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Abstract

In model-based reinforcement learning, an agent can improve its policy by

planning: learning from experience generated by a model. Search control is

the problem of determining which starting state should be used to generate

this experience. Given a limited planning budget, an agent should be e�-

cient in selecting experience, as some states may provide much greater value

to learning than others. Particularly in complicated environments with large

state spaces, an agent could easily waste time planning in states which have

little e↵ect on policy improvement. Thus, search control should carefully se-

lect starting states to maximize planning e�ciency. In this work, we study

e↵ective search control and examine how search control can be designed when

an agent has access to either a perfect or imperfect model. We show that in a

non-stationary environment, search control can be more e↵ective by focusing

updates on states with high value error. While using an imperfect model, it can

be e↵ective to avoid learning from states where the model produces erroneous

reward predictions. However, in most cases it is not feasible to hand-design a

search control strategy for a novel environment. Towards this end, we intro-

duce a novel algorithm which uses meta-learning to adjust an agent’s search

control strategy while it learns a policy. We empirically evaluate the abil-

ity of this algorithm to improve the e�ciency of planning in a stochastic and

non-stationary environment. The results demonstrate that this algorithm out-

performs several fixed search control approaches and learns behaviours similar

to baselines hand-designed to perform well in our test environment.
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Preface

Portions of this work appeared as Learning to Prioritize Planning Updates

in Model-based Reinforcement Learning at the Workshop on Meta-Learning

located at the Thirty-sixth Conference on Neural Information Processing Sys-

tems.
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Change is the only constant.

– Heraclitus (attributed)
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Chapter 1

Introduction

Reinforcement learning (RL) is a computational means of learning through

interaction with an environment. Given the current state of the environment,

an RL agent takes an action and, in return, receives the updated environ-

ment state and a scalar value called reward. By seeking to maximize future

reward, RL agents are capable of learning complex behaviours needed to solve

challenging tasks. RL agents have learned to play chess, Go, and shogi at su-

perhuman levels (Schrittwieser et al., 2020), to control plasma within nuclear

fusion reactors (Degrave et al., 2022), and to learn highly-performant sorting

algorithms from scratch (Mankowitz et al., 2023).

However, RL agents are often very data hungry, requiring massive amounts

of interaction with an environment to learn fruitful decision making. For

example, training the famous AlphaZero agent (Schrittwieser et al., 2020)

required 44 million games of chess, 24 million games of shogi, and 21 million

games of Go. Generally, such vast amounts of interaction may not be available

to the agent. Furthermore, the environment could drift over time, making any

accumulated experience obsolete when the environment enters a new regime.

An important goal of RL research is understanding, characterizing, and

reducing the amount of data needed for e↵ective learning. To this end, we can

search for algorithms that improve sample e�ciency. Sample e�ciency is the

amount of environment interaction required for an agent to reach a given level

of performance. For instance, an agent which learns to play chess at a given

skill level with one million games of experience is more sample e�cient than an
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agent which requires ten million games. Greater sample e�ciency reduces the

need for huge amounts of data and broadens the scope of problems to which

we can apply RL.

One means of increasing sample e�ciency is through model-based RL

(MBRL), where agents have access to a model of the environment. By in-

teracting with this model, in addition to interacting with the environment, an

agent gains an additional stream of experience from which to learn. This is

known as planning. MBRL has resulted in agents which are capable of learn-

ing to solve complex tasks with a minimal amount of real world interaction,

in some cases only less than 100 episodes of experience are needed to learn an

e↵ective model (Deisenroth & Rasmussen, 2011). Su�ciently-useful models

have even produced agents which do not need to learn directly from environ-

ment experience at all (Hafner et al., 2020; Hafner et al., 2021; Hafner et al.,

2023).

While planning in any capacity can often improve sample e�ciency, careful

consideration of how to best use model experience can result in further gains.

Consider Prioritized Sweeping (PS), this algorithm selects states for planning

according the TD-error of the ensuing update (Moore & Atkeson, 1993). PS

achieves much greater sample e�ciency compared to ordering planning updates

randomly. Generally speaking, the problem of selecting the starting state from

which planning occurs is called search control. Intelligently selecting starting

states for planning can result in an agent learning more from each planning

update, potentially increasing planning e�ciency. We use planning e�ciency

analogously to sample e�ciency; an agent which learns more from its model

with less planning is more e�cient than an agent which requires more model

experience.

Improving an agent’s use of model experience can help to reduce the overall

amount of computation needed for an agent to learn how to accomplish a task.

In some cases, a model’s imperfections may even cause planning to be harmful

to learning. E�cient planning would thus require carefully avoiding incorrect

model experience. Further, while there is no guarantee that planning e�ciency

improvements translate directly into sample e�ciency improvements, it’s plau-
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sible that planning e�ciency can aid in the goal of increased sample e�ciency.

Agents which have perfect models provide an illustrative example. In these

cases, model experience is equivalent to real experience from the environment,

learning more quickly from a model would thus result in faster learning in the

real environment. We believe that the goal of increasing planning e�ciency

provides compelling benefits to model-based agents. The focus of this work is

on studying search control towards this end.

Beyond Prioritized Sweeping, additional prior work has attempted to ad-

dress the search control problem. Andre et al. (1997) introduced Generalized

Prioritized Sweeping to extend PS to large state-spaces which necessitate func-

tion approximation. Recently, more advanced search control methods have

been developed. Pan et al. (2019) use the trajectory of states generated by a

hill climbing algorithm on the agent’s current value function estimate to create

a distribution over states for search control. In further work, Pan et al. (2020)

estimate which regions of the value function are most di�cult to learn, focusing

search control on these regions. While these recent works have brought novel

solution methods to the search control problem, we believe search control re-

mains an understudied area of research and will benefit from the incorporation

of recent advances in machine learning techniques.

In this thesis, we leverage recent work in meta-learning (Flennerhag et al.,

2022) to take some preliminary steps towards the goal of algorithms supplied

with customized and adaptive search control. Such adaptive search control

could adjust planning priorities in shifting environments, imperative for do-

mains where stationarity cannot be guaranteed. Moreoever, complex environ-

ments are not amenable to hand-designed search control distributions, and

heuristics may fail for reasons which are di�cult to pin down. Learned search

control distributions could automatically adjust themselves to these complex

environments and discover planning priorities which may not be obvious to

practitioners.

This thesis works towards the ideals of an adaptive search control distri-

bution described above. The contributions of this work are as follows:
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1. Principles for e↵ective search control and motivating experiments to sup-

port them.

2. An algorithm which learns to perform search control along with empirical

support of its e↵ectiveness, showing it to be capable of following our

established principles when appropriate.

Our investigations into search control are conducted in a gridworld domain

and compare the performance of agents given di↵erent environment models.

The gridworld domain allows for clear analysis of an agent’s behaviour while

also providing the stochasticity and non-stationarity expected of larger, more

complex domains. We examine agents under perfect, imperfect, and learned

models to evaluate that the proposed algorithm, Meta-Gradient Search Con-

trol, is capable of learning useful distributions under settings where the model’s

dynamics may not match that of the environment and may change during the

course of policy improvement.

This thesis is organized into six chapters. Chapter 2 discusses relevant

background material and related work. Chapter 3 introduces the two principles

of search control: focus on high value error states and avoid incorrect states.

Chapter 4 introduces the Meta-Gradient Search Control algorithm. Chapter

5 presents experimental results comparing the performance of Meta-Gradient

Search Control against baseline algorithms in the TMaze environment. Results

are presented for perfect, imperfect, and learned models. Finally, Chapter 6

provides a summary of the thesis and directions for future work.

4



Chapter 2

Background Material

2.1 Reinforcement Learning

Reinforcement learning is an algorithmic framework by which computational

agents can learn to solve sequential decision making problems. Through a

trial-and-error process, RL agents learn how to make decisions that result in

the greatest long-term payo↵. An RL agent interacts with an environment

by taking actions, and receiving a numerical signal known as reward. The

goal of an RL agent is to maximize the cumulative reward it receives while

interacting with the environment. By learning which actions to take to receive

maximum cumulative reward, an agent can learn to e↵ectively make decisions

and ultimately accomplish complex goals.

Formally, the interaction between agent and environment is modelled as a

Markov Decision Process (MDP). This work follows the conventions of Sutton

and Barto (2018) where an MDP is a 5-tuple (S,A,R, p, �). S is the set of

all states, A is the set of all actions, and R ✓ R is the set of all rewards.

Throughout this work uppercase letters denote random variables while lower-

case letters denote specific outcomes. During each interaction t 2 N, the agent
is in a state St 2 S, takes an action At 2 A, receives a reward Rt+1 2 R and

transitions to a new state St+1 2 S. A discount factor of � 2 [0, 1] is applied

to rewards received in future timesteps. We use � to denote a probability

distribution over a set. We then define p : S ⇥ A �! �(S ⇥ R). This is

known as the dynamics function and represents the probability of transition-

ing from one state to another after taking an action and receiving a reward:
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p(s0, r|s, a) = P(St+1 = s0, Rt+1 = r|St = s, At = a). An MDP is Markov be-

cause the next state and reward depend only on the current state and action,

that is, the formulation of p means that no additional information from the

past influences the future dynamics of the environment.

2.2 Policies and Value Functions

To interact with an environment defined as an MDP, an agent needs a way

to choose an action to take at each timestep. An RL agent typically selects

actions with a policy ⇡ : S �! �(A). The agent’s policy is a probability

distribution which determines the likelihood of taking an action a in state s.

RL agents also need a means of evaluating states and actions to determine

whether they are useful in achieving a goal. Such evaluation is accomplished

using a value function. More formally, a value function is a mapping from a

state or state-action pair to a scalar value representing the expected cumulative

discounted reward the agent may receive by following ⇡ under the environment

dynamics p(s0, r|s, a). The state value function is defined as

v⇡(s) = E[Rt + �Rt+1 + �2Rt+2 + · · · |St = s, ⇡]. (2.1)

Similarly, the state-action value function is defined as

q⇡(s, a) = E[Rt + �Rt+1 + �2Rt+2 + · · · |St = s, At = a, ⇡]. (2.2)

The optimal state value function is defined as

v⇤(s) = max
⇡

v⇡(s) (2.3)

for any state s 2 S. The optimal state-action value function is

q⇤(s, a) = max
⇡

q⇡(s, a). (2.4)

The optimal policy ⇡⇤ can be defined as the policy which maximizes v⇡(s) for

all states s 2 S. The existence of at least one optimal policy is guaranteed

for any MDP (Sutton & Barto, 2018). We can also define a greedy policy as a

policy which selects the maximally valued action at each timestep. Multiple
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actions may be maximally valued, in such cases an agent can use a tie-breaking

mechanism to choose among them. A policy which is greedy with respect to

the optimal state-action value function is itself an optimal policy.

2.3 Q-Learning

Q-Learning is a model-free, o↵-policy algorithm that learns the optimal value

function independent of the policy the agent follows (Watkins & Dayan, 1992).

As a model-free algorithm, Q-Learning does not use a model of the envi-

ronment and learns strictly from real experience. As an o↵-policy method,

Q-Learning allows the agent to learn the optimal value function q⇤ while be-

having according to its current policy. Q-Learning uses an agent’s estimated

state-action value function along with samples from the environment in order

to update the agent’s state-action values towards optimality. The Q-Learning

update rule is defined as

q⇡(St, At) q⇡(St, At) + ↵[Rt+1 + �max
a0

q⇡(St+1, a
0)� q⇡(St, At)] (2.5)

where ↵ 2 [0, 1] is the step-size hyperparameter controlling how quickly an

update adjusts the value function.

We use the Q-Learning algorithm along with an ✏-greedy policy. In other

words, in a given state, the agent will select a random action with proba-

bility ✏, otherwise, it will select an action which maximizes its current value

function q⇡(st, ·). The stochasticity of this policy allows the agent to experi-

ence di↵erent transitions, possibly discovering actions which may be of higher

value. Throughout this work, we perform experiments using the Q-Learning

algorithm to learn state-action values.

2.4 Model-Based Reinforcement Learning

Model-based reinforcement learning is a family of RL algorithms in which

agents are given access to a model of the environment. The agent can learn by

interacting with the environment and receiving real experience, or, the agent

7



can use the model to generate model experience1. By interacting with a model

m : S⇥A �! �(S⇥R), the agent generates transitions of the form (s̃, ã, r̃, s̃0)

(where the notation x̃ is used to indicate objects generated by a model). Note

that often s̃ and ã are real states and actions from environment interaction

which an agent uses to query a model. We write (s̃, ã, r̃, s̃0) here as a broad

definition which encompasses cases where s̃ and ãmay themselves be generated

by a model. The form of the model and the way in which the agent makes use

of model experience di↵ers depending on the algorithm in consideration.

We define planning as any use of a model to improve an agent’s policy

(Sutton & Barto, 2018). Planning in this sense can be broken down into two

di↵erent means of improving a policy: background planning and decision-time

planning.

In decision-time planning, immediately before taking an action, an agent

uses its model to search through the space of state-action pairs that follow

from its current policy and value function. By observing the e↵ects of di↵erent

actions in simulation, the agent can form estimates of the value of each action

it is considering. With a good model and a su�cient number of samples, the

agent can improve its ability to correctly make the decision it is faced with.

This is a form of ephemeral policy improvement; improvements to the policy

or value function from decision-time planning generally do not persist to the

next timestep of interaction with the environment. The well-known AlphaGo

family of algorithms is a prominent example of an MRBL agent which uses

decision-time planning (Schrittwieser et al., 2020; Silver et al., 2016; Silver

et al., 2018; Silver et al., 2017). Agents in this family typically improve their

policies by performing a tree search at decision-time, allowing them to achieve

greater results than using by using their policies alone to select actions.

In contrast, background planning involves an agent using model experience

to update its value function or policy such that these updates persist through

time. Generally, this means that after a real update, an agent will perform

1We will use the terms real experience and model experience throughout this work to
refer respectively to experience from interacting with the real environment and experience
from interacting with a model.
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one or more updates using model experience. While the estimates formed

in decision-time planning are discarded on the next timestep, updates to the

agents value function or policy will be carried forward. Dyna algorithms fall

under this type of planning (Sutton, 1991). We discuss these algorithms in

detail in Section 2.6. A more recent example of background planning is the

Dreamer family of algorithms (Hafner et al., 2020; Hafner et al., 2021; Hafner

et al., 2023). Dreamer and its descendants learn a parametric model of the

world with discretized states. These agents use transitions from this discrete

model to learn a policy and value function. However, despite learning purely

from model experience, Dreamer and its variants have demonstrated strong

performance in complex domains. This work is centered on background plan-

ning, and particularly on an important facet of background planning known

as search control.

Models vary in the degree to which they match the real environment. In

some cases, an agent may be provided with a perfect simulator of the environ-

ment. In other cases, the agent may receive or learn a model which imperfectly

matches the environment’s dynamics, or, a model which is a simplification of

a far more complex environment. Such imperfect models introduce challenges

which an agent must be robust to. Transitions received from parts of the model

which do not match the environment can harm an agent’s learning, causing

it to learn incorrect values and a poor performing policy. Determining which

parts of a model can be trusted and how to best make use of model experience

is a challenging problem in MBRL.

Often an agent may not be provided a model a priori, but may be required

to learn a model of the environment. Learned models present an additional

challenge as an agent must be capable of e↵ectively using a model which

changes throughout training, and moreover, must be robust to imperfections

in the model due to its learned nature. Determining how a model should be

learned and where model updates should be applied is another challenging

aspect in the design of MBRL algorithms.

Prior work has investigated how agents can best use model experience. Hol-

land et al. (2019) showed that in some model-based settings, the length of the
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trajectories of model experience can have an important e↵ect on the how useful

this experience is to an agent. Abbas et al. (2020) used model uncertainty as a

mechanism to selectively sample the state-space of model experience, attempt-

ing to avoid planning in states in which the model is uncertain and potential

harmful .

Models also di↵er in the information which they provide to an agent. Sam-

ple models can be queried by an agent to produce transitions of experience,

however these models do not provide direct access to the full distribution of

the environment’s dynamics. In contrast, distribution models encode the full

dynamics of the environment, in other words all the possible transitions which

can occur and their associated probabilities. However, in complex and high-

dimensional problems, distributions models may be prohibitively di�cult to

learn. We use sample models in the experiments conducted in this work and

in the algorithm which we introduce.

2.5 Search Control

Search control is the selection of which starting state an agent should use

to query its model when planning (Sutton & Barto, 2018). Let’s perform a

thought experiment to demonstrate that planning in di↵erent states may be

more or less beneficial to the agent’s learning process. Consider the game of

chess. If one imagines that each possible configuration of the chess board is a

state, there is an overwhelming multitude of possible states. Some are clearly

less instructive than others. A state where all the white pawns are in one corner

of the board while all the black pawns are in the opposite corner is exceedingly

unlikely to occur in a real chess game. Using this state as an example during

learning likely won’t be as beneficial as a state which occurs during the normal

course of play. Further, a very simple strategy for search control is to randomly

select a state for planning. Among all of the vast number of chess states, very

many will be entirely irrelevant to real play. If we designed an agent with

this naive search control strategy, it would be incredibly ine�cient in terms

of planning, spending many cycles of computation on states which, at best,
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don’t significantly improve the agent’s policy.

This intuition emphasizes the importance of search control, and demon-

strates that the careful selection of states and actions for planning is likely to

a↵ect the e�ciency of an agent’s learning. We view e↵ective search control

as maximizing planning e�ciency — achieving the greatest amount of learn-

ing given a limited planning budget. Let us formalize this problem as the

selection of a state s̃ 2 S which the agent uses to query its model m(s̃, ã) to

generate a tuple of experience (s̃, ã, r̃, s̃0). We focus our attention on search

control methods which select s̃ by sampling from a distribution d : S �! �(S).
The algorithms presented in this work use the agent’s current policy to select

an action ã given s̃. While intelligently and adaptively selecting actions to

maximize planning e�ciency is also beneficial to an agent, we leave this as a

problem for future work.

Varying approaches have been developed to address the problem of search

control. One of the simplest methods is to keep track of previously observed

states and sample from among them, either uniformly at random or in pro-

portion to how often each state has been observed (Sutton, 1991).

Another approach, Prioritized sweeping, was initially developed as a method

for organizing updates from prior experience, but can also be considered a form

of search control when integrated into an MBRL context. We discuss this

method in detail in Section 2.7. A more recent approach is introduced in (Pan

et al., 2020) which uses the heuristic that regions of the value function which

are more di�cult to estimate should receive more samples for planning. The

method uses the frequency of the Fourier representation of the value function

to determine which regions of the function are more complex, and allocates

more samples to these regions. The authors show that MBRL algorithms using

this heuristic outperform other search control methods in a maze domain.

Prioritized Experience Replay (PER) is another closely related method

(Schaul et al., 2016). PER is a method of organizing previous experience to

improve sample e�ciency. Transitions observed by an agent are stored in a

replay bu↵er and are stochastically sampled in proportion to the TD-error of

each transition. Empirical results demonstrate that this method improves sam-
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ple e�ciency over a Deep Q-Learning agent with a uniform sampling scheme.

A drawback of PER is that it is a non-parametric method and cannot gener-

alize priority over similar states. This also means that priorities may become

stale as the agent’s value function changes.

2.6 Dyna

Dyna is a well-known architecture for MBRL agents (Sutton, 1991). The

Dyna framework interleaves three processes: value function updates, planning

updates, and model updates. Interleaving these processes allows agents to e�-

ciently make use of experience received from both the real environment and the

model. In the most abstract version of Dyna, all three processes can occur si-

multaneously. Because Dyna’s planning updates adjust the agent’s value func-

tion, Dyna agents can be considered background-planning algorithms. This

work considers a simplified Dyna architecture in which a real update is always

performed prior to planning updates.

Dyna-Q is a particular instantiation of the Dyna architecture which uses

the Q-Learning update rule both in planning updates and in updates from

real experience. The basic structure of Dyna-Q is that an agent interacts with

the real environment and receives a tuple of experience which it then uses to

update its value function. Next, the agent uses this same transition to update

its model. Finally, the agent queries its model for experience and performs k

planning updates. Pseudocode of Dyna-Q is shown in Algorithm 1.
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Algorithm 1 Dyna-Q

1: Receive s from the environment.
2: for t = 1, 2, 3, · · · do

3: Take a in s and receive s0 and r.
4: # Update value function
5: q⇡(s, a) q⇡(s, a) + ↵[r + �maxa0 q⇡(s0, a0)� q⇡(s, a)]
6: # Update model
7: m(s, a) s0, r
8: # Perform k planning updates
9: for 1, · · ·, k do

10: Select s̃ ⇠ d
11: Take action ã in s̃
12: Sample r̃, s̃0 ⇠ m(s̃, ã)
13: q⇡(s̃, ã) q⇡(s̃, ã) + ↵[r + �maxã0 q⇡(s̃0, ã0)� q⇡(s̃, ã)]

The algorithm developed in this work will follow a structure similar to

the version of Dyna-Q shown above. Note that, line 10 of Algorithm 1 is

especially important as this is where Dyna-Q selects states for planning via

search control.

2.7 Prioritized Sweeping

A classic method of performing search control is through Prioritized Sweeping

(PS) (Moore & Atkeson, 1993). Prioritized sweeping is a means of ordering

planning updates according to which updates are the most urgent. Urgency is

taken to be the change in a state’s value. When a state undergoes a significant

change in value, the values of predecessor states are also very likely to have

changed. By using change in value to determine which updates are the most

urgent, prioritized sweeping is able to focus on areas of the state space which

most benefit from planning updates, as opposed to updating states randomly

or uniformly.

The algorithm works by maintaining a priority queue of states from which

updates should be performed, placing items on the queue according to their

priority and pulling o↵ the highest priority element at each planning step.

When a state is pulled o↵ the queue, the priorities of the predecessors to that

state are computed and each predecessor is added to the queue. Working
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backwards from states which undergo large changes in value allows updated

information to quickly propagate to preceding states that were also a↵ected by

this value change. Empirically, prioritized sweeping often learns much faster

than other Dyna methods as its use of planning results in much more e�cient

updates.

The main drawback to prioritized sweeping is that it does not scale to

large state spaces which require function approximation. Prioritized sweeping

relies on a tabular representation of the environment and an ability to predict

predecessor states. While it is possible for an agent to keep a log of which state

preceded another, in very large state spaces there may be many predecessor

states which have not been observed by the algorithm. These states would

not have a priority assigned to them and would not be updated by prioritized

sweeping, meaning that important updates would not be propagated to a

significant portion of the state space. For this reason, search control methods

which are amenable to function approximation are highly desirable.

2.8 Meta Reinforcement Learning

Meta reinforcement learning is the process of learning to reinforcement learn

(Beck et al., 2023). In general, meta RL is concerned with learning aspects of

RL algorithms which otherwise would be hand designed. This can extend to

learning entire algorithms. The motivation for replacing hand crafted compo-

nents with learned ones can vary, but a frequent goal of meta RL is to increase

the sample e�ciency of RL algorithms — ultimately, allowing these algorithms

to quickly adapt to new tasks or to be capable of learning a broad range of

tasks (Beck et al., 2023).

This work addresses planning e�ciency rather than targeting sample e�-

ciency directly. By learning which states are most useful for planning we can

improve the e↵ectiveness of planning updates. We believe this focus is aligned

with the goals of meta RL stated above. In some cases, increased planning

e�ciency can result in better sample e�ciency. Moreover, better use of model

experience is likely beneficial to an agent’s ability to adapt to new tasks. A
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model-based agent adapting to a new task must also update its model; pru-

dent selection of model experience can allow an agent to take advantage of

a shifting model, or to avoid stale transitions which would be damaging to

learning.

One prominent example of meta RL is the MAML algorithm (Finn et al.,

2017). MAML is designed to allow agents to quickly adapt to new tasks. By

backpropagating through RL updates on a variety of tasks, MAML is able to

learn parameters which are a good starting point for reinforcement learning

in unseen domains. RL2 is another well-known algorithm which provides an

alternative approach to meta RL (Duan et al., 2016). RL2 encodes a ”fast” RL

algorithm in the parameters of a recurrent neural network, using an existing

”slow” RL algorithm to optimize these parameters. The resulting learned

algorithm can achieve results comparable to hand-designed algorithms and

can adapt its policy after each timestep. Also relevant to this thesis is the

recent work of Saleh et al. (2022) which introduces a model-based meta-RL

algorithm in which the learned model is optimized to produce experience which

is useful to the learner, rather than experience that accurately reflects the real

environment.

Often, meta RL algorithms are referred to as having an outer-loop and an

inner-loop. The inner-loop optimizes the learner’s parameters, for example,

this could be Q-Learning updates which adjust the Q-values of an agent inter-

acting with an MDP. The outer-loop optimizes the learner’s meta-parameters;

a classic example is the optimization of the hyperparameters of the learner by

taking gradients through the learner’s updates (Bengio, 2000).

Especially relevant to this work is the Bootstrapped Meta Gradient (BMG)

algorithm (Flennerhag et al., 2022). Often, during meta-optimization, very

computationally expensive derivatives are required to be taken through learner

updates. These expensive derivatives can limit the number of learner updates

included in the meta-objective, ultimately, prohibiting the meta-learner from

considering the learning dynamics of inner-loop updates which are far into the

future.

BMG provides a method of extending the horizon of learner updates used
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in the meta-objective without increasing the computation needed to propa-

gate the derivative through these updates. In BMG, the meta-objective is

to increase the similarity between the learner’s parameters after k updates,

and a set of target parameters. By optimizing the meta parameters to in-

crease this similarity, the meta optimization process can make adjustments

to the learner’s update rule. A key element of BMG is the use of a target

bootstrap2. The bootstrapping procedure constructs the target parameters by

applying non-di↵erentiable updates to the learner’s parameters. That is, a

di↵erentiable parameter vector is constructed by applying k updates to the

learner’s parameters. Then the bootstrapped target vector is constructed by

applying (l � 1) further, non-di↵erentiable updates to the di↵erentiable pa-

rameters. Increasing the similarity between the di↵erentiable parameters and

the bootstrapped target parameters is the objective of the meta-learner. Using

bootstrapping to construct the target parameters thus increases the horizon

of learner updates considered in the meta-objective without increasing the

number of learner updates through which derivatives are taken.

We now explain the bootstrapped meta gradient update rule in detail. Let

✓ 2 Rn be the parameters of the learner, while ⌘ 2 Rm are the meta param-

eters. In BMG, updates to the learner’s parameters ✓ are a function of the

meta parameters ⌘. By applying k updates to the learner’s parameter vector,

we construct ✓(K). Gradients of ⌘ can flow back through these k updates. An

additional (l � 1) updates are applied to ✓K before a final gradient descent

step on the learner’s objective is taken. This produces the target parameter

vector ✓̂. Note that gradients of ⌘ do not flow through these updates.

We now arrive at the update rule

⌘  ⌘ � �r⌘

���✓̂ � ✓(K) (⌘)
���
2

2
(2.6)

where � 2 R+ is the meta learner’s step size3. By taking the gradient of

squared L2-norm with respect to ⌘, BMG moves ⌘ in a direction which reduces

2BMG borrows from the concept of bootrapping in RL in which an agent updates its
value function or policy using its current estimates of these quantities.

3Note that we use the squared L2-norm as a relevant example. In general, any matching
function µ : Rn ⇥ Rn �! R+, can be used to measure the similarity between the target
parameters ✓̂ and the di↵erentiable parameters ✓(K).
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the di↵erence between the target parameters and the learner’s parameters after

k updates. This causes ⌘ to produce updates which move ✓ more quickly

toward the target parameters. The (l � 1) updates of the bootstrap are not

di↵erentiated through, allowing learning dynamics from far into the future to

be incorporated into the target parameters without causing the computation

of derivatives to scale with l.

Bootstrapped meta gradients provided significant inspiration for our work,

and we discuss the influence of BMG on our algorithm in Chapter 4.
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Chapter 3

Principles of Search Control

In this chapter we examine principles that result in e↵ective search control.

We believe search control distributions which implement these principles can

allow agents to make more e�cient use of model experience. First, let us

introduce the TMaze environment, the domain in which our experiments are

conducted throughout this work. We then discuss our first principle: focus on

states of high value error. We conclude by considering the case of an agent

with an imperfect model of the environment. In this situation, we outline the

second principle: avoid incorrect states when the model is misleading.

3.1 The T-Maze Environment

Throughout this work we evaluate algorithms in the TMaze; an episodic grid-

world environment pictured in Figure 3.1. We chose the TMaze domain for our

Figure 3.1: The T-Maze environment. The green state indicates the agent’s
starting state while the red states indicate terminal states.
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experiments because its simplicity makes it amenable to analyzing the e↵ects

of di↵erent search control distributions. However, the TMaze is also a non-

stationary and stochastic domain where agents must be capable of adapting in

order to achieve maximum performance. This combination of simplicity with

stochasticity and non-stationarity results in a domain which is both easily

analyzed while incorporating characteristics of challenging RL problems.

In the TMaze, an agent begins at a starting state and must navigate a ver-

tical hallway, then turn either left or right into a horizontal hallway. Reaching

the leftmost or rightmost state of the horizontal hallway results in the termi-

nation of an episode. At any time, one of these terminal states emits a reward

of +1 while the other emits 0. Every 600 episodes the rewards are swapped

between terminal states. From the agent’s perspective, the TMaze is thus

non-Markov and non-stationary, so long as the agent’s state representation

does not track episodes or timesteps. The TMaze is also stochastic. At any

timestep, regardless of what action the agent selects, the agent may transition

to a random adjacent state with probability ✏env. We set ✏env = 0.1 for the

remainder of this work.

A key element of the TMaze is that under the optimal policy only the

values of certain states change when the reward regime is swapped between

terminal states. For the optimal policy, the values of states do not change

along the vertical hallway when the reward switches, while the values of states

along the horizontal hallway do change. This is an important observation that

will motivate our understanding of which search control distributions perform

well on the TMaze.

3.2 Principle 1: Focus on High Value Error

States

Let us first define value error as the di↵erence between the value of a state s

under the optimal policy and the value of that same state under the agent’s

current policy: v⇤(s) � v⇡(s). We now propose that the first principle for

e↵ective search control is for the agent to focus its planning on states where
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value error is relatively high.

Why should an agent focus its planning updates on these states? We can

answer this question by considering an agent learning in the TMaze environ-

ment. As described previously, the TMaze is a non-stationary domain with

two reward regimes. We refer to the reward regime where the left terminal

state emits +1 and the right terminal state emits 0 as reward-left and the

opposite reward regime as reward-right. Furthermore, we denote the optimal

value functions for reward-left and reward-right respectively as v⇤L and v⇤R.

Picture v⇤L; the states along the horizontal portion of the maze have highest

value at the left (next to the rewarding terminus) and descend in value towards

the right. States along the vertical portion of the maze have highest value at

the top and descend in value toward the bottom, reaching the lowest value at

the starting state. In contrast v⇤R will have the highest value on states at the

right of the horizontal portion of the maze, with values descending towards

the left. However, the value of states in the vertical portion of the maze is the

same as in v⇤L. This is because the number of transitions between any of these

states and the terminal state with positive reward does not change when the

reward regime changes.

Consider an agent which has been training in the TMaze under the reward-

left regime and imagine that the agent has approximately learned v⇤L. Further,

suppose the agent is equipped with a perfect model of the environment. When

the regime changes to reward-right, the agent’s value function will no longer

be correct. The agent must update its value function towards v⇤R as quickly as

possible, making use of its model to accelerate learning. If the agent samples

states along the vertical hallway, at best, updates that it makes will not a↵ect

its value function at all. There is 0 value error for these states as v⇤L and v⇤R

are identical along the vertical portion of the maze. On the other hand, the

states along the horizontal portion of the maze have high value error. Were the

agent to correct its value function, its policy would guide it to the positively

rewarding terminal state. Hence, the agent should spend its planning updates

on the high value error states of the horizontal portion of the maze.

We can validate this principle experimentally. Figure 3.2 shows the two
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Figure 3.2: (a) The Uniform prioritized distribution. (b) The Horizontal Focus
prioritized distribution. Terminal states are not pictured as no probability is
assigned to these states. Darker colors indicate greater probability mass while
text indicates the probability of sampling the corresponding state.

search control distributions in consideration. The Uniform distribution has

equal probability of sampling any state as a starting point for a planning

update. The Horizontal Focus distribution places greater probability on the

states in the horizontal portion of the TMaze, with less probability allocated

to the vertical states. The Horizontal Focus distribution thus places greater

probability on states which will have higher value errors after a reward regime

change.

We evaluate the performance of di↵erent algorithms on the TMaze by ex-

amining the total reward they accumulate in a limited number of episodes.

This metric captures both the speed at which agents learn to reach terminal

states and the behaviour of correctly reaching the positive rewarding state.

Figure 3.3 shows the total reward achieved by two agents in the TMaze against

the number of planning steps the agents perform after each real update. Uni-

form and Horizontal Focus are both Dyna-Q agents equipped with the re-

spective search control distributions shown above. It is clear that Horizontal

Focus outperforms Uniform across all amounts of planning in consideration.

This result demonstrates that a search control distribution which implements

the principle of focusing on high value error states achieves greater results

when planning with a perfect model in the TMaze environment.
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Figure 3.3: The reward accumulated during training against the number of
planning steps per real update.
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3.3 Principle 2: Avoid Incorrect States

We now consider a situation where the agent is a equipped with an imperfect

model of the environment, whether learned or provided a priori. Similar to the

introduction of the first principle, we perform a thought experiment to demon-

strate the benefits to planning e�ciency which stem from avoiding incorrect

states.

Consider an agent equipped with a perfect model of the TMaze with the

exception of the terminal transitions. Transitions into terminal states of this

model emit a reward of either 0 or +1 with equal probability. The reward

dynamics of this model thus match the empirical distribution of outcomes

of the real environment averaged over both reward regimes. As the reward

dynamics of this model do not match those of the environment what e↵ect

does this have on the agent’s learning?

Imagine that the agent has learned v⇤L, at this moment the reward regime

switches from reward-left to reward-right. To maximize reward, the agent

should update its values towards v⇤R as quickly as possible. If the agent samples

the terminal transitions of the model, in expectation it will receive a reward

of 0.5. Updating its value function with these rewards will cause the value of

terminal-adjancent states to approach 0.5. The value of these states will move

away from the correct values of v⇤R. However, what if the agent simply ignored

the terminal transitions of the model? In this case, the value of the terminal-

adjacent states will only be updated by real experience. These values will thus

approach the correct optimal values as more real updates are performed. The

agent can still use model experience to quickly propagate changes in the value

function back to other states, without learning the incorrect values. Hence,

we arrive at the second principle: an agent should avoid sampling states with

incorrect information.

We demonstrate the e↵ects of this principle through a new experiment

in the TMaze. Each agent is equipped with the imperfect model described

above and performs five steps of planning after each real update. Figure 3.4

introduces a new search control distribution we refer to as Avoid Terminal.
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Figure 3.4: The modified Horizontal Focus distribution used in the imperfect
model setting. We refer to this distribution as Avoid Terminal. This dis-
tribution places near-zero probability on states which transition into terminal
states. Darker colors indicate greater probability mass while the text indicates
the probability of sampling the corresponding state.

Following the first principle, this distribution places greater probability on

states along the horizontal portion of the TMaze but, in accordance with the

second principle, places near-zero probability on states adjacent to terminal

states. In e↵ect, these states will never be sampled during planning.

Figure 3.5 shows a comparison of total rewards for the agents considered

in this experiment. The results starkly demonstrate the e↵ects that di↵erent

search control distributions may have in the presence of the imperfect model.

Q-Learning is outperformed by all the model-based agents. While Horizon-

tal Focus is outperformed by the naive Uniform distribution, Avoid Terminal

achieves much greater total reward than either Uniform or Horizontal Focus.

This di↵erence in total reward illustrates that avoiding the incorrect states

of the model can be important for planning e�ciently — obeying the first

principle is not enough in this setting.

While both principles introduced in this chapter can improve planning

e�ciency, they rely on privileged information of the environment. In complex

environments where the application of these principles may not be obvious,

or in the more general case where expert knowledge of the environment is

not available, an open question remains: can agents discover search control
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Figure 3.5: A comparison of the total reward accumulated by each agent when
using the imperfect model under di↵erent search control distributions.
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distributions that embody these principles and enable e�cient planning?
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Chapter 4

Learning Search Control

Distributions

We now examine a means of learning search control distributions without prior

knowledge of the environment. First, we introduce the Meta-Gradient Search

Control (MGSC) algorithm. We describe the motivation behind MGSC and

discuss the derivation of the algorithm’s meta-objective. We then present

pseudocode along with a detailed explanation for a Dyna-style agent which

incorporates MGSC.

4.1 The Meta-Gradient Search Control Algo-

rithm

We introduce Meta-Gradient Search Control (MGSC), an online meta-learning

algorithm capable of learning useful search control strategies. In this section

we derive the MGSC loss function and discuss how it can be integrated into

the Dyna architecture.

We present a thought experiment which motivates the meta-learning ob-

jective of MGSC. Let us refer to the meta-parameters as ⌘ and the learner’s

parameters as ✓. We introduce a distribution d(⌘) from which an agent can

sample a starting state s̃. To make the most e�cient use of each planning

step, the system should sample the state that produces the most beneficial

transition for learning. But how does the agent evaluate which transitions are

the most beneficial? One way of answering this question is to choose the tran-
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sition which brings the learner’s parameters closest to the optimal parameters

✓⇤. We define closeness as the Euclidean distance between the parameter vec-

tors. The agent constructs a parameter vector ✓̄ by sampling states s̃ ⇠ d(⌘)

and applying planning updates from these states to its parameters ✓. The

usefulness of these planning updates can be calculated as

||✓⇤ � ✓̄(⌘)||22. (4.1)

As ✓̄ is a function of ⌘, the agent can optimize ⌘ to reduce the parameter

error and improve the e↵ectiveness of planning updates.

In a real setting, the agent obviously does not have access to the optimal

parameters. It is thus necessary to replace the optimal parameters ✓⇤ with an

approximate target ✓̂. We use the most recent transition of experience from

interacting with the environment (s, a, r, s0) to construct the target parame-

ters ✓̂. Specifically, we construct the target ✓̂ = ✓̄ + ↵�(s, a, r, s0, ✓̄), where

�(s, a, r, s0, ✓̄) is a shorthand for a semi-gradient Q-Learning update. This tar-

get was motivated by the Bootstrapped Meta-Gradients work of Flennerhag

et al. (2022).

As discussed in Section 2.8, BMG creates a target for its meta-objective by

bootstrapping estimates of the learner’s future parameters from the learner’s

current parameters. Similarly, MGSC’s target is bootstrapped from the cur-

rent value function parameters of the learner by applying one real update. In

contrast to MGSC, BMG constructs its target using a further (l� 1) updates

sampled from the learning rule it is optimizing. We experimented with includ-

ing such updates in MGSC’s target (in our case these would correspond to

additional planning updates) but our results indicated superior performance

using only the real transition. We believe that in the MBRL setting, inac-

curacies in the model can result in erroneous target parameters, making the

approximate target worse and resulting in the agent learning a poor search

control distribution when planning updates are used to construct the target.

The search control distribution d(⌘) is modelled as a softmax distribution

where each non-terminal state is represented as a logit. Planning updates can-

not begin from a terminal state and so we remove them from the distribution.
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The distribution is given as:

d(s|⌘) , e⌘s

P|S|
i=1 e

⌘s

= P(s|⌘).

In many domains, the number of states may be very large and representing

each state by a logit can become infeasible. We discuss how future work could

address this issue later in this document.

We use an expectation update over all states and actions to construct ✓̄.

This choice allows all of the logits to be a↵ected by each meta-update. Under

a tabular state representation, a sample-based update would only adjust a

single logit during each meta-update, thus our expectation update can accel-

erate the meta-learning procedure. The drawback to this approach is that an

expectation update requires a sample from every state-action pair. This can

be infeasible when there is a large number of states and actions.

A model transition is given by sampling a starting state from the learned

search control distribution, an action from the current policy, and a next state

and reward from the dynamics model, that is: s̃ ⇠ d(·|⌘), ã ⇠ ⇡(·|s̃), s̃0, r̃ ⇠
m(·|s̃, ã). Using this transition, we define the semi-gradient Q-Learning update

as

�(s̃, ã, r̃, s̃0,✓) , [r̃ + �max
ã02A

q̂(s̃0, ã0;✓)� q̂(s̃, ã;✓)]r✓q̂(s̃, ã;✓). (4.2)

We use an analogous definition, �(s, a, r, s0,✓) to refer to a semi-gradient Q-

Learning update on real experience.

Our expectation update is taken over all state-action pairs in the environ-

ment. The update for each pair is weighted by the probability of selecting the

state according to the current search control distribution d(⌘) and of selecting

the action from the current behaviour policy ⇡. We then apply a fixed step

size ↵ 2 R+ to the weighted sum of the updates to obtain

✓̄(⌘) , ✓ + ↵
X

s̃,ã

⇡(ã|s̃)d(s̃;⌘)�(s̃, ã, r̃, s̃0,✓). (4.3)

We now arrive at our meta-loss function: the squared Euclidean error

between the target parameters ✓̂ and the parameters from the expectation
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update ✓̄:

L(⌘) , ||J✓̂K� ✓̄(⌘)||22. (4.4)

We must prevent the target term from being optimized by back-propogation,

otherwise the algorithm could spuriously reduce the loss. A stop-gradient

denoted by brackets J·K is applied to the target parameters to halt this from

occurring.

The experiments in this work minimize the MGSC loss (4.4) using the

Adam optimizer (Kingma & Ba, 2015). Gradients are back-propagated through

the parameters ✓̄ to optimize the meta-parameters ⌘ and thus influence the

learned search control distribution.

Our loss function encourages the meta-learner to produce a search control

distribution which results in planning updates bringing the parameters of the

value function closer to optimality. Allocating greater probability mass to

states which produce helpful updates will generally incur a lower loss as the

di↵erence between ✓̄ and ✓̂ will be decreased. This loss is however sensitive to

the construction of the target parameters. While we found that a single real

update was e↵ective, in highly stochastic environments, or under a very poor

model, the target may require more real updates to provide a good learning

signal.

4.2 Meta Gradient Search Control in Dyna

Algorithm 2 presents the MGSC procedure integrated into the Dyna archi-

tecture. The algorithm is presented in a general form for continual domains,

but can be applied without modification to episodic domains. We now provide

a detailed explanation of the algorithm.

MGSC in Dyna-Q is an online algorithm which begins in a starting state s1

determined by the environment. For each timestep t, the algorithm selects an

action according to an ✏-greedy policy and takes this action in the environment,

receiving the real experience tuple (s, a, r, s0). Next, this experience is used to

update the agent’s model — MGSC is agnostic to the model update procedure.

As shown on line 7, the algorithm then executes a semi-gradient Q-Learning
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Algorithm 2 Meta Gradient Search Control in Dyna-Q

1: Given agent parameters ✓ and meta-parameters ⌘.
2: Obtain initial s.
3: for t = 1, 2, 3, · · · do

4: Take ✏-greedy action a from s then obtain s0 and r.
5: m UpdateModel(m, s, a, s0, r)
6: # Perform a real update
7: ✓  ✓ + ↵�(s, a, r, s0,✓)
8: # Perform k planning updates
9: for 1, · · · , k do

10: Take ✏-greedy ã from s̃ ⇠ d(·|⌘).
11: s̃0, r̃ ⇠ m(·|s̃, ã).
12: ✓  ✓ + ↵�(s̃, ã, r̃, s̃0,✓)
13: # Construct di↵erentiable parameters according to (4.3)
14: ✓̄(⌘) ✓ + ↵

P
s̃,ã ⇡(ã|s̃)d(s̃;⌘)�(s̃, ã, r̃, s̃0,✓)

15: # Construct target parameters
16: ✓̂  ✓̄ + ↵�(s, a, r, s0, ✓̄)
17: Update ⌘ with Adam on the MGSC meta-loss using ✓̂ and ✓̄ (4.4).

update to the learner’s value function using the real experience. The direct

learning portion of the algorithm is now complete.

The algorithm now enters the planning portion of its execution on lines 9

to 12. Each planning update follows the same structure. A state s̃ is sampled

from d(⌘), the algorithm then uses its current ✏-greedy policy to select an

action ã. The algorithm queries its model m with s̃ and ã, receiving a reward r̃

and next state s̃0. Using this model experience tuple (s̃, ã, r̃, s̃0) the algorithm

performs a semi-gradient Q-Learning update to the learner’s value function

parameters. The hyperparameter k controls the number of planning updates.

Following the planning updates, the parameter vectors provided to the

meta-loss are constructed. Lines 14 and 16 show the construction of the dif-

ferentiable parameters ✓̄ and the target parameters ✓̂ respectively. Note that

the sum over all state-action pairs of line 14, these states and actions are

distinct from those used in the planning procedure. However, they are still

referred to as s̃ and ã as these are the states and actions of the model, not the

real environment. The experience tuple used to construct ✓̂ in line 16 is the

same tuple of real experience used in the real update of line 7. Finally, line 17

describes the update to the meta-learner’s parameters ⌘ using the parameter
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vectors ✓̄ and ✓̂. The algorithm updates ⌘ according to the Adam learning

rule.

Let us discuss the scalability of Algorithm 2. We note that the semi-

gradient Q-Learning updates used in direct learning and planning can extend

to the case of non-linear function approximation with neural networks. Sim-

ilarly, the meta-optimization with Adam also extends to non-linear function

approximation. The expectation update used to construct ✓̄ could be approxi-

mated using a su�cient number of samples, freeing the method from requiring

a sample from every state-action pair in the environment. We point out these

properties as they suggest that Algorithm 2 is amenable to scaling to more

complex domains which necessitate neural network function approximation.
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Chapter 5

Experimental Results

In this chapter, we provide experimental results comparing the performance of

baseline agents against an MGSC agent. We begin in a setting where agents

have access to a perfect model of the environment. We then move on to a

setting where the agents have access to an imperfect model, and finally, a

learned model. Throughout we discuss the performance of MGSC in compar-

ison to baseline agents and study the search control distributions learned by

the algorithm.

There are some experimental details which are common to all of our ex-

periments. Each experimental run lasts for 250,000 timesteps while all results

are averaged over 30 random seeds. All error bars indicate 95% confidence

intervals over these random seeds. We swept over hyperparameter settings

to determine the best settings for each agent and use only these results for

comparison. The full details of the hyperparameter sweep are included in the

Appendix.

Our primary metric of evaluation is the total reward: the sum of all rewards

received during training. The TMaze is an episodic environment in which each

episode has no maximum number of timesteps. The total reward thus captures

an agent’s ability to arrive at the positively rewarding terminus quickly; agents

which require fewer steps to reach the rewarding terminal state will accumulate

more reward in the fixed number of timesteps allowed during training. We

also examine the average reward over the course of training. At timestep t,

the average reward is given by 1
t

Pt
i=0 ri. Average reward provides a useful
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metric for plotting changes in the agent’s performance as training proceeds.

5.1 The Perfect Model Setting

In this section, we compare the performance of agents which plan with a

perfect model — a model which exactly matches the reward dynamics and

state transitions of the environment. This is the same model we considered

when introducing the first search control principle.

5.1.1 Experimental Setup

In this experiment, all agents are tasked with navigating the TMaze, but

model-based agents may plan with a model which is synchronized with the

reward regime of the real environment. Because the model exactly matches

the environment, model experience is equivalent to real experience. As such,

planning updates should always be beneficial to an agent’s learning.

We compare the MGSC-Dyna agent described in Algorithm 2 against three

baseline agents: Q-Learning, Uniform, and Horizontal Focus. As described in

Section 2, Q-Learning is a model-free baseline which learns Q-values solely

from real experience (Watkins & Dayan, 1992). Uniform and Horizontal Fo-

cus are both Dyna-style agents which implement Algorithm 1 and learn from

both real and model experience. These agents were previously introduced in

Chapter 3. Uniform’s search control distribution places equal probability on

all starting states. This distribution is an uninformed baseline available to

all MBRL systems. Horizontal Focus’ search control distribution embodies

our principle of focusing on high value error states. Refer to Figure 3.2 for

a visualization of the search control distributions of these agents. We expect

the Horizontal Focus agent to outperform the Q-Learning and Uniform agents.

Given the same finite planning budget, Horizontal Focus’ increased emphasis

on high-value error states should allow the agent to correct its Q-values faster

than other baselines after a reward regime change occurs.
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5.1.2 Results and Discussion

Figure 5.1 shows the total reward and average reward for each agent when

planning with the perfect model. We report the results for the hyperparameter

setting of ten planning updates per real update as MGSC achieved the greatest

performance relative to the baselines at this level of planning. Results for the

remaining hyperparameter settings can be found in the Appendix. Q-Learning,

the model-free agent, achieves noticeably less total reward and average reward

compared to the model-based agents. Among the model-based agents, we

observe that the performance di↵erences are much smaller, with Horizontal

Focus achieving the best performance by a small margin. We performed a

Welch’s t-test on the total reward of MGSC and Uniform, finding that the

total reward of MGSC is statistically significantly greater than that of Uniform

(p-value 0.00049)(Welch, 1947). However, we note that we do not find this

di↵erence in performance to be scientifically significant — the closeness of

the total reward of all three model-based algorithms does not suggest strong

di↵erences in performance between search control distributions in the perfect

model setting.

Figure 5.2 shows snapshots of the distribution learned by MGSC over the

course of training. While the probability mass does not shift drastically, we

can observe that some probability moves away from the vertical states and

towards the horizontal states. This behaviour mirrors the first principle of

search control described in Chapter 3, placing greater probability mass on

states with larger value error. While Horizontal Focus has a search control dis-

tribution which was hand-designed to instantiate this principle, MGSC shows

signs of discovering this principle purely through the optimization of its meta-

objective.

Figure 5.3 shows the total reward accumulated by the Uniform, Horizontal

Focus, and MGSC agents as the number of planning updates per real update

is varied. Q-Learning is not pictured as it achieves much less total reward

than the model-based agents. We omit it to allow clear illustration of the

performance of the model-based agents.
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Figure 5.1: Results of agents planning with a perfect model. (a) The total
reward accumulated by each agent over the course of training. Error bars
denote the 95% confidence interval. (b) The average reward accumulated
during training for each agent.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure 5.2: Plots of the average distribution learned by MGSC at di↵erent
points during training when planning with a perfect model. The distribution
shown is averaged over 30 random seeds.
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Figure 5.3: The total reward accumulated by each agent as the number of
planning updates per real update is varied.

We observe that Horizontal Focus consistently achieves the greatest to-

tal reward at all levels of planning. MGSC achieves marginally greater total

reward than Uniform in the regime of 10 planning steps, but performs compa-

rably to Uniform in the other regimes considered. Overall, Figure 5.1 indicates

that under a perfect model, MGSC does not show consistent improvement over

baselines at all levels of planning. Here, learning the search control distribution

does not appear to have much benefit, nor cause much harm, when compared

to static baselines. But, even the hand-crafted Horizontal Focus distribution

achieves only slightly better performance than the Uniform distribution. How-

ever, does a learned search control distribution provide greater benefit to an

agent than the uniform distribution in the absence of a perfect model? We

will study this question in the following section.

Finally, our analysis revealed that all the model-based agents follow a sim-

ilar performance curve as the number of planning steps increases, with total

reward increasing at each level of planning. This behaviour is expected, as

experience from a perfect model is identical to real experience. The shape

of the curves in Figure 5.3 matches our expectations. An infinite amount of

planning would allow an agent to learn an optimal policy without any addi-

tional real experience, causing total reward to plateau. At the other extreme,
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with no planning, the model-based agents should perform identically to the

Q-Learning agent. Additionally, while we evaluate the agents in a relatively

low-planning regime, we note that as the amount of planning grows we ex-

pect the performance of the model-based agents to converge. With an infinite

amount of planning, the search control distribution no longer has an e↵ect (so

long as it places non-zero probability on every state).

5.2 The Imperfect Model Setting

We now present an empirical evaluation of the e↵ects of search control distribu-

tions when agents plan with an imperfect model. Planning with such a model

can inhibit an agent’s ability to properly learn the optimal Q-values of the en-

vironment. Agents which can avoid querying the portions of the model where

the dynamics do not match the environment are poised to achieve greater

performance.

5.2.1 Experimental Setup

The imperfect model was previously introduced in Chapter 3. It has exactly

the same transition probabilities as the TMaze, but di↵ers in reward dynam-

ics. In the imperfect model, transitioning into either terminal state randomly

produces a reward of 0 or 1. This means the agent receives a reward of 0.5

in expectation from both terminal transitions, and, that the reward dynamics

of the model do not match the reward dynamics of the environment. It fol-

lows that an agent which learns the optimal Q-values of the model will not

have learned the optimal Q-values of the environment. It is unlikely that this

agent’s policy would be highly performant in the real environment.

In the imperfect model setting, we compare MGSC against a new baseline

agent: Avoid Terminal. This agent was previously introduced in Chapter 3. It

instantiates both principles of search control by using the distribution pictured

in Figure 3.4. By placing greater probability mass on horizontal states where

values change after reward regime switches, the distribution embodies the first

principle. By placing near-zero probability on states which transition into
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terminal states of the imperfect model, this distribution embodies the second

principle. The combination of these attributes allows Avoid Terminal to learn

from model experience which has the greatest benefit to planning e�ciency

while avoiding experience which would be detrimental to learning optimal

Q-values. In the experimental results that follow, we report a comparison

between Q-Learning, Uniform, Avoid Terminal and MGSC.

5.2.2 Results and Discussion

Experimental results for the imperfect model setting are shown in Figure 5.4.

This figure reports results for agents which perform five planning updates

per real update. We chose to report results with this level of planning as

we observed the greatest disparity in performance between MGSC and the

baseline algorithms.

We observe that the total reward accumulated by the Uniform and Avoid

Terminal agents matches our intuition for what kind of distribution will be

e↵ective in this setting. The relatively low performance of Uniform suggests

that sampling terminal transitions at a high rate is harmful in the imper-

fect model setting, as expected. In contrast, the much higher performance of

Avoid Terminal further supports the usefulness of circumventing these transi-

tions. Avoid Terminal achieves the greatest performance of all the agents in

consideration. As expected, its search control distribution allows it to quickly

adapt its policy after reward regime changes leading to greater total reward.

Over the course of training, MGSC achieves greater total reward than

Uniform and is close to that of Avoid Terminal. Figure 5.4b shows that after

an initial transient period, MGSC arrives at a much higher average reward

than the Uniform baseline. Ultimately, MGSC’s average reward plateaus near

the level of Avoid Terminal but does not quite reach its performance.

MGSC’s search control distribution suggests that it has learned to shift

probability away from states where the model is erroneous and would cause

greater value error. Figure 5.5 shows the evolution of MGSC’s learned search

control distribution over the course of training. There are two notable features

in this plot. Firstly, probability is concentrated away from terminal-adjacent
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Figure 5.4: Both figures show results when planning with an imperfect model.
(a) The total reward accumulated by each agent over the course of training.
Error bars denote the 95% confidence interval. (b) The average reward accu-
mulated during training for each agent.
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states. The probability mass on these states is far less than on any of the other

states in the distribution. Secondly, relatively greater probability is placed on

the horizontal states than the vertical states. After 25% of training, this

e↵ect is already clear. As training proceeds some of this probability mass is

shifted back to the vertical states — by the end of training some of the vertical

states have close to the same probability mass as the horizontal states. It is

unclear why this reallocation of probability towards the vertical states occurs.

However, the movement of probability towards horizontal states and away from

terminal-adjacent states reflects the agent’s ability to discover the principles

of search control. MGSC simply optimizes for a distribution which reduces

the agent’s parameter error, the learning mechanism allows it to generate a

distribution with characteristics similar to that of Avoid Terminal, which was

hand-designed using privileged information about the TMaze environment.

Figure 5.6 shows the total reward accumulated by each agent as the number

of planning updates per real update is varied. We observe that MGSC achieves

greater total reward compared to Uniform at all levels of planning. At most

levels of planning, MGSC does not reach the performance of Avoid Termi-

nal. One possible explanation for this behaviour is that MGSC has an initial

transient period during the first few reward regime switches where large shifts

in probability mass occur. This may be visible in MGSC’s average reward

shown in Figure 5.4b. Initially, it is much lower than the other model-based

agents. Further, after 25% of training, MGSC’s search control distribution al-

ready appears similar to its distribution at the end of training, suggesting that

a large portion of probability mass shift occurs during this transient period.

During this period, it is possible that MGSC is not able to accumulate reward

as quickly as Avoid Terminal, ultimately resulting in MGSC’s performance

lagging behind that of Avoid Terminal in terms of total reward.

Notably, Avoid Terminal shows a large spike in variance between random

seeds at the level of 20 planning steps. This behaviour is not observed in the

other agents. It is possible that this behaviour is due to a few random seeds

which lead to particularly poor runs for Avoid Terminal.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure 5.5: Plots of the distribution learned by MGSC at di↵erent points
during training in the imperfect model setting.
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Figure 5.6: The total reward accumulated by each agent as the number of
planning updates per real update is varied in the imperfect model setting.
Note that Q-Learning’s performance is not a↵ected by planning. It is included
here for reference.

5.3 The Learned Model Setting

We now consider a setting in which agents must learn their model simulta-

neously as they learn to navigate the TMaze. We refer to this as the learned

model setting. This setting presents an additional challenge to agents beyond

the imperfect model, as the learning process will result in the model shifting

over time.

5.3.1 Experimental Setup

In this experiment, the model keeps a count for each value of reward observed

during each transition in the real environment. When the model transitions

from one state to another, a reward is sampled according to the empirical prob-

ability of observing each value. In the limit, this model will behave identically

to the imperfect model. However, planning with the learned model presents

multiple challenges. While it is biased in the limit, the model’s reward distri-

bution will also often be out of sync with the real environment. Particularly,

in the first few reward regime switches, the model may lag behind the en-

vironment, producing rewards which more closely match the previous reward
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regime. Agents must compensate for both an erroneous and changing model to

achieve strong performance in this setting. We use the same agents for compar-

ison in this setting as in the imperfect model setting, examining Q-Learning,

Uniform, Avoid Terminal, and MGSC.

5.3.2 Results and Discussion

We present the total reward and average reward observed in the learned model

setting in Figure 5.7. We note that in this setting, MGSC appears to achieve

the greatest total reward, followed by Avoid Terminal, Uniform, and finally

Q-Learning. Examining the average reward, all the agents show a sharp de-

crease in performance after a few thousand timesteps: this corresponds to the

first time the reward regime is switched. In particular, Uniform’s average re-

ward plummets at this moment. Uniform’s large drop in average reward, and

overall lower total reward, appear to reflect the importance of avoiding the ter-

minal transitions in the learned model. In contrast, Avoid Terminal achieves

more total reward and su↵ers less after the first reward regime change as its

distribution skips these unhelpful transitions.

Figure 5.8 shows snapshots of the search control distribution learned by

MGSC which help to explain its relatively strong performance. We observe

that after 25% of training, probability has already moved away from the ter-

minal transitions, and away from the state at the intersection of the vertical

and horizontal hallways. Similar to observations in our prior experiments, this

behaviour suggests that MGSC is able to learn a distribution which follows

both principles of search control without explicit programming or privileged

domain knowledge.

The snapshots also reveal some unexpected behaviours. MGSC’s learned

distribution places a large amount of probability on the starting state of the

TMaze. This is surprising as the value of this state does not change after

reward regime swaps. Seemingly, once the agent has learned this value, it could

focus planning updates on other states where values change. This unexpected

behaviour could be an artifact of MGSC’s meta-loss; concentrating probability

on this state may result in a lower meta-loss even if the distribution is sub-
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Figure 5.7: Both figures show results when planning with the learned model.
(a) The total reward accumulated by each agent over the course of training.
Error bars denote the 95% confidence interval. (b) The average reward accu-
mulated during training for each agent.
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optimal for planning. Alternatively, there may be some benefit to allocating

probability to states with static values. Sampling states with high value-error

too frequently could slow down the agent’s ability to learn the correct values

by propagating back existing values from the previous reward regime.

The agents’ sensitivity to the number of planning steps is shown in Figure

5.9. The results shown in this figure further emphasize the detrimental ef-

fect of search control distributions which use terminal transitions. We observe

that Uniform’s performance decreases as the amount of planning increases.

As more planning occurs, terminal-adjacent states will be sampled more often

under the Uniform distribution, leading to updates which may include erro-

neous rewards. Ultimately, this drastically reduces Uniform’s total reward as

planning increases. We also note the surprising performance of Uniform when

one planning step is used. It’s unclear why Uniform performs comparatively

well at this low level of planning and we are unsure why this result occurs.

Comparatively, Avoid Terminal benefits from an increase in planning up to

the level of 10 planning steps, after which it su↵ers from increased variance.

MGSC remains robust to all levels of planning. Its total reward appears to

increase slightly with the number of planning steps, but not drastically. Gen-

erally, we expect model-based agents to benefit from an increased planning

budget so long as they may avoid erroneous portions of the model. While

MGSC is able to achieve relatively high total reward at all levels of planning,

it does not seem to fully take advantage of an incrased planning budget. It is

possible there is a superior distribution — with greater returns to more plan-

ning — that MGSC has not been able to learn. Future work could examine

if MGSC’s meta-loss is reaching a local optimum and whether adjustments,

such as an entropy regularizer or additional expectation updates, could help

the agent learn a better distribution as the planning budget increases.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure 5.8: Plots of the distribution learned by MGSC at di↵erent points
during training in the learned model setting.
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Figure 5.9: The total reward accumulated by each agent as the number of
planning updates per real update is varied in the learned model setting. Note
that Q-Learning’s performance is not a↵ected by planning. It is included here
for reference.
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Chapter 6

Future Work and Conclusion

We now discuss some avenues for future work and provide a summary of the

work presented in this document.

6.1 Future Work

While we have presented two principles for useful search control in this thesis,

future work can investigate the shape of the distributions learned by MGSC.

Studying learned distributions might teach us about additional principles for

useful search control.

Further, the selection of an action during planning steps is arguably part

of the search control problem. Just as some states may be more beneficial to

learning than others, some actions may also result in faster learning. While

MGSC uses the current policy to select an action during planning, incorporat-

ing action selection into the learned search control distribution may provide

further gains to planning-e�ciency.

We now focus on two particularly important directions for future work in

search control and in building upon MGSC: scaling the algorithm and the

results of applying MGSC with a perfect model.

While we believe MGSC is amenable to scaling, there are details of the

algorithm which must be adjusted to deploy it in settings with more states

and actions, or with high-dimensional observations. In Chapter 4, we discussed

how the use of an expectation update requires samples from the entire state-

action space. As the number of states and actions grows this update becomes
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prohibitively expensive. One possibility is to replace it with a sample-based

approximation. This method would need to be tested empirically to validate

that relatively a small number of samples can produce an approximation which

provides a useful signal to the meta-objective.

Similarly, when the state-action space is continuous, or very large, it be-

comes impossible to represent each state or action with a logit. Future work

along this line should consider new methods of encoding the search control

distribution which are compatible with such settings. A variety of approaches

are available which provide sample access to a learned distribution includ-

ing AutoEncoders, Generative Adversarial Networks, and Normalizing Flows

(Goodfellow et al., 2016; Goodfellow et al., 2014; Papamakarios et al., 2021).

These methods can learn a compact, latent representation of a distribution

over the state space. MGSC’s meta parameters could then be used to train

this latent representation – making it tractable to sample states and assign

probabilities in much more complex environments.

While this thesis has concentrated on integrating MGSC into the Dyna

framework, MGSC could be incorporated into other model-based architec-

tures which have demonstrated strong abilities in complex environments. The

Dreamer family of algorithms, which learn a world model of the domain, could

be adapted to include search control using MGSC (Hafner et al., 2020; Hafner

et al., 2021; Hafner et al., 2023). Future work could compare the performance

of Dreamer algorithms as a baseline against versions augmented with learned

search control.

Future work can also address the lacklustre results we observed in the

perfect model setting. When the agent was given a perfect model of the

TMaze, MGSC showed similar performance to the Uniform baseline in most

settings of the environment. Understanding why MGSC struggles to learn a

superior search control distribution, and how to improve its performance is an

important component of ensuring that MGSC is robust to a variety of di↵erent

models.

One possible explanation for this behaviour is that the current meta-loss

does not provide a strong enough signal to push the logits away from the
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uniform initialization. If this were the case, a di↵erent construction for the

target parameter vector could be considered. Applying planning updates to

the target parameters (similar to the method originally used by Flennerhag

et al. (2022)) could result in a greater di↵erence between the parameter vectors

in the meta-loss.

Another possibility is applying a regularization term to the meta-loss. If

the search control distribution is remaining largely static during training, we

could keep a checkpoint of the logits from some numbers of timesteps in the

past. By applying a penalty to the loss based on the KL-divergence between

the checkpoint logits and the current logits, MGSC could be incentivized to

adjust its search control distribution more rapidly.

6.2 Conclusion

In this thesis, we investigated the e↵ects of search control on model-based RL

agents. We formulated the problem of search control as finding a probabil-

ity distribution over states and considered how this distribution can improve

planning-e�ciency with an eye towards ameliorating the use of model expe-

rience in MBRL. By comparing model-free agents and model-based agents

equipped with di↵erent search control distributions, we identified two princi-

ples that can result in useful search control. First, the agent should focus on

high value-error states. Second, the agent should avoid incorrect states.

We then introduced an algorithm, Meta-Gradient Search Control, capable

of learning search control distributions. The derivation of MGSC’s objective

function was discussed in detail, providing clarity on why we believe it can learn

useful distributions. We detailed a pseudo-code implementation of MGSC

within the Dyna framework of MBRL agents.

We finally demonstrated the performance of MGSC in the TMaze domain.

Under a fixed imperfect model, and a generative reward model, MGSC was

shown to learn distributions which exceed the performance of a naive base-

line and compare favourably with hand-coded distributions that use privi-

leged, domain-specific knowledge. These experiments demonstrate the utility
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of MGSC for search control in the TMaze and suggest it is a promising step to-

wards learned search control in domains where a custom distribution, created

a priori, is not feasible.

RL and model-based RL have demonstrated remarkable achievements in

recent years. As these algorithms continue to be iterated on and explored,

sample-e�ciency remains a key metric for developing agents which can learn

quickly in exacting tasks. This work is animated by our belief that improve-

ments to search control can improve planning-e�ciency, and that hopefully,

such improvements can result in greater sample-e�ciency. We hope that pro-

viding principles for useful search control and the MGSC algorithm has made

a small measure of progress towards this goal.
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Appendix A

Hyperparameter Settings and

Selection

To select hyperparameters, we perform a grid search over all possible hyperpa-

rameter configurations from Table A.1. Each configuration is run with 30 ran-

dom seeds during the selection process. We average results from all 30 random

seeds and report the results of the best hyperparameters for each algorithm

in consideration. For the baselines agents Q-Learning, Uniform, Horizontal

Focus, and Avoid Terminal, only the step size parameter was swept over. For

the MGSC agent both step size and meta-step size were swept over.

Note that the number of planning steps was varied during the experiments.

However, we did treat not the number of planning steps as a hyperparameter

during our sweep and we did not compare agents across di↵erent numbers of

planning steps. For example, we report results comparing Q-Learning, Uni-

form, Horizontal Focus, and MGSC when each algorithm is set to use five

planning steps. We do not make any comparisons where one algorithm is

allocated five planning steps, and another algorithm is allocated 10.

Hyperparameter Values

Step Size 1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1e0
Meta-Step Size 5e-5, 5e-4, 5e-3, 5e-2, 5e-1
✏policy 1e-1

Table A.1: Hyperparameters and values considered during grid search. Note
that Meta-Step Size and Bootstrap Target Samples are only used by the Meta
Gradient Search Control Algorithm
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Appendix B

Additional Results

We include additional experimental results not presented in the main text of

this document. In particular, the main body of this work presents results

for only some settings of the number of planning steps given to the model-

based agents. We present figures which show results for all of these settings,

including reproducing the figures which appeared in the main body.
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B.1 The Perfect Model Setting

Figure B.1: Total reward and average reward for agents with one step of
planning per real update in the perfect model setting.
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Figure B.2: Total reward and average reward for agents with five steps of
planning per real update in the perfect model setting.
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Figure B.3: Total reward and average reward for agents with ten steps of
planning per real update in the perfect model setting.
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Figure B.4: Total reward and average reward for agents with twenty steps of
planning per real update in the perfect model setting.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.5: Plots of the distribution learned by MGSC at di↵erent points
during training in the perfect model setting with one step of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.6: Plots of the distribution learned by MGSC at di↵erent points
during training in the perfect model setting with five steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.7: Plots of the distribution learned by MGSC at di↵erent points
during training in the perfect model setting with ten steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.8: Plots of the distribution learned by MGSC at di↵erent points
during training in the perfect model setting with twenty steps of planning.

66



B.2 The Imperfect Model Setting

Figure B.9: Total reward and average reward for agents with one step of
planning per real update in the imperfect model setting.
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Figure B.10: Total reward and average reward for agents with five steps of
planning per real update in the imperfect model setting.
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Figure B.11: Total reward and average reward for agents with ten steps of
planning per real update in the imperfect model setting.
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Figure B.12: Total reward and average reward for agents with twenty steps of
planning per real update in the imperfect model setting.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.13: Plots of the distribution learned by MGSC at di↵erent points
during training in the imperfect model setting with one step of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.14: Plots of the distribution learned by MGSC at di↵erent points
during training in the imperfect model setting with five steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.15: Plots of the distribution learned by MGSC at di↵erent points
during training in the imperfect model setting with ten steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.16: Plots of the distribution learned by MGSC at di↵erent points
during training in the imperfect model setting with twenty steps of planning.
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B.3 The Learned Model Setting

Figure B.17: Total reward and average reward for agents with one step of
planning per real update in the learned model setting.
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Figure B.18: Total reward and average reward for agents with five steps of
planning per real update in the learned model setting.
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Figure B.19: Total reward and average reward for agents with ten steps of
planning per real update in the learned model setting.
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Figure B.20: Total reward and average reward for agents with twenty steps of
planning per real update in the learned model setting.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.21: Plots of the distribution learned by MGSC at di↵erent points
during training in the learned model setting with one step of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.22: Plots of the distribution learned by MGSC at di↵erent points
during training in the learned model setting with five steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.23: Plots of the distribution learned by MGSC at di↵erent points
during training in the learned model setting with ten steps of planning.
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(a) 25% of Training (b) 50% of Training

(c) 75% of Training (d) 100% of Training

Figure B.24: Plots of the distribution learned by MGSC at di↵erent points
during training in the learned model setting with twenty steps of planning.
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