This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 6Reinforcement Learning
- 2Machine Learning
- 2Search Control
- 1AlphaZero
- 1Artificial Intelligence
- 1Atari 2600
- 6Bowling, Michael (Computing Science)
- 1Bellemare, Marc (Google Brain)
- 1Martin, John (Computing Science)
- 1Talvitie, Erik (Computing Science)
- 1Taylor, Matthew (Computing Science)
- 1White, Martha (Computing Science)
-
Spring 2015
Much of the focus on finding good representations in reinforcement learning has been on learning complex non-linear predictors of value. Methods like policy gradient, that do not learn a value function and instead directly represent policy, often need fewer parameters to learn good policies....
-
Spring 2024
In model-based reinforcement learning, an agent can improve its policy by planning: learning from experience generated by a model. Search control is the problem of determining which starting state should be used to generate this experience. Given a limited planning budget, an agent should be...
-
Chasing Hallucinated Value: A Pitfall of Dyna Style Algorithms with Imperfect Environment Models
DownloadSpring 2020
In Dyna style algorithms, reinforcement learning (RL) agents use a model of the environment to generate simulated experience. By updating on this simulated experience, Dyna style algorithms allow agents to potentially learn control policies in fewer environment interactions than agents that use...
-
Spring 2019
In the reinforcement learning (RL) problem an agent must learn how to act optimally through trial-and-error interactions with a complex, unknown, stochastic environment. The actions taken by the agent influence not just the immediate reward it observes but also the future states and rewards it...
-
Spring 2023
AlphaZero is a self-play reinforcement learning algorithm that achieves superhuman play in the games of chess, shogi, and Go via policy iteration. To be an effective policy improvement operator, AlphaZero’s search needs to have accurate value estimates for the states that appear in its search...
-
Spring 2020
Reinforcement learning (RL) is a powerful learning paradigm in which agents can learn to maximize sparse and delayed reward signals. Although RL has had many impressive successes in complex domains, learning can take hours, days, or even years of training data. A major challenge of contemporary...