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Relation Extraction, which is defined as the detection of existing relations between a

pair of entities in a sentence, has received a large interest lately, including more recent

work on using neural methods. Since neural systems need a large number of annotated

sentences to build effective models, Distant Supervision has been a preferred choice

for collecting training labeled data. However, recent published work has shown that,

training classifiers via a small number of annotated data and some explanation of why

a sentence expresses a relation performs as accurate as distant supervision methods

working with a large number of annotated sentences. In this thesis, we show that we

can generate synthetic explanations, based on a small number of trigger words, for

each relation in a way that the resulting explanations achieve comparable accuracy to

human produced explanations by training a neural classifier. Our system is evaluated on

five relation extraction tasks with different entity types (person-person, person-location,

etc.) and the results show that synthetic explanations can work as precise as human

generated explanations for the task of relation extraction. The proposed system also

has the ability to classify noisy data coming from distant supervision methods with a

reasonable accuracy.
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Chapter 1

Introduction

1.1 Knowledge Bases

Knowledge Bases (KBs) structure and maintain large volumes of useful information

about the world and are used in support of many important applications with impressive

success, including question answering, web search, etc. (see Figure 1.1 as an example).

KBs have also been used in enriching documents and structured data with semantic tags,

by linking both the entities mentioned in a document and the relationships between those

entities expressed in text to entities and relationships that also exist in a reference KB.

A well known example is the usage of YAGO KB [7], which resulted in defeating human

experts in a trivia game [8].

However, KBs need regular maintenance over time to remain relevant. Any new knowl-

edge that is harvested from different sources may be integrated with a KB while old

knowledge maybe revised to account for changes over time. The inherent difficulties in

these tasks motivate the development of automatic tools for extracting facts that are

recognized by or can be integrated into a KB. This is often done by leveraging one or

more phrases connecting a pair of entities in a text corpus, which in turn can be added to

the KB. Taking a look at the well-utilized knowledge graph (graph based KB) of Google

for “Ben Ripley”, shown in Figure 1.2, we cannot find a mention of “Stanford university”

under the education relationship. However, in the Wikipedia text of Ben Ripley page, we

can find the sentence “Ripley is a graduate of Stanford University and the University

of Southern California’s USC School of Cinema-Television.” Thus, we need algorithms
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Figure 1.1: Question-Answering us-
ing Google KG.

Figure 1.2: Google KG of Ben Ripley

and systems that can extract most (if not all) of the relations between entities in text

to expand knowledge bases.

1.2 Relation Extraction

Relation Extraction (RE) aims to identify the relationship between two nominals, typ-

ically in the context of a sentence, making it essential to natural language understand-

ing [9]. RE is a key component of many natural language processing applications, such as

information extraction [10], knowledge base population [11], and question answering [12].

Early works on Relation Extraction (e.g., Bunescu and Mooney [13]) rely on supervised

learning for two sub-tasks: detecting whether a relation is expressed in the text, and

if so, classifying the relation into one of the known KB relations. The cost for human

annotation has since been identified as prohibitively high, and many subsequent methods

aim at reducing that burden. Lightly supervised methods (e.g., Agichtein and Gravano

[14], Bollegala et al. [15]) require only seed tuples with entities known to be related in

the KB and exploit regularities in language to train relation extractors.
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Relation extraction from raw text is commonly divided into the three important sub-

problems of Named Entity Recognition (NER), Entity Linking and Relation Predic-

tion [16]. As a state-of-the-art work, Ren et al. [3] work on the problem as a whole

and report performance results in all sub-problems that are comparable or better than

others [17, 18]. In this thesis, we focus on the third sub-problem and develop a method

for predicting the relations between pairs of entities. We compare our results with the

results of relation prediction part of Ren et al. [3].

1.3 Distant Supervision

A major goal of Machine Learning algorithms may be identified as inductively creating

models to predict, classify, and make decisions [19]. Achilles heel of this model devel-

opment is having access to a set of training data. With the commence of deep learning

and big GPU machines, the need for good or large datasets has shown its effect on the

performance of ML Methods more than before. In particular, in some NLP tasks such

as relation extraction, large training sets are shown to be very useful [20]. In order to

make the required data, the first and most handy way is to employ some human experts

to annotate the data. However, this process is expensive in terms of the time it takes

and the resources that are needed [21]. Thus, the idea of making the required data using

a ML algorithm has been an interesting direction. One idea is to have a purely unsu-

pervised information extraction, which extracts the phrases between entities in large

amounts of text, and clusters and/or simplifies these phrases to produce relations (see

the methods developed by Shinyama and Sekine [22] and Banko et al. [23]). Although

this approach makes a larger training set, compared to those annotated by experts, the

resulting relations may not be easy to map to relations needed for a particular knowledge

base [21]. Boot-strap learning is another approach that uses small number of patterns

or seed instances to produces more instances and patterns. This is employed by Brin

[24], Riloff et al. [25] and Rozenfeld and Feldman [26] in their methods.

Distant Supervision is an alternative approach for creating large training sets for relation

extraction, first proposed by Mintz et al. [21]. This method requires as input a large

number of pairs of entities known to be related. For each entity pair and their related

relationship, the authors query a large text corpus to identify sentences that mention

both entities in a pair of entities. The obtained sentences are tagged as the samples of the
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relationship between the entity pair’s relation. Distant supervision is far from perfect,

as many pairs of entities belong to multiple relations, which in turn brings considerable

noise to the training data [21].

1.4 Training classifiers with labels and explanations

A more recent line of work to address the high costs in obtaining human annotations,

which we follow here, is to ask humans to provide both labels for the data as well as

explanations in natural language that justify those labels [27]. Using explanations and

labels together is expected to reduce the need for large annotated data. The following

example from Hancock et al. [27] shows an annotated sentence and the corresponding

explanation that justifies the positive label:

Example 1.1. “Brady’s wife, Gisele Bundchen pictured above as she visits the sports

therapy center at Gillette Stadium in Massachusetts in May.”

- relation: spouse between ‘Brady’ and ‘Gisele Bundchen’.

- label: True

- explanation: because the phrase “’s wife” are right before person 2.

An explanation in this context provides a reason for why the sentence expresses a rela-

tion. The structure of explanations can be different for each sentence, depending on the

candidate sentence and the user writing the explanation.

A good explanation is meant to provide a way to obtain more training data for the

relation, by identifying features that are determinant for the label. The BabbleLabel

framework of Hancock et al. [27] uses a semantic parser for the explanations, which

can mix natural language and some special purpose logical predicates. Many labeling

functions are automatically derived from the explanations and are used as feature ex-

tractors for the actual sentences. For example, a boolean labeling function can check

for the presence of the phrase “’s wife” immediately before the second person entity in

a phrase.

Hancock et al. [27] show that good explanations, although require more effort from

human annotators, generalize to many examples and lead to a drastic reduction in the
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overall annotation effort. To quote them: they “find that users are able to train classifiers

with comparable F1-score from 5–100 × faster by providing explanations instead of just

labels.” They develop a system for generating a large training set for relation extraction.

The quality of their results depends on the quality of the small number of hand-labeled

instances and explanations that are provided.

BabbleLabel has been used in this thesis for generating a set of features to classify the

relations. We expand their idea by making the labeling process automatic. By this

effort, we aim to skip the role of human annotators in distant supervision. On the other

hand, the more explanations, the more accurate system. Since an automatic system

is better equipped to find more explanations from training data, it can give a better

performance in the labeling process. Automatically generating explanations makes the

labeling efficient in terms of cost and performance.

To make the system more accurate, we make use of more natural language features like

sentence embedding and types of entity mentions.

1.5 Contributions

Our goal is to further reduce the cost of obtaining training sentences for the relation

extraction task. We achieve that by combining into a single method for relation ex-

traction the strengths of both light/distant supervision approach and the use of natural

language explanations for labeling data. More precisely, starting from a specific relation

(e.g., spouse), a list of prominent trigger words for the relation (e.g., husband, wife,

spouse, etc.), and a set of sentences mentioning entities of the appropriate type for the

relation (e.g., sentences mentioning two people) we want to:

• derive synthetic explanations based on the presence or absence of a positive or

negative trigger word (or a closely related synonym);

• process the explanations through the BabbleLabel framework to obtain labeling

functions;

• train a neural classifier based on features extracted from the labeling functions

and other linguistic features.
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We hypothesize that such a pipeline can yield high precision extractions even with a

small number of trigger words (and hence explanations). To be more clear, we expect

that such a pipeline to be comparable to or outperform the state of the art in terms of

precision with less than 15 trigger words, and that the trigger words can be automatically

selected from training data (if not provided).

In this thesis we describe and evaluate a neural model for relation extraction that im-

plements the pipeline just described. We compare our results against that of Hancock

et al. [27], using all of the evaluation data they provide [5] (which is a subset of the data

they use in the experiments they report). We use their provided codes and data in our

experiments.

Our model differs from theirs in some important ways. First, we use a standard neural

network for relation prediction, while they use a simpler model. Second, we use the raw

output of their labeling functions as features, following an approach the authors discuss

in their paper, although they do not evaluate. This comparison, albeit limited by the

availability of data, shows that our approach is superior, achieving F1-score upwards of

70%, compared to 50% as reported in their paper.

We also evaluate our work on Wiki-KBP dataset [1, 2] and the results are compared

with Ren et al. [3] under their relation extraction setting. We reach a 6% higher accuracy

than them on the same test set. This improvement validates the positive impact of using

synthetic explanations on relation extraction.

We further evaluate our framework on four other relations for which we obtain entity

pairs, sentences, and explanations ourselves. The F1-score obtained by our approach is

comparable or better than that of Hancock et al., which indicates that our approach

performs better. We report our results with different feature extraction tools to show

the strength of the selected tools. Finally, some experiments are done with different

combinations of the features to evaluate the direct influence of the selected feature sets

on the results.
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Chapter 2

Background

Building an accurate automated relation extraction system often requires developing or

employing accurate tools for sentence parsing and feature extraction. The developed

system in this thesis makes use of sentence embedding techniques, entity types and

some labeling functions. We extract and compare these three sets of features (and their

combination) and feed them to a special type of neural network called family tree. In

this chapter, we review the background material that is referenced in this thesis and

may help provide a better understanding of our developed features and our automated

relation extraction algorithm.

2.1 Dependency Parsing

Ambiguities in sentences make language interpretation hard. Parsing is a formal way for

resolving structural ambiguities. There are two types of parsing: Dependency parsing

which focuses on detecting the relations between words, and Phrase structure parsing,

which focuses on identifying phrases and their recursive structure [28]. A dependency

parser analyzes the grammatical structure of a sentence, establishing relationships be-

tween “head” words and words which modify them. For more details look at Chapter

13 of Jurafsky and Martin [28].

In this thesis, we choose Stanford Dependency parser, developed by Chen and Manning

[29], to find the dependency trees of our sentences. The Stanford Dependency parser

is a fast transition based parser which produces typed dependency parses of natural
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Table 2.1: Explanation of the notations used in the constituent tree example

Symbol explanation

S Sentence

NP Noun Phrase; N stands for Noun

VP Verb Phrase; V stands for Verb

DT Determiner

PP Prepositional Phrase

language sentences. The parser is powered by a neural network that accepts word

embedding inputs [29]. In the following subsections, we will describe the step-by-step

process of creating a dependency tree.

2.1.1 Dependency trees

Generating a dependency tree of a sentence can be done by making the constituency

tree of the sentence, which is defined as “Breaking down a sentence into its constituent

parts”. The constituency tree of a sentence is generated using the rules of a Context-

Free Grammar (CFG) where a set of production rules describe all possible strings in a

given formal language. Production rules are simple replacements; for example, the rule

A → α replaces A with α. For more details about the notations and rules see Chapter

12 of Jurafsky and Martin [28]. The following example shows the constituency tree of

the sentence “The man walked to the park.”

S⏞⏟⏟⏞
sentence

→ NP⏞⏟⏟⏞
The man

V P⏞⏟⏟⏞
walked to the park

NP⏞⏟⏟⏞
The man

→ DT⏞⏟⏟⏞
The

N⏞⏟⏟⏞
man

V P⏞⏟⏟⏞
walked to the park

→ V⏞⏟⏟⏞
walked

PP⏞⏟⏟⏞
to the park

PP⏞⏟⏟⏞
to the park

→ P⏞⏟⏟⏞
to

DT⏞⏟⏟⏞
the

N⏞⏟⏟⏞
park

Table 2.1 explains the symbols used in our parsing example. When a phrase-structure

parse contains additional information in the form of grammatical relations and function

tags, these tags can be used to label the edges in the resulting tree. When applied to

the parse shown above, this algorithm produces the dependency structure [30].
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2.1.1.1 Generating dependency parse trees

The first step in generating a dependency parse tree is to find the head words of the

tree. Collins [31] provides some rules that can be followed for finding the head words.

The following shows a subset of those rules. (The head word is underlined in each

composition.)

• S → NP VP

• VP → V NP PP

• PP → P NP

• NP → DT N PP

Considering the mentioned rules, we can generate the dependency parse of the sentence

“The man walked to the park.” with the underlined head words.

walked

.walked

to

park

park

park

the

the

to

to

walked

walked

man

man

man

The

The

Here is a path between the words “the man” and “the park” which gives the dependency

relationship between these words.

walked

to

park

the

man

The
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2.2 Word and sentence embedding

Learning continuous representations of words has a long history in natural language

processing [32]. These representations are typically derived from large unlabeled corpora

using co-occurrence statistics [33], [34].

Today, word and sentence embeddings have become an essential part of any Learning-

based natural language processing system. More specifically, there has been more in-

terest in Universal Embeddings, which are pre-trained on a large corpus and can be

used in a variety of tasks to automatically improve their performance by incorporating

some general word/sentence representations learned on the larger dataset. While several

works augment unsupervised approaches by incorporating the supervision of semantic

or syntactic knowledge, purely unsupervised approaches have seen interesting develop-

ments in 2017–2018. Two notable works are FastText [35], an extension of word2vec [36],

and ELMo [37], the state-of-the-art contextual word vectors.

Embedding approaches turn textual features into numerical ones, which is necessary

when the features are fed into neural networks. In this thesis, we use sentence embedding

to feed our neural network with numerical features of the sentences. We want to train

our model on whole sentences instead of phrases, and we choose a system that provides

sentence embedding. As a state-of-the-art embedding tool, FastText is shown to give

one of the best pre-trained sentence embedding models [38]. In the following, we discuss

the advantages of using sentence embeddings and briefly explain how FastText works.

2.2.1 Embedding Models

Word embedding systems can be obtained using two models (both involving Neural

Networks): Common Bag Of Words (CBOW) and Skip Gram [39].

2.2.1.1 CBOW vs Skip-gram Model

Both Skip-Gram and CBOW methods learn the underlying word representation for

each word using a neural network. Since learning word representations is essentially

unsupervised, a way for creating labels to train the neural network is required. Skip-

gram and CBOW are two ways of creating these labels.
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CBOW is learning to predict a word by its context, and it maximizes the probability of

a target word by looking at its context. Consider the sentence: “Have a [...] day”; the

CBOW model will predict that the most probable word inside the brackets are “Great”

and “nice”. Words like “delightful” will get much less attention in the model, because

it is designed to predict the most probable word.

On the other hand, the Skip-gram model is designed to predict the context. Given the

word “delightful” it must understand it and tell there is a huge probability that the

context is “Have a [...] day”, or some other relevant context [40].

According to Rong [39], Skip-gram works well with small amounts of the training data,

represents well even rare words or phrases. CBOW, on the other hand, is several times

faster to train than the skip-gram and has a slightly better accuracy for frequent words.

2.3 Named Entity Recognition

Named Entity Recognition (NER), also known as entity extraction, classifies named

entities that are present in text into pre-defined categories such as ‘individuals’, ‘places’,

‘organization’, ‘cities’, ‘dates’, etc.

A good Named Entity Recognizer can automatically scan an entire article and reveal

which are the major people, organizations, and places discussed in it. Knowing the

relevant types of named entities of an article can help in automatically categorizing the

article in a predefined hierarchy.

The usage of NER in this thesis is to extract the types of subject and object entities in

each sentence as some features. For example, in Spouse relation, the type of the entities

is “Person”. To generate this set of features, we use FIGER [1] which is shown to work

well for NER tasks [3].

2.3.1 The FIGER system

FIGER is a named entity recognition tool and we use its pre-trained model for our feature

extraction. Ling and Weld [1] divide the whole process of the NER into a pipeline. Given

a sentence in plain text as input, first, the sentence is segmented and candidates to be
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Figure 2.1: Simple neural network with one hidden layer.
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tagged are detected. Second, they apply a classifier to the identified segments and output

tags of segments [1]. The most significant advantage of their system is using Freebase [41]

tags. As Freebase has around thousands of types and its tags are comprehensive, they

filter the tags by only keeping well-maintained types (the ones with curated names, e.g.

/location/city).

2.4 Learning by Neural Networks

A neural network (NN) is a computational nonlinear model based on the neural struc-

ture of the human brain which is able to learn how to perform tasks like classification,

prediction, decision-making, visualization, and others just by considering examples. A

Neural network consists of artificial neurons or processing elements and is organized in

three interconnected layers: input, hidden(s), and output. Figure 2.1 shows a simple

neural network with one hidden layer. The input layer contains input neurons that send

information to the hidden layer and the hidden layer sends data to the output layer.
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Tanh Function:

f(x) =
2

1 + e−2x
− 1

Logistic (Sigmoid) Function:

f(x) =
1

1 + e−x

x

y

x

y

Relu Function:

f(x) =

{︄
0 if x < 0

x if x ≥ 0

Linear function:

f(x) = ax

Figure 2.2: Some of the common activation functions

Learning a neural network is categorized as supervised learning, which means the system

uses the labels provided by the user and tunes model’s parameters in order to improve its

prediction performance. For this thesis, the model parameters are defined in Table 4.16

and the evaluation metrics are discussed in Chapter 4. The learning process is done by

optimizing an objective or cost function which can be the distance between the desired

targets and the outputs of the model. Minimizing the cost function is performed by

changing the parameters of the model [42].

Every neuron has weighted inputs also known as synapses, an activation function (which

defines the output given an input), and one output. Synapses are the adjustable param-

eters that convert a neural network to a parameterized system. The weighted sum of

the inputs produces the activation signal that is passed to the activation function to ob-

tain one output from the neuron. Commonly used activation functions are linear, step,

sigmoid, tanh, and rectified linear unit (ReLu). Figure 2.2 gives some of the common

activation functions, a couple of which are used in our models (see Table 4.16).

Different types of neural networks have been applied on natural language processing

tasks, and they differ for each task in terms of speed and accuracy. The following shows

a list of some of the neural networks which are applied on different NLP tasks.

• Multilayer Perceptron
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A multilayer perceptron (MLP) has three or more layers. It utilizes a nonlinear

activation function which lets it classify data that is not linearly separable. Every

node in a layer connects to each node in the following layer making the network

fully connected. Speech recognition [43] and Machine Translation [44] are examples

of using MLP networks.

• Convolutional Neural Network (CNN)

A CNN contains one or more convolutional layers, pooling or fully connected, and

uses a variation of multilayer perceptron. Convolutional layers apply a convolution

operation to the input, passing the result to the next layer. This operation allows

the network to be deeper with much fewer parameters. Semantic parsing [45] is

an example use case for CNNs in NLP.

• Recurrent Neural Network(RNN)

A recurrent neural network (RNN), unlike a feedforward neural network, is a vari-

ant of a recursive artificial neural network in which connections between neurons

make a directed cycle. It means that the output depends not only on the present

inputs but also on the previous step’s neuron state. This memory lets users solve

NLP problems like text classification [46] or text summarization [47].

In this thesis, we use a MLP (Multilayer Perceptron) Network. We design our architec-

ture based on the network proposed by Hinton et al. [4] which is used for family tree

relation prediction.

2.4.1 Family tree network

Family tree network is the name of the network proposed by Hinton et al. [4]. Their

network is defined for finding the relations between people in a family tree. For example,

given the family tree in Figure 2.3, the following list shows some outputs of the system:

• input: Roberto, Gina. output: parent

• input: Roberto, Marco. output: parent-in-law
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Roberto = Maria

Gina Lucia Marco 

Piere = Francesca

AngelaEmilio = = Tomaso= 

Figure 2.3: A sample of family tree. Symbol ‘=’ means ‘married to’. “Roberto” and
“Maria” are the parents of “Gina”.

𝐿𝑥 𝐿𝑦

Person 1 Person 2

Encoding Layer Encoding Layer

𝐿𝑥 𝐿𝑦

Output Encoding

Relationship

Appending and passing activation function

Figure 2.4: The architecture of the network proposed in Hinton et al. [4].

Figure 2.4 shows the architecture used in Hinton et al. [4] for their proposed network.

In this architecture, two simple MLP networks with one hidden layer are trained inde-

pendently on the inputs (Person 1 and Person 2) and then the outputs are appended to

feed another MLP network for classifying the relationship. Training features separately

is the most important characteristic of this architecture.
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Chapter 3

The Proposed Method

We build a neural network for the Relation Extraction task that builds on a seminal

work by Hinton et al. [4]. Although Hinton et al. [4] use phrases between named entities

to find the relationship between people in a family tree, we use embeddings of entire

sentences and find relationships between named entities.

Our work follows the standard practice of breaking the task into the steps of (1) feature

generation from raw sentences and (2) classification based on those features. Figure 3.1

shows an overview of our system. For feature extraction, sentence embedding vectors

from normalized sentences are extracted. Synthetic explanations are generated from

the training data and BabbleLabel features are extracted for each sentence by applying

the Labeling functions on them. Labeling functions are generated from the synthetic

explanations. The other set of features, types of the entities, are extracted from the

raw sentences. The classification part is a network called family tree that is fed by the

extracted feature sets.

3.1 Feature Extraction

We extract three sets of features per sample: sentence embedding, types of the entities

in the sentence, and the output of the labeling functions—which we call BabbleLabel

features.

Most relation extraction approaches use the embedding of the phrase between a pair

of entities as an input of their classifiers [3], however, in many cases the important
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words and phrases for detecting the relations come in other parts of the sentence. For

example, in sentence “SUBJECT and OBJECT married on May 2012.”, the important

word for detecting “Spouse” relation is “married”, which appears after the SUBJECT

and OBJECT entities. For the same reason, we train our network on the whole sentence

instead of the phrase between the pair of entities.

Entity Types of subject and object entities is another set of features which is extracted

in this work. This feature set improves the system performance particularly when the

entity types of the positive and negative training relations are different.

The output of the BabbleLabel labeling functions is the last set of features extracted

for training our network. In [27], the authors show that BabbleLabel can achieve a

reasonable F1-score with a small number of training samples. Their system performance

motivated us to use their labeling functions for generating our features.

For each feature set, we compare alternatives when possible. For example, we compare

the Stanford NER and FIGER [1] entity typing systems.

3.1.1 Normalization

As customary we normalize the text to increase the chances of generalization by the

model. Besides standard tokenization, we also preprocess each sample as follows:

• All mentions of the words tagged as subject and object in the sentence are replaced

with “SUBJECT” and “OBJECT” respectively.

• All named entities except subject and object entity mentions are replaced with

“ENTITY”.

• All numbers in the sentence are replaced with “NUM”.

• All adjectives expressing nationality (e.g., American, Canadian, etc.) are replaced

with “NAT”.
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3.1.2 FastText sentence Embedding

FastText [35] is a library for efficient learning of word representations and sentence

classification. This tool represents a document by the average of its word vectors and

allows the word vectors to be updated through Back-propagation during training.

In this thesis, we use a pre-trained FastText model as our sentence embedding tool. The

input is the normalized sentence and the output is a vector of length 300.

3.1.3 FIGER entity type recognition

Entity types are known to help relation extraction as they can filter out candidate

relations immediately [48]. Thus, we extract fine-grained types of the entities in the

sentences with the FIGER [1] method, which provides 112 types. For comparison, we

conduct our experiments with the standard Stanford NER type classifier as well and the

results are compared.

3.1.4 BabbleLabel system

As mentioned earlier, BabbleLabel [27] is a framework for labeling large samples of

sentences express a specific relation (e.g., Spouse), which in turn can be used to train

classifiers. In the procedure described by the authors, human annotators provide a

small number of natural language explanations (less than 50) for each label assigned

to an example. These explanations are parsed into logical forms labeling functions

that heuristically map examples to the binary labels. Figure 3.2 shows an overview of

the BabbleLabel framework. This framework has training and testing part. Labeling

functions are generated in training part and they are used for labeling large number of

sentences in test part. An example of labeling functions is shown in Section 3.1.4.1.

Hancock et al. [27] found that using the output of their labeling functions as features

to be less effective for relation extraction than using a bag of n-grams from the phrases

between the related entities [27, Section 4.3]. Interestingly, we found that the output of

the various Labeling Functions we obtain to be useful features. Moreover, they report

to have found a non-neural classifier to be their best choice. We, on the other hand,
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Sentences with 

mentions

Train set

Dev set

Test set
User

Explanations

Semantic Parser

Set of 

Labeling 

functions

Train (For specific relation) Test (For specific relation)

30 samples

Generating labeling functions

Test sentence

Set of 

Labeling 

functions

Label

Figure 3.2: An overview of the BabbleLabel framework. Labeling functions are gen-
erated using the manually written explanations.

report much better results than them, on their dataset, using a neural relation extraction

system.

3.1.4.1 Labeling Functions

BabbleLabel has a simple rule-based Semantic Parser that takes a natural language

explanation and gives a set of Labeling Functions, each an executable Python code ready

to be used for feature extraction. Their system is provided with some grammatical rules

that makes the parser generate valid parses for each explanation. After generating the

parses, there are some Filter Banks to sift the parses. For example, in the explanation in

Example 1.1, the word “right” can be interpreted as either “immediately” or simply “to

the right”. The latter interpretation results in a function that is inconsistent with the

associated example (since “’s wife” is actually to the left of person 2), so it can be safely

removed. At the end, the system returns all valid and filtered parses corresponding to

the entire explanation [27].

As mentioned in previous sections, we run the BabbleLabel system and extract the out-

put of Labeling Functions as features for our system. An example of labeling functions

for Spouse relation is shown in Example 3.1.

Example 3.1.
def LF( x ) :

re tu rn (1 i f ” ’ s w i f e ” i n

between ( x . person1 , x . pe r son2 )
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pictured

visits

center

. . .

sheas

abovewife

OBJECT,SUBJECT

’s

Figure 3.3: Parse tree of the sentence in Example 1.1 for finding the shortest path
between the entities.

e l s e 0)

3.2 Generating Synthetic Explanations

To reduce the cost of procuring training data, we experiment with an automatic system

for relations extraction. To achieve this aim, we generate the explanations automatically

using the shortest path between the subject and object entities in the dependency tree

of each sentence, filtering out those sentences in which we cannot find trigger words for

the relation in the shortest path between the related entities in the sentence. Remain

sentences are considered as the candidate sentence for generating explanations.

Parsing the sentences and requiring trigger words to appear in the shortest path between

the annotated entities is expected to remove noise introduced by sentences that express

different relations. This type of noise is common, especially for popular pairs of entities.

For example, many politicians are born in the country they become president or prime

minister of. Similarly, many soccer players become managers of teams they previously

played for. In the pure distant supervision approach, all sentences mentioning a pair

of entities are taken as expressions of all relations between those entities. In contrast,

by requiring a trigger word (e.g., coach) we can filter out sentences expressing other

relations (i.e., noise).

3.2.1 Standford Dependency parser

We use the dependency parser of the Stanford CoreNLP tool [49] to process each sen-

tence. The Stanford typed dependencies representation was designed to provide a simple
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description of the grammatical relationships in a sentence that can easily be understood

and effectively used by people without linguistic expertise who want to extract tex-

tual relations. In particular, rather than the phrase structure representations that have

long dominated in the computational linguistic community, it represents all sentence

relationships uniformly as typed dependency relations [49].

3.2.2 Shortest path

We find the shortest path between the tokens referring to the subject and object entities

in sentences. Using the shortest path between a pair of entities helps to reduce the

chance of having trigger words of other relations in the path.

Looking at Figure 3.3, the shortest path between the subject and the object in the tree

is [SUBJECT, wife, OBJECT], corresponding to the sentence in Example 1.1 on page 4.

Notice that the shortest path between the subject and the object entities contains a

trigger word for the Spouse relation, namely wife. Therefore, we take the entire phrase

in the shortest path (“’s wife” in the example) and use it as part of the synthetic

explanation.

3.2.3 Filtering

We performed the following filtering steps to reduce noise and to produce a more precise

training set. Since the example given for each rule is a normalized sentence, the entity

names are replaced with the token ENTITY.

Rule 1: Remove sentences when there is no node between SUBJECT and OBJECT in

the shortest path. Here is an example of sentence being removed by this rule.

“In all seriousness, ENTITY1 sends best wishes to OBJECT and SUBJECT .”

Rule 2: Remove sentences that have trigger words from the negative relation sets in the

shortest path. The following sentence is an example of a removed sentence by

this rule:

“Son of SUBJECT and brother to OBJECT and father to ENTITY1.”

Relation between SUBJECT and OBJECT is ‘parent’. Positive trigger word is

“Son” and negative trigger word is “brother”.
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Rule 3: Remove sentences when a trigger word of negative relations appears as a sibling

of either the SUBJECT or OBJECT in the parse tree. Here is an example

sentence where this rule applies.

“Family, Daughter of ENTITY1 executive OBJECT and actress ENTITY2,

older brother SUBJECT.”

Relation between SUBJECT and OBJECT is ‘parent’. Positive trigger word

is “Daughter” and negative trigger word is “brother” which is the sibling of

SUBJECT in the parse tree of the sentence.

We arrived at these rules empirically by inspecting a sample of mistakes of our method

on the development set.

3.2.4 Explanation Generation

For generating explanations automatically, in each relation extraction task, we use trig-

ger words for the positive and negative sentences of a given relation and the shortest

path of each sample. Trigger words can be defined by user or collected from the training

data automatically.

For extracting trigger words from the training sentence without the human interference,

we collect the 15 most frequent words (if possible) between the subject and object entities

in the sentences related to each relation. Thus, for each relation, at most we have 15

trigger words.

Each explanation is derived from a template that requires a name, a condition involv-

ing a trigger word, a candidate for the condition from training sentences and a label.

Candidates are the sentences that have the trigger word between the subject and object

entities. The process is shown in Figure 3.4.
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Explanation:

Name = Explanation_triggerWord

Candidate: The candidate sentence

Condition: “the word ‘triggerWord’ 

appears between X and Y”.

Label: 1 or 0

Stanford Dependency

parser
Sentences with 

mentions

Shortest_Path

finder

Candidate 

finder

TriggerWords

Figure 3.4: Finding candidate sentence for generating synthetic explanations.

For example, from the following ClueWeb sentence:

“The Star of David is so named after King David, the father of King Solomon,”

one can generate a positive label for the relation Parent, because of the trigger word

“father” in the path. Furthermore, the explanation for this positive label is:

Name: explanation.1

Candidate: “The Star of David is so named after King David, the father of

King Solomon.”

Label: 11

Condition: “the word ‘father’ appears between X and Y”2

By following this procedure we are guaranteed to generate explanations that are com-

patible with the original explanation parser of Hancock et al. [27]. Thus, we can obtain

labeling functions that work exactly as the ones derived from manually produced expla-

nations.

1In the BabbleLabel language, positive and negative labels are shown with 1 and 2 respectively.
2In the BabbleLabel language, X and Y stand for placeholders for the subject and object entities.
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Explanations for negative labels are of two forms: (1) the presence of a hand-picked

negative trigger word or the absence of a positive trigger word. Hand-written explana-

tions (by user) can have various types of structures depending on the user. However,

our automatically generated explanations have the same structure as:

• Positive samples:

“A positive trigger word appears between X and Y.”

• Negative samples:

“A negative trigger word appears between X and Y.”

“No positive trigger word appears between X and Y.”

Note that this types of explanations are very simple in comparison with manually written

explanations by user.

3.3 Binary Classification

We use a neural network for the Relation Extraction task that is inspired by the fam-

ilyTree network of Hinton et al. [4]. Our network, depicted in Figure 3.5, takes three

sets of features as input:

1. Output of BabbleLabel labeling functions (derived from the explanations) on the

input sentence;

2. A representation of the entire sentence;

3. Embedding of entity types.

As it is shown in Figure 3.5, our network has two main parts. First, three individual

networks with one hidden layer have been trained on the sets of features. The number

of neurons are different for these networks. Second, a five layers fully connected network

gets the combination of outputs of the first part. As the network is a binary classification

network, the output layer of the network is a softmax layer and has two neurons.

As mentioned in Section 2.4.1, training the feature sets independently is the most sig-

nificant property of this architecture which helps the network to find the importance of
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each feature set. Our developed network is different from the network proposed by [4]

in terms of the number of inputs, the number of layers and the hyper-parameters.

Figure 3.5: Architecture of our defined network which gives sentence embedding
vector, out put of BabbleLabel Labeling functions and FIGER types of entities as

inputs.
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3.3.1 Learning by FamilyTree

Our proposed network named FamilyTree, contains four parts. The first three parts are

the encoding layers for each feature set and the last part is the combination of layers for

predicting the output. Each part has a similar architecture as MLP networks.

In MLPs, learning occurs in the neurons by changing the connection weights, based

on the amount of error in the output compared to the expected result. MLP training

process includes three main steps; Forward pass, Loss calculation and Backward pass.

The following briefly describes each step.

• Forward pass

In this step the input is passed to the model and is multiplied with wights at every

layer.

• Loss calculation

An output is generated and the loss is calculated based upon the predicted output

and the truth label from dataset.

• Backward pass

After calculating the loss, weights of the model are updated by backpropagating

the loss using gradient. In this step, weights will adjust according to the gradient

flow in that direction.
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Chapter 4

Experimental Results

In this chapter, we first present our datasets and the experimental setup for our evalu-

ation. This is followed by our evaluation of the proposed method.

Our evaluation is divided into a few parts. First, we report the results of our system with

different tools that we use to generate features. This is to find the best tools or settings

for feature extraction (Section 4.2.1). After choosing the best tools for generating the

desired features, precision, recall and F1-score will be reported for the network trained

on every possible combination of the features (Section 4.2.2). Third, we show that

our automatically generated explanations are comparable with the human produced

ones by comparing the results produced by our network on both automatic and manual

explanations (Section 4.2.3). The next experiment is a comparison, in terms of F1-

score, of our system and the BabbleLabel system published in [27] for ‘Spouse’ relation

(Section 4.2.4). We investigate the false-positive instances of all relations to better

understand why the network miss-classifies them (Section 4.2.5). In another experiment

with two other relation extraction tasks, namely location-contain and place-of-birth, we

further evaluate our method on those relations (Section 4.2.6). At the end, to compare

our system with one other related work, Ren et al. [3], we use a public dataset (Wiki-

KBP [1, 2]) and evaluate our best model on its test set (Section 4.2.7).

In the last section of the chapter, we provide some details for replicating the results.
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4.1 Dataset Description

4.1.1 Relation extraction tasks

BabbleLabel Spouse Dataset. We test our approach on all data provided by the

BabbleLabel authors. Hancock et al. [27] test their model on three relations but make

available data for only the Spouse relation [5]. Moreover, although their paper mentions

that they use 30 explanations for the Spouse relation, they make only 10 explanations

available.

ClueWeb Dataset. We build a corpus of sentences, explanations, and labels for five re-

lations: Spouse, Parent, Book-author, place-of-birth and location-contain. Our training

data comes from ClueWeb sentences [6] annotated with Freebase entity identifiers [50].

For each relation, we gather all sentences mentioning pairs of Freebase entities belonging

to the corresponding relation.

For the first three relations, we test with both manual explanations we produced our-

selves, following the guidelines in Hancock et al. [27], and automatically generated ex-

planations from sentences that contained trigger words for the relations. After getting

results for those relations, we pick our best model and test other two relations, place-

of-birth and location-contain, only with the best model.

Wiki-KBP Dataset. To have a comparison with related works in relation extraction,

we choose a public dataset named Wiki-KBP [1, 2] and test our model on that. It uses

1.5M sentences sampled from around 780k Wikipedia articles [1] as training corpus and

14k manually annotated sentences from 2013 KBP slot filling assessment results [2] as

test data.

This dataset has 7 relation types including: children, countries-of-residence, country-

of-death, country-of-birth, parents, religion and None. We test our best model on this

dataset and compare our results with Ren et al. [3].

4.1.1.1 Negative samples for training and testing

BabbleLabel Spouse Dataset. The BabbleLabel Spouse dataset contains labeled

positive and negative samples for both training and testing sets.
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Table 4.1: Statistics of BabbleLabel Spouse datasets [5]. The relations used as nega-
tive samples are shown in the last column.

Relation Train Test Dev negative relations

Spouse 8K 1K 1K Parent, friend, ...

ClueWeb Dataset. To obtain negative samples for our data, we manually picked

ClueWeb sentences relating entities of similar types belonging to other relations in Free-

base. For example, for the Parent relation we gathered samples of Spouse and other

familial relationships (e.g., cousin, brother, sister, etc.). Explanations in such cases

amount to either the lacking of the corresponding positive trigger words of the relation

or the presence of the negative trigger words for the relation. For the Book-author

relation, we used sentences mentioning a person and other arts (e.g., a song).

Wiki-KBP Dataset. For each relation in this dataset, we considered the samples

of the relation as positive sentences and the samples of other 6 relations as negative

sentences.

4.1.1.2 Splitting data to training and testing sets

BabbleLabel Spouse and Wiki-KBP datasets. These two datasets have train-

ing and testing instances separately. We considered 10% of their training set as our

validation sets.

ClueWeb Dataset. This data is divided in 80%,10% and 10% splits for training,

validation and test sets.

For all datasets, each sample of the dataset includes a subject entity, an object entity,

a sentence containing the subject and the object entities and the target relationship

between subject and object entities. Statistics for the datasets are reported in Ta-

bles 4.1, 4.2 and 4.3.

4.1.1.3 Trigger Words

The following lists show the hand-picked trigger words for each relation extraction task

on Clueweb and BabbleLabel Spouse datasets. These trigger words are provided by user

without using training data.
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Table 4.2: Statistics of Wiki-KBP [1, 2] dataset. The relations used as negative
samples are shown in the last column. The number of Train, Test and Dev sentences

are the same for all relations and are 1.35M, 14K and 150K respectively.

Relation negative relations

parents
children, countries-of-residence, country-of-death,

country-of-birth, religion, None

children
countries-of-residence, country-of-death, country-of-birth,

parents, religion, None

country-of-
birth

children, countries-of-residence, country-of-death, parents,
religion, None

country-of-
death

children, countries-of-residence, country-of-birth, parents,
religion, None

countries-of-
residence

children, country-of-death, country-of-birth, parents,
religion, None

religion
children, countries-of-residence, country-of-death,

country-of-birth, parents, None

None
children, countries-of-residence, country-of-death,

country-of-birth, parents, religion

Table 4.3: Statistics of our generated dataset [6]. The relations used as negative
samples are shown in the last column.

Relation Train Test Dev negative relations

Spouse 9.6K 1.2K 1.2K Parent, family-members

Parent 8.8K 1.1K 1.1K Spouse, family-members

Book-author 16K 2K 2K politicians-party, artist-song

place-of-birth 17.8K 2.3K 2.3K place-of-death

location-
contain

24K 3K 3K cities-of-states, states-of-country

• Spouse:

Positive trigger words: ‘married’, ‘wife’, ‘husband’, ‘marriage’, ‘widow’, ‘dating’,

‘fiance’, ‘spouse’.

Negative trigger words: ‘brother’, ‘sister’, ‘half-brother’, ‘sibling’, ‘half-sister’,‘son’,

‘dad’, ‘mom’, ‘daughter’, ‘father’, ‘mother’, ‘child’, ‘parent’, ‘grandson’, ‘grand-

daughter’, ‘adopted’, ‘adopt’,‘friend’.

• Parent:

Positive trigger words: ‘son’, ‘dad’, ‘mom’, ‘daughter’, ‘father’, ‘mother’, ‘child’,

‘parent’, ‘adopted’, ‘adopt’.

Negative trigger words: ‘married’, ‘wife’, ‘husband’, ‘spouse’, ‘marriage’, ‘widow’,

‘dating’, ‘fiance’,‘brother’, ‘sister’, ‘half-brother’, ‘sibling’, ‘half-sister’,‘friend’.
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• Book-author:

Positive trigger words: ‘author’, ‘book’, ‘novel’, ‘wrote’, ‘written’, ‘published’,

‘story’, ‘writes’, ‘writer’, ‘writing’, ‘poem’.

Negative trigger words: ‘album’, ‘released’, ‘release’, ‘recorded’, ‘song’, ‘record’,

‘recording’, ‘CD’, ‘music’, ‘band’, ‘leader’, ‘candidate’, ‘elected’, ‘president’, ‘chair-

man’, ‘head’, ‘leadership’, ‘politician’, ‘government’.

• place-of-birth:

Positive trigger words: ‘born’, ‘grew’, ‘native’, ‘birthplace’.

Negative trigger words: ‘died’, ‘killed’, ‘death’, ‘president of’.

• location-contain:

Positive trigger words: ‘place in’, ‘city in’, ‘country in’, ‘province in’, ‘located in’,

‘commune of’, ‘capital of’, ‘city of’, ‘province of’, ‘home to’.

Negative trigger words: ‘near to’, ‘south of’,‘north of, ‘west of’, ‘east of’, ‘miles

of’.

To have a fair comparison with Ren et al. [3], we select our trigger words for the relations

in Wiki-KBP dataset [1, 2] automatically from the training sentences. Positive trigger

words for the 7 relations in Wiki-KBP dataset is shown in the list below. We consider

trigger words of other 6 relations as negative trigger words for each relation.

• parent: ‘son’, ‘daughter’, ‘mother’, ‘sons’, ‘Prince’, ‘children’, ‘child’, ‘grandson’,

‘daughters’, ‘parents’, ‘grandfather’, ‘Queen’.

• children: ‘created’, ‘half-brother’, ‘half-sister’, ‘child’.

• religion: ‘leader’, ‘cleric’, ‘Church’, ‘Muslim’, ‘religion’, ‘Christian’, ‘Muhammad’,

‘religious’, ‘Al-Azhar’, ‘Imam’, ‘God’, ‘philosophy’, ‘prophet’, ‘John’, ‘Islam’.

• country-of-death: ‘city’, ‘killed’, ‘years’, ‘City’, ‘capital’, ‘life’, ‘located’, ‘Battle’,

‘age’.

• country-of-birth: ‘native’, ‘town’, ‘birthplace’, ‘grew’.

• countries-of-residence: ‘live’, ‘work’, ‘moved’.

• None: ‘played’, ‘buy’, ‘laughed’, ‘paper’.
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Table 4.4: Statistics of data cleaning part for our generated dataset training sentences

Relation
Original
train set

Rule
number of

samples removed
cleaned
train set

Rule 1 1580
Parent 8800 Rule 2 682 6166

Rule 3 372

Rule 1 3723
Book-author 16000 Rule 2 97 11444

Rule 3 736

Rule 1 2378
Spouse 9600 Rule 2 213 6499

Rule 3 510

Rule 1 1846
place-of-birth 17800 Rule 2 114 15584

Rule 3 256

Rule 1 2121
location-contain 24000 Rule 2 327 21360

Rule 3 192

4.1.1.4 Filtering

Table 4.4 shows the statistics of the data removed from the training set of ClueWeb

dataset by each rule discussed in 3.2.3. Since we compare our results for the BabbleLabel

Spouse and Wiki-KBP datasets with others, we do not apply the filtering rules on those

datasets.

4.2 Experiments

4.2.1 Choosing our feature extraction tools

In this section, we ignore the Babblelabel features. Thus, sentence embedding and

entity types are the inputs of our network. These set of experiments are done to find the

best sentence embedding and entity type recognition tools among some of the available

tools. Table 4.5 shows the result of our system based on various features obtained with

alternative tools for the same kind of feature.

For sentence representation, we tested with Bag of Bigrams as suggested by Hancock

et al. [27] and also with FastText [35] sentence embedding. For the sake of efficiency,

we prune infrequent bigrams, i.e. those occurring less than 30 times in the corpus. For
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entity types, Stanford NER [51], which is coarse-grained and only provides 9 types, and

FIGER [1], which provides 112 types have been tested.

Table 4.5 shows the results of our evaluation. Four experiments are conducted for each

relation extraction task, each with a different feature extractor tools. Models are Stan-

ford NER + Bag of Bigrams, Stanford NER + FastText, FIGER + Bag of Bigrams

and FIGER + FastText. Precision, Recall and F1-score are reported for every exper-

iment. The maximum and minimum F1-score are used as the measurements for final

comparison.

By comparing the F1-score between FIGER+FastText model (last part of the table) and

FIGER+Bag of Bigrams model (third part of the table) we can decide about the impact

of using FastText as the sentence embedding tool. In all of the three relations, F1-score of

FIGER+FastText model is better than FIGER+Bag of Bigrams one. This superiority

can be seen in comparing the results of Stanford NER+Bag of Bigrams model (first part

of the table) with Stanford NER+FastText model (second part of the table) too. Thus,

we can conclude that FastText improves performance of the system in comparison with

Bag of Bigrams. This is not surprising since the output of FastText is the embedding

vector of the whole sentence while the output of Bag of Bigrams is the bag of bigrams

of the phrase between the pair of entities. Also, unlike the Bag of Bigrams which uses

frequent bigrams, FastText is a pre-trained model on a large corpus. So the FastText

model is more general than the Bag of Bigrams approach.

The other set of experiments is to compare Stanford NER and FIGER as entity type

recognizer tools. Note that although Spouse and Parent are the relations between entities

of type Person, which is one of the most well supported types by NER tools, FIGER

has a better performance than Stanford NER tool on these two relations. Providing

112 types for entities is not the only benefit of FIGER. According to [1], FIGER uses

more textual features than Stanford NER tool which makes it more accurate. The F1-

score of FIGER is around 10% better than Stanford NER reported in [1]. By comparing

FIGER+FastText with Stanford NER+FastText results, we conclude that using FIGER

as the entity type recognizer tool can improve the system performance. The advantage

of using FIGER is more visible in Book-author relation. Since FIGER provides different

tags for /person/author and /person/artist, this progress is reasonable in this relation.
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Table 4.5: Precision, Recall and F1-score on Spouse, Parent and Book-author rela-
tions varying features

StNER+BoBigr

Relation Precision Recall F1-score

Spouse 70.25±3.25 78.12±2.88 73.98±2.97

Parent 68.75±3.25 81.12±2.75 74.43±3.07

Book-author 89.75±2.25 88.12±2.25 88.93±2.13

StNER+FstT

Relation Precision Recall F1-score

Spouse 73.00±3.12 84.25±2.50 78.22±2.80

Parent 69.50±3.13 82.88±2.62 75.60±3.02

Book-author 93.38±1.75 89.88±2.13 91.59±1.82

FGR+BoBigr

Relation Precision Recall F1-score

Spouse 73.50±3.00 85.88±2.38 79.21±2.83

Parent 71.12±3.12 84.25±2.62 77.13±2.89

Book-author 97.12±1.25 98.25±1.00 97.68±1.00

FGR+FstT

Relation Precision Recall F1-score

Spouse 87.62±2.25 91.25±2.00 89.40±2.07

Parent 88.25±2.25 92.50±1.88 90.33±1.95

Book-author 97.12±1.25 98.75±0.88 97.93±0.94

By these comparisons, as shown in Table 4.5, we find that FastText and FIGER are

the best tools that can be used in all relation extraction tasks. Thus, we discard Stan-

ford NER and Bag of Bigrams tools in our further experiments.

4.2.2 Results and discussion over the relation extraction tasks

All relation extraction tasks are evaluated with seven variations of the network, each

with a combination of one, two and three feature sets as the input of the network. Thus,

various types of networks in terms of the type of features and the number of the inputs

has been evaluated in this section to find the best model. To have a better explanations

of those defined types of networks we call them as modes. In Tables 4.6, 4.7, 4.8 and 4.9,

precision, recall and F1-score for all modes of the network for Spouse, Parent and Book-

author relations are reported.

As our first set of experiments, the models trained on only one of the features are

evaluated. As shown in Tables 4.6, 4.7, 4.8 and 4.9, in all of our relation extraction

tasks, although the networks that are trained only on FIGER or FastText features
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do not show high performance, models trained only on BabbleLabel features, have an

impressive improvement in precision. However, the recall has suffered by at least 15%.

A reason for this behavior is that using explanations helps to predict all samples that

belong to those explanations. The problem appears when we encounter samples for

which no explanation is provided. In general, although adding BabbleLabel labeling

functions to the features, can increase the precision, it makes the recall of the system

dependent on the number of explanations.

The next set of experiment is to evaluate the models trained on a combination of

two features. The best F1-score for this relation extraction task belongs to Babblela-

bel+FastText model. The results in this set of experiment is different for each relation.

For example, according to Table 4.9, in Book-author relation (unlike the Spouse and Par-

ent relations in Tables 4.7 and 4.8) FIGER+BabbleLable shows a better performance

than FastText+BabbleLabel. This observation shows that the impact of the features on

the network is different for each relation.

The last set of experiments in this section is to train the system on all of the three feature

sets. This model gives the best performance on all relation extraction tasks except the

Spouse using Hancock et al data [5]. Fortunately, in this relation (Spouse), the results

of the FastText+FIGER+BabbleLabel model is comparable with the best model and the

difference is less than 1%. Thus, we can conclude that the FastText+FIGER+BabbleLabel

model is the best model for all of the evaluated relations. We use FastText+ FIGER+

BabbleLabel as our best model for comparing with others.

As discussed in Chapter 1, expanding existing Knowledge Bases is one of the most im-

portant goal of relation extraction. To achieve this aim, a very precise system is required.

Although, the precision is more significant in this problem, we compare our results with

the maximum and minimum of F1-score for finding the best model because of our feature

sets. BabbleLabel features can make the system precise (e.g.,Table 4.7, experiment with

only BabbleLabel features) but the precision is dependent on the number of explanation.

However, comparing based on F1-score helps to have a better comparison.
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Table 4.6: Percentage of Precision, Recall and F1-score on BabbleLabel Spouse
dataset [5].

Explan. Source Method Precision Recall F1-score

30 [27] Hancok et al. [27] – – 50.1

none
FstT 81.73±2.87 54.18±3.11 65.16±2.98
FGR 83.39±3.44 31.54±3.42 45.76±3.43

FstT+FGR 57.88±3.37 60.25±3.38 59.04±3.37

101
[27]

(manual)

Bbl 77.4±3.22 59.83±3.37 67.49±3.33
FstT+Bbl 66.25±3.25 72.38±3.12 69.18±3.13
FGR+Bbl 69.12±3.25 67.50±3.25 68.30±3.19

Bbl+FstT+FGR 63.88±3.38 73.38±3.00 68.30±3.28

12 autom.

Bbl 75.32±2.78 61.73±3.14 67.85±3.00
Bbl+FstT 66.25±3.37 73.88±3.00 69.86±3.15
FGR+Bbl 69.62±3.25 70.00±3.25 69.81±3.13

Bbl+FstT+FGR 66.62±3.38 71.62±3.25 69.03±3.14

Table 4.7: Percentage of Precision, Recall and F1-score on Parent relation of ClueWeb
dataset [6].

Explan. Source Method Precision Recall F1-score

none
FstT 79.63±1.19 69.89±2.22 74.44±1.87
FGR 76.80±1.65 62.76±1.17 69.08±1.34

FstT+FGR 88.25±2.25 92.50±1.88 90.33±1.95

4 manual

Bbl 93.14±2.18 73.41±3.09 82.10±2.78
FstT+Bbl 78.00±2.88 79.38±2.87 78.68±2.81
FGR+Bbl 79.50±2.75 74.00±3.12 76.65±2.89

Bbl+FstT+FGR 91.62±1.88 99.25±0.63 95.29±1.25

53 autom.

Bbl 98.11±0.71 62.20±0.96 76.13±0.83
FstT+Bbl 69.88±3.12 81.12±2.75 75.08±2.93
FGR+Bbl 62.88±3.38 77.88±3.00 69.58±3.14

Bbl+FstT+FGR 90.11±1.89 97.56±1.73 93.68±1.82

Table 4.8: Percentage of Precision, Recall and F1-score of Spouse relation of ClueWeb
dataset [6].

Explan. Source Method Precision Recall F1-score

none
FstT 78.34±2.76 70.11±2.65 74.00±2.70
FGR 75.76±2.45 63.19±2.25 68.91±2.39

FstT+FGR 87.62±2.25 91.25±2.00 89.40±2.07

5 manual

Bbl 93.32±2.00 71.76±2.52 81.13±2.31
Bbl+FstT 78.31±1.78 79.44±1.45 78.87±1.67
Bbl+FGR 78.71±1.65 72.73±2.00 75.60±1.87

FstT+FGR+Bbl 89.97±0.98 98.11±1.04 93.86±1.00

27 autom.

Bbl 97.87±1.16 60.01±2.00 74.40±1.65
Bbl+FstT 70.21±1.67 78.02±1.44 73.91±1.50
Bbl+FGR 61.98±2.11 77.12±2.11 68.73±1.98

Bbl+FstT+FGR 90.65±0.67 97.08±0.78 93.75±0.76
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Table 4.9: Percentage of Precision, Recall and F1-score of Book-author relation of
ClueWeb dataset [6].

Explan. Source Method Precision Recall F1-score

none
FstT 92.63±1.31 89.28±0.87 90.79±1.02
FGR 94.25±0.89 87.85±0.94 90.94±0.93

FstT+FGR 97.12±1.25 98.75±0.88 97.93±0.94

5 manual

Bbl 95.69±1.48 31.82±1.12 47.76±1.25
FstT+Bbl 93.00±1.88 95.62±1.50 94.29±1.57
FGR+Bbl 94.12±1.62 98.12±1.00 96.08±1.27

Bbl+FstT+FGR 97.25±1.25 98.38±0.88 97.81±0.94

91 autom.

Bbl 97.14±1.78 55.81±1.34 70.89±1.56
FstT+Bbl 95.12±1.62 94.88±1.62 95.00±1.44
FGR+Bbl 92.88±1.87 97.12±1.25 94.95±1.45

FstT+FGR+Bbl 95.62±1.50 98.12±1.00 96.86±1.13

4.2.3 Quality of automatically generated explanations

In this section, we compare the results of the network using synthetic explanations

with the results of using manually generated ones. In general, it is fair to say that

the difference between synthetic and manually generated explanations in our tests was

minimal. According to the results of Section 4.2.2, the maximum difference, in terms

of F1-score, between manual and automatically generated explanations belongs to the

Parent relation and is about 7% for BabbleLabel+FIGER model. This observation

supports our claim that automatically generating explanations can reduce the role of

humans in labeling data without causing an impressive damage on the performance of

the system.

Note that in this thesis, the simplest type of explanations has been generated automati-

cally and the number of generated explanations depends on the number of trigger words

and the number of candidates that are found for those trigger words of each relation. For

example, we have 32 trigger words for the Spouse relation (including lowercase and up-

percase) and the system can only find 12 candidates on BabbleLabel Spouse [5] training

data. However, with the same trigger word set, the system is able to find 27 candidates

on ClueWeb [6] Spouse training data.
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Table 4.10: Statistical results (true-positive, false-positive, true-negative and false-
negative) of best model for each relation extraction task.

Relation system TP FP TN FN

Spouse - Hancock et al. [5] FstT+Bbl- Automatic 147 51 727 74

Spouse - ClueWeb data [6] FstT+FGR+Bbl- Manual 392 8 756 44

Parent FstT+FGR+Bbl- Manual 460 2 592 46

Book-author FstT+FGR+Bbl- Manual 1154 19 795 32

4.2.4 Comparing the result of the Spouse relation with BabbleLabel

system

It is worth mentioning that we obtained better results than those reported by Hancock

et al. (see Table 4.6), on their dataset, albeit with only a subset of the explanations

they used. As mentioned, our method differs from theirs in two ways:

1. We use a neural classifier while they use logistic regression.

2. We use the output of their labeling functions while they use n-grams of relational

phrases.

However, we improve the F1-score on their dataset around 18%.

Although in BabbleLabel [27], the authors did experiments on three relation extraction

tasks, Spouse, Disease and Protein, the data and written explanations are available

only for Spouse relation in [5]. Our system is able to generate 12 explanations for their

dataset, and, as a matter of fact, achieve the better performance with those explanations

than with the manually derived ones.

4.2.5 Investigating False Positives

In this section, we show some examples of false-positive samples for all mentioned rela-

tions to better understand why the network miss-classified them. Table 4.10 shows the

statistical results of our system.

For each relation extraction task, we look into the false-positive samples of each class

and divide them in some groups.

1Although Hancock et al. report using 30 explanations, the dataset they make available contains
only 10, which are the ones we used.
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Spouse relation

There are 51 samples in the false-positive instances of the network. Every sample is a

member of one of the following groups.

1. Group1 (35 sentences). Sentences without any trigger word that shows the Spouse

relation.

Example 4.1. “Actor Jon Hamm and actress Jennifer Westfeldt have called it

quits after 18 years, reports Us Weekly.”

SUBJECT: Jon Hamm

OBJECT: Jennifer Westfeldt

*Note: the last name of SUBJECT and OBJECT is different.

2. Group2 (4 sentences). There is at least one trigger word but the relationship

between SUBJECT and OBJECT is not ‘Spouse’.

Example 4.2. “Widow Kath Rathband, who cared for the hero police officer

after he was shot and blinded by killer Raoul Moat in Newcastle in July 2010, will

marry prison guard John McGee next.”

SUBJECT: Widow Kath Rathband

OBJECT: Raoul Moat

Parent relation

There are only two samples in the false-positive instances of the best network for this

relation. Those two samples are shown in the following list.

1. Group1 (1 sentence): There is no trigger word to show the ‘Parent’ relationship

between SUBJECT and OBJECT.

Example 4.3. “Were it not for the senior Jennifer Bolt’s persistence, Usain would

probably not be here.”

SUBJECT: Usain

OBJECT: Jennifer Bolt
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2. Group2 (1 sentence): Since the network and automatic BabbleLabel system pro-

vided with only simplest type of explanations, the network cannot classify the

second sample correctly (daughter is not between SUBJECT and OBJECT)

Example 4.4. “Memories of movies past: Over the rainbow in Neverland One day,

visual consultant John Napier took his friend, daughter of Judy Garland, Lorna

Luft, and her son Jesse Cole, 7, on a walk through the sets he had designed.”

SUBJECT: Lorna Luft

OBJECT: Judy Garland

Book-author relation

There are 19 false-positive instances in the results of the best network for this relation.

Most of them have one of these structures which are common in both Book-author and

music-artist relations.

1. Group1 (9 sentences): SUBJECT’s OBJECT.

Example 4.5. “Although the idea has been used since, most notably in L. Sprague

de Camp’s Rivers of Time stories, Bradbury’s tale looks at the consequences of

the most minor action of which a person may not even be aware.”

SUBJECT: L. Sprague de Camp

OBJECT: Rivers of Time

relation: Book-author

Example 4.6. “Roy Harper sang the Jethro Tull song Up the ’Pool , on their

1996 tribute album, To Cry You A Song - A Collection Of Tull Tales, and in 1998,

Jethro Tull singer Ian Anderson contributed flute to the song, These Fifty Years on

Harper’s The Dream Society , a concept album based on Harper’s life, particularly

his youth.”

SUBJECT: Roy Harper

OBJECT: The Dream Society

relation: music-artist



42

2. Group2 (4 sentences): OBJECT by SUBJECT.

Example 4.7. “The Alchemist by SUBJECT Paulo Coelho is originally written

in Portuguese and became a widely translated international bestseller.”

SUBJECT: Paulo Coelho

OBJECT: The Alchemist

relation: Book-author

Example 4.8. “Für Elise by Ludwig van Beethoven was not published during his

lifetime, only being discovered forty years after his death.”

SUBJECT: Ludwig van Beethoven

OBJECT: Für Elise

relation: music-artist

As we showed, most of the False-Positive samples (in all relations) can be considered as

noisy data. This manual checking of false positives shows the strength of our features

and the positive impact of using natural language explanations.

4.2.6 Relations involving entities of type location

To further evaluate our system, we did experiments on two other relations that involve

entities of type location, known to be a challenging type for this task. We have used

our best model (FastText+FIGER+BabbleLabel) with automatically generated expla-

nations for these relations. Table 4.3 shows the statistics of data used for location-contain

and place-of-birth relations.

4.2.6.1 Evaluation

The result of our best model (BabbleLabel+FastText+FIGER) on relations that involve

locations is shown in Table 4.11. Our system shows a reasonable performance on these

types of relations too.

The following shows some examples of the sentences that were miss-classified by the

network (False-Positives). Two main problems can be noticed in the false-positives for
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Table 4.11: Percentage of Precision, Recall and F1-score of extra two relations for
the best automatic model (FstT+FGR+Bbl)

Relation Explan. Source Method Precession Recall F1-score

place-of-
birth 18

autom.
78.65±1.36 75.31±2.06 76.94±1.83

location-
contain 28

Bbl
+FstT
+FGR 72.31±1.17 73.17±0.82 72.74±0.98

these relation extraction tasks. First, some of the positive and negative examples are

similar (see Example 4.12); second, trigger words are absent in some of the sentences.

place-of-birth relation

1. In the following sentence, we cannot find any trigger that shows Korman is born

in Chicago:

Example 4.9. “After a stint in the navy, Korman studied theater in Chicago

before going to New York hoping to make it as an actor.”

SUBJECT: Korman

OBJECT: Chicago

relation: place-of-birth

2. There are two trigger words in following sentences that show the relation is place-

of-birth. But none of those are the candidate for our simple type of explanation.

By improving our explanations, these type of sentences can be easily classified with

the network.

Example 4.10. “Born in Paris as Vincent Crochon , he is the son of French actor

Jean-Pierre Cassel and the brother of Rockin.”

SUBJECT: Vincent Crochon

OBJECT: Paris

relation: place-of-birth

3. The following is another example that we cannot find any trigger word showing

the relation in the sentence.
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Example 4.11. “An exhibition about Johann Georg Kohl has been prepared

together with the University Library of Bremen, and displayed at Washington,

Bremen and Dresden.”

SUBJECT: Johann Georg Kohl

OBJECT: Washington

relation: place-of-birth

location-contain relation

1. In the following example, the relation is location-contain, but it is hard to predict

that for the network due to the existence of ‘south of’ (‘south of’ is in the Negative

trigger words list for this relation).

Example 4.12. “Just south of the heart of charming Silverton is the Oregon

Garden.”

SUBJECT: Silverton

OBJECT: Oregon Garden

relation: location-contain

2. In the following sentence, the relation is location-contain, but the trigger word

comes between Sarawak Museum and Sarawak:

Example 4.13. “Currently at the Dewan Tun Abdul Razak in Kuching, a gallery

of the Sarawak Museum just across the road from the main building, is a display

of ceramic relics excavated from various sites at the Sarawak river delta.”

SUBJECT: Kuching

OBJECT: Sarawak Museum

relation: location-contain

4.2.7 Evaluation on Wiki-KBP dataset [1, 2]

As discussed before, we evaluate our best model (Fasstext+FIGER+BabbleLabel) on

the Wiki-KBP public dataset to compare our results with Ren et al. [3]. There are

training and testing sentences for 7 different relations in the Wiki-KBP dataset. Our
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Table 4.12: Precision, Recall, F1-score and Accuracy for all relations in Wiki-KBP
dataset [1, 2] for the best automatic model (FstT+FGR+Bbl)

Relation Precession Recall F1-score Accuracy

parents 0.523 0.785 0.628 0.953

children 0.714 0.500 0.588 0.950

country-of-birth 0.327 0.703 0.447 0.833

country-of-death 0.719 0.771 0.744 0.843

countries-of-residence 0.012 0.109 0.021 0.804

religion 0.111 1.000 0.199 0.968

methods requires positive and negative samples for each relation tasks. For using this

dataset in our method, we consider sentences of other 6 relations as negative samples

for each of the relations (Section 4.1.1.1). Following [3], samples of ‘None’ relation are

excluded. The precision, recall, F1-score and accuracy for each of the 6 relations are

shown in Table 4.12.

4.2.7.1 Changing the task to a multi-class classification

Our system is a binary classification model. For comparing our results with Ren et al.

[3], we need to change it to a multi-class classification.

As shown in Figure 3.5, the last layer of our network is a softmax layer which provides

a probability for each node. A same test set is used for all of the 7 relations in our

method which is a binary classification network. We find the network prediction for each

test sample by comparing all of the softmax probabilities from all binary classification

networks and setting the maximum one as the prediction of the network. For example,

softmax probabilities for “Hakim, 59, died in Tehran.” sentence is shown in Table 4.13.

As the maximum probability for ‘yes’ label belongs to the “country-of-death” relation,

we consider it as the network prediction.

Table 4.13: Softmax probabilities for label ‘yes’ and ‘no’ for each relation classified
with binary classification network.

Relation softmax prob. for ‘yes’ softmax prob. for ‘no’

parents 4.4089714e-07 9.9999952e-01

children 2.8041018e-09 1.0000000e+00

country-of-birth 0.05261817 0.94738185

country-of-death 0.92989 0.07011009

countries-of-residence 1.4825741e-07 9.9999988e-01

religion 3.5840893e-04 9.9964154e-01
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Table 4.14: Accuracy for Wiki-KBP dataset [1, 2] for different methods. Our system
achieves the best accuracy.

Method Accuracy

DS+Peceptron [1] 0.543

DS+Kernel [13] 0.535

DeepWalk [52] 0.613

LINE [18] 0.617

DS+Logistic [21] 0.646

MultiR [17] 0.633

FCM [53] 0.617

Ren et al. [3] (CoType) 0.669

Our method 0.731

Following this strategy, we change our binary classification task to a multi-class classi-

fication method.

4.2.7.2 Comparing with Ren et al. [3]

To have another comparison with the related work, specially in relation classification

task, we compare the results of our best model with Ren et al. [3], as published in their

relation extraction results on the Wiki-KBP dataset [1, 2] and is compared with other

related work. Their results, as published in [3], are shown in Table 4.14, which shows

a comparison of their relation classification method with others, tested on Wiki-KBP

dataset. The last row of the table shows our results.

4.2.7.3 Discussion over the results

Looking at table 4.14, the accuracy of our system is 6% higher than that of Ren et al. [3].

Our system has two main strong points. First, the classifier is developed using the family-

tree network architecture which trains feature sets separately in the first three layers and

then combines them. This characteristic helps the network to understand the influence

of each feature set on the target more accurately. Second, we use BabbleLabel labeling

functions as one of the features of our classifier. BabbleLabel is a powerful framework for

labeling sentences and it could achieve 20% higher F1-score than a traditional Distant

Supervision method [27].

To better understand the source of the improvements, we conducted some further exper-

iments. First, we implement a MLP network with 8 layers (the same with the network
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Table 4.15: Accuracy for Wiki-KBP dataset [1, 2] with different methods.

Network Features Accuracy

simpleMLP FstT+FGR 0.581

simpleMLP FstT+FGR+Bbl 0.629

family-tree FstT+FGR 0.653

family-tree FstT+FGR+Bbl 0.731

shown in Figure 3.5) and the same parameters as the network used for Table 4.12. This

network does not use the family-tree architecture and its input is the concatenation of

all feature sets. We called this model as simpleMLP. Second, we reduce the features into

two feature sets and remove BabbleLabel features to see its impact on the result. The

results are shown in Table 4.15.

According to Table 4.15, adding BabbleLabel features in simpleMLP and using the

family-tree network increase the accuracy around 5% and 10% respectively.

4.3 Reproducibility

In this section, we provide some details of the system to make it easy for others to

replicate our results. The set of the trigger words and the network hyper-parameters

are required for replicating the results of the experiments. For the ClueWeb data, hand-

written trigger words (without using training sentences) are used and they are shown in

Section 4.1.1.3. For other datasets, trigger words are extracted automatically from the

training set.

The reported hyper-parameters and the number of neurons for all modes are selected

via a random search over 30 configurations on the same held-out development set. Ta-

bles 4.16 shows the selected hyper-parameters for each relation extraction task.
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Table 4.16: Hyper-parameters of our network fed by all types of features (same nota-
tion as Figure 3.5). L1, L2 and L3 are the number of neurons for hidden layer of each set
of inputs. The numbers are shown for the best model (BabbleLabel+FastText+FIGER)

trained on 300 epochs.

Dataset Relation
batch
size

learning
rate

activation
function

L1 L2 L3 n hidden

Spouse 20 0.005 sigmoid 50 60 20 20

Parent 20 0.0005 ReLU 60 100 20 20

ClueWeb
dataset

Book-
author

60 0.0005 sigmoid 50 60 20 60

location-
contain

60 0.005 ReLU 50 60 20 60

place-
of-birth

20 0.0005 sigmoid 50 50 100 20

BabbleLable
Spouse
dataset

Spouse 20 0.005 sigmoid 50 60 20 20

Wiki-KBP
dataset

all rela-
tions

60 0.0005 sigmoid 50 60 20 60
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Chapter 5

Conclusions

In this thesis we discussed and evaluated a method for producing labeled data for relation

extraction with accompanying explanations that is based on focusing on specific trigger

words, indicative of a relation in text. We achieved that by training a specific type of

neural network on three effective feature sets; sentence embedding, fine grained entity

types and labeling functions of synthetic natural language explanations generated using

small number of positive and negative trigger words for each relation. Trigger words can

be obtained from training data automatically or picked by users.

We collected ClueWeb data annotated with Freebase entity identifiers to obtain our de-

sired training data, and produced simple annotations by inspecting positive examples

containing the trigger words. ClueWeb data is also used for obtaining negative exam-

ples by focusing on sentences from different relations accepting the same entity types.

We considered four entity types for experimenting on, person-person, person-location,

person-art and location-location.

Our method has two main parts; feature extraction and relation classification. De-

sired features are extracted using accurate tools of sentence embedding, named entity

recognition and semantic labeling functions. The classification part is a multiple-layer

perceptron network named family-tree network which is trained in two steps. First,

it is trained on each of the feature sets independently and second it is trained on the

concatenation of the outputs of the first part.

We used the BabbleLabel [27] system to process the produced synthetic explanations

and to obtain executable feature extractors. We experimented with the proposed neural
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relation prediction architecture using multiple combinations of features and tried to find

the best model. Our experiments can be divided into two phases. First, we did some

experiment to find the best tools for feature extraction part (e.g., best tool for sentence

embedding). Second, we tried to find out which combination of the features (produced

by best tools) gives a best performance.

The system is evaluated on three datasets; BabbleLabel Spouse dataset [5], data collected

from ClueWeb [6] and Wiki-KBP dataset [1, 2]. Hand-picked trigger words are used for

the first two dataset experiments. However, to show that the proposed system can be

completely automatic and can be applied on every new dataset, for the last dataset, all

of the trigger words derived from the training sentences automatically.

The results support our hypothesis that high accuracy can be achieved by focusing on

positive and negative trigger words to derive general albeit useful explanations. Our

results show 6% higher accuracy than Ren et al. [3] on the same test and train dataset.

By this experiment, we show that using labeling functions as the input of a family-

tree based network can improve the system performance. Moreover, our system gets

better accuracy than Hancock et al. [27] on their dataset, which can be explained by

the differences in the way we use their labeling functions and the different classifier we

apply. We have another evaluation where we investigate the False-Positive samples for

each relation to find out why the system miss-classified them. As we expected, most of

those sentences can be considered as noisy samples of the data.

We can identify a few avenues for future work, addressing the limitations of our work.

First and foremost, our efforts are just the first attempt at validating the BabbleLa-

bel approach, and by no means exhaustive. A systematic and large-scale validation is

needed, including a comparison to other baselines and using more benchmarking data.

Second, since we derived the synthetic explanations using a simple rule for our sen-

tences, we need to evaluate different strategies for automatically deriving explanations

(more complicated explanations) from the trigger words, and evaluate their impact on

the effectiveness of the extractor. Third, we need to make our system more general.

Currently, our system works on the data with defined subject and object entities. We

need to generalize it for classifying completely raw sentences into relations. Finally, we

have to add an ability to our system to make it an explainable system for evaluating
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the exact impact of each feature on the result. This ability can pave the way for feature

selection in relation extraction tasks.
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