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Abstract

Information extraction, extracting structured information from text, is a vital

component for many natural language tasks such as question answering. It

generally consists of two components: (1) named entity recognition (NER),

identifying noun phrases that are names of organizations, persons, or coun-

tries; and (2) relation extraction, extracting relations between entities. In this

dissertation, we assume the entities are given, and concentrate on the relation

extraction task.

Traditional relation extraction task seeks to confirm a predefined set of

relations in a text, such as the employment or family relation. These systems

are difficult to extend by including additional relations. In contrast, the open

information extraction (Open IE) task attempts to extract all relations, using

words in sentences to represent the relations. My dissertation focuses on Open

IE.

We first proposed a tree kernel based-Open IE system that achieved state

of the art performance. One advantage of the tree kernel model is that it

exploits information in syntactic parse trees without feature engineering. After

observing the importance of words in relation extraction, we then incorporated

word embeddings into the tree kernel and improved the system’s performance.

However, previous systems have not considered implicit relations, i.e., re-

lations implied in noun phrase structures such as Germany’s people, Google

Images, and Shakespeare’s book. We call this type of structure nested named

entities. To study the implicit relation phenomenon, we automatically ex-

tracted thousands of instances of training data from Wikipedia. We demon-

strate the feasibility of recovering implicit relations with a supervised classifi-

cation model. Our data and model provides a baseline for future work on this
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task.

Last but not least, to show the effect of our relation extraction systems,

we built an Open IE-based question answering system and achieved promising

results. Our analysis indicates the weakness of the current Open IE systems,

the role of our information extraction results, and gives directions for improve-

ment.
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We can only see a short distance ahead, but we can see plenty there that

needs to be done.

– Alan Turing.
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Chapter 1

Introduction

Recent research in natural language processing (NLP) has provided a glimpse

into the vast potential of Artificial Intelligence. IBM’s Watson, a computer

system capable of answering natural language questions, defeated the two hu-

man champions on the TV quiz program Jeopardy!. An instance of its question

answering ability is shown below:

He was a bank clerk in the Yukon before he published “Songs of a Sourdough”
in 1907.

The focus of the question is he. Watson is able to find the person of the

description from its knowledge base.

A vital component of such question answering (QA) systems is information

extraction, which extracts structured information from natural language text.

The structured information usually focuses on noun phrases that the public is

interested in, such as PERSON, ORGANIZATION, and LOCATION. These

noun phrases are referred to as named entities. The task of recognizing those

noun phrases and classifying them is called named entity recognition (NER).

The structured information is represented by relations between entities,

relations between relations, etc. What is a relation? According to the top

definition returned by Google’s search engine, it is “the way in which two or

more concepts, objects, or people are connected; a thing’s effect on or relevance

to another.” For information extraction tasks, consider this example: the

sentence “Barack Obama is the president of the United States” contains the
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relation president between the entities Barack Obama and the United States.

The task of identifying relations between entities is called relation extraction.

In this dissertation, my research will concentrate on relations between two

entities within one sentence, even though there can be relations indicated

across sentences.

Information extraction tasks are highly application or domain oriented, as

such, there are no fixed definition of named entities. For example, general

named entity recognition concentrates on entities such as a person’s name,

companies name, and countries. Normally, NER will not extract tobacco as a

named entity, as in the example sentence “He got high from tobacco in early

days.” However, in the clinical domain tobacco might be considered as an

entity in sentences such as “Tobacco use is a leading cause of cancer and of

death from cancer.” A similar problem exists in relation extraction.

Traditional relation extraction attempts to extract a fixed set of relations,

such as is-a, employ, family, and location. However it is impossible to define

a complete set of relations in natural language. There are occasions when

we need additional relations or when we need to further divide relations. For

instance, within the family relation we can be more specific such as using a

siblings-with or parents-of relation.

Banko et al. [2007] proposed a new task, which they called open informa-

tion extraction (Open IE), which aims to extract all potential relations. Unlike

traditional relation extraction, it does not classify relations to a specific set

such as family, employ. Instead it uses explicit words in sentences as rela-

tions. For example, in the previous sentence “Barack Obama is the president

of the United States,” traditional relation extraction will classify the relation

between Barack Obama and the United States as employ, while Open IE will

use president as the relation. My research began with the aim of improving

existing Open IE systems.

Early Open IE systems concentrated on verb relations, but ignored noun

relations [Banko et al., 2007, Fader et al., 2011], such as president in the

expression “U.S. president Obama.” They claimed that verb relations rep-

resent the majority of relations. This could be due to their dependence upon
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noun phrase chunkers which will extract U.S. president Obama as a single en-

tity. My study begins by manually annotating sentences from news text with

relations between named entities, where the entities are detected by a more

sophisticated NLP tool, the Stanford NER [Finkel et al., 2005]. According to

my manual annotation of 750 sentences in the English Penn Treebank, 28%

are implicit relations, i.e., relations without words or with prepositions. For

instance, there is a nationality relation implied in “Wayne Gretzky of Canada”

between the person Wayne Gretzky and the country Canada. Less than 1%

of the relations are adjectives, such as the age relation in “He was 6 years

old.” 71% of the relations are noun or verb phrases. Of the 71%, 60% are

noun relations and 40% are verbal1. One example of noun relations is the

president relation in the expression “U.S. president Obama.” One example of

verb relations is the graduate relation from the sentence “Ying graduates from

University of Alberta.” My research exploits these observations.

There are two types of relation extraction models; pattern based or machine

learning based.

Pattern based relation extraction methods typically use rule matching to

extract relations. For example, if in one sentence, one argument is the subject

of a verb, the other argument is the object of a verb, then the verb and the

two arguments form a relation triple. The current literature [Mesquita et al.,

2013] largely shows that such rules or patterns are constructed by hand.

Alternatively, supervised machine learning approaches replace the manual

rule or pattern construction with approaches that use selected attributes of

text as inputs to learning models that help identified “average” or “typical”

hypotheses on relations. In the learning process, training data can be used

to assign weights to different features. Features are attributes of an instance

that may have effect on the task, which can be the previous example rule.

When labeling a test instance, machine learning models combine the effect of

features according to the learned weights.

This dissertation concentrates on the second paradigm. Although pattern

based systems can also learn patterns from training corpora, they are not as

1Relations that are represented by verbs or verb phrases.
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flexible as supervised machine learning models. If we take conditions such as if

one entity is a subject and if one entity is an object as features, pattern-based

models use only several features, while supervised machine learning models

can use more than thousands of features.

Our first Open IE system tackles the problem that previous Open IE sys-

tems only concentrated on verb relations and ignored others. Our system

extracts both noun and verb relations. We extract features from dependency

paths and adapt an SVM dependency tree kernel model [Moschitti, 2006] as

the basis for our system. Selecting relevant features from a parse tree for se-

mantic tasks is difficult. SVM tree kernels avoid extracting explicit features

from parse trees by calculating the inner product of the two trees. Tree ker-

nels have been used in traditional RE and have helped achieve state of the art

performance. However, one challenge of using tree kernels on Open IE is that

the lexicon of relations is much larger than those of traditional RE, making

it difficult to include the lexical information as features. As a first step, we

propose an unlexicalized tree structure for Open IE. As far as we know, this

is the first time an SVM tree kernel has been applied in Open IE. Experimen-

tal results on multiple datasets show that this system outperforms previous

state-of-the-art systems: REVERB [Fader et al., 2011] and OLLIE [Mausam

et al., 2012].

Our second Open IE system embeds lexicalized information into a tree

kernel. One reason that previous Open IE systems did not include lexical

information as features is because it creates a sparsity issue. The training set

of Open IE systems is not large, e.g., several thousands. If we include lexical

features, a significant amount of words will be absent in the training data or

will be infrequent and their corresponding parameters, i.e., effect on the task

output, will be poorly estimated. However, the error analysis on previous work

suggests that Open IE would benefit from lexical information because the same

syntactic structure may correspond to different relations. For instance, the

relation <Annacone, coach of, Federer> is correct for the sentence “Federer

hired Annacone as a coach,” but not for the sentence “Federer considered

Annacone as a coach,” even though they have the same dependency path
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structure [Mausam et al., 2012]. Instead of representing word features as

binary values, i.e., weather the word occurs or not, we use a type of smoothed

word representations: word embedding. Word embedding represents words as

numerical vectors, which decrease the feature dimension dramatically, from

the size of the vocabulary to the length of the word embedding.

We then address the issue of implicit relations, which are implied in the

structure of the sentence. For example, the noun phrase University of Alberta

implies a relation locate between the two entities University of Alberta and

Alberta; Google Images implies Google owns the product Google Images. These

relations are ignored in the current relation extraction literature. The relations

are implied in nested named entities, a structure where one entity is resides

within another. Current named entity recognition systems consider named

entities in a flat structure with no overlap. As the relation extraction task is

dependent on the entity extraction task, implicit relations are largely ignored.

However, as shown by our annotated data mentioned previously, 28% of the

relations are implicit. We believe that learning implicit relations in nested

named entities can provide insight into implicit relation extraction in other

noun phrase structures such as “Wayne Gretzky of Canada.” Their extraction

will complete the relation extraction task and benefit tasks such as question

answering and textual entailment.

The final component of our work is in applying our Open IE systems to

the question answering task. There are two critical components in our ques-

tion answering system. One is the construction of a knowledge base. Here a

knowledge base means a database with relation triples <E1, R, E2>, where

E1 and E2 are two entity arguments of the relation R. The other is paraphrase,

which creates a mapping from the wording of questions to that of the knowl-

edge base. For example, if the knowledge base is Freebase, then we should

map the relation play in “What character does Natalie Portman play in Star

Wars?” to the Freebase relation /film/actor/film /film/performance/film; if

the knowledge base consists of triples from a Open IE system, we need to

know that play can also be represented as star as. Our question answering

system shows better performance than the previous Open IE based question
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answering system [Fader et al., 2014].

In summary, there are three main contributions of this dissertation.

• First, we improved Open IE performance with SVM tree kernel models.

The lexicalized tree kernel model is able to leverage both syntactic and

lexical features.

• Second, we proposed a new task, implicit relation extraction, to the

literature of information extraction, which has potential to improve nat-

ural language understanding. We created training data and supervised

models for the task, which can be the baseline for future work on this

task.

• Third, we built a question answering system based on our Open IE re-

sults. We showed that better Open IE performance leads to better ques-

tion answering performance.

The rest of this dissertation is organized as follows: first I will provide

the background of the information extraction and machine learning models

in Chapter 2. Chapter 3 will describe our Open IE system based on an un-

lexicalized tree kernel. Chapter 4 presents its improved version based on a

lexicalized tree kernel. Chapter 5 introduces our study on implicit relation ex-

traction. Chapter 6 describes our question answering system. I will conclude

the dissertation and propose future work for Open IE in Chapter 7.
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Chapter 2

Background and Related Work

Advances in computer storage techniques have led to an explosion of digital

data, a large portion of which is text. Information extraction (IE) is the task

of extracting structured data from the unstructured information embedded

in text. It is a preliminary step for other tasks such as question answering

and user behaviour prediction. To illustrate the process of IE, I will use the

following paragraph as an example (from the Wikipedia page of the 2008

Summer Olympics).

The 2008 Summer Olympic Games, commonly known as Beijing 2008, was
a major international multi-sport event that took place in Beijing, China,
from 8 to 24 August 2008. The theme song of the 2008 Olympic Games was
“You and Me,” which was composed by Chen Qigang, the musical director
of the opening ceremony. Qiqang was born in China and has lived in France
since 1984.

The first step of IE is named entity recoginition (NER), detecting and/or

classifying all the proper names mentioned in a text. What counts as a named

entity depends on the domain of applications. There are three commonly used

NER sets [Finkel et al., 2005]:

• 3 classes: Location, Person, Organization.

• 4 classes: Location, Person, Organization, Miscellaneous (Misc.).

• 7 classes: Location, Person, Organization, Money, Percent, Date, Time.

7



If using NER 4 classes set, in the previous example paragraph, 2008 Sum-

mer Olympic Games will be tagged as MISC. “You and Me” will also be tagged

as MISC. Beijing and China are examples of LOCATION. Chen Qiqang is an

example of PERSON. The following are two sentences with all the entities

marked according to the 4 class label set.

The theme song of the [MISC 2008 Olympic Games] was [MISC “You and
Me,”] which was composed by [PER Chen Qigang ], the musical director of
the opening ceremony. [PER Qiqang ] was born in [LOC China] and has lived
in [LOC France] since 1984.

The second step of IE is relation extraction (RE): finding (and classifying)

relations between the entities identified in text. Traditional relation extrac-

tion systems first define a fixed set of relations, and then focus on identifying

relations that belong to the set while ignoring others. One popular set of

relations is from the ACE (Automatic Context Extraction) standard [Dod-

dington et al., 2004], which is developed by NIST in 1999. It has relations

such as Affilation, Geospatial, and Part-of. In the previous example, there

are relation triples such as <Qiang, Gen-Affiliation, China > and <Qiang,

Gen-Affiliation, France> that belong to the set.

Notice that there are relations that are not tagged with the traditional

relation extraction standard. For example, <“You and Me”, theme song, 2008

Olympic Games> and <“You and Me”, compose, Chen Qigang> will not be

extracted by any of the traditional relation extraction systems because they

do not belong to any category defined in the ACE standard. To tackle this

problem, Banko et al. [2007] proposed a new task, open information extraction

(Open IE), which attempts to extract all relations in text.

My dissertation concentrates on Open IE. In the following section, I will

introduce related work on traditional relation extraction and Open IE. As both

of my Open IE systems use SVM tree kernel models, I will first introduce tree

kernel models.
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Figure 2.1: A constituent parse tree example.

2.1 Tree Kernels

Most IE systems incorporate machine learning models to learn to tag relations

in sentences. The quality of such models depends heavily on the choice of text

features. There are usually two levels of features for IE tasks. The first level

includes lexical features. Examples are words and word shapes, e.g., whether

a word is Capitalized. The second level includes syntactic features. Examples

are part-of-speech (POS) tags and syntactic parse trees. POS tags classify

words into categories such as verbs (VB), nouns (NN), and adjectives (JJ).

Syntactic parsing assigns a syntactic structure, a tree, to a sentence [Jurafsky

and Martin, 2000].

There are two popular types of parsing in NLP. One is constituent parsing,

the other is dependency parsing. Constituent parsing derives a constituency

structure from a sentence. The idea of constituency is that groups of words

may behave as a single unit or phrase, called a constituent [Jurafsky and Mar-

tin, 2000]. Figure 2.1 is an example of constituent parse trees. In the figure,

NP means noun phrase, VP means verb phrase, and PP means preposition

phrase. The detailed structure of “in my pajamas” is hidden.

Another popular parsing type is dependency parsing. Instead of grouping

words into constituents, dependency parsing represents the sentence structure

by adding links between words. Figure 2.2 shows an example of a dependency

structure. In the example, there is a dependency relation between shot and I :

shot is the dominant word, I is the dependent word, and the relation is nsubj,

which is an abbreviation for noun subject.

While it is relatively easy to identify relevant lexical and POS features for

9



Figure 2.2: A dependency parse tree example.

the IE task, it is difficult to select relevant features from a parse tree. Assume

we extract all possible subtrees in a tree as features, if the subtree size is d,

then a tree T can be represented by a vector h(T ) = {h1(T ), h2(T ), ...hd(T )},

where hi(T ) is the number of times subtree i occurs in the tree. Extracting all

the subtrees is exponential in the size of the tree nodes.

The use of tree kernels avoids extracting explicit features from parse trees

by calculating the inner products of two trees directly. They can be used

in machine learning models which classify instances by calculating the sim-

ilarity of pair instances, i.e., inner products. Examples of these models are

perceptron, support vector machine (SVM), and principal component analysis

(PCA). A tree kernel function over two trees T1 and T2 is:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.1)

where NT1 and NT2 are the set of trees’ nodes [Collins and Duffy, 2001]. The

∆ function is computed recursively. It provides the basis for identifying sub-

trees of nodes, which is the essential distinction between different tree kernel

functions.

Two popular tree kernels are the Sub Tree (ST) and the SubSet Tree (SST)

kernels. For the ST kernel, a subtree includes any node of a tree along with all

its descendants. Figure 2.3 shows the ST set for the node VP. SSTs [Collins

and Duffy, 2002] are more general, in which not all the descendants are nec-

essarily included; the only constraint is that SSTs must be generated by the

same grammar rules which generate the original tree, which means the entire
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Figure 2.3: An example of a tree set for the Sub Tree kernel (ST).



 

 











 



 



 

 

Figure 2.4: An example of a tree set for the SubSet Tree kernel (SST).

child set for a node must be included. Figure 2.4 shows the SST set for the

node NP. Following is the ∆ function of the SST kernel.

1. If the production (context free grammar) of n1 and n2 are different, then

∆(n1, n2) = 0,

2. else if n1 and n2 are pre-terminals (POS) and they are the same, then

∆(n1, n2) = 1,

3. else the value is calculated recursively down the tree:

∆(n1, n2) =
∏

j∈nc(n1)
(1 + ∆(ch(n1, j), ch(n2, j)),

where nc is the number of children of a node, and ch(n1, j) is the jth child.

To illustrate the difference between SST and ST, consider the ∆(V P1, V P2)

values of Tree 1 and Tree 2, in Figure 2.6. The value of ST will be 0 because

the trees below the VP nodes are not the same. The value of SST will be

[1 + ∆(V1, V2)][1 + ∆(NP1, NP2)], where V1 means the subtree with root V

in Tree 1. ∆(V1, V2) = 1, ∆(NP1, NP2) = 0, which leads to ∆(V P1, V P2) =

2 ∗ 1 = 2.

One problem of the SST kernel is that, although it is suitable for constituent

parse trees, it performs poorly when applied to dependency parse trees for



 

 



 



 

























Figure 2.5: An example of a tree set for the Partial Tree kernel (PTK).
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(a) Tree 1 (b) Tree 2

(c) Tree 3 (d) Tree 4

Figure 2.6: Example trees for ST, SST, and PTK value calculation.

semantic tasks [Moschitti, 2006]. Moschitti [2006] proposed a more general tree

kernel, the partial tree kernel (PTK), which can be used with both constituent

and dependency parse trees. It generalizes the constraint that the grammar

set for generating the subtrees should be the same as the one generating the

original tree. When the node labels of n1 and n2 are the same, the ∆ function

of PTK is:

∆(n1, n2) = 1 +
∑

J1,J2,l(J1)=l(J2)

l(J1)∏
i=1

∆(cn1(J1i), cn2(J2i))) (2.2)

∆ = 0 when the node labels are different. cn1 and cn2 are child sequences of

nodes n1 and n2 respectively. J1 =< J11, J12, J13... > and J2 =< J21, J22, J23... >

are index sequences of the two child sequences, J1i and J2i are the i-th chil-

dren of the two sequences. For example, if a tree is (S(DT JJ N)) then J for

the node S is chosen from [(DT), (JJ), (N), (DT JJ), (DT N), (JJ N)...]. l()

denotes the sequence length, so in the previous example, if J1 = (DTN), i.e.,

(1, 3), then l(J1) = 2.

To illustrate the difference between SST and PTK, consider the ∆(NP3, NP4)

of Tree 3 and Tree 4, in Figure 2.6. The value of SST will be 0 because the pro-

duction of NP3 is (D, N), while the production of NP4 is (D, J, N). For PTK,
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there are three sequence pairs that have non zero value: (D3, D4), (N3, N4),

and ((D3 N3), (D4 N4)). The value of PTK is:

∆(NP3, NP4) = 1+[∆(D3, D4)+∆(N3, N4)+∆(D3, D4)×∆(N3, N4)]. (2.3)

As ∆(D3, D4) = 1 and ∆(N3, N4) = 1, the value of ∆(NP3, NP4) = 4.

Moschitti [2006] also added two decay factors µ and λ, both of which are

in the range of (0, 1). µ is for the height of the tree, penalizing large trees. λ

is for the length of the child sequences, penalizing sequences with gaps. The

modified function is:

µ(λ2 +
∑

J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)∏
i=1

∆(cn1(J1i), cn2(J2i))) (2.4)

where d is the distance between the last child and the first child in a sequence

J , d(J1) = J1l(J1)− J11 and d(J2) = J2l(J2)− J21. Consider J1 = (DTN) in the

previous example again, d(J1) = J12 − J11 = 3− 1 = 2.

In the previous kernels, lexical information is used as one-hot representa-

tion; the value is 1 when two words are the same, 0 when different. However,

there are words that are more similar than others, e.g., synonyms. Intuitively,

“Jordan is mom of Kit.” should be more similar to “Jordan is mother of Kit.”

than to “Jordan is dad of Kit.” Previous kernels failed to detect this difference.

Croce et al. [2011] proposed a new tree kernel, smoothing partial tree kernel

(SPTK), to leverage lexical information. It is very similar to PTK, except that

if n1 and n2 are two leaves, i.e., words, ∆(n1, n2) = µ ∗λ ∗σ(n1, n2). σ(n1, n2)

is the function for word similarity. They represented words as word vectors

created by Singular Value Decomposition [Golub and Kahan., 1965] from a

word co-occurrence matrix. Word vectors are compressed representation of

words. Instead of being a vector of {0, 1}, where the length of the vector is

the size of the vocabulary, the word are represented as a numerical vector,

such as [0.1, 0.2, 0.1, 0,...], where the length is much shorter than the size of

the vocabulary and is a parameter of the model.The word similarity becomes

the similarity of two word vectors.
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Our proposed lexicalized tree kernel uses the popular word embedding rep-

resentation for lexical information.

Despite their performance, one problem of tree kernel models is that they

are slower than one-hot representation approaches. The complexity of ST and

SST kernels is O(|NT1| × |NT2|) [Collins and Duffy, 2002]. The complexity of

PTK is O(p×ρ2×|NT1|× |NT2|), where p is the number of different sequences

and ρ is the maximum branching factor in trees T1 and T2 as proved in [Mos-

chitti, 2006].This complexity causes problem when training with large dataset,

e.g., more than ten thousands. With large training data and experts who can

choose relevant features, one-hot representation might be a better choice.

2.2 Traditional Relation Extraction

Relation extraction (RE) is a task of discovering various semantic relations,

e.g., <Obama, president, the United States>, from natural language text. Tra-

ditional RE is a task of extracting a specific set of relations between named

entities. The Automatic Content Extraction (ACE) program’s Relation De-

tection and Characterization (RDC) is such a task [Consortium, 2008]. It

is designed to extract relations such as {family, employee, location,...}. For

building traditional relation extraction models, every relation has manually

annotated example instances. For example, “a military base in Germany”

contains a FAC-GPE relation; in “He was campaigning in his home state of

Tennessee.” there is a PER-GPE relation between he and his home state of

Tennessee.

Many traditional RE systems use SVM tree kernel models. Besides the

selection of alternative SVM tree kernels, another essential for designing tra-

ditional RE systems is to decide which portion of the sentence tree embeds

the desired syntactic relational information between two named entities. For

example, in Zhang et al. [2006], five approaches were studied; here are three

of them.

1. Minimum Complete Tree (MCT): the complete sub-tree rooted by the

nearest common ancestor of the two entities under consideration.
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2. Path-enclosed Tree(PET): the smallest common sub-tree including the

two entities, i.e., the sub-tree which is enclosed by the shortest path

between the two entities in the parse tree. These trees are sub-trees of

the minimum complete trees.

3. Context-Sensitive Path Tree(CSPT): the second one extended with the

first left word of entity 1 and the first right word of entity 2. Here entity

1 is the left entity and entity 2 is the right entity.

Figure 2.7 shows the corresponding example tree fragments for the three

approaches. The original sentence is “... said Sotheby, which operates in 4

countries in Asia.” The two entities are which and 4 countries.The minimum

complete tree (Figure 2.7a) starts from the nearest common ancestor of the

two entities, SBAR. The path-enclosed tree (Figure 2.7b) trims off the preposi-

tion portion from the MCT. The context sensitive path tree (Figure 2.7c) adds

fragments to include the left word Sotheby and the right word in. The exper-

iment results on ACE 2003 and 2004 corpora showed that the path-enclosed

tree was the best.

One problem of the path-enclosed tree approach is that for sentences such

as “John and Mary got married,” the path contains insufficiant information

(Tree in Figure 2.8e). Zhou et al. [2007] proposed to categorize tree struc-

tures into 5 categories: embedded, PP-liked, semi-structured, descriptive, and

predicate-linked structure (with examples in Figure 2.8). The first four are

easily classified according to the patterns, the rest were classified into the

predicate-linked category. They then used the path-enclosed tree approach for

the first four categories and a specific approach, context-sensitive path (dif-

ferent from the previous one), to extract relevant sub-trees for the predicate-

linked category. To find the context-sensitive path, they moved up along the

shortest path until one predicate-head node was found, then moved down along

the predicate-head path to the predicate terminals. In the example (Figure

2.8e), they moved up from NP to S, which has a verb as the head. Then

include the S→VP→VP fragment, which contains the verb married, into the

tree. Both Zhang et al. [2006] and Zhou et al. [2007] employed the SST kernel.
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(a) Minimum Complete Tree.

(b) Path-enclosed Tree.

(c) Context-Sensitive Path Tree.

Figure 2.7: Three approaches to choose a segment of sentence trees for the
traditional relation extraction in Zhang et al. [2006]. The original sentence is
“... said Sotheby, which operates in 4 countries in Asia.”
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Figure 2.8: The five tree structure categories in Zhou et al. [2007].
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There are also specific strategies for choosing sub-tree structures for de-

pendency parse trees. Bunescu and Mooney [2005] proposed a simple kernel

for dependency trees. First, the shortest dependency path between two named

entities were extracted as the necessary structure. They then proposed a new

tree kernel. If two paths have different numbers of children, then the kernel

value is 0. Otherwise, it is the kernel value sum of every child. The system

abandoned structures with different path lengths, which might be the reason

that the performance was worse than those of using constituent tree structures.

Nguyen et al. [2009] integrated both dependency and constituency tree

structures. The partial tree kernel was employed. The combined kernel

achieved the state-of-the-art performance.

Besides leveraging tree kernels, traditional relation extraction systems have

employed various other techniques and features. For example, Zhou et al.

[2005] explored different features such as context words, entity words, entity

types, head words of entities, head words of context after chunking, the path

of the parse tree that connects the two entities, and dependent words of the

two entities in the dependency tree.

There are systems that use pattern extraction approaches for relation ex-

traction. One example is the work of Xu et al. [2007]. Given seeds of a relation,

i.e., relation instances, the system first extracted sentences that contained the

relation arguments and assumed that the sentences contain another instances

of the relation. Then patterns for the relation were learned based on the POS

tags, NER tags, and dependency subtrees between the arguments on the new

instances. The learned patterns are used to extract new relation instances.

Their system is able to handle k-ary relations. One example pattern for the

relation (prize, year, recipient) is that “the verb is win, the subject is a Person,

the object has the head word prize and a year number.”

Chan and Roth [2011] pointed out that identifying the syntactic relations

between two entities will help classify the semantic relations. They proposed

a two-step classification process for traditional relation extraction. First, re-

lations between entity pairs were classified into five syntactic types:

18



1. Premodifier type: specify the relations between a proper adjective or

a proper noun premodifier and the noun it modifies, e.g., [the [Seattle]

zoo]

2. Possessive type: one entity is in a possessive case, e.g., [[California] ’s

Governor]

3. Preposition type: two entities are related via a preposition, e.g., [stu-

dents] in [UofA]

4. Formulaic type: relations are implied in structures, for example, [Ed-

monton], [Alberta]

The classification is based on several POS patterns extracted manually accord-

ing to training instance observations.

After classifying instances into the patterns, they trained two relation clas-

sification models, one on the whole training set, REbase, the other trained on

the instances which contain any of the first four syntactic types, REs. On test-

ing, if an instance belonged to one of the four types, REs was used; otherwise

REbase was used. The results showed that using different models for different

syntactic structures was better than using only one model.

2.3 Open Information Extraction

In contrast to traditional relation extraction, which specifies a set of relations

to extract, open information extraction (Open IE) tries to extract all possible

relations from the text1. The common definition of the Open IE task is a

function from a sentence, s, to a set of triples, {< E1, R,E2 >}, where E1

and E2 are entities (noun phrases) and R is a textual fragment indicating

a semantic relation between the two entities. Note that in this dissertation

we concentrate on binary relations while there are research on n-ary relations

(n>=2).

1We believe the definition of relation depends on the application domain of the Open IE
systems.
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Current approaches for Open IE fall into two categories: supervised models

and pattern-based models. Supervised models extract lexical, syntactic, or

semantic features and train a supervised model, such as conditional random

fields(CRF) and SVM, for the task. Pattern-based models extract relations

based on dependency path patterns, such as “the link between one entity and a

relation word should be nsubj.” Patterns can be automatically extracted from

large training data, or designed manually. After pattern extraction, relation

triples that match a certain pattern will be selected as the correct relations.

Banko et al. [2007] were the first to propose the idea of Open IE. Their

system TEXTRUNNER is a self-supervised learner. The system extracts en-

tities with a noun phrase chunker. A noun phrase chunker is a system that

tags non-overlapping noun phrases in a sentence. For example, there are two

noun phrase chunks, the morning flight and Denver in the sentence “The

morning flight from Denver has arrived” [Jurafsky and Martin, 2000]. Words

between two entities are extracted as candidate relations. Then entity pairs

with the candidate relations are automatically tagged as positive or negative

by heuristics on dependency parse information, such as “there exists a depen-

dency chain between two entities that is no longer than a certain length.” A

model is trained on these instances with features such as POS tag sequences of

relation words, the number of tokens in the relation, whether or not an entity

is a proper noun, etc. After extracting all relation triples based on this model,

a probability is assigned to every triple based on its frequency on the whole

corpus. One problem with this self-supervised method is that the heuristics

for training data extraction create errors, which are amplified in later stages.

Banko et al. [2007] did not analyze the performance of the automatic train-

ing annotations, and their system can only extract verb relations between two

entities.

Wu and Weld [2010] proposed another Open IE system, WOE, which uti-

lized Wikipidia Infobox. To create training data, they extracted relation triples

in Wikipedia pages that were also in the corresponding Infobox. These were

considered as positive training instances. Then the system extracted depen-

dency path patterns of relations from the large training data, and used these

20



patterns to extract new relations. The patterns included POS tags and de-

pendency link labels. Consider the sentence “Dan was not born in Berkeley,”

for the two entities, “Dan” and “Berkeley”, the shortest dependency path was

extracted to represent the candidate relation between them, Dan
nsubjpass← born

prep in→ Berkeley. All adverbial, adjectival modifiers, and dependent words for

the relation such as “neg” were appended to the path. In the previous exam-

ple, the word “not” and “was” would be appended. Then lexicon words were

replaced by generalized POS tags such as “N” and “V”. The previous example

would be generalized to “N
nsubjpass← V

prep→ N.” Patterns were assigned a prob-

ability according to their frequencies in the training data. This simplicity of

patterns limits the system’s performance. We suspect that more sophisticated

supervised models will improve the performance. Note that their system can

only extract verbal relations matching patterns of “subject, relation, object”,

although relation words can be before or after the entities.

Fader et al. [2011] have developed REVERB, a supervised model that solves

the problem of incoherent or uninformative extractions of the two previous

systems, TEXTRUNNER and WOE. Incoherent extractions represent relation

candidates that are not meaningful. For example, TEXTRUNNER will extract

“contains omits” as a relation in the sentence “The guide contains dead links

and omits sites.” Uninformative extractions are cases where relations omit

critical information. For example, it is not meaningful to extract the triple

<Faust, made, a deal> from the sentence “Faust made a deal with the devil.”

Instead of extracting entities first, REVERB extracted verbal relation se-

quences based on a set of regular expressions. Then entities were identified

around the relation sequence. After the relation triple candidate extraction,

REVERB trained a model to classify the candidates as correct or not. One

problem of their system is that it can only extract relation tokens between two

entities. Relations such as <Nekoosa, counterbidder, International Paper>

in “Among companies mentioned by analysts as possible counterbidders for

Nekoosa are International paper, Canadian Pacific Ltd. and MacMillan Ltd.”

will be ignored.

Mausam et al. [2012] are the first to generalize the constraints that relations
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have to be verb phrases. They proposed an Open IE system called OLLIE.

The training data was created in a bootstrapping way. They started with over

110,000 seed triples which were extracted by REVERB with high confidence.

Then sentences were retrieved from webpages that contain all content words

in any of the extracted triples. 18 million sentences were retrieved. They

assumed that these triples in the sentences were positive instances. Then

OLLIE learned relation patterns composed of dependency path and lexicon

information. Relations matching the patterns were extracted. One difference

of the patterns in Mausam et al. [2012] and those of Wu and Weld [2010]

is that, these patterns include lexical information if they do not hold three

checks such as “the relation node is between two entities.” But again, they

used patterns instead of supervised machine learning models.

Christensen et al. [2011] proposed to extract relations based on semantic

role labeling (SRL). Semantic role labelling is a task that identifies and classi-

fies arguments, such as subjects, objects, and time-constraints, for predicates,

mainly verbs. The SRL tool they adapted was based on syntactic parsing

information. The performance of the system is much better than the base-

line, TEXTRUNNER, but in the sacrifice of speed. The main problem of this

approach is that it can only extract verbal relations.

Akbik [2009] is another example of using dependency path information for

Open IE. They brainstormed 46 general dependency path patterns from an

annotated corpus of 10,000 sentences, and used these patterns to extract rela-

tions. Their patterns exclude POS information and preserve only dependency

link labels. Based on a set of 4000 manually annotated wikipedia sentences,

which contains 1278 relations, the system’s recall is 16% and the precision is

82%. They did not compare their system to other IE systems.

Mesquita et al. [2011] was our first attempt of using Open IE model for

the slot filling task in Text Analysis Conference (TAC). The task states that

given around 22 relations and their training instances, extract argument 2 of

a relation given argument 1. The answers are in a large set of webpages. The

results showed that our Open IE systems at the moment was not as good as

using traditional relation extraction for the task.
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Open IE systems pattern or ML parsing-based verb only
TEXTRUNNER [Banko et al., 2007] ML no yes
REVERB [Fader et al., 2011] ML no yes
OLLIE [Mausam et al., 2012] pattern yes no
[Mesquita et al., 2013] pattern yes no
[Xu et al., 2013] ML yes no
[Xu et al., 2015] ML yes no

Table 2.1: Summary for different Open IE systems.

Mesquita et al. [2013] proposed another dependency pattern based model

for Open IE. Their model is solely based on less than 10 dependency pat-

terns. The experiment showed that their performance was competitive and

the system was quicker than other models.

Based on these studies, we have pursued several open problems in Open

IE. First, sophisticated supervised machine learning models have not been

explored in Open IE, which have improved performance in other NLP tasks.

We adapt SVM tree kernels for Open IE, leveraging both parsing and POS

tagging information. Second, how to leverage information from words, POS

tags, and parsing has not been studied. We then included lexical information

by proposing a lexicalized SVM tree kernel function. Third, relation forms

have been restricted to explicitly mentioned words, and no implicit relation

has been considered. We created a dataset with Wikipedia and Freebase, and

trained a model for implicit relation extraction.

Table 2.1 lists the current Open IE systems and their characteristics: whether

they are supervised machine learning based or pattern based; whether they de-

pend on parsing; whether they extract relations other than verbs.

2.4 Evaluation Metrics

For both traditional relation extraction and open information extraction eval-

uation, researchers will provide datasets in which entities and their relations

are annotated. The annotated relation set is called a gold standard set. The

most common metrics for evaluation of relation extraction is precision, recall,

and F-score.

Precision is the percentage of relations a model extracted that are correct,

i.e., matches with any of the gold standard relations. Recall is the percentage of
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gold standard relations that are extracted by the model. F-score is a harmonic

mean of precision and recall (Equation 2.5).

F = 2 ∗ precision ∗ recall
precision+ recall

(2.5)

However, the main problem in Open IE evaluation is the unclear definition

of relations. Different datasets lead to different ranking of systems’ perfor-

mance. One observation from our research is that the distribution of noun

and verb relations will also affect a system’s performance. For example, our

systems are better at noun relation extraction than OLLIE, but may be compa-

rable in terms of verb relations extraction. Instead of creating one benchmark

for all systems, we suggest using several test datasets from different annotation

groups to test and compare the Open IE systems.
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Chapter 3

Open Information Extraction
with Tree Kernels

Proposed by Banko et al. [2007], open information extraction (Open IE) aims

at extracting all general relations from text, which is different from tradition

relation extraction, that aims at extracting a specific set of relations. As

mentioned in Section 2.3, most early Open IE systems have targeted verbal

relations, i.e., relations that are represented by verbs or verb phrases, claiming

that these are the majority. However, Chan and Roth [2011] showed that only

20% of relations in the ACE program’s Relation Detection and Characteriza-

tion (RDC) are verbal. Our manually extracted relation triple set from the

Penn Treebank shows that there are more nominal relations than verbal ones,

with the ratio as 3 to 2.

This difference arises because of the ambiguity of what constitutes a rela-

tion in Open IE. It is often difficult for annotators to agree on what constitutes

a relation, and which words in the sentence establish a relation between a pair

of entities. For example, in the sentence “Olivetti broke Cocom rules,” is

there a relation between Olivetti and Cocom? This ambiguity in the problem

definition leads to significant challenges and confusion when evaluating and

comparing the performance of different methods and systems. An example

are the results in Fader et al. [2011] and Mausam et al. [2012]. In Fader et al.

[2011], REVERB is reported as superior to WOEparse, a system proposed in

[Wu and Weld, 2010]; while in Mausam et al. [2012], it is reported the opposite.

To better answer the question, what counts as a relation? We designed
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experiments for two tasks. The first task seeks to determine whether there is

a relation between two entities (called “Binary task”). The other is to confirm

whether the relation words extracted for the two entities are appropriate (the

“Triple task”). The Binary task does not restrict relation word forms, whether

they are mediated by nouns, verbs, prepositions, or even implicit relations.

The Triple task requires an abstract representation of relation word forms.

Currently we assume that relation words are nouns or verbs; in our data,

these two types comprise 71% of relations. Note that the definition of entities

is also ambiguous. Consider again the sentence “Olivetti broke Cocom rules,”

both Cocom and Cocom rules can be as an entity. In this chapter, we use the

Stanford NER tool to identify entities.

Inspired by the success of traditional relation extraction models that use

SVM tree kernels [Bunescu and Mooney, 2005, Nguyen et al., 2009, Zhou and

Zhu, 2011], we adapt an SVM dependency tree kernel model [Moschitti, 2006]

for both tasks. The input to the SVM tree kernel model is a dependency path,

created by the Stanford Parser [Marneffe and Manning, 2008]. While selecting

relevant features from a parse tree for semantic tasks is difficult, SVM tree

kernels avoid extracting explicit features from parse trees by calculating the

inner product of the two trees. For the Binary task, our dependency path is

the path between two entities. For the Triple task, the path is between entities

and relation words, i.e., relation triples.

Tree kernels have been used in traditional RE and have helped achieve

state of the art performance. But one challenge of using tree kernels on Open

IE is that the lexicon of relations is much larger than those of traditional

RE, making it difficult to include the lexical information as features. In this

chapter I present our unlexicalized tree structure for Open IE, which is the first

time an SVM tree kernel has been applied in Open IE. Experimental results

on multiple datasets show our system outperforms state-of-the-art systems

REVERB and OLLIE.

In addition to the supervised model, I also present an unsupervised model

which relies on several heuristic rules. Results with this approach show that

this simple unsupervised model provides a robust strong baseline for other
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approaches1.

3.1 Problem Definition and System Structure

The common definition of the Open IE task is a function from a sentence,

s, to a set of triples, {< E1, R,E2 >}, where E1 and E2 are entities (noun

phrases) and R is a textual fragment indicating a semantic relation between

the two entities. Our “Triple task” is within this definition. However, it is

often difficult to determine which textual fragments to extract. In addition,

semantic relations can be implicit, e.g., the located in relation in the sentence

fragment “Washington, US.”

To illustrate how much information is lost when restricting the relation

forms, we add another task, the “Binary task,” determining if there is a relation

between the two entities. It is a function from s, to a set of binary relations

over entities, {< E1, E2 >}. This binary task is designed to overcome the

disadvantage of current Open IE systems, which suffer because of restricting

the relation form, e.g., to only verbs, or only nouns. These two tasks are

independent of each other.

Figure 3.1 presents our Open IE system structure. Both tasks need pre-

processing with the Stanford NLP tools (other equivalent tools such as Open

NLP could be used). Entities and entity pairs within a certain token distance

are extracted. Sentences are parsed with the Stanford Constituent parser

[Klein and Manning, 2003] then transformed to dependency parse trees. We

employ the typed collapsed dependency parse [Marneffe et al., 2006a], which

is transferred from the constituent parsing and has proved to be useful for

semantic tasks [MacCartney et al., 2006]. For the Binary task, an SVM model

is employed to filter out the extracted entity pair candidates, and output pairs

which have certain relations. For the Triple task, we identify relation word

candidates of the pairs, based on POS regular expression patterns. Then

another SVM model is employed to decide if the relation triples are correct or

not.

1This work is published in NAACL 2013 [Xu et al., 2013].
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








 









Figure 3.1: Our Open IE system structure.
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Figure 3.2: Relation Pattern Form (RelW represents relation words, E1 and
E2 are two entities.)

3.2 Relation Candidate Extraction

For the Triple task, we extract textual fragments which match certain POS

patterns in an entity pair’s context as relation candidates for that pair. In our

experiments, the fragments are n-grams with n < 5. Relation candidate words

are between the entity pairs or in a window size of 10 before the first entity

or after the second entity, which is experimentally a good choice to minimize

noise while attaining maximum number of relations.

Our representation of POS regular expression pattern sets expands that

of Fader et al. [2011]. The patterns are composed of verb and noun phrases

(see Figure 3.2). A relation candidate can consist of words before, between,

or after the pair, or the combination of two consecutive positions. Instead of

extracting only verbal relations, e.g., give birth to, our patterns also extract

relations specified through noun phrases. In the sentence “Obama, the presi-

dent of the United States, made a speech,” the relation president matches the

relational form “RelW=N, N=noun.” Our method can also extract relation

words interspersed between the two entities: e.g., ORG has NUM employees,

which matches the pattern “E1 RelW E2 RelW”; the first RelW matches V,

with V=verb, and the second RelW matches N, with N=noun.

3.3 Tree Kernels

Many methods recognize the value of leveraging parsing information in support

of semantic tasks. But selecting relevant features from a parse tree is a difficult

task. SVM tree kernels avoid extracting explicit features from parse trees by
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calculating the inner product of the two trees, so the tree kernel value depends

on the common substructure of two trees. A tree kernel function over Tree T1

and T1 is:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),

where NT1 and NT2 are the set of trees’ nodes [Collins and Duffy, 2001]. The

∆ function provides the basis for identifying subtrees of nodes, which is the

essential distinction between different tree kernel functions. Here we adapt the

partial tree kernel (PTK) proposed by Moschitti [2006]2, which can be used

with both constituent and dependency parse trees. When the node labels of

n1 and n2 are the same, the computation of ∆ function of PTK is

µ(λ2 +
∑

J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)∏
i=1

∆(cn1(J1i), cn2(J2i))); (3.1)

∆ = 0 when they are different. cn1 and cn2 are child sequences of nodes n1

and n2 respectively, J1 =< J11, J12, J13... > and J2 =< J21, J22, J23... > are

index sequences of the two child sequences, J1i and J2i are the i-th children of

the two sequences. l() means the sequence length, d(J1) = J1K − J11, where

J1K is the last index in the J1 sequence. µ and λ are two decay factors for the

height of the tree and the length of the child sequences respectively, which we

choose the default setting in the experiments. For a more detailed description

of PTK, please refer to Moschitti [2006].

Now we present our unlexicalized dependency tree structures for the tree

kernel. One question arising in the conversion of dependency structures, such

as the one in Figure 3.3a, for the tree kernel is how should we add POS tags

and dependency link labels? The kernel cannot process labels on the edges;

they must be associated with tree nodes. Our conversion is similar to the

idea of a Grammatical Relation Centered Tree (GRCT) of Croce et al. [2011].

First we order the nodes of dependency trees so that the dominant, i.e., the

parent of the dependency link is on the top, the dependent, i.e., the child is at

the bottom. At this stage, the link label is with the corresponding dependent

POS-tag and the word (Figure 3.3b). If a dominant has more than one child,

2Thanks to Prof. Moschitti for his PTK package.
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(b) SDTP2



 













(c) GRCT



 

 




(d) unlexicalized GRCT

Figure 3.3: Example trees for shortest dependency path between J.P. Bolduc
and W.R.Grace Co. in sentence “J.P. Bolduc, vice chairman of W.R.Grace
Co., comes here.” Figure (a) is the shortest dependency tree path (SDTP),
(b) is the collapsed form, (c) is the GRCT, (d) is an unlexicalized GRCT with
“NE”.
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the children will be ordered according to their position in the sentence, from

left to right. Next, every node is expanded such that the dependent POS-tags

are the children of the link labels and parent of their words. For example, in

Figure 3.3c, NN is the child of appos and parent of chairman. It is on the left

of prep of because chairman is on the left of W.R.Grace Co. in the sentence.

As customary in Open IE, we do not add content words, while function words

are included to replace their POS tags. The unlexicalized GRCT is shown in

Figure 3.3d. Note that for the root node, the link label is replaced by the

POS-tag of the fist node in the path.

Recall that we have two tasks: detecting whether there is a relation be-

tween two entities (the Binary task), and whether the relation triple <E1,

relation, E2> is correct (the Triplet task). We define two expanded versions

of unlexicalized GRCT for these two tasks. The two versions contain different

fragments of a dependency tree of a sentence.

For the Binary task, the shortest path between two entities’ heads3 is ex-

tracted and represented as a GRCT. The root node is the POS-tag of the first

node in the path. “NE” is used to represent the position of two entities while

relation words are not specified. Figure 3.3d shows the example final outcome

of our tree structure. It is used to decide if there is a relation between the

entities Bolduc J.P. and W.R.Grace Co.

For the Triple task, we first extract relation words based on regular ex-

pression patterns as indicated in Section 3.2. If any relation word is between

the shortest path of the two entities, the path is chosen as the input for SVM.

Otherwise, two shortest paths between two entities and relation words will be

extracted separately. The shortest path between one of the relation words and

one of the entities will be attached to the path between two entities.

In our representation, relation words are tagged by having “R” as the child.

Figure 3.4a shows the path form of the previous example. Figure 3.4b shows

another example where “R” is not in the shortest path of the pair. The triple is

<United States, president, Obama> for the sentence “United States President

Barack Obama says so.” The figure on the left is the dependency path. The

3The head words of phrases are words which do not depend on any words in the phrases.
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(a) Example 1.
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(b) Example 2.

Figure 3.4: Tree structure with “R” added. Figure (a) is Example 1, which
has R in the SDTP of the entity pair. Figure (b) is Example 2, with R not in
the SDTP of the entity pair.

figure on the right is the final tree for the triple task. The root is the POS-tag

for Obama.

For the Triple task we combine the tree kernel with a polynomial kernel

[Moschitti, 2005] applied to a feature vector. A polynomial kernel is defined

as:

K(x1, x2) = (xT1 x2 + c)d, (3.2)

where x1 and x2 are feature vectors of two instances, and d is the degree of

the polynomial.

We designed a series of features to assist the tree kernel. The feature set is

in Table 3.1. The third feature (F3) tries to preserve the semantic link between

two discontinuous relation word segments. F6 constrains relation words to in-

clude only necessary prepositions. For verbal relations, if there is a preposition

at the end of the relation word sequence, then there must be a preposition link
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E feature F1 the dependency link label between two entities, null if none.

R features
F2 whether relation is a noun phrase or a verb phrase
F3 whether there is a link between the two segments (if there are two discontinuous segments)

between E and R
F4 whether there is a link between entities and the relation
F5 the shortest dependency path distance between entities and the relation (1,2,3,4, or >4)
F6 the preposition link and the last preposition word of relation (if there is such a link or word)
F7 whether there is a conjunction link in the shortest path between entities and the relation
F8 whether there is a apposition link in the shortest path between entities and the relation

Table 3.1: Noise filter feature vector.

between the relation and any of the two entities, and vice versa. For instance,

in the sentence “Bob teaches at the University,” <Bob, teach at, University>

is correct while <Bob, teach, University> is wrong. For nominal relations,

inclusion of the head word is necessary. Prepositions can be ignored, but if

they exist, they must match with the dependency link. We concentrate on

verb prepositions because prepositions are more frequently attached to noun

phrases than verb phrases. Verb relations have more preposition choices, and

different choices have different semantic impact. For example, prepositions can

indicate roles of entities, e.g., whether they are subjects or objects. But noun

relations’ prepositions are more fixed, such as president of. The last two fea-

tures F7 and F8 are added according to the observation of experiment results

in a development set: we notice that relation extraction errors arise frequently

when there are apposition or conjunction structures between entities4.

3.4 Unsupervised Method

We also propose the use of an unsupervised method based on heuristic rules

to produce a relation candidate noise filter, i.e., selecting correct relations out

of false relations, as an alternative to using SVM in the Triple task. The

heuristic rules are also based on the Stanford collapsed dependency parsing.

There are two parts in the noise filter: one is that the relation words should

have necessary links with two entities and the other is that relation words

should be consistent.

We first mention the heuristic rules for necessary dependency links. The

intuition is from [Chan and Roth, 2011], they classified relations into 5 differ-

4However, according to the results on the test set, adding the two features does not solve
the problem.
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ent syntactic structures; premodifier, possessive, preposition, formulaic, and

verbal. They proposed heuristic POS patterns covering the first four patterns

with the exception of the verbal structure.

We present heuristic rules based on dependency paths instead of POS for

the following structures, except the category formulaic.

• In a premodifier structure one entity and the relation are modifiers of

the other entity, e.g., US. President Obama.

• In a possessive structure one entity is in a possessive case, e.g., Mi-

crosoft’s CEO Steve Ballmer.

• In a preposition structure, relation words are related with one entity by

a preposition, e.g., Steve Ballmer, CEO of Microsoft.

• In a verbal structure relations are verb phrases.

The heuristic rules are presented in Figure 3.5. The premodifier and posses-

sive relation words are not along the dependency path between two entities5.

When there is a direct dependency link between two entities that is labelled nn

or poss, there should be an nn link between the second entity and the relation

candidate (in Figure 3.5’s top two rows). Otherwise, there should be links

between the two entities and the relation, respectively (in Figure 3.5’s last

row). In this case, link types and directions are not constrained. For example,

both E1 ←(nsubj) R →(dobj) E2 for the triple <Obama, visit, Canada> in

“Obama visited Canada.” and E1 →(appos) R →(prep of) E2 for the triple

<Obama, president, United States> in “Obama, the president of the United

States, visited Canada.” belong to that structure. To refine the verbal pattern,

the link between the relation words and entities cannot be a conjunction.

Next, we need to check the consistency of relation words. Here consistency

means whether the word sequence form a meaningful semantic unit. For ex-

ample, break the rule of is consistent, while the candidate contribution parents

5At least for the Stanford dependency parser we used, it might be otherwise if another
dependency parser is used.
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Figure 3.5: Dependent link heuristics for relation detection.

from contribution from E1’s parents is not. Two separated sequences of re-

lation words should have a dependency link between each other to confirm

that they are semantically related. Relation sequences should include only

necessary prepositions.

3.5 Experiments

We compared the unsupervised heuristic rule method and the supervised SVM

method discussed above against REVERB [Fader et al., 2011] and OLLIE

[Mausam et al., 2012], using three datasets. One dataset consists of sentences

from the Penn Treebank, and the other two are the experiment datasets of

REVERB and OLLIE respectively.

3.5.1 Treebank Set

Preparing Data

Within the research community, it is difficult to find Open IE test data which

includes all kinds of relations. So we have created our own data from the Penn

Treebank for evaluation6. The Penn Treebank contains sentences and their

parse trees annotated by linguists. We assess the drop in Open IE performance

introduced by using a syntactic parser compared to using “ideal” parse trees

provided in the Penn Treebank. Named entities are tagged for every sentence

using the Stanford NLP tool. Candidate NE pairs are extracted within a

6The data can be downloaded from http://cs.ualberta.ca/~yx2/.
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certain distance7. We randomly selected 756 sentences from WSJ Sections

2-21 as our training set, 100 each from Section 22 and Section 23-24 as the

develop and the test set, respectively. This is also the setting for most parsers.

We manually annotated whether there is a relation between two entities in

a sentence (for evaluation of the Binary task). If there is a relation between

two entities, the annotator needs to indicate which words are relation words

(for evaluation of the Triple task). There is no restriction of relation forms for

the annotator in this task.

After analyzing half of the relation instances in the training set, we notice

that 28% of the relations are implicit relations, i.e., relations without words

or with prepositions. Less than 1% are with adjectives, while 71% are noun

or verb phrases. In those 71%, 60% are noun relations and 40% are verbal.

The relation patterns from Section 3.2 can extract 80% of them. Our data

contains more verbal relations than the ACE’s RDC, but less than corpora

used in other Open IE papers.

We evaluate each system by recall, precision, and F-score. The evalua-

tion of the Binary task is based on entity pairs and is straightforward. The

evaluation of the Triple task is based on relation triples. We need to man-

ually compare the triples extracted by each system and the gold standard

to avoid double-counting. For instance, if both vice president and president

are extracted, it is counted as one8. Several entity pairs have multiple rela-

tions, such as “A is CEO and founder of B.” Any relation which can not be

represented by a verb or noun is counted as one miss in the Triple task.

To compare with the REVERB system, NE pairs are labelled as two noun

phrase chunks for the system input. It is difficult to compare with OLLIE, as

the system is a black box with integrated entity extraction and parsing. We

manually compared the pairs extracted by OLLIE and the tagged data. Only

results of intersection entity pairs are considered. The threshold of OLLIE and

REVERB confidence is set to achieve the best F-score in the development set.

7Here we set the distance as 20, determined by empirical evidence, a majority of the
relations are within this distance.

8It is difficult to decide if president in this case is wrong. This is related to multi-word
expression and will be future work.
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P R F-score
Treebank parsing + DP rules 0.833 0.549 0.662
Treebank parsing + SVM 0.896 0.767 0.826
Stanford parsing + DP rules 0.783 0.522 0.627
Stanford parsing + SVM 0.744 0.711 0.727
REVERB (no parsing) 0.333 0.1 0.153
OLLIE (MaltParser) 0.583 0.389 0.467

Table 3.2: Relation extraction results on Treebank set (Binary)

Results

The Binary task results on the test set are shown in Table 3.2. Each system

decides whether there is a relation between two entities. The heuristic rule (DP

rules) method, REVERB, and OLLIE each tag pairs containing a relation if

any relation candidates are identified. As indicated, the SVM method performs

the best, while the DP rules method ranked second. Note that OLLIE uses

MaltParser, so it’s better to compare with the coupling of SVM with Stanford

Parser.

The Triple task results are shown in Table 3.3. We extracted 12084 re-

lation candidates from our training sentences, i.e. our training size is 12084

for the SVM models. Each system extracts relation triples from sentences.

The SVM features include both tree (Figure 3.4) and vector features (Table

3.1). All relations in the table include nominal, verbal, and implicit relations.

To scrutinize the result, we also show the results on noun and verb relations

separately. The SVM model achieves best performance, 33% improvement

on nominal relation extractions over OLLIE. Stanford parsing(also for pat-

tern)+SVM setting means that the relation candidate extraction is also based

on the Stanford parsing result, while others’ relation candidate extraction is

based on the Treebank parsing. Comparing with Stanford parsing + SVM, we

can see that the result decreases a little but is still better than OLLIE.

The loss of recall for systems (except SVM) in the Binary task can be

explained by the fact that nearly 20% of relations are implicit.

In both the Binary and Triple tasks, one source of failure arose from con-

junction and apposition structures. For example, in the sentence “...industry
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All relations P R F-score
Treebank parsing + DP rules 0.741 0.467 0.573
Treebank parsing + SVM 0.824 0.462 0.592
Stanford parsing + SVM 0.75 0.433 0.549
Stanford parsing(also for pattern)+SVM 0.7 0.43 0.53
OLLIE (MaltParser) 0.583 0.389 0.467

Noun relations P R F-score
Treebank parsing + DP rules 0.75 0.735 0.742
Treebank parsing + SVM 0.829 0.708 0.764
Stanford parsing + SVM 0.756 0. 689 0.721
OLLIE (MaltParser) 0.8 0.408 0.54

Verb relations P R F-score
Treebank parsing + DP rules 0.7 0.368 0.483
Treebank parsing + SVM 0.727 0.381 0.5
Stanford parsing + SVM 0.727 0.32 0.444
REVERB (no parsing) 0.286 0.381 0.327
OLLIE (MaltParser) 0.429 0.714 0.536

Table 3.3: Relation extraction results on Treebank set (Triple)

executives analyzed the appointment of the new chief executive, Robert Louis-

Dreyfus, who joins Saatchi ...” the method can detect the relation <chief ex-

ecutive, joins, Saatchi>, but not <Robert Louis-Dreyfus, joins, Saatchi>. We

attempted to address this problem by adding features into SVM linear kernel

(Table 3.1), but the results in the test set show no success of the approach.

One cause of recall loss in the Triple task for REVERB and our two ap-

proaches is that verbal relation words can be non-consecutive. For instance,

the preposition might be far away from the related verb in one sentence, in

which case both our methods and REVERB can not confirm that extraction.

OLLIE has better results on verb relations mainly because they use depen-

dency link patterns to extract relation words, which alleviate the problem.

On the other side, one drawback of OLLIE is that it failed to extract a few

premodifer structure relations, e.g., “U.S. President Obama.” That may hap-

pen because they do not have an independent step for named entity extraction,

which is crucial for that type of relation.
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P R F-score
Stanford parsing + DP rules 0.711 0.811 0.756
Stanford parsing + SVM 0.718 0.859 0.781
REVERB 0.577 0.95 0.716

Table 3.4: Relation extraction results on REVERB set (Triple).

3.5.2 REVERB Set

The authors of the REVERB method provided 1000 tagged training sentences

and 500 test sentences. They also provide REVERB’s extracted relation triples

and the corresponding confidence for the 500 test sentences. The 500 test

sentences are segmented into 5 folds for a significance t-test (Here we use the

Student t-test.) At each iteration, the remaining 400 sentences are used as a

development set to set the threshold of REVERB confidence.

To compare with REVERB, we use as input the sentences parsed by the

Stanford parser and relation triples extracted by REVERB for both training

and testing. The output of our system is true or false for every triple by using

the tree kernel9. The SVM system is trained on the 1000 training sentences.

The results are shown in Table 3.4. Only SVM is statistically significant better

than REVERB (with α = 0.05). Note that the results here seem better than

the results shown on [Fader et al., 2011]. It is because our evaluation is based

on the set REVERB extracted, while the results in [Fader et al., 2011] is based

on the union relation set of several systems. We believe that this is sufficient

to compare the three Open IE systems.

3.5.3 OLLIE set

The authors of the OLLIE system provide a test set which has 300 sentences

and OLLIE extracted 900 triples. Our experiment setting on this dataset is

similar to that of REVERB set. The SVM tree kernel model is trained on

OLLIE’s leave one out dataset. The results in Table 3.5 show our method

achieves slightly better performance, although not statistically significant.

9The polynomial kernel is not used for REVERB and OLLIE data as the their relation
word form is simpler than ours.
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P R F-score
Stanford parsing + SVM 0.685 0.941 0.793
OLLIE 0.667 0.961 0.787

Table 3.5: Relation extraction results on OLLIE set (Triple).

Besides errors caused by parsing, one main cause of loss of precision is

that our system is unable to detect entities that are wrong as we only concern

the head of the entity. For instance, “Bogan ’s Birmingham Busters , before

moving to Los Angeles , California” is one entity in one OLLIE relation, where

only “Bogan ’s Birmingham Busters” is the correct entity.

3.6 Summary

In this chapter I have described limitations of current Open IE systems, which

concentrate on identifying explicit relations, i.e., relations which are medi-

ated by open class words. This strategy ignores what we describe as implicit

relations, e.g., locate relations in “Washington, U.S.”

We propose two subtasks for Open IE: first confirming whether there is a

relation between two entities, and then whether a relation thus extracted is

correct. The first task includes both implicit and explicit relations; the second

task is common in the previous Open IE studies which deals with explicit

relations. In our case we have developed an Open IE system which uses an

SVM tree kernel applied to dependency parse trees for both tasks. Our system

achieves superior results on several datasets. We also propose an unsupervised

method which is based on heuristic rules from dependency parse links, and

compared that with our SVM tree kernel methods. Our experiments show it

is a strong baseline for Open IE.

The following chapters will describe systems to tackle problems we found

in these experiments. We will improve our current model by including lexical

information and extract implicit relations. For instance the relation located in

“Washington, U.S.” will be extracted.
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Chapter 4

A Lexicalized Tree Kernel for
Open Information Extraction

Like most of the early Open IE systems, our tree kernel model from the pre-

vious chapter employs syntactic information such as parse trees and part of

speech (POS) tags, but ignores lexical information. One major reason is that

most Open IE training corpora contain only several thousands of sentences.

If word features are included, there will be sparsity issue, i.e., supervised ma-

chine learning models can not estimate the weight (effect) of infrequent words

correctly.

However, previous work suggests that Open IE would benefit from lexical

information because the same syntactic structure may correspond to different

relations. For instance, the relation triple <Annacone, coach of, Federer> is

correct for the sentence “Federer hired Annacone as a coach”, but not for the

sentence “Federer considered Annacone as a coach,’ ’ even though they have the

same dependency path structure [Mausam et al., 2012]. Lexical information

is required to distinguish the two cases.

In this chapter I will present our second Open IE model, which incorporates

a lexicalized tree kernel model that combines both syntactic and lexical infor-

mation. In order to avoid lexical sparsity issues, we investigate two smoothing

methods that use word vector representations: Brown clustering [Brown et al.,

1992] and word embeddings created by a neural network model [Collobert and

Weston, 2008]. To our knowledge, we are the first to apply word embeddings

and to use lexicalized tree kernel models for Open IE.
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Experiments on three datasets demonstrate that our Open IE system achieves

absolute improvements in F-measure of up to 16% over the current state-of-

the-art systems of Xu et al. [2013] and Mesquita et al. [2013]. In addition, we

examine alternative approaches for including lexical information, and find that

excluding named entities from the lexical information results in an improved

F-score1.

4.1 Related Work – Word Representation

Lexical features are one type of important feature in supervised models for

natural language processing. They are usually represented as binary features:

one binary feature represents one word and is set to 1 when the word exists, 0 if

not. The number of these features is the size of vocabulary in the training set.

However there is a sparsity problem with this feature type, as many words

occur only once in the training set. Little can be learned with infrequent

features and the supervised task. To alleviate the problem, researchers have

proposed several approaches for representing words as word vectors, i.e., a

fixed length of numerical vectors. The number of these features is determined

by the selected length of the word vector.

Turian et al. [2010] categorized word representation techniques into 3 cat-

egories: distributional, clustering, and distributed representation. All these

techniques follow one observation: words are identified by their context. The

main difference lies in how they choose context and which technique to use to

derive vectors.

Distributional word representation models learn word representation from

a matrix: W × C. In the matrix, each row represents a word and |W | is the

vocabulary size. Columns are context and |C| is the context size. A model

can reduce the word representation dimension with a certain function f that

maps W ×C to W × d, where |d| << |C|. One representative model is Latent

Semantic Analysis (LSA). In the model, a word’s context is the documents

which it occurs in. C’s dimension is the size of the documents. In the matrix

1This research was previously published in [Xu et al., 2015].
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Figure 4.1: A bayesian network that defines the quality of clustering.

W ×C, if the word i is in the document j, then the matrix’s (i, j) slot will be

1. The LSA model uses Singular Value Decomposition (SVD) for dimension

reduction.

Clustering approaches take the matrix W × C and cluster based on every

row. One representative is the Brown Clustering model [Brown et al., 1992],

which is a bottom-up hierarchical clustering model for words. The input is

a sequence of words, while the output is a binary tree with words as leaves.

Liang [2005] proposed an algorithm that reduce the time cost from O(|V |3) to

O(|V |k2 + n), where |V | is the dictionary size, k is the clustering size, and n

is the corpus length. Following is a brief description of the algorithm:

1. The algorithm starts with k most frequent words, each in their own

cluster.

2. Loop: the next most frequent words, k + 1, k + 2,.... is added.

3. Now we choose two clusters i and j, and merge them. We choose the

merge that gives a maximum value of the current clustering: Quality(Clustering).

4. Do another (k-1) merges, to create one final cluster.

The quality of the merge is defined as the sum of mutual information of two

adjacent clusters. Figure 4.1 gives the idea of adjacency of clusters. The

probability of a cluster depends on its previous cluster, and the probability of

a word depends on its cluster.

Distributed models are neural network models. They have been revived in

the last several years and achieve state-of-the-art results in many NLP tasks.

The induced representations are called word embeddings.

One representative distributed model is the word2vec model [Mikolov et al.,
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Figure 4.2: The skip-gram word2vec model.

2013]. Its skip-gram model includes one hidden layer and a softmax function

to represent the probability p(ci|wj), where ci is a context word of wj.

Figure 4.2 shows the simplified skip-gram model structure which uses only

one context word (You can choose 2n context words, where n on the left side

of the word in a sentence and n on the right side.) The input vector indicates

which word is the input. If the input is wj then only j slot is 1, others are

0. The first weight matrix Winput is the input word embedding, where each

row represents each word. Thus the hidden layer h becomes the input word

vector. The second weight matrix is the output word embedding. The output

is the probability of every word as the context of the input word. Note that

in this model, each word has two word representations, one is the input word

embedding, the other is the output word embedding. In reality researchers use

the input word embeddings as features for other NLP tasks.

Mikolov et al. [2013] proposed to use the objective function in Equation

4.1 to train the model.

E = −logσ((v′ci)
Th)−

∑
ck∈Wneg

logσ(−(v′ck)Th) (4.1)

where v′ represents a vector in the output weight column, Wneg are sampled

negative examples of words that are not in the context of input words, and σ

is a sigmoid function:

y =
1

1 + e−x
(4.2)

According to the function 4.1, each backpropagation will affect the vectors

of the input word, the context word, and the sampled negative words, which
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saves a significant amount of time in training (For more explanations, see

[Rong, 2014].)

Word embedding vectors created by neural network models have been used

not only on deep learning models [Socher et al., 2012, 2013] but also on other

models. For example, Turian et al. [2010] proposed a conditional random field

(CRF) model with word embeddings as features for named entity extractions.

Kuksa et al. [2010] created a string kernel model with word imbeddings for

Bio-relation extraction. Motivated by these studies, our SVM tree kernel in-

corporates Gaussian similarity on word embedding vectors, which are created

by a neural network model.

4.2 System Architecture

Figure 4.3: Our Open IE system structure.

Our system structure is similar to our first tree kernel-based model. It

consists of three modules: entity extraction, relation candidate extraction,

and tree kernel filtering. The system structure is outlined in Figure 4.3. We

identify named entities, parse sentences, and convert constituency trees into

dependency structures using the Stanford tools [Manning et al., 2014]. Entities

within a fixed token distance (set to 20 according to the observation on the

development set) are extracted as pairs {< E1, E2 >}. We then identify

relation candidates R for each entity pair in a sentence, using dependency

paths. Finally, the candidate triples {< E1, R,E2 >} are paired with their

corresponding tree structures, and provided as input to the SVM tree kernel.

Our Open IE system outputs the triples that are classified as positive. In the

following sections, we describe the components of the system in more detail.
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4.3 Relation Candidates

Relation candidates are words that may represent a relation between two enti-

ties. We consider only lemmatized nouns, verbs and adjectives that are within

two dependency links from either of the entities. Following Wu and Weld [2010]

and Mausam et al. [2012], we use dependency patterns rather than POS pat-

terns, which allows us to identify relation candidates which are farther away

from entities in terms of token distance. This is different from our last work

in [Xu et al., 2013], which uses part of speech patterns. From that work we

notice that using POS patterns creates too much noise, i.e., creating too many

poor relation candidates.

To extract relation candidates we first extract the head words for the two

entities. We then extract the first two content words along the dependency

path between the head words of E1 and E2. In the following example (Figure

4.4), the path is E1 ← encounter → build → E2, and the two relation word

candidates between “Mr. Wathen” and “Plant Security Service” are encounter

and build, of which the latter is the correct one.

Figure 4.4: One relation candidate example where the relation word is on the
dependency path between the two entities.

If there are no content words on the dependency path between the two

entities, we instead consider words that are directly linked to either of them.

In the following example (Figure 4.5), the only relation candidate is the word

battle, which is directly linked to “Edelman.”

Figure 4.5: One relation candidate example where the relation word is not on
the dependency path between the two entities.
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The relation candidates are manually annotated as correct or incorrect in

the training data for the tree kernel models described in the following section.

4.4 Lexicalized Tree Kernel

We use a supervised lexicalized tree kernel to filter negative relation candidates

from the results of the candidate extraction module. For semantic tasks, the

design of input structures to tree kernels is as important as the design of

the tree kernels themselves. In this section, we introduce our tree structure,

describe the prior basic tree kernel, and finally present our lexicalized tree

kernel function.

(a) An un-lexicalized dependency tree.

(b) A lexicalized dependency tree.

Figure 4.6: An unlexicalized tree and the corresponding lexicalized tree.

4.4.1 Tree Structure

In order to formulate the input for tree kernel models, we need to convert

the dependency path to a tree-like structure with unlabelled edges. The tar-

get dependency path is the shortest path that includes the triple and other

content words along the path. Consider the following example, which is a

simplified representation of the sentence “Georgia-Pacific Corp.’s unsolicited

$3.9 billion bid for Great Northern Nekoosa Corp. was hailed by Wall Street.”
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The candidate triple identified by the relation candidate extraction module is

<Georgia-Pacific Corp., bid, Great Northern Nekoosa Corp.>.

Our unlexicalized tree representation model is similar to the unlexicalized

representations in Chapter 3, except that instead of using the POS tag of the

path’s head word as the root, we create an abstract Root node. We preserve

the dependency labels, POS tags, and entity information as tree nodes: (a) the

top dependency labels are included as children of the abstract Root node, other

labels are attached to the corresponding parent labels; (b) the POS tag of the

head word of the dependence path is a child of the Root; (c) other POS tags are

attached as children of the dependency labels; and (d) the relation tag ‘R’ and

the entity tags ‘NE’ are the terminal nodes attached to their respective POS

tags. Figure 4.6(a) shows the unlexicalized dependency tree for our example

sentence.

Our lexicalized tree representation is derived from the unlexicalized repre-

sentation by attaching words as terminal nodes. In order to reduce the number

of nodes, we collapse the relation and entity tags with their corresponding POS

tags2. Figure 4.6(b) shows the resulting tree for the example sentence.

4.4.2 Tree Kernels

Tree kernel models extract features from parse trees by comparing pairs of tree

structures. The essential distinction between different tree kernel functions is

the ∆ function that calculates similarity of subtrees. Our modified kernel

is based on the SubSet Tree (SST) Kernel proposed by Collins and Duffy

[2002]. What follows is a simplified description of the kernel; a more detailed

description can be found in the original paper.

2We haven’t investigated into the effect of collapse yet, which will be our future work.
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The general function for a tree kernel model over trees T1 and T2 is:

K(T1, T2) =
∑
n1∈T1

∑
n2∈T2

∆(n1, n2), (4.3)

where n1 and n2 are tree nodes. The ∆ function of SST kernel is defined

recursively:

1. ∆(n1, n2) = 0 if the productions (context-free rules) of n1 and n2 are

different.

2. Otherwise, ∆(n1, n2) = 1 if n1 and n2 are matching pre-terminals (POS

tags).

3. Otherwise,

∆(n1, n2) =
∏

j[1 + ∆(c(n1, j), c(n2, j))],

where c(n, j) is the jth child of n.

4.4.3 Lexicalized Tree Kernel

Since simply adding words to lexicalize a tree kernel leads to sparsity problems,

a type of smoothing must be applied. Croce et al. [2011] employed word vectors

created by Singular Value Decomposition [Golub and Kahan., 1965] from a

word co-occurrence matrix. Plank and Moschitti [2013] used word vectors

created by the Brown clustering algorithm [Brown et al., 1992]. Srivastava

et al. [2013] also used word embeddings created by [Collobert and Weston,

2008] but their tree kernel did not incorporate POS tags or dependency labels.

We propose using word embeddings created by a neural network model

[Collobert and Weston, 2008], in which words are represented by n-dimensional

real valued vectors. Each dimension represents a latent feature of the word

that reflects its semantic and syntactic properties. Next, we describe how we

embed these vectors into tree kernels.

Our lexicalized tree kernel model is the same as SST, except in the following

case: if n1 and n2 are matching pre-terminals (POS tags), then

∆(n1, n2) = 1 +G(c(n1), c(n2)), (4.4)
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where c(n) denotes the word w that is the unique child of n, and G(w1, w2) =

exp(−γ‖w1 − w2‖2) is a Gaussian function for two word vectors, which is a

valid kernel. A function is a valid kernel function if it satisfies two properties:

symmetry and positive semi-definite.

We examine the contribution of different types of words by comparing

three methods of including lexical information: (1) relation words only; (2) all

words (relation words, named entities, and other words along the dependency

path fragment); and (3) all words, except named entities. The words that

are excluded are assumed to be different; for example, in the third method,

G(E1, E2) is always zero, even if E1 = E2.

4.5 Experiments

In this section, we evaluate alternative tree kernel configurations, and compare

our Open IE system to previous work. Our metrics are precision, recall, and

F1 score.

We perform experiments on three datasets (Table 4.1): the Penn Treebank

set [Xu et al., 2013], the New York Times set [Mesquita et al., 2013], and the

ClueWeb set which we created for this project from a large collection of web

pages. Note that we revised annotation on several sentences on the Treebank

dataset since 2013, which is the main reason that the result of [Xu et al., 2013]

in Table 4.3 is different from the one in the last chapter (The result in Table

4.3 is from an unlexicalized model that we retrained the based on the new

annotation.)

One advantage of using dependency path patterns for relation candidate

extraction is that the candidate size is decreased dramatically compared with

using POS patterns. Note that the relation candidate size in the training

data is the training size of the SVM models. In the data of 2013, we have

12,084 relation triple candidates for 759 sentences and 2086 candidate entity

pairs; while in the current Treebank data, we have only 3,235 relation triple

candidates (We set the threshold of dependency path distance between two

entities as 6). However, the performance is increased dramatically.
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type frequency
between 2 238
between 3 119
between 4 43
between 5 13
between 6 5
withE1 1 12
withE1 2 1
withE2 1 32
withE2 2 18
withE2 3 6

Figure 4.7: The frequency distribution of dependency path distance between
relations and entities.

Figure 4.7 shows the frequency distribution of dependency path distance

between gold standard relation head words and entities on the treebank train-

ing data when using the gold standard parse trees. between 2 means the

relation head word is on the dependency path of the two entities where the

path has two links, withE1 1 means that the relation word is not on the path

and is connected with entity 1 with distance 1, and withE2 1 means that the

relation word is connected with entity 2 with distance 1. We can see that

82.1% relations are on the dependency path between two entities that is no

longer than four. Most of the relations on the side are connected directly with

entity 2. In our experiments, we set the threshold of between distance as 6

and side distance as 1 on the treebank set, while we set the threshold of be-

tween distance as 4 in ClueWeb and NewYork datasets because of the noise in

parsing web page text.

After relation candidate extraction, we train SVM models on the Penn

Treebank training set and tested on the three test sets, which makes the Penn

Treebank set as in-domain, while the other two sets out-of-domain. For word

embedding and Brown clustering representations, we use the data provided by

Turian et al. [2010]. The SVM parameters, as well as the Brown cluster size

and code length, are tuned on the development set.

Table 4.2 shows the effect of different smoothing and lexicalization tech-

niques on the tree kernels. In order to focus on tree kernel functions, we use
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Set train dev test

Penn Treebank 759 100 100

New York Times — 300 500

ClueWeb — 450 250

Table 4.1: Data sets and their size (number of sentences).

Smoothing Lexical info P R F1

none (Xu13) none 85.7 72.7 78.7

none all words 89.8 66.7 76.5

Brown (PM13) relation only 88.7 71.2 79.0

Brown (PM13) all words 84.5 74.2 79.0

Brown (PM13) excl. entities 86.2 75.8 80.7

embedding relation only 93.9 69.7 80.0

embedding all words 93.8 68.2 79.0

embedding excl. entities 95.9 71.2 81.7

Table 4.2: The results of relation extraction with alternative smoothing and
lexicalization techniques on the Penn Treebank set (with our relation candidate
extraction and tree structure).

the same relation candidate extraction (Section 4.3) and tree structure (Sec-

tion 4.4.1) for different tree kernel models. The results in the first two rows

indicate that adding unsmoothed lexical information to the tree structure in

Chapter 3 is not helpful, which we attribute to data sparsity. On the other

hand, smoothed word representations do improve F-measure. Surprisingly,

a neural network approach of creating word embeddings actually achieves a

lower recall than the method of [Plank and Moschitti, 2013] that uses Brown

clustering; the difference in F-measure is not statistically significant according

to compute-intensive randomization test [Padó, 2006].

With regards to lexicalization, the inclusion of relation words is impor-

tant. However, unlike [Plank and Moschitti, 2013], we found that it is better

to exclude the lexical information of entities themselves, which confirms the

findings of [Riedel et al., 2013]. We hypothesize that the correctness of a rela-

tion triple in Open IE is not closely related to entities. Consider the example

mentioned in [Riedel et al., 2013]: for relations like “X visits Y ”, X could be

a person or organization, and Y could be a location, organization, or person.

Our final set of experiments evaluates the best-performing version of our
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system (the last row in Table 4.2) against two state-of-the-art Open IE systems:

Mesquita et al. [2013], which is based on several hand-crafted dependency

patterns; and the one in Chapter 3, which uses POS-based relation candidate

extraction and an unlexicalized tree kernel. Tree kernel systems are all trained

on the Penn Treebank training set, and are tuned based on the corresponding

development sets.

The results in Table 4.3 show that our system consistently outperforms

the other two systems, with absolute gains in F-score between 4 and 16%. We

include the reported results of [Mesquita et al., 2013] on the New York Times

set. The ClueWeb results were obtained by running the respective systems on

the test set, except that we used our relation candidate extraction method for

the unlexicalized tree kernel of [Xu et al., 2013].

We conclude that the substantial improvement on the Penn Treebank set

can be partly attributed to a superior tree kernel, and not only to a better

relation candidate extraction method. Another observation we can make is

that the Brown clustering and word embedding are also comparable in terms

of the final relation extraction results.

The ClueWeb set is quite challenging because it contains web pages which

can be quite noisy. As a result we’ve found that a number of Open IE errors

are caused by parsing. Conjunction structures are especially difficult for both

parsing and relation extraction. For example, our system extracts the relation

triple <Scotland, base, Scott> from the sentence “Set in 17th century Scotland

and based on a novel by Sir Walter Scott, its high drama...’ ’ with the wrong

dependency path Scotland
conj and→ based

prep by→ Scott.

Adding additional information from context words that are not on the

dependency path between two entities may alleviate this problem, which we

intend to address in the future.

4.6 Summary

This chapter presented our lexicalized tree kernel model for Open IE, which

incorporates word embeddings learned from a neural network model. Our
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P R F1

Penn Treebank set

Xu et al. [2013]* 66.1 50.7 57.4

Brown (PM13) 82.8 65.8 73.3

Ours (embedding) 91.8 61.6 73.8

New York Times set

Mesquita et al. [2013]* 72.8 39.3 51.1

Brown (PM13) 83.5 44.0 57.6

Ours (embedding) 85.9 40.7 55.2

ClueWeb set

Xu et al. [2013] 54.3 35.8 43.2

Mesquita et al. [2013] 63.3 29.2 40.0

Brown (PM13) 54.1 31.1 39.5

Ours (embedding) 45.8 51.9 48.7

Table 4.3: Comparison of complete Open IE systems. The asterisks denote
results reported in previous work.

system combines a dependency-based relation candidate extraction method

with a lexicalized tree kernel, and achieves state-of-the-art results on three

datasets. Our experiments on different configurations of the smoothing and

lexicalization techniques show that excluding named entity information is a

better strategy for Open IE.
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Chapter 5

Implicit Relations in Nested
Named Entity

Relation extraction, whether traditional relation extraction, e.g., [Chan and

Roth, 2011, Plank and Moschitti, 2013], or open information extraction, e.g.,

[Banko et al., 2007, Xu et al., 2013], focuses on extracting relations between

two named entities. Most of these studies concentrate on two entities that are

neither consecutive nor overlapping and the relations are explicitly mentioned

by words or phrases. For example in the sentence “Bob teaches at the Univer-

sity.” the relation between Bob and the University is explicitly represented by

teach.

Frequently, entities are nested within each other in text. These entities are

called nested named entities. Examples are Germany’s people, Google Images,

and Shakespeare’s book. There are relations implied in these structures. For

example, Germany’s people live in Germany, Google Images is owned by

Google, Shakespeare’s book is written by Shakespeare. Most current relation

extraction systems will ignore these implicit relations. Extracting the implicit

relations in nested named entities is not only an interesting linguistic task

but also useful for NLP applications such as question answering and textual

entailment.

Unfortunately, nested named entities have not been annotated in the widely

used evaluation corpora for named entity recognition (NER) such as CoNLL,

MUC-6, and MUC-7 NER, let alone implicit relations between them. There

are few NER models that can handle nested named entities. As noted by
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Finkel and Manning [2009] this has largely been for practical, not ideological,

reasons. Luckily there is a surging interest in this topic, for example, in the

entity linking field researchers have been debating about how to annotate

nested named entities, and models have been proposed on how to extract

them [Lu and Roth, 2015].

In this chapter, we concentrate on extracting implicit relations between

nested named entities. We begin our study by first creating a dataset of nested

named entities and their corresponding relations. To avoid manual work, which

is time consuming, we extract nested named entities from Wikipedia definition

sentences such as Google Images is a search service owned by Google, where

named entities such as Google are already tagged in the web page. We create

two sets of relations as target relation sets. One is a natural language relation

(NL-rel) set, which is also from the definition sentences, e.g., own in the previ-

ous example. The other is a Freebase relation (FB-rel) set, which leverages the

links between Wikipedia and Freebase, a large community-curated database

of well-known people, places, and things (entities).

Using our datasets, we construct a feature-based model for automatic im-

plicit relation extraction. To the best of our knowledge, we are the first to

study this problem systematically.

5.1 Related Work

There are several fields that are closely related to implicit relation extraction

for nested named entities.

One is the semantic interpretation of noun compounds, which has been a

long-standing area of interest in NLP research. It can either be defined as

a semantic classification problem or a paraphrase problem. For the former,

researchers propose a set of relations, and the implicit relations of noun-noun

compounds are identified by supervised machine learning models [Girju et al.,

2005, Rosario and Hearst, 2001]. For the latter, the task is to come up with

verbs for the relations. For example, honey bee has produce relation and apple

pie has made of relation. Our work belongs to the first category. However,
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we concentrate on noun phrases that contain named entities and, instead of

manual labelling, we generate training and testing data automatically from

Wikipedia. As a result, our dataset has ten thousands of instances instead of

hundreds.

There are scattered studies on implicit relations in nested named entities.

A similar phenomenon is semantic relations expressed by prepositions. For

example, a dessert to die for implies a purpose relation between dessert and

die; and her death from pneumonia expresses a cause relation. Hovy et al.

[2010] and Srikumar and Roth [2013] proposed an inventory of relations and

built classification models to predict the relations in the preposition structure.

However, they did not concentrate on nested named entities. The arguments

of prepositions, i.e., the governor and the object, are not limited to nouns.

Peñas and Ovchinnikova [2012] are among the first to attempt to study the

relations implied in nested named entities. Their model depends on a relation

triple database and the existence of evidence in the corpus to identify the types

of entities. For example, to extract the relation in GTech Images there should

be sentences such as “GTech Images is a product...” However this evidence

may not exist. We agree with them in that the implicit relations are dependent

upon the entity types. However, we wish to take a further step, using features

such as the head of entity mentions, entity shapes, and entity embeddings to

represent the latent type instead of explicitly identifying the type. Besides

their study is based on 77 instances, while ours is based on thousands.

5.2 Data annotation and analysis

5.2.1 Data annotation

Few information extraction corpora have taken nested named entities into

consideration. In order to study the phenomenon systematically we create

an automatically annotated corpus from Wikipedia definition sentences. The

corpus contains pairs of entities, with one entity (sub-NE) as the substring of

the other (super-NE), and their relation(s)1. In the following, we will describe

1We intend to release this data online.
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our automatic annotation process.

One Wikipedia page is usually about one entity, with definition sentences

of the entity at the top. The advantage of Wikipedia definition sentences is

that no named entity recognition is needed. We assume that the first sentence

of every page is a definition sentence and its subject is the title entity, even

if the word sequences do not match. Other named entities are the ones with

links to other Wikipedia pages. Among the definition sentences, we choose

the ones which contain non-subject entities that are substrings of the titles.

Following is one example, a definition sentence from the page with the title

Isle of Wight Festival.

(1) The Isle of Wight Festival is a music festival which takes place every

year on the [[Isle of Wight]] in [[England]].

Here the double square brackets represent linked word sequences. Isle of Wight

is linked to another page about the Isle of Wight County. It is chosen as the

sub-NE because it is contained in the title. The substring entity and the title

are our target nested named entity pair.

There are cases when the title contains brackets, such as Invisible (Jaded

Era song) and Gary Locke (Scottish footballer). We consider them as two

entities and choose the one that contains the sub-NE as the super-NE. For

the two example titles, the super-NEs will be Jaded Era song and Scottish

footballer.

After the entity pair identification, we extract the relations between the en-

tities with two approaches. The first is extracting a natural language relation

(NL-rel) from the definition sentence. We use the Stanford typed dependency

parser [Marneffe et al., 2006b] to parse the sentence. After identifying the

head word of each entity, we extract the verb on the shortest dependency path

between the head words of the subject and the sub-NE as the relation. In

Example (1), the head of the subject is Festival according to the dependency

path. The head for the second entity (sub-NE) is Isle. The shortest depen-

dency path between the two words is: Festival
nsubj← festival

rcmod→ take
prep on→
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Figure 5.1: One indirect relation example in Freebase. The relation between
University of Perpignan and Perpignan has two links.

Isle. We extract take place as the NL-rel for the nested named entity pair2.

The second approach is to extract a Freebase relation (FB-rel). First we

extract the Freebase ID for every Wikipedia entity. Here we use a Freebase

dump file, which represents Freebase as a set of triples of the form <left ar-

gument, relation, right argument>. We extract any left argument of relation

/type/object/key when the right argument starts with /wikipedia/en id/. This

left argument will be the Freebase ID and the right argument’s suffix after

/wikipedia/en id/ will be the Wikipedia page title. For example, if the right

argument is /wikipedia/en id/Langenstein Castle, the Wikipedia page title is

likely to be Langenstein Castle.

After the Freebase ID extraction, we extract Freebase relations between

the nested named entities. We use both the Freebase dump file and the graph

representation file of Freebase from [Yao and Van Durme, 2014]. The Free-

base dump file has direct link relations between two entity IDs, while the

graph representation file has relations with two hops, such as the relation

/organization/organization/headquarters /location/mailing address/citytown

between University of Perpignan and Perpignan as in Figure 5.1.

2We extract objects of the light verb take to form a relation phrase.
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train dev test

NL-rel set 17659 5786 4635

NL-rel set with Freebase IDs 13344 4040 3329

FB-rel set 4070 1169 413

Table 5.1: Size of the dataset. Row 1 shows the size of entity pairs with
NL-rels. Row 2 represents the size of a subset of Row 1, where entities have
Freebase IDs. Row 3 shows the size of a subset of Row 2, where entities have
Freebase relation(s).

We take relations’ direction into account. For example there is a rela-

tion /location/location/contains from Vernon to Vernon College, so we add a

hyphen to the relation and use -/location/location/contains to represent the

relation from Vernon College to Vernon. Note that one nested named entity

pair might have several Freebase relations.

5.2.2 Annotation analysis

DataSet Size

Table 5.1 shows the nested named entity pair set size. The first row shows the

size of entity pairs with NL-rels. The second row shows the number of pairs

in the NL-rel set that have Freebase IDs for both super-NEs and sub-NEs.

The third row shows the number of pairs in the NL-rel set that have Freebase

relation(s).

Note that the size of the NL-rel set is larger than the FB-rel set. There

is a decrease from Row 1 to Row 2 as we did not find Freebase IDs for a few

Wikipedia entities because we can not find sub-NEs’ Wikipedia pages. There is

a larger decrease from Row 2 to Row 3 because of the well known Freebase in-

complete problem. It is possible that relations are not tagged in Freebase even

though they exist. For example, there should be a /sports/sports team/location

relation between South Fremantle Football Club and Fremantle, which is miss-

ing from the version of Freebase dump we downloaded (It is the version of Sep.

28, 2014.)
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Relation Distribution

Here we consider the implicit relation extraction as a multi-class classification

task with frequent relations as classes.

For the NL-rel set, we extract the relations that occur with more than 40

nested entity pairs, and categorize others into one class Other. In total, there

are 48 relation verbs: {base, build, comprise, create, design, develop, establish,

headquarter, hold, host, locate, make, manage, manufacture, produce, ... }.

Originally these 48 relations cover around 67% of the nested named entity pairs

in the training set. To improve the classification models’ recall, we sample only

10% of Other relations in the training set while keeping the development and

test set untouched.

For the FB-rel set, we also extract frequent relations, i.e., relations that

occur more than thirty times. There are 38 such relations. Then we notice that

a lot of relations are symmetric relations, such as -/music/artist/album and

/music/album/artist. Certain relations are highly correlated, such as /mili-

tary/military conflict/locations with -/location/location/events . We calculate

the pointwise mutual information (PMI) between relations R1 and R2:

PMI(R1, R2) = log
N ∗NEPair1 ∩NEPair2
NEPair1 ∪NEPair2

(5.1)

where N is the number of NE pairs in the training set and NEPairi is the

number of pairs with Ri. We then merge the relations manually, guided by

the PMI value with the more frequent relation as the final relation for a class.

Finally there remains 18 relations and one Other class.

Table 5.2 shows the Freebase relation set and their frequency in the training

set. Note that there are two compound relations here, e.g.,

/organization/organization/headquarters /location/mailing address/citytown.

Compound relations mean that the entities are not directly linked but have

an artificial node between the two entities (Figure 5.1). From the table we

can see that these frequent relations cover around 90% of the nested named

entities in the FB-rel set.

One question is whether the high coverage still holds in the set of nested

named entity pairs whose relations are missing in Freebase? To show that
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these frequent FB-rels can also represent most of the missing relations of nested

named entity pairs, we randomly sampled 100 entity pairs in the NL-rel set

(Row 1 in Table 5.1) that do not have a Freebase relation and annotated them

manually with the 18 FB-rels or Other by two annotators. The coverage is

80% by annotator 1 and 92% by annotator 2, with inter-agreement of 71%.

The coverage is still satisfactory. Table 5.3 shows the Cohen’s kappa coeffi-

cient (Equation 5.2) [Smeeton, 1985] for relations that are tagged more than

or equal to 5 times by both annotators. Overall kappa value is 0.67, which

means the agreement is not accidental. We can see that the two annotators

disagree the most on which pair does not belong to the 18 relations, and the

/organization/headquarters relation. The reason is that one annotator prefers

to use -/location/location/contains instead of /organization/headquarters.

Cohen’s kappa coefficient is used to estimate the agreement between an-

notators. It is the difference between actual agreement Po and estimated

agreement Pe. If the annotation set is {positive (1), negative (0)},

k =
Po − Pe

1− Pe

,

Po =
(A1 = 1 and A2 = 1)

all instances
∗ (A1 = 0 and A2 = 0)

all instances
,

Pe =
(A1 = 1)

all instances
∗ (A2 = 1)

all instances
+

(A1 = 0)

all instances
∗ (A2 = 0)

all instances
(5.2)

Relations Kappa
Other 0.24
-/music/artist/album 1.0
-/location/location/contains 0.72
/sports/sports team/location 0.81
-/location/location/events 0.56
/organization/organization/headquarters

/location/mailing address/citytown
0.51

-/biology/organism 0.92
-/base/cars refactor/make/model s 1.0

Table 5.3: The annotation agreement for pairs that have no Freebase relations.
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accuracy (%)
Entity Extraction 99
Definition Sentence 99
FB-rel 96
NL-rel 96

Table 5.4: Automatic annotation accuracy. The first row is the accuracy of
entity extraction. The second row shows the accuracy of extracting definition
sentences. The third and fourth rows show the accuracy for the FB-rel and
NL-rel annotation.

Annotation Accuracy

To estimate the accuracy of our automatic annotation, we sampled 100 nested

named entities in the FB-rel set (Row 3 of Table 5.1), and confirmed whether

the NL-rel and FB-rel are correct for the super-NE and the sub-NE.

Table 5.4 highlights the results. The first row is the accuracy of entity

extraction. The only error is for title Walton High School (New York City),

New York City is extracted as the super-NE instead of Walton High School.

The second row shows the accuracy of extracting definition sentences. One

sentence out of 100 is incorrect. The third and fourth rows show the accuracy

for the FB-rel and NL-rel annotation. FB-rel errors are caused by classifying a

frequent relation as Other, because of the synonym relations in Freebase. For

example, Camelot Ghana should have a relation -/location/location/contains,

but it has /organization/.../headquarters /location/mailing address/country

instead, which is not in our frequent relation set, thus tagged as Other. NL-rel

errors are usually caused by parsing mistakes.

5.3 Implicit Relation Classification

We propose classifying the implicit relations with two supervised models: SVM

and Neural Network. Before going into details of their functions, we will first

describe our feature set.

The entity types play a central role in inferring the relations between two

entities. We first extract entity types from Wikipedia definition sentences (by

dependency patterns) and from Freebase (by links). However, in reality, entity
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# Feature Description
1 word unigrams in the super-NE
2 token length of the super-NE
3 super-NE’s head word
4 super-NE’s head word shape
5 super-NE’s phrase structure
6.1* super-NE’s Wiki-type
6.2* sub-NE’s Wiki-type
7.1* super-NE’s Freebase type
7.2* sub-NE’s Freebase type
8.1* bigram frequencies of the Wiki-types and the relation
8.2* PMI of the Wiki-types and the relation
9+ sub-NE’s named entity tag
10.1+ bigram frequencies of the type-replacements and the relation
10.2+ PMI of the type-replacements and the relation
11.1 word embeddings of the super-NE’s headword
11.2 entity embeddings of the super-NE
11.3 entity embeddings of the sub-NE

Table 5.5: Features for the implicit relation classification. We use features with
* and features with + separately when constructing models in our experiments.

types may not be explicitly expressed in text. To deal with missing types, we

replace types with entity head words and named entity tags, such as PERSON

and ORGANIZATION. Inspired by the named entity recognition literature we

also extract features such as word, word-shape, and word embeddings.

Table 5.5 shows our feature set. In the conversion to machine learning

models’ instance representation, numerical features, such as PMI scores and

token length, are kept in their original form. Categorical features, such as

the entity types, word unigrams, and word shapes, are converted into binary

features by creating new features for each distinct value. If the category is

matching the value is 1, the value is 0 otherwise. Below, we give further

explanations for a subset of the features.

Feature 3 and 4 are related to super-NEs’ head words. We notice that

many compound entities’ head words infer the entity types, and the longer

an entity, the more likely this is true. For instance, University of A usually

means the entity is a university. Recall that we already extracted heads of

entities when extracting nested named entities from Wikipedia (Section 5.2.1).
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The head word’s shape feature includes information such as capitalization and

existence of numbers. For example, for the entity Convair XC-99, the head is

XC-99. Its shape feature is ALLC-DASH-DIG, where ALLC means that the

word is all capitalized and DIG means that the word contains digits.

Feature 5 represents the phrase structure of the super-NE, which is a

categorical feature. We embed the entities into sentences “That is NE,” e.g.,

“That is University of A.” The Stanford constituent parser will return the

phrase structure of the NE. For example the phrase structure of Battle of

Gravelines is “NP → NP PP.”

Feature 6 includes the super-NE and sub-NE’s Wiki-types. These two

categorical features are extracted from Wikipedia’s definition sentences. We

use the dependency path between the subject and the sub-NE again, and

assume that the common noun that connects with the subject is the type of

the super-NE. Consider again Example (1), its dependency path, Festival
nsubj←

festival
rcmod→ take

prep on→ Isle, indicates that festival is the type of The Isle of

Wight Festival. We need to use the links in the definition sentences to locate

the sub-NE’s page and its type. If we can not find the Wiki-type of an entity,

it is represented as null.

Feature 7 includes Freebase types. Every Freebase entity has several

Freebase types. Most of the Wikipedia titles can be mapped to a Freebase

entity. We extract entity types in Freebase such as /base/culturalevent/event,

/location/citytown, and /organization/organization member. If we can not

find the Freebase type of an entity, it is represented as null.

Feature 8 and 10 indicate the correlation between types and implicit

relations. Peñas and Ovchinnikova [2012] model the correlation with the prob-

ability of a relation given a type. We extend this idea to include the pointwise

mutual information (PMI) and bigram frequencies between relations and types

(These are two separate features). The bigrams that we consider are: (super-

NE’s type, relation) and (sub-NE’s type, relation). Because in reality, entities’

types may not be explicitly mentioned, we also try to replace the Wiki-types

with head words or named entity tags. We run the Stanford NER tool on the

definition sentences to extract named entity tags [Finkel et al., 2005]. In the

67



experiments section, we will compare these different types to see the effect on

the models’ performances.

Feature 11 is a set of features related to embedding. Word embeddings

represent words into numerical vectors, which are typically induced by neural

language models from a large text. Ideally the more similar two words are, the

more similar their vectors will be. One problem of the one-hot representation of

words, e.g., Feature 1 and 3, is data sparsity. Word embeddings can potentially

alleviate the issue. We use word embeddings of super-NEs’ head words and

the entity embeddings, which are produced by the Word2vec model [Mikolov

et al., 2013]. Every embedding represents a set of features with size n, which

is the length of an embedding vector.

5.3.1 Supervised models

We compare a support vector machine (SVM) model with a neural network

model. We adapt the multi-class SVM tool by [Crammer and Singer, 2002],

which uses linear kernel.

For our neural network model, we use the softmax function as the top layer.

The predicted probability for the i’th class given the hidden layer h is:

P (y = i|h) =
eh

Twi∑
k e

hTwk
(5.3)

where h is the hidden layer vector, and wi is the ith column of the weight

matrix W .

For training, we minimize the cross entropy (Equation 5.4) with AdaGrad

[Duchi et al., 2011]:

Loss = −
∑
yi

p(yi) log q(yi). (5.4)

where p(yi) is 1 when yi is the correct relation of the entity pair, 0 otherwise.

q(yi) is the probability of the relation assigned by the model.

Our neural network model contains only one hidden layer (We also imple-

mented a two layer model which provided minor improvements.) Both SVM

and neural network models output the most probable relation as the answer.
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5.3.2 Baseline

Peñas and Ovchinnikova [2012] ’s model depends solely on entity types to

predict relations. We modify their model as a baseline. P (rk|ei, ej), the prob-

ability that a relation rk is implied in an entity pair (ei, ej), is equal to:

∑
tm∈Ti,tn∈Tj

P (tm, tn|ei, ej) · P (rk|tm, tn) (5.5)

where tm is a type in the type set Ti of the entity ei.

Because every (type, entity) bigram occurs only once in our training data,

we set P (tm, tn|ei, ej) = 1 for all type pairs when tm ∈ Ti and tn ∈ Tj.

The probability of a relation given a type pair is calculated based on the

counts in the training data:

P (rk|tm, tn) =
#(rk, tm, tn)

#(tm, tn)
(5.6)

If #(tm, tn) = 0, we back off to P (rk|tm) and P (rk|tn):

P (rk|tm, tn) =
√
P (rk|tm) · P (rk|tn) (5.7)

If either #(tm) = 0 or #(tn) = 0, we use the other half. If both are zero, we

choose the most frequent relation.

5.4 Experiments

Our experiments are divided into two parts: one represents implicit relations

in nested named entities with Freebase relations (FB-rel), and the other with

natural language relations (NL-rel). Our metric is the weighted average F-

score among the relation classes except the Other relation3.

5.4.1 Freebase relation classification

Table 5.6 shows the results of FB-rel prediction on the test set with the baseline

(Penãs:2012), SVM, and neural network models. The first four rows represent

different feature setting We can see that with nearly perfect entity types the

3Weights are assigned by relations’ frequency distribution in the test or development set.
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# existence of types and embeddings SVM NN
(1) with Wiki and FB types 94.3 94.4
(2) (1) + word embedding 93.3 94.2
(3) with type-replacements 81.7 80.7
(4) (3) + word embedding 82.2 83.7

(5) (Penãs:2012) with FB types 79.8
(6) (Penãs:2012) with Wiki types 64.8

Table 5.6: The F-score of FB-rel prediction on the test set. We compare
the models with or without Wikipedia or Freebase types; and models with or
without word and entity embeddings.

implicit relation extraction is an easy task (Row 1 and 2). For the baseline,

using FB types is better than using Wiki types because FB types are less

ambiguous. Comparing Row 1 with Row 5, we can see that our feature based

model is much better than the baseline. It incorporates features besides types

and can predicate relations even when no entity type can be found.

Adding word and entity embeddings does not improve the performance

when types are accurate (Row 1 vs. Row 2). Row 3 and 4 show the results

without types from Wikipedia or Freebase, instead, we use the super-NE’s

head and sub-NE’s NER tag (type-replacements), i.e., using features 9 and 10

to replace 6 and 8. Under this setting, the embedding feature improves the

performance (Row 3 vs. 4)4.

To better understand the task, we present the precision, recall, and F-score

of every class in the last 3 columns of Table 5.2. The results are based on Model

(4) in Table 5.6 on the development set. We can see that the performance is

not proportional to the training size. -/symbols/name source/namesakes is

more frequent than -/newspaper circulation area/newspapers. But the F-score

of the former is much lower than that of the latter. One hypothesis is that

the better the head words represent the types, the better the classification

performance. For example, the nearby airports relation gets such a high F-

score, because in only 4 out of 228 cases, such nested named entities’ extracted

head words are neither airport nor aerodrome. These 4 cases are caused by

4The improvement is statistically significant with P<0.05, computed using the approxi-
mate randomization statistical test.
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Gold relation Confused with
album Other::12, starring roles::1

contains
Other::33, nearby airports::7, tourist attractions::4,
namesakes::2, headquarters::1

nearby airports Other::3, contains::1
sports team/location Other::2, newspapers::2
location/events Other::4, contains::2

namesakes
Other::18, album::5, contains::3,
organizations founded::4

compositions
manufacturer Other::2
headquarters contains::17, Other::1, namesakes::1
tourist attractions contains::7 , Other::2
people born here Other::15, headquarters::1
starring roles Other::2
organizations founded Other::5, namesakes::4 , album::1
newspapers
lower classifications Other::2
make/model s Other::6
mobile phone/brand Other::1
software Other::3

Other
contains::6, album::4, events::4 namesakes::3 ,
compositions::3, location::1,headquarters::1,
software::1

Table 5.7: Confusion matrix on the development set using the neural network
model with type-replacements and embeddings.

head word extraction error.

Table 5.7 shows the confusion matrix of the FB-rel prediction on the de-

velopment set. Each row shows the correct relation and the false relations

assigned by our model, with the corresponding frequency (relations are abbre-

viated). We can see that relations such as headquarters, tourist attractions are

mis-classified as contains, causing low precision of contains and low recalls of

headquarters and tourist attractions. model s instances are classified as Others

probably because of the difficulty of inferring types for product named entities.

We also conducted an ablation study to measure the contribution of specific

feature sets (Table 5.8). The metric is F-score. The second column represents

the study for the model with Wiki and Freebase types. The third column shows

the results for the model with type-replacements. From the second column (rm
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Wiki,
FB types

type
replacements

all features 93.3 80.7

rm 1 ( words) 92.8 79.5

rm 2 (NE length) 92.6 80.3

rm 3 and 4 (super-NE head) 92.3 (rm 4) 79.8

rm 5 (phrase structure) 92.5 80.3

rm 6 and 8 (Wiki-type) 92.2 (rm 10) 77.9

rm 7 (FB type) 81.9 N/A

rm 6, 7 and 8 77.3 N/A

Table 5.8: FB-rel prediction F-score on the development set with removing
different sets of features. The first row shows results with all features, either
with Wiki and FB types or with type-replacements. Other rows show the
results of removing one feature set.

# existence of embeddings SVM NN

(1) with Wiki and FB types 57.5 61.0

(2) (1) + word embedding 58.1 61.8

Table 5.9: Natural language relation prediction F-score on the test set.

6 and 8 vs. rm 7), we can see that Freebase types are more important than

Wiki-types. This may be because Freebase types are very accurate and less

ambiguous compared with Wiki-types. Comparing the last row of the second

column with the first row of the third column (77.3 vs. 80.7), we can see that

adding type-replacements does improve the performance when accurate types

are not available. When using type-replacements, the correlation between

relations and types becomes the most important feature (rm 10).

5.4.2 Natural language relation classification

Table 5.9 shows the F-scores of NL-rel prediction on the test set with both

SVM and neural network models.

The results are much worse than those of FB-rel prediction. This could

occur because there is significant overlap between NL-rels. For example, FB-

rel /cars refactor/make/model s can be represented as produce, make, man-

ufacture, etc. On the other hand, because of word ambiguity, one word can

represent different relations. For example, develop can be used to represent

the relations between manufacture and airport, or manufacture and software.
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Because the automatic NL-rel annotation is too noisy, we recommend using

the Freebase relation set to study relations between nested named entities.

5.5 Summary

Previous relation extraction studies concentrate on relations between two enti-

ties that do not have an overlap. However there exist an abundance of nested

named entities where useful relations exist.

We proposed a new task, implicit relation extraction in nested named en-

tities, to fill the gap in the current relation extraction field. To study the task

systematically, we constructed a new dataset automatically using Wikipedia

definition sentences and Freebase. We then established a supervised classifica-

tion model for relation classification. We experimented using features such as

Wiki types, entity heads, and word embeddings. Experimental results show

that our model is much better than a model which depends solely on types

[Peñas and Ovchinnikova, 2012].
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Chapter 6

Question Answering with Open
Information Extraction

One application of information extraction is supporting natural language un-

derstanding, especially in improving other semantic tasks such as machine

translation or question answering. After describing several models that im-

prove information extraction, I present our work on using an Open IE model

for question answering.

Although there are questions that need inference, such as “whether a person

is guilty given a legal case,” most current question answering systems focus on

answering factoid questions, i.e., questions that can be answered with short

phrases about facts. One such example is “who is the prime minister of Canada

in 2016?” with the answer “Justin Trudeau.” Our research also focuses on

factoid questions.

Jurafsky and Martin [2000] classify the question answering systems into

two categories, information retrieval-based and knowledge-based. The former

retrieves answers directly from the webpages with search engines. The latter

first builds a semantic structural representation of the knowledge and searches

answers from the knowledge base. A knowledge base contains entities and

relations between entities. One common format of a knowledge base is a

set which contains triples, where one triple contains two arguments and a

predicate, i.e., the relation between the two arguments. There are also systems

that use both approaches, such as DeepQA from IBM [Ferrucci, 2012]. Our

research concentrates on knowledge-based question answering.
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The literature further categorizes systems of question answering (QA) from

a knowledge base (KB) into two types. One uses semantic parsing [Berant

and Liang, 2014, Reddy et al., 2014, Yih et al., 2015], and the other uses

information extraction (IE). Semantic parsing systems derive a logical form

query from a natural language question and search the knowledge base with

this query. One example of the logical form is λx.road(x)∧lead to(x,ROME),

which represents the question “which road leads to Rome.” Instead of deriving

a logical form, information extraction systems find answers directly, based on

the target entity and relation words. Our system belongs to the latter as we

do not use logical forms.

There are also at least two types of knowledge bases. One is a curated

knowledge base, such as Freebase, which is manually created and very accu-

rate. However, such databases have very low coverage, for example, numerous

relations that exist between entities are missing in Freebase. The other is an

automatically extracted knowledge base, such as relation triple sets extracted

by Open IE systems, which we call IE KB hereafter. Semantic parsing-based

systems take the first type as the knowledge base because of their requirement

for high accuracy facts. Our system will use both types of knowledge bases.

We use both the curated KB, Freebase, and an IE KB, where relations are

extracted from a large set of webpages by our Open IE system.

One major challenge for question answering from a KB is the myriad ways

in which predicates can be expressed. On the one hand, we need to deal

with language variability, for example, acknowledging that the following two

questions have the same meaning: “What character did Natalie Portman play

in Star Wars?” and “What is the role of Natalie Portman in Star Wars?”

We call this NL-NL paraphrasing, since it requires a mapping between two

natural language expressions. On the other hand, we need to bridge the gap

between the expression of relations in curated knowledge bases, such as Free-

base, and relations conveyed in natural language sentences. We refer to this

as NL-KB paraphrasing. For instance, a QA system will require a mapping

between the natural language relation brother and the Freebase relation “/peo-
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ple/person/sibling s1.”

There are several levels of paraphrase or textual entailment task: paragraph

level, given one paragraph or several sentences, if the other sentence that is

not in the paragraph is correct; sentence level, given one sentence, if the other

sentence is correct; phrase or word level, given one predicate, i.e., relation, if

the other predicate is correct. In the previous example, deciding if the two

questions have the same meaning: “What character did Natalie Portman play

in Star Wars?” and “What is the role of Natalie Portman in Star Wars?”

it can be done both on the sentence level or the phrase level. On the phrase

level, we need to know that <person, play, character> has similar meaning to

<person, star as, character>.

To deal with the NL-KB mapping problem, Berant and Liang [2014], Yao

and Van Durme [2014] employed association scores that are learned by machine

translation techniques. Alternatively, Fader et al. [2014] used several levels of

paraphrases, mapping of questions to templates and relation re-writing. For

example, they map question “who invented papyrus?” to the query pattern

(?x, rel, arg), where ?x is the slot to be filled, rel is the relation, and arg is the

argument of the relation. Re-write is a phrase level paraphrase, for example,

mapping play as to star as. To calculate the paraphrase scores, i.e., measure

the similarity between relations, they use pointwise mutual information (PMI)

on different sets of corpora, such as WikiAnswers and their IE KB.

However, there are many other approaches in the paraphrase literature

which has not been explored in QA systems. Our research focuses on phrase

level paraphrase. We try to find out which paraphrase approach is more suit-

able for QA by comparing several representative ones, including paraphrase

frequency, pointwise mutual information (PMI), and Lin’s model DIRT [Lin

and Pantel, 2001], which is an advanced version of PMI. Instead of creating

several levels of paraphrase, we demonstrate how one layer of phrase level

paraphrase can achieve improved performance.

Our overall system is similar to that of [Fader et al., 2014]. One problem

1Freebase relation names usually start with type information of the subject entity and
end with the relation.
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of their system is that their relations in the IE KB are not lemmatized, which

adds burden to paraphrase models. For example, the paraphrase process needs

to know that “own,” “owns,” and “owned” represent the same relation. Our

IE KB has no such problem.

Another advantage of our KB is that the entities in the KB are linked to the

entities in the Freebase. Our system can detect that both “the United States

of America” and “U.S.” represent the same entity as in the Freebase with

ID “/m/0248zp.” This not only has the potential to improve the paraphrase

between NL and FB relations but also improve the recall when searching on

the IE KB.

The results on the WebQuestion set [Berant et al., 2013] show that our

results improve over those from Fader et al. [2014] and Yao and Van Durme

[2014]. Although our results are still inferior to the best question answering

system [Yih et al., 2015], our main contribution is providing the new Open

IE triple set, and a simplified question answering framework that achieves

comparable performance.

6.1 Related Work – Question Answering

A current major research thread in question answering (QA) is to cast the

task as a semantic parsing problem, where the objective is to map a natural

language question into a formal language, e.g., a database query. This query

is then run on a database, and results are returned to the user.

SCISSOR [Ge and Mooney, 2005] was one of the first successful attempts to

create a robust semantic parser. It worked by first parsing a question, augment-

ing the result with semantic information, and then transforming the result into

a logical language. However, this process requires a large volume of training

supervision, namely “gold standard” annotations of semantically-augmented

syntactic trees paired with their logical representations. Its demonstration was

limited to GeoQuery [Zelle and Mooney, 1996], which is a database in a very

restricted domain.

A more recent approach to achieve robust, open-domain semantic parsing is
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that of Berant et al. [2013]. In their approach, they used Lambda Dependency-

Based Compositional Semantics (λ-DCS) logical formulas [Liang, 2013] for

their meaning representations, which can be converted deterministically into

Sparql queries on Freebase.

Along the process, it creates candidate derivations, i.e., trees, specifying

derivation rules, with the root node as the output logic form. The training

process set weights on features according to an objective function that max-

imize the log-likelihood of the correct answer. Derivations were constructed

recursively based on lexical mapping and composition rules.

The derivations are based on a lexical mapping between the natural lan-

guage expression and the knowledge base, i.e. NL-KB paraphrase, and a few

composition rules, such as intersection of two logical forms: type.location
⋂

peopleBornHere.Obama. Their NL-KB paraphrase component consists of two

approaches, alignment and bridging.

The alignment is based on the idea that the more entity pairs a natural

language relation phrase r, e.g., brother, shares with a knowledge predicate p,

e.g., /people/person/sibling s, the more likely they represent the same relation.

To extract r, they used REVERB on ClueWeb, a corpus with millions of

webpages.

Bridging handles cases where the predicates are expressed weakly or im-

plicitly, such as “What actors are in Top Gun?’ ’ First they extracted types

of the two entities, one answer entity, one target entity Top Gun. Then they

extracted the implicit predicates according to the type pairs (t1, t2). The

more frequent a predicate is with the pairs, the more likely it is the implicit

relation.

Yih et al. [2015] developed the current best performing semantic parse-

based QA system on the WebQuestion set. Inspired by [Yao and Van Durme,

2014], instead of searching on the whole knowledge base, they defined a query

graph which is more closely related to the target entity in the questions. In

such restriction, Freebase relations that are not occurred with the target entity

will not be the candidates of paraphrase, which prunes the candidates.

Regarding IE QA systems, there are two representatives. Yao and Van Durme
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Figure 6.1: An example of a sub-graph for the target entity Natalie Portman.
It is also an example of compound artificial nodes.

[2014] constructed a graph structure to represent each KB topic. For every

question, they first located a subgraph with the target entity in the question,

similar to finding related documents in the IR based QA systems. Then they

analyzed which entity in the subgraph was most likely to be the answer. Figure

6.1 shows one example sub-graph for the topic entity Natalie Portman.

Fader et al. [2014]’s system constructed the KB as a triple database, where

each triple consists of two entities and one relation phrase. The relations are

from both Freebase and OpenIE extraction. The system exploited several

levels of paraphrase.

One is the process of paraphrasing from one question to another question,

for example, from “How does affect your body?” to “What body system does

affect?” They use the corpus of WikiAnswer paraphrase2 for the step. The

corpus contains clusters of questions that are similar. One example cluster con-

tains questions such as “why do we use computers?” and “what do computers

replace?”

Another level of paraphrase is parsing, which converts natural language

questions into a small number of high-precision templates. For example, from

2http://wiki.answers.com
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“Who/What is NParg” to (arg, is-a, ?x). The templates are created manually.

Another paraphrase component is query-rewriting, which is a phrase level

paraphrase. For example, its paraphrase operator re-writes children to was

born to. As mentioned in the introduction, one problem of their paraphrasing

is that it depends on a relation triple set that is not normalized. For example,

there are relations was born to and is born to, which can be easily combined

to one relation by lemmatization. The lack of lemmatization will increase the

complexity and decrease the performance of paraphrase.

6.2 Our DataSet

To augment our QA system, we have created a new Open IE relation triple

dataset that contains sentences and document IDs from which the triples are

extracted. The relation triples are extracted from ClueWeb09 by our Open IE

system. Each triple contains two arguments, which are entities from Freebase,

and one relation phrase. The arguments’ Freebase IDs are provided by the

FACC1 corpus3. We lemmatized the relations and provided the sentences that

contain the relation triples. As a result, the dataset contains more than 300

million relation triples4.

Table 6.1 shows one relation triple example, including the originating parsed

sentence. The relation triple is from the 485th sentence of the document

clueweb12-0700tw-51-00204. The relation word is director, which is the 4th

word in the sentence. The two arguments Raul Gonzalez and National Coun-

cil of La Raza have corresponding Freebase IDs: /m/02rmsx3 and /m/085f3n.

Many NLP tasks can potentially benefit from such data. For example, for

the question answering task, there are at least three advantages. One is that

the entities are linked to Freebase, which will identify entities that represent

one object but with different mentions, for example, mentions in the set {U.S.,

United States, United States of America} represent the same entity. Secondly,

the triple is associated with the parsed sentences and the document ID, which

3http://lemurproject.org/clueweb09/
4We use only half of the ClueWeb09 because of resource limits.
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Relation Triple Example:
<Raul Gonzalez, director, National Council of La Raza>
<doc>clueweb12-0700tw-51-00204

<relation>485,
Raul Gonzalez /m/02rmsx3,
National Council of La Raza /m/085f3n,
<E1> →(appos) director →(prep at) <E2>
director 4

(ROOT (S (NP (NP (NNP Raul) (NNP Gonza-
lez)) (, ,)
(NP (NP (JJ legislative) (NN director)) (PP (IN at)
(NP (NP (DT the) (NNP National) (NNP Council))
(PP (IN of)(NP (NP (NNP La) (NNP Raza)) ...)

Table 6.1: Example of a relation triple extracted from ClueWeb09, with its
source sentence and document ID.

can provide better evidence for questions with n-ary relations, such as “What

character did Natalie Portman play in Star Wars?” Finally, we can provide

explanations, i.e., by identifying sentences that are evidence in support of

our answers. We believe that this large volume of linked triples may not only

improve the mapping between the natural language and Freebase relations, but

also improve the recall of question answering, as we can also search answers

based on entities’ Freebase IDs. For instance, to search “which movie did Raul

Gonzalez direct?” we can search triples that have an argument Raul Gonzalez

or /m/02rmsx3.

6.3 System Structure

Figure 6.2 presents our general framework for open question answering. Bear in

mind that we search on two KBs: the Freebase and the IE KB. The framework

shows how to create a query from a natural language question to search in our

KB.

The first component of our system is query pre-processing. We use the

Stanford CoreNLP tool for entity extraction and sentence parsing [Manning

et al., 2014].

We assume each question contains one target entity. For example, in the
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question “What character did Natalie Portman play in Star Wars?” the target

entity is “Natalie Portman.” Given the dependency parse tree of a question,

the priority order of the target entity is: subject > direct object > other

entities. Entities with named entity types such as person or organization have

higher priority as target entities, compared to those such as numbers and dates,

as from our experience most questions are about a person or an organization.

We then extract the question phrase for each question. It can be a single

word such as where or a multi-word phrase such as which character.

To extract target relations, we identify the dependency path between the

target entity and the question phrase. The common words on the dependency

path are considered to be the target relation words. Consider the example

question in Figure 6.2, the dependency path is character ← play → Portman.

The relation word is play. When there are preposition dependency labels on

the path, we create a bigram relation with the verb / noun relation word and

the preposition. For instance, for the question “what country is the grand

bahama island in?” the relation is “be in.” “be” is filtered out as it is a stop

words. Note that we adapt a similar preposition binding approach for the

relation triples extracted with our Open IE system. There are cases when

there is no common words on the dependency path, one example question is

“what state does selena gomez?” In such case we extract the words in the

question phrase as keywords, such as “state.” The accuracy of this relation

extraction step will be presented in the Experiment section.

The second component of our QA system is paraphrase recognition,

i.e., the identification of a mapping between relations in the questions and

relations in the two knowledge bases. For example, we want to map the target

relation “play” to relations such as “star as” or “/film/performance/actor.”

Further details of our paraphrase models are in Section 6.4.

The third component is answer retrieval. Our knowledge base contains

triples from both IE KB and Freebase. We retrieve answers based on the

target entity, the relation words in the question, the corresponding paraphrase

relations, and context words.

The final component is answer re-ranking. In the previous answer re-
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Figure 6.2: Our open question answering system structure.
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trieval process, the context of the question, such as the name of the movie for

the character, is not used. The type of the retrieved answer and the type of

the answer that the question targets are also not considered. In the answer

re-ranking step, we extract features related to these information, and then use

an SVM-Rank system [Tsochantaridis et al., 2004] to re-rank the candidate

answers from the previous step. Every answer will be assigned a score by the

re-rank system. The top answers will be returned as the candidate answers.

Further details of the model and its features are described in Section 6.6.

6.4 Paraphrase

Substantial research has been devoted to automatic learning of paraphrase

from corpora5. However, the question answering community has currently

chosen only to adapt either a machine translation model or a simple pointwise

mutual information (PMI) model for paraphrase. Little has been done to

analyze the effect of different paraphrase approaches in question answering

systems. To answer the question “will better paraphrase approaches result in

better QA performance?” we compare three paraphrase models that we adapt

for our question answering system. The fact that our system uses only one

layer of paraphrase makes it easier to compare different paraphrase models.

One paraphrase model that we adapt is a frequency based model. Para-

phrase rules are learned based on a question answering training set. Given a

set of questions, the relation words in the questions are extracted with depen-

dency path rules as mentioned in Section 6.3. Then we retrieve the relation

triples that contain both the target entities and the gold standard answers

from a KB, which can be FB KB or IE KB. The score of a rule, query Rel →

KB Rel, is the frequency of the entity pairs that the query relation and the

KB relation share.

Another paraphrase model is a PMI based model, which is adapted by

[Fader et al., 2014] ’s QA system. The general function of the PMI between

5We concentrate on word/phrase level paraphrase instead of sentence level paraphrase.
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two relations x and y is:

log
P (x, y)

P (x)P (y)
(6.1)

where P (x) = count(x)/n, n is the number of entity pairs in the KB. For

paraphrase, count(relation) represents the number of entity pairs associated

with the relation, and count(relation1, relation2) represents the number of

entity pairs shared by two relations. Comparing with the simple frequency

based model, it penalizes relations that are too frequent.

The last paraphrase model we adapt is the highly-cited DIRT algorithm

[Lin and Pantel, 2001]. In this model, relations are represented by two vectors.

Each vector represents one argument slot. Their similarity score function is

defined as follows:

√
sim(vxl , v

y
l ) ∗ sim(vxr , v

y
r ). (6.2)

where vxl is a word vector representing the relation x ’s left argument slot. The

value of the vectors is the PMI between the relation and the argument.

We train the PMI and DIRT model on a subset of our Open IE triples.

The subset is retrieved with certain constraints to filter out noise in Open IE

extraction. One constraint is that, the relation words should appear between

the dependency path of two entities. The other is that the maximum path

length is 3 (while originally the relation words can be on one side of the entity

and the maximum length of the dependency path is 4). These restrictions

will increase the accuracy of the triples, and improve the performance of the

paraphrase.

Table 6.2 gives one artificial KB which contains both NL-rels and FB-rels.

The relations start with slashs are FB relations. There are 8 unique entity

pairs (relation directions are not considered). Five pairs of entities have the

FB relation /appointees /office holder, in which two of them have the NL

relation appoint. The PMI between /appointees /office holder and appoint

will be log 2/8
5/8∗3/8 .

Table 6.3 shows an example of paraphrasing from NL-rels to FB-rels using

our real IE KB and FB KB. The NL-rel is president and there are several
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argument 1 relation argument 2

benjamin harrison /appointees /office holder william howard taft

alaska house of representatives /appointees /office holder ted stevens

central intelligence agency /appointees /office holder roscoe hillenkoetter

bill clinton /appointees /office holder norman mineta

bill clinton /appointees /office holder pamela harriman

bill clinton /basic title president

bill clinton /organization founder democratic leadership council

benjamin harrison appoint william howard taft

bill clinton appoint pamela harriman

hillary clinton appoint barack obama

roscoe hillenkoetter director central intelligence agency

ted stevens leader alaska house of representatives

norman mineta serve bill clinton

Table 6.2: An artificial KB.

NL-rel: president

FB-rel PMI co-occur frequency

/government/us president/vice president 4.16 7.0

/government/government position held/office holder 3.21 23.0

/government/government position held/appointed by 3.18 3.0

/military/military command/military commander 3.18 3.0

Table 6.3: Paraphrasing from the NL-rel president to FB-rels. Second column
shows the PMI value between the NL-rel and FB-rel. Third column shows the
co-occurrent frequency.

candidates of FB-rel, which are ranked according to their PMI value with the

NL-rel. Table 6.4 shows an example of paraphrasing from NL-rels to other

NL-rels based on either PMI or DIRT.

6.5 Answer Retrieval

Our answer retrieval process uses a sophisticated form word matching, which

is similar to information retrieval. To explain this process, we first give a brief

description of the information retrieval architecture as a black box (without

details of algorithms).

The input of an information retrieval system is a query with keywords

and documents with potential answers for the query. The system searches for

relevant documents that contain matches of the keywords, and returns the
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NL-rel: president
NL-rel PMI co-occur frequency
ceo of 4.31 370
executive of 4.31 518
dictator 4.30 410

NL-rel DIRT co-occur frequency
head of 0.05 -
leader 0.03 -
executive 0.03 -

Table 6.4: Paraphrasing from the NL-rel President to other NL-rels. Sec-
ond column shows PMI or DIRT-score between the NL-rel and others. Third
column shows the co-occurrent frequency.

answer in the relevant documents. A keyword can be a MUST, which means

the matched document has to contain the keyword. The match could be a

more flexible SHOULD, which means the matched document does not have to

contain the keyword.

Keywords can be clustered into several fields, with the words in one field

of the query only match with the words in that field of the documents. For

example, if a query requires to search language in the title field, machine

learning in the article field, one document with both machine learning and

language terms in the title, will only have one match, the term language.

In our question answering case, we represent the KB as a set of documents,

where each triple is treated as a single document. Our KB contains triples from

both IE KB and Freebase. Our IE KB is as described in Section 6.2.

In Freebase, entities are represented as nodes and relations between them

are represented as links. One simple method of transforming the graph into

triple sets is using the two directly linked entities as arguments of the link

relation, such as in [Fader et al., 2014]. However relations between entities can

also be represented with several links instead of just one. Our Freebase KB

contains relation triples where entity pairs are directly linked by a relation or

by a compound relation. Here compound relations are relations with two links.

Because we need to map Freebase relations to natural language relations for

question answering, too much noise might be added to the mapping process
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if we use relations with more links. One example of the compound relation is

“/film/actor/film /film/performance/character” in Figure 6.1, which we here-

after abbreviate as “/film /character.” The middle node in between is an

artificial node, instead of an entity. It is used to represent relations or events

with multiple attributes, such as dates and locations. As pointed out by Yao

and Van Durme [2014], compound relations are important for the question

answering task, adding them will improve the recall of QA systems.

Every document in our KB contains 6 fields: the left argument’s surface

form (NE1), the right argument’s surface form (NE2), the left argument’s

Freebase ID (FBID1), the right argument’s Freebase ID (FBID2), the rela-

tion word(s), and the context words. For example, one document has natalie

portman as the left argument, padmé amidala as the right argument, /film

/character as the relation, m.123 as the FBID1 for the left argument and

m.456 as the FBID2 for the right argument.

The OpenIE triples’ context are the sentences containing that triple. The

Freebase triples’ context are the compound node text for compound relations.

For instance, the context of the triple <natalie portman, /film /character,

padmé amidala> is “padmé amidala - Star Wars episode ii: attack of the

clones - freebase data team - film performance.”

We use Lucene, an information retrieval framework tool, to store the doc-

uments, i.e., triples. Note that context sentences are tokenized and indexed

by Lucene, but they are not lemmatized.

Given a question, from question processing and paraphrasing, we create

a query which contains a target named entity, a set of relations, and other

context words. Our relation set includes both the relations in the question

and their paraphrase words, as mentioned in Section 6.4. The Freebase IDs of

the target named entity are extracted by the Freebase API6. Now the query

contains a target named entity, several Freebase ID candidates, a relation set,

and a context set. A triple is retrieved if:

• its NE1 or NE2 matches with the target entity, or its FBID1 or FBID2

6Google no longer provides the API service after July 2016. However we have the results
for all the named entities in the WebQuestion set.
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matches with any of the Freebase ID candidates, which is a MUST con-

dition;

• its relation words match with any of the words in the query’s relation

set, which is a MUST condition;

• its context words match with words in the query’s context set, which is

a SHOULD condition.

If the NE1 or FBID1 matches the target entity, NE2 is returned as the

answer; otherwise NE1 is returned as the answer. The score of a triple is

calculated as follows:

score(Doc) =
∑

wi∈WQ∩WD

Weight(wi) (6.3)

where wi is a relation word in both the query and the relation instance. We

manually set scores to emphasize the original relations over paraphrase terms.

The original relations in the question are assigned a weight of 2, while their

paraphrase words are assigned with a normalized paraphrase score between

[0, 1]. The normalization assigns 1 to the best paraphrase relation and 0 to

the nth, where n is the maximum number of paraphrases. The scores for other

paraphrases are:

Weight(wi) =
score para(wi, rel)− score para min(w, rel)

score para max(w, rel)− score para min(w, rel)
(6.4)

We ignore the score of the entity match as it is a MUST and there is only one

target entity. The score of the context match is the number of words shared

in the question context and the triple context, which will be used for answer

re-ranking. Different relation words can lead to the same answer; we currently

sum up the scores of all retrieved triples that lead to one answer.

For explanation purposes, consider again the question “What character did

Natalie Portman play in Star Wars?’ ’ We extract the top three Freebase ID

candidates for natalie portman: {/m/09l3p, /m/0dncctc, /m/05ngby1}. With

the relation play, we build a relation set {play} ∪ {/actor, /written by, /char-

acter} ∪ {voice, set, quarterback, star, lead}. The terms {/actor, /written by,
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/character} are Freebase relations that have high paraphrase scores with play,

while the terms {voice, set, quarterback, star, lead} are NL relations from

the Open IE triples. The context is the word set of the sentence. We then

search for the target entity on either the left argument slot or the right, the

relation, and the context. The answer “padme amidala” is returned based on

the relation instances: <padme amidala, /actor, Natalie Portman>, <Natalie

Portman, /character, padme amidala> of Freebase; and <Natalie Portman,

play, padme amidala>, <Natalie Portman, know, padme amidala>, <Natalie

Portman, star, padme amidala> of the Open IE triples.

6.6 Supervised Re-Ranking

Answers retrieved by the previous step are based on word matching. Be-

cause of the noise retained in paraphrase and relation extraction, we need

to add more information to filter incorrect answers. We train an SVM-Rank

model [Tsochantaridis et al., 2004] to re-rank the answers so that correct an-

swers have higher scores than false answers.

Table 6.5 shows the features we experienced for our re-ranking system

(Analysis of effects of the features will be presented in the Experiments sec-

tion.) In the conversion to SVM’s instance representation, numerical features

such as PMI scores are kept in their original form. Categorical features, such as

the types of answers and paraphrase rules, are converted into binary features

by creating new features for each distinct value. If the category is matching

the value is 1, the value is 0 otherwise. Below, we give further explanations

for a subset of the features.

Feature 2 and 3 are categorical features. They add type match con-

straints with bigrams of (an answer Freebase type, whphrase) or (an answer

Freebase type, a relation word). The whphrase and relation words in the ques-

tion are indications of the correct answer type. For instance, a whphrase who

indicates the correct answer is more likely to be a PERSON. We use Freebase

types as the types of the candidate answers. Freebase types are extracted

according the candidate answer’s Freebase IDs. For every Freebase ID, there
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are relation instances with the relation /type. We extract the right arguments

of the instances as the types. There are thousands of types in Freebase, which

might cause sparsity issue. We then reduce the types to around 100 clusters,

as proposed by [Ling and Weld, 2012]. The type features will consider the

types of answers, and diminish those retrieved answers with an inconsistent

type.

Feature 4 is a numerical feature which still accounts for type constraints.

When the question phrase (whphrase) is a multi-word phrase, it contains the

type information. For example, “which country” indicates the correct answer

should be a country. We use our Open IE triples as another source of the can-

didate answer type information. We observe that types can be considered as a

relation between entities. For example, in the triple <Shakespeare, playwright,

England>, playwright is a relation between Shakespeare and England, and can

also be considered as one type of Shakespeare. Our hypothesis is that the more

often the type word in the question occurs with the candidate answer in the

Open IE triple set, the more likely the answer has that type. This hypothesis

leads to Feature 4. One example instance is, for the question “which country

invades Poland?” with the candidate answer Germany, the feature value is

the number of triples that match <?, country, Germany> in the Open IE

triple set.

Feature 5, 6, and 7 are the features related to paraphrase rules that lead

to the candidate answer. Intuitively, the more accurate the paraphrase rule

is, the more likely the answer is correct. We first include the specific rules

that lead to the candidate answer as categorical features (Feature 5). We then

include the one that has the max score in the format of max rule as categorical

features (Feature 6). We also include the value of the score for the max rule

as a numerical feature (Feature 7).

Feature 8 is a binary feature, determined by the percentage of context

words shared between the question and the retrieved triple (see Chapter 6.5

for the details of relation triples’ context). The target entity, the relation

words, and whphrase words are excluded from context words. Questions with

n-ary relations can benefit from this type of features. For example, for the
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ID Feature description

1 (NameSpace)
Whether the answer is extracted from Open IE KB, Freebase
KB, or both.

2 (Types wh)
Answer Freebase types with whphrase,
e.g. /location/country with what country.

3 (Types rel)
Answer Freebase types and relation in the question,
e.g. /location/country with invade.

4 (OpenIE type) Frequency of the bigram (answer and the type word in the question)
in ClueWeb.

5 (Para) Paraphrase rules that lead to the answer

6 (ParaMax) Paraphrase rule with the max score

7 (ParaMaxScore) The score of the paraphrase rule with the max score

8 (ContextHit) Context words hitting rate

9 (IRScore) Score of the answer with the answer retrieval component

Table 6.5: Features for the Supervised System.

question “What character did Natalie Portman play in Star Wars?” we check

how many words in the set {Star, Wars} are in the candidate answer’s triple

context. Suppose the two candidate answers are:

1. padmé amidala, with context “padmé amidala - Star Wars episode ii:

attack of the clones - freebase data team - film performance;”

2. black swan, with context “academy award for actress in a leading role -

83rd academy awards - black swan - role: nina sayers - 2010 - nanette -

award honor.”

The first answer’s context words hit rate is 1, as the context has {Star, Wars}.

The second has rate of 0. Currently this is a binary feature, if the context

words are all matched, the value is 1, 0 otherwise.

In training the SVM re-ranking model, negative instances include the false

answers on the top n candidates extracted by answer retrieval from both the

Open IE and Freebase, and all the correct answers are as positive instances.

This increases the number of positive training instances. In testing, we only

re-rank the top n answers, where n is set according to the performance in the

development set.

To combine Freebase and the Open IE KB, we have considered two alter-

natives. One combines the two sets of answers and then re-ranks the combined
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answer set. The other is to re-rank the two sets independently, and combine

them by assigning weights to different KBs.

6.7 Experiments

We evaluate our question answering system based on the question set provided

by Berant et al. [2013]. The questions are generated by the Google Suggest

API. Berant et al. [2013] used Amazon Mechanical Turk to create answers for

every question. One property of this dataset is that the answers are guaranteed

to be found in Freebase.

Our experiments attempt to answer several questions:

• Is our dataset useful for the paraphrase tasks?

• Which popular paraphrase approach is more suitable for question an-

swering?

• Is our system better than other information extraction-based systems?

There are at least two metrics used in the literature for question answering

evaluation:

1. Top 1 F1 score, as used by [Fader et al., 2014]. Every system outputs

only one answer. The system’s answer is the entity with the highest score

(randomly pick one if there is a tie). No answer is produced if the highest score

is below a certain threshold. An answer is considered correct if it matches any

of the gold standard answers. The precision, recall and F1 score are calculated

globally:

Precision = # questions with correct answers
# questions with answers

Recall = # questions with correct answers
# questions

2. Average F1 score. This is used by semantic parsing question answering

systems such as [Berant and Liang, 2014, Yih et al., 2015]. For every question,

the precision, recall, and F1 score are computed based on the gold standard

answer set. Then, the F1 scores are averaged across all questions in the test

set. This metric is used to reward partially-complete system answers.
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In the following experiments, we will compare our system with Fader’s with

respect to the first metric, and the other systems such as Yih et al. [2015]’s

with the second metric.

6.7.1 The Effect of Dataset Size

We demonstrate the effect of different dataset sizes by estimating a paraphrase

PMI model from a smaller subset of our data, and then comparing QA systems’

performance with these alternative paraphrase sets. We use the recall as the

comparative metric. Recall is calculated as the percentage of questions that

can be answered by the top 30 candidate answers. To filter out the potential

effect of feature choices and supervised models, results are based on the output

of the answer retrieval process on Freebase without re-ranking.

For every question we extract the top 100 Freebase (FB) relations as para-

phrase of one question relation (NL-rel) (100 is set according to the devel-

opment set). The paraphrase score is used as weight on the answer retrieval

phase. We use the PMI paraphrase model.

Our baseline consists of 800k triples, which is larger than the size of one

existing relation triple dataset from Riedel et al. [2013] (200k). The whole

paraphrase set has 26 million triples. When using 800k triples, the recall is

10.7%, whereas we obtain a recall of 34.5% when using 26 million triples. We

notice that the performance difference is dramatic.

6.7.2 The Effect of Paraphrase

Here we show the corresponding paraphrase effect on the Freebase-based and

IE KB-based question answering systems.

As mentioned previously, for the paraphrase between NL-FB relations, we

extract the top 100 Freebase relations for one question relation. The para-

phrase score is used as a weight on the answer retrieval.

Table 6.6 shows the recall measure on the top 30 answers with alternative

paraphrase models based on Freebase. Freq3000 is the case where we use only

the 3000 training sentences and the Open IE triple set. Freq3000+PMI is

the supervised paraphrase, Freq3000, plus the unsupervised paraphrase with
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models recall on the top 30

Freq3000 63.2%

Freq3000+PMI 64.5%

Table 6.6: Comparing different paraphrase models. Recall on the top 30, based
on Freebase.

models recall on the top 40

Freq3000 40.5%

Freq3000 + PMI 40.8%

Freq3000 + DIRT 40.7%

Table 6.7: Comparing different paraphrase models. Recall on the top 40, based
on Open IE KB.

the PMI measure between the FB-NL relations. The results show that the

unsupervised paraphrase between FB-NL relations does improve the recall.

It is not meaningful to use DIRT here. The reason is that the frequency of

every triple is one in Freebase, which makes the frequency of many bigrams

(argument, FB-rel) as one. The PMI of (argument, FB-rel), which DIRT

depends upon, is not reliable with such low frequencies.

For the paraphrase between question relations and Open IE KB relations

(NL-NL), we extract the top n = 10 Open IE relations for one question re-

lation (setting n between 6 and 10 does not display much difference on the

development set). Table 6.7 shows the top 40 answer recall values, with al-

ternative paraphrase models based on the Open IE KB. There is no obvious

difference among the alternatives. The paraphrase between NL-NL relations

is more difficult than paraphrase between FB-NL relations. One reason might

be that Open IE relation extraction noise is amplified twice for the NL-NL

paraphrase.

6.7.3 State-of-the-Art

As mentioned previously, our question answering system is an information ex-

traction based system. To tune the parameters and design the system, we split

the training set into 3000 of training sentences and 780 of development sen-

tences. After we tuned the parameters on the development set, we trained the
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models top1 P top1 R top1 F1 avg P avg R avg F1

Fader14 - - 35 - - -

Yao14(FB search API) - - - 51.7 45.8 33.0

OneLayer FB 44.7 39.5 41.9 48.3 45.0 37.2

OneLayer IE 28.5 26.6 27.5 29.0 24.2 20.4

OneLayer combine 41.4 40.3 40.8 40.3 45.7 37.9

Table 6.8: Results that compare our system with other IE-based question
answering systems.

SVM model based on the 3780 training sentences and tested the QA system

on the test set. Table 6.8 shows the results of our system comparing with the

other two IE based systems. Yao14 [Yao and Van Durme, 2014] ’s system uses

FB knowledge base solely; while Fader14 [Fader et al., 2014] ’s incorporates

both the FB and Open IE KB. Our one layer system based on Freebase is much

better than the one based on the IE KB due to the noise of information ex-

traction and NL-NL paraphrase. This makes the normal combination method

failed, i.e. the two methods mentioned in Section 6.6. Instead, for the combi-

nation system we use OneLayer IE ’s results only when OneLayer FB returns

no answers. Our system is better than both the previous IE-based systems. It

is better than Fader14 with an absolute F1 gain of 7% although both systems

use FB KB and IE KB. Our system based solely on FB KB is already better

than Yao14, which also is based on FB KB only. Notice instead of measured

manually (as in Fader14), our system is automatically measured on the We-

bQuestion answer set, which means the performance is under-estimated, as we

will show in Section 6.7.5.

We also compare our system with several semantic parsing-based systems:

Berant et al.’s systems, Berant13 and Berant14; and the Microsoft system,

MS15 [Yih et al., 2015], which is a semantic parsing-based system that achieves

the current best performance on the WebQuestion set. Table 6.9 shows the

results. Our system is the first information extraction based system that

performs better than Berant13 on the Freebase data.

96



models avg P avg R avg F1

OneLayer IE 29.0 24.2 20.4

Berant13 48.0 41.3 35.7

OneLayer FB 48.3 45.0 37.2

OneLayer combine 40.3 45.7 37.9

Berant14 40.5 46.6 39.9

MS15(FB search API) 49.8 55.7 48.4

Table 6.9: Results that compare our system with semantic parsing-based ques-
tion answering systems.

6.7.4 Feature Ablation

To measure the contribution of different feature sets, we conduct an ablation

study on the development set, i.e., removing one feature set at a time and com-

paring the results with the results of using the whole feature set. The results

are based on Freebase KB. Table 6.10 presents the ablation configurations and

results.

It seems the most important features are Freebase types (Feature 2) and

information retrieval scores (Feature 9), while the context hitting rate feature

(Feature 8) does not help the task at all.

Features removed avg P avg R avg F1

null 0.506 0.519 0.415

2 (Types wh) 0.495 0.509 0.405

3 (Types rel) 0.508 0.516 0.411

4 (OpenIE type) 0.504 0.517 0.413

5 (Para) 0.499 0.512 0.409

6 (ParaMax), 7 (ParaMaxScore) 0.505 0.517 0.414

8 (ContextHit) 0.507 0.52 0.416

9 (IRScore) 0.489 0.52 0.4

Table 6.10: Feature ablation study results. The first column shows the feature
configuration.

6.7.5 Error Analysis

Gold Standard Incompleteness

One problem of using the WebQuestion set as evaluation data is that the

gold standard set is incomplete. This is caused both by the incompleteness
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of Freebase, and by human annotation mistakes. The results on [Fader et al.,

2014] are based on manual judgement of all systems’ answers; even if an answer

does not match any answer in the gold standard set, it can still be correct.

The annotation of question size × the number of systems to compare is time

consuming. Our results on the previous section are created automatically

based on the gold standard set.

To show the effect of incompleteness on the test result, we annotated 400

development set questions, to determine whether the top answers from our

OneLayer IE system are correct. Table 6.11 compares the results on the orig-

inal answer set and the expanded answer set. With the top1 measure, the

absolute difference is 10%. To avoid the manual annotation for every system,

future work will expand the answers for all the questions and investigate the

effect of the incomplete answer set on the training process.

dataset top1 P top1 R top1 F1

original 30.9 29.2 30.0

expanded 42.0 39.7 40.8

Table 6.11: The results of the open question answering system on the original
development set and the one with expanded answers.

Pre-processing Errors

Recall that we extract one target entities and target relations during pre-

processing. For example, for the question “What character did Natalie Port-

man play in Star Wars?”, the target entity our system extracted is Natalie

Portman, and the relation word is play. To estimate the performance of pre-

processing, we manually annotated 100 sentences in our development set. If

the correct target entity or relation word is missing, we tag it as false, i.e., we

are using recall as our metric. The recall is 92%.

The main reason for mistakes is because of parsing errors. For example,

in the sentence “who is the seattle seahawks starting quarterback?” the de-

pendency path is who ← starting → seahawks, which leads to the extract of

starting as the relation.
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A few misses are because the relation words are not on the dependency

path between the question phrase and the target entity. For example, in the

sentence “who is jensen ackles in a relationship with?” the dependency path

is who → ackles. In the future, we will try to use our Open IE system to

extract relations instead of this simple dependency pattern-based method.

IE KB Incompleteness

When we look more closely at our systems’ errors, we notice that one problem

of the IE KB-based systems is that they can not find numbers or common

nouns such as writer as an answer. This is because of a weakness in the IE

triple extraction process, which is designed to extract relations between named

entities that are identified by the entity linking systems. Consider these two

examples:

Question1 “what kinda music does john mayer sing?”

Gold standard “Rock music”.

Our answer “your body is a wonderland”, a song by john mayer.

Question2 “what does jennifer lopez do?”

Gold standard “actor”

Our answer “american idol”, a TV show where jennifer lopez was a judge.

This naturally creates another thread for future work: expanding the Open

IE triple set to include arguments of common nouns or numbers. Then we can

find relations between john mayer and Rock music, which might be sing.

6.8 Summary

We have designed and tested a new open question answering (Open QA) frame-

work for question answering over a knowledge base (KB). Our system consists

of only one layer of paraphrase, compared to the three layers used in a pre-

vious open question answering system [Fader et al., 2014]. However, because
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of the more accurate relation triples, and use of linked entities from IE KB to

Freebase, our system achieves a 7 % absolute gain in F1 score over the previous

Open QA system.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In contrast to traditional relation extraction, which extracts a specific set of

relations, open information extraction (Open IE) attempts to extract all re-

lations. The task uses words in the sentences to express relations instead of

categorizing them as in the traditional relation extraction. This dissertation

introduced several Open IE systems and their application to question answer-

ing (QA).

Instead of using only features such as part of speech and function words

as in ReVerb, our Open IE systems are based on dependency trees. Instead of

solely depending on patterns or rules, we trained SVM models to classify true

and false relations from relation candidates that are extracted by patterns.

SVM tree kernels have been proved to be effective for extracting features im-

plicitly from tree structures. Chapter 3 presented our first tree kernel-based

Open IE system that utilized dependency parse trees. Chapter 4 introduced

our second tree kernel-based Open IE system that incorporated word informa-

tion into the tree kernel. We represented words as word embeddings learned

from large unannotated corpus.

One limitation of previous Open IE systems is that they did not extract

relations from noun phrase structures such as Shakespeare’s books, Google Im-

ages. In Chapter 5 we then investigated the implicit relations in nested named

entities, one type of noun phrase structures. We automatically extracted thou-

sands of training data from Wikipedia and Freebase. We then explored differ-
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ent features for the task and built a supervised machine for extracting implicit

relations.

To show the effectiveness of our Open IE system, we built an QA system

based on the relation triples which are extracted by our Open IE system. The

relation triples are used both for paraphrase and as a knowledge base. Our

system’s performance beats another Open IE-based QA system.

7.2 The Impact of this Work

Our work on Open IE is closely related to and inspired by parsing techniques.

Currently parsing systems are relatively slow comparing with word segmenta-

tion, part of speech tagging, or named entity recognition systems. However,

the author believes that there are structures in natural languages. To build

natural language understanding systems, structure models will be superior to

sequential models eventually. Our two Open IE systems are evidences for the

theory. Our first model, which builds on dependency parse information, is

statistically significantly better than ReVerb. Our second model, which was

the first that leverages both lexical and syntactical features for the Open IE

task, achieved even better results, which is similar to the relation between

lexicalized parsing and unlexicalized parsing techniques.

Our work also explores the question “what is a relation?” Originally it was

defined as verbs in sentences in [Banko et al., 2007, Fader et al., 2011]. There

are obvious evidence that this is not sufficient. For example, in “Agfa Corp.,

a unit of Bayer AG.” unit is the relation between Agfa Corp. and Bayer AG.

Our two Open IE models extend the relation range to common words: nouns,

verbs, and adjectives.

We also notice that there are relations implied in nested named entities.

For instance, there is a write, or author, relation in Shakespeare’s books ; there

is an own relation in Google Images. In Chapter 5, we proposed a method to

automatically acquire thousands of training instances for implicit relations in

nested named entities and built a model to show the feasibility of the task.

This dissertation advocates further exploration on this direction.
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7.3 Future Work

7.3.1 Open Information Extraction

From the experience of working on the QA system, we realized that the current

Open IE systems still have room for improvement, especially on noisy data

where there are abundance of spelling and grammatical errors.

A possible direction for improvement over current Open IE systems could

be creating a new word embedding representation set. For that set we can

use our relation triples, which were used in Chapter 6 for paraphrasing. This

semantic structure-based word embedding might be more suitable for Open

IE than the one trained on plain text. When training word embedding models

on plain text, there is considerably more noise for context words and im-

portant context terms can be missing. For example, in the sentence “Eu-

ropean scientists discovered a new star with the ESO telescope,” with the

sequential structure, the context words for discover within distance two will

be {European, scientist, new, star}; with the relation structure, the context

set becomes {scientist, star, telescope}. Intuitively we will prefer the second

set as telescope is more closely related to discover than new.

Another direction we could take is to explore different machine learning

models. One possibility would be leveraging deep learning models, which have

shown robust performance on noisy data, such as web pages, for tasks such as

syntactic parsing. [Miwa and Bansal, 2016] proposed a long short-term mem-

ory recurrent neural network on dependency path for joint traditional relation

extraction and entity extraction. Their system achieved comparative perfor-

mance to relation extraction. An advantage of the neural network models over

our lexicalized tree kernel model is that they can be coupled with word embed-

dings tightly and make updating word embeddings according to our training

data relatively easier than the SVM model.

A potential disadvantage of using deep learning models is the lack of train-

ing data for Open IE. We can create data automatically from the Propbank

corpus, an semantic role labeling corpus that contains annotated arguments for

different verbs [Palmer et al., 2005]. Below, we give an example sentence an-
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notation from Propbank for the verb instances “donate” (1) and “broadcast”

(2).

(1) [AM−CAU Due to the earthquake in San Francisco], Nissan is [V donat-

ing] [A1 its commercial air time] [AM−PRP [A0*PRO*-1] to broadcast

American Red Cross Emergency Relief messages].

(2) Due to the earthquake in San Francisco, Nissan is donating its com-

mercial air time [A0 *PRO*-1] to [V broadcast] [A1 American Red Cross

Emergency Relief messages].

Here V represents the predicate. AM − CAU , A0, A1, and AM − PRP are

different classes of arguments defined by the Propbank annotators. *PRO*-1

is not a word in the sentence but a link corresponding to NP-SBJ-1 node in

the constituent parse tree, i.e. Nissan.

For Open IE, we propose the following tagging format:

(3) Due to the earthquake in San Francisco, [E1 Nissan] is [R donating] [E2

its commercial air time] *PRO*-1 to broadcast American Red Cross

Emergency Relief messages.

(4) Due to the earthquake in San Francisco, [E1 Nissan] is donating its

commercial air time *PRO*-1 to [R broadcast] [E2 American Red Cross

Emergency Relief messages].

Here R represents relation word(s), E1 and E2 are two entities.

We could train a supervised model mapping from the Propbank annotation

to the Open IE annotation with our annotation on Treebank set as Treebank

shares the same articles with Propbank. A simple baseline is hand crafting

patterns that account for a large portion of the mappings between semantic

role labeling and Open IE. An example could be, if a verb has argument one

and argument two in the Propbank, then it is very likely that this is a triple.

In terms of nested named relation extraction, instead of continuing to use

wikipedia data, future work should extract more evidence of nested named

entities from news articles. This can be achieved by models such as [Lu and
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Roth, 2015] , which claim to be able to extract nested named entities.

We could also attempt to utilize a character based deep learning model for

the implicit relation extraction. Currently the model is at the word level and

manually engineered features. However, according to the result on Chapter

5, we can see that there is still room for improvement when the entity type

feature is not available. Character level models have the potential to capture

the implicit types based on the characters.

Finally, we could adapt our Open IE systems to other domains and lan-

guages. One advantage of extracting training data from Propbank is that the

Propbank dataset includes annotation on different languages. With language

dependent preprocessing such as word segmentation, named entity extraction,

parsing, our SVM models should be able to adapt to different languages easier

than pattern based Open IE models.

Our implicit relation extraction might benefit the IE in medical domain,

the text of which contains abundance of nested named entities. IE in medical

domain can help doctors diagnose diseases from symptoms. One example of

implicit relation in medical domain is murine PU.1 promoter, which implies a

Protein-Component relation between the two entities, murine PU.1 promoter

and PU.1.

7.3.2 Beyond Open IE

In Chapter 6, we showed how our Open IE system can be used in the question

answering task. There are a number of other important NLP problems where

Open IE could have an impact. One such problem is information retrieval.

The most prevalent IR systems depend on bag of words representation of doc-

uments. Open IE systems can extract structured information from documents,

which will potentially eliminate less related information.
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Sebastian Padó. User’s guide to sigf: Significance testing by approximate
randomisation, 2006.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank:
An annotated corpus of semantic roles. Comput. Linguist., 31(1):71–106,
March 2005. ISSN 0891-2017.
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