more significant results). Consequently, we can evaluate infinite-horizon POMDPs

similarly to finite-horizon POMDPs: define the utility to be the cumulative reward over M steps.

Notice that this metric is equivalent to average reward, where average reward is the cumulative

reward scaled by 1
M . The magnitude is shifted but the ordering of skill remains unchanged.

7.2.2 Approximating the Dynamics

In situations where explicitly specifying the probability measure fc is infeasible, we can use approx-

imations. There are two options to approximating the dynamics: (1) providing a prior (a guess of the

distribution function) or (2) estimating the dynamics using frequency counts from sampling. The

first approach could introduce bias, due to an incorrect probability measure. If the magnitude of the

bias is less than the magnitude of variance reduction (making the mean-squared error decrease), this

approach may be desirable.

The second approach is unbiased but the accuracy dependent on the number of samples. In sim-

ulated scenarios, the simulator can be repeatedly sampled to estimate the probability measures. In

real-world applications, a limited number of samples could lead to inaccuracies; variance reduction

techniques like importance sampling could be used to improve the approximation. Overall, with a

reasonably accurate estimate of the dynamics, we anticipate that the amount of variance reduction

will overcome any bias or inaccuracies introduced by the two approaches respectively.

2Average reward is also a common metric, which is what we defined the utility to be above.
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7.2.3 Continuous Time

Finally, we can extend this formalism to include continuous time.3 For finitely many discrete actions

and continuous time, we show how to extend MIVAT by using the finite action space to discretize the

time dimension. For continuous actions and continuous time, agents and chance act concurrently; it

is not clear how to separate the influence of chance on the utility. For this case, we can only look

at situations without agents, i.e., stochastic processes. This scenario is still useful for obtaining low

variance estimates of the expected value of stochastic processes, such as for option pricing.

We will provide an example to make the extension for finite discrete actions intuitively clear.

Consider a basketball shoot off between two teams of players where the first team to make twenty

shots is the winner. Team one has t1 players each with probability p1 of making a shot and team two

has t2 players each with probability p2 of making a shot. Let s1(t), s2(t) be the number of shots sunk

by teams one and two respectively by time t. Then the time dimension can be discretized by looking

at the transitions into states {(s1(t), s2(t))} = {(0, 0), (0, 1), . . . , (0, 20), (1, 0), . . . , (20, 19)}. The

terminal states are

Z = {z = (s1
1, s

1
2), (s2

1, s
2
2), . . . , (sT1 , s

T
2 ) : sT1 = 20⊕ sT2 = 20, (si1, s

i
2) 6= (si−1

1 , si−1
2 )}.

The transition probabilities for the current s1, s2 are

Pr((s1, s2)→ (s1 + 1, s2)) =
t1p1

t2p2 + t1p1

Pr((s1, s2)→ (s1, s2 + 1)) =
t2p2

t2p2 + t1p1

Pr((s1, s2)→ (s1 + 1, s2 + 1)) = 0

The utility is

u1((s1, s2)) =
{

1 if s1 = 20
0 if s2 = 20

Then for z ∈ Z such that |z| = T , the MIVAT estimators are

ûV1(z) = u(z)−
T∑
i=1

(
V1((si1, s

i
2))−

[
t1p1

t2p2 + t1p1
V1((si−1

1 + 1, si−1
2 )) +

t2p2

t2p2 + t1p1
V1((si−1

1 , si−1
2 + 1))

])
ûV2(z) = −ûV1(z)

In general, we can apply this same technique to any extensive game with discrete actions and con-

tinuous time. The time dimension can be eliminated by noting that the transitions caused by discrete

actions are independent of the length of time before that transition.

For continuous actions, we can look at the case without agents: stochastic processes. Instead

of a summation over rounds, we have an integral over time. The process {Xt} starts at time 0 and

3This realization was obtained from work on Markov control processes [Dahl, 2001] where they suggested a similar
modification for their formalism, Markov control processes.
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terminates at time τ with some payoff u on the terminal history Xτ . We will look at (Itô) diffusions

Xt,

dXt = b(Xt)dt+ σ(Xt)dBt

where Bt is m-dimensional Brownian motion, b : Rn → Rn and σ : Rn → Rn×m satisfy

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| x, y ∈ Rn

where |σ|2 =
∑
|σij |2 and D ∈ R.

Theorem 7.2.4 (Theorem 7.4.1 (Dynkin’s formula) [Oksendal, 1998]) Let f ∈ C2
0 (Rn) (a con-

tinuous function) and generator A be defined as

Af(x) =
n∑
i=1

bi(x)
∂f

∂xi
+

1
2

n∑
i=1

n∑
j=1

(σσT )i,j(x)
∂f

∂xi∂xj

For some finite stopping time τ ∈ R

Ex[f(Xτ )] = f(x) + Ex[
∫ τ

0

Af(Xt)dt]

From this theorem, we can see that if we set x = X0, the luck term in the MIVAT estimator is

LV (Xτ ) = V (X0)− V (Xτ ) +
∫ τ

0

AV (Xt)dt

because

E[LV (Xτ )] = V (X0)− EX0 [V (Xτ )] + EX0

[∫ τ

0

AV (Xt)dt
]

= 0.

Brownian motion is an example of a continuous time and action process. For n-dimensional

Brownian motion, we have dXt = dBt (b = 0, σ = In). Then, the generator of Bt with f =

f(x1, ..., xn) ∈ C2
0 (Rn) is Af = 1

2

∑n
i=1

∂f
∂x2
i

. In this case, A = 1
2∆, where ∆ is the Laplace

operator. Now, for example, if an option follows Brownian motion, we can use this model to obtain

a low variance prediction of u(Xτ ), the value of the option at time τ from now.

In this Chapter, we have shown that extensive games encompass a broad range of domains for

agent evaluation and that the MIVAT framework can be extended to encapsulate even more. In the

next Chapter, we conclude our work on MIVAT, summarizing our main contributions and suggesting

worthwhile directions for future work on MIVAT.
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Chapter 8

Conclusion

In this section, we summarize the contributions presented in this thesis and discuss several avenues

for future work in variance reduction using MIVAT.

8.1 Contributions

Our main contribution in this thesis was to unify and expand on previous work using control variates

for variance reduction. We illustrated the relationship between control variates, advantage sum

estimators in finite extensive games and the similar estimator framework in Markov chain processes.

We then introduced MIVAT, the Informed Value Assessment Tool, a general automated approach to

obtaining low-variance, unbiased estimates of agent performance. We constructed an optimization

for finding the variance-minimizing value function for use in an advantage sum estimator. We then

derived a closed-form solution for the case of linear value functions. Our approach overcomes the

requirement in advantage sum estimators for hand-designed value functions, and can be used to

tailor agent assessment to a known population distribution. We tested MIVAT on three variants of

Texas hold’em poker: two-player limit, two-player no-limit and six-player limit poker. We showed

that we can attain and even exceed the best existing hand-crafted esimator for two-player limit poker.

We also showed that we can construct variance reducing estimators for two-player no-limit poker,

six-player limit poker and two-player limit poker with imperfect information, where no previous

estimators were available, based solely on simple poker features and logs of past experience. With

the lower-variance estimator in two-player limit poker with limited information, the University of

Alberta can further improve their expert-level two-player limit poker bot.

This work also has two other contributions: an increased theoretical understanding of value func-

tions in advantage sum estimators and wider scope in the applicability of advantage sum estimators.

We proved that using the estimator’s variance as the loss function to find a value function for ad-

vantage sum estimators is optimal. We have shown that a value function satisfying the variance loss

is an improvement on a value function predicting the expected utility suggested in the advantage

sum work. In particular, we illustrated the superior convergence properties of minimizing the vari-
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ance and showed theoretical and empirical examples where we obtain more variance reduction by

minimizing variance rather than predicting the utility.

In addition to improving the practical applicability of advantage sum estimators by learning the

value function, we have broadened the scope of applicable domains by incorporating continuous

actions and infinite-horizons. Advantage sum estimators were defined for discrete actions; we dis-

cussed how the advantage sum framework could be applied in the continuous action case, which

relies on solving an integral. We proposed certain scenarios where the integral could be computed

in closed form and, for cases without a closed form solution, discussed some numerical integra-

tion techniques to approximate the unknown integral. We also illustrated how to extend advantage

sum estimators to a potentially infinite action sequence, using infinite-horizon MDPs/POMDPs as a

template.

8.2 Future Work

There are four main avenues for future work: (1) extending MIVAT to use other loss functions; (2)

extending the MIVAT estimator to use non-linear value functions; (3) incorporating other variance

reduction techniques into the MIVAT framework; and (4) implementing MIVAT for stochastic do-

mains other than poker. This section discusses some approaches for this future work and the benefits

from exploring these problems.

8.2.1 Loss Functions

The MIVAT formulation focuses on optimizing a linear value function using variance as the loss.

However, there are other options for the optimization. Expected variance is a convenient loss func-

tion, but like many squared-loss measures, it is heavily biased by outliers. Some robust alternatives

to least squares include L-estimators, such as least absolute value regression (L1-norm), least me-

dian of squares regression and least trimmed squares regression; R-estimators; and M -estimators,

such as iteratively reweighted least squares [Andersen, 2007]. These loss functions have their own

issues, such as the instability of L1 minimization, but could prove to be an improvement in some

scenarios over the L2 loss. Moreover, though still related to minimizing the variance, the L1 loss

instead minimizes the absolute difference between the estimate and its sample average. To keep

the variance term in the loss, we could look at adding penalty terms to the L2 loss, such as an L1

penalty. Finally, we could investigate alternative losses that might have higher variance on average

but provide better estimators for typical agents.

8.2.2 Non-linear Value Functions

In this work, we have derived a closed form solution for linear value functions. Though linear value

functions can be powerful, they are highly dependent on the choice of features. Optimizing non-
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linear value functions may alleviate the challenge of constructing good features and add modeling

power to the value function. Recall that our loss function is the variance of the estimator

Minimize:
Vj

T∑
t=1

(
ûVj (zt)−

1
T

T∑
t′=1

ûVj (zt′)

)2

.

Most non-linear machine learning techniques do not obviously apply to this loss function be-

cause they assume that the input features X are used to predict some output Y . There are two

potential approaches to using non-linear techniques with the variance loss function. First, it may be

possible to look at ûVj as the learned function with the output variable we are trying to predict being

E[ûVj |σ] (approximated with 1
T

∑T
t=1 ûVj (zt)). If this extension is not possible, we expect that

many non-linear machine learning techniques could be modified to use this different loss function.

The first obvious non-linear formulation is the dual of this problem, which we have solved but not

included in this work. More interesting extensions would involve re-deriving solutions using the

variance loss function for popular non-linear machine learning techniques, such as neural networks

and decision trees.

We can also use combinations of linear models to mimic non-linearity. For example, a common

approach is to use random forests [Breiman, 2001]. The procedure involves splitting on a random

feature with a randomly chosen value in the feature’s range and repeating that process to some

desired depth. Linear value functions are learned for each root of the tree (i.e., on the subset of data

in that split) using the variance loss. Trees can be evaluated on hold out data and correspondingly

discarded or kept in the forest. After obtaining a desired number of trees, they can be linearly

weighted according to the variance loss function. With more depth and number of trees in the

random forest, the linear value function becomes more and more non-linear.

8.2.3 Other Variance Reduction Techniques

We could further reduce variance with the MIVAT framework by exploring some of the other general

variance reduction techniques, including common random numbers, antithetic variates, importance

sampling, conditional Monte Carlo and stratified sampling. Like with control variates, we may find

simplifications to these more general techniques when looking specifically at extensive games. If

we explicitly illustrate or simplify the combination of MIVAT with these other variance reduction

techniques, we could significantly extend the practical applicability and impact of MIVAT.

For example, the University of Alberta uses the advantage sum estimators framework with com-

mon random numbers and importance sampling to obtain low-variance estimators in two-player

limit poker. They were able to reduce the number of required games from about 20,000 to about

200, enabling them to make statistically significant conclusion about performance against human

players in two-player limit poker. Since DIVAT is specific to two-player limit poker, they were not

able to obtain this variance reduction in multi-player limit or no-limit poker. With the MIVAT results
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in this work combined with these two techniques, we might be able to bring the required number of

games near 1000 for multiplayer limit or two-player no-limit poker. The variance reduction, how-

ever, would still not be enough against human players. If more of the above approaches could be

incorporated, potentially the variance reduction from MIVAT would be enough to hold a competition

against human experts for no-limit poker, a more widely played game.

Other techniques may also have to be explored to improve variance reduction when learning

a value function with limited data. Estimating the weights for the linear value function on sepa-

rate data may be difficult or impossible due to limited sampling. As mentioned, approximating the

weights on the same data being evaluated may cause the estimator to be biased. We can guarantee

unbiasedness if the utilities and control variates are multinormal [L’Ecuyer, 1994] (the control vari-

ates being the difference between the value before and after a chance node). It would be interesting

to explore in what situations this condition holds or can be enforced. We could also explore some

of the techniques for reducing bias mentioned in Section 3.2, including jackknifing and splitting

[Nelson and Richards, 1990].

8.2.4 Other Domains

There are several domains in which MIVAT could improve agent evaluation, whether or not there is

an explicit game formulation. An interesting application of MIVAT to a case with explicit formu-

lations is the Annual Reinforcement Learning (RL) Competition, which uses MDPs and POMDPs.

The RL Competition draws competitors from around the world and includes a broad range of do-

mains, from standard RL benchmarking domains, like acrobot, to more complicated ones with

continuous actions, like the octopus domain and helicopter hovering. Rankings are based on ac-

cumulated reward, which can have high variance; statistical significance, however, is not reported.

Examining statistical significance could help improve the validity of the rankings and attract more

interest to the competition.

We are also interested in extending the approach to complex settings where a fully explicit game

formulation may not be available. For example, Robocup [Kitano et al., 1997], the Trading Agent

Competition [Wellman et al., 2003], and a simulated golf task for robotics all have difficult eval-

uation problems, but it is not practical to fully specify their corresponding extensive game. One

can still, however, identify the role of chance in these simulated settings as invocations of a random

number generator. Luck terms with zero expectation could be computed (and a variance-minimizing

value function optimized) using feature changes before and after the affects of the random number

generator are applied. This approach could result in a guaranteed unbiased variance-reducing esti-

mator and hence, more significant competition results.
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8.3 Summary

Overall, we have seen that MIVAT is a general and principled approach to automating variance

reduction, able to match a state-of-the-art variance reduction tool in two-player limit poker with

simple features and little design time. The significant variance reduction seen in two-player limit

poker, however, may not be representative of most domains without some additions, such as adding

other variance reduction techniques or extending the MIVAT estimator beyond linear value func-

tions. The MIVAT framework provides a well-justified, general approach to simplifying the use

of control variates and provides a sound baseline for future work in variance reduction for agent

evaluation.
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