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Abstract

With the vast amount of information stored in natural language text, sophisticated 

query engines are needed to pull data and effectively relate the pieces. While there 

has been a great deal of activity around semi-structured data and in particular XML, 

there hasn’t been much work on querying natural language text, despite the regu­

larities that exist. This thesis explores a more conservative approach where natural 

language text is stored in a relational database. We present a framework for query­

ing and integrating natural language text with relational data and investigate differ­

ent strategies for optimizing queries. Our results show that the size of the plan space 

depends on the number of query terms and the overlap between query rewritings. 

One of our results, in particular, show that the complexity of finding an optimal plan 

in the presence of rewritings is NP-hard. We develop a cost model and the pruning 

techniques to reduce the size of the search space, and a polynomial-time greedy 

algorithm that finds a sub-optimal plan over a set of rewritings. Our experimental 

results indicate great savings in the evaluation costs of the optimized queries and 

that our greedy algorithm finds either an optimal plan or a plan that is very close to 

optimal in terms of cost.
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Chapter 1 

Introduction

There is a large volume of facts expressed in natural language text. The web in 

general and electronic versions of library archives, news and encyclopedia in par­

ticular are examples of huge natural language text sources used daily. We often 

want to extract facts from these sources, relate them with facts extracted from other 

sources, or ask more specific questions. As an example we may be interested in 

extracting the list of genes mentioned in a collection of biomedical literature and 

find if a paper has experimental evidence for gene products [7]. Another interesting 

application could be gathering opinions on a topic or a product from forums and 

newsgroups, etc.

Past work in this area is usually either specific to a particular domain or task 

(e.g. named-entity recognition [20]) or assumes a clean and relatively small text 

collection such as news corpora [65]. There are recent attempts to scale up fact ex­

traction to large collections such as the Web with some limited success (e.g. [51]). 

However, to the best of our knowledge, there is little work on more general ap­

proaches for querying natural language text and evaluation strategies that can scale 

up to very large text corpora. The problem is challenging because natural language 

text has little structure (compared to relational standards or even XML). However, 

natural language text is also richer than pure text in terms of the way facts are or­

ganized; there are rules and regularities governing natural language text that can be 

exploited by a querying engine. As an example, natural language text benefits from 

a sentence structure which limits the boundary where facts are expressed. More­

over, each sentence has a grammar and the terms and phrases could be tagged by

1
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their part of speech. These taggings and the grammar can be exploited by the query­

ing engine to get the desired results more accurately and more efficiently. Finally, 

term frequencies and the co-occurrence statistics are meaningful. As an example, 

we expect to have the ratio of sentences which contain a given term over the total 

number of sentences to be approximately the same over different text collections.

In this thesis, we study the scenario where queries over text are expressed in 

Natural Language Text Queries (NLTQ) and a rewriting engine is used for query 

expansion [44], The syntax and the semantics of the queries and the rewritings are 

discussed in Chapter 3. We further assume that NLTQ queries are integrated into 

SQL, allowing data from both text and relational sources to be integrated in a query.

1.1 A Motivating Example

Suppose we have partial lists of genes and syndromes, and we want to search for 

more genes, syndromes and possible relationships that may have been reported in a 

text collection such as Medline [4]. In a typical setting, the set of known genes and 

syndromes may be stored in relational tables. Assuming that we are interested in 

casual relationships between gene defects and syndromes, we may write the query 

as follows:

(SELECT x, y
FROM genes g, “%x gene defects responsible for %y” on Medline 
WHERE g.name=x)
UNION 
(SELECT x, y
FROM syndromes s, “%x gene defects responsible for %y” on Medline 
WHERE s.name=y)

The expression “%x gene defects responsible for %y” on Medline is expected 

to return pairs of genes and syndromes that are reported to have the given relation­

ship (see Section 3.1 for the full syntax and explanation). It is feasible that the 

texts of queries and data may not exactly match. For example, the query does not 

exactly match “the X-linked form is a result of mutations in the CD40 ligand 

gene”. Therefore, a rewriting engine can expand the query into alternative expres­

sions such as “%x mutations in %y” and “ %y is a result of mutations in %x

2
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1.2 Objective

This thesis addresses the following question.

“How can we increase the efficiency of querying over natural language text?” 

There is a large difference between natural language text queries and traditional re­

lational queries expressed in SQL. SQL queries have no ambiguity and the result set 

returned by the relational engine is always the “correct” answer. On the other hand, 

queries over natural language text could often be ambiguous and there is no way for 

the querying engine to identify the correctness of the answer. Therefore, most of the 

efforts so far are concentrated on how to come up with a list of “good” answers for 

queries over natural language text. By a “good” answer we don’t necessarily mean 

a “correct” answer. As an example, consider the query “Albert Einstein was born 

in %x” There could be many different answers to the above query, like ‘1879’, 

‘Ulm’, ‘Germany’ and ‘a Jewish family’ which are all correct answers. However, a 

querying engine can never know which answer the user is looking for. Moreover, 

there are answers that are not correct but are meaningful like ‘United States’ for the 

above query. Such answers are more likely to be a correct answer, and one challenge 

is to identify such answers and favor them to less meaningful answers like ‘theoret­

ical physicist’ for the above query. Therefore, the result of a natural language text 

query is a set of matching entries, ranked according to their “goodness”.

Most of the efforts on natural language text querying focus on increasing the 

accuracy of the result set and finding a ranked list of “good” answers. However, 

to the best of our knowledge, there has not been much work on increasing the 

efficiency of querying. The problem is important especially when queries are posed 

over large collections such as the Web. This thesis addresses the issue of efficiency 

by trying to reduce the cost1 of a query (which can be expanded using a rewriting 

engine) while returning the same set of answers.

1 in terms of the number o f I/Os

3
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1.3 Loose vs. Tight Integration

When a query is over multiple different sources, we may have to extract data from 

each source and join the results. As an example, consider a question like “where 

was Albert Einstein bom?” is given. Since the question is a “where” question, the 

querying engine can guess that the answer is the name of a location, (e.g. a city or a 

country). City names and country names can be compiled and stored in relations on 

a database. Therefore, in order to interrelate the answers extracted from our query 

on natural language text, we need to integrate our answers with the data stored in 

relations.

There are generally two different approaches for joining structured data and 

text. In the first approach, we assume that the text is stored outside DBMS and 

queried by an external text engine. Therefore, multiple invocations of the external 

text engine may be needed for data integration. This approach is called a loose 

integration. On the other hand, a tight integration is possible when text is directly 

stored in relations and standard SQL joins are used for integrating data. In both 

approaches, structured data is stored in relations.

In this thesis, we take a conservative approach and assume that natural language 

text is stored in a relational database (discussed thoroughly in Chapter 3). This 

has the benefit that data from both text and relations can be joined in queries, and 

relational engine functionalities can be exploited for expressing queries and query 

optimization. Moreover, relational databases are widely used and the data stored in 

them are highly portable without any need for specialized text engines.

1.4 The Problem Statement and Our Contributions

The problem to be addressed is that given a SQL query with NLTQ expressions, 

for example in the from clause, we want to map the query to an equivalent query or 

query plan that can be efficiently evaluated by a SQL engine. Given that relational 

query optimization is a well-studied subject, our focus in this thesis is on mapping 

and optimizing NLTQ expressions. Our cost models and estimates are based on 

the same statistics that are typically available to a relational optimizer, hence our

4
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methods can potentially be integrated into a relational engine.

Our first contribution is a cost model for estimating the efficiency of a mapping, 

in terms of the expected number of I/Os, and our experimental results on the ac­

curacy of our estimations. As the second contribution, we develop strategies for 

pruning query plans that are guaranteed not to be optimal; therefore the size of the 

search space for an optimal plan is significantly reduced. Our third contribution is 

on optimizing query rewritings. Given the set of rewritings of a query, some overlap 

is expected between the terms of the query and its rewritings and also between the 

terms of the rewritings. In the presence of an overlap, independently optimizing 

each rewriting is not guaranteed to give the overall best plan. We formalize the 

search for an optimal plan for a set of rewritings as an optimization problem and 

derive analytical results on its complexity; our results show that the problem is at 

least NP-hard (non-deterministic polynomial-time hard). As our last contribution, 

we relax our optimality criterion and develop an efficient greedy algorithm for find­

ing sub-optimal plans. Our experimental results show that the greedy algorithm 

finds either an optimal or an almost optimal plan at a much lower cost.

1.5 Structure of the thesis

The rest of this thesis will be organized as follows.

Chapter 2 discusses the background and reviews related work, including query 

optimization, question answering, information extraction, multi-query optimization 

and data integration from multiple sources.

A formulation of the problem is given in Chapter 3 where we formalize the prob­

lem as an optimization problem. General concepts related to this thesis, such as 

natural language text queries (NLTQs) and rewritings are also formally introduced 

in this chapter.

Chapter 4 (a) introduces a cost model for query plans, in terms of the number of 

I/Os, and discusses the estimation of frequencies and association scores, (b) pro­

vides the formal notations and mathematical definitions for the optimization model 

we use in this thesis, (c) provides theoretical arguments that help us reduce the size

5
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of the search space for optimal plans. Moreover, it shows that the size of the search 

space for a single query could be significantly reduced and provides an algorithm 

for finding the optimal query plan with a linear time complexity.

In Chapter 5, we study the optimization of queries with multiple rewritings and 

discuss why the optimization is challenging. We then show that in general, finding 

an optimal solution is at least NP-Hard. This chapter also introduces a greedy 

algorithm that finds a sub-optimal solution, with a polynomial time complexity. 

Chapter 6 provides experimental evidence in favor of our estimates and algorithms 

for optimizing single queries and multiple rewritings and also actual execution 

times on a commercial relational database. The experimental results show signifi­

cant savings in the costs of optimized plans.

Finally, Chapter 7 wraps up the thesis with conclusions and future extensions.

6
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Chapter 2 

Background and Related Work

The related work can be grouped into 6 categories: (a) query optimization over text, 

(b) integration of relational data and text, (c) multi-query optimization, (d) full- 

text support in commercial databases, (e) named entity recognition and question 

answering, and (f) extracting relations and patterns from text.

2.1 Query Optimization over Text

Increasing the efficiency of the system has been an area of interest in most computer 

systems and is always in trade-off with effectiveness or accuracy of the system. 

Querying systems, in particular, benefit from a large body of research on query 

optimization, indexing and heuristics for finding an approximation of the answer 

to a given query. Our work in this thesis focuses on increasing the efficiency of 

queries on natural language text. We will study query optimization over two rele­

vant sources, namely relational data and semi-structured data (XML in particular), 

as a background for our text query optimization.

2.1.1 Query optimization over relational and semi-structured 
data

Traditional query optimization over relational data is a well-studied subject. All 

current commercial relational databases benefit from query optimizers as a major 

part of their system. Query optimizers always trade between the time required for 

processing queries and the time required for executing them. However, it turns

7
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out that in most cases, the saving in execution time is much greater than the over­

head of processing a fixed query plan (otherwise it does not make sense to do an 

optimization). A few examples of the query optimizers studied in full detail are 

the query optimizers in System R [58], a leading database engine developed by 

IBM at the time, and in Ingres [66], the ancestor of Postgres [3], which is an open 

source relational database engine. Our theoretical arguments on optimizing NLTQs 

in Section 4.2 agree with the heuristics used in System R for only scanning plans 

represented in left-deep trees. There are many different types of queries and there­

fore different methods for query optimization. An example is query optimization 

over multiple queries which is related to our work in Chapter 5 and will be dis­

cussed in Section 2.3. [42] and [40] provide good surveys of query optimization 

over relational databases.

There’s also a large body of work on optimizing queries over semi-structured 

data and extensible Markup Language (XML), e.g. see the work in [49]. A similar 

approach to ours is taken by Shanmugasundaram et al. [60] on storing XML doc­

uments in relational tables and mapping XML queries into SQL expressions over 

relational tables. It is related to our work in the sense that the data from two sources 

of different structures are integrated together and techniques for efficient querying 

and merging of information are studied. However, unlike our approach, the map­

ping here is directed by Document Type Declaration tags (DTDs) which vary from 

one document to the next. Moreover, XML documents are more structured and 

have more well-defined queries. Therefore, it would be easier to plug them into a 

relational databases framework.

2.1.2 Query optimization over text

There is work on querying and optimizing queries over text but not specifically 

on natural language text. PAT [57] for example, is a system for searching text 

with some commercial success [25]; it introduces text regions as first class citizens. 

Regions are substrings on text with known beginning and end characters. PAT 

introduces six different operations for text search, including lexical, proximity, and 

frequency searches. The algebra behind PAT is studied more closely by Consens

8
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and Milo where they show the relationship between region algebra and Monadic 

first order theory of binary trees and the complexity of optimizing queries in the 

algebra [23], Unlike PAT, NLTQ is restricted to natural language text and somewhat 

makes use of the structure of the sentences. There is also work on estimating the 

selectivity of match conditions over text (also known as text predicates) [18]. This 

work is also related to ours and may be used for estimating the selectivity of our 

text queries after being mapped into SQL. The selectivity of terms and queries are 

used in our system for optimizing natural language text queries (See Section 4.1).

2.1.3 Increasing the efficiency of querying over text

There is also a body of work that addresses the issue of increasing the efficiency of 

querying over text. However, unlike the work in this thesis, it does not directly focus 

on text query optimization. An example is the work in [41] which studies the trade­

off between crawling (retrieving the documents of interest) and searching (using 

the indexes on a search engine for filtering the documents which may include our 

answer) for different applications over text. The Information Retrieval literature 

also has examples of related work on improving the efficiency of querying. [46] 

uses algorithms and heuristics for pruning the size of the inverted lists of documents. 

An inverted list for a term t is a list of documents that t appears in and the position 

of t  in each document. A set of inverted lists for all terms are collected and used in 

almost all search engines. Since these lists could grow dramatically, as the number 

of indexed documents increase, their pruning can have a great influence on the 

execution time of the queries and therefore on the response time of search engine. 

Finally, in [22] Consens and Milo study the querying of data over files. Their focus 

is on files with semi-structured content like emails. They show that similar to the 

querying over databases there is a trade-off between the amount of indexing and the 

efficiency of the querying over files.

9
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2.2 Integration of relational data and text

For a large number of information extraction and question answering applications, 

more than one source of information has to be processed. Often these sources have 

different types of content; e.g. text, images, audio, video or relational data. Query­

ing heterogeneous sources [43, 19] targets to extract pieces of information from 

different sources and combine the results. Among these systems, there has been 

more focus on the integration of relational data and text. In particular, integration 

of structured data and web, as a huge source of text, has been given special atten­

tion because of the growing popularity of the web. More on database techniques 

focusing on web can be found in [31].

Text and relational data have very different properties. The former is classified 

as unstructured whereas the latter is well-structured [37]. This makes their process­

ing completely different and all the systems that integrate them have to somehow 

bridge the gap. As discussed earlier there are two common approaches for inte­

grating relational data with text; a “loose” or a “tight” integration. It turns out that 

both methods have benefits and drawbacks and depending on the application, either 

approach might be preferable. We will discuss these approaches separately here.

2.2.1 Loose integration

Chaudhuri, Dayal and Yan [17] study several techniques for joining relational data 

with external text sources. The join methods include semi-join, tuple substitu­

tion where every tuple of the relational table is instantiated and probing where text 

queries that are expected to fail are not sent to the text system. The authors show 

that the best performing method varies with the selectivity and the fraction of join­

ing tuples. Unlike [17] which treats text system as a black box, our work optimizes 

text queries based on their declarative expressions. Also since text data is stored in 

relational tables, a “tight” join is feasible making it more efficient to interrelate data 

from facts and relations.

The works on combined querying of text documents and relations (such as

10
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WSQ/DSQ1 [34] and [29]) are also related. WSQ/DSQ uses a module that takes 

a query as an input, queries a relational engine and a general purpose search engine 

separately, combines their results and returns the combined result to the user. Un­

like our work in this thesis, the result of a text search is usually a set of matching 

documents.

2.2.2 Tight integration

Grossman et al. use relational databases to implement functionalities of an infor­

mation retrieval system [35]. The authors support boolean queries and provide 

keyword and proximity searches and relevance ranking. One interesting contribu­

tion is that regardless of the number of terms in the original form of the query, the 

SQL query on the mapped data has a fixed number of joins. Similar approaches are 

taken by Discover [39] and SIRE [32]; both support keyword search over relational 

databases.

More recent work on keyword-based search over text stored in a relational 

database include the work of Hristidis et al. [38] and DBXplorer [10], where the 

output is a list of matching rows, ordered according to a relevance ranking function. 

Unlike our focus in this thesis, these systems are not designed to support tasks like 

fact extraction and question answering. Earlier work on tight integration of text 

and relational data can be found in [47] which proposes an indexing for improving 

keyword searches over relational databases.

2.3 Multi-query optimization

Sometimes optimization must be performed over multiple queries especially when 

a given query is the union of a set of smaller queries. The example given in Sec­

tion 1.1 is a simple case where the answer is the union of two SQL queries or 

predicates. The idea behind optimization of multiple queries is to make use of the 

common subexpressions in the queries. There are two major steps for any multi­

query optimization: (a) finding the common subexpressions and (b) deciding which 

'stands for Web Supported Queries/Database Supported Queries
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set of subexpressions to be materialized. We can list a number of early works in 

this area [61, 59, 50, 55].

Roy et al. [56] study the optimization of multiple queries more closely. Their 

method benefits from materializing and re-using common sub-expressions between 

different queries. They model their optimization problem with a Directed Acyclic 

Graph (DAG) and introduce heuristics and a greedy algorithm for improving the 

performance of multi-query evaluation. Our work on optimizing the evaluation of 

multiple rewritings in Chapter 5 is similar to [56] but has a few important differ­

ences. First, given a query (or a rewriting) in our scheme, any subset of the query 

terms can be used for filtering and for each subset, there is a different set of possible 

plans. This is unlike the queries in Roy et al. where the query terms or relations are 

fixed for each query. Second, the search space for the best plan is the union of the 

plans for all possible term subsets. In the presence of multiple rewritings, the search 

space is the Cartesian product of the plan sets for different rewritings. We are not 

sure if a DAG in the style of Roy et al. can be constructed or would be effective for 

this search space. Third, our greedy algorithm is similar to the one by Roy et al., 

with a difference that ours enumerates term overlaps whereas theirs iterate over the 

DAG nodes.

There is also work on pipelining the materialized queries when possible [27]. 

In this method, materialized subplans are not necessarily written on the disk. The 

idea is to use the subplans immediately after they are materialized to avoid extra 

disk reads/writes and directly pipeline the result set of a common subexpression 

already computed to the other queries or predicates which share it. This will further 

improve the cost of evaluating multiple queries.

2.4 Full-text support in commercial databases

Many commercial database management systems support facilities for full-text search 

functionalities integrated into their relational engine. Even open source databases 

support text searches and specific indexes to improve querying of text stored in rela­

tions. Postgresql uses Generalized Inverted Indexes for indexing text [2] and Mysql

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



supports full-text searches and keyword matching [1],

IBM DB2 provides text searches using an extension called Text Extender (TE) [48] 

and Oracle provides text search support using its InterMedia Text(IMT) exten­

sion [8]. DB2 TE provides linguistic functionalities for IR-style keyword matching 

and text extraction. It uses linguistic indexes for matching all forms of a word, like 

plural/singular nouns and different verb tenses. The other functionalities include 

proximity searches, relevance ranking, thesaurus [5] and XML support. Oracle 

IMT provides a similar set of functionalities. The output of a text search again is a 

set of matching documents or text fields and it is not easy to tightly integrate and 

interrelate them with relational data.

Our natural language text specific mappings can be used for question answering 

on natural language text and relations which are not supported by text extensions 

available on current commercial DBMSs which treat the text as large strings of 

characters. The wild card queries that we use in this thesis can be mapped to SQL 

queries; however, commercial databases have their own query optimizers, which are 

not designed to specifically optimize natural language text queries. Full-text support 

integrates fancy indexing and more flexible functions for IR-style search over text. 

However, to the best of our knowledge, full-text support does not perform query 

optimization in the extent of that discussed in this thesis over relational tables.

2.5 Named entity recognition and question answer­
ing

Related work also includes the literature on named entity recognition where given 

a fixed set of categories such as person names, locations, percentages and mone­

tary values, the task is to extract and classify the elements in text to one of those 

categories [20], This has several benefits. First, as discussed in Chapter 1, it is 

often required that the answers are bounded in particular classes, such as only lo­

cation. Therefore, the classified text can result in more accurate results, because 

we could automatically filter the results that are not in certain classes. Second, the 

text classification helps other applications on text like pattern matching and relation
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extraction.

There has been quite a few works on named entity recognition and classification. 

The work in [26], uses morphological information (such as prefixes and suffixes) of 

the terms or phrases in a context to classify them. There are other works that usually 

apply machine learning tools for solving the named entity recognition problem [67, 

21, 14]. Since the task is to classify the terms in a text collection into a set of pre­

defined categories (or none of the categories), machine learning techniques are very 

appropriate for this kind of problem.

There is also work on question answering [15, 54, 63] where given a natural 

language question, the task is to find the most relevant answer from a text collection 

[65], The common techniques used in question answering are extracting patterns 

and relations, using natural language processing, using Wordnet [6] and thesauri 

for stemming and finding synonyms, antonyms and hypemyms. Our work here is 

different in that our main focus is on the efficiency of natural language text queries; 

whereas the question answering task is focused on finding the most relevant answer. 

Moreover, question answering tracks focus on human readable questions, while our 

focus is on wild card queries which are more appropriate for a tight integration of 

text and relational data.

2.6 Extracting relations and patterns from text

As discussed earlier, information extraction from text is important because text is 

pervasive and many applications depend on text data. Moreover, there is a growing 

interest in text applications, because text is easy to generate, it is easy to query and 

it is highly available. As an example, text data does not need any special purpose 

system to store and manage it, and could be stored and retrieved easily in different 

file types and shared over any network. The best known of these file types are 

HTML shared over the world-wide web. However, information extraction from 

text is challenging because text has little structure and is very noisy. Moreover, 

learning extraction rules are challenging because the structure behind the text is 

highly domain dependent. In this section, the literature on automatically extracting
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relations and patterns will be reviewed. These patterns are used for increasing the 

recall of the text queries. Our query rewritings are examples of such patterns.

A thorough work on learning rules for information extraction from semi-structured 

data and text is discussed in WHISK[62]. WHISK uses machine learning for gath­

ering information extraction rules from a set of manually tagged instances. The 

drawback here is that the set of extracted rules are highly dependent on the quality 

of the seed instances. Brin [16] develops a system that given a small set of example 

tuples (e.g. author names and titles), searches the Web (or a text collection) for a 

larger set of similar tuples. In that work, the collection is first searched for patterns 

surrounding example tuples; those patterns are later used to find more similar tu­

ples. One interesting property of information extraction over the web is that in most 

cases a certain fact is expressed in different formats and in different places. This 

helps the information extraction process to be able to validate the extracted facts, 

patterns and rules. The drawback is that the web text could contain a lot of noise 

or false information because there is no validation or supervision process on the 

authored text.

There is also work on extracting patterns and relations from text. These patterns 

are used for extracting similar facts and classifying them. The work in [64] finds 

the entailment relations of the verbs. These entailments are used for paraphrasing 

by replacing the verbs with their entailment and restructuring the sentence; e.g. by 

replacing the subject and object of the verb when appropriate. Agichtein thoroughly 

studies the problem of extracting relations based on a given set of examples and 

comes up with strategies to address what he calls portability and scalability issues in 

his Ph.D. dissertation [9]. DIRT [45], a system developed for discovery of inference 

rules, is also related. The authors claim to have found 182,000 classes of patterns. 

These classes are used for paraphrasing and generating query rewritings.

There is a large class of work on wrapper generation. Wrappers are programs 

that make it possible for users to issue queries on the semi-structured data available 

on the web. In other words, wrappers provide an interface for information extraction 

and querying of HTML and XML documents. Automatic generation of wrappers 

has been the area of interest for many web applications. Lixto [13] is a system that
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provides a graphical user interface for users to issue queries. It uses a supervised al­

gorithm for automatically generating wrappers. Other work on wrapper generation 

are [11, 36].

A similar approach to our work on fact extraction has been taken in Know- 

ItAll [30] and [52], However, both of these are applied to web text and the latter 

only extracts patterns of a given type. KnowItAll is domain independent, but de­

pends on the description of the classes given as input. This description can often 

be hard to generate. Our work is based on natural language queries of DeWild [44] 

which have a more confined syntax, allowing us to map text queries to SQL. These 

wild card queries are almost as easy to write as text queries used by search en­

gines. Moreover, they have a high expressive power and can be easily plugged into 

a relational database framework.
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Chapter 3 

Problem Formulation

This chapter presents the syntax and the semantics of the natural language text 

query (NLTQ) and our mapping of NLTQ expressions to query plans over relations 

that store natural language text. Finally, we define the problem as an optimization 

problem and discuss the challenges in Section 3.2.

3.1 Mapping Natural Language Text to Relations

A natural language text query aims to extract certain pieces of data from a collection 

of natural language text. The syntax and semantics of a NLTQ is defined as follows. 

Syntax. A natural language text query (NLTQ) is a sequence of terms, phrases and 

wild cards. Each NLTQ can be represented with the following grammar.

PH R ASE

W ILD CARD

NLTQ

NLTQ

NLTQ

term  \ PH R A SE  term  

%variable \ * PH R A SE  *

%variable

PH R A SE  NLTQ  | NLTQ PH R ASE  

W ILD CAR D  NLTQ  | NLTQ W ILD CAR D

Semantics. The extractor wild card, denoted by %variable, can replace a noun 

or a noun phrase. The variable in this notation is used for naming and referring 

to the extracted phrase. The query syntax includes another wild card, denoted by 

*PHRASE*. This wild card is used for query expansion [53], and indicates that the
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enclosed phrases can be replaced with similar terms and phrases without much af­

fecting the meaning of the query. Similar terms are usually considered as the terms 

with roughly the same meaning. A more thorough discussion on the semantics of 

similar terms and how to obtain them can be found in [44], The result of a query 

on a text collection is a table with one column for each extractor and includes all 

assignments of the variables that give rise to a match. More on querying text using 

wildcards can be found in [44],

Example 1. The query %x is the author of %y extracts pairs of x and y, where x is 

an author of y. Table 3.1 shows a possible result set for this query.

X y
J. R. R. Tolkien 
Goerge Orwell 
James Joyce

The Lord of the Rings
1984
Ulysses

Table 3.1: A sample result set for the query of Example 1

Example 2. Suppose we change the query in Example 1 to %x is the *author* 

of %y. Since ‘author’ is enclosed in *’s, similar terms to ‘author’ are considered 

and the query is re-evaluated. For the given query, similar terms to ‘author’ can be 

‘writer’, ‘co-author’, ‘editor’, etc. The result set of the query will be the union of 

the results in Table 3.1 and the results of the query with any of the similar terms of 

‘author’.

Definition 1. A rewriting for a natural language text query Q is a query Q' such 

that the two queries have different expressions but the same extractors.

Query rewriting is intended to increase recall without much affecting the precision. 

In other words, a query rewriting is a different way of expressing the same question. 

We expect that the answer sets of a query and its rewritings have a lot of overlap. 

The reason why rewritings are helpful is that there are many different ways of ex­

pressing the same concept in a natural language and we do not know which one is 

used when writing a query. Query rewritings suggest different patterns that can lead 

to the same answer and might be used in the text collection instead of the original
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query. Finding accurate and noiseless query rewritings is a challenge.; However, 

there are techniques for ranking the result set according to the quality of the rewrit­

ings. As an example [44] discusses ranking heuristics like number of ranked pages 

and mutual information for ranking the result set.

Example 3. The followings are a few of the rewritings for the query given in Ex­

ample 1 .

%x, author of %y 
%y is written by %x 
%x wrote %y 
%x is a novel by %y

We denote the set of terms of a query Q by T(Q)  and the set of rewritings of 

Q by R(Q).  For the above example, T(Q) =  {‘is', 'the1, ‘a u t h o r lof'}.  In the 

presence of rewritings, the result set of a query is defined as the union of the result 

sets of the query and its rewritings.

In this thesis, we take a relational database approach to query optimization. 

Input text is parsed and the terms and sentences are extracted and stored in two 

separate tables. The schema of these two tables are as follows:

• Terms(term, docid, sid, offset, length, pos). docid and sid are the document 

ID and sentence ID respectively, offset shows the location of the term in the 

sentence and together with sid and docid uniquely identify the term, pos is 

the part of speech of the term and is used for filtering the result set of query 

to a particular part of speech, length is the number of characters of the term.

•  Sentences (sentence, sid, docid). The key for Sentences is docid, sid and the 

same set of attributes is a foreign key in Terms referring Sentences.

There are indexes on term, docid, sid, offset and on sid, docid, term of Terms 

and on sid, docid of Sentences, and we assume partial match searches are also 

supported which is the case in most commercial relational databases. The choice 

of the schema is largely influenced by the syntax and semantics of our queries. The 

matching boundary of a NLTQ cannot be larger than a sentence; i.e. NLTQ terms 

and extractors cannot exceed the limits of a sentence. Hence, the Sentences table is

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sufficient to answer any NLTQ. On the other hand, the smallest unit that can match 

a wild card is a term. Also, the Terms table allows us to do IR-style inverted-list 

pruning for our queries. Table of n-grams and phrases may also be beneficial for 

some queries (e.g. [1 2 ]); but since they are less general in the sense that they apply 

to a smaller set of queries, we do not consider them in our schema.

Natural language text may be parsed and the parsed tree of a sentence can give 

more accurate part-of-speech information about elements and their relationships. 

As an example, it is desired that the query in Example 1 also matches the text “J.K. 

Rowling, an English fiction writer, is the author of the Harry Potter fantasy series” 

and extracts ‘J.K. Rowling’ and ‘the Harry Potter fantasy series’ respectively for x 

and y. Without loss of generality, we assume any parsing of text is done in advance 

and that any additional information can be stored in relations and may be used by 

the query evaluation engine. For example, the above sentence may be mapped to 

two sentences “J.K. Rowling is an English fiction writer” and “J.K. Rowling is the 

author of the Harry Potter fantasy series” and both sentences may be stored. Note 

that all necessary parsings and speech taggings are done by dedicated NLP tools 

before the text is stored in relations. A study of these preprocessings and parsing 

rules are outside the scope of this work.

Given an NLTQ over text, the query can be mapped into an execution plan over 

the base tables. In the style of relational query optimizers, a query plan is best 

described as a tree with base tables at the leaves and the operations either at inter­

mediate nodes or at edges. In our settings, a query plan is a description how to filter 

the sentences in the text collection using the terms in the query. Therefore, a query 

plan tree shows which terms and in what order those terms should be used to filter 

sentences. A left-deep plan for our query in Example 1 is shown in Figure 3.1.(a). 

Since the Terms table is always at the leaves followed by a selection predicate, we 

can simplify the tree, as shown in Figure 3.1.(b).
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a a .
te rm  -  a u th o r ’ te rm  f  is

/  \
(a) (b)

Figure 3.1: A Left-Deep Tree Query Plan for the query of Example 1

3.2 Problem Statement

The space of possible plans for a query Q in general is exponential on \T(Q)\ as 

shown in Section 4.2. For instance in Figure 3.1, the number of terms used for filter­

ing sentences can vary from 0 to |T(Q)  | before joining the results with Sentences. 

Filtering sentences based on all query terms is not necessarily the best strategy since 

each filtering also introduces an overhead. Other plan trees are possible by chang­

ing the order of the selections and considering other tree structures such as bushy 

trees. The space of possible plans is even larger if we consider rewritings and the 

overlaps between their query plans. For instance, there are terms that appear in 

multiple rewritings and a query optimizer should be aware of such overlaps in enu­

merating the plans and cost estimations. We are interested in plans with minimal 

expected costs. The problem to be addressed is given a query Q and its rewritings 

R(Q), find the “best” evaluation plan. Here the “best” refers to the plan with the 

least cost, according to our cost model to be discussed next. The right choice of a 

plan can have a great influence on the cost of query evaluation as shown in some of 

our experiments.
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Chapter 4 

Natural Language Text Query 
Optimization

4.1 Cost Model

Given a query plan, its cost can be estimated in terms of the expected number of 

I/Os. Each node in the query plan tree can be considered as the root of a subplan 

tree; the evaluation cost for each node is the sum of the costs of evaluating its 

children and the cost of joining the results.

4.1.1 Join Cost Estimations

Given nodes n i and n 2, the join conditions are n\.sid — n2-sid and ni.docid — 

ri2.docid. Let l(n) and r(n) respectively give the left child and the right child of 

node n. The following two cost models are used for join.

are leaves

otherwise
(4.1)

c2(n) =
2 C a  +  c £  ( f l o w  +  f h i g h , )  i f  l(n),r(n) are leaves 

Ca + ■ fhigh otherwiseotherwise
(4.2)

where

f low = min {/(/(n)),  /( r (n))}
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f h i g h  =  max {f{l{n)),  f (r{n))}

Ci models the cost of an index nested loop join, whereas c2 models the scenario 

where all the results from both left and right subtrees are retrieved before a join. 

In our cost models, Ca is the cost of retrieving the first page from an index with 

matching entries for a given query. In a typical setting, we can assume that Ca is 

equal to 1.2 I/Os on average Ct is the size of an index entry in bytes, and Cp is 

the page size. Therefore, ^  gives the fraction of a page that is occupied by a single 

index entry. f (n)  is the size of the result set at node n, in terms of the number of 

distinct sentences that are retrieved. Assuming that the terms occur independently 

in sentences 2, the frequency of the result set at a node n  is given by:

f (n)
Sn n  =  leaf

(4.3)
/(K"))x/(rW) otherwise

St

where Sn is the number of sentences that contain the term at node n  and S t is the 

total number of sentences. Sn can be evaluated for small or moderate size text 

collections. For larger collections of text we can either evaluate the values of S n or 

estimate them using the value of Sn evaluated for smaller text collections.

Figure 4.1: A sample query plan tree with two joins

To give a better understanding of the cost models, we show our cost estimations 

for the query plan tree in Figure 4.1. Consider the cost estimations for riji and n^-

'This is a conservative estimate for a B+-tree assuming that the first few levels of the index are 
cached.

2 It should be noted that in a more realistic setting, terms that appear in a sentence are not inde­
pendent. For example, the terms of compound words and phrases are more likely to appear together. 
Section 4.1.3 discusses this issue in more details.
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Suppose f(rii) <  / ( n 2) < f ( n 3). Since we are using index nested loops join, the 

cost will be smaller if the outer loop has fewer iterations. Therefore, we always 

choose the node with lower frequency estimate to form the outer loop of the joins.

• Ci (« ji): We use the index on columns <term, docid, sid, offset> of the Terms 

table and fetch the matching entries. The cost to fetch the first page is Ca and 

for the remaining pages is f {n\ )^r .  Finally, for each <sid,docid> retrieved 

in the previous step, we use the index <sid, docid, term> of the Terms table 

to select the sentences that also match n 2; the cost here is /(m )  x Ca.

• Ci (nj2): Since the <sid,docid> of the sentences that match the subplan rooted 

at riji are piped from the lower level, we only need to make / ( n 7i) direct 

accesses to the index on columns <sid, docid, term> of Terms to select the 

sentences that match n 3. The cost is therefore x Ca.

• c2 (riji): As for ci, we first find the <sid,docid> of all sentences that match n\ 

using the index on columns <term, docid, sid, offset> of the Terms table. We 

also do the same for n 2 and join the results. The total cost is 2Ca +  ( f ( n  1) +

• c2 (rij2): Since the matching <sid,docid> 's  of the riji are in the memory3, we 

only make a direct access using the index on <term, docid, sid, ojfset> of 

Terms to find entries that match n 3 before joining the results. The cost here is

4.1.2 Estimating the Cost of a Plan

The cost of evaluating a plan rooted at node n  is defined as the sum of the costs of 

evaluating the left and the right subtrees, the cost of the join and the cost of storing 

and retrieving any intermediate results (if needed). More formally, the cost can be 

recursively defined as follows:

Ca + f ( n  3 ) ^ .

0 n =  leaf
c(n) = ^

[ min (ci(n), c2 (n)} +  c(f(n)) +  c(r(n)) +  cs(n) n ^  leaf
(4.4)

3Assuming that the matching documents fit in the memory
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where cs(n) is the cost of storing and retrieving any intermediate results. When 

evaluating a non-leaf node, we might need to store the results of left or right subtree 

on the secondary storage before evaluating their join. The cost of writing the result 

set of a node n  directly depends on the size of the result set and is

The reading cost can also be defined similarly. Reading from disk is usually a little 

bit faster than writing. However, since costs of reading and writing are small com­

pared to join costs, we can make the simplifying assumption that cr(n) =  cw(n). 

Moreover, reading and writing costs always appear together in the cost formulas we 

use. Therefore, we define a read-write cost as follows

The intermediate results often are not stored on disk. For instance, for a left- 

deep tree plan, data from leaves is already on disk and the results of non-leaf nodes 

can be piped from one operator to next without an actual storage of the results. 

When the result of left or right subplan must be stored on disk which is the case for 

bushy trees, for instance, it is desirable to store the one with the smaller result set. 

This cost here can be estimated as follows:

The final result of a plan is a set of matching tuples for the extractor wild cards 

of the query; therefore, the sid and docid of the qualifying sentences must be joined 

with Sentences. The cost function should include the cost of this join. Assuming 

that r(n) is the Sentences table, the total cost ct at the root n  can be given as

(4.5)

C r w { n )  = cr (n) + cw(n) (4.6)

0 l(n) V r(n) =  lea]
cs{n) = CrW(l(n)) f(l{n)) < f ( r ( n ))

k crw(r{n)) f (l(n)) > f  (r{n))

l{n) V r(n) = leaf
(4.7)

ct(n) = c(l(n)) +  ci(n). (4.8)
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It might be desirable to confine the result set of the query to terms with specific 

part of speech tags. For example we would only like to have nouns in the result 

set. This could be done by a final join of the result set on the pos column of Terms 

table. Since this additional cost does not change our optimization results, we do not 

include it in our optimization model.

4.1.3 Term Associations

Although assuming independence for terms in a sentence somewhat simplifies the 

cost estimates, it is not hard to list many cases where this assumption fails.

Definition 2. Term association score is a number between 0 and 1 which describes 

the confidence that two terms occur in the same sentence relative to their expected 

co-occurrence value when the terms are assumed to be independent. For nodes n\ 

and n2, the term association score is defined as:

0 /j(w i,w2) <  f{ni ft{n2)

m in ( / ( n i ) , / ( n 2)) J 3 \  h  2 )  — S t

where f j (ni ,  n2) is the joint frequency of two terms and is defined as the number 

of sentences that contain the terms at nodes n\  and n2. Note that n\  and n2 must 

both be leaves, otherwise the term association will be undefined. Since the joint 

frequency of two nodes is at most m in(/(n i), / ( n 2)), the term association score 

cannot exceed 1. If the expected frequency and real frequencies are equal, associ­

ation will be zero. On the other hand the higher the association, the more we are 

underestimating the expected joint frequency.

Storing association scores for all term pairs can be costly. For example, a text 

collection we have been experimenting with had 64,783 terms and 4.2 billion as­

sociation pairs. To reduce the size, one heuristic is to filter pairs that have joint 

frequency zero. This reduced the number of pairs in our collection to 8.3 million 

pairs. Another heuristic is to remove the pairs whose associations do not have a 

significant effect on the joint frequency. These would include the entries with an
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association score less than a threshold. As Figure 4.2 suggests for our dataset, with 

a threshold of 0.2, we can reduce the number of entries to almost 10% of its pre­

vious size, leaving less than 850,000 term pairs in the association table. Finally, to 

remove the noisy and meaningless terms that have been seen very infrequently (e.g. 

terms with misspelling, particular names, symbols, etc.), we define a support factor 

for the minimum frequency of terms. This leaves only around 26,000 tuples in the 

association table when the support factor is 5. With that many pairs, the association 

table can be cached by the query optimizer for fast look-ups. Note that we only 

maintain the scores of frequent pairs and as figure 4.2 suggests the number of those 

pairs drops exponentially as the association score increases. Therefore, we expect 

an association table to be scalable for large text collections. If the terms at nodes n\ 

and n2 have an entry in the association table, their actual joint frequency is given 

by

/ j (n i ,n 2) =  a (n i,a 2)m in ( / (n i ) , / ( n 2)) +  (4.10)

Otherwise, the terms can be treated independent. In order to generalize the above 

formula, we need to check all the term pairs in a query sub-tree for which we are 

estimating the joint frequency. Suppose we would like to join a subtree T\ with 

another subtree T2 and estimate their joint frequency. Given the estimated frequency 

for Ti and T2, the joint frequency can be estimated as follows:

= f{Ti)f(r2) n n M fzi ) (4-n)
ni&Ti TI2GT2 1,JK

f j ( n i , n 2)
/ K ) / ( n 2

where n\ and n2 represent nodes in subtrees T\ and T2 respectively.

4.2 Query Plan Optimization

In this section we discuss the case where there is only one NLTQ to be evaluated. 

We show that the search space for a single query can be very large. However, most 

of the query plans are guaranteed not to be optimal and we will provide pruning 

techniques to reduce the size of the search space while guaranteeing to find the 

optimal solution.
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Distribution of Term Associations

'ft 5
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Average Term Association 

Figure 4.2: Distribution of term associations for 64783 unique terms

4.2.1 Complexity Analysis

Given a query with N  terms, a query plan can choose any combination of the terms 

and place them at the leaves of a plan tree.

Example 4. Suppose the query to be evaluated is “%x is a car manufacturing com­

pany". Figure 4.3 shows a few different filtering plans for evaluating the query. As 

discussed in Section 4.1, all these plans must be joined with the Sentences table, in 

order to find the value of x. In this figure, the plan trees from left to right indicate 

a left-deep tree with 4 terms, a bushy tree with 5 terms and a right-deep tree with 

3 terms respectively. As this figure suggests, a query plan can have any number of 

terms, can form many different structures, and any combination of the terms could 

be selected to constmct a new plan tree. Hence, the number of total tree plans that 

could be constructed is large.

Lemma 1. The number of query plans for a NLTQ with N  terms is given by
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car a car manufacturing
is company

manufacturing
is company

a

(a) (b) (c)

Figure 4.3: A few sample plan trees for the query of Example 4

QSS(N) =  Yln=i Qss (N,n) where

[  JV
qss(N,n) =  <

n =  1

2 SiL]1 qss(N, i)qss(N — i ,n — i) n >  1.

Proof. Appears in Appendix A. □

The number of query plans in general can be huge, and searching the plan space 

for a plan with the least cost can be computationally-intensive. A weak bound 

for the time complexity of QSS(N)  is given by 0 ( N N). Details can be found in 

appendix following the proof for Lemma 1.

We want to reduce the size of the search space while still keeping the plan with 

the least cost in the reduced space. Section 4.2.2 discusses the theorems which 

show that there exists a linear solution that finds the optimal plan for a single query.

4.2.2 Reducing Search Space Size

The following theorems show that in order to find an optimal solution for a sin­

gle query, only N  query plans need to be evaluated, and the optimal solution is 

guaranteed to be within the searched space.

Theorem 1. Assuming query terms are independent, for a query plan with n leaves 

represented in a Left Deep Tree (LDT), the lowest cost can always be obtained by 

sorting terms according to their frequencies and placing lower frequency terms on 

leaves in higher depths.

Proof. Appears in Appendix A. □
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Definition 3. We say two binary trees t\ and f2 are traversal equivalent when there 

exists a Depth First Search (DFS) traversal that produces the same leaf sequence 

on both and f2. We denote a traversal equivalence by =.

As an example, the binary trees shown in Figure 4.4 are traversal equivalent; i.e. 

(((a b) c) (d e)) =  ((((a b) c) d) e). Since both trees only have labels at the leaves, 

all the DFS traversals produce the same leaf sequence.

Theorem 2. Assuming query terms are independent, any query plan t with n leaves 

has a traversal equivalent left deep tree that always has a cost less than or equal to 

the cost oft.

Proof Appears in Appendix A. □

Based on Theorems 1 and 2, we know that an optimal plan is always a left- 

deep tree with terms sorted by their frequencies and placed at the leaves with lower 

frequency terms in higher depths. The number of those plans cannot exceed N. A 

linear search over that many plans is guaranteed to find an optimal plan.

Figure 4.5 shows the algorithm to find the local optimal plan. The algorithm 

takes a query Q as input and returns the best plan and its cost. A list called term s  

is populated with the elements of T(Q ) and then this list is sorted ascending based 

on the frequency of the terms. As lines 3-5 indicate, the initial best plan includes 

only the least frequent term. Then in each step of lines 6-11, we consequently add 

higher frequency terms to our plan. Since we are only interested in left deep trees, 

in each step we append terms(i)  to the right of the current plan P  and add one level

a b
(a) (b)

Figure 4.4: An example of Traversal Equivalent trees
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localoptim alplan(Q )
1 fill terms list with elements of T(Q)
2 Sort elements of term s  based on their frequencies 

such that freq ( term s(i))  <  fre q ( te rm s( j ) )  iff i <  j
3 P  <— term s(  1)
4 bestjplan <— P
5 miri-cost <— compute-plan_cost(P)
6 foreach i =  2 , . . . ,  \terms\ do
7 P  «— “(P  terms(i))"
8 cost compute-plari-Cost(P)
9 if cost <  m iri-cost then
10 min-cost t— cost
11 best-plan t— P
12 return <  bestjplan , rnin.cost >

Figure 4.5: Algorithm to find local optimal plan

to the height of the plan tree. For each new plan created this way, we compute the 

total plan cost and find the plan with the minimum cost.

In the next chapter, we will study the problem of optimizing natural language 

text queries expanded by a rewriting engine.
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Chapter 5 

Query Optimization Over Multiple 
Rewritings

In the presence of multiple rewritings, finding an optimal plan for each rewriting is 

not guaranteed to give an overall plan with the total least cost. In particular, if the 

plan trees of two or more rewritings have the same subplans, it might be cheaper to 

evaluate each subplan only once and feed the results to both plans.

5.1 Overlap Handling

The main idea for optimizing a set of rewritings is to take advantage of common 

terms in their query expressions. If there are two or more terms that are shared 

among multiple queries, it may be worth to isolate the terms into a subplan and 

evaluate and store the result for future uses. These subplans can be evaluated once 

and used many times. We use the term subplan to refer to a part of a plan that may 

be shared between more than one rewriting. To find a plan with the least total cost 

over a set of rewritings, we would need to first find a set of subplans that are shared 

by multiple rewritings and are also worth materializing. Then, for each rewriting, 

the best local plan has to be re-constructed using the materialized subplans. A set 

of subplans are worth materializing if the overall cost1 reduces when subplans are 

materialized. An optimal solution would be a set of materialized subplans with the 

minimum overall cost.

1 sum of the costs of individual rewritings
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5.1.1 Handling shared subplans

The following example motivates how reusing materialized subplans can reduce the 

estimated overall cost.

Example 5. Consider a query that would give a list of athletes who achieved a 

gold medal in any of the Olympics from a corpus of archived data on sports news. 

Suppose the query to evaluate is RO = “%x, an Olympics gold medalist” and its set 

of rewritings is given as follows.

R1 = “%x, the Olympics gold medalist”
R2 = “%x won an Olympics gold medal”
R3 = “%x was a champion in Olympics”
R4 = “%x stood first in Olympics”
R5 = “the gold medal of Olympics was given to %x”

Table 5.1 gives the plan with the minimum cost for RO and each of its rewritings 

when each query is optimized individually; the third column of the table shows the 

estimated cost of the plan with the least cost in terms of the number of I/Os. We 

refer to these plans as local optimal or best local plans.

Rewriting Best Local Plan Cost
RO (Olympics medalist) 29.2
R1 (Olympics medalist) 29.2
R2 (won Olympics) 26.2
R3 (champion Olympics) 20.2
R4 (stood Olympics) 21.4
R5 (Olympics given) 31.8

Table 5.1: The set of rewritings in Example 5, their best local plans and the corre­
sponding estimated costs in terms of the number of I/Os

The set of all the possible subplans for the above query rewritings are given in 

Table 5.2. The last column in this table shows the amount of saving in terms of 

the reduction in the number of I/Os if the subplan is materialized. The saving is 

measured over the sum of the costs of local optimal plans. A negative saving means 

that materializing the subplan will add additional cost. Notice that this table only 

provides us with the reduction in cost when each subplan is materialized alone.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



However, any combination of the subplans could be selected to be materialized and 

the saving may or may not be the sum of the savings of each individual subplan.

Subplan Rewritings Saving
Sl:((01ympics medalist) gold) R0,R1 26.4
S2:(01ympics medalist) R0,R1 23.3
S3:((Olympics medal) gold) R2,R5 10.9
S4: (Olympics medal) R2,R5 4.9
S5:(01ympics was) R3,R5 -1.3
S6:(01ympics gold) R0,R1,R2,R5 -46.9
S7:((01ympics gold) an) R0,R2 -79.4
S8:((01ympics gold) the) R1,R5 -98.2
S9:(Olympics in) R3,R4 -598.7

Table 5.2: The subplans shared by the rewritings of Example 5 and their corre­
sponding estimated cost saving

Later in this chapter we will discuss the approach we take to find a suboptimal 

solution for this problem. Table 5.3 shows how the solution for this algorithm looks 

like. Example 5 discusses a very simple problem. More intricate cases will be 

discussed later.

overall cost materialized subplans
best local plans 157.9
greedy plan 131.5 ((Olympics medalist) gold)
optimal plan 120.5 ((Olympics medalist) gold) 

((Olympics medal) gold)

Table 5.3: The overall cost and materialized subplans for the optimal solution, 
greedy solution and sum of local optimal plans in Example 5

5.1.2 Handling shared rewritings

It may happen that two or more subplans share a rewriting. In other words, it may 

happen that a rewriting, share more than one subplan with other rewritings. As an 

example, as shown in Table 5.2, RO shares subplans SI, S2, S6 and S7. How can 

the optimizer decide if materializing SI and S2 is beneficial? How much saving do 

we get if we want to materialize both of these subplans? In order to answer these 

questions, we need to study different scenarios under which a rewriting shares more
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than one subplan with other rewritings. We can identify the following relationships 

between subplans.

• Independent subplans. When two subplans of a query plan have no common 

terms or have only one term in common2, including or excluding a subplan 

does not affect the cost of the other subplan. Therefore, the subplan selection 

and optimization algorithm can treat each subplan individually. In Example 5, 

S2:(Olympics medalist) and S6:(Olympics gold) are independent subplans for 

RO and R1. In the case of independent subplans, the overall saving in cost 

when materializing both subplans is the sum of cost savings when subplans 

are materialized individually. (In this case -23.6 I/Os)

• Intersecting subplans. If there are two or more common terms between 

two subplans, including one subplan can reduce the amount of saving for 

the other subplan. Interdependence between subplans and their costs gener­

ally makes it difficult to optimize the queries. One solution is to consider 

the three cases where one subplan, the other subplan, or both are selected, 

estimate the cost in each case and select the plan with the least cost. In Ex­

ample 5, both Sl:((Olympics medalist) gold) and S7:((Olympics gold) an) use 

the terms ‘Olympics’ and ‘gold’. The set of possible plans for RO, in addition 

to other plans, would include

(((Olympics medalist) gold) an)
(((Olympics gold) an) medalist)
(((Olympics medalist) gold) ((Olympics gold) an))

However, the number of such plans is exponential on the number of subplans. 

An approach to reduce the complexity of the solution is either to disallow or to 

limit the amount of backtracking. For instance, once we choose two subplans 

to be materialized, we do not check our decision in later steps.

•  Included subplans. If all the terms of one subplan is included in the other 

subplan, materializing the plan with the least terms may or may not reduce

2One term can always be accessed with an index and there is no need to materialize the results 
for one term and reusing the results.
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the cost of the plan with most terms. In Example 5, S2 is included in SI and 

the following cases are possible.

-  Only materialize SI

-  Only materialize S2

-  Materialize S2 and use the results for evaluating SI and materializing it.

In our approach, all three cases can possibly be evaluated and used, depending 

on the saving of the subplans. This will be discussed in Section 5.3.

5.1.3 Problem statement

Deciding which subplans to materialize, and which rewritings should use the mate­

rialized subplans can be tricky. Selecting a subplan to be materialized can influence 

the cost of other subplans. The cost function for a given set of rewritings is not 

necessarily linear, if the subplans are not independent; i.e. for two interdependent 

subplans si and s2 the total cost when both subplans are materialized is not the sum 

of the costs when each subplan is materialized.

The problem to be addressed is to find a set of plans, one for each rewriting, and 

a set of subplans, materialized in advance and reused in plans, such that the total 

cost of evaluating the plans and materializing the subplans is minimal. The next 

section analyzes the complexity of problem in its general form, and in Section 5.3 

we introduce a heuristic and a greedy algorithm that selects the subplans according 

to their estimated cost savings.

5.2 Complexity analysis

Given a query q, let R(q) be the collection of its rewritings including the query and

T  =  UriGRiq)T(n).

Definition 4. A subplan s is legal over R(q) i f  there is r% € R(q) such that T(s)  C

nr,)-
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Definition 5. Let M denote the set of all legal subplans ofR(q). We call M' C M  

an optimal materialization set over R(q) if the sum of the costs of materializing M' 

and evaluating R(q) with M' materialized is minimal; i.e.

Y l  C(mi,<6) +  £  C(r„M ')
m i C M '  TjCR(q)

is minimal where C(x, Y)  is the cost of evaluating x given that Y  is evaluated in 

advance and the result is materialized.

Theorem 3. The problem of finding an optimal materialization set is NP-hard.

Proof Consider a slightly simpler version of the problem where we want to find 

if there exists M' C M  such that

C{rm,Q) +  C(rj : M ’) < k
ro; e M '  rjCR(q)

for a fixed k. If we show the NP-hardness for this simplified version, the proof for 

the more general version follows. We prove this by providing a reduction from the 

minimum cover problem [33]. Given a collection B of subsets of S,  a minimum 

cover of size k or less for S is B' C B  such that he union of the sets in B' is S 

and | B' \ < k. Define a cost function C  as follows: (1) C(6j,0) =  1 for every 

bi G B,  (2) C(s j : B') =  0 if B' C B  and there exists 6, G B' that covers Sj, and (3) 

C(sj , B') =  oo otherwise. B' is a minimum cover of size at most k for S if

^  C(bi, 0) +  ^  C(sj, B') < k.
b i C B '  S j E S

□
Having a polynomial time algorithm for finding an optimal materialization set 

implies that we have a polynomial time algorithm for the minimum cover which 

is unlikely (unless P=NP [33]). A naive algorithm may examine all possible query 

plans which is expected to be large for large number of terms and rewritings. Next 

we give a sub-optimal algorithm that runs in polynomial time.
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5.3 A Suboptimal Solution

We propose a greedy algorithm called Common Subplan Greedy (CSGreedy) that 

gives a suboptimal solution with a polynomial time complexity. This algorithm 

chooses the subplans according to their savings, and the subplan with the highest 

saving is chosen first. In each step, the algorithm estimates the total cost of rewrit­

ings using the subplans chosen so far, and continues until the cost is not decreasing 

any more. The overall suboptimal plan is the plan with the minimum total cost. 

Intuitively, subplans which have low costs and are shared among a large number of 

rewritings, have priority to be selected. This algorithm finds a plan with a subopti­

mal cost. Experimental results in Chapter 6 show that the cost of plans found using 

this algorithm for a rewriting set are equal or comparable to that of an optimal plan 

for the same set.

The algorithm, as presented in Figure 5.1, takes a set R  of rewritings and returns 

a suboptimal solution P  and an estimated total cost for P. B  is the set of subplans 

that would need to be materialized; it is initially empty. In steps 2-4, P  is initialized 

to an empty set and is incrementally populated with the tuples < r,p > where 

r G R  is a rewriting and p  is a local optimal plan for r. The search space for finding 

a local optimal plan for each rewriting has a size linear to the size of the query, as 

discussed in Section 4.2.

In line 5, we find the total cost of the rewriting set which is the sum of minimum 

local costs for each plan since B  is empty. In lines 6 and 7 we find all subplans that 

can be built from our set of rewritings and sort the subplans according to their 

savings over the total cost estimated in Step 5. In lines 8-14, we iterate over the 

subplans, from the one with the greatest saving to the one with the least and add 

each subplan to B.  Then we recompute the total cost of rewritings given that the 

set B  is materialized; the cost here also includes the cost of materializing B  and 

any additional readings that may be needed. The iteration continues until the point 

where materializing a subplan does not reduce the cost. The algorithm returns a 

suboptimal plan and its cost.

In order to compute the complexity of our algorithm, we assume that N a is the
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CSGreedy(R)
1 B f - 0
2 P  i -  0
3 foreach r G R  do
4 P < - P u { < r ,  local -optimal jplan(r) >}
5 total -.cost compute-totaLcost (P, B)
6 subplans <— get-all subp lans(R )
7 Sort the subplans based on their savings over P

such that saving(subplans(i)) > saving(subplans(j))  iff i < j
8 foreach i =  1,. . . ,  \subplans\ do
9 B  <— B  U subplans(i)
10 cost <r- compute-total-cost (P, B)
11 if cost < totaRcost then
12 total-cost <r- cost
13 Update the plans in P  assuming that B  is materialized 

else
14 return < P, total -cost >
15 return < P, total -cost >

Figure 5.1: Common Subplan Greedy Algorithm Pseudo code

average number of terms per rewriting and k is the total number of rewritings. For 

lines 3 and 4, the algorithm iterates over lr*l operations, for which \rt \ is the 

size of rewriting i in terms of the number of terms. Therefore, the complexity for 

this section of CSGreedy is approximately 6(k x N a). Since we find and store 

the costs of local optimal plans in lines 3 and 4, line 5 has a complexity no more 

than 9(k), which is negligible. In line 6, CSGreedy computes all subplans that are 

shared between two or more rewritings. Each subplan must have at least two terms 

before it is useful. In order to compute the complexity of the algorithm in lines 8-14 

we model each term as a random variable T  that may happen to be in a rewriting 

Ri, i = 1 ..k with a probability of

P ( X  e Ri) -  N J N  (5.1)

where N  is the total number of terms. The following Lemma shows that lines 8-14 

iterate at most 0 ( k 2) times.

Lemma 2. Let k be the number of rewritings, assuming that terms are selected 

using the probability given in Equation 5.1, the expected number of unique overlaps 

among rewritings is at most 0 ( k 2).
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Proof. Appears in Appendix A. □

The most expensive operation in lines 8-14 is estimating the cost of rewritings 

with set B  materialized; the time complexity of this step is k Na. Hence, using 

Lemma 2, we conclude that the complexity of the algorithm is at most 0 ( N ak3).
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Chapter 6 

Experimental Results

In order to evaluate our algorithms we conducted several experiments. The real 

dataset used for all these experiments was a collection of more than 10,000 NSF 

proposal abstracts. We processed each document and extracted a collection of 

around 2.5 million terms and 100,000 sentences. We calculated the frequencies 

for individual terms and term association scores for pairs of terms and pruned the 

entries according to our discussion in Section 4.1.

6.1 Cost Model Savings

In this experiment, we do a baseline comparison between a local optimal plan and 

an ‘average’ plan, in terms of the difference in estimated costs. For ‘average’ query 

plan, we estimate the cost for all query plans and compute the average cost. For 

our testing, we generated 4 sets of queries, with the number of terms per query 

fixed in each set, but varied from 2 to 5 between sets. For each set we generated 

5000 queries with terms chosen randomly from our term collection. To keep the 

naturalness of the queries, the selection process used frequencies so that terms with 

higher frequencies appear more often in our generated queries. The probability of 

selecting term r  is therefore proportional to the frequency of r  and is given by

p ( t  =  T) =  e « 1  m  <61)

where C is the term collection.

After generating the queries, we calculate the selectivity for each query. The 

selectivity of a query is the expected number of sentences that contain all the terms
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of the query, and is given by the product of selectivities of its terms or sel(Q) =  

n teArQ sel(t), where sel{t) is the selectivity of termf, which is the ratio of sentences 

that contain t and N Q is the set of query terms. The other parameter we compute is 

the standard deviation of the selectivities of the terms, denoted by std(Q). For each 

query we build all possible plans, and estimate the cost for each plan using our cost 

models.
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Figure 6.1: Saving Ratios vs. selectivities(log-scale) for queries with different num­
ber of terms

The ratio of the saving, defined as (average cost - minimum local cost)/average 

cost, is shown for each set of our queries in Figure 6.1. As shown, the majority 

of the savings are close to 1, which indicates that in most cases a best plan has a 

much lower estimated cost. Also the saving is generally greater when the query 

selectivity is low, i.e. a small fraction of data is retrieved. This is expected because 

a high query selectivity is often the result of having only frequent terms in queries,

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 terms 3 terms

selectivity 
4 terms

selectivity 
5 terms

selectivity selectivity

Figure 6.2: Spectrum of Saving Ratio vs. selectivity(log-scale) and standard 
deviation(log-scale) for queries with different number of terms

and for such queries there is not much difference between the costs of a best plan 

and an average plan.

However, there are some exceptions; in particular, the plot of 2-term queries 

shows that not all queries with low selectivities benefit the most. If all query terms 

have low selectivities, it does not matter much which subset of the terms and in 

what order they are placed on a plan tree, and as a result there is not much difference 

between a best plan and an average plan in terms of the estimated number of I/Os. 

Figure 6.2 shows this intuition for the same set of queries. The intensity of the 

darkness of each point gives a measure of the saving for a query, with darker points 

showing higher savings. The saving not only depends on query selectivity but also 

on the standard deviation of the individual term selectivities. For a fixed selectivity, 

the saving ratio increases as the standard deviation increases. The reason is that
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a higher standard deviation results in a greater difference between minimum local 

cost and the average cost, because best local plans can use low selectivity terms.

6.2 Savings over a Relational Database

To evaluate the accuracy of our cost model in a real setting and its applicabil­

ity within a relational database framework, we tried to push our query plans to a 

commercial database engine and compared the costs (in terms of running time) to 

the costs of the plans fully generated by the relational engine. Most commercial 

databases that we are aware of impose restrictions that prevent one from passing 

a query plan. We used IBM DB2 as our relational DBMS, and generated a set of 

around 5700 random queries having 2 to 5 terms each. For each query we obtained 

two SQL queries: one query only had the terms of the best local plan and the other 

had all the terms of the query (referred to as a full filtering plan). Since DB2 does 

some kind of caching, different invocations of a query can result in different ex­

ecution times. Therefore, we ran each query three times and only considered the 

minimum cost (cost of the query with the most caching). To make a fair compar­

ison, we added the CPU overhead of our cost estimation to the execution times of 

best local plans on DB2. On a modest machine (PIII/933MHz with 2GB RAM), 

the overhead was on average 0.93ms, 1.8ms, 2.99ms and 4.36 ms for queries with 

2, 3, 4 and 5 terms respectively.

Figure 6.3 shows the savings in the execution times of best local plans over the 

full filtering plans. The majority of the queries have a saving greater than or equal 

to zero, which means that DB2 has a smaller running time for the best local plan 

we find over a plan that contains all query terms. Our experiment shows that on 

average, best local plans run approximately 1.8 times faster on DB2. For queries 

with more terms, the saving is higher on average. The average savings are 0.09, 

0.20, 0.28 and 0.31 for queries with 2, 3, 4 and 5 terms, respectively. The amount 

of the saving is less than our estimated saving over average plans. There are two 

reasons for this: first, we could only pass our term selection but not ordering to 

DB2; second, DB2 was doing its own optimization on query expressions of both
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Figure 6.3: The histogram of the savings of db2 running times for 5568 queries

full filtering and best plans. That said, in order to show the statistical significance 

of the difference, we conducted a student’s t-test with t =  2.892 and n > 120. 

the probability that our plans executed faster than DB2 plans by chance is less than

0.0025.

6.3 Adding Rewritings

In the presence of multiple rewritings, finding an optimal plan is computationally 

expensive, as shown analytically; hence we came up with a greedy algorithm which 

was significantly faster. The objective of our experiment in this section is to eval­

uate the effectiveness of our greedy algorithm. For our rewriting set, we generated 

a number of query seeds and used each seed to produce a set of rewritings by re­

placing, adding or removing terms from the query seed. We created 2 sets of query 

seeds, each with 100 seeds; query seeds in one set had 4 terms and in the other 

set had 5 terms. Query seeds were generated by selecting random terms from our
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collection of terms. For each query seed of size n, the rewritings were generated by 

randomly replacing, adding or removing r  terms, where r varied from 1 to n — 1, 

giving n — 1 different sets of rewritings. The probability of replacing terms was 0.5, 

while probability of adding and removing terms were 0.25. All our term selections 

adhered to the term selection probability of Equation 6.1. Finally, we ended up with 

700 rewriting sets, each having 10 rewritings.

Ratio of Savings of Optimal Cost and Greedy Cost

0.9

°  0.7

°  0.6
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OO0.4■o

%  O
Z. 0.3OO) <9 o

0.1

0.1 0.2 0.4 0.5
Saving of Optimal Cost over sum of best local costs

0.3
Saving

0.6 0.7 0.8 0.9
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Figure 6.4: The Saving of Optimal Cost vs. the Saving of Greedy Cost

For each rewriting set, we find and estimate the costs of a sub-optimal plan using 

CSGreedy, an optimal plan using an exhaustive search, and a plan that consists 

of local optimal plans for each rewriting. We find the saving for both CSGreedy 

and optimal strategies over the sum of minimum local costs. Figure 6.4 compares 

the savings of CSGreedy and exhaustive optimal search for 429 rewriting sets that 

were discussed. Each data point on this figure gives the greedy saving of one set of 

rewritings. Since the horizontal axis shows the savings of optimal plans, any point
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on line y=x represents a query for which CSGreedy finds an optimal plan. All the 

data points must be under the diagonal line of y=x because no rewriting set can 

have a greedy saving greater than optimal. Also the closer the data point is to the 

optimal line, the better it estimates the optimal solution. As this figure shows, there 

are many rewriting sets for which CSGreedy finds an optimal solution. Moreover, 

there are only a few number of rewriting sets for which CSGreedy cannot find a 

solution better than the sum of minimum local costs. The amount of saving of 

CSGreedy is also very much comparable to that of optimal; on average the saving 

is within 92% of the saving of an optimal plan.
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Chapter 7 

Conclusions and Future Extensions

To the best of our knowledge, this thesis is the first work that studies querying 

and query optimization over natural language text within the context of relational 

databases. Other works either focus on optimizing querying over text or relational 

data separately, or study a loose integration of text and relational data. Moreover, 

our focus on natural language text (instead of any arbitrary text) provides us with a 

rich and powerful querying framework, with more room for query optimization.

7.1 Summary

Natural language text is ubiquitous and more information is expressed in natural 

language text every day. Our focus in this thesis is on querying natural language text 

and optimizing NLTQ’s. We propose relational databases for efficiently querying 

natural language text and show that they provide a viable option for modeling and 

optimizing natural language text. Our studied framework offers both the simplicity 

of text queries and the expressive power of SQL. A rewriting engine is also used for 

query expansion, which will increase the query recall. Given a set of appropriate 

query rewritings, We expect that the accuracy of the results are not much affected.

The contributions of this thesis can be summarized as follows:

Mapping. We study the mapping of natural language text and NLTQ into relational 

tables and SQL queries. We introduce terms and sentences as the main building 

blocks of a collection of natural language text and discuss why the choice of schema 

is a natural selection for our target application.
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Cost Model. We formally define a cost model for execution plans of natural lan­

guage text queries over relational databases. The cost model describes the cost of 

evaluating a natural language text query plan, given the mapping of text to relations. 

The statistics used in our cost models are basically the selectivity and co-occurrence 

association of terms within sentences.

Single Query Optimization. Our study shows that the search space of the plans of 

a NLTQ can be huge (if done naively), but we derive theoretical results that show 

the size of the search space can be significantly reduced, while guaranteeing to 

include an optimal plan in the reduced search space. We also provide the algorithm 

which finds the optimal plan and has a linear time complexity.

Multiple Query Optimization. We also show that finding the overall optimal plan 

for a NLTQ and its set of rewritings is at least NP-Hard in general. Therefore, 

we propose an efficient greedy algorithm with expected 0 (N ak3) time complexity 

where N a is the average number of terms per rewriting and k is the number of 

rewritings. This greedy algorithm sacrifices the optimality condition by reducing 

the complexity of the algorithm by orders of magnitude.

Theoretical Analysis. We provide theoretical evidence for almost all of the claims 

about the complexity of the problem and the algorithms used for solving the prob­

lem.

Experimental Results. Our experimental results show that the estimated costs of 

our local optimal plans are usually an order of magnitude less than the costs of aver­

age plans, and that query selectivity and standard deviation of term selectivities are 

two major factors that determine the amount of saving. The actual execution times 

for our queries mapped into SQL show that our cost model performs well in esti­

mating the cost, and that taking into account the overhead of optimizing queries, it 

is beneficial to find the optimal plan on a commercial relational database. Our final 

results on optimizing a set of multiple rewritings demonstrate that our CSGreedy al­

gorithm performs well compared to an optimal plan, with an average saving within 

92% of the saving of an optimal plan.
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7.2 Future Work

Our work can be extended in a few interesting directions.

• Indexing. One direction we are currently pursuing is indexing. The prob­

lem would be how to cluster the set of rewritings such that indexing of the 

information would result in a minimum retrieval cost. This would include 

traversing the large graph of rewritings and grouping together nodes that are 

most likely to be queried together. Our initial thoughts suggest that the prob­

lem is in general NP-hard.

• Selectivity Estimation. Selectivity of terms is the most important statistic 

used for optimizing text queries. For very large corpora, it is impossible 

to extract the selectivity of all the terms. Therefore, there are techniques for 

estimating the selectivities. However, these selectivities can be highly domain 

dependent. Another direction is doing selectivity estimation that is fine-tuned 

to natural language text and uses domain information for the estimations. 

The same domain information can be applied for estimating co-occurrence 

association.

•  RDB Extension. One more direction is possibly extending relational databases 

to better support natural language text. Thus, it might be interesting to plug 

our optimization strategies into the query optimizers of current commercial 

relational databases.
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Appendix A 

Proof of Theorems and Lemmas

Lemma 1. The number o f query plans for a NLTQ with N  terms is given, by 

Y ! n = i  Q S S { N , n) where

' N  n = 1
qss(N , n) =  <

I qss(N, i)qss{N -  i , n  -  i) n >  1.

Proof In order to find the search space size for plans with n nodes, selecting their 

terms from N  different terms from the query, we first need to enumerate the differ­

ent orientations that a plan tree can take with n leaves and then we will find how 

many different permutations can N  different terms can make on such a tree. For 

example, the number of different orientations that a tree can take with n =  1 or 

n  =  2 is only one. These are shown in Figure A.I.(a). Therefore, the number of 

different trees with n  =  1 is ('^) =  N  when we have N  terms to distribute over 

leaves.

For n > 2 we can solve this problem recursively and solve for the left and right 

subtrees. Therefore, we can have k leaves in the left subtree and n — k leaves in 

the right one. We denote such a tree with (k)(n — k). However, it turns out that 

(k)(n — k ) and (n — k)(k) give the same filtering sequence and have the same 

plan cost. This is shown for a query plan with n =  3 in Figure A.l.(b). It turns 

out that for each plan there is a symmetric plan that does the same filtering and 

can be obtained by rotating the tree horizontally. Therefore, we have to halve the 

total number of query plans possible for a tree with n  leaves. This results in the 

qss(N, n ) recursive function. In order to find the overall space size, we just need
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to sum over trees with different numbers of leaves, from 1 to N, which gives the 

formula for our lemma.

□

/
A

(a) (b)

Figure A. 1: Examples of binary trees for different number of leaves

Here, we would like to compute an upper bound for the time complexity of 

QSS(N) .  We can show that a weak bound is given by 0 ( N N). The Catalan num­

bers [28] are given by

"  =  ° (A„

Comparing the recursive definition of Catalan numbers in Equation A. 1 with Q S S ( N ), 

we can show that

< A - 2 )

We break Equation A.2 into three different clauses for clarity. The first clause is 

generated by the |  coefficient in the formula of qss(N1 n ) in Lemma 1, the second 

clause generates the Catalan numbers, and the third clause is generated because the 

base case of the query space size is N  and not 1 as is the case for Catalan numbers.
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Solving for Equation A.2, we have

w s m  = ^ E ^ ( 2; )
« —1 ' '

(A.3)

N\ V  ——  ( —  
n +  1 I n

(A.4)

(A.5)

(A.6)

0 (1)

«  0 { N N) (A.7)

The approximation used in Line A.4 of the above derivations, is given by the Stir­

ling’s approximation [24], which approximates n! for large values of n. Finally, the 

last approximation in Line A.7 gives a weak upper bound for eNN\.

Theorem 1. Assuming query terms are independent, For a query plan with n leaves 

represented in a Left Deep Tree (LDT'), the lowest cost can always be obtained by 

sorting terms according to their frequencies and placing lower frequency terms on 

leaves in higher depths.

Proof Figure A.2.(a) shows our target LDT. terms are sorted according to their 

frequencies and lower frequency terms are placed at the bottom of the tree. For 

such a tree, we have

• V i , j  < n ,i  < j  <£> f  < f j

• Vi, j  < n j i <  f j  <£> H(i)  >  H(j)

Where H ( k ) is the height of node (leaf) k. Cost of this ordered LDT is given by

Ci — min ^Ca + / i ( — +  Ca), 2Ca +  ^ - ( / i  + / 2)^

min • C«, Ca +  ^
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A
(a) (b)

Figure A.2: LDTs used for representing query plans, (a) Best query plan LDT with 
n leaves (b) terms on ith and j th leaves have been replaced

Where fi„m is the frequency of the resulting subtree and is given by St x
n ™ U_ 

i=l st '
Figure A.2.(b) is the same as the LDT to it’s left except that terms i and j  have 

been swapped. Therefore, in this LDT we have i < j  but H(j)  < H(i).  The cost 

of this unordered LDT is given by

in ( c a + + Ca), 2Ca +  -prifi +  A)
\  Op Op

+ S  min ( f 1-* -1 • A ,  A  + ^  • a )

C2 =  min

i—1

+ min ( /!..*_! • C«, Ca +  ^  ■ f j
Op

f * /  Ct \
+  min ( /i..j-ij,j+i..fc-i • A ,  Ca + A  • fk J

V /A;=i+1

-F min 1 1 ■ Ca? Ca 4- • ft

+  ^ 2  min ( ■ C a , C a + (̂  ■ f k )  
k=j+ 1 '  /

We can easily show that the following two relations hold
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• V a, b, c e R, a < b <t=» min(a, c) < min(6, c).

•  V s, 5/ €  -P({1, • • • ,^}), sf C s => f s, >  f s, where P(s)  gives the power 

set of s.

Comparing C\ and C2 shows that LDT costs are equal for the i — 1 lower leaves 

and n — j  upper leaves. These are first, second and last statement of C2 which are 

equal to their corresponding costs in C\. Moreover, using the relations above we 

can easily show that the fourth statement of C2 is always less than or equal to it’s 

corresponding cost in C\, which is

Therefore, we only need to compare the costs at leaves 1 and j .  To complete the 

proof, we need to show that the following always holds

/

X] min (/
A;=i+1

J_1 /
< X Z min ( /1

4*— * - L i  '

min ■ Ca, Ca +

+  min ■ Ca, Ca +

< min ( • Ca, Ca +

+  min • Ca, Ca +

We can see that A > D > E  and B  > C. We have

min(v4, B) > min(A, C)
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=> c 2 > c ,

II .  min{D, C) = C => C < D < A < B

min(Z), C) +  min(A, B )/~i\ ■ ( a r>\ ( C -\- A A < B,C ) + mm{A,B)  = I C + B  B < A{

A < B  =>- min(A, C ) +  min(£', B) — C + E

, E  <  A  => C2 > Ci

B  < A  =>• min(A, C) +  m in(^, 5 )  =  C  +  m in(5, E1)

, m in(S, E) < B  =$■ C2 > C\

□

Theorem 2. Assuming query terms are independent, Any query plan t with n leaves 

has a traversal equivalent left deep tree that always has a cost less than or equal to 

the cost oft.

Proof. An LDT has the property that it only has one leaf pair at the lowest level 

of the tree and no other leaf has any leaf siblings. Any non-LDT has at least one 

extra leaf pair, we compare the cost of a leaf pair and cost of two leaves on conse­

quent levels of a tree as will appear in an LDT. Figure A.3.(a) shows an LDT and 

Figure A.3.(b) shows one of it’s traversal equivalent Bushy trees. As Theorem 1 

suggests, we assume the frequencies of the LDT are sorted and assume we have the 

same frequencies for our traversal equivalent bushy tree. Using Figure A.3 and cost 

formulas, we compute the cost of the LDT and bushy subtrees as follows.

cL =  min f rCa, Ca + — / 3 +

mm (A.8)
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(a) (b)

Figure A.3: An LDT versus bushy tree. Bushy trees have at least one leaf pair more 
than LDTs

Cb — min ( Ca +  / 3 ( -C- +  Co') , 2Ca +  ( /3 +  / 4)
On

+2Ca +  4- min (  f rCa, Ca +  I +  Cp
U p &t \  V'p Jt J

Cp  

C t f i f A (A.9)

Where cp is the cost of the LDT subtree and cp is the cost of the bushy subtree. 

Moreover, we can easily show that

a + b < c=> m in(a,x ) +  min(6,y) < c (A. 10)

Where x  and y could be any numbers. Using Equations(A.8),(A.9) and the 

above formula, we have

d h ) + ĉ /4) ~ c1 + ^

Using relation A. 10 and adding cp to both sides of inequality, will result in the 

following inequality.

cp <  cp +  2Ca +  - — p -  ( /3 4- / 4)
Op

(A. 11)

mi

similarly, we have
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Finally, using inequalities (A.11), (A.12) we will have cL < cP + min(mi, m 2) 

and this proves our theorem or cl < cB

□

Lemma 2. Let k be the number o f rewritings, assuming that terms are selected 

using the probability given in Equation 5.1, the expected number o f unique overlaps 

among rewritings is at most 0 { k 2).

I

Terms

Rewritings

q
Figure A.4: A graph model for finding the expected number of unique overlaps

Proof. Figure A.4 provides a model for finding the expected number of unique 

overlaps. As this figure shows, terms and rewritings are denoted by nodes. An di­

rected edge from a term to a rewriting indicates that the term appears in the rewrit­

ing. Two rewritings overlap in a term if they both connected to that term. In order to 

compute the expected number of unique overlaps, we first need to formally define 

overlaps between rewritings and uniqueness of an overlap.

Definition 6. A set T  o f terms is a unique overlap for a set 7Z o f rewritings if and 

only if it satisfies the following three conditions.
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1. Overlap Condition Vr € T ip  € 7 Z : t e T ( p )

2. Maximality Condition Vt £ — 7£ : r £

5. Uniqueness Condition Vp £ 1Z$t <E U r — T  : r  £ T(p)

where T(p) is the set o f terms o f rewriting p, U-ji is the set o f all rewritings and Ur 

is the set o f all terms.

According to Definition 6, any set of rewritings overlap in a set of terms if they 

have the first condition. The second condition guarantees that the set of rewritings is 

maximal, meaning that no other rewritings shares the same set of terms; Hence, no 

other rewriting belongs to this set of overlapping rewritings And the last condition 

guarantees that the set of terms is unique and no other terms are shared by the same 

set of rewritings. Assuming that terms are uniformly distributed over the rewritings 

and that the probability that a term occurs in a rewriting is given by Equation 5.1, 

the probability that a set of size I of terms is a unique overlap of a set of size q of 

rewritings, is given by

M (E ( ')  ̂  " (e  ( j ) ̂  - p)'"1) '* 1 <A13>
where p is the probability given in Equation 5.1. The three parts of Equation A. 13 

enclosed in parentheses satisfy the three conditions of Overlap, Maximality and 

Uniqueness of Definition 6 respectively.

• In order for all of the q rewritings to overlap in all of the I terms, the terms 

must all appear in the rewritings. This happens only if there is an edge be­

tween all these terms and rewritings. The probability that this happens is

p l q .

•  In order to satisfy the maximality condition, not all of the I terms must have 

an edge to any of the rewritings outside the set of q rewritings. In other words, 

there must be at least one term in the set of I terms that is not connected to a
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rewriting outside q rewritings. Since the number of such rewritings is n — q, 

maximality is satisfied by

= ( i  - p ' ) 1" ”

The right hand side of above equation better describes the second description 

of the problem, where as long as there exists a term that is not connected to 

all the n — q rewritings, maximality holds.

• The uniqueness condition is similar to the maximality. It is given by

/ » - ’ /  \  \ 11,-0(E ( j  Jp’(1-p)ir1}J = ( i - p , ) (‘ ,)

Similar to the maximality condition, as long as there is a rewriting that is 

connected to all k — I remaining terms, the set of I terms is not a unique 

overlap set.

In order to obtain the expected number of unique overlaps, we need to iterate 

over any subset of terms and rewritings. Therefore, we have

m  = E E (<) (!) p* h - <A14>
1 = 2  q = 2  '  /  V y  /

B (l',k,pq} x (A 15) 
1=2 9=2 P<!

where £  (I, k\p) is the expected number of unique overlaps, when the term selection 

probability is p and B  is the binomial probability distribution function. The reason 

both I and q are initiated to 2 and greater is that we would like at least two terms 

be shared with at least two rewritings, otherwise we would not consider them for 

caching. Finally, we make a simplifying assumption that the number of terms is 

greater than the number of rewritings, which is the case in most of our rewriting 

sets.

In order to obtain the time complexity of Equation A. 15, we do a numerical 

analysis of the problem. Figure A.5 shows the expected number of unique overlaps,
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normalized over the number of terms. As this figure shows, the expected number of 

unique overlaps increases when the number of terms increase for a fixed number of 

rewritings. Therefore, the complexity of the expected number of unique overlaps is 

larger than linear in terms of the number of terms. Figure A.6 gives the expected 

number of unique overlaps normalized over the number of terms square. As this 

figure shows, for a fixed number of rewritings, normalized expected number of 

overlaps decrease as the number of terms increase. Therefore, the complexity of 

the number of expected overlaps is less than the square of the number of terms. 

Notice that in both cases the average number of terms per rewriting is set to 5. 

A numerical analysis of the problem with different number of average terms per 

rewriting gives similar results. Therefore, the complexity of the expected number 

of unique overlaps is 0 ( k 2).

40

30

20

N u m b er of T erm s
N u m b er of R ew ritings

Figure A.5: Expected number of unique overlaps, normalized over the number of 
terms (Average number of terms per rewriting is 5)

□
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Figure A.6: Expected number of unique overlaps, normalized over the number of 
terms square (Average number of terms per rewriting is 5)
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