
Chasing Hallucinated Value: A Pitfall of Dyna Style
Algorithms with Imperfect Environment Models

by

Taher Jafferjee

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

© Taher Jafferjee, 2020

Abstract

In Dyna style algorithms, reinforcement learning (RL) agents use a model

of the environment to generate simulated experience. By updating on this

simulated experience, Dyna style algorithms allow agents to potentially learn

control policies in fewer environment interactions than agents that use model-

free RL algorithms. Dyna, therefore, is an attractive approach to developing

sample efficient RL agents. In many RL problems, however, it is seldom possible

to learn a perfectly accurate model of environment dynamics. This thesis

explores what happens when Dyna is coupled with an imperfect environment

model.

We present the Hallucinated Value Hypothesis. We hypothesise that Dyna

style algorithms coupled with imperfect environment models may fail to learn

control policies if they update Q-values of observed states towards values of

simulated states. We argue this occurs because the imperfect model may

erroneously generate fictitious states that do not correspond to real, reachable

states of the environment. These fictitious states may have arbitrary Q-values,

and temporal difference updates toward them may lead to the propagation of

this misleading values through the value function. Consequently, agents may

end up incorrectly chasing hallucinated value.

We present three Dyna style algorithms that may update real state values

toward simulated state values and one which is designed not to. We evaluate

these algorithms on Bordered Gridworld — a simple setting designed to carefully

test the hypothesis. Furthermore, we study whether the hypothesis holds in a

ii

range of standard RL benchmarks: Cartpole, Catcher, and Puddleworld.

Experimental evidence supports the Hallucinated Value Hypothesis. The

algorithms which update real state values toward simulated state values struggle

to improve their control performance. On the other hand, n-step predecessor

Dyna, our algorithm which does not perform such updates, seems to be robust

to model error on the tested domains. Furthermore, it enjoys speed-ups in

learning over its competitors.

iii

Preface

The work presented in this thesis will be submitted as a paper entitled

Chasing Hallucinated Value: A Pitfall of Dyna style Algorithms With Imperfect

Environment Models to the 34th AAAI Conference on Artificial Intelligence to

be held in New York, New York, USA in February 2020.

iv

This, too, shall pass.

– Attar of Nishapur (Allegedly)

v

Acknowledgements

Words cannot express my gratitude to my supervisors Professors Michael

Bowling and Martha White for putting up with me through the development

of this thesis. But, as words are all we have, thank you so much for all your

guidance and support Mike and Martha! You’re both AWESOME!
I would be remiss if I did not mention Jesse Farebrother who provided me

with starter code for DQN. You are a rockstar!

vi

Contents

1 Introduction 1
1.1 A Problem of Dyna style Algorithms 2
1.2 Why This Problem? . 2
1.3 Outline of this Thesis . 3
1.4 Contributions . 4

2 Background 6
2.1 The Reinforcement Learning Setting 6
2.2 Temporal Difference Learning 9

2.2.1 Q-learning . 10
2.2.2 Deep Q-Networks (DQN) 11

2.3 Model-based Reinforcement Learning 14
2.4 Dyna . 14
2.5 Learning Environment Transition Dynamics Models 16

3 The Hallucinated Value Hypothesis 19
3.1 How Dyna Can Go Wrong . 19

3.1.1 Bordered Gridworld . 19
3.1.2 Dyna Planning on Bordered Gridworld 20

3.2 The Hallucinated Value Hypothesis 21
3.3 A Design-space of Dyna style Algorithms 22

3.3.1 β-Prioritised Dyna . 22
3.3.2 1-step successor Dyna 24
3.3.3 n-step successor Dyna 25
3.3.4 1-step predecessor Dyna 30
3.3.5 n-step predecessor Dyna 32

4 The Hallucinated Value Hypothesis in Bordered Gridworld 36
4.1 Experiment Methodology . 36
4.2 Dyna style Algorithms with Successor Models 38

4.2.1 1-step Successor Dyna 38
4.2.2 n-step Successor Dyna 41

4.3 Dyna style Algorithms with Predecessor Models 43
4.3.1 1-step Predecessor Dyna 43
4.3.2 n-step Predecessor Dyna 45

5 ... and in The Wild 49
5.1 Methodology . 49

5.1.1 Environments . 50
5.1.2 Environment Models . 51
5.1.3 Value Function . 51

5.2 Results . 52
5.2.1 Robustness to Model Error 52

vii

5.2.2 Learning Speed . 55

6 Conclusions & Future Work 57
6.1 Contributions . 57
6.2 Directions for Future Work . 58
6.3 Dénouement . 59

References 60

viii

List of Tables

3.1 Dyna Design Space . 22

ix

List of Figures

2.1 The Reinforcement Learning Setting. 7
2.2 DQN Architecture . 12
2.3 The Dyna Framework . 16
2.4 Network Architecture to Learn Environment Models 17

3.1 Bordered Gridworld . 20
3.2 An Erroneous Simulated Transition on Bordered Gridworld . . . 21
3.3 Planning with 1-step successor Dyna. 26
3.4 Planning trajectories generated by 1-step successor Dyna on

Bordered Gridworld . 26
3.5 Planning with n-step successor Dyna. 28
3.6 Planning trajectories generated by n-step successor Dyna on

Bordered Gridworld . 29
3.7 Planning with 1-step predecessor Dyna. 31
3.8 Planning trajectories generated by 1-step predecessor Dyna on

Bordered Gridworld . 32
3.9 Planning with n-step predecessor Dyna. 34
3.10 Planning trajectories generated by n-step predecessor Dyna on

Bordered Gridworld . 35

4.1 Learning Curves of Q-learning and FQ1 on Bordered Gridworld. 39
4.2 Heatmaps of max

a
Q(s, a) ∀s ∈ S for FQ1 on Bordered Gridworld 40

4.3 Learning Curves of Q-learning and FQN on Bordered Gridworld 41
4.4 Heatmaps of max

a
Q(s, a) ∀s ∈ S for FQN on Bordered Gridworld 42

4.5 Learning Curves of Q-learning and BQ1 with β > 0 on Bordered
Gridworld . 43

4.6 Heatmaps of max
a

Q(s, a) ∀s ∈ S for BQ1 with β > 0 on
Bordered Gridworld . 44

4.7 Learning Curves of Q-learning and BQ1 with β = 0 on Bordered
Gridworld. 45

4.8 Heatmaps of max
a

Q(s, a) ∀s ∈ S for BQ1 with β = 0 on
Bordered Gridworld . 46

4.9 Learning Curves of Q-learning and BQN on Bordered Gridworld 47
4.10 Heatmaps of max

a
Q(s, a) ∀s ∈ S for BQN on Bordered Gridworld 48

5.1 Benchmark RL Domains . 51
5.2 Performance on Cartpole, Catcher, and Puddleworld. 53
5.3 Learning Curves on Cartpole, Catcher, and Catcher 56

x

Chapter 1

Introduction

Legg and Hutter [14] define intelligence as,

...[measure of] an agent’s ability to achieve goals in a wide range of

environments.

One may claim that achieving a goal in an environment amounts to making

decisions which increase the likelihood of that goal materialising. Moreover,

reaching goals often requires a sequence of decisions. For instance, for the task

of driving home from work, a driver must decide at each choice point on the

road about which path to take. On an even finer scale, about how much to

depress the accelerator and for how long, how much to change the steering

angle, when to brake, and so on.

Reinforcement learning (RL) is a framework for defining and computation-

ally solving sequential decision-making problems. In many RL algorithms,

agents solve such problems by estimating the long-term utility of particular

actions and defining a policy over these estimates. The policy (or action, in

the jargon of the field) specifies the best action to take at each choice point.

One may claim that as RL agents are able to solve sequential decision making

problems they are also, therefore, able to attain ‘goals in a wide range of

environments’. Hence, RL may be a powerful approach through which one may

develop intelligent agents. One family of algorithms under the RL umbrella

is Dyna style algorithms. Dyna style algorithms are concerned with explicitly

using a model of the environment in order to expedite solving RL problems.

1

1.1 A Problem of Dyna style Algorithms

In this thesis, we investigate Dyna [23]. In Dyna, an agent uses a model of

its environment to generate simulated experience. This experience is treated

identically to real experience gained through interaction with the environment

and is used to improve the agent’s estimates of the long-term utility of particular

choices, and, therefore, the agent’s control policy. In many domains of interest it

is ofttimes very difficult to learn a perfectly accurate model of the environment.

For instance, it is difficult to learn a perfect model of the dynamics of even

Cartpole — a relatively simple RL problem. Any predictions of simulated

transition tuples (state, action, reward, next state, termination) generated by

the model will likely contain some error; the prediction for next state given the

state and action may be slightly wrong or even, in extreme cases, be completely

fictitious (i.e., a state that does not occur in the environment). Thus, in this

thesis, we explore the question,

What are some consequences of using an imperfect model in Dyna?

1.2 Why This Problem?

A central component of our (human) intelligence is the ability to make

use of a model of the world to plan ahead for unrealised scenarios to aid in

decision making. The ability to perform ‘model-based planning’ endows us

with the ability to make, loosely speaking, good decisions in situations that

we have never been in but foresee happening. Dyna style algorithms mimic

this capacity. However, in many RL problems it is difficult to learn a perfectly

accurate model of environment dynamics, and so we need algorithms that are

robust to model error. This would enable Dyna algorithms to take advantage

of approximate models thereby reducing the burden of trying to accurately

model environment dynamic. Moreover, in some sense this would make Dyna

algorithms more like our intelligence.

Apart from the philosophical argument of developing more human-intelligence-

like algorithms, developing Dyna algorithms robust to model imperfections is

2

one way to mitigate the sometimes large sample requirements of modern RL

algorithms that use artificial neural networks (ANNs) as function approximat-

ors. The seminal DQN [16] algorithm requires 200, 000, 000 interactions with

games in the Arcade Learning Environment (ALE) [1] to learn good control

policies. In that vein, OpenAI’s Hand [19] demands an equivalent of 100 years

worth of training data to learn human-like hand dexterity, while Alphastar

[31] used 200 years of Starcraft II experience to reach professional level play.

Suffice it to say, RL algorithms combined with ANNs have significant data

requirements. When there is a cost to interacting with environments, such

large sample requirements may make these algorithms cost prohibitive to be a

practical option.

Indeed, large sample requirements even plague classical tabular RL al-

gorithms. It was to ameliorate the data hunger of tabular RL algorithms that

Dyna was developed. In many cases, Dyna algorithms are empirically shown

to be able to learn improved behaviour within fewer interactions with the

environment than their model-free (i.e., algorithms that do not explicitly use

models to simulate the environment) counterparts. This work is simply one

step toward further extending Dyna to the modern setting: as it is very difficult

to develop perfect environment models for the problems solved by modern RL

algorithms, understanding pitfalls of Dyna planning with imperfect models is a

useful step towards building more sample efficient algorithms.

1.3 Outline of this Thesis

We set out to 1) understand the dynamics of Dyna with imperfect models,

and 2) find ways around one identified problem. To this end, we develop the

Hallucinated Value Hypothesis about Dyna with imperfect models: updating

real state values to simulated state values leads to problems. This thesis is or-

ganised around investigating this hypothesis, and finding alternative algorithms

that avoid such updates.

Chapter 2 - Background summarises relevant background material. We

briefly survey the RL setting and temporal-difference (TD) learning
3

methods before reviewing Dyna style algorithms. We also overview Deep

Q-Networks (DQN), a modern instantiation of Q-learning combining RL

and deep learning.

Chapter 3 - The Hallucinated Value Hypothesis presents the hypothesis

around which this thesis is built. We postulate that Dyna style algorithms

which update real state values to simulated state values are brittle in the

face of model error and that this can catastrophically prohibit learning

of a good control policy. Furthermore, we develop intuition about why

particular updates cause failure and propose an algorithm that is robust

to erroneous simulated experience.

Chapter 4 - The Hallucinated Value Hypothesis in Bordered Grid-

world shows results of experiments which test our hypothesis on a simple

tabular domain.

Chapter 5 - ...and in The Wild presents results of running our Dyna

algorithms on more complex domains not amenable to a tabular rep-

resentation of the value function. We eliminate contrivances of our

experiments from Chapter 4 and show evidence that our hypothesis still

holds.

Chapter 6 - Conclusions & Future Work recapitulates the central hy-

pothesis of this thesis. Moreover, we offer suggestions about potentially

fruitful future research directions in further developing Dyna with imper-

fect models.

1.4 Contributions

The focus of this thesis is Dyna coupled with an imperfect environment

model. To this field of study, we contribute the following:

We present the Hallucinated Value Hypothesis (Chapter 3). We claim

that Dyna planning updates which result in the values of real states being

updated towards simulated states may detrimentally impact learning.
4

We experimentally explore this hypothesis on a carefully constructed

problem (Chapter 4), and on benchmark RL problems (Chapter 5).

Building upon the prior contribution, we introduce n-step predecessor

Dyna (Chapter 3), and algorithm that is designed not to update real

state values to simulated state values. We show that this algorithm seems

to be more robust to model error than algorithms which update real state

values to simulated state values (Chapters 4 and 5).

5

Chapter 2

Background

We summarise background material relevant to the contributions in this

thesis. We begin by introducing the reinforcement learning (RL) setting. Then,

we describe temporal difference (TD) learning algorithms (including a discussion

of the DQN algorithm). Following this, we overview model-based RL, and in

particular Dyna style algorithms. Finally, we briefly review a method to model

environment transition dynamics. Readers familiar with RL may want to jump

to Section 2.5 where model learning is discussed or skip this chapter entirely.

2.1 The Reinforcement Learning Setting

The RL setting involves a decision-making agent interacting with an envir-

onment. This setting is often expressed by Markov Decision Processes (MDPs).

MDPs consist of a set of states of the environment, S, a set of permissible

actions, A, and a reward function r such that r : S ×A ↦→ R; the reward func-

tion indicates the ‘pleasure’ or ‘pain’ of taking particular actions in particular

states by emitting positive or negative reward. MDPs allow flexible choices

for S,A, r: they can be discrete or continuous. Moreover, the environment’s

transition dynamics are modelled by a transition function p. This function

defines the probability of transitioning from state s to s′ given an action a

executed by the agent in s, that is, p : S × A × S ↦→ [0, 1]). In addition, a

‘discount factor’ scalar γ ∈ [0, 1] is fixed as well. The discount factor indicates

to what extent rewards received sooner are valued over rewards received later.

Thus, the RL setting is defined by the tuple (S,A, r, p, γ).

6

A notion of time is manifest in the agent’s interaction with the environment.

As shown in Figure 2.1, at each time step t, the agent is situated in some state

st ∈ S (thest indicates the agent is in state s at time t). The agent possess a

policy π : S ↦→ A defining how to act in each state. The agent selects an action

at ∈ A according to π and executes it in the environment resulting in the

agent transitioning to a new state st+1 ∈ S (according to the distribution given

by the function p(st, at, st+1)). Furthermore, the agent receives two feedback

signals: a scalar reward rt ∈ R indicating the utility of taking at in st, and a

Boolean termination signal τt+1. In the continuing setting (RL has two settings:

episodic and continuing) τt is always False (i.e., an episode never ends).

Agent

Environment

Action A tReward R t+1State t+1S

Figure 2.1: The Reinforcement Learning Setting. An agent starts off
situated in some state S0 = s0 (note the capitalised S0 indicates the agent’s
start state is some random variable). Applying some policy π to choose actions,
the agent executes an action A0 = a0 (again, capitalisation of A0 indicates the
agent’s action choices are probabilistic). Consequently, the agent is now in
state S1 = s1 and the environment also emits a probabilistically distributed
reward signal R1 = r1 designating the utility of taking action a0 in state s0.
This cycle repeats until the termination signal τt (not shown) is True. Once
the episode has ended (in the episodic setting), the agent restarts in some start
state S0 = s

′
0.

In this setting, the agent’s objective is to maximise the cumulative reward

collected. This is formalised by the notion of return. Return (of a reward

sequence R0, R1, R2, R3, ...) is defined as:

Gt=̇E
[∞∑

0

γiRt+i

]
(2.1)

7

Intuitively, this formula characterises the expected discounted long term ac-

cumulation of reward. The γ term in the return ensures that this sum is

bounded (as r is a bounded function). Given that we have a definition of

return – something that we would like to optimise – how can we use it to

aid learning of control policies (i.e., policies which tell agents how to act in a

given environment) in autonomous agents? One answer is provided by value

functions.

Suppose an agent is situated in state s. From state s, the agent’s interaction

with the environment is the following trajectory s0 = s, a0, r0, s1, a1, r1,

The ai are selected according to policy π, and the return is defined by the

ri of this trajectory. Let the value function Vπ(s) be a function from states,

s ∈ S, to R, i.e., Vπ : S ↦→ R. This function defines the return that may be

accumulated from s if an agent follows a policy π to select actions in s and all

subsequent states.

The value function, thus, defines the ‘goodness’ of following a particular

policy π from s. Some policies may results in higher V (s), and others in equal

or lower V (s). And, by extension, in some settings (tabular and linear), some

policies may result in higher values of V (s) for all s ∈ S and some policies in

lower values of V (s) for all s ∈ S. To maximise the return, we want policies

which give us the highest values of V (s) for the most states s ∈ S .

An extension of the value function to incorporate particular actions a

selected in s can be made. This function, called the state-action or Q-value

function, Qπ(s, a), defines the return from s if action a is taken in s and

policy π is followed to select actions thereafter. Indeed, with an accurate

state-action value function, it becomes trivial for an agent to choose actions

to maximise the return (as per the agent’s current estimates) from any state:

simply pick max
a

Qπ(s, a). The Q-value function, thus, allows agents to learn

control policies π.

Having defined the RL setting and value functions, we now define the RL

problem:

“The agent’s sole objective is to maximise the total reward it receives

8

over the long run... The reward signal is the primary basis for

altering the policy; if an action selected by the policy is followed by

low reward, then the policy may be changed to select some other

action in that situation in the future.”

Sutton and Barto, 2018 [25]

Succinctly, the problem we seek to solve is how best to endow agents with

the ability to alter their behaviour such that they maximise the return they

receive from the distribution of start states of the MDP. In the next section,

we introduce temporal difference methods, one solution to the reinforcement

learning problem.

2.2 Temporal Difference Learning

We illustrated that a notion of time is manifest in the RL setting. Temporal

difference (TD) [22] algorithms exploit information contained in consecutive

time-steps to learn the value function for π. Consider an experience trajectory

s0, a0, r0, s1, a1, r1, . . . , sn, an, rn. How can an agent learn the value of state s0?

If we look at this trajectory in reverse, from sn to s0, one way to learn state

values becomes apparent. We defined value as the return from a given state.

Since sn is a final state before termination, the return is simply equal to rn,

thus we can update the value (in the value function) of sn to reflect that a

sample (as r is a probabilistic function and therefore rn is one sample of Rn) of

the long term return thereon is rn. Moving on, the return from sn−1 consists of

two terms: rn−1 and all future reward (appropriately discounted). Notice, we

have already encapsulated ‘all future reward’ into the value of sn. Thus, we can

replace ‘all future reward’ with the value of sn. The value of sn−1 can therefore

be updated towards rn−1 and the value of what is called the bootstrap state

V (sn), i.e., towards rn−1 + γV (sn). Continuing on in this manner, we obtain

values for each state. Indeed, this is the central idea of temporal difference

learning, and the value function update for each state becomes:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (2.2)
9

for some learning rate α. It is important to note that the value function

ought to reflect the long-term expected return from any state. Thus, any single

trajectory of experience is unlikely to be a sufficient sample from which an agent

may learn an accurate value function. In practice, a set of diverse trajectories

through the environment are required to learn the true expected long-term

return from any state.

Temporal difference learning is not constrained to learn state values by

updating over a single time-step. n-step TD updates update the value of a

state to the discounted sum of rewards n− 1 steps into the future along with

the bootstrap value of the state n steps into the future. The n-step TD update

is:

V (St)← V (St) + α
(n−1∑

i=0

γiRt+i + γnV (St+n)− V (St)
)

(2.3)

In fact, algorithms using n-step TD updates sometimes converge faster than

algorithms using 1-step TD updates. This important fact speaks to the de-

sirability of our algorithm, n-step predecessor Dyna.

Given that we have a method to learn a value function, how can an agent

learn a control policy? In the following subsection we describe Q-learning, an

algorithm to learn optimal control policies under certain settings.

2.2.1 Q-learning

In the previous section, we described how TD learning can facilitate the

learning of a value function. Importantly, we defined it in terms of learning

values of some policy π. In many RL problems, we seek to learn a policy

telling the agent how to act such that it maximises the return. This is called

learning a control policy. One algorithm which enables us to learn such a

policy is Q-learning. Q-learning is a fundamental RL algorithm that we use

throughout this thesis. Q-learning [32] is an off-policy TD control algorithm

guaranteed to learn the state-action value function of the optimal policy (in

the tabular and linear settings) on data generated under any behaviour policy

(hence the term off-policy). That is, the converged action-value function Qπ

learned using Q-learning is equivalent to Q∗ (the value function of the optimal

10

policy), independent of the policy followed to select actions (with the caveat

that convergence requires all state-action pairs to be selected infinitely often).

Ipso facto, Q-learning is also able to learn an optimal control policy, π∗, as this

policy can be inferred from the values of Q∗ by simply picking max
a

Q(s, a) for

all states s . The TD update of 1-step tabular Q-learning is of the form:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.4)

while the TD update of n-step tabular Q-learning is:

Q(St, At)← Q(St, At) + αρt:n

[n−1∑
i=0

γiRt+i + γnmax
a

Q(St+n, a)−Q(St, At)
]

(2.5)

Importantly, in multi-step Q-learning we must ‘weight’ the update target∑n−1
t=0 Rt+i+γnmax

a
Q(St+n, a)−Q(St, At) by importance sampling ratio ρt:n =∏n−1

i=0
π(At+i|St+i)
b(At+i|St+i)

where π(At+i|·) represents the probability of taking actions

under the optimal policy while b(At+i|·) represents the probability of taking

actions under the behaviour policy. This is needed to account for the fact

that actions are selected according to the distribution defined by b, while the

expected values of a different policy π∗ are learned.

In the case of a linear function approximator, rather than directly updating

values in a state-action value table, the Q-learning algorithm learns the values

of weights θ. Given a feature generator ϕ, the 1-step TD update for Q-learning

with a linear function approximator is:

θi+1 ← θi + α
[
Rt+1 + γmax

a
(ϕ(St+1, a)

Tθi)− ϕ(St, At)
Tθi
]
ϕ(St, At) (2.6)

while the n-step update is:

θi+1 ← θi + αρt:n

[n−1∑
i=0

Rt+i + γnmax
a

(ϕ(St+n, a)
Tθi)−ϕ(St, At)

Tθi
]
ϕ(St, At)

(2.7)

2.2.2 Deep Q-Networks (DQN)

Introduced by Mnih et al . [16], Deep Q-Network (DQN) demonstrated

“...human-level control through deep reinforcement learning” on the Arcade
11

Learning Environment (ALE) [1]. DQN is a model-free reinforcement learning

algorithm that utilises an artificial neural network to approximate the Q-value

function. The state of the environment, s, is fed as input to the network.

Following this, the network outputs the state-action values for all actions

in that state: f(s) = Q(s, a) ∀a. In order to marry neural networks with

reinforcement learning algorithms experience replay buffers and target networks

are required. We elaborate on these algorithmic innovations as well as the loss

function in the following.

Network Architecture

The original DQN network architecture was designed to process images from

the ALE. The experiments in this thesis only use environments where states are

represented by feature vectors, thus we adapt the nework architecture for our

purposes. As depicted in Figure 2.2, in this thesis we use a network architecture

consisting of two hidden layers each of 256 hidden units with the first hidden

layer possessing ReLU activation. The output layer is composed of estimations

of Q(s, a) ∀a ∈ A. The units are initialised with Glorot initialisation[4]; the

network parameters θ are optimised with the Adam optimiser [13].

Q(s,	a1)

Q(s, ak)

Fully Connected

Hidden Layer 1 Hidden Layer 2

s1

sm

State s

Nonlinear Layers

Linear Layer

Figure 2.2: DQN Architecture.

12

Loss Function & Update Rule

The network weights, θ, are updated by the semi-gradient Q-learning update.

That is, the loss function minimised is:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′;θ−

i)−Q(s, a;θi

)2] (2.8)

where mini-batch training samples are drawn uniformly from the pool stored in

the experience replay buffer as indicated by (s, a, r, s′) ∼ U(D). Furthermore,

θ−
i indicates a network with an asynchronous copy of the agent network weights.

Important details (e.g., modifying this loss with the Huber loss) about the

optimisation procedure not mentioned here may be found in the work of

Mnih et al . [16]. Notice, with each update to the network parameters, the

term max
a′

Q(s′, a′;θ−
i) changes. That is, the neural network is required to

approximate a function with a moving target. As this is particularly challenging

for neural networks, experience replay buffers and target networks are required

to stabilise training in DQN.

Experience Replay Buffer

DQN utilises an experience replay buffer [15] to store the N most recent

environment transitions (st, at, rt, st+1, τt+1) experienced by the agent. This

buffer is required to be large enough to store multiple episodes of transitions as

the neural network expects to train on independent and identically distributed

(IID) data samples. Multiple episodes, each of which is run by an agent with a

different policy (due to updates to the value function), allow for the data to be

roughly IID.

Target Networks

The target network is an asynchronous copy of the agent network — the weights

of the agent network are copied to the target network at a predetermined fre-

quency. As seen in 2.8 the target network calculates the Q-values, Q(s′, a′;θ−
i),

of the next-state of a given transition. Target networks are required so that

value estimates remain fixed for a certain period of time thereby giving the

network a fixed function to approximate.

This thesis is on model-based RL, however, so far, we have only elaborated

13

on background material related to model-free RL. In the next section, we

describe the basic ideas and algorithms of model-based RL that we expand

upon in this thesis.

2.3 Model-based Reinforcement Learning

Model-based reinforcement learning refers to a family of RL algorithms

which explicitly utilise transition dynamics models of the environment. The

agents may utilise the models to perform model-based updates to the value

function (as in Dynamic Programming), perform decision-time planning, or

to generate simulated experience and improve value function estimates as

described in the Dyna framework (Section 2.4).

As the environment which an agent operates in can either be deterministic

or stochastic, the environment models themselves come in a variety of forms.

Expectation models (which we use), given an input state s and an action a,

output a single state s′ – the expected next state – and a single estimation of

the reward r, the expected reward for the transition from s to s′ given a. On

the other hand, distribution or sample models produce, for s, a, all possible s′

and r or a single s′ and r, respectively. Indeed, as one may immediately notice,

in expectation models, the expected state may not correspond to any actually

realisable state. However, despite this shortcoming, they are much easier to

learn than other variants of environment models, and, so, enjoy widespread

use.

The focus of this thesis is on Dyna planning algorithms which improve the

value function using expectation models.

2.4 Dyna

Dyna is a framework for ‘Integrated Planning, Acting, and Learning’ [24].

Figure 2.3 summarises the way an agent utilises its real experience in the

environment to simultaneously learn a model of the environment, improve

its value function estimates, and, importantly, uses the model to generate

simulated experience to further update the value function. A crucial premise
14

of the Dyna framework is that real experience and simulated experience are

treated identically. That is, simulated experience is treated as though it actually

happened, and value function updates using simulated experience are performed

in the same manner as value function updates using real experience. Indeed, it

is this fact that warrants this thesis examining the impact of imperfect models

coupled with Dyna algorithms.

A fundamental distinction between the Dyna framework presented here and

the algorithms we investigate is that we do not seek to learn the environment

models online. Rather, we presume that we have been given imperfect (learned

or otherwise) environment models prior and develop ways to use these model

effectively. Our motivation for this choice is that we seek to understand

the effects of planning in Dyna style algorithms when the model is incorrect.

Learning a model online (i.e., as the agent explores the world) introduces

another level of complexity which may make it difficult to isolate the precise

effects of the inaccurate model. Of course, one may argue that learning the

model online may, in the long run, largely reduce model error. While this may

be true for parts of the state space regularly visited by the agent, it may cause

the model to become more inaccurate in other parts of the state space thereby

introducing error.

As seen in Figure 2.3, Dyna is a flexible framework that permits a variety of

specific implementations. For instance, as previously mentioned, one choice is

the type of environment model to use. In this thesis, we focus on the following

two factors in the Dyna design space:

1. The direction of environment dynamics simulation by the model — for-

wards or backwards in time.

2. One-step or multi-step TD updates using the model’s simulated trans-

itions.

In Chapter 3, we expand on this design space and briefly summarise prior work

in the ‘quadrants’ delineated by this design space. Finally, in the last section

of background material that follows, we describe one way to learn environment

models.
15

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

Figure 2.3: The Dyna Framework. Reprinted from Sutton & Barto, 2018.

2.5 Learning Environment Transition Dynamics
Models

A fundamental component of any model-based RL algorithm is the environ-

ment transition dynamics model. How can we learn such a model for domains

which are high-dimensional and exhibit complex dynamics? Inspired by Oh et

al . [18], here we describe a simple neural network model capable of modelling

to reasonable accuracy the dynamics of the domains we test on.

Our environment model is trained to predict as output either the next

state st+1 or the previous state st−1 along with associated reward rt+1 or rt−1

(depending on if we are learning environment dynamics forward or backward

in time) for inputs st and a, the current state and a given action, respectively.

The network architecture is as shown in 2.4. A 1-hot encoding of the action a

is concatenated to current state vector st. The output is a vector of the state

in the next/previous time-step, st±1 as well as the reward rt±1. The network

consists of two fully connected hidden layers, each with 512 units. The units

are initialised with Glorot [4] initialisation, and the network parameters θ are

optimised using the Adam optimiser [13].

16

Fully Connected

Hidden Layer 1 Hidden Layer 2

st1

st
m

State st, action a

Nonlinear Layers

0

1

st+/-11

st+/-1m

State st+/-1, reward rt+/-1

rt+/-1
0

Figure 2.4: Network Architecture to Learn Environment Models. A
state at a given time-step t, st, is input to the model along with a 1-hot
encoding of action a. The model outputs state st+1 and reward rt+1 if forward
dynamics are being learned, or st−1 and reward rt−1 if backwards dynamics are
being learned.

In order to gather training data for the models, a pre-trained agent is run

on the environment in question with an ϵ-greedy policy (ϵ = 0.5). Tuples

consisting of the current state st, the action taken at, reward rt+1 and next

state st+1 are stored. A relatively high value of ϵ is used in order to gather

samples of data from diverse parts of the environment as opposed to samples

only at states visited by an optimal (or close to optimal) trained agent’s policy.

The training dataset is 100, 000 samples.

The loss function we optimise is the observation-wise (i.e., each element of

the state vector) mean squared error (MSE) of the predicted output vector,

ŷt±1, and ground-truth output vector, yt±1 (note, the output vector consists of

the state and reward as shown in Figure 2.4):

LK(θ) =
1

2K

∑
i

||ŷ(i)t±1 − yt±1||22 (2.9)

where K is the mini-batch size.

17

The MSE loss function means this model is an expectation model: the

output is a single, expected previous/next state and reward as opposed to a

distribution over possible previous/next states. While this design is expedient

for learning, it may cause the model to generate predictions which do not

correspond to any real state or reward. Any value function updates using these

fantasised predictions could potentially have adverse ramifications with respect

to learning good policies. Indeed, we explore this phenomenon more thoroughly

in the next chapter and claim that model error can have severely detrimental

effects on the agent’s learning.

18

Chapter 3

The Hallucinated Value
Hypothesis

In this chapter, we present the main hypothesis of this thesis. We claim

that Dyna algorithms with imperfect environment models may find learning

difficult if planning temporal difference (TD) updates move values of real states

towards values of simulated states. Before presenting the technical statement

of our hypothesis, in the following section, we first develop intuition about

why it is plausible. We then elaborate on the Dyna design space delineated

in Chapter 2 and develop conjectures about algorithms which ought to learn

successfully and which may struggle.

3.1 How Dyna Can Go Wrong

To develop intuition for how planning with imperfect models can cause

failure, we introduce an illustrative new environment to test reinforcement

learning (RL) algorithms: Bordered Gridworld.

3.1.1 Bordered Gridworld

Bordered Gridworld is an extension to the classical tabular RL Gridworld.

It is designed to test the hypotheses we present in the remainder of this chapter.

Figure 3.1 shows a graphical representation of Bordered Gridworld.

As in typical RL Gridworlds, the agent’s task is to reach the goal state in as

few steps as possible. To do this, the agent may move in the relative directions

19

Agent

Unreachable States

Goal State

Reachable States

Figure 3.1: Bordered Gridworld . The black square is the agent’s position.
The agent cannot transition into any states in the grey border. However, an
imperfect environment dynamics models may produce state predictions to or
within this border.

(up, down, left, or right) in the region marked ‘Reachable States’ in Figure

3.1. The feature distinguishing Bordered Gridworld from typical Gridworlds

is a region of ‘Unreachable States’, defined by the set Src , surrounding the

‘Reachable States’, i.e., the set Sr (note these are disjoint). The agent cannot

transition to these ‘border’ states and is never initialised to start in them either.

For this following section consider, however, an imperfect environment model

which produces simulated transitions from reachable to unreachable states and

within unreachable states.

3.1.2 Dyna Planning on Bordered Gridworld

Consider the planning TD update (on a tabular value function) as shown

in Figure 3.2. An agent performs a planning update with an imperfect model

(which generates simulated transitions from reachable to border states) from

real state s to simulated next state s′ for action up. The state s′ is in the

unreachable border due to imperfect predictions by the model. If the value of

Q(s, up) is updated to the value s′ inside the border, the state-action value

will be moved toward the essentially arbitrary value of s′. Concretely, the TD

target for Q(s, up) is r +max
a

Q(s′, a) where s′ is the state inside the border

20

s

(a) Real state s

s
r

s'

(b) Erroneous simulated transition from s
to s′

Figure 3.2: An Erroneous Simulated Transition in Bordered Grid-
world . From an observed state s, an imperfect model may generate a simulated
transition of s′ for action up.

and r is some prediction of the reward on the transition from s to s′. The

values of the states inside the border, Q(s′, ·), are arbitrary. If these have high

value, this update may cause the agent to think that the best action is to

‘run’ into the walls. Consequently, the next time the agent is in state s, it will

repeatedly take the actions up and get ‘stuck’.

Moreover, the values of the s′ may only slowly change from their initialised

values as they can only be changed by TD updates performed during further

simulated transitions from them. Thus, the agent may be misled by the

arbitrary initialised values of the border states for a long time. With this

intuition in mind, in the next section we present the hypothesis at the centre

of this thesis.

3.2 The Hallucinated Value Hypothesis

We claim:

Planning temporal difference updates in Dyna style al-

gorithms that update real state values towards simulated

state values may impair learning of good control policies.
21

1-step Update n-step Update

Successor Model 1-step successor Dyna n-step successor Dyna
[6], [8], [11], [23] [3], [33]

Predecessor Model 1-step predecessor Dyna n-step predecessor Dyna
[5], [17], [20], [21], [26]

Table 3.1: Dyna Design Space

This hypothesis depends on the type of TD update performed during

planning (cf. "...update real state values towards simulated state values" in our

hypothesis). In the following section, we develop the ‘design-space’ of Dyna

algorithms referred to in Section 2.4, and, based on our hypothesis, suggest

which ones are likely to succeed or fail when using an imperfect environment

model.

3.3 A Design-space of Dyna style Algorithms

As afore-mentioned in Section 2.4, we focus on two design aspects of Dyna:

1) whether the model is used to simulate the environment’s dynamics forward

or backward in time and 2) whether the TD updates used during planning

are 1-step or multi-step. Table 3.1 graphically displays the dimensions along

which we explore Dyna and names the algorithms we explore that occupy each

quadrant of this design space. Furthermore, in the table we also cite examples

in the literature of each type of algorithm.

Given this design-space, here we introduce concrete instantiations of al-

gorithms in each quadrant of the design space. Moreover, we introduce β, a

useful new parameter for Dyna style algorithms.

3.3.1 β-Prioritised Dyna

The generic algorithm is as follows: the agent explores the environment,

updates the Q-function, and adds environment transitions (s, a, r, s′) to a prior-

itised planning queue subject to the TD error δ exceeding priority threshold ρ

(lines 4-8 of Algorithm 1). Then, for each real interaction with the environment,

the agent performs a number of planning steps (lines 9-13 of Algorithm 1), and

22

Algorithm 1 Generic Prioritised Dyna style Algorithm with β

1: procedure β-PrioritisedDyna
2: Initialise Q-function, planning queue P , priority threshold ρ, decay

parameter β, learning rate α; Load environment modelM
3: for episode = 1 to M do
4: Observe state s and select action a = π(s)
5: Execute a in environment and observe reward r and next state s′

6: Set δ = (r + γmaxa′ Q(s′, a′)−Q(s, a))
7: Update Q(s, a)← Q(s, a) + α · δ
8: Add (s, a, r, s′, n = 0) to P if δ · βn ≥ ρ
9: for planning step = 1 to N do ▷ This loop is deliberately vague

here as it varies for each algorithm. Concrete pseudo-code is provided in
the following subsections.

10: Pop highest priority transition T which has n = i in the transition
tuple

11: Simulate dynamics on T usingM to yield T ′

12: Calculate δT ′ and update Q with it
13: Add T ′ with n = i+ 1 back to P subject to βi+1 · δT ′ ≥ ρ

it is here that our four instantiations differ. In each planning step, the highest

priority transition is popped off the planning queue, its dynamics simulated

using the environment model, and a TD-update performed on the simulated

transition using one of the update rules corresponding to the Dyna design

space quadrant of the particular algorithm. Finally, the simulated transition is

added back to the planning queue according to its β-decayed priority.

β helps control model iteration (where a model generates predictions off its

own previous predictions). For instance, suppose a real environment transition

(st, at, rt, st+1) is popped off the priority queue and that planning generates some

new transition (st+1, at+1, r̂t+1, ŝt+2) with associated TD-error δt+1. If β = 0,

the priority of this new transition is δt+1 · β = 0, and if the priority threshold

ρ > 0, this transition would not be added to the priority queue thereby halting

iteration of the model’s predictions. The priority queue would not contain any

fully simulated transitions. At the other extreme, if β = 1, model iteration

could theoretically continue unchecked possibly causing compounding model

error as noted in prior work [27], [28], [30]. If β is somewhere in between, it may

possibly halt model iteration before compounding error became too egregious

while still allowing the agent to benefit from longer planning trajectories as

23

recommended by Holland et al . [8].

Based on this generic algorithm, we now define the four algorithms we test.

Moreover, with a view of our hypothesis, we speculate the ramifications of

coupling these algorithms with imperfect models and make judgements about

the success or failure of each.

3.3.2 1-step successor Dyna

Algorithm 2 1-step successor Dyna
1: procedure 1-step successor Dyna
2: Initialise Q-function, planning queue P , priority threshold ρ, decay

parameter β, learning rate α; Load environment modelMs

3: for episode = 1 to M do
4: Observe state s and select action a = π(s)
5: Execute a in environment and observe reward r and next state s′

6: Set δ = (r + γmaxa′ Q(s′, a′)−Q(s, a))
7: Update Q(s, a)← Q(s, a) + α · δ
8: Add (s, a, r, s′, n = 0) to P if δ · βn ≥ ρ
9: for planning step = 1 to N do

10: Pop highest priority transition (st, at, rt, st+1, n) from P ▷ Note,
some of the elements of the tuple could be previously simulated but we do
not addˆfor clarity. Furthermore, note that we subscript the transitions
here for clarity as well so that it can be seen in which direction model
simulations occur.

11: for all actions a ∈ A do
12: Simulate transition (st+1, a, r̂t+1, ŝt+2) usingMs

13: Set δ = (r̂t+1 + γmaxa′ Q(ŝt+2, a
′)−Q(st+1, a))

14: Update Q(st+1, a)← Q(st+1, a) + α · δ
15: Add (st+1, a, r̂t+1, ŝt+2, n+ 1) to P if δ · βn+1 ≥ ρ

Possibly the most common type of instantiation of the Dyna framework

is 1-step successor Dyna [6], [8], [11] (we abbreviate to FQ1). Introduced by

Sutton [23], as seen in Algorithm 2, given state st, the model is used to simulate

environment dynamics forward in time to yield r̂t+1, ŝt+2 (note, thatˆabove

elements in transition tuples indicate that these elements are generated by a

model) for some action at yielding a simulated transition (st, at, r̂t+1, ŝt+1) .

Then, a 1-step Q-learning update is performed on this simulated transition :

Q(st, at)← Q(st, at) + α(r̂t+1 + γmax
at+1

Q(ŝt+1, at+1)−Q(st, at)).

24

Furthermore, if the TD-error, δ, of this transition is sufficiently high, it may

be added back to the planning queue. Indeed, this simulated transition may

even be popped from the planning queue in the future. In this case, the model

then generates (ŝt+1, at+1, r̂t+2, ŝt+2), effectively continuing the ‘rollout’ from st

(note that when β = 0, this algorithm is equivalent to Dyna-Q [23]). Figure

3.3 shows a graphical representation of this process.

If st is a real state, the planning TD update involves moving the estimate

of a real state towards the sum of an immediate reward r̂t+1 and the value

of a successor state ŝt+1. Thus, this planning update causes the value of real

states to be updated towards the values of simulated states. According to our

hypothesis, we expect to see a Dyna agent planning using this update to fail

to learn a control policy.

Consider how this approach performs in Bordered Gridworld. It may be

immediately clear that the same problematic transition discussed in Section

3.1.2 will be generated — the value of moving toward the border may be

erroneously raised as a result of (potentially) arbitrary high values of the

unreachable border states. However, unlike in Dyna-Q, this error may be

corrected over time. Since the model is used to simulate multiple steps, it may

not only simulate transitions from reachable states to border states, but also

from border states back to reachable states as shown in Figure 3.4. As such,

the values of impossible states may be updated. In this simple example, the

values of border states may converge to their true value, however, this may take

a great deal of time, likely harming rather than helping sample complexity.

3.3.3 n-step successor Dyna

An extension of 1-step successor Dyna is n-step successor Dyna [3], [33]

(which we abbreviate to FQN) as shown in Algorithm 3. As suggested by

the name, here we use multi-step trajectories in the TD update. Given some

transition tuple ({st+j}k−1
j=0 , {at+j}k−1

j=0 , {rt+j}k−1
j=0 , st+k) (note {}k−1

j=0 indicates a

trajectory or states, rewards, etc.) off the planning queue, the environment

model generates, for some at, the successor state ŝt+k+1 of st+k along with

reward r̂t+k. A n-step Q-learning update is performed on the newly generated
25

St

St+11

St+12

St+21a1

a2

a1

Figure 3.3: Planning with 1-step successor Dyna. The model is used to
generate successor states s1t+1 and s2t+1 of st (along with reward of these trans-
itions) for actions a1 and a2, respectively. Then, a 1-step TD update is applied
(as depicted by the yellow rectangles). Shown also is a simulated transition
from s1t+1 to s1t+2. This update would happen occur if the priority δt+1 · β1 of
the transition (st, a1, rt+1not shown, s1t+1) exceeds ρ. That is, the transition
(st, a1, rt+1not shown, s1t+1) would have been added back to the planning queue
and used in subsequent planning phases.

s
t

s
t+1

s
t+2

s
t+3

Figure 3.4: Planning trajectories generated by 1-step successor Dyna
on Bordered Gridworld

26

Algorithm 3 n-step successor Dyna
1: procedure n-step successor Dyna
2: Initialise Q-function, planning queue P , priority threshold ρ, decay

parameter β, learning rate α; Load environment modelMs

3: for episode = 1 to M do
4: Observe state s and select action a = π(s)
5: Execute a in environment and observe reward r and next state s′

6: Set δ = (r + γmaxa′ Q(s′, a′)−Q(s, a))
7: Update Q(s, a)← Q(s, a) + α · δ
8: Add (s, a, r, s′, n = 0) to P if δ · βn ≥ ρ
9: for planning step = 1 to N do

10: Pop highest priority transition (st, at, rt, st+1, n) from P ▷ Note,
some of the elements of the tuple could be previously simulated but we do
not addˆfor clarity. Furthermore, note that we subscript the transitions
here for clarity as well so that it can be seen in which direction model
simulations occur. Finally, in n-step successor Dyna note that we could be
dealing with trajectories of s, a, r in the tuples popped off P which are not
shown for clarity.

11: for all actions a ∈ A do
12: Simulate transition (st+1, a, r̂t+1, ŝt+2) usingMs

13: Set δ = (rt + γ · r̂t+1 + γ2maxa′ Q(ŝt+2, a
′)−Q(st, at))

14: Update Q(st, at)← Q(st, at) + α · ρt:t+2δ ▷ ρt:t+2 is the
importance sampling ratio of this trajectory

15: Add ({st, st+1}, {at, a}, {rt, r̂t+1}, ŝt+2, n+1) to P if δ ·βn+1 ≥
ρ

27

St

St+1
1

St+1
2

St+2
1

a1

a2

a1

Figure 3.5: Planning with n-step successor Dyna. One trajectory gener-
ated during planning is from st to s1t+1 to s1t+2 (along with reward). A 2-step
TD update applied (as depicted by the yellow rectangles). Note, in practice we
generate such trajectories for all actions from a particular state.

transition:

Q(st, at)← α

(
n∑

i=0

γir̂t+i + γn+1 max
at+n+1

Q(ŝt+n+1, at+n+1)−Q(st, at)

)
+Q(st, at).

Importantly, this n-step TD update is weighted by importance sampling ratio

(which is why we store the sequences {st+j} , {at+j}). Finally, just as with

FQ1, the newly generated transition may be added back to the planning queue

if its TD-error δt+n+1 is sufficiently high, and the planning ‘rollout’ continued

from ŝt+n+1. A graphical representation of this TD update is shown in Figure

3.5.

This algorithm falls within the purview of our hypothesis: it updates the

values of real states to simulated states. Thus, we expect it to struggle to

learn a good control policy. In fact, it may be even worse than FQ1. To see

why, again consider performance on Bordered Gridworld. Figure 3.6 shows

two simulated transitions generated during planning. Firstly, as illustrated

previously, the 1-step transition (top left of Figure 3.6) will be problematic.

Secondly, more troublsome is the fact that FQN will also perform TD updates

from states deep in the ‘interior’ of the reachable states to the border (bottom

left of Figure 3.6). Thus, not only will the values of states adjacent to the

28

st+1

st

st

st+3

st+2

st+1

Figure 3.6: Planning trajectories generated by n-step successor Dyna
on Bordered Gridworld .

border be directly updated to the imagined values of border states but so will

the values of states deep in the reachable set. This may lead to even more

detrimental outcomes for the control policy than FQ1.

Moreover, unlike FQ1, the design of FQN rules out the possibility of the

values of unreachable border states being updated. This is due to the way

trajectories are stored in the planning queue. From a given real, observed state

st, model simulates dynamics forward in time to yield ŝt+1. This results in

an update to the value of the real state st. Moreover, supposing the ‘rollout’

is continued from ŝt+1, the model generates ŝt+2, but the update from this

trajectory again only updates the value of st — the value of ŝt+1 is not updated.

Indeed, as can be seen from the trajectory shown in the bottom left of Figure-

3.6, the multi-step trajectories result in updates only to real, observed states

and not to border states.

So far we have explored algorithms covering half of our Dyna design space:

algorithms that use models to simulate environment dynamics forward in

time and perform TD updates on such simulated transitions. Clearly, these

algorithms fall within the scope of our hypothesis and we have described

plausible ways in which they may fail. In the next sections, we examine

algorithms that use models to simulate dynamics backward in time. At first

glance, one would think such algorithms would not update real state values to

29

potentially erroneous simulated state values and therefore not fail. However,

as we show below, this is not necessarily the case.

3.3.4 1-step predecessor Dyna

Algorithm 4 1-step predecessor Dyna
1: procedure 1-step predeccessor Dyna
2: Initialise Q-function, planning queue P , priority threshold ρ, decay

parameter β, learning rate α; Load environment modelMp

3: for episode = 1 to M do
4: Observe state s and select action a = π(s)
5: Execute a in environment and observe reward r and next state s′

6: Set δ = (r + γmaxa′ Q(s′, a′)−Q(s, a))
7: Update Q(s, a)← Q(s, a) + α · δ
8: Add (s, a, r, s′, n = 0) to P if δ · βn ≥ ρ
9: for planning step = 1 to N do

10: Pop highest priority transition (st, at, rt, st+1, n) from P ▷ Note,
some of the elements of the tuple could be previously simulated but we do
not addˆfor clarity. Furthermore, note that we subscript the transitions
here for clarity as well so that it can be seen in which direction model
simulations occur.

11: for all actions a ∈ A do
12: Simulate transition (ŝt−1, a, r̂t−1, st) usingMp

13: Set δ = (r̂t−1 + γmaxa′ Q(st, a
′)−Q(ŝt−1, a))

14: Update Q(ŝt−1, a)← Q(ŝt−1, a) + α · δ
15: Add (ŝt−1, a, r̂t−1, st, n+ 1) to P if δ · βn+1 ≥ ρ

1-step predecessor Dyna (abbreviated to BQ1) is the predecessor model

analogue of FQ1. Algorithm 4 shows pseudocode of the algorithm. As shown

in Figure 3.7, here, given some state st, environment dynamics are simulated

backward in time. Thus, for action at−1 we obtain ŝt−1, r̂t−1. A 1-step Q-learning

update is performed on this transition:

Q(ŝt−1, at−1)← α(r̂t−1 + γmax
at

Q(st, at)−Q(ŝt−1, at−1)) +Q(ŝt−1, at−1).

Furthermore, this transition may be added back to the planning queue (modulo

ρ). If β = 0, this algorithm becomes Predecessor Dyna-Q [23] while β = 1

makes this equivalent to Prioritised Sweeping [17], [21].

Although at face value it would seem that this algorithm does not update

real state values to simulated states values, in fact, it does so and therefore
30

St

St-1
1

St-1
2

St-2
1

a1

a2

a1

Figure 3.7: Planning with 1-step predecessor Dyna. From a given state
st, environment dynamics are simulated backward in time to yield s1t−1 and
s2t−1 (along with reward). A 1-step TD update applied from these simulated
states. Moreover, as shown by the yellow rectangle over s1t−1 and s1t−2, the
predecessor state ‘rollout’ can continue just as in FQ1.

according to our hypothesis it may cause learning failure. Figure 3.8 (a) shows

a trajectory of transitions from the real state st generated by the predecessor

model during planning: st, ŝt−1, ŝt−1, ŝt−1. The planning transition from st−1

to st updates the value of Q(ŝt−1, down), but as the agent can never reach ŝt−1,

the policy there is irrelevant and similarly for Q(ŝt−2, right). However, the

planning transition from ŝt−3 to ŝt−2 does impact the control policy as ŝt−3 is a

reachable state. If the value of ŝt−2 is arbitrarily high, updating the value ŝt−3

towards ŝt−2 will cause the value of Q(ŝt−3, up) to increase. The next time the

agent reaches ŝt−3, it may choose the up action and repeatedly ‘run’ into the

wall.

That said, there is a key difference to FQ1. With a successor model, when

the model is limited to simulating a single step trajectory (i.e., when β = 0),

the result is catastrophic — the value of the border states perpetually misleads

the agent. However, in Predecessor Dyna-Q, when a predecessor state model

simulates a single step backward in time from a reachable state (setting β = 0),

the target state of every update is a state the agent actually experienced. Thus,

in this special case, the values of erroneous states cannot contaminate the

values of reachable states. Predecessor Dyna-Q is, therefore, robust to model

error, though it cannot make use of longer simulated trajectories.

Is there an algorithm that has the benefits of planning while avoiding

31

s
t

s
t-2

s
t-1

s
t-3

(a) β ̸= 0

s
t

s
t-2

s
t-1

s
t-3

(b) β = 0

Figure 3.8: Planning trajectories generated by 1-step predecessor
Dyna on Bordered Gridworld . (a) If β ̸= 0, this algorithm may per-
form updates from real to simulated states. (b) If β = 0, it only generates
1-step trajectories to update simulated states to a real states.

updates from real to simulated states for any value of β? The answer is the

affirmative. In the next section, we introduce n-step predecessor Dyna — an

algorithm designed not to update real state values to simulated state values.

3.3.5 n-step predecessor Dyna

We have identified existing algorithm examples in three quadrants of the

design space for Dyna planning depicted in Table 3.1. We are not aware of

existing examples in the fourth quadrant – algorithms that use predecessor

models and n-step TD updates – but we shall see that it has particularly

attractive properties in the face of model error.

In n-step predecessor Dyna, as shown in Algorith 5, we apply multi-step

updates always with the selected state st as the bootstrap target. That

is, for a particular transition tuple ({ŝt−j}1j=k, {at−j}1j=k, {r̂t−j}1j=k, st), we

simulate dynamics backwards from ŝt−k to get state ŝt−(k+1) and reward

ŝt−(k+1) for action at−(k+1). Thus, we generate the multi-step trajectory

({st−j}1j=k+1, {at−j}1j=k+1, {rt−j}1j=k+1, st) and perform the n-step TD update:

32

Algorithm 5 n-step predecessor Dyna
1: procedure n-step predecessor Dyna
2: Initialise Q-function, planning queue P , priority threshold ρ, decay

parameter β, learning rate α; Load environment modelMp

3: for episode = 1 to M do
4: Observe state s and select action a = π(s)
5: Execute a in environment and observe reward r and next state s′

6: Set δ = (r + γmaxa′ Q(s′, a′)−Q(s, a))
7: Update Q(s, a)← Q(s, a) + α · δ
8: Add (s, a, r, s′, n = 0) to P if δ · βn ≥ ρ
9: for planning step = 1 to N do

10: Pop highest priority transition (st, at, rt, st+1, n) from P ▷ Note,
some of the elements of the tuple could be previously simulated but we do
not addˆfor clarity. Furthermore, note that we subscript the transitions
here for clarity as well so that it can be seen in which direction model
simulations occur. Finally, in n-step predecessor Dyna note that we could
be dealing with trajectories of s, a, r in the tuples popped off P which are
not shown for clarity.

11: for all actions a ∈ A do
12: Simulate transition (ŝt−1, a, r̂t−1, st) usingMp

13: Set δ = (r̂t−1 + γ · rt + γ2maxa′ Q(st+1, a
′)−Q(ŝt−1, a))

14: Update Q(ŝt−1, at)← Q(ŝt−1, at) + α · ρt−1:t+1δ ▷ ρt−1:t+1 is
the importance sampling ratio of this trajectory

15: Add ({ŝt−1, st}, {a, at}, {r̂t−1, rt}, st+2, n+1) to P if δ ·βn+1 ≥
ρ

33

st

St-1
1

St-1
2

St-2
1

a1

a2

a1

Figure 3.9: Planning with n-step Predecessor Dyna. Multi-step traject-
ories are generated from a particular state. In this figure, we generate one
2-step predecessor state trajectory and a 1-step predecessor state trajectory.
The yellow rectangles represent the n-step TD updates that are performed.
Notice, if β = 0, BQN is equivalent to BQ1.

Q(ŝt−(k+1), at−(k+1))← α

(
1∑

l=k+1

γk+1−lr̂t−j + γk−l max
at

Q(st, at)−Q(ŝt−k−1, at−k−1)

)
+Q(ŝt−k−1, at−k−1)

Within the design of β-Priorititsed Dyna (Algorithm 1), this update always

results in simulated state values being updated toward real state values. This

is because of the way transitions are initially added to the planning queue.

When the agent is exploring the environment, if the TD-error of a transition

is sufficiently high, it will be added to the planning queue. Thereafter, dur-

ing planning, n-step predecessor Dyna generates trajectories of predecessor

transitions and updates the values of states at the end of these predecessor

transitions to the value of the real experienced state st. Thus, the values of

real states are never updated to the values of simulated states (the target is

always st) and hallucinated state values cannot contaminate reachable state

values. As seen in Figure 3.10 if these states correspond to real, reachable

states then the planning update is useful. On the other hand, if these states

are erroneous simulated states, any value function update to these states does

34

st-1

st

st

st-3

st-2

st-1

st-1 st

st-1st st-2

Figure 3.10: Planning trajectories generated by n-step predecessor
Dyna on Bordered Gridworld

not harm the agent’s policy as the agent can never reach these states to make

a bad action choice. An added bonus of this algorithm is that it allows for

planning to generate longer trajectories of simulated transitions than 1-step

predecessor Dyna with β = 0. As per the work of Holland et al . [8], this ought

to have a beneficial impact on learning.

35

Chapter 4

The Hallucinated Value
Hypothesis in Bordered
Gridworld

We report experimental results of running the algorithms defined in the

previous chapter on Bordered Gridworld. First, we present results of 1-step

successor Dyna & n-step successor Dyna. Then, we evaluate the predecessor

Dyna algorithms 1-step predecessor Dyna & n-step predecessor Dyna. The

results of these experiments seem to affirm our hypothesis: algorithms which

update real state values to simulated state values fail in the face of erroneous

model predictions.

4.1 Experiment Methodology

The experiments in this chapter are conducted on Bordered Gridworld. To

test the Hallucinated Value Hypothesis, we make specific experiment choices as

detailed below.

Value Function

We use a tabular value function to represent Q-values for both reachable and

unreachable states. That is, we define the value function table to contain

capacity to be able to represent Q(s, ·) for s ∈ Sr and s ∈ Src .

In Chapter 3 we explained that temporal difference (TD) updates from

real to simulated states may mislead the agent’s control policy. Our intuition

36

for this is that simulated states may have values that incorrectly influence

the agent’s policy away from real value in the environment. Thus, in these

experiments, to ‘maximally’ mislead the agent away from real environment

value, we optimistically initialise the value function to 1 for all s ∈ S. In

particular, this includes initialising the values of s ∈ Src to 1 as well. Thus, it

is likely that real environment value may be over-shadowed by spurious value

of border states.

Environment Models

Unlike the standard Dyna framework where an environment model is learned

online (i.e., as the agent is interacting with the world), in these experiments,

to study our hypotheses, we use predefined environment dynamics models with

known fixed errors.

The successor state model Ms simulates environment dynamics forward

in time: Ms : S ×A ↦→ S ×R. That is,Ms(s, a) ↦→ r, s′, where state s′ and

reward r succeed state s given action a. As Bordered Gridworld is deterministic,

the model perfectly captures the environment’s dynamics — all reward and

state predictions are perfectly accurate. However, to fabricate the effect of an

imperfect environment model which produces imagined states that cannot be

realised,Ms produces predictions to states in the border; the model makes the

agent believe that transitions between states s ∈ Sr and s ∈ Src are possible

(as well as transitions from border states to border states).

The predecessor state environment model,Mp, is analogous to the successor

state environment model, Ms. Mp is a mapping from a state s′ ∈ S to a

state s ∈ S and a reward r ∈ R given an action a ∈ A — Mp(s
′, a) ↦→ s, r.

Intuitively, given a state s′ and an action a, Mp returns a prediction of the

state s which would have been the state that led to s′ if action a had been

taken from s.

The type of error fixed into Ms and Mp may be plausible in learned

environment models. Consider a model which aggressively generalises. It will

see that in most states in Bordered Gridworld (|Sr| is larger |Sc
r |) that when

the agent takes the action up, for example, the position of the black square

37

representing the agent moves up a little on the screen. It may generalise this

behaviour across all states in S. This will lead to model error where the agent

generates transitions from states near the top border to states inside the top

border.

Experiment Settings

All experimental results are averages over 10 runs. The dark lines in the plots

represent means while the shaded region represents (which may be smaller than

the width of the mean performance line and therefore not visible) standard

errors.

We use the following parameters for this study:

α ∈ {0.023, 0.03, 0.05, 0.09, 0.11, 0.13, 0.15, 0.18, 0.19}

β = 0.9 unless otherwise stated

ϵ = 0.1

γ = 0.9

ρ = 0.1

All graphs in the learning curves that follow are for the best choice of α for

the particular algorithms shown.

4.2 Dyna style Algorithms with Successor Mod-
els

4.2.1 1-step Successor Dyna

Learning curves on Bordered Gridworld for Q-learning and 1-step successor

Dyna (abbreviated to FQ1) are shown in Figure 4.1. The plot shows cumulative

reward as a function of cumulative experience in the environment. As reward

is only gained when the agent reaches the goal state, cumulative reward is,

in this case, equivalent to the number of episodes the agent has completed.

The black dashed line on the plot represents the performance of a hypothetical

agent that employs the optimal policy from the start; the orange line shows
38

0 10 20 30 40
Cumulative Experience (1000s interactions)

0

500

1000

1500

Cu
m

ul
at

iv
e

Re
wa

rd

Optimal
Q
FQ1

Figure 4.1: Learning Curves of Q-learning and FQ1 on Bordered Grid-
world .

the performance of the best model-free Q-learner, and the turquoise line shows

the performance of the best FQ1 agent.

The model-free Q-learning agent’s learning curve is typical of an agent

which learns how to solve this task. It is flat initially as the agent explores the

environment and does not reach the goal frequently. As learning progresses and

the agent learns improved policies the gradient of the learning curve increases

until it almost matches the gradient of the optimal policy (note, it does not

match the gradient of the optimal policy as ϵ ̸= 0). The learning curve of

the FQ1 agent, however, reflects a failure to learn Bordered Gridworld. After

accumulating some reward in the initial episodes (when optimistic initialisation

still holds), the agent’s learning curve flattens out indicating that it is not

completing any more episodes — it is stuck either running into a wall or

exhibiting other similar behaviour preventing it from reaching the terminal

state before time-out. Thus, this experiment seems to support our hypothesis

that planning updates that change the values of real states towards simulated

states cause failure.

Why does the planning update of FQ1 cause it to fail in learning this task?

Figure 4.2 shows plots of max
a

Q(s, a) ∀s ∈ S. In the initial stages of learning,

Figure 4.2 (a), we see that the value for the border states s ∈ Src and many of

the reachable states s ∈ Sr are high due to optimistic initialisation. As learning

39

(a) 1000 steps (b) 5000 steps

(c) 20000 steps (d) 50000 steps

Figure 4.2: Heatmaps of max
a

Q(s, a) ∀s ∈ S for FQ1 on Bordered
Gridworld. The dashed red line shows the border.

progresses, the values of the internal states s ∈ Sr are driven down but the

values of the unreachable border states remain high (Figure 4.2 (b)). The key

phenomenon is shown in Figure 4.2 (c) where the values of states close to the

border are high, and indeed this is even more evident in Figure 4.2 (d). The

values of the states close to the border are increased due to planning updates

in FQ1 which updates them to the optimistic values of states in the border.

Indeed, this phenomenon causes the agent ‘run into the walls’ and thus fail to

learn this task.

The results shown are for FQ1 with β = 0.90. Is there any difference for

different values of β? In fact, the performance of FQ1 remains the same no

matter the value of β. Even if β = 0 reachable states adjacent to the border

are added to the planning queue and simulating forward from these states will

result in Q-values of these states being misled by the values of border states.

40

0 10 20 30 40
Cumulative Experience (1000s interactions)

0

500

1000

1500

Cu
m

ul
at

iv
e

Re
wa

rd

Optimal
Q
FQN

Figure 4.3: Learning Curves of Q-learning and FQN on Bordered Grid-
world.

We have established that planning with 1-step successor state TD update

causes failure. What about n-step successor state TD updates (which, again,

update real to simulated states)? Can this TD update circumvent the issues of

FQ1? We evaluate this algorithm in the next section.

4.2.2 n-step Successor Dyna

As can be seen in Figure 4.3, the n-step successor Dyna agent (abbreviated

to FQN), represented by the green learning curve, fails to learn Bordered

Gridworld. Similarly to FQ1, the agent gathers some initial reward but fails

to collect any more. This is indicative of a policy that is causing the agent to

either run into walls or circle around the terminal state. On the other hand,

the model-free agent, Q (represented by the orange curve), learns the optimal

policy. Thus, the same conclusions as in FQ1 hold: the agent’s failure to learn

this task is seemingly a consequence of the planning update.

The FQN agent suffers from the same problem as the FQ1 agent. The

TD updates effectuated in planning cause the agent to learn a policy inimical

to learning the task. Namely, planning updates that use the optimistically

initialised values of border states in the TD target precipitate a policy where

the agent repeatedly ‘runs’ into the wall. Evidence of this phenomenon is

apparent in Figure 4.4 showing plots of max
a

Q(s, a) ∀s ∈ S. As with the FQ1

41

(a) 1000 steps (b) 5000 steps

(c) 20000 steps (d) 50000 steps

Figure 4.4: Heatmaps of max
a

Q(s, a) ∀s ∈ S for FQN on Bordered
Gridworld. The dashed red line shows the border.

agent, the FQN agent’s value function is corrupted by planning updates; the

values of states near the border are incorrectly raised to values of border states

thus adversely affecting the control policy.

In sum, this section shows evidence supporting the Hallucinated Value

Hypothesis. Both algorithms which update the values of real states towards

the values of simulated states fail to learn in Bordered Gridworld. Once the

action values of real states are updated towards the values of unreachable

optimistically initialised states, the agent simply keeps ‘running’ into a wall

and fails to gather any further reward.

In the next section, we investigate 1-step predecessor Dyna and n-step

predecessor Dyna. The planning TD updates are the converse of successor

state TD planning updates: they move the values of simulated predecessor

states towards the values of observed real states. Ostensibly, since this update

42

0 10 20 30 40
Cumulative Experience (1000s interactions)

0

500

1000

1500

Cu
m

ul
at

iv
e

Re
wa

rd

Optimal
Q
BQ1

Figure 4.5: Learning curves of Q-learning and BQ1 with β > 0 on
Bordered Gridworld.

does not conform to our hypothesis, we would expect model-based agents that

use this TD update to not suffer from the same problem.

4.3 Dyna style Algorithms with Predecessor Mod-
els

4.3.1 1-step Predecessor Dyna

In the preceding sections, we demonstrated that successor state planning

fails when the the planning process updates the values of real states towards

simulated states. Here, we first show that, under specific settings of β, this

issue plagues 1-step predecessor Dyna too.

As can be seen from the curves in Figure 4.5, the BQ1 agent accumulates

some reward and, in fact, outpaces Q-learning briefly (the red line is above

the orange line in the plot). However, after approximately 25,000 cumulative

steps the learning curve of BQ1 plateaus whereas the learning curve of Q-

learning rapidly improves. Indeed, the learning behaviour reflected in this plot

is reminiscent of both FQ1 and FQN — the agent accumulates some reward

initially, but later the policy is sufficiently corrupted such that it is unable to

solve Bordered Gridworld.

The plots max
a

Q(s, a) ∀s ∈ S shown in 4.6 reveal why BQ1 fails. The first

43

(a) 1000 steps (b) 5000 steps

(c) 20,000 steps (d) 50,000 steps

Figure 4.6: Heatmaps of max
a

Q(s, a) ∀s ∈ S for BQ1 with β > 0 on
Bordered Gridworld. The dashed red line shows the border.

observation we wish to highlight is that unlike the direct forward planning

agents FQ1 and FQN, the value function of BQ1 agent, as shown in 4.6 (a),

(b) & (c), is not immediately corrupted planning. The value function seems

relatively accurate even up-to 20,000 steps. However, after some number of

steps, Q-values close to the border gradually become high. It is these high

Q-values that result in the agent failing to learn the task. We believe this

phenomenon occurs because BQ1 with β > 0 eventually results in updating

real states values to simulated states values.

In Chapter 3 we suggested that BQ1 with β = 0 would not suffer from

model error as it does not update real state values to simulated state values.

Figure 4.7 shows the learning curve for BQ1 with β = 0. Here, we see the

first evidence of planning with erroneous models not causing failure. The red

learning curve of BQ1 with β = 0 rises earlier than the orange learning curve

44

0 10 20 30 40
Cumulative Experience (1000s interactions)

0

500

1000

1500

Cu
m

ul
at

iv
e

Re
wa

rd

Optimal
Q
BQ1

Figure 4.7: Learning Curves of Q-learning and BQ1 with β = 0 on
Bordered Gridworld.

of Q-learning, indicating that the agent learns the optimal policy sooner.

Indeed, as seen in Figure 4.8 showing plots of max
a

Q(s, a) ∀s ∈ S for BQ1

with β = 0, the value function is uncorrupted. Values of states near the border

are not influenced by the values of border states, and the values of reachable

states only reflects real reward available in the environment.

While setting BQ1 with β = 0 addresses the problems caused by updates

from real to simulated states, it removes the possibility of multi-step planning.

In the next section, we show we can entirely avoid the problem of real states’

values being updated towards imagined states’ values by utilising n-step pre-

decessor state TD updates. This update allows us to derive the benefit of

planning while seeming to avoid the risk of failure due to an imperfect model.

4.3.2 n-step Predecessor Dyna

As explained earlier, n-step predecessor Dyna (abbreviated to BQN) is

guaranteed to only update the values of simulated states to the values of

real states. Thus, as per the Hallucinated Value Hypothesis, we expect this

algorithm not to struggle when updating with erroneous simulated transitions.

Figure 4.9 shows learning curves of BQN on Bordered Gridworld. Unlike

all the other algorithms evaluated (except BQ1 with β = 0), BQN does not

fail to learn to solve Bordered Gridworld when β > 0. As shown by the dark

45

(a) 1000 steps (b) 5000 steps

(c) 20000 steps (d) 50000 steps

Figure 4.8: Heatmaps of max
a

Q(s, a) ∀s ∈ S for BQ1 with β = 0 on
Bordered Gridworld. The dashed red line shows the border.

46

0 10 20 30 40
Cumulative Experience (1000s interactions)

0

500

1000

1500

Cu
m

ul
at

iv
e

Re
wa

rd

Optimal
Q
BQN

Figure 4.9: Learning Curves of Q-learning and BQN on Bordered
Gridworld.

blue curve, for the first 20, 000 interactions with the environment, it does

not accumulate much reward. However, after this point, it quickly learns the

optimal policy as shown by the fact that the gradient of its learning curve

closely matches the gradient of the learning curve of the optimal policy.

Furthermore, as demonstrated in Figure 4.10, Q-values of reachable states

are not corrupted by values of states within the border. To wit, unlike FQ1,

FQN and BQ1 with β > 0, as the value of reachable states are not updated

towards the values of states within the border, the value function never contains

‘misleading’ values. Accordingly, BQN planning updates are robust in the

presence of an erroneous environment model.

From the results presented in Section 4.2 and the results of BQ1 with β > 0,

we have shown that planning with an imperfect model fails when planning

causes the values of real, reachable states to be updated towards the values

of imagined, unreachable states. While one could argue that this effect is

only problematic due to optimistic initialisation, we claim that in function

approximator setting, it is impossible to enforce a regime of unreachable states

not having pernicious Q-values. In the next section, we explore the Hallucinated

Value Hypothesis in this setting.

47

(a) 1000 steps (b) 5000 steps

(c) 20000 steps (d) 50000 steps

Figure 4.10: Heatmaps of max
a

Q(s, a) ∀s ∈ S for BQN on Bordered
Gridworld. The dashed red line shows the border.

48

Chapter 5

... and in The Wild

Chapter 4 showed experimental results supporting the Hallucinated Value

Hypothesis on Bordered Gridworld. Those experiments were, however, carefully

designed to explore the hypothesis: the environment model was designed

to generate flawed simulated transitions, and the value function explicitly

contained capacity to represent arbitrary values of border states.

This chapter explores whether evidence for our hypothesis can be observed

‘in The Wild ’ — in settings not explicitly constructed to highlight the phe-

nomenon. We evaluate the hypothesis on three reinforcement learning (RL)

benchmarks: Cartpole, Catcher, and PuddleWorld. As we show below, even in

these domains updating real state values towards simulated state values can

cause failure.

5.1 Methodology

The experiments on Bordered Gridworld were contrived for two reasons:

first, the environment model was purposefully inaccurate, and second, the

value function explicitly contained capacity to represent fictitious states. In

experiments in this chapter, we trained a neural network to predict environment

dynamics and used a linear function to approximate the Q-value function.

Details of both these design choices are described in the following sections.

First though, we describe the three environments.

49

5.1.1 Environments

The goal in Cartpole is to balance a pole hinged to a movable cart as

shown in Figure 5.1 (a). The agent observes (xc, ẋc, θ, θ̇), the current position

of the cart on the x-axis, the cart’s velocity, the angle of the pole with relative

to the vertical axis, and the rate of change of the angle, respectively. Note, all

elements of this tuple are continuous, thus making the state space a continuous

space. Observing these values, the agent may choose to move the cart to the

left or to the right. For every time step that the pole remains within 15° of the

vertical axis, the agent receives a reward of +1. The episode terminates when

the pole’s angle exceeds 15° of the vertical axis. We use the implementation

provided in OpenAI Gym [2].

In Catcher an agent tries to catch as many ‘fruits’ as possible (Figure 5.1 (b)).

The agent observes (xp, ẋp, xf , yf), the position of the paddle (which ‘catches’

the fruits), the paddle velocity, the fruit position on the x-axis, and the fruit

position on the y-axis, respectively. The agent may choose to move the paddle

left, do nothing, or to move the paddle right. The agent is initialised with 3

lives in each episode; every missed fruit reduces 1 life and returns a reward

of −1. Losing all 3 lives results in episode termination. On the other hand,

catching fruit results in a reward of +1. We use the implementation provided

by the PyGame Learning Environment [29].

PuddleWorld is a continuous state space version of classic RL Gridworlds.

The agent is situated in a state defined by the tuple (x, y) giving its position

in the world. It may take actions to move up, down, left, or right. The agent’s

position post-action is affected by stochastic noise drawn from a uniform

distribution over [−0.025, 0.025]. At each time-step, the agent receives a reward

of −1. Moreover, the state space contains ‘puddles’ (shown as black regions in

Figure 5.1 (c)) with increasing negative reward – the further the agent ventures

into a puddle, the greater the negative reward. We use the implementation of

Puddleworld provided in [9].

50

(a) Cartpole (b) Catcher (c) PuddleWorld

Figure 5.1: Benchmark RL Domains: Cartpole, Catcher, and Puddleworld.

5.1.2 Environment Models

We sought to learn environment models using the method described in

Section 2.4.1. This method was inspired by Oh et al . [18] in that it produces

expectations of the reward and of the next or previous state. By following

this method, we hope to achieve model accuracy similar to that of methods

currently prevailing in the literature and to capture typical modelling errors

generated by such methods.

5.1.3 Value Function

In our Bordered Gridworld experiments, we used a tabular value function

which represented the values of impossible, fictitious states in addition to real,

reachable states of the environment. To remove this contrivance from these

experiments, we use a linear value function with a dense state representation

obtained from a pre-trained DQN agent.

The state representation was obtained by training a DQN agent on each

of the domains tested. Once this agent had converged, we froze the network

weights. To obtain a state representation st for feature vector ot emitted by the

environment, we passed ot through this pre-trained network. The penultimate

layer of the network (i.e., prior to the layer containing state-action values)

was 200 units wide, and the activation of these 200 units formed the state

representation st which we fed to our linear function approximator. These

representations allowed us to more realistically mimic real-world non-tabular

51

value functions.

With this mechanism for generating representations, the actual linear

function approximator agent was trained completely online using standard

Q-learning with linear function approximation as described in Section 2.4.1.

The weights of the value function were all initialised to 0.1.

5.2 Results

5.2.1 Robustness to Model Error

Figure 5.2 shows plots of performance – average episode reward over the

final 10 episodes of a 100 episode run all averaged over 30 runs – versus a

range of values of β on the three benchmarks. The performance shown is

for the best value of α for each setting of β following an exhaustive sweep.

The value of β acts as a proxy for model error – greater values imply greater

compounding error due to model ‘iteration’ (see [12], [27], [28] for discussion)

while β = 0 prohibits model ‘iteration’ thereby eliminating compounding error

(though not model error as the even the first prediction made by the model

may contain error). An algorithm robust to model error, therefore, should not

exhibit significant performance degradation as β is increased.

We hypothesised that planning updates in Dyna which move real state

values toward simulated state values may cause failure to learn control policies.

In terms of specific algorithms, we expect 1-step successor Dyna (abbreviated

to FQ1) and n-step successor Dyna (abbreviated to FQN) to find it difficult

to learn good control policies as they directly update real state values to

simulated state values. We also expect 1-step predecessor Dyna (abbreviated

to BQ1) with large values of β to struggle as well as it increasingly updates

real state values to simulated state values as β is increased (see Section 3.3.4

for discussion). On the other hand, n-step predecessor Dyna (abbreviated to

BQN) ought not to exhibit significant performance degradation no matter the

setting of β as it is designed not to update real state values to simulated state

values in planning.

The benchmark results largely support our hypothesis and speculations

52

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0

50

100

150

200

Ep
iso

de
 R

ew
ar

d

Q
FQ1
FQN
BQ1
BQN

(a) Cartpole

0.0 0.2 0.4 0.6 0.8 1.0
Beta

0

30

60

90

120

Ep
iso

de
 R

ew
ar

d

Q
FQ1
FQN
BQ1
BQN

(b) Catcher

0.0 0.2 0.4 0.6 0.8 1.0
Beta

1000

700

400

100

Ep
iso

de
 R

ew
ar

d Q
FQ1
FQN
BQ1
BQN

(c) PuddleWorld

Figure 5.2: Performance on Cartpole, Catcher, and Puddleworld. Av-
erage episode performance against a range of values of β. BQN proves to be
robust to model error induced by high values of β while other algorithms seem
to fail as β is increased.

53

about specific algorithms. In Catcher and Puddleworld FQ1 and FQN failed

to reach the performance of Q-learning for any value of β indicating that

successor Dyna updates toward erroneous simulated states impeded agent’s

ability learn effective control policies. Similarly, FQN failed in Cartpole as

well. However, FQ1 performed surprisingly well for β ∈ {0, 0.15, 0.33} before

eventually deteriorating.

On Catcher and Puddleworld BQ1 performed as expected: it performs

well for lower values of β but degrades as β is increased until it fails to learn

effective control policies. On Cartpole, though, it performs surprisingly well

across all values of β.

In all domains, BQN was robust to β and therefore model error. Even

for β = 1, a setting with maximal model ‘iteration’ (and therefore highest

likelihood of generating fictitious states) and error, performance barely degraded.

On Cartpole – the game with maximum performance degradation – BQN

performance with β = 1 was only 6% lower than performance with β = 0.

Furthermore, unlike in Bordered Gridworld, BQN was the best performing

algorithm overall and outperformed BQ1 with β = 0.

It is surprising that the results predicted by the Hallucinated Value Hypo-

thesis are so apparent in these experiments. In tabular domains it is easy to

see that fictitious states may have arbitrary values. For instance, in Bordered

Gridworld, as the value function explicitly represents values of border states,

the border states may be initialised to arbitrary values, and one can see that

propagation of this value may mislead the agent. Here, however, values are

generated by a linear function over a dense state representation. As the weights

of the linear learner are used to generate values for all states s ∈ S, fictitious

states are unlikely to have their own set of reserved weights inducing arbitrary

value. This suggests that the values of fictitious states are not entirely arbitrary

— they may be partially informed by values of real states. Despite this the

agent is still misled by updates towards them.

Conversely, now consider the updates performed by algorithms that do not

update real state values to simulated state values. Even in this case, as weights

are likely common between real states and fictitious states, it is possible that

54

the updates performed by BQ1 with β = 0 and BQN can mislead the value

function. For example, the predecessor models may generate fictitious states ŝ

which very likely has an overlap in activation of the feature vector with some

real state s. A value function update to the weights associated with ŝ will also

lead to a change in the weights that represent s. This may change Q(s, ·), and

could potentially mislead the agent. However, we do not see such behaviour

occurring on any domain tested and this is rather surprising.

5.2.2 Learning Speed

While BQN does indeed outperform BQ1 with β = 0, one may argue that

the performance gain does not outweigh the additional computational cost of

performing n-step TD updates. Why should one use BQN then? Figure 5.3

plots performance as a function of cumulative interactions with the environment.

Specifically, the plots show performance averaged over the 10 most recently

completed episodes every 1000 cumulative environment interactions. For each

algorithm – Q-learning, FQ1, FQN , BQ1, and BQN – we select the best

settings of α and β. These plots are averages over 30 runs.

In all domains, BQN was the fastest learning algorithm. In Puddleworld,

BQN reaches close to optimal performance in about 2000 interactions with

the environment while the next best, BQ1, requires double that at 4000

steps. Similarly, in Cartpole BQN reaches optimal performance in about 7500

interactions while BQ1 performance has not stabilised by 25000 interactions.

In Catcher, BQ1 needs 50000 steps to achieve the performance that BQN

reaches in approximately 32000 steps. Succinctly, the greatest sample efficiency

benefits are reaped by BQN . As the algorithm is not catastrophically affected

by high values of β, it reaps the benefits of diverse model experience accrued

by such settings of β (see [8] for discussion on the benefits of diversity brought

by long rollouts).

55

0 5 10 15 20 25
Steps (1000s)

0

50

100

150

200

Ep
iso

de
 R

ew
ar

d
Q
FQ1
FQN
BQ1
BQN

(a) Cartpole

0 10 20 30 40 50
Steps (1000s)

0

30

60

Ep
iso

de
 R

ew
ar

d

Q
FQ1
FQN
BQ1
BQN

(b) Catcher

0 1 2 3 4 5
Steps (1000s)

1100

800

500

200

Ep
iso

de
 R

ew
ar

d

Q
FQ1
FQN
BQ1
BQN

(c) PuddleWorld

Figure 5.3: Learning curves on Cartpole, Catcher, and Catcher . Curves
are shown for the best setting of α and β of each algorithm.

56

Chapter 6

Conclusions & Future Work

This thesis set out to address the questions,

What are some consequences of using an imperfect model in Dyna?

In this final chapter, we summarise our findings towards answering this

question. We also describe new directions for future research that arise from

these findings.

6.1 Contributions

Our two primary contributions are the following.

Hallucinated Value Hypothesis. We speculated that planning temporal

difference (TD) updates in Dyna algorithms that updated real state values

towards simulated state values may harm an agent’s control policy. We

suggested that this may occur because an imperfect model might generate

fictitious states that do not correspond to real environment states, and

that the values for these states may be arbitrary. The propagation of

this arbitrary value through the value function could potentially mislead

the control policy to leave agent’s chasing hallucinated value. Given this

reasoning, we proposed the Hallucinated Value Hypothesis. We showed

the hypothesis held not only in the designed domain Bordered Gridworld,

but also in reinforcement learning (RL) benchmarks Cartpole, Catcher,

and Puddleworld.

57

n-step Predecessor Dyna. We proposed n-step predecessor Dyna, an

algorithm that is designed not to perform updates from real states to

simulated states in planning. We showed it was robust to model error in

all experiments, and that it had attractive properties in terms of learning

speed.

Additionally, there is one secondary contribution of this thesis.

β-Prioritised Dyna. We introduced an extension to standard Dyna style

algorithms which incorporated β, a simple mechanism to control imperfect

model ‘iteration’ thereby preventing updates with inaccurate simulated

states.

Concisely, for the question of what problems might be caused by using an

imperfect model in Dyna, we identified and explored the Hallucinated Value

Hypothesis. As for what may be done to solve the identified issues, we proposed

n-step Predecessor Dyna.

6.2 Directions for Future Work

We have identified the following directions as being fruitful for future work.

Improved methods for halting model ‘iteration’. We proposed β-

Prioritised Dyna as a simple method to ameliorate the problem of model

‘iteration’ causing compounding error problems. Clearly, this is a crude

solution and many better approaches can be readily suggested. For in-

stance, one may query the model for a confidence estimate of its own

predictions and use this to decide whether the ‘rollout’ ought to continue.

In parts of the state space where the model is confident, it may be ad-

vantageous to have longer ‘rollouts’ thus obtaining the benefits suggested

by Holland et al . [8] rather than simply cutting short all ‘rollouts’.

Learning localised environment models. In Section 3.1.1, we described

one way in which a global environment model may generate erroneous

simulated transitions in Bordered Gridworld. To reiterate, a model may
58

generalise the behaviour on states in the ‘interior’ of the reachable states

(where actions results in regular, consistent movement of the black square)

to the borders and thus produce erroneous simulated transitions into the

border. If many local models were to be learned, however, it may be

possible to learn separate local models for the interior of the reachable

states and for the borders. The local models at the border may learn

that it is not possible to transition into border states as they do not need

to generalise across the entire state space.

6.3 Dénouement

Ultimately, this thesis is a small step toward building effective model-

based reinforcement learning algorithms for large, complex-dynamics real-

world problems where perfect environment models cannot be obtained. It

complements and builds upon work done by many others. Holland et al . [8]

showed that longer rollouts resulted in the greatest benefit to model-based

updates. Kaiser et al . [10] built on the work of Oh et al . [18] to develop an

environment model for Arcade Learning Environment [1] games with impressive

results. On the other hand, van Hasselt et al . [7] suggested that, in some

circumstances, it may be better to use an experience replay buffer as a type

of model rather than explicitly developing a parametric model of environment

dynamics. The afore-mentioned works are but a small sample of the various

directions that many researchers have pursued to make Dyna in large domains a

reality. This work complements many of these and may be used in conjunction

with them.

59

References

[1] M. G. Bellemare, Y. Naddaf, J. Veness and M. Bowling, ‘The Arcade
Learning Environment: An Evaluation Platform for General Agents’,
Journal of Artificial Intelligence Research, 2013. 3, 12, 59

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang and W. Zaremba, OpenAI gym, 2016. eprint: arXiv:1606.01540. 50

[3] J. Buckman, D. Hafner, G. Tucker, E. Brevdo and H. Lee, ‘Sample-efficient
Reinforcement Learning with Stochastic Ensemble Value Expansion’, in
Advances in Neural Information Processing Systems, 2018. 22, 25

[4] X. Glorot and Y. Bengio, ‘Understanding the Difficulty of Training
Deep Feedforward Neural Networks’, in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010. 12, 16

[5] A. Goyal, P. Brakel, W. Fedus, S. Singhal, T. Lillicrap, S. Levine, H.
Larochelle and Y. Bengio, ‘Recall Traces: Backtracking Models for Effi-
cient Reinforcement Learning’, arXiv preprint arXiv:1804.00379, 2018.

22

[6] S. Gu, T. Lillicrap, I. Sutskever and S. Levine, ‘Continuous Deep Q-
learning with Model-based Acceleration’, in International Conference on
Machine Learning, 2016. 22, 24

[7] H. van Hasselt, M. Hessel and J. Aslanides, ‘When to Use Parametric
Models in Reinforcement Learning?’, arXiv preprint arXiv:1906.05243,
2019. 59

[8] G. Z. Holland, E. Talvitie and M. Bowling, ‘The Effect of Planning Shape
on Dyna style Planning in High-dimensional State Spaces’, arXiv preprint
arXiv:1806.01825, 2018. 22, 24, 35, 55, 58, 59

[9] E. Imani, Puddleworld, https://github.com/EhsanEI/gym-puddle,
2018. 50

[10] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K.
Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine et al., ‘Model-
based Reinforcement Learning for Atari’, arXiv preprint arXiv:1903.00374,
2019. 59

60

arXiv:1606.01540
https://github.com/EhsanEI/gym-puddle

[11] G. Kalweit and J. Boedecker, ‘Uncertainty-driven Imagination for Con-
tinuous Deep Reinforcement Learning’, in Proceedings of the First Con-
ference on Robot Learning, 2017. 22, 24

[12] N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh and D.
Batra, ‘Learning Dynamics Model in Reinforcement Learning by Incor-
porating the Long Term Future’, in Proceedings of the Eight International
Conference on Learning Representations, 2019. 52

[13] D. P. Kingma and J. Ba, ‘Adam: A Method for Stochastic Optimization’,
arXiv preprint arXiv:1412.6980, 2014. 12, 16

[14] S. Legg and M. Hutter, ‘Universal Intelligence: A Definition of Machine
Intelligence’, Minds and machines, 2007. 1

[15] L.-J. Lin, ‘Self-improving Reactive Agents Based on Reinforcement Learn-
ing, Planning and Teaching’, Machine learning, 1992. 13

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
‘Human-level Control Through Deep Reinforcement Learning’, Nature,
2015. 3, 11, 13

[17] A. W. Moore and C. G. Atkeson, ‘Prioritized Sweeping: Reinforcement
Learning with Less Data and Less Time’, Machine Learning, 1993. 22, 30

[18] J. Oh, X. Guo, H. Lee, R. L. Lewis and S. Singh, ‘Action-conditional
video prediction using deep networks in atari games’, in Advances in
neural information processing systems, 2015, pp. 2863–2871. 16, 51, 59

[19] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B.
McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J.
Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng and W. Zaremba,
‘Learning dexterous in-hand manipulation’, CoRR, 2018. [Online]. Avail-
able: http://arxiv.org/abs/1808.00177. 3

[20] Y. Pan, M. Zaheer, A. White, A. Patterson and M. White, ‘Organizing
Experience: A Deeper Look at Replay Mechanisms for Sample-based
Planning in Continuous State Domains’, in Proceedings of the Twenty
Seventh Internation Joint Conference on Artificial Intelligence, 2018. 22

[21] J. Peng and R. J. Williams, ‘Efficient Learning and Planning Within the
Dyna Framework’, Adaptive Behavior, 1993. 22, 30

[22] R. S. Sutton, ‘Learning to Predict by the Methods of Temporal Differ-
ences’, Machine learning, 1988. 9

[23] ——, ‘Integrated Architectures for Learning, Planning, and Reacting
Based on Approximating Dynamic Programming’, in Machine Learning
Proceedings 1990, 1990. 2, 22, 24, 25, 30

[24] ——, ‘Dyna, an Integrated Architecture for Learning, Planning, and
Reacting’, ACM SIGART Bulletin, 1991. 14

61

http://arxiv.org/abs/1808.00177

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
2018. 9

[26] R. S. Sutton, C. Szepesvári, A. Geramifard and M. Bowling, ‘Dyna-style
Planning with Linear Function Approximation and Prioritized Sweep-
ing’, in Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence, 2008. 22

[27] E. Talvitie, ‘Model Regularization for Stable Sample Rollouts’, in Proceed-
ings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
2014. 23, 52

[28] ——, ‘Self-correcting Models for Model-based Reinforcement Learning’, in
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
2017. 23, 52

[29] N. Tasfi, Pygame Learning Environment, https://github.com/ntasfi/
PyGame-Learning-Environment, 2016. 50

[30] A. Venkatraman, M. Hebert and J. A. Bagnell, ‘Improving Multi-step
Prediction of Learned Time Series Models’, in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015. 23

[31] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds,
D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D.
Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden, T.
Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama,
J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis and D. Silver, AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II, https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/,
2019. 3

[32] C. J. Watkins and P. Dayan, ‘Q-learning’, Machine Learning, 1992. 10

[33] H. Yao, S. Bhatnagar, D. Diao, R. S. Sutton and C. Szepesvári, ‘Multi-
step Dyna Planning for Policy Evaluation and Control’, in Advances in
Neural Information Processing Systems, 2009. 22, 25

62

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Introduction
	A Problem of Dyna style Algorithms
	Why This Problem?
	Outline of this Thesis
	Contributions

	Background
	The Reinforcement Learning Setting
	Temporal Difference Learning
	Q-learning
	Deep Q-Networks (DQN)

	Model-based Reinforcement Learning
	Dyna
	Learning Environment Transition Dynamics Models

	The Hallucinated Value Hypothesis
	How Dyna Can Go Wrong
	Bordered Gridworld
	Dyna Planning on Bordered Gridworld

	The Hallucinated Value Hypothesis
	A Design-space of Dyna style Algorithms
	β-Prioritised Dyna
	1-step successor Dyna
	n-step successor Dyna
	1-step predecessor Dyna
	n-step predecessor Dyna

	The Hallucinated Value Hypothesis in Bordered Gridworld
	Experiment Methodology
	Dyna style Algorithms with Successor Models
	1-step Successor Dyna
	n-step Successor Dyna

	Dyna style Algorithms with Predecessor Models
	1-step Predecessor Dyna
	n-step Predecessor Dyna

	... and in The Wild
	Methodology
	Environments
	Environment Models
	Value Function

	Results
	Robustness to Model Error
	Learning Speed

	Conclusions & Future Work
	Contributions
	Directions for Future Work
	Dénouement

	References

