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Abstract

Reinforcement learning (RL) is a powerful learning paradigm in which agents

can learn to maximize sparse and delayed reward signals. Although RL has

had many impressive successes in complex domains, learning can take hours,

days, or even years of training data. A major challenge of contemporary RL re-

search is to discover how to learn with less data. Previous work has shown that

domain information can be successfully used to shape the reward; by adding

additional reward information, the agent can learn with much less data. Fur-

thermore, if the reward is constructed from a potential function, the optimal

policy is guaranteed to be unaltered. While such potential-based reward shap-

ing (PBRS) holds promise, it is limited by the need for a well-defined potential

function. Ideally, we would like to be able to take arbitrary advice from a hu-

man or other agent and improve performance without affecting the optimal

policy. To achieve this, the current thesis presents a simple method called

policy invariant explicit shaping (PIES). We further expose a technical flaw

in the recently introduced dynamic potential based advice (DPBA) method

and show theoretically and empirically that PIES is a simple alternative that

succeeds where DPBA fails.
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Chapter 1

Introduction

Learning to maximize rewards is what a reinforcement learning (RL) agent

tries to do, and the agent accomplishes this through seeking a policy that

is a mapping from states to actions [23]. One challenging scenario is when

the reward signal is sparse and delayed often resulting in an agent spending

hours, days, or even years to learn a good policy. For example, the Open AI

Five agent [16] required 180 years worth of game experience per day of train-

ing; similarly, the grand-master level StarCraft agent AlphaStar [24], required

16,000 matches of training data. A means to improve learning with such a

sparse reward is to augment the reward function with an external source of

advice, using reward shaping. Reward shaping is the practice of providing

an RL agent with additional rewards to encourage intermediate behaviours

that may accelerate learning; the additional reward is called the shaping re-

ward. However, naively augmenting the original reward function with shaping

is prone to be policy-variant : the optimal policy for maximizing the shaped

reward might be different than that of the original reward function. For ex-

ample, Randløv and Alstrøm [18] showed how an additional shaping reward

that seems reasonable can in fact change the optimal policy. For an agent

learning how to ride a bicycle toward a goal, they added a shaping reward in

order to encourage transitions toward the goal. What they observed was that

the agent got distracted: instead of pursuing the goal, it preferred to ride in a

loop, repeatedly collecting the shaping reward.

Potential based reward shaping (PBRS) [14], [26], [27] allows an RL agent to
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incorporate external advice without altering its optimal policy by deriving the

shaping reward from a potential function. Given a static potential function,

PBRS defines the shaping reward as the difference in the potentials of states

(or state-action pairs) when an agent makes a transition from one state to

another. Ng, Harada, and Russell [14] showed that PBRS is guaranteed to be

policy invariant: using PBRS does not alter the optimal policy.

While PBRS provides a reliable shaping method that is policy invariant, it

may be difficult or impossible for a person or agent to express their advice as

a potential-based function. Instead, it would be preferable to allow the use of

more direct or intuitive advice in the form of an arbitrary function. The ideal

reward shaping method then would have three properties:

1. Be able to use an arbitrary reward function as advice.

2. Keep the optimal policy unchanged in the presence of the additional

advice.

3. Improve the speed of learning of the RL agent when the advice is good.1

Harutyunyan, Devlin, Vrancx, et al. [6] attempted to tackle the same problem

by proposing the framework of dynamic potential-based advice (DPBA), where

the idea is to dynamically learn a potential function from arbitrary advice,

which can be used to define the shaping reward concurrently. Importantly, the

authors claimed that if the potential function is initialized to zero then DPBA

is guaranteed to be policy invariant. We show in this work that this claim is

unfortunately not true, and hence, their approach is not policy invariant. We

confirm our finding theoretically and empirically. We then propose a fix to the

method by deriving a correction term for correcting the policy, and show that

the result is theoretically sound, and empirically policy-invariant. However,

our empirical analysis shows that the corrected DPBA fails to accelerate the

learning of an RL agent with good external advice (e.g., the advice was useful

for the DPBA method). Therefore, the corrected DPBA does not satisfy all

three of the properties of ideal reward shaping.

1If the advice is poor, or even adversarial, one would expect the initial learning to suffer,
even if the agent can eventually discover the optimal policy.
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In the attempt to find a method that meet all three properties, we intro-

duce a simple algorithm, policy invariant explicit shaping (PIES) and show

that it can achieve all of the goals for a reward shaping method: PIES can al-

low for arbitrary advice, is policy invariant, and can accelerate the learning of

an RL agent. PIES biases the agent’s policy toward the advice at the start of

the learning, when the agent is the most in need of guidance. Over time, PIES

gradually decays this bias and relies on the original value function,ensuring

policy invariance. Several experiments confirm that PIES ensures convergence

to the optimal policy when the advice is misleading and also accelerates learn-

ing when the advice is useful.

Concretely, this thesis makes the following contributions:

1. Identifies an important flaw in a previous reward shaping method.

2. Verifies the flaw exists, both empirically and theoretically, by showing

that the optimal policy can be altered by advice.

3. Provides a correction term to the method, but empirically shows that

it introduces additional complications, where good advice no longer im-

proves learning speed.

4. Introduces an approach that achieves the goals of the original method,

verifying empirically and theoretically that it meets the three criteria

desired from a reward shaping method.

This thesis is structured in four more chapters. In Chapter 2, we provide

preliminary background materials including RL and reward shaping. Chapter

3 is dedicated to describing the DPBA paper flaw and how its corrected version

behaves. In this chapter before revealing the problem with DPBA, we explain

the original paper’s test-bed and make an attempt to replicate its results.

Further we provide our theoretical findings related to the flaw followed by

supporting empirical results. After fixing DPBA with the correction term

derived from the theoretical results, we show how the corrected version of the

DPBA behaves in different scenarios. In chapter 4, we introduce PIES, the

proposed alternative to DPBA, and show how it can achieve the three goals of
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ideal shaping theoretically and empirically. Finally, the last chapter, Chapter

5, briefly expands on other related work and summarizes all the works done

in this thesis.
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Chapter 2

Background

In this section we provide some background material needed for a detailed

discussion of the thesis contributions. We start with a general overview of RL

and then we dive deeper into the reward shaping literature.

2.1 Reinforcement Learning

An RL agent interacts with its surrounding environment by taking actions

and receiving rewards and observations in return. Unlike supervised learning

that deals with a set of labeled examples, the RL agent is not provided with

labels: it learns which action gives rise to the maximum reward only by trying

different actions. One challenge is that actions might have long-term effects

and affect future rewards. In this thesis we are interested in RL problems that

can be formulated as a Markov Decision Process (MDP) [17]. Such an MDP

is described by the tuple 〈S,A, T, γ, R〉. At each time step, the environment

is in a state s ∈ S, the agent takes an action a ∈ A, and the environment

transitions to a new state s′ ∈ S, according to the transition probabilities

T (s, a, s′) = Pr(s′|s, a). Additionally, the agent (at each time step) receives a

reward for taking action a in state s according to the reward function R(s, a).

Finally, γ is the discount factor, specifying how to trade off future rewards and

current rewards.

A deterministic policy π is a mapping from states to actions, π : S → A,

that is, for each state, s, π(s) returns an action, a = π(s). The state-action

value function Qπ(s, a) is defined as the expected sum of discounted rewards
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the agent will get if it takes action a in state s and follows the policy π

thereafter.

Qπ(s, a) = E

[
∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣st = s, at = a, π

]
.

The agent aims to find the optimal policy denoted by π∗ that maximizes

the expected sum of discounted rewards, and the state-action value function

associated with π∗ is called the optimal state-action value function, denoted by

Q∗(s, a). Given the optimal value function Q∗(s, a), the agent can retrieve the

optimal policy by acting greedily with respect to the optimal value function:

π∗(s) = arg max
a∈A

Q∗(s, a),

and Q∗(s, a) is defined as:

Q∗(s, a) = max
π∈

∏ Qπ(s, a),

where
∏

is the space of all policies.

The action value function for a given policy π satisfies the Bellman equa-

tion:

Qπ(s, a) = R(s, a) + γEs′,a′ [Qπ(s′, a′)],

where s′ is the state at the next time step and a′ is the action the agent takes

on the next time step, and this is true for all policies.

The Bellman equation for the optimal policy π∗ is called the Bellman op-

timality equation:

Q∗(s, a) = R(s, a) + γEs′,a′ [Q∗(s′, a′)].

The idea behind many reinforcement learning algorithms is to learn the optimal

value function Q∗ iteratively. For example Sarsa(0) learns Q-values with the

following update rule, at each time step t (Q0 can be initialized arbitrarily):

Qt+1(st, at) = Qt(st, at) + αtδt, (2.1)

where

δt = R(st, at) + γQt(st+1, at+1)−Qt(st, at)
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Backup Diagrams

(a) Sarsa(0) (b) Q-learning

Figure 2.1: The backup diagrams indicating the update rule behind (a)
Sarsa(0) and (b) Q-learning algorithms.

is the temporal-difference error (TD-error) [20], st and at denotes the state and

action at time step t, Qt denotes the estimate of Q∗ at time step t, and αt is the

learning rate at time step t. The TD-error implies that the agent bootstraps

from its current estimation of the value function for computing the target

(the temporally successive estimates) in the error term. If all state-action

pairs continue to be visited (for infinite number of times), with an appropriate

learning rate and a bounded reward, these Q estimates are guaranteed to

converge to Q∗ for all s, a, and the policy converges to π∗ [23], [25].

Q-learning is another RL approach to estimate Q∗ with a different update

rule:

Qt+1(st, at) = Qt(st, at) + αt[R(st, at) + γmax
a
Qt(st+1, a)−Qt(st, at)],

where st and at denotes the state and action at time step t, Qt denotes the

estimate of Q∗ at time step t, and αt is the learning rate at time step t. Q-

learning belongs to the family of off-policy algorithms: the target policy for

which the optimal value function is being learned differs from the behaviour

policy which the agents follows to collect the learning samples. Here the target

policy is greedy while the behaviour policy could be some different policy

such as ε-greedy (which will be discussed shortly). The backup diagrams

for Sarsa(0) and Q-learning are shown in Figure 2.1 (a) and Figure 2.1 (b)

respectively, to illustrate the basis of their updates.

While learning iteratively, a good policy should dedicate some time for
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exploration to discover new states and actions as well as some time to exploit

the knowledge it already gained—just like what humans do, e.g ., ordering a

new dish in a restaurant or rather choosing from those that have been already

tried, with maximum deliciousness. One such policy is ε-greedy under which

the probability of choosing a random action is ε and the greedy action is 1− ε.

2.2 Reward Shaping

Similar to a sculptor shaping clay to form the final statue, the psychologist

B. F. Skinner proposed shaping for animal training: a complex task can be

learned faster by first solving its simpler approximates [5], [19], [23]. Shaping

the reward in RL is meant to facilitate learning by reinforcing the intermediate

behaviours related to achieving the main goal. One of the oldest examples

of applying reward shaping is the work by Gullapalli and Barto [5] where a

simulated robot hand was trained to press a key via learning a set of successive

approximations to the original task.

Randløv and Alstrøm [18] also utilized reward shaping to accelerate their

RL agent trying to learn how to ride a bicycle. In that paper when they

provided positive reinforcement for making transitions toward the goal, the

agent was misguided to find a loop as the optimal behaviour, accumulating

positive rewards over and over:

“In our first experiments we rewarded the agent for driving towards

the goal but did not punish it for driving away from it. Conse-

quently the agent drove in circles with a radius of 20-50 meters

around the starting point. Such behavior was actually rewarded

by the reinforcement function ...”

Consequently, the addition of an arbitrary reward can alter the optimal policy

of a given MDP, and therefore be policy-variant. Ng, Harada, and Russell [14]

proposed a mathematical approach to address the policy-variance problem.

More specifically, they derived the sufficient conditions such that the set of

optimal policies are invariant to the change in reward function [15]. In the
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following subsections we describe the work by Ng, Harada, and Russell [14]

in more detail and several important successive works that built upon their

paper to empower the strengths of reward shaping in RL.

2.2.1 Potential-Based Reward Shaping

Potential-based reward shaping (PBRS) addresses the problem of adding a

shaping reward function F to an existing MDP reward function R, without

changing the optimal policy by defining F to be the difference in the potential

of the current state s and the next state s′ [14]. Specifically, PBRS restricts

the shaping reward to the following form: F (s, s′) := γΦ(s′) − Φ(s), where

Φ : S → R is the potential function. Ng, Harada, and Russell showed that

expressing F as the difference of potentials is the sufficient condition for the

agent to be policy invariant. That is, if the original MDP 〈S,A, T, γ, R〉 is

denoted by M and the shaped MDP 〈S,A, T, γ, R+F 〉 is denoted by M ′ (M ′

is same as M but offers the agent an extra reward F in addition to R) then

the optimal value function of M and M ′ for any state-action pair (s, a) satisfy:

Q∗M ′(s, a) = Q∗M(s, a)− Φ(s)

where the term Φ(s) is the bias term. Given Q∗M ′ , the optimal policy π∗ can

simply be obtained by adding the bias term:

π∗(s) = arg max
a∈A

Q∗M(s, a) = arg max
a∈A

(Q∗M ′(s, a) + Φ(s)).

Because the bias term only depends on the agent’s state, the optimal policy

of the shaped MDP M ′, does not differ from that of the original MDP M .

To also include the shaping reward on actions, Wiewiora et al. [27] extended

the definition of F to state-action pairs by defining F to be: F (s, a, s′, a′) :=

γΦ(s′, a′)−Φ(s, a), where Φ is dependent on both the state and the action of

the agent. Now the bias term is also dependent on the action taken at state

s, therefore the agent must follow the policy

π∗(s) = arg max
a∈A

(Q∗M ′(s, a) + Φ(s, a))

in order to be policy-invariant.
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In the work by Wiewiora [26], potential-based reward shaping with static

potentials (which do not change with time), proved to be equivalent to initial-

izing the value function with the potential function, given that the learning

algorithm is using a tabular temporal difference method with an advantage-

based exploration policy and the same sequence of experience during learning.

Thus far, none of the methods that we discussed admits an arbitrary form

of advice, hence fulfills the ideal shaping goals provided in 1. In the next

subsection we further explain some approaches with potentials that changes

dynamically with time and whether dynamic potentials can be harnessed to

achieve our shaping goals.

2.2.2 Dynamic Potential-Based Shaping

PBRS, as discussed in Section 2.2.1, is restricted to external advice that can

be expressed in terms of a potential function. Therefore, it does not satisfy

the first of the three goals discussed in Chapter 1, which is being able to

directly use and arbitrary form of advice. Finding a potential function Φ

that accurately captures the advice can be challenging. To allow an expert

to specify an arbitrary function Rexpert and still maintain all the properties of

PBRS one might consider dynamic PBRS.

Dynamic PBRS uses a potential function Φt that changes over time to

form a dynamic shaping reward Ft, where subscript t indicates the time

over which F and Φ vary. Devlin and Kudenko [3] used dynamic PBRS as

Ft+1(s, s′) := γΦt+1(s′)−Φt(s), where t and t+ 1 are the times that the agent

arrives at states s and s′, respectively. They derived the same guarantees of

policy invariance for dynamic PBRS as static PBRS. To admit an arbitrary

reward, Harutyunyan, Devlin, Vrancx, et al. [6] suggested learning a dynamic

potential function Φt given the external advice in the form of an arbitrary

bounded function, Rexpert. To do so, the following method named dynamic

potential based advice (DPBA) is proposed: define RΦ := −Rexpert, and learn

a secondary value function Φ via the following update rule at each time step:

Φt+1(s, a) := Φt(s, a) + βδΦ
t (2.2)
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where Φt(s, a) is the current estimate of Φ, β is the Φ function’s learning rate,

and

δΦ
t := RΦ(s, a) + γΦt+1(s′, a′)− Φt(s, a)

is the Φ function’s TD error. All the while, the agent learns the Q values using

Sarsa (i.e., according to Equation 2.1). In addition to the original reward

R(s, a) the agent receives a shaping reward given as:

Ft+1(s, a, s′, a′) := γΦt+1(s′, a′)− Φt(s, a), (2.3)

that is, the difference between the consecutively updated values of Φ.

Harutyunyan, Devlin, Vrancx, et al. [6] suggested that with this form of

reward shaping, Q∗M(s, a) = Q∗M ′(s, a)+Φ0(s, a) for every s and a and therefore

to obtain the optimal policy π∗, the agent should be greedy with respect to

Q∗M ′(s, a) + Φ0(s, a) by the following rule:

π∗(s) = arg max
a∈A

(Q∗M ′(s, a) + Φ0(s, a)), (2.4)

and thus if Φ0(s, a) is initialized to zero, the above biased policy in Equation

2.4, reduces to the original greedy policy:

π∗(s) = arg max
a∈A

Q∗M ′(s, a) = arg max
a∈A

Q∗M(s, a).

In the next chapter we first try to replicate the original empirical results of

DPBA and then explain the flaw in their policy invariance derivation and

provide empirical evidence that it is not policy invariant. In other words, we

show cases where incorporating advice through DPBA leads the agent to find

non-optimal policies.
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Chapter 3

The Flaw in DPBA

The previous chapter described DPBA, a method that can incorporate an

arbitrary expert’s advice in a reinforcement learning framework by learning a

potential function Φ iteratively and concurrently with the shaped state-action

values, QM ′ . Harutyunyan, Devlin, Vrancx, et al. [6] claimed that if the initial

values of Φ, Φ0, are initialized to zero, then the agent can simply follow a

policy that is greedy with respect to QM ′ to achieve policy invariance. In this

chapter we show that this claim is unfortunately not true: initializing Φ0(s, a)

to zero is not sufficient to guarantee policy invariance. But before proving

our claim theoretically and empirically, we replicate the same results from the

original paper with a description of their test-bed (which is also used in the

next chapter).

3.1 Original DPBA Experiments and Results

DPBA was empirically evaluated on two episodic tasks: a 20 × 20 grid-world

and a cart-pole problem. In the grid-world experiment, the agent starts each

episode from the top left corner until it reaches the goal located at the bottom

right corner, within a maximum of 10,000 steps. The agent can move along the

four cardinal directions and the state is the agent’s coordinates (x, y). The

reward function is +1 upon arrival at the goal state and 0 elsewhere. The

advice, Rexpert, for any state action is:

Rexpert(s, a) :=

{
+1 if a is right or down

0 otherwise
.
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In the cart-pole task [13], the goal is to balance a pole on top of a cart

as long as possible. The cart can move along a track and each episode starts

in the middle of the track with the pole upright. There are two possible

actions: applying a force of +1 or −1 to the cart. The state consists of

a four dimensional continuous vector, indicating the angle and the angular

velocity of the pole, and the position and the velocity of the cart. An episode

ends when the pole has been balanced for 200 steps or the pole falls, and

the reward function encourages the agent to balance the pole. To replicate

this experiment in this thesis, we used the OpenAI Gym [2] implementation

(cartpole-v0).1 The advice for this task is defined as:

Rexpert(s, a) := o(s, a)× c,

where o : S × A → {0, 1} is a function that triggers when the pole direction

is aligned with the force applied to the cart (i.e., when the cart moves in the

same direction as the pole is leaning towards, the agent is rewarded). We set

c = 0.1.

Figure 3.1 shows the performance of the DPBA method, compared to a

simple Sarsa learner not receiving any expert advice in the grid-world and

the cart-pole domains. We used the same set of hyper-parameters as used by

Harutyunyan, Devlin, Vrancx, et al. [6] for the grid-world. For learning the

cart-pole task, the agent used linear function approximation for estimating the

value function via Sarsa(λ) and a tile-coded feature representation [21] with

the implementation from the open-source software provided in a blog post by

Sutton [22]. The weights for Q and Φ were initialized uniformly at random

between 0 and 0.001. For tile-coding, we used 8 tilings, each with 24 tiles (2

for each dimension). We used a wrapping tile for the angle of the pole for a

more accurate state-representation. With a wrapping tile one can generalize

over a range (e.g ., [0, 2π]) rather than stretching the tile to infinity, and then

1There are slight differences between our implementation of cart-pole and the version
used in the DPBA paper [6], making the results not directly comparable. In that paper, 1)
if the cart attempts to move beyond the ends of the track, the cart bounces back, and 2)
there is a negative reward if the pole drops and otherwise the reward is zero. In contrast, in
OpenAI Gym, 1) if the cart moves beyond the track’s boundaries, the episode terminates,
and 2) the reward function is +1 on every step the pole is balanced and 0 if the pole falls.
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DPBA

(a) Grid-World

(b) Cart-Pole

Figure 3.1: The y-axis shows the number of time steps taken to finish each
episode (on x-axis) averaged over (a) 50 and (b) 30 runs. The shaped agent
with DPBA is compared with a Sarsa learner without shaping in a) grid-world
and b) cart-pole domains. Shaded areas correspond to the standard error.

wrap-around [22]. λ was set to 0.9 and γ to 1. For learning rates of Q and Φ

value functions, α and β, we swept over the values [0.001, 0.002, 0.01, 0.1, 0.2].

The best parameter values according to the area under curve (AUC) of each

line for Figure 3.1 (b) are reported in Table 3.1.

Note that in the grid-world task the desired behaviour is to reach the goal

as quickly as possible. Consequently, for this task lower is better in plots (such

as the ones in Figure 3.1) showing steps (y-axis) versus episodes (x-axis). In

contrast, the nature of the goal in the cart-pole task dictates to take as much

14



Table 3.1: Parameters values for Figure 3.1 (b)

Agent α β

Sarsa 0.1 -
DPBA 0.02 0.1

steps as possible during each episode, as the desired behaviour. Therefore, for

cart-pole the up is good in a plot showing the length of each episode through

its axes as in Figure 3.1 (b). The results in Figure 3.1 agree with the prior

work, showing that the agent using the DPBA method learned faster with this

good advice, relative to not using the advice (i.e., the DPBA line is converging

faster to the optimal behaviour). These results show that the DPBA method

satisfies criterion 1 (it can use arbitrary rewards) and criterion 3 (good advice

can improve performance). However, as we argue in the rest of this chapter, a

flaw in the proof of the original paper means that criterion 2 is not satisfied:

the optimal policy can change, i.e., advice can cause the agent to converge

to a sub-optimal policy. This was not empirically tested in the original paper

and thus this failure was not noticed. In the next section we prove our claim

by re-deriving Equations 16 and 17 from the original paper correctly.

3.2 DPBA Can Affect the Optimal Policy

To prove our claim, we start by defining terms. We will compare Q-value

estimates for a given policy π in two MDPs, the original MDP denoted by M

described by the tuple 〈S,A, T, γ, R〉, and the MDP that is shaped by DPBA,

M ′, described by the tuple 〈S,A, T, γ, R + Ft+1〉, where Ft+1(s, a, s′, a′) =

γΦt+1(s′, a′)− Φt(s, a).

Let R′t+1 := R + Ft+1, given a policy π, at any time step t, Qπ
M ′ can be

defined as:

Qπ
M ′(s, a) = E

[
∞∑
k=0

γkR′t+k+1(st+k, at+k, st+k+1, at+k+1)

∣∣∣∣∣st = s,
at = a

]
.
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By writing R′ in terms of R and F :

= E

[
∞∑
k=0

γk (R(st+k, at+k)

+Ft+k+1(st+k, at+k, st+k+1, at+k+1))

∣∣∣∣∣ st = s,
at = a

]
.

The first term in the above expression (after separating the expectation) is

the value function for the original MDP M for policy π so we can rewrite the

expression as:

=E

[
∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣st = s,
at = a

]
︸ ︷︷ ︸

=QπM (s,a)

+ E

[
∞∑
k=0

γkFt+k+1(st+k, at+k, st+k+1, at+k+1)

∣∣∣∣∣st = s,
at = a

]
. (3.1)

The second term in Equation 3.1 can be expanded based on Equation 2.3 as

follows:

E

[
∞∑
k=0

γkFt+k+1(st+k, at+k, st+k+1, at+k+1)

∣∣∣∣∣st = s,
at = a

]

= E

[
∞∑
k=0

(
γk+1Φt+k+1(st+k+1, at+k+1)

−γkΦt+k(st+k, at+k)
)∣∣∣∣∣st = s,
at = a

]
. (3.2)

The two terms inside the infinite summation look quite similar, motivating us

to rewrite one of them by shifting its summation variable k. This shift will let

identical terms be cancelled out. However, we need to be careful. First, we

rewrite the sums in their limit form. An infinite sum can be written as:

∞∑
i=i0

xi := lim
W→∞

W∑
i=i0

xi.

Using this definition, in Equation 3.2 we can shift the first term’s iteration
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variable as:

=E

[
lim
W→∞

(
W+1∑
k=1

γkΦt+k(st+k, at+k)

−
W∑
k=0

γkΦt+k(st+k, at+k)

)∣∣∣∣∣st = s,
at = a

]
=E

[
lim
W→∞

(
γW+1Φt+W+1(st+W+1, at+W+1)

− γ0Φt(st, at)
)∣∣ st = s,
at = a

]
. (3.3)

In Equation 3.3, if Φπ
t (s, a) is bounded, then the first term inside the limit will

go to 0 as W approaches infinity2, and the second term does not depend on

W and can be pulled outside the limit:

E

[
∞∑
k=0

γkFt+k+1(st+k, at+k, st+k+1, at+k+1)

∣∣∣∣∣st = s,
at = a

]
= E

[
−Φt(st, at)

∣∣st = s,
at = a

]
= −Φt(s, a). (3.4)

Back to Equation 3.1, if we apply Equation 3.4, we will have:

Qπ
M ′(s, a) = Qπ

M(s, a)− Φt(s, a),

for all π (given that st = s and at = a). Thus, for an agent to retrieve

the optimal policy π∗M given Q∗M ′(s, a), it must act greedily with respect to

Q∗M ′(s, a) + Φt(s, a):

π∗M(s) = arg max
a∈A

(Q∗M ′(s, a) + Φt(s, a)) . (3.5)

Equation 3.5 differs from Equation 2.4 (corresponding to Equation 17 in

Harutyunyan, Devlin, Vrancx, et al. [6]) in that the bias term is Φt and not

Φ0. In other words, at every time step the Q values of the agent are biased by

the current estimate of the potential function and not by the initial value of

the potential function. The derived relation in Equation 17 of Harutyunyan,

Devlin, Vrancx, et al. [6] is only valid for the first state-action pair that the

2Note that this term will go to zero only for infinite horizon MDPs. In practice, it is
common to assume a finite horizon MDP with a terminal state, in such cases, this extra term
will remain and must be removed, for example, by defining the potential of the terminal
state to be zero.
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agent visits (at t = 0). For the rest of the time steps, it is not accurate to use

the first time step’s bias term to compensate the shaped value function. Thus,

the zero initialization of Φ is not a sufficient condition for the agent to recover

the true Q values of the original MDP, and it cannot be used to retrieve the

optimal policy of the original MDP.

3.3 Empirical Validation: Unhelpful Advice

We empirically validate the result above with a set of experiments. First,

consider a deterministic 2×2 grid-world which we refer to it as the toy example,

depicted in Figure 3.2. The agent starts each episode from state S and can

move in the four cardinal directions (as depicted in the figure) until it reaches

the goal state G (within a maximum of 100 steps). Moving towards a wall

(indicated by bold lines), causes no change in the agent’s position. The reward

is 0 on every transition except the one ending in the goal state, resulting in

a reward of +1 and episode termination. For advice, we assume that the

“expert” rewards the agent for making transitions away from the goal. Blue

arrows inside the grid in Figure 3.2 (a) represent the expert advised state-

transitions. The agent receives a +1 from the expert by executing the advised

transitions. Because this advice is encouraging poor behavior, we expect that

it would slow down the learning (rather than accelerate it), but if a shaping

method is policy invariant, the agent should still eventually converge to the

optimal policy.

Toy Example Domain

(a) Bad expert (b) Good expert

Figure 3.2: The toy example domain with advised transitions indicated by
blue arrows. The bad expert in (a) tries to keep the agent away from the goal
while the good expert in (b) rewards transitions towards the goal.
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The learner uses Sarsa(0) to estimate Q values with γ = 0.3. We ran the

experiment for both the learner with corrected DPBA, Equation 3.5, and the

learner with DPBA, Equation 2.4, using an ε-greedy policy. Φ and Q were

initialized to 0 and ε was decayed from 0.1 to 0. For the learning rates of the

Q and Φ value functions, α and β, we swept over the values [0.05, 0.1, 0.2, 0.5].

The best values, according to the AUC of the each line are reported in Table

3.2.

Corrected DPBA with Bad Advice

Figure 3.3: The y-axis shows number of time steps taken to finish each episode
with the bad expert. The shaped agent with corrected DPBA is compared
with the shaped agent with DPBA and an unshaped Sarsa agent. Shaded
areas correspond to the standard error averaged over 50 runs.

Table 3.2: Parameters values for Figures 3.3 and 3.4

Agent α β

Sarsa 0.05 -
DPBA, good advice 0.2 0.5
DPBA, bad advice 0.2 0.5

corrected DPBA, good advice 0.2 0.1
corrected DPBA, bad advice 0.05 0.2

Figure 3.3 depicts the length of each episode as the number of steps taken

to finish the episode, therefore, lower lines indicate better performance. The

results were averaged over 50 independent runs. Figure 3.1 (a), The Sarsa line

indicates the learning curve for a Sarsa(0) agent without shaping. Figure 3.3
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shows that DPBA does not converge to the optimal policy with this bad ad-

vice. This figure also confirms our result that Φt (and not Φ0 as proposed in

Harutyunyan, Devlin, Vrancx, et al. [6]) is the appropriate correction term to

recover the optimal policy for maximizing the MDP’s original reward. Finally,

we verify that this is not simply an artefact of the agent exploiting too soon,

and repeat the same experiments for different exploration rates, ε. We con-

sidered two more different values for initial exploration rate, εi: 0.3 and 0.5.

The corresponding lines in Figure 3.3 confirm that even with more exploration

DPBA cannot obtain the optimal policy.

3.4 Empirical Validation: Helpful Advice

The previous section showed that DPBA is not a policy invariant shaping

method since initializing the values of Φ to zero is not a sufficient condition

for policy invariance. We showed that DPBA can be corrected by adding the

correct bias term and indeed it is then policy invariant. While the addition

of the correct bias term guarantees policy invariance, we still need to test

our third criterion for the desired reward shaping algorithm — does corrected

DPBA accelerate the learning of a shaped agent with good expert advice?

Figure 3.4 shows the results for repeating the same experiments as the

previous section but with the good advice which is shown in Figure 3.2 (b)

(i.e., from each state the expert encourages the agent to move towards the

goal). Here, since the expert is encouraging the agent to move towards the

goal, we expect the shaped agent to learn faster than the agent that is not

receiving a shaping reward. However, Figure 3.4 shows that the corrected

agent does not learn faster with good advice. To our surprise, the advice

actually slowed down the learning, even though the corrected DPBA agent did

eventually discover the optimal policy, as expected. To explain the corrected

DPBA behaviour, one needs to look closely at how the Q and Φ estimates

are changing. The corrected DPBA adds the latest value of Φ at each time

step, to correct the shaped Q value; however, the Φ value which has been used

earlier to shape the reward function might be different than the latest value.
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Corrected DPBA with good Advice

Figure 3.4: The y-axis shows the number of time steps taken to finish each
episode with the good expert. The shaped agent with corrected DPBA is
compared with the shaped agent with DPBA and an unshaped Sarsa agent.
Shaded areas correspond to the standard error averaged over 50 runs.

Let us consider the case that Φ has been initialized to zero and the advice is

always a positive signal, enforcing the Φ values to be negative. With such a

Φ the latest Φ values are likely more negative than the earlier values used for

shaping the reward, which in fact discourages the desired behaviour.

While the corrected DPBA guarantees policy invariance, it fails in satisfy-

ing the third goal for ideal reward shaping (i.e., speed up learning of an agent

with a helpful advice). We further depict the performance of the corrected

DPBA in the original testbeds (grid-world and cart-pole) in the next chapter.

The main conclusion of this chapter is that none of the mentioned methods for

incorporating expert advice satisfies the three goals outlined in the introduc-

tion. DPBA as proposed in Harutyunyan, Devlin, Vrancx, et al. [6] can lead

to faster learning if the expert offers good advice but it is not policy invariant.

The corrected DPBA proposed in this chapter is provably policy invariant but

it can lead to slower learning even when provided with good advice.
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Chapter 4

Policy Invariant Explicit
Shaping

In this chapter, we introduce the policy invariant explicit shaping (PIES) al-

gorithm that satisfies all of the goals we specified in Chapter 1 for reward

shaping. We also demonstrate that it stands out in all of the experiments

mentioned so far.

4.1 The Recipe of PIES

PIES is a simple algorithm that admits arbitrary advice, is policy invariant,

and speeds up the learning of the agent depending on the expert advice.

Unlike potential based reward shaping, with PIES the underlying idea is to

use the expert advice explicitly without modifying the original reward func-

tion. Not changing the reward function is the principal feature that both

simplifies PIES and makes analysing how it works easier. The PIES agent

learns the original value function QM , while concurrently learning a secondary

value function Φ that accumulates the expert advice, i.e. RΦ = Rexpert. For

an agent learning with Sarsa(0) and PIES the update for Q would be the same

as Equation 2.1 and for Φ would be:

Φt+1(s, a) := Φt(s, a) + βδΦ
t ,

where Φt(s, a) is the current estimate of Φ, β is the Φ function’s learning rate,

and

δΦ
t := RΦ(s, a) + γΦt+1(s′, a′)− Φt(s, a)
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is the Φ function’s TD error. To exploit the arbitrary advice, the agent ex-

plicitly biases the agent’s policy towards the advice by adding Φ to QM at

each time step t, weighted by a parameter ξt, where ξt decays to 0 before the

learning terminates1. For example, for a Sarsa(0) agent equipped with PIES,

when the agent wants to act greedily, it will pick the action that maximizes

Qt(s, a) + ξtΦt(s, a) at each time step. Thus, the optimal policy would be:

π∗M(s) = arg max
a∈A

(Q∗M(s, a) + ξtΦt(s, a)) .

The parameter ξt controls that to what extent the agent’s current behaviour

is biased towards the advice. Decaying ξt to 0 over time removes the effect

of shaping, guaranteeing that the agent will converge to the optimal policy,

making PIES policy-invariant. The speed of decaying ξ determines how long

the advice will continue to influence the agent’s learned policy. Choosing the

Algorithm 1 PIES with Sarsa(0) updates for Q,Φ

1: Algorithm parameters: step sizes α for Q and β for Φ, small ε > 0, decay
factor ξ

2: Initialize Q(s, a) and Φ(s, a) for all s ∈ S, a ∈ A arbitrarily except that
Q(terminal, .) = 0 , Φ(terminal, .) = 0, ξ = 1

3: for each episode do
4: Initialize S
5: Choose A from S using policy derived from Q+ ξΦ (e.g ., ε-greedy)
6: for each step of episode until S is terminal do:
7: Take action A, observe R,Rexpert, S ′

8: Choose A′ from S ′ using policy derived from Q+ξΦ (e.g ., ε-greedy)
9: if ξt > 0 then

10: Φ(S,A)← Φ(S,A) + β[Rexpert + γΦ(S ′, A′)− Φ(S,A)]

11: Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]
12: S ← S ′;A← A′;

13: ξ ← next ξ(ξ)

decay speed of ξ can be related to how beneficial it is to utilize the advice and

can be done in many different ways. For this paper, we only decrease ξ at

1Unlike DPBA that accumulates the negation of Rexpert, in PIES Φ is accumulating the
Rexpert. Therefore, in PIES we add Φ to shape the Q values for the policy. One can keep the
Φ reward function, RΦ, as same as DPBA by easily reverting the sign to set RΦ = −Rexpert

and add −Φ to Q to shape the agent with PIES.
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the end of each episode with a linear regime. More specifically, the value of ξ

during episode e is:

ξe :=

{
ξe−1 − 1

C
if ξe−1 is not 0

0 otherwise
, (4.1)

where, ξ1 = 1, and C is a constant that determines how fast ξ will be decayed;

i.e., the greater C is the slower the bias decays. The pseudo-code for a Sarsa(0)

agent with PIES is provided in Algorithm 1. In the next section we show the

performance of PIES in all of the experimental settings mentioned for variants

of DPBA.

4.2 Empirical Validation of PIES

We first demonstrate empirically that PIES fulfills all three goals in the toy

example. We then show how it performs against previous methods in the grid-

world and the cart-pole problems (which were originally tested with DPBA),

when provided with good advice. All the domains specifications are the same

as before.

The plot of the agents’ performance in the toy example in Figure 4.1 shows

learning curves of the corrected DPBA, PIES, and the Sarsa learner. Figure

4.1 (a) is for the bad expert shown in 3.2 (a) and Figure 4.1 (b) is for the

good expert as in 3.2 (b). The curves are averaged over 50 independent runs.

Sarsa(0) was used to estimate state-action values with γ = 0.3 and an ε-

greedy policy. Φ and Q were initialized to 0 and ε decayed from 0.1 to 0. For

learning rates of Q and Φ value functions, α and β, we swept over the values

[0.05, 0.1, 0.2, 0.5]. The values studied for setting C were [5, 10, 20, 50]. It is

worth mentioning that the best value of the decay speed of ξ (i.e. choice of C)

depend on the quality of the advice; i.e., a smaller C for the bad advice was

better as it decayed the effect of the adversarial bias faster while a larger C

was better with the good advice as it slowed down the decay. The best values

were used, according to the AUC of each line. The learning parameters are

reported in Table 4.1.

As expected, with PIES the agent was able to find the optimal policy
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Table 4.1: Parameters values for Figure 4.1

Agent α β C

Sarsa 0.05 - -
corrected DPBA, good advice 0.2 0.1 -
corrected DPBA, bad advice 0.05 0.2 -

PIES, good advice 0.05 0.2 50
PIES, bad advice 0.1 0.2 5

PIES in Toy Example

(a) Advice from the bad expert

(b) Advice from the good expert

Figure 4.1: The y-axis shows the number of steps taken to finish each episode
in the toy example. The figures compare PIES with the corrected DPBA and a
Sarsa learner without shaping when the advice is a) bad and b) good. Shaded
areas correspond to the standard error over 50 runs.
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even with the bad expert. As discussed in Section 3.3, the corrected DPBA

behaved similarly to PIES with the adversarial advice. In the case of the

beneficial advice, PIES enabled the agent to learn the task faster. The speed-

up, though, is not remarkable in the toy problem, as the simple learner is

also able to learn in very few episodes. Unlike PIES, the corrected DPBA

as discussed in Section 3.4 was not able to accelerate learning with the good

advice.

Figure 4.2 better demonstrates how PIES boosts the performance of the

agent learning with good advice in two more complex tasks: the grid-world

and the cart-pole domains which were described in Section 2.2.2. The results

for the grid-world task are depicted in Figure 4.2 (a). For this task the learner

used Sarsa(0) with γ = 0.99. Φ and Q were initialized to 0 and the agent

selected actions according to an ε-greedy policy with ε = 0.1. The learning

rates of Q and Φ value functions, α and β, were chosen as the best values

over [0.05, 0.1, 0.2, 0.5]. In the cart-pole task for Figure 4.2 (b), learning was

done with linear function approximation via Sarsa(λ) and a tile-coded feature

representation. The weights for Q and Φ were initialized uniformly at random

between 0 and 0.001. For tile-coding, we reused the parameters setting from

Figure 3.1 (b). λ was set to 0.9 and γ to 1. To choose the best learning rates

of Q and Φ value, α and β, the values [0.001, 0.002, 0.01, 0.1, 0.2] were swept

over. For both tasks, the values studied for setting C were [50, 100, 200, 300].

As before, the best parameter values according to the AUC of each line for

Figures 4.2 (a) and 4.2 (b), and are reported in Tables 4.2 and 4.3, respectively.

Table 4.2: Parameters values for Figure 4.2a

Agent α β C

Sarsa 0.05 - -
corrected DPBA 0.1 0.01 -

PIES 0.05 0.5 100

Just like before, in the cart-pole task’s plot the higher lines indicate better

performance whereas for the grid-world the lower the lines the better. PIES
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PIES in Grid-World and Cart-Pole

(a) Grid-world

(b) Cart-pole

Figure 4.2: The length of each episode as the number of steps in (a) the
grid-world, and (b) the cart-pole domain. The plot depicts PIES versus the
corrected DPBA and a Sarsa learner without shaping. Shaded areas corre-
spond to the standard error over (a) 50 and (b) 30 runs.

Table 4.3: Parameters values for Figure 4.2b

Agent α β C

Sarsa 0.1 - -
corrected DPBA 0.02 0.1 -

PIES 0.2 0.5 200

correctly used the good advice in both domains and improved learning over the

Sarsa learner, without changing the optimal policy (i.e., PIES approached the

optimal behaviour with a higher speed compared to the Sarsa learner). PIES
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performed better than the corrected DPBA as expected, since the corrected

DPBA is not capable of accelerating the learner with good advice.

PIES is a reliable alternative for DPBA when we have an arbitrary form of

advice, regardless of the quality of the advice. As shown in the experiments,

PIES satisfies all three desired criteria.
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Chapter 5

Related Work and Conclusion

In the final chapter, we discuss briefly some related work with common inter-

ests from this thesis. We then summarize the contributions of the thesis.

5.1 Related Work

The most similar line of work to our algorithm, PIES, is the TAMER frame-

work [7]–[9]. TAMER aims to improve RL agents’ learning with the help of

interactive human advice [7]–[9]. With TAMER the agent models the hu-

man reward, H, with supervised learning, and all the while acts to maxi-

mize the expected immediate modeled reward, Ĥ. In addition to TAMER,

TAMER+RL [10] also takes the environmental reward into consideration. For

combining the MDP’s reward with human reinforcements, Knox and Stone [10]

used a pre-trained TAMER agent with a learned model of the immediate hu-

man reward. They proposed eight different techniques for combining Ĥ with

MDP’s reward. Three of the eight methods use either reward or value function

augmentation with Ĥ which are the most relevant methods to PIES: method

one augments the reward function with Ĥ, method four augments the value

function, and method six augments the value function only during the action

selection (similar to adding Φ to Q in PIES). In all of the mentioned meth-

ods, Ĥ is weighted by an annealing factor, decaying over time (which plays

a similar role as β in PIES). While TAMER+RL uses a pre-learned model

for the human reward (learned offline), PIES does not need a prior phase of

interacting with the environment for approximating Φ. Moreover, Ĥ is esti-
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mating the immediate human advice, ignoring the long-term effect of actions,

while PIES estimates the expected return of the advice. We should mention

that Knox and Stone [10] used PBRS in their eighth method, substituting

the static potential function with maxaH(s, a). Since this potential function

is static and depends only on states, their eighth method is not relevant to

PIES. Interestingly, the results from TAMER+RL established that the sixth

method, which resembles PIES the most, performed the best amongst all of

the techniques investigated.

Further extending TAMER+RL, Knox and Stone [11] later provided a

more thorough empirical study for the four-most successful methods out of

the eight and also adjusted the framework to learn from human advice and

the MDP’s reward simultaneously (unlike the previous work that learns Ĥ

beforehand); however, the framework still remains myopic. Once again, their

empirical results confirmed that using Ĥ in action biasing (analogous to PIES)

was the best method (along with the action control method) among the top-

four methods. In other words, based on the observed evidence, they concluded

that the less directly the advice affects the Q update the better. As opposed

to Q, the more directly the advice affects the action selection the better.

A prior work to TAMER, Heuristically Accelerated Q–Learning (HAQL)

by Bianchi, Ribeiro, and Costa [1], suggested a similar framework as PIES to

incorporate a heuristic function in order to accelerate learning. The proposed

heuristic function dynamically changes with time through an update rule, de-

pendent on the current estimate of Q value function. They also mention a

weight variable (analogous to ξ) to influence the effect of the heuristic on the

policy. They showed that under certain assumptions, HAQL’s Q value func-

tion converges to the optimal value function and thus it preserves the optimal

policy. However there was no explicit discussion on the role of the heuristic

function weight variable for policy invariance. Although PIES uses a similar

approach to bias the policy toward the advice, instead of a heuristic function,

PIES learns a value function from the advice (independent of the Q value

function).

There is another line of research dedicated to approximating a good poten-
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tial function; for example by solving an abstract MDP and computing its final

value function [12], or by learning a more generalized value function of the

MDP with state aggregation [4]. Although this line of work has some common

interests with PIES, it does not consider an external source of advice in the

problem setting.

5.2 Conclusion

This thesis exposed a flaw in DPBA, a previously published algorithm with

the aim of shaping the reward function with arbitrary advice without changing

the optimal policy. We used empirical and theoretical arguments to show that

DPBA is not policy invariant, a key criterion for ideal reward shaping. Further,

we derived the corrected DPBA algorithm with a corrected bias component.

However, based on our empirical results the corrected algorithm fails to im-

prove learning when leveraging useful advice resulting in a failure to satisfy

the speed-up criterion. To overcome these problems, we proposed a simple

approach, called PIES. We show theoretically and empirically that it guar-

antees the convergence to the optimal policy for the original MDP, agnostic

to the quality of the arbitrary advice while it successfully speeds up learning

from good advice. Therefore PIES satisfies all of the goals for an ideal reward

shaping method.
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