This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Abdi Oskouie, Mina
- 2Birkbeck, Neil Aylon Charles
- 2Cai, Zhipeng
- 2Chen, Jiyang
- 2Chowdhury, Md Solimul
- 2Chubak, Pirooz
- 83Machine Learning
- 76Reinforcement Learning
- 42Artificial Intelligence
- 37Machine learning
- 24Natural Language Processing
- 23reinforcement learning
-
Fall 2009
Learning and planning are two fundamental problems in artificial intelligence. The learning problem can be tackled by reinforcement learning methods, such as temporal-difference learning, which update a value function from real experience, and use function approximation to generalise across...
-
Spring 2024
This dissertation develops simple and practical learning algorithms from first principles for long-lived agents. Formally, the algorithms are developed within the reinforcement learning framework for continuing (non-episodic) problems, in which the agent-environment interaction goes on ad...
-
Spring 2018
Recent advancements in reinforcement learning have made the field interesting to academia and industry alike. Many of these advancements depend on deep learning as a means to approximate a value function or a policy. This dependency usually relies on high performance hardware (e.g., a graphics...
-
Fall 2022
While traditional machine learning algorithms learn to solve a task directly, meta- learning aims to learn about and improve another learning algorithm’s performance. However, existing meta-learning methods either only work with differentiable algo- rithms or are handcrafted to improve a specific...
-
Spring 2017
Information extraction, extracting structured information from text, is a vital component for many natural language tasks such as question answering. It generally consists of two components: (1) named entity recognition (NER), identifying noun phrases that are names of organizations, persons, or...
-
Fall 2019
Relation Extraction, which is defined as the detection of existing relations between a pair of entities in a sentence, has received a large interest lately, including more recent work on using neural methods. Since neural systems need a large number of annotated sentences to build effective...