
It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it 
doesn't agree with experiment, it's wrong. 

- Richard P. Feynman, American theoretical physicist, 1918-1988. 
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Abstract 

This thesis is a detailed investigation into applying reinforcement learning to environments 

with independent delayed-sense dynamics (IDSD), where some of state variables evolve 

independently of both agent's actions and other state variables, and can be sensed only after 

a delay. These independent state variables are analogous to disturbances, since they are 

independent of control actions and are not observable before the agent commits a course of 

action. 

In this thesis, we first formalize IDSD problems and then develop four reinforcement 

learning algorithms that exploit the structure of IDSD problems to achieve better efficiency. 

Two of the algorithms are partially model-based and two are model-free. We discuss that for 

the same amount of experiments the quality of the policy learned by the proposed algorithms 

is better than that of learned by conventional reinforcement learning algorithms. 

We demonstrate the effectiveness of our algorithms by applying them to traffic grid-

world problems and to a hybrid vehicle problem, in which the traffic and driver acceleration 

play the role of the independent state variable respectively. We show experimentally that 

our algorithms evaluate a given policy more accurately than the corresponding TD(0). We 

also show that in the case of control, the learning speeds of our algorithms are substantially 

higher than the learning speed of conventional reinforcement learning algorithms that do 

not use the knowledge of the IDSD structure. 
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Chapter 1 

Introduction 

Markov decision processes (MDPs) are a popular framework for modeling decision-making 

problems in the presence of uncertainty. MDPs characterize a control process by a set of 

states and a set of actions for each state which from an agent must choose. Reinforcement 

learning is one of the well understood approaches for control in MDPs. In this approach the 

agent learns which action to perform in each state through trial-and-error interaction with 

the system to be controlled. The learning is based on the state transition and a numerical 

reward signal provided by the system. 

In many control applications, the system to be controlled includes a component whose 

state transition cannot be controlled by agent's actions. Considering this independent com­

ponent as a part of state may cause problem because agent's actions may be penalized or 

rewarded for the transition of the uncontrolled component. On the other hand, removing the 

independent component from the state may cause the agent to make poor decisions because 

the agent loses an important knowledge of the system. 

For instance, consider a hybrid vehicle problem, in which the vehicle runs either on 

a conventional gas engine or an electric motor powered by a rechargeable battery. The 

agent's goal is to minimize the fuel consumption of the vehicle by switching between these 

two power sources. Assume each power sources can respond to any acceleration request, 

and the driver requests for acceleration autonomously. Therefore, the acceleration request 

is not under control of the agent. 

Conventional reinforcement learning algorithms consider the acceleration request as a 

part of the state which result in penalizing or rewarding the agent's actions depending on 
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t-1 t t+1 t-1 t t+1 

(a) Conventional representation of state transition. (b) New representation of state transition. The 
Acceleration request, gas-level and battery-level are acceleration request is represented by a separate 
parts of one state. state which is independent of the agent's action. 

Figure 1.1: Transitions of state variables for the hybrid car problem. The state variables and 
actions are shown in the circles and diamond shapes respectively. 

the transition of the acceleration request. This variance in assigning credit to the agent's 

actions can increases the time to learn an effective policy. In contrast, the agent can exploit 

the knowledge of independency between the acceleration request and the agent's actions to 

factor out the credit caused by the transition of the acceleration request. 

Figure 1.1(a) shows a situation that causes high variance in the credit assignment of 

conventional reinforcement learning algorithms. The agent's action is penalized for the 

transition of the acceleration request from low to high because it will increase gas con­

sumption, and rewarded for the transition of the acceleration request from high to braking 

because it will charge the battery. Figure 1.1(b) shows a new representation of the same 

situation. The lack of the arc from the gas engine to the acceleration request represents 

the independency between the acceleration request and the agent's action. The arc from 

acceleration request to power sources within one time-step represent the influence of the 

acceleration request on the fuel consumption or battery depletion. This representation en­

ables the agent to separate the transition of the acceleration request from the transition of 

battery and gas, and factor out the credit caused by the transition of the acceleration request. 

The independencies between state variables have received attention in factored MDPs 

(Boutilier et al., 1999). Nevertheless, the problems with the structure described in the above 

example, called independent delayed-sense dynamics (IDSD) problems, are not explored in 

the artificial intelligence literature. Furthermore, factored MDPs are introduced to represent 
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large problems compactly using their structures and do not address, in general, how these 

structures can be exploited to achieve better efficiency (see chapter 2 for more details). 

The particular focus of this thesis is in finding specialized reinforcement learning algo­

rithms that exploit the structured of IDSD problems to reduce the variance of the conven­

tional credit assignment, and thus reduce the time to learn an effective policy. 

1.1 Contributions 

The contributions of this thesis comprise four parts: 

• Introducing a reinforcement learning framework to model the agent-environment in­

teraction in IDSD problems, and deriving the standard definitions of reinforcement 

learning under that framework. 

• Proposing two partially model-based algorithms and two model-free algorithms for 

prediction and control in IDSD problems. 

• Deriving asymptotic convergence bounds of the proposed algorithms in the case of 

control, and discussing the relationship between these bounds and the asymptotic 

bound of Sarsa(O). 

• Presenting three new IDSD problems for comparing the proposed algorithms to con­

ventional reinforcement learning algorithms. These problems can be used as a bench­

mark for evaluating new algorithms under the IDSD structure. 

1.2 Overview 

Chapter 2 covers the background material necessary to understand the contributions made 

to IDSD problems. The chapter contains a formal definition of Markov decision processes, 

reinforcement learning, and its preliminaries. It also reviews some of the work that is most 

directly related to IDSD problems. 

Chapter 3 introduces a reinforcement learning framework for modeling IDSD problems. 

Based on this framework, we propose four algorithms that exploit the structure of IDSD 

problems in order to speed up the learning procedure. The first two algorithms rely on 
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having a model of the independent component, and thus we refer to them as partially model-

based algorithms. The other two algorithms are model-free algorithms. 

Chapter 4 analyzes the time complexity of the proposed algorithms. In the case of 

control, the asymptotic convergence bounds of the proposed algorithms will be presented. 

Finally, the chapter discusses the similarity between the bounds of the proposed algorithms 

and Sarsa(O), and how these similarities imply the advantages of the proposed algorithms. 

Chapter 5 presents the experimental results. We first introduce two episodic and one 

infinite horizon IDSD problems. We then use these problems to compare the proposed 

algorithms to conventional reinforcement learning algorithms in the cases of prediction and 

control. 

Chapter 6 discusses the limitations of the partially model-based algorithms presented 

in Chapter 3. In particular, we investigate one possible adjustment to the algorithms. We 

experimentally show that this adjustment is able to resolve the limitations of the algorithms. 

In the final chapter, we summarize the contributions presented in this work. Finally, we 

conclude with some discussion of the remaining challenges, and speculate on future trends 

in IDSD problems. 
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Chapter 2 

Background 

In this chapter, we present the background work in reinforcement learning (RL), although 

for further detailed information, we direct the reader to (Sutton & Barto, 1998) and (Baird, 

1993). We start with presenting Markov decision processes (MDPs) followed by reinforce­

ment learning in MDPs. We briefly review the temporal difference learning algorithm, the 

well-known RL algorithm for evaluating states under a fixed policy. Then, we present two 

RL algorithms that have been used widely for control tasks in MDPs: Sarsa(O), and the 

advantage updating algorithm. Afterward, we present some of the work that is most di­

rectly related to IDSD problems. In particular, we present factored MDPs, in which MDPs 

are represented compactly by exploiting the structure of problems. We discuss how this 

representation can help address the planning problem, and how it can be related to IDSD 

problems. 

2.1 Markov Decision Processes 

Markov decision processes have been considered extensively as a basic framework for 

the problem of planning under uncertainty. An MDP represents a problem as a tuple 

(<S, A, Vga,, 1Z%3i), where S is a set of states, A is a set of actions, VgS, is the probabil­

ity of reaching state s' after taking action a in state s, and 7£"s/ is the received reward. If 

the set of states and actions are finite, then the problem is called a finite MDP. Furthermore, 

the problem is called episodic if it has natural endpoints, and infinite horizon if it continues 

forever. 
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Vt+\ 
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Figure 2.1: The agent-environment interaction in reinforcement learning. 

2.2 Reinforcement Learning 

Reinforcement learning is the task of learning which action to perform in each state in order 

to maximize a numerical reward signal (Sutton & Barto, 1998). The learner or decision­

maker is called the agent, and the system that generates the states and rewards is called the 

environment. The agent solves the learning task through trial-and-error interaction with the 

environment (Moriarty et al., 1999). 

Figure 2.1 shows the agent-environment interaction in a reinforcement learning prob­

lem. At any time t, the agent takes an action at € A based on the current state s<. One 

time-step later, the environment responds by changing the state into st+i, and giving the 

agent a numerical reward, rt+\ € 1Z, as a consequence of its action. In this work, we 

assume that problems satisfy Markov property; i.e., st+\ is only a function of st and at. 

A policy is a mapping -K : S x A —>• [0 1], where n(s, a) denotes the probability of 

performing action a whenever the agent is in state s. The agent goal is to adopt an optimal 

policy, 7r*, that maximizes the expected return. The return, Rt, is the total discounted 

reward. 

oo 

k=0 

where 7 G [0,1] is a discount factor. The value of state s under policy ir, denoted by Vn(s), 

is the return that agent will receive by starting from state s and following policy -K thereafter. 
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V*{s) = Ev[Rt\st = s] (2.2) 

Similarly, the value of taking action a in state s under policy IT, called the action-value 

function, is defined by: 

Q*(s,a) = E1T Rt 
St = S 

at — a 
(2.3) 

Considering equation (2.2) and (2.3), one can derive the state-value function from the 

action-value function by: 

Vw(s) = ^7 r ( a , a )Q w ( s , a ) 
aeA 

(2.4) 

Note that in the case of optimal policy, n*(s, a) is zero for all actions except the optimal 

action. Therefore: 

V*(s) = arg max Q*(s, a) 
aeA 

(2.5) 

The advantage of a state-action pair (s, a) under policy n, denoted by An(s, a), repre­

sents the degree to which the return is increased by performing that action rather than the 

current best action. 

A*(8,a) = Ev Rt st = s 
at = a 

= Q*(s,a)-V*(s) 

-Ev[Rt\ st = s] 

(2.6) 

Equations (2.5) and (2.6) imply that the advantage of the optimal policy is zero if a is the 

optimal action, and is negative for any suboptimal action. 

Given these definitions, there are two families of algorithms for learning the optimal 

policy: (1) policy iteration and (2) value iteration. Policy iteration algorithms consist of two 



parts. In the first part, called prediction, the value function of a fixed policy is estimated. 

Then in the second part, called control, the estimate of the value function is used to improve 

the policy by finding for each state some action that is better than the current best action. 

The algorithms alternate between these two parts until the optimal policy is found; i.e., the 

policy becomes stable (LaValle, 2006). 

Value iteration algorithms combine prediction and control steps in a simple backup 

operation. These algorithms use the estimate of Q or A directly, and select at each time-

step the action that has the highest value (Schuurmans & Patrascu, 2001). 

2.2.1 Temporal Difference Learning 

Sutton (Sutton, 1988) introduced the temporal difference learning algorithm (TD), the most 

commonly used algorithm for prediction in MDPs. The algorithm is based on the error 

signal defined at every time-step by the temporal difference between the estimate of the 

value of two consecutive states. If V(st) and V(st+i) denote the estimate values of two 

consecutive states in iteration t, and rt+i denote the observed reward at that iteration, then 

the simplest version of TD, known as TD(0), updates V(st) by: 

V(st) *- V{st) + a\rt+i + 7^(«H-i) ~ V(st) (2.7) 

where a is a constant step-size parameter. 

2.2.2 Sarsa(O) 

The Sarsa(O) algorithm is an on-policy TD(0) that uses the estimate of the action-value 

function for control. This algorithm learns the action-value function by considering tran­

sitions from state-action pair to state-action pair (Sutton & Barto, 1998). Despite of its 

simplicity, Sarsa(O) is one the most effective algorithm for control in MDPs. 

Formally, after seeing trajectory fragment st, at, rt+i, st+i, at+i, Sarsa(O) updates the 

estimate of the action-value function, Q(st, at), by: 

Q(st, at) <- Q(st, at) + a\rt+\ + 7Q(s t+i,a t +i) - Q(st, at) (2.8) 



Given any state, the action can be selected by a greedy policy or by a e-greedy policy; 

i.e., the action with the highest Q value is selected most of the time, but once in a while, 

with the probability of e, an action is selected at random uniformly. 

2.2.3 Advantage Updating Algorithm 

The advantage updating algorithm is a control algorithm that learns the estimate of the 

advantage function (Baird, 1993). This algorithm stores two types of information: (1) the 

estimate of the state-value function, and (2) the estimate of the advantage function. Both 

functions are required for the learning procedure, but the policy is extracted directly from 

the estimate of the advantage function. 

At each iteration t, the algorithm uses equation (2.7) to update the estimate of the value 

function. Afterward, it updates the estimate of the advantage function, A(st, at), by: 

St = max A{st, a') + [ r m + jV(st+i) - V(st)} - A(st, at) (2.9) 
a' 

A(st,at)^A(st,at) + pSt (2.10) 

where f3 is a step-size parameter. Subsequently, the algorithm normalizes the estimate of the 

advantage function to ensure that after convergence maxa/ A(st, a') = 0 for all states. The 

normalization is done by picking a state-action pair (s, a) at uniform random, and updating 

A(s, a) by: 

i ( s , a ) < - i ( s , a ) - w m a x i ( s , a ' ) (2.11) 
a' 

where a; is a step-size parameter. Note that the normalization does not require interaction 

with the environment. Therefore, the normalizing update can be performed multiple times 

per time-step. 
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2.3 Dynamic Bayesian Network 

Dynamic Bayesian networks (DBN), introduced by Dean and Kanazawa (Dean & Kanazawa, 

1989), are used to reflect implicit independencies among the state variables of MDPs. A 

DBN is a two-layer directed acyclic graph, in which vertices correspond to state variables, 

and an edge between two vertices indicates a direct probabilistic dependency between them. 

The edges are divided into two categories: (1) diachronic arcs, and (2) synchronic arcs. Di-

achronic arcs are those directed from state variables at time t to state variables at time t + 1 ; 

synchronic arcs are directed between state variables within a time-step (Boutilier, Dean & 

Hanks, 1999). Figure 2.2 shows a DBN that contains only diachronic arcs. 

The lack of a diachronic arc from a state variable at the current time, x\, to another 

state variable at the next time-step, X'A, means that the knowledge of Xi is irrelevant to the 

prediction of re'. These independencies have a strong effect on the number of parameters 

that must be supplied to compute the distribution over resulting states. 

A DBN is quantified by specifying a probability for each state variable conditioned on 

all possible values of its immediate parents (Boutilier, Dean & Hanks, 1999). The network 

also must have a marginal distribution; i.e., an unconditional probability for each state vari­

able that has no parents. These quantifications are captured by associating a conditional 

probability table (CPT) with each state variable in the network (Boutilier, Dean & Hanks, 

1999). 

2.4 Related Work 

Using the problem structure to speed up the learning process has a long history in the predic­

tion and control problems. Boutilier, Dearden and Goldszmidt introduced factored MDPs in 

order to reduce the problem complexities that grows exponentially with the number of state 

variables (Boutilier, Dearden & Goldszmidt, 1995). Factored MDPs rely on the fact that 

many large MDPs have significant internal structure, and can be modeled compactly if that 

structure is exploited by the representation (Koller & Parr, 1999). For instance, consider a 

simple robotic task, in which a robot navigates in a building and delivers coffee and mail. 

In this example, the location of the robot at time t + 1 may depend on its position, velocity, 

10 



t t+1 

Figure 2.2: A dynamic Baysian network. The nodes represent the state variables at time t 
and t + 1. The edges represent the conditional dependencies between state variables from 
time t to time t + 1. 

and acceleration at time t, but not on what it is carrying. 

In factored MDPs, a state is described by a set of state variables, where each state vari­

able is in some finite domain. Then a set of DBNs, one per action, is used to represent a 

compact transition model by exploiting the fact that under one particular action the tran­

sition of a state variable depends only on a small number of other variables (Note that in 

some factored MDPs the DBNs of actions are the same). Unfortunately, this representation 

of MDP does not help the decision-making problem, since certain regularities and struc­

tures in a MDP do not guarantee, in general, any type of structure in the value function 

(Koller & Parr, 1999). Nevertheless, it has been shown that in many factored MDPs, the 

optimal policy also has a certain structure (as does the value function). 

Boutilier, Dearden and Goldszmidt introduced the structured policy iteration (SPI) al­

gorithm for constructing optimal policies in factored MDPs (Boutilier, Dearden & Gold­

szmidt, 1995). The algorithm is based on the intuition that if a problem can be represented 

by exploiting certain regularities and structures, one can expect that the optimal policy and 

the value function also have a certain structure. The algorithm constructs tree-structured 

representations of the value function and policies. The nodes of each tree are labeled with 

state variables, and the edges are labeled with the values of state variables. The leaves of 

the value tree denote the value of any state consistent with the labeling of the corresponding 
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branch. In the case of policy improvement, the leaves indicate the action to be performed 

at any state that is consistent with the labeling of the corresponding branch. Given these 

structured trees, SPI performs the policy evaluation by exploiting the fact that if the effects 

of an action on two states are only different in the state variables that are not relevant to the 

tree-structured representation of the value function, then the value of those states must be 

identical. 

The key operation of the algorithm assumes that the effects of actions on the value of 

successive state variables are independent (Boutilier, Dearden & Goldszmidt, 2000), which 

does not hold in IDSD and many other problems. Nevertheless, (Boutilier, Dearden & 

Goldszmidt, 1995) proposed that such dependencies in decision trees can be replaced by 

modified subtrees containing only the parents of the successive state variables. However, 

this is a complex operation that makes the algorithm feasible only on MDPs with localized 

dependencies between the values of successive state variables within the same time-step 

(Boutilier, 1997; Teichteil-Knigsbuch & Fabiani, 2004). 

Kearns and Koller proposed a model-based RL algorithm for factored MDPs (Kearns 

& Koller, 1999). The algorithm learns an approximate model from experience, and then 

exploits (or explores) it by T-step planning given the approximate model. The algorithm 

estimates the model by learning the parameters of a CPT for each action. It then uses a 

recursive sparse sampling method to compute near-optimal actions from any state. They 

proved that "a randomly sampled look-ahead tree that covers only a vanishing fraction of 

the full look-ahead tree is sufficient for calculating near-optimal policy" (Kearns, Mansour 

& Ng, 1999). 

Koller and Parr proposed that the value function of a policy in factored MDPs can be 

approximated closely by a linear combination of local basis functions, each of which de­

pends only on a restricted set of state variables (Koller & Parr, 1999). They argued that 

these additive value functions can be estimated by iterating through a dynamic program­

ming, and finding the closest value function in the restricted set. The algorithm finds the 

closest value function based on the probability of visiting different states in the stationary 

distribution. This method is restricted to policy evaluation, and cannot guarantee overall 

policy improvement, since the states that are visited infrequently may have very poor value 
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estimates. Later, Koller and Parr removed the correlation of the distance metric on the 

stationary distribution and used the algorithm as a subroutine in a policy iteration process 

(Koller & Parr, 2000). They showed that the one-step greedy policy can be represented 

compactly by a decision list, where each element of the list is the difference between the 

value of a state-action pair, and the value of a default action in that particular state. 

(Schuurmans & Patrascu, 2001) and (Poupart, Boutilier, Patrascu & Schuurmans, 2002) 

proposed a direct linear programming approach to determining optimal policies in factored 

MDPs. This approach is also based on the assumption that the optimal policy can be ap­

proximated by a compact linear form of some basis functions. The approach exploits the 

structure of the factored MDP to find the best linear fit to the optimal value function. The 

issues of selecting basis functions and accuracy were addressed in (Poupart, Boutilier, Pa­

trascu & Schuurmans, 2002). 

Although these algorithms are focusing on independencies between state variables given 

a particular action, but one can use a similar idea for IDSD problems. In chapter 3, we show 

that the value function of a policy in IDSD problems has a specific structure. In particular, 

we introduce partially model-based algorithms, in which the state-value or the action-value 

function is calculated by a linear combination of some values, called advanced values. 
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Chapter 3 

Algorithms for IDSD Problems 

In this chapter, we first formally define IDSD problems. Then we introduce a reinforcement 

leaning framework for modeling IDSD problems. The preliminaries of an IDSD problem 

will be presented. Afterward, we propose two partially model-based and two model-free 

algorithms for prediction and control in IDSD problems. 

3.1 IDSD Problems 

In an IDSD problem, the state variables are divided into two sets: the autonomous state and 

the controllable state. The transition of the autonomous state is independent of the control­

lable state and agent's actions, and can be sensed after a delay. However, the transition of 

the controllable state is influenced by agent's actions and by the value of the autonomous 

state. 

3.2 IDSD Framework 

We model an IDSD problem by using two separate processes. We denote the controllable 

state by vector X, and model it as signals coming from controllable dynamics. Similarly, 

we model the autonomous state, denoted by vector Y, as signals produced by autonomous 

dynamics. Further, we assume that both processes have the Markov property, and both 

signals are in a discrete, finite set; X E X and Y € y. 

Figure 3.1 shows a typical agent-environment interaction in an IDSD problem. At 

any time t, the agent takes an action at € A based on the current representation of state 

st = (Xt, Yt). One time-step later, the autonomous dynamics produce Yt+i based on Yt. 

14 



autonomous 
dynamics 

Y. t+\ 

a. 

controllable 
dynamics 

X. t+i 

t+\ 

agent 

Figure 3.1: The agent-environment interface in an IDSD problem. 

Then the controllable dynamics produce Xt+i based on tuple (Xt,Yt+i,at). Afterward, 

the agent receives a new state st+i = (Xt+i, Yt+i), and a numerical reward, rt+i G 1Z, as 

a consequence of its action. rt+i is a function of {Xt, Xt+i, Yt+\, at). 

We define the value of a state (x, y) under policy ir as the return that the agent will 

receive by starting from that state and following policy ir thereafter: 

Vw(x,y) = Sw Rt 
Xt = x 
Yt = y 

(3.1) 

Note that at any time-step, the return depends on the current value of controllable state 

and the next value of the autonomous state, called the advanced state. Thus, we define a 

new value function, called advanced value function as: 

VT(x,y) = E„ Rt 
Xt = x 
Yt+i = y 

(3.2) 

The value of a state-action pair (x, y, a) under policy IT, is the return that the agent will 

receive for taking action a in state (x, y). 
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Qn(x,y,a) = En Rt 
Xt = x' 
Yt = y 
at — a 

(3.3) 

Similarly, the advanced action-value function of a policy ir, denoted by Q , is the return 

that the agent will receive for taking action a, given the current value of the controllable 

state and the next value of the autonomous state. 

Q*(x,y,a) = En Rt 
Xt = x 
Yt+i = y 
at — a 

(3.4) 

It is easy to show that if the dynamics of the autonomous state is known, then V* and Qw 

can be derived from V and Q71^ respectively. In order to show these relationships, consider 

the following lemma: 

Lemma 3.1. Let A €U and B € V be discrete random variables. Then 

E[A} = Y^ Pr(B = r)E[A\B = r] 
rev 

where Pr{B — r) is the probability ofB equals to r. 

Using the Markov property of the autonomous process and lemma 3.1, we have: 

V*{x,y) = = En Rt 
Xt = x' 
Yt = y . 

y'ey 

= E Pr (Yt+1 = y' \Yf-

Rt 

= y 

Xt = x 
Yt = y 
Yt+i = y' . 

)E* Rt xt 
Yt+ 

= X 

1 = 1/ . 

= Yl Pr(yt+i = v'\Yt = y)V*{x, y') 
y'ey 

(3.5) 

Similarly, one can derive Qn from Q^ by: 
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Qn(x,y,a) = E% Rt 

Xt = x' 
Yt = y 
at = a 

J2 Pr(Yt+1 = y')E« 
y'ey 

Rt 

xt 
= X 

Yt = y 
Yt+i = y' 
at = a 

3W Rt 

Xt = x 
Yt+i = y' 
at = a 

= Y/Pr(Yt+1 = y'\Yt = y)En 

y'ey 

= Yl MYt+i =y'\Yt = y)Q*(x, y', a) 
y'ey 

(3.6) 

3.3 Partially Model-Based Algorithms 

In this section, we propose two partially model-based algorithms that learn the model of 

the autonomous dynamics and use that model for prediction or control in IDSD problems. 

The first algorithm, called the autonomous-based prediction algorithm (AB-P), is a predic­

tion algorithm that uses the model of the autonomous dynamics to derive the value function 

from the advanced value function. The second algorithm, called autonomous-based con­

trol algorithm (AB-C), is a control algorithm that exploits the model of the autonomous 

dynamics to derive the action-value function from the advanced action-value function. The 

following sections describe the algorithms in more detail. 

3.3.1 Autonomous-Based Prediction Algorithm 

Autonomous-Based Prediction algorithm (AB-P) learns the value function and the ad­

vanced value function simultaneously, one from the other. Given a trajectory fragment 

st, at, rt+i, st+i, at+i, the algorithm uses the following equation to update the estimate of 

the advanced value function, denoted by V(Xt, Yj+i): 

V(Xt, Yt+1) <- V(Xt, Yt+1) + a [rt+1 + -yV(Xt+1, Yt+1) - V(Xt, Yt+1)] (3.7) 

Afterward, the algorithm computes the estimate of the value of state (Xt, Yt) by: 
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V(Xt, Yt) = J2 p(y'> Yt)V(Xu y') (3.8) 
y'ey 

where P(y', Yt) is the estimate of Pr(Yt+i = y' | Yt). Note that Pr(Y t + i = y' | Yi) is 

independent of the agent's policy, and thus can be estimated by any time-series prediction 

methods such as the Kalman filter or the maximum likelihood methods. In this work, we 

consider the simple form of the maximum likelihood method for the sake of simplicity. 

At each time-step t, AB-P updates P(y',Yt) by: 

JV,»!)-=^r (3-9> 

where nt(y', I t) is the number of times that y' has been seen immediately after seeing Yt, 

and nt(Yt) is the number of times that Yt has been visited. Algorithm 1 shows the general 

form of AB-P. 

3.3.2 Autonomous-Based Control Algorithm 

Autonomous-Based Control Algorithm (AB-C) stores the estimate of the action-value func­

tion and the advanced action-value function. Both estimates are required for learning, but 

the policy is derived from the estimate of the action-value function. 

At each time-step t, AB-C updates the estimate of the advanced action-value function, 

Q(Xt,Yt+i, at),by: 

Q(XuYt+1,at) <- Q(Xt,Yt+1,at)+ 

a n+i + Q{Xt+i, Yt+i, at+1) - Q(Xt, Yt+i,at) (3.10) 

Afterward, the algorithm computes the estimate of the action-value function, denoted by 

Q(Xt, Yt, at), based on equation (3.6): 

Q(Xt,Yt,at) - J2 P(y',Yt)Q{Xt,y',at) (3.11) 
y'ey 
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Algorithm 1 Autonomous-Based Prediction Algorithm 

1: Initialize V(x, y) and V(x, y) arbitrarily 

2 : Initialize n to the policy to be evaluated 

3 : Initialize m(y, y) and n(y) to zero 

4 : Repeat (for each episode): 

5 : Initialize (x, y) 

6 : Repeat (for each step of episode): 

7 : a <— action given by IT for (x, y) 

8 : Take action a; observe reward r, and next state (x', y') 

9: V(x, y') «- V(x, y') + a[r + 7V(x', y') - V(x, y')] 

n(y) <- n{y) + 1 

m(y',y) +-m(y',y) + l 

V^y)^Y.z&y^V{x,z) 

(x, y) <- (x', y') 

until (x, y) is terminal 

Return V as the estimate of the value function 

10 

11 

12 

13 

14 

15 

where P(y'\ Yt) is calculated by the method described in the previous section. Algorithm 2 

shows the general form of AB-C. 

3.4 Model-Free Algorithms 

In this section, we propose model-free algorithms for prediction and control in IDSD prob­

lems. The algorithms estimate the advantage function and use that estimate to evaluate or 

improve a policy. The algorithms are based on the intuition that, in assigning a credit to 

an action, the agent should consider only the state variables that either are the outcomes of 

that action or influenced the outcomes of that action. As indicated in figure 3.2, in IDSD 

problems, Yt evolves independently of the agent's action and does not influence Xt+i-

Therefore, Yj should be excluded from assigning a credit to the agent's action as shown in 

figure 3.2. 
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Algorithm 2 Autonomous-Based Control Algorithm 

1: Initialize Q(x, y, a) and Q(x, y, a) arbitrarily 

2 : Initialize m(y, y) and n(y) to zero 

3 : Repeat (for each episode): 

4 : Initialize (x, y) 

5 : Choose a for (x, y) using the policy derived from Q {e.g., e-greedy) 

6: Repeat (for each step of episode): 

7 : Take action a; observe reward r, and next state (x', y') 

8 : Choose a' for (a/, y') using the policy derived from Q (e.g., e-greedy) 

9: Q(x, y\ a) <- Q(x, y', a) + a[r + iQ{pcf, y', a1) - Q(x, y', a)] 

10: m(y,,y)<-m(y',y) + l 

1 1 : n(y)<-n(y) + l 

12 : Q(x,y,a)^^zey^Q(x,z,a) 

13: (x,y)<r-(x',y,);a*-a! 

14 : until (x, y) is terminal 

3.4.1 Model-Free Prediction Algorithm 

Model-free prediction algorithm (MF-P) uses the estimate of a new function, called the 

mean advanced advantage function, to exclude the current value of the autonomous state 

from the credit assignment. Given policy -n, MF-P uses two types of information to approx­

imate the mean advanced advantage function of the policy: (1) the estimate of the value 

function, and (2) the estimate of the advanced value function. 

At each iteration t, MF-P updates the estimate of the value function, V(Xt, Yt), by the 

simplest TD error, as shown in equation (2.7). Then, the algorithm updates the estimate of 

the advanced value function by: 

V(XUYt+1) - V(Xt,Yt+i) + a\rt+1 + 7V(Xt+1,Yt+1) - V(Xt,Yt+1) (3.12) 

Afterward, the algorithm uses the following equation to update the estimate of the mean 
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Figure 3.2: The dynamic Bayesian network of IDSD problems. The dotted line shows 
the state variables that participate in assigning credit to the agent action in the model-free 
algorithm. 

advanced advantage function, denoted by A(Xt, Yt,at): 

A(Xt,Yt,at)^A(Xt,Yt,at)+ 

P rt+l + jV(Xt+l, Yt+1) - V(Xt, Yt+1) - A(Xt, Yt, at) 

(3.13) 

Subsequently, whenever it is needed, MF-P extracts the estimate of the advantage func­

tion, A{Xt, Yt, at), by: 

A(Xt, Yt, at) = A(XU Yt, at) - J ] ir(Xt, Yt, a)A(Xt, Yt, a) (3.14) 
aeA 

In the following, we show mathematically that the mean advanced advantage function 

excludes the current value of the autonomous dynamics from the credit assignment. We 

also prove that one can derive the advantage function from the mean advanced advantage 

function by using equation (3.14). 

First, we define a new advantage function, called the advanced advantage function, that 

does not depend on the current value of the autonomous dynamics. The advanced advantage 

of action a in state (x, y) is the advantage of performing that action rather than the current 
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best action, assuming the agent knows the next value of the autonomous state. Formally, 

we define the advanced advantage function by: 

A^(x,y,a,y') = En Rt 

Xt = x~ 
Yt = y 
at = a 
„\ Tr«i, 

— En 

„ „.'\ 

' I Xt = x 
\ Yt+i = y 

Q*(x,y,a)-V"(x,y') (3.15) 

The following equation shows that the advantage function of policy TT can be derived 

from its advanced advantage function: 

A*(x,y,a) = Q*{x,y,a)-V«(x,y) 

= (Q*(s, y, a) - V"{x, y')) - (y*(x, y) - V*{x, y')) 

= An(x, y, a, y') - I J^ ir(x, y, a')Qn(x, y, a') - V'{x, y') \ 
\ a'eA J 

= A*(x,y, a,y') - f ^ ir(x,y,a')Qn(x,y, a') - V"(x,y') J ^ TT(X,y, a') j 
V a'eA a'eA / 

= A*(x,y, a,y') - ^ ir(x, y, a') [Qn(x, y, a') - V*(x, y')j 

(3.16) 
a'eA 

A*(x, y, a, y') - ^2 ir(x, y, a')An(x, y, a', y') 
a'eA 

Note that y' is arbitrary. Therefore, we can write equation 3.16 for all possible values of y'. 

Adding all of these equations, we have: 

^A*{x,y,a) 
y'ey 

\y\A*(x,y,a) 

An(x,y,a) 

Y^^{x,y,a,y')- ] T I £ ] 7r(x,y)a')3'r(aM/,a /,y') 
y'ey y'ey Ka'eA / 

^TA^(x,y,a,y')- ^ ^ ir{x,y,a')A*{x,y,a',y') 
y'ey a'eA \y'ey , 

— Y^ ~A*(x, y, a, y') - — ^ TT(X, y, a') ^ A^(x, y, a', y') 
m y'ey m a'eA \ y'ey J 

(3.17) 

If we define the mean advanced advantage function as: 
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A*(x, y, a) = — ] T ~A*(x, y, a, y') 
m y'ey 

(3.18) 

then equation (3.17) becomes as: 

A* fay,a) y \ J2 ~^fa ^'a' v') - Yl 7r^' y> a/)-py7 J2 ~^fa Vi a'> y') 
1 y'ey a'e^t \ | , y | y'ey J 

\y\ 

= Aw(x, y,a)-^2 irfa y> a')A*fa y, a') 
a'eA 

(3.19) 

Equation 3.19 confirms that the advantage function can be derived directly from AK(x, y, a). 

The following equation shows that An(x, y, a) can be estimated independently of the cur­

rent value of the autonomous state: 

A* fay, a) = 
1 " 1 y'ey 

= T^T/{Q7Tfay,a)-Vwfay')) 
m y'ey 

= Q*fay,a)-±-Y,V*M) 
]y] y'ey 

= En 

= En 

oo 

n+i + X] 7fcn+fc+i 
fe=i 

* 

rt+1 + V*(x',y') 

Xt = x 

Yt = y 
at = a 

Xt = x~ 

Yt = y 
a t = a 

| J V e y 

' ^ ' y'ey 

where x' and y' are the values of the successive controllable and autonomous states respec­

tively. 

3.4.2 Model-Free Control Algorithm 

Model-free control algorithm (MF-C) is a control algorithm for IDSD problems. The algo­

rithm is based on the fact that the orders of An(x, y, a) and A*(x, y, a) are the same for any 
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state (x, y) (see equation 3.19). Therefore, in the control case, one can extract the policy 

directly from the mean advanced advantage function. 

MF-C algorithm stores the estimate of the mean advanced advantage function as de­

scribed in the previous section, and uses that estimate to extract the policy. Algorithm 4 

shows the general form of MF-C. 

Algorithm 3 Model-Free Prediction Algorithm 

1: Initialize V(x, y) and V(x, y) arbitrarily 

2 : Initialize A(x, y, a) and A(x, y, a) arbitrarily 

3 : Initialize TT to the policy to be evaluated 

4 : Repeat (for each episode): 

5 : Initialize (x, y) 

6 : Repeat (for each step of episode): 

7 : a <— action given by ir for (x, y) 

8 : Take action a; observe reward r, and next state (x', y') 

9 : V(x, y) <- V(x, y) + a[r + -fV(x', y') - V(x, y)} 

10 : V(x, y1) <- V(x, y') + a[r + >yV(x', y') - V{x, y')] 

1 1 : A(x, y, a) *- A(x, y,a) + (3 r + ^V(x', y') - V(x, y') - A(x, y, a) 

12: (x,y)^(x',y') 

13 : until (x, y) is terminal 

14 : For each state-action pair (x, y, a) 

1 5 : A(x,y,a) <- A(x,y,a) - Y^a.eAir(xiy>a)A*(x,y,a) 

16 : Return A as the estimate of the advantage function 
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Algorithm 4 Model-Free Control Algorithm 

1: Initialize V(x, y) and V(x, y) arbitrarily 

2 : Initialize A(x, y, a) arbitrarily 

3 : Repeat (for each episode): 

4 : Initialize (x, y) 

5 : Repeat (for each step of episode): 

6 : Choose a for (x, y) using the policy derived from A (e.g., e-greedy) 

7 : Take action a; observe reward r, and next state (a/, y') 

8 : V(x,y) <- V(x,y) + a[r + -fV(x',y') - V(x,y)] 

9: V(x, y') <- V(x, y') + a[r + ^(x', y') - V(x, y')] 

10 : A(x, y, a) <- A(x, y, a) + /? [r + ~fV(x', y') - V(x, y') - A(x, y, a) 

11: (x,y) <- (x',y'); a *-a? 

12 : until (a;, y) is terminal 
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Chapter 4 

Analysis of the Proposed Algorithms 

4.1 Partially Model-Based Algorithms 

In the following sections we analysis the time complexity of the partially model-based 

algorithms. We also investigate the asymptotic convergence bound of AB-C for greedy 

action selection. Furthermore, we discuss that for the same amount of experiments, this 

asymptotic convergence bound is lower than that of Sarsa(O). 

4.1.1 Time Complexity 

Both of the partially model-based algorithms take a weighted average over the space of 

the autonomous state at every time-step (lines 12 in algorithms 1 and 2). Therefore, the 

time complexity of the partially model-based algorithms is polynomial in the size of the 

autonomous state's space, 0(|Af|-|y|2). This is a drawback for the algorithms, since the 

time complexities of TD(0) and Sarsa(O) are linear in the size of state space, 0(|-Y|-|^|). 

4.1.2 Asymptotic Convergence Bound 

(Bertsekas, 1987) and (Singh & Yee, 1994) showed that under 7-discounted setting, the 

quality of the policy learned by being greedy with respect to the estimate of the action-

value function, Q, is bounded by the max norm error of Q, defined by ||Q — Q*|joo = 

argmax(S)a) \Q(s, a) - Q*(s, a)\: 

Theorem 4.1. Assume \\Q — Q*\\ < e, and let it be the greedy policy with respect to Q. 

Then for all s, 

V*(s) > V*(s) - ^ ~ 
1 - 7 
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Similarly, we can show that for a greedy update in AB-C, the quality of the learned pol­

icy is bounded by the max norm error in the estimate of the advanced action-value function, 

denoted by Q. 

Theorem 4.2. Assume \\Q — Q ||oo < e'. Let Pr(y'\y) denotes the probability of the next 

value of the autonomous state given the current value of the autonomous state, and let n be 

the greedy policy with respect to Q(s) = Q(x, y) = Yly'ey Pr(y'\y)Q(xJ v'ia)- Then for 

all s, 

V^(a) > V*(s) - - ^ 
7 

Proof. By construction of ir, Q(s, n(s)) > Q(s, 7r*(s)): 

V*(S)-Q*(S,7T(S)) = V*(s)-Q(s,Tt(s)) + Q(s,Tr(s))-Q*(s,Tt(s)) 

< v*(s)-Q(s,n*(s)) + J2Pr(y'\y)Q(x,y'Ms))-X>r(yWKyV(*)) 
y' y' 

< v*(s)-Q(S,TT*(S)) + J2Pr(y'\y)(Q(^y'^(s))-Q*(x,y',n(s))) 
y' 

< Q*(s,n*(s))-Q(s,ir*(s)) + e' 

< ^Pr(y / |y)Q*(x,y ' )7r*(S)) - ^Pr (y ' |y )Q(* ) y ' , 7 r*( S ) ) + e' 
y' y' 

< J2 Pr(y'\y) (Q*(X, y', n*(s)) - Q(x, y', T T » ) ) + e' 
y' 

< 2e' 

Since V*(s) = Q*(s, TT(S)), it follows 

V*(s)-V*(s) = V*(s)-Q*(s,ir(s)) + Q*(s,7r(s))-V«(s) 

< 2e/ + g*(s,7r(s))-Q7r(s,7r(S)) 

< 2e' + 7 £ s , MsMs)) (V*(s') - V*{s')) (4.1) 

where s' denotes all possible successive states for taking action TT(S) in state s, andp(.|s, 7r(s)) 
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is the probability of going to that state. The result follows from recursing inequality 4.1 and 

using linearity of expectation (Kakade, 2003). • 

Theorem 4.1 and 4.2 show that for a greedy update in Sarsa(O) and AB-C, the policy 

does not get worse by more than a factor related to the worst-case error of Q and Q re­

spectively (Kakade, 2003). We now discuss that for the same amount of experiments, the 

worst-case error of Q is lower than the worst-case error of Q. 

Recall that the advanced action-value function is the return given the current value of 

the controllable state and the next value of the autonomous state. Therefore, the transition 

of the autonomous state does not play any role in the value of the advanced action-value 

function. In contrast, any update to the value of a particular state-action pair makes the 

value greater or lesser depending on the next value of the autonomous state. This causes 

high variance in the estimate of Q and increases the amount of experiment required to learn. 

4.2 Model-Free Algorithms 

In the following sections, we analyze the model-free algorithms in term of time complexity. 

We also discuss that for the same amount of experiment the asymptotic bound of MF-C is 

lower than the asymptotic bound of Sarsa(O). 

4.2.1 Time Complexity 

MF-P has two stages. First, it estimates the mean advanced advantage function which 

is linear in the size of state-action pairs (lines 4-12 in algorithm 3). Second, it derives 

A(x, y, a) from A(x, y, a) by going through all state-action pairs which is again linear in 

the size of state-action pairs (lines 13-15 in algorithm 3). This leads the algorithm to have 

a linear time complexity in the size of state-action pairs, 0(|Af|-|^|-|^4|). In the case of 

control, MF-C, the estimate of A(x, y, a) is used directly to choose an action. Thus, the 

time complexity of MF-C is 0( |^ |- |^ |- |>l |) . 

4.2.2 Asymptotic Convergence Bound 

The following theorem shows that the policy learned by being greedy with respect to the 

estimate of the mean advanced advantage function, A, does not get worse by more than a 
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factor related to the max norm error of A: 

Theorem 4.3. Assume \\A — A*^ < e" and let ir be the greedy policy with respect to A. 

Then for all s, 

V*(s) > V*(s) - -^~-
1 — 7 

Proof. By construction of IT, A(s, 7T(S)) > A(s, ir*(s)): 

V*(s)-Q*(s,7r(s)) = V*(s)-A(s,7t(s)) + A(s,ir(s))-Q*(s,Tr(s)) 

< V*(S) - A(S, 7 T » ) + A(S, 7T(S)) - Q*(S, TV(S)) 

< V*(s) - A(s, TT*(S)) + A(s, TT(S)) - A*(s, TT(S)) - V*(s) 

< V*{s)-A(s,7r*(s)) + e"-T(s) 

< Q*{s,ir*(s)) - A(s,ir*(s)) + e" -V*(s) 

< A*(s, 7r*(a)) + V*(s) - A(s, TT*(S)) + e" - V*(s) 

< 2e" 

Since V*(s) = ^ ( s , TT(S)), it follows: 

V*(s)-V*(s) = V*(s)-Q*(s,7r(s)) + Q*(s,7r(s))-V*(s) 

< 2e" + Q*(s,7T(s))-Q7r(s,TT(s)) 

< 2e" + 1Es,p{.lsMs))(y*(s')-V*(s')) (4.2) 

where s' denotes all possible successive states for taking action 7r(s) instates, andp(.|s,7r(s)) 

is the probability of going to that state. The result follows from recursing inequality (4.2) 

and using linearity of expectation (Kakade, 2003). • 

Figure 4.1, shows the main difference between MF-C and Sarsa(O). MF-C considers 

only the transition of the controllable state for assigning credit to the agent's action. Intu­

itively, this exclusion eliminates any variance caused by the dependency between control­

lable and autonomous state within a time-step, since (1) the agent is not penalized for the 
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Figure 4.1: The state variables that participate in assigning credit to the agent's action in the 
model-free and conventional RL algorithms. The dotted line shows the state variables that 
participate in assigning credit to the agent action in the model-free algorithms. The solid 
line shows the state variables that participate in assigning credit to the agent action in the 
conventional RL algorithms. 

evolution of the autonomous state, and (2) only the autonomous state that is involved in the 

transition of controllable state participate in the credit assignment. 

In contrast, Sarsa(O) considers both the transitions of the autonomous and controllable 

states for assigning credit to the action-value function. Therefore, the credit that the agent 

receives for executing one particular action is greater or lesser depending on the next value 

of the autonomous state. This causes high variance in the estimate of Q and increases the 

amount of experiment required to learn an accurate action-value function. 
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Chapter 5 

Experimental Results 

In this chapter, we first introduce three problems that match the conditions of IDSD prob­

lems: (1) traffic gridworld, (2) noisy traffic gridworld, and (3) hybrid vehicle. For each of 

the problem, we show the comparison between the results of the proposed algorithms and 

conventional reinforcement learning algorithms in the case of prediction and control. 

In the prediction case, we compared the proposed algorithms with TD(0). Our compari­

son is based on the quality of the estimate of the advantage function, because the advantage 

function is the only function that can be estimated by all algorithms. 

In the case of control, we compared the quality of the policy learned by the proposed 

algorithms to Sarsa(O) and the advantage updating algorithm. The comparison is based on 

learning speed, as well as performance in the long run. 

5.1 Traffic Gridworld Problem 

Traffic gridworld is a 6 x 9 standard gridworld, in which the reward is a function of a 

traffic system (see figures 5.1(a)). The traffic system has four levels: none, light, heavy, and 

bumper to bumper. The agent has four actions—up, down, left, and right— and receives a 

cost (reward) for performing each action with respect to the next level of the traffic system. 

The next traffic level is a function of the current traffic level. Figure 5.1(b) shows the state 

diagram of the traffic system. The agent's objective is to find a policy that minimizes the 

cost of going to the goal. 

At each time-step, the agent takes an action based on the current state St = (xt,yt), in 

which xt = Row(xt) x 9 4- Column(xt) is the current cell number and yt is the current 
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(a) Standard gridworld with start and goal state. (b) State diagram of the traffic system. 

Figure 5.1: Traffic gridworld problem. 

traffic level. Afterward, the agent receives a new state and a reward as a consequence of its 

action. The cost is 1, 5, 10 or 20 when the next traffic level, yt+u is none, light, heavy or 

bumper-to-bumper respectively. 

The traffic gridworld problem matches the conditions that define an IDSD problem. 

First, the traffic level is independent of cells and the action selected by the agent. Second, 

the agent is not able to sense the next traffic level until the time-step is completed. 

5.1.1 Prediction 

We evaluated the autonomous-based prediction algorithm (AB-P), the model-free predic­

tion algorithm (MF-P), and TD(0) in the traffic gridworld problem. We chose a uniform 

random policy as the behavior policy. We set all the initial values of states and state-action 

pairs to 0, and the discount factor to 0.9. In the case of MF-P, we used the simplest setting 

for the step-size parameters; i.e., we set a = (3. This setting has been used in all of the 

experiments in this study. 

We created 100 different trajectories of the traffic system. We then ran the algorithms 

for 100 000 time-steps over each of these 100 trajectories. After each run, we measured the 

prediction error by: 

error = A(x, y, a) — A*(x,y, a) (5.1) 

where A(x, y, a) denotes the estimated advantage of the state-action pair at 100 000 time-
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Figure 5.2: Prediction in the traffic gridworld problem. Root mean-square error for TD(0), 
the autonomous-based prediction algorithm (AB-P), and the model-free prediction algo­
rithm (MF-P). 

steps, and A*(x, y, a) denotes the true advantage of that state-action pair. Afterward, we 

measured the root mean-square error (RMSE) of each algorithm over 100 runs by: 

RMSE = 
\ 

1 
loo 

100 

2_\ (err or i 1 (5.2) 

where err or\ denotes the prediction error of the z-th run. 

Figure 5.2 shows the RMSE of each algorithm for a wide range of the step-size param­

eter. The results show that MF-P and AB-P performed better than TD(0) for many values 

of the step-size parameter. Moreover, AB-P worked better than MF-P. 

5.1.2 Control 

We performed two set of experiments to compare the quality of the policy learned by the 

proposed algorithms to Sarsa(O) and the advantage updating algorithm (AU). 

In the first set of experiments, we compared the learning speed of the algorithms. We 

created 100 different trajectories of the traffic system. We ran the algorithms for 2000 

episodes over each of these trajectories of the traffic system, and repeated the experiment 

for a wide range of step-size parameter. All algorithms used an e-greedy policy with the 

exploration factor set to 5%. The initial values of states and state-action pairs were 0, and 
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the discount factor was 0.9. In the case of the advantage updating algorithm, we used 

/? = 0.5a, one of the best settings for its step-size parameters. In the case of MF-C, we 

used the simplest setting for the step-size parameters; i.e., a = f3. In all of the experiments 

in this work, the advantage updating algorithm and MF-C used the same setting for their 

step-size parameters. 

Figure 5.3(a) shows the cost per episode of each algorithm, averaged over 100 runs for 

the best step-size parameter. The results show that the learning speeds of MF-C and AB-C 

algorithms were substantially better than learning speeds of Sarsa(O) and AU. Moreover, al­

though MF-C did not use any model, its learning speed was nevertheless almost the same as 

that of AB-C (Note that in this particular experiment the model of the autonomous dynam­

ics was almost exact after 50 episodes.) Figure 5.3(b) shows the average cost per run for 

many values of the step-size parameter. The results confirmed that the proposed algorithms 

outperformed the conventional algorithms in the long run. 

In the second set of experiments, we measured the effect of delays in sensing the traffic 

levels on the behavior of the algorithms. We divided the first set of experiments into two 

parts. The first part was a learning part, in which we ran the algorithms for 1500 episodes 

over the 100 different trajectories of the traffic system. By the end, all algorithms nearly 

converged to their final solutions. The second part was an evaluation part. For each algo­

rithm, we initialized the values of states and state-action pairs to the values learned in the 

first part. We then ran the algorithms for 500 episodes over the 100 different trajectories of 

the traffic system. 

Figure 5.3(c) shows the average percentage of selecting non-optimal actions per runs for 

many values of the step-size parameter. The results show that MF-C and AB-C converged 

to the optimal policy (Note that the optimal percentage of selecting non-optimal actions is 

equal to the exploration factor.) In contrast, Sarsa(O) and AU failed to behave optimally. 

This is due to the fact that the conventional credit assignment can decrease or increase the 

action-value function depending on the next value of the traffic. The results also show that 

the AB-C algorithm was less prone to the step-size changes than the other algorithms. 
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Figure 5.3: Control in the traffic gridworld problem using Sarsa(O), the autonomous-based 
control algorithm (AB-C), the model-free control algorithm (MF-C), and the advantage 
updating algorithm (AU). 
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5.2 Noisy Traffic Gridworld Problem 

Noisy traffic gridworld is a traffic gridworld like the one described in section 5.1, but with 

one difference: the number of the current cell that the agent receives from the gridworld 

is polluted with respect to the traffic level. More precisely, if st = (xt+i,yt+i) is the real 

successive state for taking action at in state s< = (xt,yt), then the observation that the agent 

receives is ot = (xt+i, yt+i), where x t + i is: 

= / Xt 

I 1 
~ . xt+i - d if xt+i - d > 1 
Xt+1 = < ' otherwise ( 5 ' 3 ) 

where d is 0 ,1, 2 or 3 when yt+i is none, light, heavy or bumper-to-bumper respectively. 

At each time-step t, the agent takes an action based on the current observation ot = 

(xt, yt)- Afterward, the agent receives a new observation ot = (xt+i, yt+i), and a cost as 

a consequence of its action. The cost is 1,5, 10 or 20 when the next traffic level, yt+i, is 

none, light, heavy or bumper-to-bumper respectively. 

5.2.1 Policy Evaluation 

We used the noisy traffic gridworld problem to compare the proposed algorithm to TD(0) 

in the case of prediction. We set the behavior policy to a uniform random policy, and used 

the same parameter setting as described in section 5.1.1. 

We created 100 different trajectories of the traffic system, and ran the algorithms for 

100 000 time-steps over each of these trajectories. We then repeated the experiment for a 

wide range of step-size parameters. We then used equation (5.2) to measure the RMSE of 

each algorithm over 100 runs. 

Table 5.1 shows the best RMSE of each algorithm, the variance of the best RMSE and 

the step-size parameter that the algorithms used to achieve that RMSE. The results show 

that the proposed algorithm outperformed TD(0). Moreover, MF-P worked slightly better 

than AB-P. 
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Algorithm 

TD(0) 
AB-P 
MF-P 

RMSE 

5.8820 
3.9023 
3.8283 

Var. 

4.3018 
3.6218 
3.3380 

Step-size 

0.29 
0.6 

0.06 

Table 5.1: Prediction in the noisy traffic gridworld problem. Best root mean-square error, its 
variance and its respective step-size parameter for TD(0), the autonomous-based prediction 
algorithm (AB-P), and the model-free prediction algorithm (MF-P). 

5.2.2 Control 

We compared the learning speed of the proposed algorithms to Sarsa(O) and AU in the noisy 

traffic gridworld problem under the same parameter setting as described in section 5.1.2. 

We ran the algorithms for 2000 episodes over each of the 100 different trajectories of 

the traffic system, and repeated the experiment for many values of the step-size parameter. 

Figure 5.4(a) shows the cost per episode, averaged over 100 runs. The results show 

that the proposed algorithms learned faster than Sarsa(O) and AU. Moreover, MF-C outper­

formed AB-C. This is a surprising result, since model-based algorithms, in general, work 

better than model-free algorithms. In section 5.4, we discuss some of the possible reasons 

for this result. 

Figure 5.4(b) shows the average cost per run for many values of the step-size parameter. 

The results confirmed that MF-C worked better than the other algorithms in the long run. 

5.3 Hybrid Vehicle Problem 

We explored the proposed algorithms in relation to a hybrid vehicle problem, where the 

driver plays the role of the autonomous dynamics. A hybrid electric vehicle combines 

a conventional propulsion system with a rechargeable energy storage system to achieve 

better fuel economy. In the hybrid vehicle problem, the vehicle uses an internal gas engine 

and a rechargeable electrical battery to power an electric motor. The agent objective is to 

minimize gas consumption by switching between the gas engine and the electrical motor. 

In our simplified simulation, the battery is discretized into six levels. If the agent se­

lects the electric motor, the battery-level is depleted by one or more units depending on 

the next value of driver acceleration. When the gas engine is used, the vehicle consumes 
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(a) Cost per episode, average over 100 trajectories of the traffic 
system for their best step-size parameter. 

I 
AB-C 

MF-C 

0.6 0.8 
Step Size 

(b) Average cost per run for many values of the step-size param­
eter. 

Figure 5.4: Control in the noisy traffic gridworld problem using Sarsa(O), the autonomous-
based control algorithm (AB-C), the model-free control algorithm (MF-C), and the advan­
tage updating algorithm (AU). 
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Figure 5.5: The state diagram of the driver acceleration in the hybrid vehicle problem. 

some amount of gas with respect to the next value of driver acceleration, and the battery is 

replenished by one level. Table 5.2 shows the transition of the battery-level and gas as a 

function of driver acceleration and agent's actions. The transition of driver acceleration is 

presented in figure 5.5. 

At any time-step t, the agent takes an action based on the current state, the current values 

of the battery-level and driver acceleration. Afterward, the agent receives a new state and a 

reward as a consequence of its action. The reward is equal to the gas consumption. If the 

battery-level drops to 0, the agent receives a reward of -20 and the battery-level is reset to 

its maximum level. 

The hybrid vehicle problem is an infinite horizon task that satisfies the IDSD conditions. 

First, driver acceleration is independent of agent's actions and battery-levels. Second, the 

transition of the driver acceleration can be sensed only after a delay. 

Driver 
Acceleration 

None 
Soft 
Hard 
Brake 

Gas Engine 
Gas 

Consumption 

1 
1.5 
3 
1 

Battery 
Change 

+1 
+1 
+1 
+1 

Electric Motor 
Gas 

Consumption 

0 
0 
0 
0 

Battery 
Change 

-1 
-2 
-5 
+1 

Table 5.2: Battery-level transitions and gas consumption with respect to the driver acceler­
ation and agent actions. 
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Figure 5.6: Prediction in the hybrid vehicle problem. Root mean-square error for TD(0), the 
autonomous-based prediction algorithm (AB-P), and the model-free prediction algorithm 
(MF-P). 

5.3.1 Prediction 

We compared the prediction speed of the proposed algorithms to TD(0) in the hybrid vehicle 

problem. We chose a uniform random policy as the behavior policy, and used the same 

parameter setting as described in section 5.1.1. 

We created 100 different trajectories of the driver acceleration, and ran the algorithms 

for 10 000 time-steps over each of these trajectories. We then repeated the experiment for 

a wide range of step-size parameter. We then measured the RMSE of each algorithm by 

using equation (5.2). 

Figure 5.6 shows the RMSE of each algorithm for many values of the step-size pa­

rameter. The results show that MF-P and AB-P performed substantially better than TD(0). 

Moreover, the RMSE of the proposed algorithms was less sensitive to the choice of the 

step-size parameter. Finally, as with the noisy traffic gridworld, MF-P outperformed AB-P. 

Table 5.3 compares the best RMSE of each algorithm after 1000, 10 000 and 100 000 

time-steps. As it can be seen, the initial learning speed of MF-C was substantially higher 

than the other algorithms. Nevertheless, the difference between the RMSE of the algorithms 

decreased over time. 
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Algorithm 

TD(0) 
AB-P 
MF-P 

RMSE 
1000 

Time-steps 

3.1349 
3.3284 
1.0873 

10000 
Time-steps 

2.4781 
1.3912 
0.6867 

100000 
Time-steps 

1.1539 
1.0531 
0.6461 

Table 5.3: Prediction in the hybrid vehicle problem. Best root mean-square error, its vari­
ance and its respective step-size parameter for TD(0), the autonomous-based prediction 
algorithm (AB-P), and the model-free prediction algorithm (MF-P). 

5.3.2 Control 

We compared the quality of the policy learned by the proposed algorithms to that of Sarsa(O) 

and AU in the hybrid vehicle problem. 

We ran the algorithms for 100 000 time-steps over the 100 different trajectories of the 

driver acceleration for many values of the step-size parameter. All algorithms followed 

an e-greedy policy with the exploration factor set to 5%. The initial values of states and 

state-action pairs were set to 0, and the discount factor was 0.9. 

We divided each run into 1000 intervals, called bins, each of which includes 100 consec­

utive time-steps. For each bin, we define the loss of an algorithm as the difference between 

the sum of the rewards received by that algorithm and the e-soft optimal policy. Figure 

5.7(a) shows the loss of each algorithm in the first 100 bins, averaged over 100 runs for the 

best step-size parameter. The results show that MF-C learned substantially faster than the 

other algorithms. Figure 5.7(b) shows the total received rewards (after 100 000 time-steps) 

for each algorithm, averaged over 100 runs for many values of the step-size parameter. The 

results confirm that MF-C outperformed the other algorithms in the long run. 

5.4 Discussion 

The model-free algorithms learned faster than the partially model-based algorithms in the 

noisy traffic gridworld and hybrid vehicle problems. These results suggest that the sample 

complexity of the partially model-based algorithms is higher than that of the model-free 

algorithms. In the following, we will investigate some of the properties of the partially 

model-based algorithm in the case of prediction (AB-P), that could affect its sample com-
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step-size parameter. 

MF-C 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Step Size 

(b) Sum of the received rewards after 100 000 time-steps, averaged 
over 100 runs for many values of the step-size parameter. 

Figure 5.7: Control in the hybrid vehicle problem using Sarsa(O), the autonomous-based 
control algorithm (AB-C), the model-free control algorithm (MF-C), and the advantage 
updating algorithm (AU). 
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plexity. The same argument holds for AB-C. 

Recall that AB-P uses two functions: (1) the estimate model of the autonomous dynam­

ics, and (2) the estimate of the advanced value function. The algorithm uses both functions 

to derive the value function (equation (3.8)), and uses that value function to make a target 

for the advanced value function (equation 3.7). We can combine these two procedures to 

form the following updating rule for the advanced value function: 

V(Xt, Yt+1) = V(Xt, Yt+i) + a [n+i + 7 £ P ^ ' ' Yt)V(Xt+u y') ~ V(Xt, Yt+1) 
y'ey 

(5.4) 

Equation (5.4) implies that any estimated error in each of V(Xt+i, y') propagates into 

V(Xt,Yt+i) with respect to P(y',Yt). These errors again propagate into other advanced 

values whenever V(Xt, ^t+i) is used to form a target. In other words, the estimated er­

ror in V(Xt, Yt+i) is related to the estimated error of all possible P(y', Yt)V(Xt+i, y'), 

and the estimated error in each of V(Xt+i, y') is related to the estimated error of all pos­

sible P(y', Yt) V(Xt+2, y') and so forth. This propagation of errors in the advanced value 

function increases the sample complexity of the algorithm, especially in the case that the 

model of the autonomous dynamics can be learned before the agent experiences enough 

trajectories to have a good estimate of the advanced value function. 

For instance, in the noisy traffic gridworld problem, AB-P had a perfect model of the 

autonomous dynamics by episode 50, but at that time it had not experienced enough trajec­

tories to have a good estimate of the values of advanced states. Therefore, making a target 

by taking a weighted average over all values of possible successive advanced states makes 

the updating less effective and slows down the learning procedure. In the next chapter, we 

present some solutions that can prevent the propagation of error from the estimate value of 

one advanced state into the estimate values of other advanced states. 
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Chapter 6 

Modified Partially Model-Based 
Algorithms 

As discussed in section 5.4, the partially model-based algorithms are prone to the propaga­

tion of error in the estimate value of one advanced state into the estimate values of other 

advanced states. In this chapter, we will investigate some simple ways to prevent this error 

propagation in the partially model-based algorithms. 

Recall that the error propagation in the partially model-based algorithms is due to the 

fact that all possible successive advanced states, (Xt+i,y'), participate in making a tar­

get with respect to P(y', Yt) calculated by the model of the autonomous state. Therefore, 

the first solution is to initially bias the model of the autonomous dynamics towards those 

advanced states that have more accurate estimates. Unfortunately, determining which ad­

vanced state have a better estimate is a difficult task, and is not feasible without modeling 

both the controllable and autonomous dynamics together. 

The second solution is to learn a value function separately, and use that value function to 

form a target for the advanced value function. In this case, the error in the estimate value of 

one advanced state is limited to the error in the estimates values of its immediate successive 

states, and does not propagate into other estimate values of advanced states. 

We call the algorithms that has been improved in this way the modified autonomous-

based prediction algorithm (MAB-P) in the case of prediction and modified autonomous-

based control algorithm (MAB-C) in the case of control. Algorithms 5 and 6 show the 

general form of MAB-P and MAB-C respectively. Note that in the case of prediction, 

taking the weighted average over the space of the autonomous state is done only once at 
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Algorithm 

MAB-P 
AB-P 
MF-P 

RMSE 

3.5505 
3.9023 
3.8283 

Var. 

3.0478 
3.6218 
3.3380 

Step-size 

0.2 
0.6 

0.06 

Table 6.1: Prediction in the noisy traffic gridworld problem. Best root mean-square error, 
its variance and its respective step-size parameter for the modified autonomous-based pre­
diction algorithm (MAB-P), the autonomous-based prediction algorithm (AB-P), and the 
model-free prediction algorithm (MF-P). 

the end of the algorithm (lines 14-16). Therefore, the time complexity of MAB-P is much 

lower than that of AB-P (algorithm 1). 

6.1 Experimental Results 

We evaluated the modified partially model-based algorithms by performing prediction and 

control on the noisy traffic gridworld and hybrid vehicle problems. In all of the experiments, 

we used the same problem settings and measurements as we used in chapter 5. We also 

used the simplest setting for the step-size parameters of the modified partially model-based 

algorithms; i.e., a = (3. 

6.1.1 Noisy Traffic Gridworld Problem 

Table 6.1 compares the best RMSE of MAB-P, AB-P and MF-C in the case of prediction. 

The results show that the MAB-P worked better than the other algorithms. 

Figure 6.1 (a) shows the cost per episode, averaged over 100 runs in the case of control. 

The results confirm that MAB-C learned faster than AB-C, but still slower than MF-C. 

Figure 6.1(b) shows the average cost per run for many values of the step-size parameter. 

The results show that the long run performance of MAB-C was slightly better than that of 

the AB-C. 

6.1.2 Hybrid Vehicle Problem 

Figure 6.2 compares MAB-P to AB-P and MF-P in the case of prediction. The results show 

that MAB-P performed better than AB-P, but still worse than MF-P. 

Figure 6.3(a) shows the loss of the algorithms, average over 100 runs for their best step-
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Figure 6.1: Control in the noisy traffic gridworld problem using the modified autonomous-
based control algorithm (MAB-C), the autonomous-based control algorithm (AB-C), and 
the model-free control algorithm (MF-C). 
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size parameters. The results show that MAB-C learned slightly faster than AB-C. Figure 

6.3(b) confirms that the long-run performance of MAB-C was better than that of AB-C. 

3.5 
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Step-Size 

Figure 6.2: Prediction in the hybrid vehicle problem. Root mean-square error for the mod­
ified autonomous-based prediction algorithm (MAB-P), the autonomous-based prediction 
algorithm (AB-P), and the model-free prediction algorithm (MF-P). 
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Figure 6.3: Control in the hybrid vehicle problem using the modified autonomous-based 
control algorithm (MAB-C), the autonomous-based control algorithm (AB-C), and the 
model-free control algorithm (MF-C). 
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Algorithm 5 Modified Autonomous-Based Prediction Algorithm 

1: Initialize Vtemp(x, y), V(x, y) and V(x, y) arbitrarily 

2 : Initialize 7r to the policy to be evaluated 

3 : Initialize m(x,y) and n(y) to zero 

4 : Repeat (for each episode): 

5 : Initialize (x, y) 

6 : Repeat (for each step of episode): 

7 : a <— action given by TT for (x, y) 

8 : Take action o; observe reward r, and next state (x', y') 

9 : Vtemp(x, y) <- Vtemp(x, y) + (3 [r + jVtempix1, y') - Vtemp(x, y)] 

V(x, y') *- V(x, y') + a[r + iV^x', y') - V(x, y')] 

n(y) <- n(y) + 1 

m(j/',y) <-m(y',y) + l 

(x, y) <- (a/, y') 

until (x, j/) is terminal 

For each (x, y) 

Return V as the estimate of the value function 

10 

11 

12 

13 

14 

15 

16 

17 
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Algorithm 6 Modified Autonomous-Based Control Algorithm 

1: Initialize V{x, y), Q(x, y, a) and Q{x, y, a) arbitrarily 

2 : Initialize m{x, y) and n(y) to zero 

3 : Repeat (for each episode): 

4 : Initialize (x, y) 

5 : Choose a for {x, y) using the policy derived from Q {e.g., e-greedy) 

6 : Repeat (for each step of episode): 

7 : Take action a; observe reward r, and next state (x', y') 

8 : Choose a! for s' using the policy derived from Q {e.g., e-greedy) 

9: V(x, y) <- V{x, y) + (3[r + *fV{x', y') - V{x, y)] 

10 : Q(x, y', a) *- Q(x, y', a) + a[r + 7 F { x \ y') - Q(x, y', a)} 

n(y) <- n{y) + 1 

m(y',y) *-m(y',y) + l 

11 

12 

13 

14 

15 

Q{x, y, a) i- ^2zey
 n^-Q{x, z, a) 

{x,y) <- {x',y');a<r-a' 

until {x, y) is terminal 
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Chapter 7 

Conclusion 

We have introduced a reinforcement learning framework for modeling environments with 

independent delayed-sense dynamics. Under this framework, we have presented the fun­

damental material of reinforcement learning. We have shown that the value of a state (or 

state-action pair) is a linear combination of the values of all possible advanced states (or 

state-action pairs). 

We have proposed two partially model-based algorithms for prediction and control in 

IDSD problems. The algorithms learn a model of the autonomous dynamics from experi­

ments, and use that model to compute the state-value or the action-value function. We have 

proved that for greedy action selection, the policy learned by AB-C does not get worse by 

more than a factor related to the worst-case error (in terms of the max norm regression er­

ror) in the estimate of the advanced action-value function. We then discussed that for the 

same amount of experiment, the worst-case error in the estimate of the advanced action-

value function learned by AB-C is lower than the worst-case error in the estimate of the 

action-value function learned by Sarsa(O). 

We have also proposed two model-free algorithms, in which the value of the current 

autonomous state is excluded from assigning a credit to agent's actions. We have shown 

that this exclusion can be done by calculating the mean advanced advantage function for 

state-action pairs. We have shown that the quality of the policy learned by being greedy 

with respect to the estimate of the mean advanced advantage function is bounded by the 

worst-case error (in terms of the max norm regression error) in the estimate of the mean 

advanced advantage function. We also discussed that for the same amount of experiment, 
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the worst-case error in the estimate of the mean advanced advantage function learned by 

MF-C is lower than the worst-case error in the estimate of the action-value function learned 

by Sarsa(O). 

7.1 Empirical Evaluations 

We have shown the performance of the proposed algorithms on three IDSD problems. The 

first two problems were episodic, in which a traffic system plays the role of the autonomous 

dynamics. The third problem was infinite horizon, where driver acceleration plays the role 

of the autonomous state variable. 

The results confirmed that in all of the problems, the proposed algorithms outperformed 

the conventional RL algorithms in terms of prediction and control. The results also showed 

that the model-free algorithms outperformed the partially model-based algorithms in more 

complicated tasks such as the hybrid vehicle problem. We discussed some of the reasons of 

this limitation, and presented an adjustment to the updating rule of the partially model-based 

algorithms to resolve the limitation. 

Finally, we conclude this thesis by emphasizing two advantages of the model-free al­

gorithms: (1) their time complexity are linear in the size of the state space, and (2) their 

learning speeds on the selected problem were higher than that of the partially model-based 

algorithms, Sarsa(O), and the advantage updating algorithm. We expect that the model-free 

algorithms exhibit the same behavior (in terms of learning speed) in most IDSD problems. 

7.2 Future Work 

This thesis provides a foundation for future work in environments with independent delayed-

sense dynamics. One area of future work is in using knowledge of autonomous dynamics 

in a more appropriate way resulting in better performance. Another area is in applying the 

algorithms studied here to various real-world problems that have an IDSD structure. 

7.2.1 Applying Knowledge of Autonomous Dynamics 

While the modification to the partially model-based algorithm improved the performance 

of the algorithm, the fact that the model-free algorithms were still superior implies that the 
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model of the autonomous dynamics has not been perfectly exploited. We have tried a simple 

regularization method to improve the performance of the algorithms, but the results were 

not significant. In our simple regularization method, the weight of each advanced state was 

related to a regularization factor, the value of the advanced state, and the number of times 

that the advanced state had been visited. Therefore, future research should look at more 

complex methods of exploiting the model of the autonomous dynamics in a more efficient 

way. 

7.2.2 Applying the Proposed Algorithms to Real-World Problems 

The ultimate goal of this thesis is to provide reinforcement learning algorithms for real ap­

plications that have an IDSD structure. There are two issues that have to be solved before 

applying the proposed algorithms in real-world applications. First, usually real-world ap­

plications have a continuous state space. Therefore, future research should look at using the 

proposed algorithms with function approximation. This extension seems to be straightfor­

ward in the model-free algorithms. 

In contrast, using function approximation in the partially model-based algorithms would 

be problematic. The reason for this is that the partially model-based algorithms rely on 

predicting the next value of the autonomous state. In function approximation, the whole 

state space is partitioned into certain binary features, and it is not clear how a conventional 

prediction method could predict these binary features based on the experiments. 

Second, in real-world IDSD problems, the autonomous dynamics do not, in general, 

have the Markov properties. For instance, in the real-world hybrid vehicle problem, driver 

acceleration is determined by factors such as the driver's goal, the road's condition, the 

time at which the driver is traveling, various unexpected events, and so on. Therefore, 

assuming that driver acceleration is a function of its previous value is not realistic. Thus, 

future research should move beyond looking at IDSD problems with Markov properties 

and consider IDSD problems with Markovian controllable dynamics and non-Markovian 

autonomous dynamics. We believe that the model-free algorithm is a good start for working 

on these types of problems, since at any time-step only the successive autonomous state 

participates in the credit assignment. 
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