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Abstract

The ubiquity of the Internet-of-Things (IoT) devices in everyday life allows

various sensors to be utilized in networked systems for solving a number of

real-world problems. Models utilizing specific sensing modalities achieve im-

pressive performance in understanding human activity and are used in systems

developed for monitoring and improving indoor living conditions. A combi-

nation of multiple sensors could even allow a better understanding of the en-

vironment. Nevertheless, certain sensing modalities may not have a direct

correlation in their measurements, hence, making the fusion of the sensor data

quite challenging. This thesis studies the feasibility and design of a sensor fu-

sion system that can associate two unrelated sensing modalities, namely radio

frequency and visual domains, by identifying and associating events, human

motion, that leaves a signature in both domains.

We present a holistic framework for associating a mobile device unique iden-

tifier to an individual holding it during a certain activity. We study different

motion detection methods that rely on the analysis of Received Signal Strength

Identifier (RSSI) combined with state-of-the-art Computer Vision approaches

to object tracking. We run field experiments to evaluate the performance of

different motion detection methods and use the proposed framework to as-

sociate mobile devices to individuals who hold or carry them. Our results

indicate that an accuracy of 75% can be achieved in the device-to-individual

association task.
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Chapter 1

Introduction

The emergence of the Internet-of-Things (IoT) devices has introduced a large

number of networked systems with various sensor modalities. Real world prob-

lems such as minimizing energy usage, monitoring environmental conditions,

food tracking, transportation planning, etc. can be studied and supported us-

ing this technology. An IoT device can report measurements from the Inertial

Measurement Unit (IMU) – magnetometer and accelerometer – temperature

sensor, light sensor, and infrared sensor. Together these measurements can be

utilized, for example, in human activity tracking and recognition systems. Var-

ious sensors available at an affordable price can be also deployed in an indoor

environment for monitoring and efficient control of building subsystems.

Mobile devices equipped with a myriad of such sensors have become preva-

lent, examples of which are smartphones and wearables which are affordable,

sensor-rich, and small in size. These devices can be used to track and localize

people, enabling a wide variety of applications, such as activity monitoring, oc-

cupancy estimation, and people identification [11], [26], [28], [54]. Sensors can

also be used for safety and security applications, such as intrusion detection

or natural disaster notification.

While the variety in sensing devices allows to collect measurements at dif-

ferent rates, quality and quantity, it raises the challenge of data fusion as

some sensing modalities cannot be trivially fused. A conventional sensor fu-

sion combines various sensor measurements to improve performance or gather

additional information about an environment. In this thesis we investigate
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Figure 1.1: General framework overview.

how to reliably detect motion in an indoor environment by fusing video and

RSSI data obtained from one or multiple sensing nodes. We build and evaluate

a system capable of detecting/tracking WiFi-enabled devices in a room and

associating them to the person carrying them. We propose a framework for

sensor fusion from different sensing modalities based on commonality of people

activities using sensors. A general structure of the framework is depicted in

Figure 1.1.

The goal of the framework is to provide standard for inputs and outputs of

different sensing modalities to allow “plug and play” type of system usability.
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In the presented study we apply the framework on two main sensor analysis

components, a radio signal strength based component and a video component,

each processing raw data and providing motion detected in each stream. The

radio signal processing provides metrics, “features” that may be used by ma-

chine learning models or by applying simple schemes such as comparison to

a threshold to decide if a device is moving. The result will be a collection

of timestamped instants that the device is moving to be compared against

moving objects detected through Computer Vision (CV). The CV tracks mov-

ing people across multiple frames of the video sequences and reports a set of

tracks and their corresponding motion times. In our fusion processing, tracks

are then labelled with the devices’ unique identifier to associate a particular

device to an owner detected from the vision subsystem. The example fusion

of this thesis is linking movements of a WiFi transmitter in a device to move-

ments of a visually tracked individual and deducing that the tracked individual

must be carrying the device.

1.1 Prototypical Applications

This section elaborates on certain applications, and outlines real-world scenar-

ios and the challenges that need to be solved with sensor data fusion. All use

cases presented in this section are for indoor smart environments with multiple

participants.

In this thesis, we focus on challenges and possible improvements to the

following applications:

• Indoor Localization and Positioning. One of the common problems

addressed using multiple sensors is indoor positioning and localization of

devices or objects in a scene. Being able to precisely localize individuals

in an indoor environment may help reduce navigation time in emergen-

cies, such as dispatching emergency services in an unknown building.

This application may not be plausible for people unfamiliar with the fa-

cility, since they may not be communicating with an indoor system or

possess necessary sensor devices.
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• Assisted Living (AL). An example application domain of great impor-

tance is the observation of people’s health conditions in a home environ-

ment [31], [54] and improving the quality of assisted living [4]. A number

of sensors have been discussed in [13] as part of AL systems for the el-

derly. AL systems may be used by elder population to help in everyday

life tasks by gathering sensor data. However, most of these systems are

still error prone and still require more sophisticated and generalizable

methods for long-term robustness [13].

Others research the health conditions of the caregivers, due to the high

risk of physical injuries related to care provision [31]. In both cases, it is

typically assumed that a person being tracked always wears or carries a

mobile device; but this may not be possible due to the type of activity

exercised [11]. In a related question, a challenge for image based systems

is to distinguish whether a device is left at some location or that it

belongs to a particular individual, which may be solved, as we will see,

by incorporating another sensing modality.

• Human Activity Recognition (HAR). Another field of research

where sensors play a significant role in enhancing user experience is op-

timizing building energy consumption by understanding human actions

in an environment [2]. A challenge for this kind of systems is to fuse

different modalities that can help track people’s activity in a compre-

hensive manner. A recent survey on Body-Sensor Networks (BSN) [18],

notes that data fusion needs increasing sensing dimensionality to achieve

better performance. For example, an accelerometer can report data as if

a person is at rest, when they are really static or simply the device is left

on a table. This type of behaviour could be, possibly, resolved through

other sensor data, such as video, to disambiguate actions in a scene.

The proposed systems and solutions for the above applications can be di-

vided into device-based and device-free systems, where the former utilizes sen-

sor measurements produced by a mobile device. The second type utilizes “pas-

sive” sensing methods, where one does not require possession of the devices and

4



instead the individuals are tracked using sensors installed in a room. Several

systems rely on smartphone integrated sensors, namely Inertial Measurement

Units (IMU), which may provide a higher accuracy in localizing people, yet

may reveal private information about the users [15], [22]. This type of sensing

is also known as crowd sensing [20]. Such an “active” approach relies on the

assumption that users collaborate and share their data with a controller or per-

form computations locally, on a phone. While we can use measurements from

the infrastructure mediated sensing for a particular space (conference room,

hallway or private office) as an alternative, it may require installation of addi-

tional equipment in the existing building infrastructure [32]. As an example,

the system described in [15] relies on an array of ultrasonic sensors. Although

the method may solve a number of problems, this set up is not common for

most commercial facilities, may be expensive to establish and requires complex

user participation, such as wearing additional equipment. By contrast most

residential and commercial environments include wireless Access Points (APs)

and possibly a camera for surveillance purposes; thus, these devices might be

used as a means of building networked sensing systems.

There is also a number of systems which rely on mobile device’s embedded

sensors, such as accelerometers, magnetometers, etc. that aim at understand-

ing human actions in an environment. HAR systems using this type of sensors

require a subject’s collaboration and might be invasive in terms of sensor place-

ment [50]. Such systems utilize sensor readings to infer the type of activities a

device owner is engaged in. The main rationale of identifying certain events is

in the similarity of sensor readings to those collected previously [28]. Another

approach is the examination of statistical attributes of certain activities, as an

example, accelerometer values will have lower variance and standard deviation

from its mean for a particular axis when a person is not moving the sensor

[11]. A number of systems have been proposed for online subject activity

tracking [11], [30], utilizing accelerometers, gyroscopes, and other smartphone

built-in sensors to recognize motion and activities, such as walking, running, or

sleeping. An alternative to that is the utilization of object and infrastructure

mediated sensing, which employs sensors placed as part of a room infrastruc-
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ture, such as on a light switch or on a coffee pot. Objects with this type

of sensors may provide a deeper understanding of peoples’ activity assuming

the use of these devices in an individuals’ activities. Activities engaging ob-

ject movement are referred to in the literature as micro-motions, and may be

computationally expensive or difficult to detect [41].

All applications listed above can be improved with multi-sensor fusion and

identifying sources of each stream at a particular point in time, i.e., under-

standing when an event impacts multiple sensor readings. In this work, we

will rely on infrastructure mediated sensing, namely radio and visual sensing

modalities, to understand different types of motion that causes notable im-

pact in sensor readings, such as a moving person, referred to as macro-motion.

Inferring motion from cameras and smart devices could help associate people

to devices, thereby increasing accuracy of activity recognition, health tracking

and possibly indoor positioning.

1.2 Existing Sensors and Desired Properties

The variety of affordable sensors allows system developers to employ various

sensing modalities depending on their budget, purpose and complexity of the

systems. While many sensing devices are providing significant services re-

porting their measurements, they can be grouped into a few broad categories:

visual, environmental and subject sensing.

Visual sensors are similar in terms of their output, providing a usually two

dimensional grid of values, where each value can be multi-spectral, consisting

possibly of spectrum value and depth. A regular three channel camera (RGB)

provides 3 such grids with red, green and blue values for each pixel, and it is

the most common type of visual sensors used in smart environments. Another

kind is infrared (IR) arrays, varying in resolution, frame rate (FPS) and cost,

where a high definition temperature array may cost of up to $1000 per sensor.

On the other side, a less expensive device is limited to up to 8 FPS [7]. Depth

sensors are more precise at object tracking and one of the most successful

commercial examples is Microsoft Kinect, although it is on an expensive side
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and programmed to keep track of only 2 active subjects. All of these visual

sensors can be used interchangeably or in combination with each other in an

environment, although RGB cameras usually serve surveillance purposes and

are used for, as an example, tracking user identities via face recognition [7].

A recent survey on ambient sensing suggests that visual sensors achieve the

highest performance on average and are good at detecting a more complex

events [45].

Environmental sensors are a group of devices that are generally better

for privacy preservation, yet still providing a lot of useful insights for many

indoor applications. Such devices report, e.g., CO2 concentration level, motion

detection, light intensity, temperature, humidity etc. According to a recent

survey [45], ambient sensors require the least user collaboration, require less

computational power, sustain operation for long periods of time, though some

might require maintenance. Nevertheless, they are less accurate due to their

limitations in identifying individuals or objects which is an essential point in

this thesis.

We consider the following factors in selecting sensing modalities in our

methodology:

• Cost. It is an important issue for a wide variety of applications which

can either limit performance of the system or increase financial cost to

the stakeholder. Our goal is to utilize existing infrastructure and rely on

commonplace of sensors in each environment.

• Computation Complexity. Complexity is an indirect cost that may

either increase cost or provide less relevant results due to delay in compu-

tationally expensive calculations. In this thesis, the proposed framework

aims to achieve computation time of less than the frame sampling inter-

val processing, i.e., implementable in near real-time.

• User Privacy. Privacy is a concern that may prevent people from

integrating sensors into their smart environments. Monitoring home en-

vironments and healthcare facilities may reveal a significant amount of

7



information, even some health conditions. Therefore, the framework

should use a lesser amount of private information.

• Experimental Set Up. Approaching critically the set up is an indi-

cator of the solution’s feasibility in a real world scenario. Whereas a

number of researchers have demonstrated outstanding performance of

their methodologies for indoor environments, they may not always be

applicable because of:

– User involvement, being a deciding factor in keeping track of

people’s behaviour, may not be acceptable if extra sensors are re-

quired on them as part of a system. Ambient sensors allow no, or

a smaller amount of, user involvement with the system, so they are

naturally preferred.

– Performance metrics used in several solutions label correctness of

decisions made by their systems differently, but for our application

it is important to understand motion on a frame by frame timing

basis to achieve real-time operation. Moreover, the systems should

be also compared in the amount of training data required to build

a model.

The above factors will be used when evaluating existing solutions for device

and object identification. The sensing modalities chosen for this thesis are

visual and radio signals and are a better choice in terms of the majority of the

above listed points. The sensor data assumed are produced by sensors that

are always connected to a power source, possibly, built into the environment,

do not require significant user collaboration, do not intrude privacy (beyond

their original purpose) and may provide higher precision by fusing data from

both sensing modalities.
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Figure 1.2: RSSI values at various distances for an iPhone Xs and Huawei 6P
phone.

1.3 Radio Signal Strength as Distance Esti-

mator

Commodity Wi-Fi APs are essential in many environments and in this thesis

serve as another sensing modality. Each frame received by an AP provides

information about the signal strength as measured at the receiver, called Re-

ceived Signal Strength Indicator (RSSI). According to several researchers [21],

[42], RSSI values correlate with the distance from the receiver. We usually

witness an increase in signal strength when a transmitter is closer to an AP.

The rationale behind this is that signal strength can provide approximation

of the distance from the wireless AP. However, the relation is not linear and

varies drastically due to wireless propagation characteristics and possible sig-

nal interference.

There are various techniques for localization and a person’s activity recog-

nition based on RSSI, but RSSI values vary with manufacturer and lack pre-

cision. As an example, we have conducted several experiments in a conference

room to examine the behaviour of RSSI values from an iPhone XS and a

Huawei Nexus 6P mobile devices at a height of 1.2 meters from the floor at
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various distances from a receiver. The results can be seen in Figure 1.2, where

box-whisker plots show the fifth and ninety fifth percentile each calculated

for 500 samples of RSSI per distance within line-of-sight (LoS) of receiver, an

AC1750 model made by TP-Link. As it can be seen in practice, Figure 1.2,

there is a strong relationship between distance and average RSSI value. Nev-

ertheless, there are several cases, as an example when the RSSI is -55 dBm,

where one may not be able to tell for sure how far a devices is from an AP. The

situation generally deteriorates with obstructions, if the transmitting device is

not in LoS.

It is a challenge to determine the variability of RSSI measurements across

different manufacturers of mobile devices. As an example, similar tests were

performed for a Huawei device in the same room and on the same day, yet

the RSSI values at each distance vary from the ones reported in iPhone ex-

periment as seen in Figure 1.2. Since the used receiver(TP-Link AC1750)

has multiple antennas, the reported values are from a single, specific antenna.

RSSI decreases beyond two meters from an AP, yet measurements of -80, e.g.

-50 dBm are observed at each distance further than two meters away from the

AP.

The problem can also be attributed to the receiving end, yet in this example

we fixed the AP device to a single variety. The used AP is equipped with

multiple receiving antennas each reporting different values of signal strength,

as expected, which were found to be as much as 10 dBm apart.

To sum up, APs can be utilized to estimate the signal strength of certain

wirelessly connected devices and treat this as an indication of distance from

the receiver, yet with a significant error. Although the previous work on

RSSI based localization has demonstrated low precision, we will be able to

detect motion by simply tracking variations in signal measurements as shown

in Figure 1.2.
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1.4 Visual Domain Analysis

It is known that a visual sensor can help distinguish, with high precision

movements in the environment, yet there are still significant challenges to

Computer Vision (CV). First, depending on the camera placement, we can

either use more sophisticated machine learning models for tracking people’s

faces or simpler ones which can identify human motion robustly [27]. Second,

cameras installed may differ in image definition; thus, reducing tracking per-

formance. These issues can be resolved by tracking only object motion rather

than identifying more complex events.

There is a myriad of visual sensors available for visual data collection pro-

viding RGB, infrared, depth and thermal readings for analysis. While this va-

riety may create many opportunities, there are several trade offs that must be

considered for each. A commonly available component of smart environments

is a high definition RGB camera for which there has been significant research

on multiple object tracking applications [6]. It is pointed out that thermal

sensors may work in varying light conditions without affecting performance,

although they cost more than an RGB camera or come at lower resolution or

frames-per-second (FPS) rate. Object tracking with RGB camera proved to

be efficient while tracking large objects in the scene, yet is still inefficient in

terms of detecting small or distant objects, such as a mobile device carried by

person [7].

Camera surveillance cannot be effortlessly coupled with other sensor mea-

surements and multiple sensing modalities, such as wireless data transmissions,

to increase performance of the aforementioned systems. While this combina-

tion of sensors’ data may seem unrelated, it could be achieved through per-

forming time-based correlation of “similar” events observed in both domains.

1.5 Contributions

In this thesis the following research questions (RQ) are to be answered:

• RQ: Is it feasible to fuse RSSI and Visual domains as explained in our
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framework?

We associate individuals to devices (MAC) addresses by identifying sim-

ilar motion patterns in the visual and RSSI domains.

• RQ: Which RSSI-based motion detection method is better considering

the system requirements?

We propose several methods for RSSI-based motion detection, namely

Thresholding Coefficient of Variation, Bayesian Inference, Support Vec-

tor Machine, and Recurrent Neural Network approaches. We evaluate

their relative performance under different conditions and inputs.

• RQ: Is the incorporation of multiple receiversAPs beneficial for our

framework?

We propose and evaluate a consensus algorithm over multiple static re-

ceivers (in our case, statically placed AP) applying also a moving average

filter to the votes cast by different APs. We evaluate performance of sin-

gle AP based motion detection algorithms compared to the multiple APs

case.

• RQ: Is it possible to generalize RSSI motion detection models and algo-

rithms across different mobile devices?

We conduct several experiments with varying conditions in the experi-

mental set up, i.e. different number of individual and devices. We test

performance of the methods across different device makes and the envi-

ronments.

In this chapter we summarized widely used substitutes for sensors in our

experiment, their advantages and disadvantages. Then, we continued the dis-

cussion by listing key system requirements that we follow while building the

framework. We elaborated on the ambient sensors used in our environment,

and stated key assumptions and challenges in each domain. Finally we con-

cluded with major contributions of this work. The rest of this thesis is orga-

nized as follows. Chapter 2 will provide a taxonomy of previously proposed
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solutions, and evaluate each system according to the requirements outlined

previously. This thesis utilizes a data set collected specifically for this work;

thus, Chapter 3 will explain placement of sensors, the number of participants,

the pre-defined scenario, and the structure of each sensor’s data. Ground truth

annotation for the Experiment I, described in Section ?? was conducted by

the HIP summer interns. The methodology, Chapter 4 and 5, will outline the

framework for sensor data fusion based on event alignment, then, revealing

details on each component. Chapter 6 will discuss performance metrics used

to evaluate each approach to motion detection and present the results. We

will conclude the thesis in Chapter 7 by highlighting major findings of this

work and listing challenges which are yet to be addressed.
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Chapter 2

Literature Review

Research on motion detection based on RSSI mostly consists of two main direc-

tions: device-based tracking and device-free passive (DfP) analysis. Device-

based tracking systems rely on signal processing from a mobile transmitter

to a wireless AP. A smartphone is usually connected to a network provided

by the AP on a particular radio frequency, where transmitted frames are re-

ceived, and each frame is associated with RSSI value, as an indicator of signal

strength. As it was stated in Section 1.3, there is a correlation to a certain

degree of RSSI and distance from an AP; thus, it may be referred to compute

either a location of a device relative to an AP or event recognition [48], [58].

Device-free approaches, on the contrary, rely on previous knowledge of a room

infrastructure and tend to capture abnormalities or different states for event

classification [51].

The latter approach uses fluctuations of RSSI as an estimate of distortion

in an environment between transceiver and receiver, i.e. a certain event has

happened. Nevertheless, this method requires prior knowledge of the environ-

ment and may not perform well under varying circumstances [51], [57], [58].

These circumstances include a different number of occupants in the room, num-

ber of transmitting devices and sometimes make and model of both wireless

transceiver and receiver, as it was briefly mentioned in Section 1.3.

The majority of research in the area of event detection falls in one of two

several main categories: ambient sensing and location-based activity recog-

nition. The following subsections illustrate existing groups of methodologies,
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Modality Device-based Device-free
RSSI [47]–[49] [29], [38], [50]
CSI None [14], [19], [44], [50], [52], [56]–[58]

Table 2.1: Taxonomy of related work on RSSI motion detection.

Modality Model-based Feature-based
Visual [5], [10], [16], [30], [39] [9], [17], [53]

Table 2.2: Taxonomy of related work on CV object detection.

sensor modalities used, challenges and relation to our work. The taxonomy of

related work corresponding to RSSI modality and their approach to passive

or active device use is displayed in Table 2.1, whereas research in CV on ob-

ject tracking is grouped into model-based and feature-based and presented in

Table 2.2.

2.1 Received Signal Strength Indicator

This section outlines a number of related works based on RSSI with applica-

tions to Human Activity Recognition (HAR), motion detection, indoor local-

ization as a motion estimator.

The problem of Motion Detection can be considered as a particular type

of HAR, since mobile devices may be sensing user behaviour. HAR has been

studied for over a decade using various approaches. Indeed, a number of HAR

research articles utilize a variety of sensor readings to understand particular

states, such as moving or standing person. A survey [50] on HAR outlines

sensor data analysis worn by a subject as well as environmental sensing, where

any interaction with a smart device may indicate a certain action by the user.

Ambient sensing relies solely on infrastructure installed in rooms rather than

more sensor-rich scenarios, such as smart object interaction.

This section is going to describe a number of existing methods for RSSI

time series data analysis involving simpler machine learning and deep learning

algorithms. A number of solutions that utilize radio frequency domain have

been proposed in HAR research, where more recent works suggest that Channel

State Information produces better performing models rather than RSSI based
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methods [14], [38]. In [38] for example, a comparative study on passive, device-

free, RSSI and CSI is performed with the purpose of categorizing sensor data

into five core human activities: such as walking, standing, absent (empty

room), lying and crawling in a room. They also consider RSSI relevant to

environment distortion due to human interference and propose a number of

significant statistical features for training a machine learning model to solve a

classification problem. One of the main contributions relevant to this thesis is

their model and its performance. Nevertheless, they claim that these models

cannot be transferred due to changes in a room structure, occupancy etc.

Another major concern for us is that in [38] only a single person is tracked in

the room, which is not the case in many environments.

One of the oldest methods directly related to our work is [48], which falls

into the category of device-based motion recognition. Its authors also relied on

RSSI values by multiple APs from mobile devices in indoor environments to

estimate static and moving behaviours. A number of devices were positioned

randomly throughout a building’s floor in different rooms, and laptops were

used carried by a person at walking speed in a hallway. The goal was to

understand if a transmitter was static or moving anytime within a 30-second

window from the point of view of multiple receivers. This is different from our

goal, which is trying to understand if a device started moving at a particular

point in time.

Another assumption made in the paper, that an object has a constant mo-

bility orbit, may have helped them because the change in RSSI might have

been more conclusive for determining the disposition of the device, i.e. moving

or static. They used statistical metrics, sample variance, and a threshold, to

decide if a device was moving in an observation window from the perspective

of a single fixed receiver’s stream. Another contribution of their work is vary-

ing sample set sizes which demonstrated that they can achieve 90% accuracy

regardless of sample size. Their work is related to our work in terms of sensing

modality and the general goal of the system, although their performance is

not informative.

Recent work on RSSI based event recognition also includes a number of
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systems identifying an object’s activity based on location attributes of an

indoor environment. Such an approach has been discussed in [29] where a

localization algorithm was proposed and used to infer an activity from an

object’s displacement. A total of nine actions were proposed that a user can

perform in an environment and related those to a path that an object takes to

perform the action. For example, the ”prepare food” action will mean that the

subject has to go from a desk to a microwave oven. To understand the initial

location and final destinations of users, fingerprinting was utilized, ranked

RSSI vectors and application of Principal Component Analysis (PCA) to select

the best features for their Deep Learning model was used. A fingerprinting

technique, that has proven to be more accurate in recent years, is a method of

prior knowledge initialization where a vector of RSSI values is collected over

time in a particular room, thus, profiling the environment in advance [29].

It is an adequate approach that allows achieving 1-2 meters accuracy, yet

it relies on the room environment being constant and may not be able to

provide consistently high performance [29]. The events that were targeted

in this approach can also be grouped into the two main classes, moving and

non-moving, which is the goal of our classification problem. Although it was

mentioned in [29] that they apply PCA for choosing better features for model

training, we intend to investigate the performance of such models based on raw

RSSI values obtained from the experiment. The best performance achieved for

activity recognition based on the action path is almost 80% accuracy, which

is what we will consider as a performance benchmark for our purposes.

2.2 Channel State Information

An alternative direction is to use Channel State Information (CSI) [19], [44],

[52], [57]. Activity tracking with CSI has proven to be more accurate than

RSSI, in fact, it can outperform the latter in most cases using just a single

device [19]. Nevertheless, devices supporting this type of measurement do still

require WiFi chipset [44].

Recent research involving CSI for human activity recognition reported
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in [57] proposed a deep neural network approach for classifying basic tasks,

such as lying, standing, sitting, i.e. static events, against walking and running,

i.e motion. The data collection process involved establishing a transmitting

and a receiving CSI enabled Access Point on a 5GHz network without inter-

ference from other networks, capturing CSI data on over 100 sub-carriers at 80

times per second. Several data collection rounds were executed in two different

environments, on consecutive days, to examine the extent to generalizing the

system. According to [57] a CSI “frame” in their work is a 114 sub-carrier

amplitude frames captured by the receiving node within the most recent 0.5

seconds, amounting to a 40x114 pixel ’image’. A sequence of Artificial Neural

Network (ANN) models is trained for representation learning, feature extrac-

tion and sequence learning. The ANN is a type of machine learning algorithm

that imitates the structure of a brain, where neurons contribute to an output

of the algorithm on different layers. Each CSI frame is passed to a trained

Auto-Encoder for reducing dimensionality, then output is passed to a CNN to

extract the most informative features which are passed to an LSTM network

for learning temporal dependencies to classify human action in that period of

time. Whereas the authors reported an average cross-validation accuracy of

97.4% outperforming previously proposed systems in true and false positive

rates too, they failed to demonstrate the generalization of their model to other

environments.

In this thesis, we are utilizing a similar architecture of ANN for time series

classification, but also examine the transferability of such complex models.

A different approach to CSI activity classification was proposed in [51] and

was one of the first works to pursue trying to solve localization, motion de-

tection and human micro-activity recognition together. The data collection

rate is similar to [57], 80 samples per second for over a hundred sub-carriers,

with an environment ’scanning’ approach. First, each time series is filtered

through low-pass and network quality filtering, which then is categorized into

CSI corresponding to a moving or static object. A CSI profile is considered to

have a moving object if a cumulative variance of each sub-carrier amplitude

is above the empirically determined threshold, the results obtained have 98%
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accuracy detecting moving and static objects. It is possible to further identify

user behaviour by matching a static CSI frame to previously collected profiles

for each activity. The procedure involves calculating a signal distance, such as

Earth Movers Distance (EMD) and compare to a pre-determined threshold.

This type of classification has been tested in a real environment, of a private

apartment, and demonstrated high accuracy, though, it has a number of lim-

itations. All experiments involved only one subject in a smart environment

which, though useful for private office spaces, is not representative of many

environments.

Gu et al. have examined CSI-based motion detection of people in a room

based on abnormality detection [19]. The main idea is to analyze the maximum

amplitude of CSI during the absence of movement in the room, and apply it

as a threshold for signal distortion caused by people’s motion. The algorithm

starts by capturing CSI data on 30 different sub-carriers which is then filtered

using a variation of a low-pass filtering technique described in [1].

Then, several subcarriers that are a better representation of the event are

chosen based on signal distance metric, since it is assumed that those will have

less noise in their readings. These streams are used for ”silence” detection

by measuring the mean and standard deviation of its ’silent’ states. Their

methodology was tested in a real office space with several students performing

regular activity throughout a 24 hour period with video recording serving as a

ground truth measure. The goal of the system was to identify macro-motions

of people with a duration of up to 15 seconds per motion; however, the authors

were not concerned if a duration of the movement is correctly identified by the

system. The reported accuracy of motion detection during the experiment

was 92% which outperformed other techniques also utilizing CSI data. The

work is solving a motion detection problem that is similar to ours, but by

detecting if a person has moved in a particular period of time rather than

detecting when people moved. Moreover, the author notes that the approach is

effective mainly for device-free cases since it ’scans’ the environment and could

suffer performance degradation if one of the transmitting/receiving nodes were

moving.
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Another alternative to automate decision making, on both RSSI and CSI

data, is to utilize Artificial Intelligence models, such as conventional machine

learning and deep learning. Multiple architectures of ANNs were compared

for time series classification tasks in [50]. The authors have provided a perfor-

mance comparison of wide, fully connected (FCN) and deep neural networks

for various time series classification tasks. They also illustrate key challenges

related to training each type of architecture and important insights into de-

veloping this kind of model.

Research in event detection for time series data has evolved from machine

learning to deep learning methods with the emergence of ANNs. Conventional

machine learning techniques rely on a number of features pre-processed from

the data as input to a model, known as a feature vector, then mapped to

a labelled output for classification of data. An alternative approach to fea-

ture defined machine learning models is to use neural network models, where

neurons are trained to learn features necessary for accurate classification [50].

Summarizing CSI-based motion detection systems, the majority of systems

does a more thorough work in categorizing human activity in comparison to

RSSI based methods. Nevertheless, it remains the case that the environ-

ment plays a very significant role in motion detection and mobile device-based

tracking is essentially an open problem for CSI-based systems. Moreover, it is

essential for our work to identify which devices were in motion, and in partic-

ular, during which intervals they could be classified as moving. Experiments

conducted for this research contain a varying number of people and devices

creating a more representative real-world setting.

2.3 Indoor Localization as Activity Estima-

tion

A significant component of the presented work is whether an object is mov-

ing both in the visual and in the radio signal domain, i.e. by implication

deciding if a device or a person is moving or static. Several researchers in

the field of sensor networks have proposed solutions to indoor localization
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problem using RSSI [29], [47], [58]. It is reasonable to think that change in

location of an object means that the object has moved, so any localization

algorithm automatically may provide a solution to our sub-problem. Never-

theless, many RSSI-based solutions cannot achieve high localization accuracy

or require extensive learning of an environment beforehand [47], [56]. Oth-

erwise, localization algorithms may not be as efficient which may result in

delayed motion classification due to late displacement detection. Closely re-

lated work, in [58], aims at identifying a user by associating a wireless device

to the user. One of their main assumptions is that a mobile device, a smart-

phone, is carried by a user, thus, identifying them as a person. The system

distinguishes static, e.g. office computer, and personal mobile devices, to asso-

ciate user identity obtained through ’known’ work PC to a user’s smartphone.

First, it was essential for them to discard temporarily appearing devices, that

do not belong to the building floor; this is implemented through localizing

devices overnight. Next, the system distinguishes between mobile and static

devices to separate personal and work equipment. Then, since most of the

static devices are surrounded by other computers, a better location estimate

is obtained by applying a filtering technique. Finally, the standard deviation

of location estimate and a distance threshold was used to associate a user to

an office PC. The authors proposed the system as an application of an indoor

localization service proposed in [56] which is also based on device-free CSI

scanning of the environment. Impressive user association accuracy of 95.8%

across 24 static devices was reported, yet did not report a precise percentage

of correct mobile phone associations. The evaluation experiment was set on a

building’s floor with a combination of personal offices (one person per room)

and shared cubicles of up to 4 people. The indoor localization error of the

system proposed in [56] was lower than 2 meter which may allow estimating

device motion between rooms more accurately than intra-room motion.

Most indoor localization systems utilizing either RSSI or CSI sensing pro-

vide accuracy of up to 2 meters, which is useful only for macro inter-room

movement as was shown in [29], [58]. In the state-of-the-art device-free, CSI

based HAR systems better accuracy at localizing objects is claimed, yet this
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does not help to identify them, i.e. the AP measurements may not be able

to distinguish which device is causing a ’distortion’ at which point. Moreover,

these systems may still underperform in a smaller indoor space room due to

shorter motion intervals and distortions caused by the other moving devices;

thus, aiming at solving mobility detection problems directly with RSSI values

from each device may improve overall motion detection accuracy.

2.4 Motion Detection using Computer Vision

(CV)

Motion estimation using CV techniques can also be grouped into several cate-

gories. There is a group of methods that compute the difference in pixel values

as an indication of a change in the environment, identifying outlying values for

a particular pixel, known as background subtraction approach [7]. Other CV

algorithms can be grouped as detection based methodologies, where an object

is being detected and then motion is calculated based on its track [8], [10]. A

technique for multiple object tracking using high-resolution cameras, that has

been around for more than a couple of decades is foreground estimation or

background subtraction algorithms [53]. The idea behind such an algorithm

is to create a binary mask of an input image where a pixel is white, i.e fore-

ground, in case there is a strong deviation from a previous frame value. The

output mask is then analyzed to detect the so-called “blobs” of white pixels

as objects detected when the area is substantial. Each blob detected through-

out a sequence of frames is associated with a track, and a series of detections

is a single tracked object. A similar method that can be used to generate a

foreground mask is Optical Flow [7], which estimates the motion of each pixel

from frame to frame.

A number of object tracking methodologies rely on continuous object de-

tection and handling missing detection in frames by using various filtering

techniques, such as Kalman Filter [9]. Possible bottlenecks for object tracking

are object detection related issues, such as object occlusion, track mislabelling,

etc. [7]. In this thesis, we adopt recent state-of-the-art CV techniques for
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identifying people in a room and tracking their motion throughout the scene.

An example of Foreground detection based system was proposed in [17]

for monitoring museum visitors and improving the user experience. The basic

idea of the paper was to model a background image and subtract it from a

current frame and analyze for significant changes to label it as a foreground. A

histogram of possible pixel values was collected over a period of 120 frames, for

each pixel in an image sequence. These histograms were used for the Gaussian

Mixture model fitting for estimating the probability density function (PDF)

of each pixel value. Bayesian inference utilized the PDFs to calculate the

probability of a pixel belonging to a foreground mask, where one would indicate

it as being foreground, and zero as a background pixel. Such a foreground

image provides several segments, the “blobs”, indicating a moving object. The

scope of [17] was to analyze statistically the area and connected components

of each blob to identify bounding boxes. The new objects are then initialized

with a Kalman Filter, a filtering technique that allows estimating the physical

state of a system. The filtering technique follows a constant velocity model,

where a moving object, if not detected in the frame, is assumed to proceed

with the same speed as in the previous frames. This approach allows us to

predict the location of an object and can improve tracking accuracy. The

proposed approach demonstrated robustness for a busy period of several days

in an indoor environment with a single camera point of view.

A different group of CV algorithms utilizes features, such as color histogram

(HOG), edges, corner pixels, morphology etc., extracted from a particular

region of interest [7], [24]. These features are detected throughout a video

sequence and matched together to create a track of an object. The last group

of CV methods also relies on features, but it does not explicitly track those in

each frame [8]. There are many deep neural networks and classification models

which aim at learning patterns from training on time series data [10]. Most

object detection models are based on raw image pixel input to a convolution

neural network architecture specific to particular applications, such as outdoor

pedestrian detection, object classification, human and face recognition, etc.

A widely used approach for object classification in an image, was proposed
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in [16] which allows robust detection and tracking of multiple people in an

environment. A form of Fully-Convolutional Networks (FCN), a form of Neu-

ral Networks, which is trained to produce a region of interest (ROI) type of

output was used [16], trained on top of the VGG16 [39], a deep Neural Net-

work architecture, with 16 layers. The method was able to successfully detect

and classify objects, such as people, buses, roads, etc. Nevertheless, the com-

putation rate was five frames per second possibly due to a heavy amount of

computations for the particular NVidia GPU to handle.

2.5 Sensor Data Fusion

A key element of our work is properly associating moving objects detected by

the CV algorithm to a MAC address of a device that was in motion during

the same period of time. There are several approaches to coupling different

sensor streams based on the “similarity” of such events [3], [37]. The work

in [3] describes coupling of data streams from different sensors having a time

drift due to limited computation power. It relies on several known signal

processing techniques, such as Dynamic Time Warping (DTW) and Earth

Movers Distance (EMD) metrics to estimate information difference in sensor

readings. The idea is that DTW determines the closest patterns in a time series

and treats them as similar events represented as the nodes in a graph where the

distance is a weight of edges. Therefore, solving the shortest path problem in

that graph will yield a solution, synchronizing several streams simultaneously.

In DTW, it is necessary to choose a starting and a final node the time series

that has the most accurate time, since it will serve as a reference to other

streams. The work in [3] exposes key challenges and assumptions made in a

time series and performs event coupling across similar sensors’ data.

Continuing on event coupling, there has been recent research on coupling

dissimilar streams, such as camera and accelerometer data worn by a user [37].

The work has continued on the sensor coupling approach, yet they address

event classification in a different fashion, such as actual human activities rather

than quantifying it with respect to entropy. In [37], activities are first clas-
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sified with a Support Vector Machine (SVM) algorithm, then the distance is

calculated on those events and then uses a graph shortest path solution similar

to [3]. The approach will be more relevant to our work due to the similarity

of sensing modalities and scope of research. The prototype of the system built

according to the framework proposed in this thesis will be compared against

other RSSI and device-based activity detection methods, such as [48] and [49].
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Chapter 3

Data Set Collection

We have conducted two preparatory and two realistic, for a total of four, data

collection experiments. The preparatory data is collected in a specific con-

trived way that is more useful for machine learning model training and proba-

bility distribution calculation. The realistic data experiments are scripted, but

representative of real indoor environments. Each experiment took place at a

conference room during off-peak hours, where we assume external interference

is minimal. The room layout is shown in Figure 3.1, and an approximate floor

plan is shown in Figure 3.2. The dimensions of the room are 8 by 10 meters.

There is only one individual in both of the preparatory data collection experi-

ments but various mobile device models are used. In the realistic experiments,

the first involved two individuals and three mobile devices (smartphones), and

the second involved three individuals and five mobile devices. There are eight

terminal (green) and six intermediate (yellow) locations in the room for the in-

dividuals to walk between during the realistic experiments, as shown in Figure

3.2. The terminal locations represent the start and end points of a movement

trajectory, while the intermediate locations are used as markers for the in-

dividuals to follow consistent paths. These paths are designed, specifically,

for challenging the visual domain with the object occlusion, i.e. losing an

individual in the video.

A total of four APs acting purely as packet sniffers were placed at fixed

locations in every corner of the room and four cameras are installed at the same

spots. The APs are TP-Link AC 1750 Archer C7, a commercial off-the-shelf
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Figure 3.1: Conference Room Layout. (Notice lit up synchronisation beacon.)

device, put to “monitor” mode which allows capturing wireless frames on WiFi

channels. The operating system used on the devices was OpenWRT version

18.03 with tcpdump software version 4.9.2, the latest stable release at that

time. The tcpdump packet analyzer is a command that can parse the contents

of the received wireless packets and report it in a human-readable format. A

packet can contain timestamps, source, destination of wireless transmissions,

length of packets in bytes, type of wireless frame, data load, RSSI on one or

multiple antennas, and several other useful attributes. The routers can operate

in 2.4 GHz and 5 GHz frequencies, yet in this experiment, they were set to

“listen” transmissions on the lower frequency. Although the majority of recent

smartphones support 5GHz WiFi, it is not the case among wearable devices

due to the need to keep device costs low. The other component of our setup

are high definition (720p) indoor IP cameras; type C1 by Foscam with a 23

fps rate, supporting both wireless and wired connections. For the reported

experiments all sniffers and cameras were connected through Ethernet leaving

the wireless interfaces unused to reduce potential interference.

The last component, a synchronisation beacon was custom-built and used

to ensure that time is synchronised across multiple sensing devices and different
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Figure 3.2: Floor plan of the conference room.

data streams. The beacon is put right in the middle of the room and operates

as follows: it simultaneously emits a signal observable in both domains, visual

and RF domains. The beacon frame transmitted follow an increasing sequence

number expressed as SSID. The Beacons are part of the packet capture pro-

duced by the sniffers (APs). The synchronisation beacons strobes an LED

light inside a spherical diffuser, visible in the visual domain. An example of a

visible light emission can be seen in Figure 3.1 in the center of the image. The
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Figure 3.3: Term description for Time Synchronisation. Sync Packet is a SSID
beacon from synchronisation node, and RSSI Packet is a transmission from a
device.

timestamp, at which a frame is send with lit up synchronisation beacon, was

recorded at the cameras, serves as a time reference and allows to correspond

the frames to the packet trace captured Beacons.

3.1 RSSI data

Each mobile device is associated with an access point on channel 1, and set

to transmit at least five packets per second, relying on a simple ping request

to a routerAP, mimicking how a mobile device would connect to the WiFi

infrastructure of a building. This is not always the case in a real environment

since a device may rest in an idle, energy conserving mode which reduces

transmissions. However the majority of connected devices we used produced

comparable or multiple of the transmission rate we utilize. The reason for this

kind of behaviour is background processes present in many mobile application

which send data to the cloud. In our experiment, the devices did not have

Internet connectivity and hence the data transmissions were reduced to the

one produced by the repeated pings.

A sniffer captures the frames transmitted, each frame is labelled with the

router’s local estimate of time, and one or multiple RSSI levels depending on

the make of the AP. The chosen APs are marking each frame received with

four RSSI values, for three different antennas and one for the combined signal
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strength. Each RSSI measurement is of 1 dBm granularity and varies across

antennas on the same router. Before utilizing the RSSI data, it was necessary

to synchronise each router stream using the synchronisation node presented

earlier. A beacon frame from the synchronisation node is received every five

seconds with an SSID including a sequence number. These beacons receptions

serve as reference points for each of the four RSSI streams obtained from each

sniffer.

Time adjustment for a captured frame on one stream is calculated accord-

ing to the following formula:

frt =
rt

lt
(flt − si,lt) + si,rt, (3.1)

where si,rt is the reference time of the previously received synchronisation

beacon received before current frame, si+1,rt is the next beacon reference time,

si,lt is a sniffer’s local timestamp of the beacon frame, and flt and frt are

the received frames local and reference times. That is the synchronisation is

performed separately for each set of frames between each pair of successive

synchronisation beacons.

We assume that time synchronization errors accumulate evenly between

the received synchronisation beacon frames; thus, the time elapsed since last

received synchronisation frame in local estimate is proportional to the ref-

erence time passed since the last beacon. Thus, the RSSI and video streams

cannot get significantly out-of-sync to threaten the validity of our results. The

Figure 3.3 provides graphical description for each of the terms introduced in

the Equation 3.1.

3.2 RGB frames

The cameras were positioned at the corners of the room at a height of 2.2

meters. An example of a frame and field of view covering the room can be

seen in Figure 3.1 which was captured by one of the cameras. Each camera

captured 3 channel, Red-Green-Blue (RGB), 1280 by 720 pixel frames at a

constant rate of 23 fps, 110 degrees field of view. The cameras did not expe-

rience any loss in image frames; thus, every stream with a proper start and
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end frame alignment are assumed to be synchronised. The four video streams

initially were manually aligned according to the first and the last synchroni-

sation beacon lights seen in the image. We confirmed that the beacon light

is captured by the cameras at the same five second interval, corresponding to

115 frames as shown in Figure 3.4, by calculating amount of white foreground

pixels at the location on the image where the synchronisation beacon light is

located in each frame. The foreground image is obtained with a background

subtraction algorithm [46], which examines possible values of each pixel and

marks deviations as white or gray pixels. The algorithm was provided with

a region of interest (ROI), a particular portion of an image frame, with the

synchronisation beacon light, specified beforehand.

Figure 3.4: Example identification of when the synchronisation beacon lights
up (at peaks).

Figure 3.4 is an example of the analysis with a number of equidistant peaks,

which are caused by the visible light produced by the synchronisation beacon.

However, Figure 3.4 demonstrates only a fraction of an experiment when no

individual crossed through the ROI. In that case, the foreground contains a

significantly larger number of white pixels and the fluctuations that can be

associated with the beacon light are secondary. The first frame of video would

correspond to time zero of the experiment and the second is captured at time
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0.044 seconds and so on. Thus, we have, for each video stream, a total of

1035 seconds for the first experiment and 1875 seconds for the second.

3.3 RSSI Motion-based Data Collection

The four experiments are labelled and referenced in this thesis as 1, 2, 3, 4,

whereas realistic Experiments 3 and 4 are labelled with Roman numerals, I

and II, to represent realistic experiments.

The first preparatory experiment, Experiment 1, aims at producing a uni-

form data set for various smartphone types. The environment used is the same

as in the round of experiments depicted in Figure 3.1.

Having five different mobile devices we conduct an experiment with each

of the devices separately. For every device, an individual is moving between

fixed locations and stopping for the same amount of time, so we can collect

results at equal length intervals of moving and stationary dispositions. The

individual is always facing the receiver/AP which is collecting RSSI values of

the smartphone transmissions.

Each of those baseline data sets captures approximately 3 minutes of a

device motion and 3 minutes when there is no motion. The data streams

collected for every device are manually labelled on a frame by frame basis,

indicating 1 if a device was in motion within the last interval, and 0 otherwise.

The intervals are each 0.044 seconds long, reciprocal of frame rate. This data

will be used later by the Deep Learning model training. Each device’s mobility

patterns for the first two experiments were manually labelled from the camera

recordings. The data is presented in a form of interval, specifying time when

a device was in motion, one, or static, zero.

The collected packet data included synchronisation beacon frames as in the

previous experiments, and all packets were synchronised according to Equa-

tion 3.1.
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Figure 3.5: Static vs. Moving RSSI histograms for iPhone at 5m distance.

3.4 RSSI Distance-based Data Collection

The second experiment, Experiment 2, took place in the same room, yet for

each device individually. Two devices, namely iPhone Xs and Huawei 6P, were

chosen to collect data of RSSI fluctuations at various distances and states, such

as moving and static. Each device was placed 1, 2, 5 and 8.5 meters away from

a sniffer within the line of sight (LOS). Every distance measurement contained

500 RSSI samples gathered on the same day for static and 1500 for a device in

motion around that point. The motion is performed by an individual holding

the device and exercising constant left to right steps around the specified

location with range of 0.5 meters.

These experiments are executed with the purpose of obtaining a probability

density function for RSSI values given the state of a device: static or moving.

These probability estimates are used as likelihood estimation in a Bayesian

Inference equation that is proposed in later sections.

Figure 3.5 demonstrates a normalized histogram of RSSI values both when

moving and static at five-meter distance from an AP. As it can be seen, the

two cases have very distinct distributions and can be argued to approximately
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follow a Gaussian distribution around their means. A similar pattern can be

seen for other distances and for other devices. Combining RSSI measurements

for devices at various distances, we can see the RSSI distribution is more likely

to follow a bimodal distribution, rather than normal, as shown later in Figure

4.4. We used Gaussian Mixture models to fit the probability function into

the histogram data. The observed result in Figure 4.4 is likely to be due to a

better signal at closer distances, one and two meters distances from the AP.

3.5 Realistic Data Collection Scenarios

There are two real world experiments that were conducted for the system

performance evaluation. The two experiments described in this section are

conducted in the same room, but with different combinations of mobile devices

and individuals in the environment. They were designed to closely represent a

real world indoor environment. The mobile devices used in both experiments

are Apple iPhone Xs, Apple iPhone 6s, Xiaomi Redmi Note 5 and two Huawei

6P smartphones. Each device is connected to a 2.4 GHz AP on the same

channel as the sniffing APs and the synchronisation beacon. The individuals

were asked to move in the conference room between terminal positions (green)

while passing through intermediate (yellow) positions, as depicted in Figure

3.2. The behaviour of the individuals was natural without any restriction on

the length and speed of motion, or how they hold and carry the mobile device.

3.5.1 Experiment I

The first realistic experiment was conducted with a few limitations and a small

number of people and mobile devices. The total duration of the experiment

was 17.25 minutes (1035 seconds) with three stages each spanning five to six

minutes. During the first stage, two individuals start at locations one and eight

respectively, remaining static for some amount of time, then moving to the next

location. The next location was determined by ascending or descending order,

hence it would be location marked as two if a participant started from one,

and location marked as seven if started from eight. Each individual executed
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a total of three cycles moving between these locations, as an example, the first

individual’s path was one to eight to one to eight.

Three mobile devices were used, namely Huawei 6P (we label it as Device

1 in each RSSI stream), Xiaomi (as Device 2) and another Huawei 6P (as

Device 3). Each of these produces a number of wireless packets, captured by

the sniffers, which we label as Traces corresponding to the devices, i.e. Trace

1 is produced by the Device 1. The traces are then used to create RSSI time-

series, a sequence of measurements with an equidistant time interval between

the readings. As an example, a Time-Series 1 is formed with a time interval, δ,

of 0.044 seconds for the duration of the experiment, where RSSIt is the most

recent RSSI measurement from the Trace 1 recorded between t and t − δ. In

the case when no RSSI value was within the interval, the RSSIt is obtained

by duplicating RSSIt−δ. The frequency of missing RSSI measurements was

insignificant and constitutes approximately 30 samples per five minutes. The

two individuals would pick up and put devices as listed in Table 3.1. For

example, Xiaomi was held by individual 2 during the first five minutes of the

experiment, then it was placed at location one for the next stage. During

the last stage Trace 2 was generated by motion of individual 1 who also was

holding the device corresponding to Trace 1, i.e. Huawei 6P. The device which

produced Trace 3 was placed near location six and remained there for the

entire experiment. Descriptive statistics on received RSSI packets are reported

in Table 3.2.

Experiment stage Device 1 Device 2 Device 3
0 - 5 min Ind. 1 Ind. 2 Static
5 - 10 min Ind. 1 Static Static
10 - 15 min Ind. 1 Ind. 1 Static

Table 3.1: Generation of the traces and corresponding individual.

Data Attribute Trace 1 Trace 2 Trace 3
Number of Packets (thousands) 7.9 7.7 8
Movement Fraction (percent) 30 20 0

Table 3.2: General description of RSSI data for experiment 1.
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3.5.2 Experiment II

In the second experiment, we extended the duration of the experiment from

fifteen to thirty minutes. This time the individuals were moving randomly

between the locations. The experiment is improved by using a wider variety

of smartphones and number of individuals. The duration was increased to test

the performance of the proposed methods in a more complex environment.

This experiment is assumed to be a more accurate representation of the real

world example. Five mobile devices were used, namely Huawei 6P (Device 1),

a Xiaomi (Device 2), another Huawei 6P (Device 3), an iPhone XS (Device

4), and a Google Phone Pixel (Device 5). The three individuals would pick

up and put devices as it is listed in Table 3.3, where Ind. 1 corresponds to

Individual 1, noting that the individuals are not necessarily the same as those

completed Experiment I.

Experiment stage Device 1 Device 2 Device 3 Device 4 Device 5
0 - 5 min Static Ind. 2 Ind. 3 Ind. 4 Static
5 - 10 min Static Ind. 2 Ind. 3 Ind. 4 Static
10 - 15 min Ind. 4 Ind. 2 Ind. 3 Ind. 4 Static
15 - 20 min Ind. 4 Ind. 2 Ind. 3 Ind. 4 Static
20 - 25 min Ind. 2 Static Ind. 3 Static Static
25 - 30 min Ind. 2 Ind. 2 Ind. 3 Static Ind. 4

Table 3.3: Generation of the traces and corresponding individual, Experiment
II.

3.6 Ground Truth Annotation

All the experiments described previously were recorded with cameras for fur-

ther ground truth event labeling. The experiments were manually labelled

using video-annotation tools, ELAN and ANVIL, proposed in [25], [40] which

support frame-based multi-layer annotations. The video annotation software

allows users to select intervals and set a label for them. The motion pat-

terns of every device were labelled manually with one, if moving, and zero, if

static. Then, for every moving interval, another annotation layer with device-

to-individual association was added, where the labels indicate the individual
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carrying the device.
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Chapter 4

Methodology

4.1 Framework Overview

This chapter proposes a framework for a particular type of sensor fusion based

on the idea of motion pattern detection utilizing different sensing modalities.

The goal is to provide a data processing procedure with several reusable com-

ponents, given that they follow certain input and output specifications. Fig-

ure 4.1 demonstrates the general structure of the framework, where the two

sensor data analysis flows produce collections of moving individuals and/or

devices. This section describes various components and parameters of the

proposed framework.

We apply a thresholding method based on Coefficient of Variation (CoV),

Bayesian Inference, and Supervised Machine Learning algorithms to examine

RSSI data. The visual domain is analyzed using state-of-the-art object de-

tection and tracking algorithms. The two input streams of the framework are

video sequences and packet traces captured by the sniffers, and the output

is in the form of a similar video with individuals labelled with corresponding

devices’ unique identifiers. The following sections describe the methodologies

developed for analysis of these streams separately and completed with a simple

association technique of moving visual objects to devices in motion.
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Figure 4.1: Framework Overview.
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4.2 RSSI-based Device Motion Detection

Each packet sniffer captures incoming packets from a mobile device and collects

a timestamped samples.

4.2.1 Coefficient of Variation

The CoV is a (unitless) statistical measure of the relative standard deviation

of samples, the formula for which is shown in Equation 4.1. Consider S =

{sk|tp − tk < τ} where tp is the present time and τ is a predefined threshold,

where S is a set of RSSI measurements received within last τ seconds. The

CoV and a threshold is used for deciding if a device was in motion during that

interval. This method can serve as a benchmark for other approaches since it

is the least demanding in terms of computation.

Cv(S) =
σ(S)

μ(S)
(4.1)

where τ is 2 seconds in our case since it is sufficient to capture fluctuations in

RSSI produced by human motion.

Since we utilize camera time as the reference time for all streams, time

is incremented by 0.044 seconds at a frame rate of the visual sensor. For

each frame received by the camera, we evaluate the CoV of the RSSI samples

obtained from sniffers. Then, the sensor “decides” if a device started moving by

applying a constant threshold to each of the computed CoV streams. A motion

detection from each sniffer is compared with other streams for collaborative

decision. Aggregate vote is obtained by combining the decsions from all the

APs point of view on a frame-by-frame basis. We apply a Moving Average

Filter on the aggregate voting step’s result to smooth the final decision and

remove noisy detections. It is necessary to provide the system with a number

of votes considered as a majority. As a result we obtain a set of devices, motion

states and time intervals.

Figure 4.2 illustrates a calculated CoV stream during a particular stage of

experiment for a Huawei Nexus 6P device. From the figure, it can be seen that

there is a correlation between CoV and a device motion, which is labelled as
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Figure 4.2: CoV time series pertaining to a single RSSI stream vs. the ground
truth for a Huawei Nexus 6P.

the ground truth in the image. There is also a number of spikes present for a

short period of time which is one of the reasons for applying moving average

filter later on. Thresholding this time-series produces a frame-based decision

from a single AP point of view.

We have examined various window sizes for the Moving Average filter de-

scribed previously, and presented the result for the two different devices in

Figure 4.3. As it can be seen from the figure, both the decisions on both

devices are more accurate with a four second window time interval.

4.2.2 Bayesian inference

An alternative approach that was used for RSSI analysis is Bayesian Infer-

ence. This approach provides a probabilistic estimate of a device motion. We

calculate the probability of a moving device according to the formula given in

Equation 4.2. The Equation 4.2 is derived from the generalized Bayes Theo-

rem, where the goal is to determine probability of a device moving provided

that the system observed a sequence of the RSSI value at any time slot i + 1

depends on the RSSI at the previous time slot and the conditional probability

follows normal distribution. We also assume that The RSSI value at time slot
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Figure 4.3: Moving Average filter window size vs detection accuracy.

i + 1 is independent of all previous measured RSSI values given the RSSI at

time i. We can write the posterior as

P (M |RSSIi, RSSIi+1) =
P (RSSIi+1|RSSIi,M) ∗ P (RSSIi|M) ∗ P (M)

P (RSSIi, RSSIi+1)
(4.2)

where P (RSSIi, RSSIi+1) = P (RSSIi+1|RSSIi, Sj)∗P (RSSIi|Sj) and P (M)

is the probability of being in the moving state, i.e, the likelihood.

Each term in the above formula can be estimated from the measurements

(empirically). In Section 3 we have explained the data collection process for es-

timating static and moving device’s RSSI probability density function (PDF).

The PDF explains the probability of an RSSI value given that it is moving

or static, P (RSSIi|M = Moving) in the Equation 4.2. A similar distribu-

tion was used for calculating P (RSSIi|M = Static). The joint probability

P (RSSIi, RSSIi+1) is obtained through the sum of probability distributions

of the RSSI values in static and moving states that is:

P (RSSIi, RSSIi+1) =
∑

M∈{Static,Moving}
P (RSSIi+1, RSSIi,M) (4.3)

A moving device’s RSSI values are more likely to follow a normal distribu-

tion as it is evident from Figure 4.5. However, a static device’s histogram of

RSSI values follows bimodal distribution as it can be seen from Figure 4.4.
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Figure 4.4: Histogram of RSSI values for a static device vs Gaussian Mixture
Model fit (Device 1). The similar pattern can be observed in other devices.

Figure 4.5: Histogram of RSSI values for Device 1 vs Normal distribution fit.
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4.2.3 Supervised Learning methods

A class of machine learning algorithms, which “learn” dependencies for clas-

sifying inputs according to an expected output, is referred to as supervised.

Support Vector Machine algorithm is a type of a supervised learning which

requires ground truth data to train the model. Since we are looking at time

varying data and want to capture changes in signal, we utilize motion indica-

tors such as variance of RSSI, standard deviation and coefficient of variation.

There are three features for each sniffer’s antenna stream; 36 features to train

in total, 3 antennas by 4 APs by 3 features.

We train the model on the data collected from the motion-based experiment

data. The data captures proportions of the original data, containing around

50 percent of motion data. The time-series contains the 36 features for each

timestep and a device motion label corresponding to that period of time. The

36 features that were computed previously are used as input to the SVM

algorithm and motion label as the expected output.

4.2.4 Recurrent Neural Networks

We have collected a data of RSSI from all different mobile device manufacturers

as a training set. The data is used to train Neural Network models for each

of the devices to classify motion or no motion in the WiFi domain. The

deep learning methods had proven to achieve high performance for time series

classification as reported in [52].

One of the properties of Recurrent Neural Networks (RNNs) is their ability

to ”learn” key features for classification and other purposes, so a developer does

not have to derive new data from existing source. This can result in better

performance due to unlimited data insights obtained from raw data, yet it may

require larger volume of training data.

In our work we use data of different length for each of mobile devices

with similar motion patterns, taken from the same data set as the testing

set, to be used as a learning data set. The training set size is determined by

the number of mobile devices present in each experiment, thus, Experiment I
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Figure 4.6: Structure of the Recurrent Neural Network used for RSSI time-
series classification in moving and static states.

can have up to 70% of it’s duration used for training purposes, amounting

to 1400 half-second intervals in 1035 second experiment by 23 RSSI samples

by 12 AP antennas by 3 mobile devices’, total over 4000 samples. Moreover,

the data collection experiment described in Section 3.3 can provide us with

additional 600 samples per device. The RNN we build consists of a single

Long Short Term Memory (LSTM) layer and a Fully Connected layers with

Rectified Linear Unit (ReLU) activation function.

Our implementation of the machine learning models relies on TensorFlow

and Keras python libraries [12], [43].
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Chapter 5

Moving Object Tracking

The goal of Multiple Object Tracking (MOT) systems is to identify a particular

object throughout a sequence of frames. The problem is different from a single

object tracking since the system may not be informed about the objects to be

tracked. Therefore, it is necessary to identify and track objects based on

certain properties, such as visual features or motion.

We use state-of-the-art computer vision algorithms to detect moving peo-

ple in a scene. A video recorded for the experiments is a sequence of RGB

frames captured at a regular time interval, every 1
23

seconds in our case. The

general idea of object tracking can be explained through object detection and

association in a frame sequence. Detecting moving individuals in the scene

can be done using two approaches: looking at the changes in the scene or

identifying a person like objects in an image. Both cases have been studied

extensively and a number of solutions have been proposed in each case. In

this thesis, we utilize the state-of-the-art approaches presented in MOT chal-

lenges [5], [36]. The competitors are given a number of video sequences with

various length and environment conditions. The goal of the challenges is to

propose a solution which can identify and track as many people in the scene

as possible, though challenged by occlusion, moving camera and number of

individuals.

The first object detection approach we consider relies on fluctuations in

pixel values to calculate the foreground mask, i.e. an image with black pixels as

a background, and analyze it to detect objects. The second is a more complex
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approach to object detection where a machine learning model is trained to

“search” for particular objects, such people standing still in a given frame.

Then, after each frame is analyzed for objects in the scene, it is necessary

to associate the identified objects across multiple frames to create a track of

detections. However, an individual may not be identified in a frame causing

disturbances in object tracking. The problem can be mitigated, in some cases,

with filtering.

This chapter describes a method for multiple individual tracking using

RGB cameras in an indoor environment. Here we explain the details of Back-

ground Subtraction and state-of-the-art Pedestrian Tracking methods used

for object detection. Then, we apply a filtering technique, namely Kalman

Filtering, to estimate possible object location when the objects are not de-

tected. The next objective for the system is to track the identified object

along the frames by associating detections to known sequence of boxes in

different frames. Finally, the tracks historical information is used for object

motion detection and combined with the moving devices data to associate one

to another. Note that we do not exploit the multiple cameras, and instead

focus on processing carried out from a single camera point-of-view.

5.1 Object Detection

The first step in object tracking is to detect the object, in our case an in-

dividual, based on either motion or visual features. A representation of ob-

ject detection in a visual domain is a bounding box, bi ∈ B, in the form of

(xi, yi, wi, hi). The x and y are the coordinates of the top left corner in an

image, B is a set of all bounding boxes for a frame and wi and hi are corre-

sponding width and height of each box. These bounding boxes are the output

of object detection algorithms described below.

Object detection in a frame with motion typically utilizes statistical anal-

ysis of the foreground mask, such as the number of connected components,

and the area and centroid calculation [33]. We first describe the methodology

adopted in this work to detect motion in a room: for each camera stream,
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we analyze a sequence of frames to detect moving objects, then track these

objects along the sequence of frames by using a Kalman Filter.

5.1.1 Foreground Detection

Gaussian Mixture Models are used to model values for each pixel to classify

later as a part of the background following the method proposed in [17]. A

moving individual can cause deviations in modelled pixel values, which is la-

belled as a foreground mask, i.e., white pixels in a black and white image.

Figure 5.1 demonstrates an example of object detection done by background

subtraction and blob analysis. The mask is then analyzed for connected com-

ponents and their areas to identify moving objects. A certain threshold value

for the area can be set to reduce spurious detections in noisy foreground. If

a component has an area larger than the threshold it can be considered as a

detection.

Figure 5.1: Left: Raw, Center: Foreground Mask, Right: Object Detec-
tions.

5.1.2 Pedestrian Tracking Model

Another approach to visual object tracking is to utilize pre-trained deep neu-

ral networks, such as in the methods mentioned in [16], [39]. State-of-the-art

methods are proposed as a part of Multiple-Object Tracking (MOT) challenge

where the goal is to detect and track moving individuals in an outdoor envi-

ronment [34]. There was a number of top performing solutions presented, yet

the implementations of several of them were not available at the time of writ-

ing this thesis. Therefore, we proceeded with one of the top three contenders,

the method presented in [5] which is considered to perform multiple object
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tracking in real-time on a node with a specific configuration. The processing

in [5] was done with the help of Graphical Processing Unit (GPU), in particu-

lar NVidia Titan X GPU. The algorithm processes video frames and provides

bounding boxes for the identified objects.

The main idea of this kind of algorithms is to classify objects by their type

from an image frame, such as person, dog, cat and etc. An assumption present

is that objects follow a particular visual structure that can be recognized by a

machine learning algorithm. For example, a distinct structure of upper body

can indicate that there is a person in the frame. There are models, such

as [39], which are trained to detect and classify a number of objects, yet some

are specifically designed to identify standing people. In our work, we utilize

one of the pedestrian tracking models for outdoor and indoor environments,

since it is more related to the scope of this thesis.

The object detection model takes an RGB frame as input and produces

a collection of bounding boxes for each person object. Since the objects can

overlap each other and provide duplicate detections, it is necessary to choose

the one with the highest confidence level.

5.2 Kalman Filter

Kalman Filter is a method for a system state estimation that can be used

to predict the system state in the next time step or identifying outliers, i.e.

erroneous associations in object tracking [9].

The state of a dynamical system can be described by Equation 5.1

si = Asi−1 + wi−1 (5.1)

mi = Csi + qi−1, (5.2)

where, i is the time index, si =
[
xi ẋi yi ẏi

]�
is a vector that contains the

coordinates and corresponding velocities of the object, mi is an observation

obtained from sensors set up in an environment.

The matrix A in Equation 5.1 represents the state transition model, i.e.,

how the system is expected to change between two successive samples. Vectors
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w and q are the process and measurement noises assumed to follow Gaussian

processes and modelled through normal distribution.

We utilize Kalman Filter on a frame basis which predicts current estimate

of the system state based on previous measurements, rather than recalculating

the entire sequence of detected objects.

The filter provides a moving object’s coordinates in the frame which can

be used as a synthetic object detection and for smoothing the trajectory of

movement. The predicted location can also be used for track association with

objects detected in the current frame.

In the active scene, the motion-based object detection algorithm is used to

identify regions in the current frame. A Kalman Filter is used to predict the

new location of a previously identified object [9]. The prediction and correction

steps are defined in Equations 5.3 and 5.4. The prediction is based on our

expectation of the system, A, transition model and the state in the previous

time step, si−1. We utilize a Constant Velocity model which is commonly used

in object tracking systems with Kalman Filter [35]. The model is expressed

as A =

[
1 Δt
0 1

]
, where Δt is the length of the interval between two successive

samples.

ŝi = Asi−1 (5.3)

si = ŝi +K(mi − Cŝi) (5.4)

The update Equation in 5.4, essentially, combines predicted and measured

states. The rationale behind the formula is to use expected system state

to filter possible process and measurement noises. The Kalman Gain, K in

Equation 5.4, is a special term which can provide preference, towards either

the measurement term or the current state estimate. This parameter can

provide more responsive behaviour of the filter and tuned to achieve better

results. Nevertheless, an optimal Kalman Gain is calculated through the co-

variance matrix of errors between estimated and measured states. Object to

track association is then performed based on minimizing the distance between
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detections and tracks.

5.3 Track Association

A track in the MOT problem is a sequence of bounding boxes, such that each

bi identifies the same object over a sequence of frames. For each object, bi

with i as object index, and track, rj where j is a track index, we compute a

distance matrix where each entry represents a “cost” of association between

track and object. If there is no track identified yet, each bounding box serves

as an initial entry in the track sequence. The distance is defined as

d(bi, rj) =
√

(xbi − xrj)
2 + (ybi − yrj)

2 (5.5)

A cost matrix is computed by Equation 5.6

D =

⎡
⎢⎢⎣
d(b1, t1) d(b1, t2) ... d(b1, tj)
d(b2, t1) d(b2, t2) ... d(b2, tj)

...
d(bi, t1) d(bi, t2) ... d(bi, tj)

⎤
⎥⎥⎦ (5.6)

The D matrix explained in Equation 5.6 represents a “cost“ of association

of tracks to the detected boxes. The main goal is to determine the “cheap-

est” association for each of the tracks, solving it with a greedy algorithm, i.e.,

providing sub-optimal solution for each of the tracks. Since the distance repre-

sents the Euclidean distance between detected object and last box of the track,

the optimization goal is to match the objects that are closer to each other. The

distances are computed from the boxes coordinates in the images. The objec-

tive is to minimize the total “cost” of box to track association, such that a

bounding box, bi, is mapped to at most one track, ti, and no track can have

two detections assigned to it. In case there is more detections than current

tracks, unassociated boxes are considered as new tracks, whereas unassociated

tracks utilize Kalman Filter prediction as a box in current frame.
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5.4 Device-to-Individual Mapping

The last component of the identification is to “attach” possession of a device

to moving individuals. The two data flows provide similar information in the

form of: {pi|pi ∈ P, if pi moving, where pi = (MACi, sti, cti)} - is a set of

moving devices, {ri|ri ∈ T, if ti moving, where ti = (Boxi, sti, cti)} - is a

set of moving individuals, and sti, cti indicate starting and ending times. The

time intervals are used to determine how close the motion events are in the

scene, what is the duration of those and how devices’ motion patterns might

correlate.

If the events ensue with a significant time differnece they are possibly

unrelated. The assignment threshold, τ , serves the purpose of disassociating

events that occurred in an interval of more than half a second.
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Chapter 6

Results

This chapter presents the results of our methodology, thereby demonstrating

the performance of each sensor modality. We provide results for the two re-

alistic data experiments conducted in a conference room using the process of

data collection presented in Chapter 3.

We use several standard performance metrics, such as accuracy, precision,

recall and f-score which we define next. Depending on the sensing modality,

visual or RSSI, we define the correct identification of device’s motion (RSSI)

in a particular time interval as a true positive (TP). A true negative (TN) is

the opposite, a device is static and the AP consensus finds it static. We define

a false negative (FN) as a decision that a device is deemed static, although it

is, actually, in motion. A false positive (FP) is exactly the opposite of that.

CV modality has a different definition for TP, TN, FN and FP which is due

to the type of output the algorithms provide. Since our methodology is based

on individuals’ motion events, it is reasonable to label a TP if the number of

moving objects matches the quantity of tracked objects. We note that this is

a stricter definition of TP compared to defining it for when there is at least

one moving object, but not necessarily the correct number of objects. A TN

will be an event when the object is detected, but remains static. We do not

consider undetected static objects as TP because of several possible reasons

it might be undetected, such as having small “blob” size or being occluded,

while being in motion. Therefore, TP for CV is a correct identification of the

number of moving people in the scene, and a TN is identification of static
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individuals in the scene. FNs are the detections which are considered to be

static, whereas they are actually moving, and FP is the oposite, at least one

static person is identified as moving.

Equations for the accuracy, precision and recall are shown below:

Accuracy =
TP + TN

TP + FP + FN + TN
(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

F1− Score = 2
Recall ∗ Precision

Recall + Precision
(6.4)

Since our methodology derives devices’ or individuals’ motion on a frame

by frame basis, we label the decisions accordingly on a per-frame basis. Below

we describe analysis results in each component of the framework, RSSI and

CV, and explain how the methodologies differ in terms of data preparation.

6.1 Motion Detection with RSSI

This section describes the results of RSSI time series analysis for device motion

detection using a variety of methods. The CoV thresholding and multiple AP

voting scheme are used as a benchmark for other methods since they require

the least amount of computation. This method requires parameter tuning, in

particular, providing thresholds for a number of decision points which is not

ideal for a generalised system architecture. It is possible that the threshold

values need to be adjusted to perform in different environments; thus, making

the solution not applicable to some cases.

We subsequently use a conventional machine learning (ML) classification

methods, such as Support Vector Machine (SVM). These methods still depend

on the features chosen by user, yet it can be trained with little user involve-

ment. The performance of the model depends on the amount of training data
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Table 6.1: Overview of the methods presented in this section for RSSI analysis.
Methodology Training Performance Computation

CoV Only Tuning Satisfactory Low
SVM Yes Good Moderate
RNN Yes Great Heavy

Bayesian Inference Yes Inconclusive Low

and how features correlate with each other, and with the motion label (i.e.,

the ground truth). These methods were described in Chapter 4.

The limitation of manual feature engineering is that it relies on insights

of the model designer. Thus, we adopt with a more complex ML method,

Recurrent Neural Networks (RNNs), which can analyze raw data, automati-

cally exrtract meaningful features, infer useful correlations on their own and

build the most suitable model. Finally, we compare the results obtained from

these methods to the Bayesian Inference approach where a device’s motion is

deduced based historical conditional distribution of RSSI values.

Table 6.1 demonstrates a brief overview of all the models discussed here

for RSSI motion detection. Several algorithms provide “Good” performance

for the motion detection of the devices, yet we proceed with SVM, due to

a number of reasons. SVM requires significantly less computation resources

for training the model, generating features and validation. SVM provides a

comparable result for multiple devices and on average requires less training

data.

6.1.1 Coefficient of Variation

The Coefficient of Variation (CoV) is a ratio of the standard deviation of a

sample set to its mean, which is also known as relative standard deviation. In

other words it can show how significantly the RSSI values fluctuate with re-

spect to the average of the recent samples. We utilize the CoV of RSSI values

to decide if a device is moving. This gives us a more reliable detection com-

pared to standard deviation because the CoV represents relative fluctuations

in the RSSI.

Firstly, we needed to identify CoV thresholds for each sniffer/AP and their
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Figure 6.1: An example of a low CoV threshold chosen for motion decision,
Device 2. Red line indicates intervals where ground truth indicates movement.

antennas to choose the best performing one out of the three antennas each

AP possesses. We utilized the previously mentioned performance metrics to

indicate the better performing antenna first and then use those antennas for

finding the threshold. The APs are treated separately and only antennas in

the sniffer are compared to each other. Then, for each sniffer, there is a custom

CoV threshold determined according to the metrics. An example for one such

antenna is shown at Figure 6.1. Here a low value for CoV threshold was

chosen resulting into multiple FPs, moreover worsened by disturbed moving

intervals. The choice of threshold was done experimentally by comparing the

output decision to the ground truth, to maximize the overlap of decision made

by an AP and the latter.

Combination of multiple APs decisions is done by aggregating “votes” on

every device’s motion on a frame-by-frame basis. An example of aggregated

voting of the APs on the device motions is shown in Figure 6.2, where the y-

axis corresponds to the number of APs determining that the device is moving.

It can be seen that the aggregate decision also has several disturbed inter-

vals. This motivated us to apply a filtering technique which can smooth out

irregularities in the decision and compare with the ground truth.

Thresholding CoV alone resulted in identifying many disjoint intervals of
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Figure 6.2: An example of unfiltered aggregate voting, Device 2.

device’s motion, which was addressed by application of a Moving Average

(MA) filter. The filter is applied onto the aggregate vote, such as the one

illustrated in Figure 6.2. The size of the sample set used for calculation of the

MA filter is determined according to Figure 6.4. It can be seen from the graphs

that its performance flattens after the four-second window size, i.e., longer

history may not provide significantly better results, and, furthermore, delays

AP consensus calculation, if it were to be performed in real-time. The results

of determining whether a device is moving are provided in Figures 6.5 and 6.6.

There are still several erroneous detections for a short interval of time, which

could have appeared due to signal fading. The phenomenon is related to multi-

path propagation of signal which deteriorates in more cluttered environments.

Next, we examine an appropriate threshold for reaching consenus among

APs for a device motion in a given time step. It was essential to understand

if a single AP decision is more efficient than the agreement of multiple APs

scheme. The reason is that a single AP may have a “cleaner” view of RSSI

fluctuations due to, for example, a proper line-of-sight or a closer proximity of

its transceiver. Nevertheless, Figure 6.3 demonstrates that the majority voting

is a better option for a collaborative motion detection consensus. The majority

AP consensus decides if a device is in motion, otherwise, it is considered static.

Analyzing the performance of AP consensus on device motion detection
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Figure 6.3: Performance of multiple AP consensus with relation to the con-
sensus vote threshold and CoV threshold uniformity. AA represents antenna-
agnostic, AD is antenna-dependent CoV threshold.

during different intervals of Experiment I, it was observed that certain inter-

vals produced more favorable results in terms of motion detection than others.

Tables 6.2 and 6.3 demonstrate a similar picture in performance of motion

detection for both devices. Precision and recall are above average in both de-

vices for the first five minutes, during which each individual was holding only

one device. The best performance can be observed for the second five minute

interval of the experiment, when only one device was held by an individual

and the others were at rest. We remark that for the interval when the device

was static, interval 5-10 minutes in Table 6.3, no TP events were possible,

yet the TN rate was 0.99. The last interval of the experiment has the worst

precision, recall and accuracy, and it is when an individual picked up Device 2

and held it through the rest of the experiment. We believe that this behaviour

can be attributed to the close distance between the devices and consequent

signal fading before reaching APs. It is also because of this interval that the

overall performance drops significantly. Omitting this portion of the experi-

ment would result in the performance comparable to the first five minutes of

the experiment.
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Table 6.2: Results for various experiment intervals of Experiment I (Device 1).
Interval Precision F-Score Recall

0-5 minutes 0.59 0.62 0.65
5-10 minutes 0.61 0.71 0.87
10-15 minutes 0.30 0.37 0.49

Entire experiment 0.48 0.56 0.67

Table 6.3: Results for various experiment intervals of Experiment I (Device 2).
Intervals Precision F-Score Recall

0-5 minutes 0.92 0.87 0.82
5-10 minutes1 0 0 0
10-15 minutes 0.50 0.54 0.59

Entire experiment 0.67 0.69 0.71

Figure 6.4: The effect of Moving Average Window Size on Performance.
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Figure 6.5: AP Consensus vs Ground Truth Motion, Device 1, Experiment I.
Red line indicates intervals where ground truth indicates movement.

Figure 6.6: Overview of thresholding technique for movement detection based
on CoV values, Device 2, Experiment I. Red line indicates intervals where
ground truth indicates movement.
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Table 6.4: Features engineered from the RSSI time-series.
Feature per time-series Equation

Standard deviation,σ

√∑
(xi−X)2

N

Variance, σ2
∑

(xi−X)2

N

CoV, cv
σ
μ

6.1.2 SVM

The previous methodology required careful choice of thresholds for each of the

AP antennas, the number of AP to be considered as a majority, and the MA

filter size. In this subsection we describe results of training a supervised ML

model, SVM which we introduced in Chapter 4, the features used, and provide

the performance against the training set size. The features are displayed in

Table 6.4, which are derived from each of the APs’ antennas, totaling 12 by 3,

36 features.

Next we provide comparison of the model performance where only mea-

surements of one antenna from each AP were chosen. We tested different

combinations of antennas, choosing the same antenna across different sniffers

and a randomly selected antenna from each AP.

Moreover, we examine how the model could be generalized to different

experiments, and what can be achieved if we have access to the output of one

or two devices. In particular, we utilize Experiment I and II in the data set

described in Chapter 3 to use as both training and validation sets.

To evaluate the performance of the model on our data set we utilize five-

fold cross validation technique and provide average performance observed. The

idea of the evaluation approach is to create five different data partitions, where

each partition is used as a testing set in each of the different five rounds of

data validation [23]. The other four partitions are used as training set for

the model for the validation stage and averages of each performance metric is

reported.

The 70% of all data will be used for training and the rest for validation,

whereas the cross-validation method will divide data into five equivalent-size

1No TP were detected since the device was static, the TN rate is 0.99.
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segments of training data and validate on the remaining 20%. The larger

number of folds and subsequent smaller validation set is justified by a more

representative model performance, i.e., certain parts of data may perform sig-

nificantly poorer than others.

Figure 6.7: Performance vs Training set size.

The results and discussion on various methods of training the models are

provided below:

• Utilizing measurements of different antennas. Each AP is capa-

ble of reporting RSSI measurements from three different antennas and

a combined signal strength. Thus, it was necessary to test if it is suf-

ficient to utilize a single antenna or multiple antennas’ readings. First,

we chose antenna one from each AP and utilized those measurements for

the SVM model training. For this type of antenna utilization, average

performance of different antenna measurements is reported in Table 6.5.

Second, we examined how combination of different antennas across mul-

tiple APs affects the performance. Average performance is shown in

Table 6.6, where it can be seen that the performance of random and

specific antenna set ups are comparable to each other. Nevertheless, it
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can be outperformed by applying a larger amount of RSSI data from

each AP, such as utilizing all the RSSI measurements.

Precision 0.69
Recall 0.53

F1-Score 0.61
Accuracy 0.80

Table 6.5: Five-fold cross-validation (same antenna at each AP), Experi-
ment II.

Precision 0.64
Recall 0.51

F1-Score 0.57
Accuracy 0.82

Table 6.6: Five-fold cross-validation for randomly chosen per-AP antenna,
Experiment II.

• Examining sufficient training size for the SVM Figure 6.7 illus-

trates how precision and recall change with the amount of training data

available for the model. From the 70-30% split it can be seen from Fig-

ure 6.7 that there is no significant improvement after training on more

than 25 % of the sample size, which is about five minutes of Experiment I.

Five-fold cross validation provides a different result on average possibly

due to a single poor performing fold. The results are shown in Table

6.7. From the results it follows that only 25% of the experiment data is

sufficient to understand device’s motion intervals with accuracy of nearly

90% varying with the device make.

Precision 0.77
Recall 0.81

F1-Score 0.78
Accuracy 0.86

Table 6.7: Five-fold cross-validation, Experiment II.

• Cross-device training. This test was designed to evaluate how the

model could be generalized across different device manufacturers. The
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model training involved computation of signal features, such as standard

deviation, variance and coefficient of variation. The features can be

calculated for each mobile device RSSI time series which was our next

step. It was necessary to apply trained models on other devices’ data

to understand the possibility of model generalization across devices but

in the same environment. A possible reason for these results could be

overfitting of the model on the training data which consists only of RSSI

features from a single mobile device. From Table 6.8 it can be seen that

training the model on only one device data may lead to overfitting, i.e.,

the model performance on the training set is much higher than that of

testing data. Therefore, we utilized data from both devices as training

data and run cross-validation test on the rest of data.

Device 1 -> Device 2 Device 2 -> Device 1
Precision 0.5 0.25
Recall 0.15 0.3

F1-Score 0.23 0.27

Table 6.8: SVM cross-device performance; trained X -> tested Y, Experi-
ment II.

• Multiple device training. Proceeding with partial knowledge of mo-

tion patterns in multiple devices streams allows a better performing

model across all devices. The training and validation process started

with splitting the original RSSI streams into discrete, non-overlapping

partitions of data, each covering 12 timesteps, time intervals between

video frames. Then, features depicted in Figure 6.4 are computed for

each of the partitions of data, totalling 36 features. Half of the sam-

ples generated from each device stream are combined into one training

data set, which is then used for cross-validation. The results for cross-

validation of the joint data set are shown in Table 6.9.

SVM, heavily relies on the features used for modelling. This limitation could

be solved by applying neural network models, such as Recurrent NN, where

historical knowledge is taken into account and features extracted automati-

cally.
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Five-fold cross-validation Device 1 Device 2 Device 3
Precision 0.88 0.91 0.87 0.54
Recall 0.81 0.88 0.23 0.81

F1-Score 0.84 0.89 0.34 0.65

Table 6.9: Results for five-fold cross-validation for multiple device-based data
set. Columns Device X represent performance of the model on the test sets for
each device separately, Device 2 was not part of training set and was added
for performance comparison, Experiment II.

6.1.3 RNN

The RNN structure is depicted in Section 4.2.4. The number of layers was

chosen incrementally, starting with a single LSTM layer and proceeding with 2

and more. The input layer is a Long Short Term Memory (LSTM) layer with

ReLU(Rectified Linear Unit) activation function. It accepts input obtained

from previous 23 measurements from a one second time window of 12 RSSI

values, from three antennas for each of the four APs. We also report the

performance of a single antenna per AP as input to the same RNN. Table 6.10

demonstrates five-fold cross-validation result for the RNN with a smaller input,

only four RSSI streams per sample.

The output layer with only one neuron is activated with sigmoid function,

which is widely used in binary classification tasks. There is a number of LSTM

layers in between input and output layers each consisting of varying number of

neurons with ReLU activation functions. Each layer is followed by a Dropout

layer, which prevents overfitting of the RNN by ignoring a fraction of each

layer weights. The number of neurons in the first layer corresponds to the

input size and decreases with each layer to extract the most useful features.

Three layers were introduced to this problem where the model is optimized

with Adam to achieve better classification accuracy. Specifically the model is

trained on a batch size of 12 samples for 5 epochs. The low number of epochs

is chosen to avoid overfitting of the model to a certain data set.

The RNN performance can be compared with that of SVM using the same

performance metrics. The results shown in Table 6.11 represent performance

of the RNN using 30% validation data collected from the Experiment II. It can
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be seen that RNN performs better with multiple AP’s antenna data, although

the increase in performance might not be satisfactory with larger input size.

It can be seen that RNN requires a larger amount of training data to achieve

acceptable performance. Notably, the data that was provided as input to this

model was a raw time-series data without any prior feature engineering.

Precision 0.70
Recall 0.68

F1-Score 0.68
Accuracy 0.87

Table 6.10: Five-fold cross-validation on 70% of data, Device 1, Experiment II

Precision 0.78
Recall 0.75

F1-Score 0.76
Accuracy 0.91

Table 6.11: The highest performance of RNN trained on 70% of data, Device 1.

Precision 0.39
Recall 0.42

F1-Score 0.40
Accuracy 0.64

Table 6.12: The best performance achieved after training RNN on a five minute
(30%) data, Device 1.

6.1.4 Bayesian Inference

We tested a Bayesian Inference (BI) approach on the collected data experi-

ments, which demonstrated several essential challenges for the methodology

to be studied. Bayesian Inference of device motion from its RSSI time-series

provides a probability of the device’s motion, given a vector of previously ob-

served RSSI measurements. However, it is necessary to set a threshold value

for the probability, τ ,in order to conclude whether the device is moving, if

P (M |RSSIi, RSSIi+1) > τ , and static otherwise, as explained in Section 4.2.2.

This section examines how the method’s performance varies while adjusting

66



Figure 6.8: RSSI distribution of two related measurements.

the threshold value for the probability, discusses the application of moving

average filter and a number of previously observed RSSI values.

One of the main questions for this methodology has been the strong auto-

correlation of RSSI time-series terms especially at lag 1. The reason is that

two packets transmitted by the same transceiver, within a small time interval,

can be assumed to relate to each other. In other words an RSSI value received

in a next time-step is more likely to have similar value or within one standard

deviation to that observed in the current frame. We have evaluated how RSSI

values at time step t+1 are distributed with respect to time step t. Figure 6.8

demonstrates RSSI value distribution for a static iPhone device at a five meter

distance from the sniffer during Experiment 2. As it can be seen in the figure,

the spread can be approximated with a normal distribution. Fitting a curve for

each possible RSSI value might be cumbersome, since it is difficult to hold an

experiment to cover all combinations of RSSI values. Therefore, we proceeded

with a regression neural network model that is trained on the discrete data from

the Experiment 2. The model allows to compute the mean and variance of a

Gaussian probability distribution, P (RSSIi|RSSIi−1) for Equation 4.2. Using

this method we calculated Equation 4.2 for different number of historical RSSI
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Figure 6.9: Probability of a device moving given an RSSI vector of two samples
vs motion ground truth data.

values which is shown in Figure 6.10. The results were obtained with a fixed

probability threshold, 0.7, chosen manually, to examine impact of historical

terms addition.

Figure 6.9 demonstrates the result of Equation 4.2 for a single RSSI time

series. From the figure, a slight correlation in probability and motion ground

truth and the PDF peaks close to the beginning of the moving interval can

be seen. Nevertheless, the correlation may not be utilized as easily due to

frequent fluctuations in probability estimates. The decisions from each RSSI

stream can be aggregated together in the same manner as CoV time-series from

multiple APs. Since we have the opportunity to utilize multiple antennas from

the same AP, we examine the impact of using all the antenna measurements

in our probability calculation. Tables 6.13 and 6.14 demonstrate performance

of different antenna sensor data usage. While the higher number of antennas

per AP results in an increase in the recall, it is still insignificant in all the

other metrics. Overall performance of the Bayesian Inference approach is in-

conclusive and outperformed by all of the previously discussed methodologies.

To sum up, we observed increase in performance in most cases with more APs

antennas used; nevertheless, there is still a challenge of proper combination of
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Figure 6.10: Bayesian Inference performance vs. RSSI sample size (unitless).

the measurements rather than simply aggregating the votes.

Precision 0.30
Recall 0.23

F1-Score 0.26
Accuracy 0.75

Table 6.13: Average BI performance for single antenna per AP, Device 1.

Precision 0.29
Recall 0.42

F1-Score 0.34
Accuracy 0.69

Table 6.14: Average BI performance for multiple per-AP antennas, Device 1.

6.2 Motion Detection with CV

Motion detection using CV relies on object detections throughout the video

sequences. While some methods designed specifically to capture motion in the

environment, others are not as efficient for that purpose [16]. This section ex-

amines the efficiency of object detection algorithms by comparing their output

to the ground truth.
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Labelling the number of moving individuals was done on a frame-by-frame

basis to reduce a timing error that could result in reduced performance when

we calculate the device-to-individual assignment.

6.2.1 Foreground Mask

Object occlusion occurs because of path intersections caused by multiple mov-

ing individuals, but also may be caused by placement of objects in the environ-

ment, such as tables and chairs. An example of such occlusion is demonstrated

in Figure 6.11, where two individuals mistaken as being one. Another type of

missed detection is an object further away from the camera, which reduces the

object motion area (blob size) and may not be detected properly. This issue

appears also when a foreground mask is segmented into many pieces, all due

to the same object. All of these lead to interrupted object tracks, which was

the main reason behind applying the Kalman filtering technique.

Figure 6.11: Missing object detection caused by partial occlusion.

We ran the algorithm on the Experiment I video to estimate the quality

of object detection throughout the sequence. Algorithm in 5.1.1 was able to

correctly identify the number of moving objects in the scene, TPs, was only
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Figure 6.12: Undetected object due to distance from camera.

60% of all frames, yet for motion detection, the TP rate, in almost 85%.

While this algorithm is motion-based it still lacks accuracy in terms of object

segmentation, which is affected by multiple obstacles and crossing paths of the

individuals. Utilizing this methodology can be more useful in large uncluttered

environments where individuals have the opportunity to follow a longer path

without frequent interruptions in their motions.

6.2.2 Deep Learning models

Similar approach to testing pre-trained state-of-the-art models was used on

the experiments where we counted the number of correctly identified moving

objects. The algorithm was exposed to a similar type of problems as in the

previous subsection, although performed better in terms of detection. This can

be seen in the detection of partially occluded individuals, and the approach is

less exposed to segmentation errors.

During successful object identification algorithm described in 5.1.2 was

able to associate tracks between each other, yet to estimate motion it was

essential to set a threshold value for fluctuations in the x, y coordinates of

the bounding box top left corner. We evaluate the previous coordinates of the
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bounding boxes across set of one second, 23 frames, since the visual domain

can be more precise in capturing deviations from the original values. However,

it is prone to capturing small motions caused by an individual’s limb motion

rather than a macro-motion observed when the individual moves to another

location.

The algorithm was successful in individual detection with the rate of 87%

accross the entire experiment, yet was successful in identifying the number of

moving individuals in the scene in only 79% frames with motion.

To sum up, pre-trained models are far more efficient in identifying moving

objects in the scene primarily due to a higher precision in object detection.

6.3 Device-to-Identity Association

The results for event association are presented in a similar form to object de-

tection, where a TP is when the MAC address of a mobile device was correctly

attributed to an individual holding it and not associated, if otherwise. TNs,

on the other hand, are events when the object track was not associated with

any label and the individual holding it. FP is observed when a track was

assigned a label from another moving device, whereas FN is a track without

label, although the tracked individual is holding the device.

Overall performance of the algorithm was 75% for all the individuals com-

bined, whereas it was able to associate multiple devices to one individual cor-

rectly less than 30% of time. Algorithm described in 5.4 performs better (on

average) when a single object is moving (with or without the device), reaching

83% accuracy. An example of correct identification is shown in Figure 6.13.

During the event alignment process several challenges occurred which de-

graded performance of the algorithm substantially.

• Multiple moving devices is one of the key factors affecting the associ-

ation performance that appeared throughout the experiment. The issue

was observed mostly during periods of experiment when multiple devices

were calculated to be moving simultaneously. This caused several tracks

to be associated with incorrect labels until the device stopped moving
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Figure 6.13: Example of device to CV object association.

or the track was lost.

• Mislabelling of the individuals. On a few occasions the CV could

not detect one of the individuals in the scene, when both individuals

were in motion. At the time when one device was held by undetected

individual and calculated to be in motion, it was associated to the only

identified object in the scene. This lead to incorrect association for both

individuals’ tracks.
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Chapter 7

Conclusion

Throughout this thesis we tried to answer the RQs presented in Section 1.5.

While pursuing thorough research for the answers, we observed several inter-

esting challenges that might be of use for future systems of this type. To

restate our work, we implemented an object tracking and identification frame-

work based on fusion of different sensor modalities and reported results in

Chapter 6. The goal of the framework is to detect and track individuals in

the scene and label them with unique addresses, to demonstrate possession

of certain devices. The core idea behind this association is the analysis and

matching of motion observed under different sensing modalities.

The sensors that were used for this framework produced visual and signal

strength readings, which are challenging to fuse. It is difficult to correlate

RF signal with what can be captured with cameras, since the signal does not

have any visible representation. This is why it was necessary to obtain and

utilize a deeper understanding of events and how they relate to the sensor

measurements. The event that we believe to be useful for both domains,

yet does not require extensive computation and preparation is the motion of

individuals and their mobile devices.

Section 1.2 outlined a number of essential system requirements that we fol-

lowed to build our system. To sum up, we build a system which is inexpensive

to set up and utilizes the most common indoor infrastructure present nowa-

days. The data analysis part did not require significant preparation of prior

knowledge of the scene, yet we also examined methodologies which utilize at
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least partial knowledge of the experiment output. The set up does not require

significant user participation, since the data is generated passively by observ-

ing the transmissions from mobile devices and the presence of individuals in a

room.

We now summarize the observations made and provide an answer to each

of the following RQs:

• RQ: Is it feasible to fuse RSSI and video as explained in our framework?

The results of association of individuals to their mobile devices has shown

that it is possible to utilize device and object motion as a common event

in both RSSI and Visual domains. Nevertheless, the demonstrated per-

formance was not perfect and may degrade with longer duration experi-

ments.

• RQ: Which RSSI-based motion detection methodology is better consid-

ering the system requirements?

Although SVM and Recurrent Neural Networks have shown a higher

performance than other methods and can be adapted to multiple device

manufacturers, they still require partial knowledge about the experi-

mental set up. We also examine sufficient training set sizes to achieve

competitive performance. SVM requires significantly less training data

to achieve comparable performance as RNNs. Therefore, we believe that

SVM might be a better choice for RSSI-based motion detection given

a small amount of data. The ML model outperforms motion detection

methods discussed in [29], which is based on initial localization and in-

ferring motion from an individual’s displacement. RNN could be a good

alternative when training data is abundant. Alternative to these models

would be CoV-based motion detection, because it does require only pa-

rameter tuning which can be configured prior to usage, unlike Bayesian

Inference and the ML models.

• RQ: Is the incorporation of multiple APs beneficial for our framework?
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Methods that were presented in this thesis and utilize multiple APs

have outperformed their counterparts of single AP-based models. We

have seen an increase in all the discussed metrics, especially recall and

precision, when readings from multiple APs were taken into account.

• RQ: Is it possible to generalize RSSI-based motion detection algorithms

for different mobile devices?

Section 6.1.2 has demonstrated that the ML model is capable of learning

correlation between RSSI features and motion ground truth. It can also

be seen that exposure of the model to more data from various devices

improves overall and per-device performance.

7.1 System Feasibility

The main thesis of this work was to examine the feasibility of the framework

given limited correlation of the sources. There are several assumptions that

make the framework possible, such as connectivity of mobile devices, motion

of individuals and sensor placement.

All of the assumptions and their effect is listed below. One of the main

assumptions is the connection of mobile devices to a data (in this case, WiFi)

network, that is set up on a certain frequency and channel. This may play

significant role in motion estimation using RSSI values, since it is the main

source of non-visual sensor readings. A device which is not connected to the

building network, simply, will not be detected by the system and an individual

could be treated as unidentified object. We discuss solution to this as part of

a future work later in this chapter.

Another assumption is restriction on individual movement inside a single

room and walking within the field of view of all the cameras. A possible sce-

nario in case an individual leaves the field of view is missing object track and

creation of a new one, when it reappears. During the data collection experi-

ments described in Chapter 3, we aimed to reconstruct a realistic environment

set up with almost no limitation to individual behaviour. We believe that
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consistent presence of an individual within the field of view of a camera is a

highly possible scenario, since the sensor is, usually, placed within a corner

of the room to cover the entire space for reasons of surveilance. However, no

experiment took into consideration inter-room movement and an individual

entering or leaving the room, subsequently, camera and sniffer loosing line-of-

sight with the object. An individual leaving the room might cause confusion in

the device motion, since the RSSI values are claimed to deteriorate when there

is obstruction in the way. Thus, the RSSI values might fluctuate significantly

which can cause issues for all the methods for RSSI evaluation presented in

this thesis.

Overall, the system is still heavily dependent on the environment set up and

user behaviour. Both factors can affect performance of individual components

putting the entire system performance. As an example, changing layout of the

room where the measurements take place may increase signal fading which, as

reported in Section 6.1.1, obstructs motion estimation. Limited motion paths

may lead to short walk patterns made by individuals and less sound RSSI

fluctuations and interruptions in motion-based CV algorithms.

Finally, assuming that an individual is in a certain room and moves, at

least once, together with a mobile device it is possible to link the device MAC

and the visual identity. This scenario raises plausible privacy issues for the

individuals. Therefore, users may be unwilling to accept the operation of such

a system.

7.2 Future work

The proposed framework yields low accuracy in a number of components,

which can be addressed in a number of different ways. The overall perfor-

mance depends on the accuracy of each individual stream analysis procedure;

thus, leaving room for improvement. During our experiments we faced several

common issues that were reported for each of the sensing modalities. Thus,

improving methodologies or substituting the sensing modality can improve the

results.
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We believe that there are several directions for future work and are listed

below:

• Data collection. During our RSSI analysis of devices’ motion, we

discovered that training the model on a single device’s data is highly

likely to overfit on a single device’s data; thus, performing poorly on other

devices. Therefore, a possible improvement to the approach would be

collecting RSSI motion patterns accross multiple devices for a particular

environment.

• Association rule. We acknowledge that the association algorithm de-

scribed in this work is basic and lacks complexity. It can be signifi-

cantly improved, if more signal information is extracted from both sens-

ing modalities. Distance-based approaches may be incapable of distin-

guishing the events using only time difference which can be improved

by adding more sophisticated features, as an example, the velocity of

objects.

• User privacy. It is an important issue for many nowadays, since the de-

vices are ubiquitous and can provide a lot of sensitive information about

the owner. In this thesis, we utilize cameras that can be deemed privacy

intrusive as they can be used to track people and detect activities and

now even the device information makes it possible to link their virtual

identity to the real one. Therefore, a significant improvement for this

system would be the replacement of cameras with a sensor that reveals

less sensitive information, such as a thermal sensor.

• Multiple channel monitoring. Throughout the experiments we worked

with the assumption that the devices are connected to a specific network

on a certain channel. This may be unrealistic with a higher variety of

networked devices in an environment. Therefore, one of the directions is

to include multiple channel monitoring for transmissions which should

allow capturing the majority of traffic from mobile devices. Addition-

ally, non-WiFi communication of the devices can also be observed using
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suitable equipment. For example cellular communication uses other fre-

quency bands and channels. However, devices to achieve that, such as

Software Defined Radios (SDRs) are not as ubiquitous and are still ex-

pensive.
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