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Abstract

AlphaZero is a self-play reinforcement learning algorithm that achieves superhuman

play in the games of chess, shogi, and Go via policy iteration. To be an effective policy

improvement operator, AlphaZero’s search needs to have accurate value estimates for

the states that appear in its search tree. The accuracy of AlphaZero’s value function

depends upon the distribution of states encountered and trained upon. AlphaZero

begins its self-play training matches from the initial state of a game and only sam-

ples actions over the first few moves, limiting its exploration of states deeper in the

game tree. In this thesis, I introduce Go-Exploit, a novel search control strategy for

AlphaZero. Go-Exploit samples the start state of its self-play trajectories from an

archive of states of interest. Beginning self-play trajectories from states throughout

the game tree enables Go-Exploit to more effectively explore the game tree and to

learn a value function that generalizes better. Producing shorter self-play trajectories

allows Go-Exploit to train upon more independent value targets, further improving

value training. Finally, the exploration inherent in Go-Exploit reduces its need for

exploratory actions, enabling it to train under more exploitative policies. In the

games of Connect Four and 9x9 Go, I show that Go-Exploit learns with a greater

sample efficiency than standard AlphaZero, resulting in stronger performance against

reference opponents and in head-to-head play. I also compare Go-Exploit to KataGo,

a more sample efficient reimplementation of AlphaZero, and show that Go-Exploit’s

search control strategy exhibits a greater sample efficiency than KataGo’s. Further-

more, Go-Exploit’s sample efficiency improves when KataGo’s other innovations are

incorporated.
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Preface

The work presented in this thesis will be published as Alexandre Trudeau and Michael

Bowling, “Targeted Search Control in AlphaZero for Effective Policy Improvement,”

in Proc. of the 22nd International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2023) to be held in London, United Kingdom from May 29 to June

2, 2023.
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Chapter 1

Introduction

Games such as chess, checkers, and Go have been used as test environments for

Artificial Intelligence (AI) since the inception of the field. AI pioneers including

Alan Turing [1], Claude Shannon [2], and Arthur Samuel [3] sought to investigate

whether machines could display intelligent behaviour and whether human thought

and learning could be mechanized or automated. Early AI practitioners believed

that games require intelligence to play skillfully, and thus, make ideal environments

to test machine intelligence. On a more practical level, games present constrained,

challenging problems to solve. The rules of a game are easy to implement in code and

constrain the behaviour of an agent. Furthermore, the agent’s goal is clear – to win

the game. With modern computers, moves and games can be simulated very quickly,

allowing algorithms to perform extensive look-ahead searches and to learn from large

amounts of data. The ability to quickly simulate games also allows scientists to

evaluate an algorithm’s sample efficiency within days or hours.

A long-standing goal in artificial intelligence has been to create general algorithms

that can learn for themselves without human intervention. Early AI research in

games focused on tree search algorithms utilizing handcrafted evaluation functions [2–

5]. These algorithms would simulate sequences of actions from the current state of a

game, evaluate the resulting board positions with functions representing human game

knowledge, and select the action with the greatest estimated value. Such methods
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were central to the programs that first defeated the world checkers [6] and chess [7]

champions. Despite the success of these programs, they could not be generalized to

other games. Their underlying evaluation functions were game specific. Furthermore,

the human knowledge encoded in these functions upper bounded the abilities of these

programs.

Progress towards a general game playing program was made with the development

of TD-Gammon [8]. TD-Gammon replaced the traditional handcrafted evaluation

function used in tree search with a neural network that learned to represent backgam-

mon strategy from games played against itself. The weights of the neural network

were updated via temporal-difference (TD) learning [9], a reinforcement learning (RL)

algorithm that learns to predict the future reward that could be obtained from a state

by reducing the value estimation error between temporally successive predictions.

TD-Gammon ultimately paved the way for AlphaZero [10, 11]. AlphaZero is a

model-based reinforcement learning algorithm that has achieved impressive results

in two-player, zero-sum games, reaching superhuman play in chess, shogi, and Go.

Similarly to TD-Gammon, AlphaZero synthesizes tree search, neural network eval-

uation, and reinforcement learning. AlphaZero simulates self-play matches with a

perfect model of its environment (the rules of the game) to train a neural network

that learns a value function and action selection priors over states. Each turn, the

value function and priors guide a look-ahead search that returns an improved policy.

AlphaZero trains its neural network on the self-play matches produced under the im-

proved policies, enabling it to improve its play via policy iteration. AlphaZero is now

widely regarded as the state of the art in the domain of two-player zero-sum games.

However, despite its success, AlphaZero’s training suffers from sample inefficiency, re-

quiring hundreds of millions of training samples to attain superhuman play in 19x19

Go ([11] Figure 1c).
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1.1 Contributions

AlphaZero’s sample efficiency depends upon the distribution of states encountered

and trained upon. Although AlphaZero has a perfect model of its environment, it

cannot feasibly visit and learn the optimal value for each state. Instead, AlphaZero

trains upon the states that it visits on-policy in simulated self-play matches beginning

from the initial state of the game. As in other RL algorithms [12], AlphaZero takes

exploratory actions during its self-play matches so that it can train upon a variety of

states, enabling it to make more informed action selections in the future. AlphaZero

employs simplistic exploration mechanisms during self-play training: randomly per-

turbing the learned priors guiding search and stochastically selecting actions near the

start of self-play matches. As a result, AlphaZero’s training procedure exhibits the

following limitations:

1. Since AlphaZero begins its self-play matches from the initial state of a game,

it often transitions into a terminal state before reaching and exploring states

deeper in the game tree. In addition, AlphaZero only samples actions over the

first few moves of a self-play match, further limiting exploration deeper in the

game tree.

2. AlphaZero’s exploration mechanisms cause it to train under weaker, exploratory

policies, slowing policy iteration.

3. AlphaZero only produces a single, noisy value target from a full self-play match,

slowing value training.

I hypothesize that AlphaZero could address these limitations and learn with greater

sample efficiency if it utilized a more effective search control strategy. Sutton and

Barto define search control as “the process that selects the starting states and actions

for the simulated experiences generated by the model” ([12] pg. 163). In AlphaZero,

this amounts to strategically choosing the starting state of its simulated trajectories
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rather than always beginning from the initial state of a game. I propose one such

strategy that adheres to four guiding principles. The algorithm should:

(a) Continually visit new states throughout the state space to learn their values

and a good policy.

(b) Keep track of states of interest and have the ability to reliably revisit them for

further exploration.

(c) Limit exploration’s bias in the learning targets.

(d) Produce more independent value targets to train upon.

In this thesis, I introduce Go-Exploit, a novel search control strategy for AlphaZero.

Go-Exploit takes inspiration from algorithms such as Go-Explore [13] and Exploring

Restart Distributions [14], which begin simulated episodes from previously visited

states sampled from a memory. Similarly, Go-Exploit maintains an archive of states of

interest. At the beginning of a self-play trajectory, the start state is either uniformly

sampled from the archive or is set to the initial state of the game. Two factors

influencing Go-Exploit’s performance are the definition of “states of interest” and the

structure of the archive. In this thesis, I experiment with two definitions of “states

of interest” and three archive structures.

In the games of Connect Four and 9x9 Go, I show that Go-Exploit exhibits a

greater sample efficiency than standard AlphaZero, measured in their average win

rates against reference opponents over the course of training and in the results of

their head-to-head play. I also compare and contrast Go-Exploit and KataGo [15],

a more sample efficient reimplementation of AlphaZero. Go-Exploit’s search control

strategy results in faster learning than KataGo’s. Furthermore, Go-Exploit’s sample

efficiency improves when KataGo’s other innovations are incorporated. I conclude

by showing how Go-Exploit’s adherence to the guiding principles enables it to learn

more effectively than AlphaZero.
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Chapter 2

Background

Since Go-Exploit builds off of AlphaZero, I begin by introducing the key algorithms

and concepts that underpin the AlphaZero algorithm. In this chapter, I start by

mathematically formalizing the games under consideration. Then, I describe the

tree search algorithms that have influenced AlphaZero’s search. Next, I introduce

the exploration-exploitation trade-off and explain how it has been addressed in the

bandit and search settings. After that, I present the fundamentals of reinforcement

learning and highlight how policy iteration is used as a means of obtaining stronger

policies. I conclude by introducing approaches to model-based reinforcement learn-

ing and detailing search control procedures that have been used in the tabular and

function approximation settings. In Chapter 3, I present a full review of the Alp-

haZero algorithm. To learn more about the history of algorithmic developments that

ultimately led to AlphaZero, please refer to Appendix A.

2.1 Games Under Consideration

Games are traditionally classified by properties that describe the number of players,

the observability of states, the number of actions, the stochasticity, and the way the

game proceeds over time [16]. In this thesis, I only consider classic board games

such as Connect Four and Go that are two-player, zero-sum, perfect-information,

sequential, discrete, and deterministic. Games are categorized as two-player zero-sum
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if there are two players and the reward amongst all players adds up to zero. In zero-

sum games, players are directly competing with each other for reward and victory.

For example, heads-up poker is a two-player zero-sum game because when Player A

wins $100, Player B loses $100 and the sum of the rewards is $0. Go is also a two-

player zero-sum game because when Player A wins (+1), Player B loses (-1). Games

are considered perfect-information when the state s of the game is fully observable to

all players. For example, Go is perfect-information because all of the pieces that have

been placed on the board are visible to both players. Poker, on the other hand, is an

imperfect information game because each player has cards that they can see that are

hidden from their opponent. In sequential games, players take turns selecting actions

according to some predefined order. In the games under consideration, the two players

alternate turns over a discretized time scale. The games begin from a start state s0.

At time t, the function ρ(t) returns which player’s turn it is. Player ρ(t) observes the

current state St and selects an action At, causing the game to transition into state

St+1. This process is repeated until the game transitions into a terminal state, at

which point the game ends. Games are considered discrete when the state space S

and action spaceA(s) are finite. The rules of the game determine the set of legal states

S, constrain which legal actions A(s) can be taken from a given state, and dictate

how actions change the state of the game. Finally, games are deterministic when

there is no stochasticity in the state transition function Γ(s, a) or reward function

ψ(s, a, s′). In other words, ∀s ∈ S and ∀a ∈ A(s), ∃s′ ∈ S | Pr(Γ(s, a) = s′) = 1 and

∀s ∈ S and ∀a ∈ A(s), ∃s′ ∈ S, ∃r ∈ R | Pr(ψ(s, a, s′) = r) = 1.

2.2 Tree Search

In the context of games, tree search is a term used to refer to decision-time planning

algorithms that search through a tree of possible state-action trajectories beginning

from the current state to determine the action that is taken on the given turn [12].

At time step t, player ρ(t) builds a search tree from a root node corresponding to
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Figure 2.1: The complete game tree from a root state in Tic-Tac-Toe. Edges, repre-
senting a given action a, connect a state s to their successor state Γ(s, a). The move
taken is highlighted in red for ‘x’ and in green for ‘o’ in a successor state.

state St. When unconstrained by search time and memory, tree search algorithms

often produce a complete game tree from the given root state consisting of all possible

state-action trajectories. Complete game trees can be recursively produced from the

root state St. For each legal action a ∈ A(St) that can be taken from St, there is

an edge connecting the root node to the corresponding successor state Γ(St, a). The

remainder of the search tree is recursively built the same way. Terminal states (game

ending states) form the leaf nodes of the complete game tree. The outcomes at the

terminal states can be used to determine the optimal action(s) that can be played

from the root state. In Figure 2.1, a complete game tree can be seen for a root state

in Tic-Tac-Toe.

When the state space S and action space A(s) are prohibitively big for an ex-

haustive search, heuristics are used to help narrow the search to promising states

and actions. Some tree search algorithms limit computation by simply producing a
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complete game tree to a predetermined depth d. In other tree search algorithms,

the traversal and expansion of the search tree is guided by a utility function [16].

These algorithms evaluate the utility of states at leaf nodes in the search tree. If a

state’s utility is greater than the utility of other states, it is estimated to be a more

favourable position for the current player. The utilities assigned to the leaf nodes are

backed up the search tree and are used to assign utilities to the edges (state-action

pairs) or states further up the tree. The backed up utilities help the search algorithm

focus on the most promising parts of the search tree. Ultimately, the utilities of the

actions that can be taken from the root node determine the action that is selected

from state St at time t.

2.3 Minimax Search

Minimax Search is a tree search algorithm used to select actions in two-player zero-

sum games. Minimax Search assumes that both players are playing optimally. Ac-

cordingly, it is assumed that each player will select the action with maximum utility

on their turn. Given the opponent will take the action with maximum utility, the

best a player can do is take the action that minimizes the maximum utility available

to the opponent. This is called the Minimax Principle [17] and is at the heart of

Minimax Search.

Minimax Search builds a complete search tree from the current state St to a prede-

termined depth d. The nodes that correspond to the current player’s turn are labelled

“Max” nodes and the nodes that correspond to the opponent’s turn are labelled “Min”

nodes. Thus, “Max” nodes and “Min” nodes alternate at each depth of the search

tree. Once the search tree is built, the Minimax Search algorithm works its way from

the leaf nodes back up to the root node to determine the action taken by the current

player. If a leaf node is a terminal state, it is assigned a utility corresponding to the

outcome of the game for player ρ(t). Wins are assigned a utility of +∞, losses are

assigned a utility of −∞, and draws are assigned a utility of 0. If a leaf node is not
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Figure 2.2: Minimax Search from a root state in Tic-Tac-Toe. Each of the leaf nodes
evaluate to wins (+∞) or losses (−∞). ‘Max’ nodes take on the utility of the child
with maximum utility. ‘Min’ nodes take on the utility of the child with minimum
utility. Upon the completion of the search, the root state has a utility of (+∞),
meaning that the state is a proven win under perfect play.

a terminal state, an evaluation function is used to determine its utility. Once each

of a node’s children has been assigned a utility, the given node’s Minimax value can

be determined. If the node is a “Max” node, the node takes the value of the child

with the maximum utility. This implements the notion that the current player must

choose the action with maximum utility in order to play optimally. If the node is a

“Min” node, it takes the value of the child with the minimum utility. This imple-

ments the notion that the opponent can only play optimally if it takes the action

minimizing the maximum utility available to the current player. Once the root node

has been assigned a utility, the current player’s optimal action is to take an action

corresponding to the edge leading to the child with the same utility. An example of

Minimax Search can be seen in Figure 2.2. In this example, all of the leaf nodes are

terminal states whose outcomes are wins or losses. These values are backed up the
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search tree until, ultimately, the root node is assigned a utility of +∞. This means

the root state is a proven win and the optimal action is to place an ‘x’ in the bottom

right cell of the Tic-Tac-Toe board.

2.4 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [18–20] is also a decision-time planning algorithm

used to select actions in sequential decision problems with a finite action space. MCTS

is a rollout algorithm, meaning that it relies upon sampled trajectories from the

root state St to estimate the average sum of rewards, Q(s, a), that can be obtained

from each of the state-action pairs (s, a) within the search tree. Q(s, a), also known

as the action value of a state-action pair, usually factors into the action selection,

encouraging the search to focus on the most promising state-action pairs. With

more trajectories passing through the most promising state-action pairs, MCTS can

better estimate their action values, allowing it to select the optimal action with more

reliability.

MCTS incrementally builds out a non-uniformly expanded search tree over a finite

number of iterations. The algorithm begins with a root node corresponding to the

current state St. Each iteration of MCTS consists of four steps: selection, expansion,

simulation, and backpropagation. In the selection step, MCTS begins a trajectory

from the root node. Until a leaf state is encountered, MCTS selects an action using

a tree policy that usually favours the selection of actions with large action values

Q(s, a). Once an unvisited action is selected from a leaf node sL, the expansion step

takes place. In the expansion step, the node sL and the selected action a are passed

to the transition function Γ(sL, a) = s′ and the successor state s′ is added to the

search tree as a child of sL. Then, the simulation step occurs. The remainder of the

trajectory is played out starting from the expanded node s′ using a rollout policy

(often random action selection). Once the trajectory reaches a terminal state, the

backpropagation step occurs. MCTS backs up the result of the simulation to the

10



Figure 2.3: The four steps of MCTS: selection, expansion, simulation, and backprop-
agation. In the selection step, actions are selected with a tree policy (red edges)
until an unvisited action is traversed. In the expansion step, the successor state s’ is
added to the search tree. In the simulation step, the remainder of the trajectory is
simulated from s’ using a rollout policy (blue edges). In the backpropagation step,
the simulation result r is backed up to the edges that were traversed within the search
tree and is used to update their action values.

state-action pairs that were traversed within the search tree, updating their action

values Q(s, a). Once the final iteration of MCTS is complete, the algorithm often

selects the action from the root node that was either most visited or had the largest

action value. The four steps of MCTS are visually broken down in Figure 2.3.

2.5 Exploration-Exploitation Trade-Off

The effectiveness of Monte Carlo Tree Search depends upon its ability to accurately

estimate the action values of the legal actions that can be taken from the root state.

Simply selecting the action with the largest action value Q(s, a) does not guarantee

that the optimal action will be taken. If the uncertainties on the action value estimates

are too large, it is quite probable that the action with the largest action value will

not be the optimal action. In order to reduce the uncertainty of a state-action pair’s
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action value estimate, the search must continue to traverse the state-action pair.

Each time a state-action pair is traversed, its action value estimate is averaged over

a larger sample size, reducing the uncertainty in the estimate. In MCTS, however,

the uncertainties of the action values cannot be reduced to arbitrarily small values

because MCTS operates over a finite number of iterations. MCTS’ challenge is to

carefully distribute the finite number of trajectories over the state-action pairs so

that by the end, the uncertainties of the root state’s action values are small enough

that the action with the largest action value is indeed the optimal action with high

probability. This challenge of intelligently distributing the trajectories amongst the

state-action pairs is called the exploration-exploitation trade-off. In MCTS, the tree

policy is responsible for navigating this exploration-exploitation trade-off. The tree

policy must ensure that at a given state, each action is continuously traversed until its

respective uncertainty is small enough that it can be confidently ruled out of having

the largest action value.

Implementing tree policies which take into account the exploration-exploitation

trade-off is easy, however, implementing tree policies which establish probabilistic

guarantees for selecting the optimal action is much more difficult. In the next sec-

tion, I introduce the multi-armed bandit, a simple sequential decision problem also

requiring mastery of the exploration-exploitation trade-off. After outlining the multi-

armed bandit problem, I present bandit algorithms that have influenced how search

algorithms address the exploration-exploitation trade-off. I then introduce UCT, a

variant of MCTS whose tree policy is inspired by a popular bandit algorithm called

UCB1 and that bounds the failure probability of returning a suboptimal action upon

the completion of the algorithm.

2.6 Multi-Armed Bandit Problem

Perhaps the simplest form of sequential decision making under uncertainty is the

multi-armed bandit problem [21–24]. The multi-armed bandit is a term used to
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describe a slot machine with multiple levers (arms). Formally, a k-armed stochastic

stationary bandit consists of k reward distributions Pa : a ∈ 1, ..., k, each with a

mean reward µa, that are unknown to an agent. The multi-armed bandit problem

operates sequentially over a fixed horizon of n rounds. Each round t ∈ 1, ..., n, the

agent selects an action At. A reward Xt ∼ PAt is then sampled from arm At’s reward

distribution and returned to the agent. The rewards Xt that are sampled over the n

rounds have no dependence upon the history Ht−1 = (A1, X1, ..., At−1, Xt−1) of actions

and observed rewards. In stochastic stationary bandits, the sequence Xi,1, Xi,2, . . .

of rewards drawn from an arm i are independent and identically distributed. When

selecting an action each round, the agent can only make use of the observed history

Ht−1 to inform its decision. The agent’s policy πt in round t defines a probability

distribution over the legal actions conditioned on the history Ht−1: πt(·|Ht−1).

Over the n rounds, the agent’s goal is to maximize its total reward Wn =
∑︁n

t=1Xt.

A related performance measure that is traditionally used to evaluate an agent is the

regret. Broadly, an agent’s regret relative to a policy π is the difference between the

expected cumulative reward by policy π over n rounds and the expected cumulative

reward by the agent over the n rounds. The worst-case regret is measured relative to

the optimal policy that pulls the optimal arm each round. The optimal arm is the arm

whose reward distribution P∗ has the largest mean payoff µ∗. Thus, the worst-case

regret can be stated as Rn = nµ∗ − E[
∑︁n

t=1Xt]. Minimizing this worst-case regret is

equivalent to maximizing the cumulative reward Wn.

In order to minimize the worst-case cumulative regret, an agent must manage the

exploration-exploitation trade-off. Minimizing the worst-case regret requires pulling

the optimal arm as frequently as possible. Since the agent has no knowledge of

the reward distributions Pa, it must estimate which of the arms is optimal. Agents

estimate the mean payoff for each arm by computing the sample mean of the observed

rewards: µ̂i =
1

N(i)

∑︁N(i)
t=1 Xit, whereN(i) is the number of times arm i has been pulled.

Since the agent’s goal is to maximize its cumulative reward over the n trials, it must
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frequently pull the arm it estimates to have the largest mean payoff (exploitation).

However, in order to accurately determine the optimal arm, the agent must pull

each arm multiple times and sufficiently reduce the uncertainties in their sample

means (exploration). This exploration-exploitation trade-off in the bandit setting

resembles the exploration-exploitation trade-off described in the context of MCTS. In

MCTS, however, the exploration-exploitation trade-off is concerned with the accurate

estimation of action values Q(s, a) and the identification of promising actions from a

root node.

A primary concern in the study of bandits is how an agent’s regret grows as the

horizon, n, increases. Good agents achieve sublinear regret, meaning that their regret

Rn respects the limit limn→∞
Rn

n
= 0. Lai and Robbins [25] proved that the best regret

that can be achieved by an agent is O(log n). Agents that achieve this logarithmic

regret bound are said to have solved the exploration-exploitation trade-off.

2.7 UCB

The Upper Confidence Bound algorithm (UCB) [24–29] addresses the exploration-

exploitation dilemma by making use of the optimism in the face of uncertainty prin-

ciple. Under this principle, the agent pulls the arm with the greatest upper confidence

bound each round. The upper confidence bound overestimates the mean payoff µi by

summing the estimated mean payoff µ̂i and the agent’s uncertainty in its estimate.

As the agent obtains more reward samples for each arm, its average reward estimates

improve in accuracy and their uncertainties decrease, causing the upper confidence

bounds to compresses towards the true mean rewards µi. Once a suboptimal arm’s

upper confidence bound falls below the optimal arm’s mean reward µ∗, it is no longer

pulled because in theory, the optimal arm’s upper confidence bound should overesti-

mate µ∗. This phenomenon limits the number of times suboptimal arms are pulled,

allowing the UCB algorithm to achieve the optimal logarithmic regret bound.
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The UCB algorithm uses the quantity µ̂i+
√︂

2 log(1/δ)
N(i)

as an upper confidence bound

[24]. The constant δ is called the confidence level and it establishes the probability

with which the upper confidence bound is an overestimate of µi. N(i) represents

the number of times arm i has been pulled prior to the current trial. The square

root term is known as the exploration bonus or confidence width and measures the

uncertainty in the average reward estimate. This leaves us with the UCB Algorithm

found in Algorithm 1.

Algorithm 1 UCB

Parameters: The number of arms k, the horizon n, and confidence level
δ.

1: for t ∈ 1, ..., n do
2: At = argmaxiUCBi(δ).
3: Pull arm At and receive reward Xt.
4: Update µ̂At

with Xt.
5: N(At) = N(At) + 1
6: end for

UCBi(δ) =

{︄
∞ if N(i) = 0

µ̂i +
√︂

2 log(1/δ)
N(i)

otherwise

Looking at UCBi(δ), it’s easy to see how UCB navigates the exploration-exploitation

dilemma. If an arm’s average reward estimate µ̂i is significantly larger than the av-

erage reward estimates of other arms, then its UCB value will also be larger, leading

the agent to exploitatively pull this arm. If an arm hasn’t been pulled very much, its

N(i) value will be smaller compared to other arms, causing its exploration bonus to

be larger. This leads the algorithm to explore arms that are perceived to be subop-

timal if their true mean reward could reasonably be larger than the mean reward of

the arm currently estimated to be optimal.

2.8 UCB1

A well-known variant of UCB is the UCB1 algorithm presented by Auer et al. [29].

Unlike the UCB algorithm introduced above, UCB1 assumes that the rewards Xt are
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bounded to [0, 1]. Furthermore, UCB1 is not defined for a predetermined horizon

n. In the UCB algorithm presented earlier, the confidence level δ is usually set to

1
n2 to achieve the tightest regret guarantees, causing the upper confidence bound to

be a function of n. The upper confidence bound employed in UCB1, however, does

not depend upon a horizon: At = argmaxi µ̂i +
√︂

2 log(t)
N(i)

. Instead, it depends upon

the current round number t. Not knowing the horizon ahead of time makes it more

difficult for the agent to manage the exploration-exploitation tradeoff, causing the

expected regret of UCB1 to be larger than that of the UCB algorithm presented

earlier. However, UCB1 still preserves the ideal O(log(n)) regret bound.

2.9 PUCB

The Predictor + UCB algorithm (PUCB) [30] incorporates contextual information

into UCB1 to bias action selection towards arms that are predicted to be promis-

ing. PUCB solves the multi-armed bandit problem with episode context, which differs

slightly from the stochastic stationary multi-armed bandit introduced earlier. The

multi-armed bandit problem with episode context is broken up into episodes con-

sisting of n trials. The bandit consists of k arms, each with an unknown reward

distribution whose rewards are bounded to [0, 1]. At the beginning of each episode,

contextual information z is obtained that remains fixed throughout the episode. This

differs from contextual bandits which receive a new context each trial. A predictor

maps this context z to a vector of weights M, where Mi > 0 and
∑︁k

i=1Mi = 1. For

example, a predictor could map the context z to a discrete probability distribution

over the actions, where the probabilities represent the likelihood of an action being

optimal. An arm’s contextual weight Mi is used to compute a penalty m(t, i) that is

combined with UCB1 to obtain PUCB action selection:

At = argmax
i
µ̂i(t) + c(t, i)−m(t, i)
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µ̂i(t) =

{︄
1

N(i)

∑︁N(i)
j=1 Xi,j if N(i) > 0

1 otherwise

c(t, i) =

{︄√︂
3 log(t)
2N(i)

if N(i) > 0

0 otherwise

m(t, i) =

{︄
2
Mi

√︂
log(t)

t
if t > 1

2
Mi

otherwise

The contextual additive penalty m(t, i) more substantially penalizes arms whose

contextual weight Mi is smaller. The algorithm gains its effectiveness when small

contextual weightsMi are assigned to arms with large suboptimality gaps ∆i = µ∗−µi

and the optimal arm A∗ is given a large contextual weight M∗.

Unlike UCB1, PUCB does not pull each arm at the beginning of the algorithm.

Initially, when N(i) = 0 for each arm, c(t, i) = 0 so the action selection solely depends

upon the contextual weights M. The contextual penalty initially encourages PUCB

to pull the arms that are predicted to be optimal but if their sample means do not

validate the prediction, PUCB explores other arms and ultimately finds the optimal

arm with high probability.

2.10 UCT

The Upper Confidence Bounds for Trees algorithm (UCT) [20], is a popular variant

of Monte Carlo Tree Search that balances exploration and exploitation. Recognizing

the similarity of the exploration-exploitation trade-offs present in MCTS and multi-

armed bandits, Kocsis and Szepesvari incorporated UCB1 action selection into the

tree policy of MCTS so that the search algorithm could manage the exploration-

exploitation trade-off and return the optimal action with high probability. In UCT,

the agent models each action selection within the search tree as a separate stochastic

multi-armed bandit problem. The legal actions that can be taken from a given node

correspond to the arms of the bandit and the sum of rewards obtained in the remainder

of the trajectory corresponds to the selected action’s payoff. As MCTS progresses,
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the action values of state-action pairs in the search tree are continuously updated.

Action values usually factor into the tree policy and affect the action selection during

search. If the sequence of actions taken from a given state-action pair changes over

time, its payoff distribution also changes. Thus, UCB1’s assumption of stationary

reward distributions is violated. To deal with drifting reward distributions, UCT

modifies UCB1 as follows:

UCT(s, a) =

{︄
∞ if N(s, a) = 0

Q(s, a) + 2Cp

√︂
log(N(s))
N(s,a)

otherwise

where N(s, a) is the number of times state-action pair (s, a) has been traversed, N(s)

is the number of times state s has been visited, and Cp is a constant greater than 0.

When Cp is set appropriately, O(log(n)) regret in the number of MCTS iterations is

achieved.

2.11 Reinforcement Learning

In addition to tree search, reinforcement learning [12] has also emerged as an effective

approach to AI in games. Reinforcement learning is a term used to describe algorithms

that learn to solve sequential decision problems under uncertainty from interaction

with their environments. The sequential decision problems that RL solves are different

from the multi-armed bandit problem. The multi-armed bandit has a fixed set of

actions with stationary reward distributions. In RL, the set of actions available to

the learner (called the ‘agent’) and their corresponding reward distributions depend

upon the state of the environment. In order to maximize its sum of rewards over

time, the agent must consider how the available actions affect the immediate reward

as well as the reward that is available from subsequent states.

Reinforcement learning models discrete-time sequential decision problems in fully

observable environments as Markov Decision Processes (MDPs) [31]. MDPs consist of

an agent that interacts with its environment over discretized time steps (Figure 2.4).

At each time step t = 1, 2, 3, . . . , the agent observes the current state or configuration
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Figure 2.4: The interaction between an agent and its environment in an MDP.

of the environment St ∈ S. Taking the current state St into account, the agent selects

an action At ∈ A(St). As a consequence of its action, the environment responds by

transitioning into state St+1 and returning a reward Rt+1 ∈ R to the agent at the

next time step. When the set of states S, state-dependent set of actions A(s), and

set of rewards R are finite, all of the dynamics of the MDP can be expressed with the

discrete probability distribution p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a},

for all s′, s ∈ S, r ∈ R, and a ∈ A(s). The discrete probability distribution p(s′, r|s, a)

is also known as a perfect model of the environment and is available to the agent in

some RL problems.

Reinforcement learning agents learn how to solve predetermined tasks via the re-

ward signal that is transmitted from the environment to the agent at each time step.

In each RL problem, the agent’s goal is to maximize its cumulative discounted sum

of rewards over time. The return Gt = Rt+1 + γRt+2 + · + γT−1RT is defined as the

discounted sum of future rewards obtained after time step t. The discount factor
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0 ≤ γ ≤ 1 indicates how the agent should balance immediate versus future reward.

When γ is small, the agent prioritizes immediate reward. Time step T refers to the

final time step of the sequential decision problem. In the context of board games,

time step T represents a time step where the game transitions into a terminal state.

Using this definition of the return, the agent’s goal is formalized as maximizing the

expected return E[Gt].

Reinforcement learning algorithms usually make use of value functions that esti-

mate the expected return to be gained from being in a given state s or state-action pair

(s, a). However, the expected return to be gained depends upon the actions selected

by the agent in each state. An agent’s policy π(a|s) defines a discrete probability

distribution over the legal actions A(s) in a given state s. In other words, the policy

π defines the agent’s behaviour or strategy. Reinforcement learning algorithms define

how the agent’s policy π changes as a function of the observed (St, At, Rt+1, St+1) tu-

ples. An agent’s value function under policy π at state s is vπ(s) = Eπ[Gt|St = s] for

all s ∈ S. At terminal states, the value function evaluates to 0 because there are no fu-

ture rewards to be gained. The action value function qπ(s, a) = Eπ[Gt|St = s, At = a]

represents the expected return to be gained from taking action a in state s and then

subsequently following policy π. In problems with large state spaces, it is often nec-

essary to represent the value functions as parameterized functions. The approximate

value function v̂π(s,θ) estimates vπ(s) and the approximate action value function

q̂π(s, a,θ) estimates qπ(s, a). The parameters θ of the approximate value functions

are updated in response to the observed rewards.

Solving reinforcement learning problems involves finding policies that maximize

the expected return in each state. Value functions can be used to determine such

policies. A policy π is said to be better than or equal to a policy π′ if vπ(s) ≥ vπ′(s)

for all s ∈ S. Thus, an optimal policy π∗ is better than or equal to all other policies.

Value functions can be expressed in terms of the optimal policy as follows:
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v∗(s) = maxπvπ(s) for all s ∈ S

q∗(s, a) = maxπqπ(s, a)

v∗(s) = maxa∈A(s)qπ∗(s, a)

The last equation demonstrates how the optimal policy can be directly determined

from the optimal action value function q∗(s, a). By greedily selecting the action a

that maximizes q∗(s, a) in each state s, the agent follows the optimal policy.

To obtain optimal policies, many RL algorithms perform a process called pol-

icy iteration. Policy iteration consists of sequential steps of policy evaluation and

policy improvement. Policy evaluation seeks to make the value function consistent

with the current policy. To achieve this, the agent traverses the state space and

updates its value function at the encountered states using rewards observed under

the current policy or expected returns computed using the current policy. The pol-

icy improvement theorem guarantees that an improved policy π′ will be obtained if

the agent greedily selects actions which maximize the updated action value function:

π′(s) = argmaxaqπ(s, a). In the case where the policy π(a|s) is stochastic, policy im-

provement is achieved by placing increased probability on the actions that maximize

qπ(s, a).

2.11.1 Model-Based Reinforcement Learning

In model-based reinforcement learning, the agent makes use of a model that mim-

ics the dynamics of the environment. Distribution models take a state-action pair

as input and return a prediction of the probabilities of each possible next state and

reward. Sample models also take a state-action pair as input but return a next state

and reward sampled from the predicted underlying dynamics distribution of the en-

vironment. In some model-based RL problems, a perfect model of the environment

is given to the agent. However, in other model-based RL problems, the agent learns
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a model from its experienced interactions with the environment. In either setting,

the agent uses the model for planning. Sutton and Barto define planning as “any

computational process that takes a model as input and produces or improves a pol-

icy for interacting with the modeled environment” ([12] pg. 160). This creates the

subtle distinction between planning, which updates value functions using simulated

experience generated by a model, and learning, which updates value functions using

real experience obtained from interactions with the environment. Planning agents

typically perform significantly more planning updates than learning updates because

generating simulated experience is usually much faster than interacting with the en-

vironment.

Planning algorithms vary by the type of model they use and in their applicabil-

ity to certain problems. For example, Dynamic Programming (DP) algorithms [32,

33] utilize perfect distribution models and are only feasible in smaller MDPs. DP

algorithms represent value functions as tables, with one entry for each state in the

environment. Policy evaluation is achieved by making systematic sweeps of the state

space and updating the value of each state using the Bellman equation for vπ as an

update rule:

vk+1(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γvk(s
′)]

Iterative policy evaluation converges to vπ in the limit so long as each state is updated

an infinite number of times [34, 35]. However, in practice, iterative policy evaluation

is terminated once the maximum change in value over all states falls below some

threshold. Policy improvement is achieved by acting greedily with respect to the

value function estimate vk:

π′(s) = argmax
a
qπ(s, a) = argmax

a

∑︂
s′,r

p(s′, r|s, a)[r + γvk(s
′)]

Policy iteration [33] interleaves sweeps of policy evaluation and policy improvement

in order to produce successively improved policies that ultimately converge to the

optimal policy in the limit.
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Despite the convergence guarantees of policy iteration in the DP setting, it is not a

very practical algorithm. Policy evaluation steps require multiple sweeps of the state

space to reduce the changes in value estimates below some threshold. Furthermore,

policy improvement steps require one sweep of the state space to identify the greedy

action for each state. Value Iteration [32] is an algorithm that improves the efficiency

of policy iteration by combining policy evaluation and policy improvement. Value

Iteration uses the update rule:

vk+1(s) = max
a

∑︂
s′,r

p(s′, r|s, a)[r + γvk(s
′)]

where the action a that maximizes the expression is saved for the improved policy.

Nevertheless, Value Iteration still suffers from the same pitfalls of repeated exhaustive

sweeps of the state space.

Asynchronous DP algorithms [35–37] address this problem by non-uniformly dis-

tributing state value updates over the state space. Systematic sweeps of the state

space inherently allocate the same number of value updates to each state. This

causes value updates to be distributed equally across states that are relevant and

irrelevant to optimal policies. Furthermore, systematic sweeps do not sequence value

updates in an order that maximizes the propagation of values. Asynchronous DP

algorithms update state values in any order and can allocate more value updates to

the most pertinent states in the MDP. This significantly improves sample efficiency in

the search for improved policies. However, in order to converge to an optimal policy,

DP algorithms must still update each state infinitely many times.

A popular asynchronous DP algorithm is Real-Time Dynamic Programming (RTDP)

[38]. RTDP distributes Value Iteration updates along sampled on-policy trajectories.

This enables the agent to more accurately evaluate the states arising under its current

policy and to subsequently improve its action selection from these states. However,

only updating states along on-policy trajectories causes the same set of states to be

repeatedly updated. Once the values of these states converge, it leads to wasted
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computation.

Dyna [39] is another popular planning framework used in RL problems in which

a perfect model of the environment is unavailable. Dyna agents interact with their

environment and use the real experience to update their value function and model.

Dyna employs a tabular model that assumes deterministic transitions. When a state-

action pair (St, At) is experienced in the environment, the resulting next state St+1

and reward Rt+1 are associated with (St, At) in the tabular model. For every environ-

mental interaction, a Dyna agent typically performs multiple planning updates. Each

planning update involves sampling an experienced transition (St, At, Rt+1, St+1) from

the tabular model uniformly at random. This tuple provides enough information to

perform a one-step bootstrapped planning update to the value function.

2.11.2 Search Control

Synchronous DP control algorithms and standard Dyna suffer from similar drawbacks.

As previously mentioned, synchronous DP algorithms perform systematic sweeps of

the state space, wasting computation on states that are irrelevant to optimal be-

haviour. Similarly, for its planning updates, Dyna samples experienced transitions

from its tabular model uniformly at random. This procedure assigns equal impor-

tance to all experienced transitions, which can be an inefficient use of computational

resources. Planning efficiency can be substantially improved if planning updates are

sequenced and/or distributed amongst states in a more intelligent way. One way of

improving the sample efficiency of planning is through search control. Sutton and

Barto define the term search control as the process that selects the starting state or

state-action pair for planning [12]. While search control can greatly improve sample

efficiency, it remains an under-researched topic in the RL community.

A simple example of search control in the episodic, tabular RL setting is exploring

starts [12]. Under exploring starts, a planning algorithm begins its simulated episodes

from randomly sampled state-action pairs. Then, the remainder of the episode is
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traditionally produced on-policy. This allows the planning algorithm to concentrate

its updates on the relevant state-action pairs appearing under its current policy, while

still updating every single state-action pair infinitely many times in the limit. This

enables convergence to the optimal value function and policy. However, exploring

starts suffer from a similar problem to the DP algorithms that employ exhaustive

sweeps - they treat every state-action pair equally, causing sample inefficiency.

Most research conducted in search control has focused on using visited states or

predecessor states for planning. Perhaps the most popular form of search control is

Prioritized Sweeping [40, 41]. Prioritized Sweeping is commonly used in the tabular

RL setting and assumes that bootstrapped planning updates are performed to update

the value function. Prioritized Sweeping maintains a priority queue of state-action

pairs that is sorted by the estimated changes in value to the given state-action pairs.

When a planning update is performed, the highest priority state-action pair is popped

from the queue and a bootstrapped update is performed at the given state-action pair.

Given the assumption of a tabular value function and bootstrapping, when a state-

action pair (S,A)’s value is updated, it only affects the values of the state-action pairs

that transition into (S,A). Prioritized Sweeping takes this into account by adding

the state-action pairs (S̄, Ā), which transition into (S,A), to the priority queue with

their respective estimated changes in value. Prioritized Sweeping can, therefore, be

seen as a “backward focusing” algorithm as it focuses its planning updates on the

predecessors of states that have been updated. Prioritizing planning updates on

state-action pairs with large estimated changes in value enables values to efficiently

propagate and for stronger policies to be efficiently learned. Prioritized Sweeping has

been extended to linear function approximation [42] but no extensions to non-linear

function approximation currently exist.

In the non-linear function approximation setting, search control algorithms often

fall into two categories. The first category performs planning updates at states along

hill climbing trajectories of the value function. This approach was first introduced by

25



Pan et al. [43] and was later extended to focus planning updates at states in high-

frequency regions of the value function [44]. Performing planning updates along these

trajectories effectively propagates value from high-value regions and concentrates up-

dates in the most relevant parts of the MDP. Concentrating planning updates in

high-frequency regions of the value function improves sample efficiency because high

frequency regions of functions require more samples to accurately estimate.

The second category of search control algorithms in the non-linear function approx-

imation setting take inspiration from experience replay [45, 46]. Experience replay

maintains a circular buffer of the most recently experienced transitions. During train-

ing, batches of transitions are uniformly sampled from the experience replay buffer

and are used to update the agent’s value function. Experience replay helps improve

sample efficiency because it enables an agent to train upon infrequently visited transi-

tions multiple times. Experience replay also helps stabilize the learning process. The

stochastic gradient descent (SGD) algorithms often used to optimize a neural net-

work’s parameters assume that the data trained upon is i.i.d [46–48]. Training upon

data that is not i.i.d can slow or destabilize the learning process. In reinforcement

learning, states arising within a given trajectory are highly correlated, and therefore,

violate this i.i.d assumption. Uniformly sampling batches of transitions from the ex-

perience replay buffer enables the value function to be trained upon data that is more

i.i.d, stabilizing the learning process.

Tavakoli et al. took inspiration from experience replay when developing exploring

restart distributions [14]. Exploring restart distributions maintain a restart memory

of visited states and combine it with the environment’s initial state distribution to

form the starting state distribution in the simulated environment. The initial state of

a simulated episode is sampled from this exploring restart distribution. Tavakoli et

al. experimented with three different versions of exploring restart distributions. Of

relevance are Uniform Restart, which involves uniformly sampling the initial state of

an episode from the circular restart memory and Prioritized Restart, which uses the
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TD error of experienced transitions to assign priorities to experienced states in the

restart memory.

Go-Explore [13] can also be interpreted as a search control algorithm inspired by

experience replay. Go-Explore addresses two shortcomings experienced by RL algo-

rithms in challenging exploration environments. The first shortcoming, called detach-

ment, refers to agents forgetting how to return to previously visited promising states.

The second shortcoming, known as derailment, refers to an agent’s exploration mecha-

nisms interfering with its ability to return to a promising state. Go-Explore addresses

these problems by maintaining an archive of previously visited states weighted by the

scores of their associated trajectories. At the beginning of each episode, Go-Explore

samples a state from its archive, loads it into its simulator, takes exploratory actions

from this state to identify higher scoring trajectories, and adds the newly encountered

states to its archive. The archive prevents Go-Explore from forgetting about previ-

ously visited states and loading sampled states in the simulator allows Go-Explore

to reliably return to and explore from promising states. Go-Explore then trains a

policy either by learning from demonstrations [49] or via self-imitation learning [50]

on the highest scoring trajectories. With this approach, Go-Explore achieved state of

the art results in single agent Atari games [51] known to be challenging exploration

problems.
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Chapter 3

AlphaZero

AlphaZero [11] has established itself as the benchmark algorithm in the domain of

two-player zero-sum games. Knowing only the rules of a game and beginning from

random play, AlphaZero has demonstrated the ability to achieve superhuman play

in chess, shogi, and Go using the same general algorithm with only hyperparamter

tuning. In this chapter, I begin by giving a technical overview of the AlphaZero

algorithm. First, I present the neural network that is used to represent learned game

knowledge. Then, I describe the look-ahead search that is performed each turn and

explain how the neural network guides the search. Afterward, I discuss how training

on the improved policies returned by search and on the self-play trajectories produced

under these policies enables AlphaZero to improve its play via policy iteration. Once

the technical overview is complete, I highlight how exploration is incorporated into

AlphaZero and discuss the limitations of AlphaZero’s training procedure.

3.1 Neural Network

AlphaZero represents its learned game knowledge with a deep residual neural network

consisting of convolutional layers. AlphaZero uses this neural network to bias its look-

ahead search towards promising actions and to evaluate states in the search tree.

Using a neural network as the search’s evaluation function enables AlphaZero to be

easily applied to many games. The parameters that make up AlphaZero’s neural
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network are not game-specific and can be trained to represent complex non-linear

relationships of the input features. As long as the board of a two-player zero-sum

game has a grid shape, AlphaZero can take the same steps to produce a feature vector

and perform inference.

AlphaZero’s neural network fθ(s) = (p, v) is modeled after the deep convolutional

neural networks that are state of the art in image recognition. The input to the neural

network is a feature vector x representing a game state s and enough history to capture

the full observability of the state. States are represented as an N ×N × (2MT + L)

stack of gridded binary feature planes. Each feature plane is an N × N grid that

mirrors the N ×N game board. The first 2MT feature planes describe the positions

of each of the M types of pieces over the T previous time steps for the two players.

The final L feature planes represent additional information such as which colour’s

turn it is. This representation is convenient because the positions on the game board

are easily mapped to the same positions on the feature planes. Furthermore, this

gridded representation suits the gridded computation of the convolutional layers of

the neural network.

AlphaZero’s neural network fθ consists of a ‘torso’ that then branches into a ‘pol-

icy head’ and a ‘value head’ (Figure 3.1). The torso is composed of a convolutional

block followed by multiple residual blocks. The convolutional block consists of a

convolutional layer followed by batch normalization and a rectifier nonlinearity acti-

vation function. The residual blocks consist of two sequential convolutional blocks.

However, a skip connection adds the input of the residual block to the output of the

second convolutional block’s batch normalization. The policy head is composed of

a convolutional block followed by a fully connected layer that outputs a vector of

logits over the actions. To produce the vector of action probabilities p over the legal

actions, illegal moves are masked and then a Softmax is applied to the remaining

vector of logit probabilities. The elements pa = Pr(a|s) of p describe the probability

of selecting action a from state s and estimate the policy π that would be returned by
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Figure 3.1: In AlphaZero, a game state s is transformed into a stack of binary feature
planes prior to being input into the neural network fθ. fθ outputs a vector of action
probabilities p from its policy head and a value estimate v for input state s.

search at the input state s. The value head consists of a convolutional block followed

by a fully connected layer, a rectifier nonlinearity activation function, another fully

connected layer, and a tanh activation function which outputs a scalar v in the range

[−1, 1]. The value estimate v estimates the current player’s expected outcome of the

game from state s under AlphaZero’s current policy.

3.2 Search

AlphaZero is a Monte Carlo planning algorithm that progressively improves its play by

training upon complete simulated self-play matches produced on-policy. These self-

play matches begin from the initial state of a game s0. On each turn t, AlphaZero

conducts a search from the current state st in order to determine the action at that

is played. AlphaZero employs a variant of Monte Carlo Tree Search. Nodes in the

search tree represent game states and each node is initialized with a set of edges
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Figure 3.2: AlphaZero’s variation of Monte Carlo Tree Search

corresponding to the legal actions that can be taken from the given state. Each edge

stores a set of statistics {N(s, a), Q(s, a), P (s, a)} that factor into the traversal of the

search tree. N(s, a) is the number of times (s, a) has been traversed during the given

search. Q(s, a) is the backed up action value estimate of (s, a). P (s, a) is the prior

probability of selecting action a from state s.

When AlphaZero begins a search, it initializes the search tree with a root node

corresponding to the current game state st. Each search iteration, the search tree is

traversed from the root node using the action selection rule:

a = argmax
a
Q(s, a) + cpucbP (s, a)

√︁
N(s)

1 +N(s, a)

where N(s) is the number of times state s has been visited during the search and

cpucb > 0 is an exploration constant (Selection step in Figure 3.2). Similarly to UCT,

this action selection rule forms an upper confidence bound on the action value of

a state-action pair. This action selection rule also takes inspiration from PUCB by

incorporating predictions that bias the action selection. In the original PUCB algo-

rithm, a context is mapped to a vector of weights M :
∑︁

iMi = 1. The contextual

weights Mi are used to form additive penalties that bias the action selection towards
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actions with larger contextual weights. In AlphaZero, the neural network fθ is used

as a predictor that biases action selection during search. The components pa of p cor-

respond to the weightsMi but are included in the exploration bonus term rather than

a separate term. This action selection rule encourages the search to traverse state-

action pairs with large action value estimates Q(s, a), large priors P (s, a), and few

search visits N(s, a), with cpucb controlling the level of exploration vs. exploitation.

Once the search traverses a state-action pair (sL, a) with N(sL, a) = 0, the suc-

cessor state s′ is added as a child of sL and fθ runs inference on the new state:

fθ(s
′) = (p, v) (Expansion and Evaluation steps in Figure 3.2). The edge statistics

of the legal actions that can be taken from s′ are initialized as follows: {N(s′, a) =

0, Q(s′, a) = 0, P (s′, a) = pa}, where pa is the component of p corresponding to ac-

tion a. Afterward, the value estimate v is backed up to the state-action pairs that

were traversed in the given iteration to update their action values Q(s, a) (Backprop-

agation step in Figure 3.2). Their respective edge statistics are updated as follows:

{N(s, a) = N(s, a) + 1, Q(s, a) = Q(s, a) + 1
N(s,a)

(v −Q(s, a))}. Q(s, a) averages the

value estimates v of the states in the subtree of (s, a) and estimates the expected

outcome from (s, a) based on the value estimates of the likeliest successor states.

Once the final search iteration is complete, the search returns a policy πt that is

used to select the action at that is played from state st. The components of πt are

proportional to the search visits over the root state’s actions: πt(a|st) = N(st,a)
1
τ∑︁

b N(st,b)
1
τ
.

The temperature hyperparameter τ > 0 helps control the level of exploration vs.

exploitation in the produced policies πt. In the first k moves of a self-play match,

action at is sampled from πt. After the first k moves, AlphaZero aims to be more

exploitative and plays the action that was most visited during search.

3.3 Policy Iteration

When a self-play match reaches a terminal state sT with outcome z, AlphaZero pro-

duces training samples (st, πt, z) that are added to an experience replay buffer B with
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fixed size |B|. Once bstep new training samples have been added to the replay buffer,

bbatch training tuples are uniformly sampled to update fθ. For a given training sample

(st, πt, z), the neural network uses the policy πt as a learning target for the policy

head and the self-play match outcome z as a learning target for the value head at

the input st. The neural network’s parameters θ are updated via stochastic gradient

descent on the loss function

loss = (z − v)2 − πT
t log(p) + c||θ||2

where c is a regularization constant. The first term of the loss function is the squared

error between the self-play game outcome z and the neural network’s value estimate v

at state st. The second term in the loss function is the cross-entropy loss between the

policy πt and the neural network’s action probabilities p at state st. The third term

in the loss function is a regularization term that ensures that the neural network’s

parameters θ do not get too big to overfit the training data. Once fθ is updated, the

next learning step begins.

Training fθ’s policy head on the policies πt and the value head on the self-play

match outcomes z brings about policy iteration, enabling AlphaZero to learn stronger

policies over time. AlphaZero’s search is a policy improvement operator because

it concentrates the search visits on the root actions with the largest action values

Q(s, a). This brings about policy improvement as long as the value estimates used

in search are sufficiently accurate under the current policy. Upon the completion

of search, AlphaZero selects an action at with respect to the improved policy πt.

Training fθ’s value head on self-play match outcomes produced under the improved

policies enables policy evaluation to be with respect to the improved policy. These

alternating processes of policy improvement and policy evaluation enable AlphaZero

to learn progressively stronger policies. However, the scarcity of independent value

targets z relative to the policy targets πt can slow AlphaZero’s value training and its

subsequent ability to produce improved policies.

33



3.4 Exploration In AlphaZero

In order for AlphaZero to produce improved policies πt, the value estimates used

to guide search need to be accurate under the current policy. The accuracy of fθ’s

value estimates depends upon the distribution of states visited and trained upon.

To have accurate value estimates for the diverse set of states that appear during

search, AlphaZero must explore the state space during training. AlphaZero ensures

exploration of the state space by introducing stochasticity into its action selection.

In the following subsections, I describe the exploration mechanisms AlphaZero uses

to diversify its training and then discuss their limitations.

3.4.1 Dirichlet Noise

In its search, AlphaZero perturbs the priors over the root node’s actions with noise

sampled from a Dirichlet distribution. At the beginning of each search, the root

node sroot is evaluated by the neural network fθ(sroot) = (p, v) and the vector of

action probabilities p is perturbed by a noise vector d ∼ Dir(α) sampled from a

Dirichlet distribution. The perturbed priors P (sroot, a) over the root node’s actions

are computed using the equation

P (sroot, a) = (1− ϵ)pa + ϵda

where pa and da are the components of p and d, respectively, and 0 < ϵ < 1 is a

constant controlling the magnitude of the noise. The perturbed priors P (sroot, a) play

a prominent role in the action selection from the root node during search. Randomly

perturbing the priors over the root node’s actions causes the distribution πt of search

visits over the root node’s actions to also be perturbed, introducing randomness into

AlphaZero’s action selection during training.

The Dirichlet distribution Dir(α),α ∈ Rl is a distribution over l-dimensional dis-

crete probability distributions. When sampled, the Dirichlet distribution returns an

l-dimensional vector d whose components form a discrete probability distribution. In
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(a) α = 0.2 (b) α = 1.0 (c) α = 10.0

Figure 3.3: The 3-dimensional Dirichlet distribution over different values of α
.

the context of AlphaZero, l is set to the number of legal actions that can be taken

from the root node so that the dimension of the sampled noise vector d matches

the dimension of the vector of action probabilities p. The vector of positive real

numbers α that parameterizes the Dirichlet distribution affects the shape of the dis-

crete probability distributions sampled (Figure 3.3). For example, in AlphaZero, each

component of α is given the same value which means that the probability density of

the Dirichlet distribution is not biased toward any particular action. When α < 1,

the noise vectors sampled concentrate most of the probability on one of the actions

(Figure 3.3a). When α = 1, each of the possible noise vectors is sampled with equal

probability (Figure 3.3b). When α > 1, the sampled noise vectors are more uniform

(Figure 3.3c). In the published AlphaZero paper, the authors used α = 0.3, 0.15, and

0.03 for chess, shogi, and Go respectively. Since α < 1, the noise vectors that are

sampled concentrate most of the probability on one component, encouraging explo-

ration toward a random action. The extent of this exploration is controlled by the

value of ϵ, which was set to 0.25 in all three games.

3.4.2 cpucb

The constant, cpucb, used in the search’s action selection rule impacts the level of

exploration vs. exploitation in the returned policies. The primary role of the cpucb

constant is to balance exploration and exploitation in search. When cpucb is relatively
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small, the search favours the traversal of state-action pairs with large action values

Q(s, a). When cpucb is relatively large, the search favours the traversal of state-action

pairs with large priors P (s, a) and few search visitsN(s, a). Balancing exploration and

exploitation within AlphaZero’s search is necessary for identifying promising actions.

However, it also affects the distribution of search visits over the root state’s actions,

and thus, the produced policies πt. When cpucb is relatively small, a greater number of

search visits pass through the root action with the greatest action value Q(s, a). This

causes AlphaZero to produce policies πt that are more exploitative. When cpucb is

relatively large, the distribution of search visits over the root state’s actions resembles

the priors P (s, a) over the root state’s actions. Early on in training, the priors tend to

be more uniform, causing AlphaZero to produce policies πt that are more exploratory.

3.4.3 Action Sampling

AlphaZero also achieves exploration through action sampling. Upon the completion

of a search, the search visits over the root node’s actions are converted into a policy

πt(a|st) = N(st,a)
1
τ∑︁

b N(st,b)
1
τ
. The Softmax temperature τ helps control the level of explo-

ration vs. exploitation in the produced policies. When τ = 1.0, the components of

the policy πt are directly proportional to the search visits over the root state’s actions.

When τ < 1.0, the policies produced concentrate a greater portion of the probability

on the most visited root actions and are, therefore, more exploitative. When τ > 1.0,

the policies produced are more uniform, and thus, more exploratory. For the first k

moves of a self-play game, the action that is played is sampled: at ∼ πt. Sampling

actions proportionally to the search visit counts ensures that a variety of actions are

tried from a given state, while still favouring the selection of actions that had large

action values Q(s, a) and large priors P (s, a).
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3.4.4 Exploration-Exploitation Trade-Off

The stochasticity in AlphaZero’s action selection presents an exploration-exploitation

trade-off. On the one hand, the stochasticity allows AlphaZero to perform policy eval-

uation at a diverse set of states, improving the accuracy of the value estimates used

during search. This enables AlphaZero’s search to be a more effective policy improve-

ment operator. On the other hand, the stochasticity causes AlphaZero to generate

self-play matches under weaker exploratory policies. This causes policy evaluation to

be with respect to the weaker policies and for policy improvement to be with respect to

policies πt perturbed with Dirichlet noise, slowing down policy iteration. AlphaZero

manages this exploration-exploitation trade-off with the cpucb constant used in search,

the temperature parameter τ , the number of action sampling moves k, and with ϵ,

which controls the magnitude of the Dirichlet noise. These hyperparameters must

be set large enough to ensure that AlphaZero sufficiently explores the state space,

however, they cannot be so large that AlphaZero learns weak policies. This leads

action sampling to only take place at the beginning of self-play matches, limiting the

exploration of states later in games.
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Chapter 4

Go-Exploit

In the previous chapter, I identified three primary limitations in AlphaZero’s training

procedure:

1. Since AlphaZero begins its self-play matches from the initial state of a game,

it often transitions into a terminal state before reaching and exploring states

deeper in the game tree. In addition, AlphaZero only samples actions over the

first k moves of a self-play match, further limiting exploration deeper in the

game tree.

2. AlphaZero’s exploration mechanisms cause it to train under weaker, exploratory

policies, slowing policy iteration.

3. AlphaZero only produces a single, noisy value target from a full self-play match,

slowing value training.

AlphaZero’s struggle to visit and revisit states deeper in the game tree is reminis-

cent of detachment and derailment, earlier introduced in the context of Go-Explore.

When AlphaZero visits and trains upon a promising state deeper in the game tree,

it does not guarantee that AlphaZero will learn a policy that leads it back to that

state for further exploration (detachment). Furthermore, the Dirichlet noise and ac-

tion sampling interfere with AlphaZero’s ability to return to and further explore from

promising states (derailment).
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Given these limitations, I adopted the following guiding principles in designing a

new training strategy for AlphaZero. The algorithm should:

(a) Continually visit new states throughout the state space to learn their values

and a good policy.

(b) Keep track of states of interest and have the ability to reliably revisit them for

further exploration.

(c) Limit exploration’s bias in the learning targets.

(d) Produce more independent value targets to train upon.

I hypothesized that I could implement these guiding principles in AlphaZero and

improve its sample efficiency with a novel search control strategy. Since AlphaZero

is a planning algorithm that trains upon simulated self-play matches, it can intelli-

gently select the starting state of its simulated experience. I took inspiration from

Go-Explore [13] and Exploring Restart Distributions [14] by incorporating an archive

of states of interest in AlphaZero. My algorithm, called Go-Exploit, modifies Alp-

haZero by beginning its self-play trajectories from states of interest sampled from

this archive. This enables Go-Exploit to reliably revisit states of interest throughout

the game tree (guiding principle (b)) and to complete more self-play trajectories per

learning step (guiding principle (d)). Then, the remainder of the self-play trajectory is

produced identically to AlphaZero. However, Go-Exploit applies AlphaZero’s explo-

ration mechanisms of action sampling and Dirichlet noise from trajectories beginning

throughout the game tree, enabling Go-Exploit to effectively explore the state space

(guiding principle (a)). Since exploration is built into the “Go” step of sampling the

start state of a self-play trajectory, I anticipated that Go-Exploit would require less

stochasticity in its action selection than AlphaZero, enabling it to learn under more

exploitative policies (guiding principle (c)). In this thesis, I explore this approach and
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experiment with three archive structures and two definitions of “states of interest” to

see how they respectively impact the sample efficiency of Go-Exploit.

4.1 Archive Types

The structure of the archive is characterized by its capacity and the mechanism for

adding/removing states of interest. The simplest archive is the Expanding Archive

which contains every observed state of interest. Fixed-size archives are necessary

when there is insufficient memory to store all encountered states of interest during

training. This issue presents itself in larger games that require more training itera-

tions or in variants of Go-Exploit that have less restrictive definitions for states of

interest. When a fixed-size archive reaches its capacity |A|, there must be a process

for determining which states of interest should be inserted and removed from the

archive. In this thesis, I experiment with two different fixed-size archives. The Cir-

cular Archive removes the oldest state of interest to make way for the newest state

of interest. The Circular Archive enables Go-Exploit to reliably return to states en-

countered under the most recent policies and to improve action selection from these

states. The Reservoir Archive uses Reservoir Sampling [52] to determine whether a

new state of interest replaces an older state in the archive. Reservoir Sampling is an

algorithm used to produce a random sample of elements from an unknown popula-

tion observed one at a time. Once the archive is at capacity, the Reservoir Archive

uniformly samples an integer i between 1 and n, where n is the number of states of

interest that have been observed. If i < |A|, the new state of interest replaces the ith

entry in the archive. The Reservoir Archive approximates the distribution of states

that would be stored in an Expanding Archive.
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4.2 States of Interest

The way “states of interest” are defined naturally affects the performance of Go-

Exploit because it changes the distribution of states that fθ is trained upon. Go-

Exploit Visited States considers nonterminal states visited during self-play games as

states of interest because we want action selection to improve from the states visited

under AlphaZero’s current policy. Go-Exploit Search States considers nonterminal

search states appearing in trajectories beginning from s0 as states of interest because

their value estimates influence the policies πt returned by search. In this thesis, I

introduce four variants of Go-Exploit that use these two definitions of “states of in-

terest”. The first two variants fall under Go-Exploit Visited States and the remaining

two variants fall under Go-Exploit Search States. Each variant of Go-Exploit sam-

ples start states from the archive uniformly at random. Since the archive can contain

multiple copies of a state, it favours the selection of states that are frequently visited

or observed during search. Pseudocode for the different variants of Go-Exploit can

be found in Algorithms 2, 3, 4, 5, 6.

4.3 Go-Exploit Visited States

Go-Exploit Visited States makes simple modifications to AlphaZero. First, it initial-

izes an archive A with the initial state of a game s0 (Algorithm 2 line 3). This archive

is shared amongst “training actors” that generate self-play trajectories (Algorithm 3).

At the beginning of each self-play trajectory, Go-Exploit uniformly generates a ran-

dom number r ∈ [0, 1]. If r < λ, Go-Exploit begins its self-play trajectory from s0. If

r ≥ λ, Go-Exploit begins its self-play trajectory from a state of interest sampled from

the archive uniformly at random (Algorithm 3 lines 4-7). The second difference is

that Go-Exploit samples actions from πt for the first k moves of a self-play trajectory

regardless of whether the trajectory begins at s0 (Algorithm 3 lines 11-12). Finally,

once a self-play trajectory completes, Go-Exploit Visited States adds the nonterminal
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states that were visited to the archive A (Algorithm 5 lines 10, 15-16). In this thesis,

I experimented with two variants of Go-Exploit Visited States that used two different

archives. Go-Exploit Visited States Expanding Archive (GEVE) uses an Expanding

Archive consisting of every single visited state. Go-Exploit Visited States Circular

Archive (GEVC) employs a fixed-size Circular Archive consisting of the most recently

visited states.

4.4 Go-Exploit Search States

Go-Exploit Search States makes similar modifications to AlphaZero. It also employs

training actors that sample start states from archive A and produce training data

for fθ (Algorithm 3). However, Go-Exploit Search States’ training actors do not add

visited states or search states to the archive (Algorithm 5 lines 15-16). Go-Exploit

Search States, instead, concurrently runs “archive actors” that are responsible for

populating the archive (Algorithm 4). The archive actors always play out complete

self-play matches beginning from s0 (Algorithm 4 line 4). Once an archive actor’s self-

play match is complete, it adds all of the nonterminal states that appeared during

search into archive A (Algorithm 4 lines 6, 12, 16-17). In this thesis, I experimented

with two variants of Go-Exploit Search States. Go-Exploit Search States Reservoir

Archive (GESR) uses a fixed-size archive and Reservoir Sampling [52] to determine

which states are added/removed from the archive. A Reservoir Archive is used instead

of an Expanding Archive due to the sheer number of search states observed during

training. Go-Exploit Search States Circular Archive (GESC) employs a fixed-size

Circular Archive consisting of the most recently observed search states.

4.5 Related Work

Although Go-Exploit is inspired by Go-Explore [13], the two algorithms work very

differently. In Go-Explore, the “Go” step is exploitative because it loads a state
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associated with a high scoring trajectory. Exploratory actions are taken from this

loaded state to discover higher scoring trajectories that are then used to train a

policy. In Go-Exploit, on the other hand, the “Go” step is exploratory because

it begins self-play trajectories from states throughout the game tree. Due to the

exploration inherent in the sampling of the start state, Go-Exploit can then produce

the remainder of its self-play trajectories under more exploitative policies. Hence the

name Go-Exploit.

Go-Exploit is more aligned with the work introduced in Exploring Restart Distri-

butions [14] but applies it in the new setting of AlphaZero. Go-Exploit Visited States

is analogous to Uniform Restart because they both begin their simulated episodes

from previously visited states sampled from a memory. However, in two-player, zero-

sum games, beginning self-play trajectories from previously visited states may not

result in the most efficient learning. Go-Exploit Search States extends Exploring

Restart Distributions beyond visited states. Go-Exploit deliberately uses the notion

of “states of interest” when defining which states can be included in its archive in

order to allow the inclusion of states that have never been explicitly visited. This

enables Go-Exploit Search States to focus its planning updates on successor states

appearing in search whose value estimates influence the returned policies.

In MuZero [53], the successor to AlphaZero that plans with a learned model, greater

sample efficiency is also achieved via search control. The authors introduce a variant of

MuZero, calledMuZero Reanalyze, that revisits previously visited states and performs

a new search with the latest model. The model is then trained upon the new policy

and value targets returned by the search. MuZero Reanalyze and Go-Exploit Visited

States are similar in that they both plan from previously visited states. However,

unlike Go-Exploit, MuZero Reanalyze does not simulate new self-play trajectories

from these previously visited states. While planning from previously visited states

improves MuZero’s sample efficiency, its sample efficiency could potentially be further

improved by simulating new self-play trajectories from these previously visited states
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and training upon the states explored in these trajectories.

Other than MuZero, KataGo [15] is the only other algorithm I am aware of that

incorporates search control in the setting of two-player zero-sum games. I will describe

KataGo’s search control procedure in Chapter 5 and then evaluate its sample efficiency

relative to Go-Exploit.
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Chapter 5

Experiments

Experiments were conducted in Connect Four and 9x9 Go to evaluate the sample

efficiencies of the four variants of Go-Exploit and to understand how Go-Exploit’s

exploration of the state space differs from AlphaZero’s. By performing experiments

in Connect Four and 9x9 Go, I evaluated Go-Exploit in two domains with differ-

ent characteristics. Connect Four has a smaller search space than 9x9 Go but has

a greater percentage of terminal states throughout its game tree. In this chapter, I

begin by detailing the experimental setup that was used in each experiment. Then,

I present a few definitions of sample efficiency and discuss which one was best suited

for my experiments. Afterward, I describe the experiments that were performed to

measure and compare the sample efficiencies of Go-Exploit and AlphaZero. Next, I

introduce KataGo [15], a reimplementation of AlphaZero that improved AlphaZero’s

sample efficiency, and describe experiments that were performed to evaluate KataGo’s

search control procedure relative to Go-Exploit’s. I also share experiments that were

conducted to assess the compatibility of KataGo’s other innovations with Go-Exploit.

Finally, I describe experiments that were performed to measure Go-Exploit’s adher-

ence to the guiding principles relative to AlphaZero.
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5.1 Experimental Setup

Go-Exploit and certain elements of KataGo were coded on top of DeepMind’s Open-

Spiel [54] implementation of AlphaZero. OpenSpiel is an open source repository

consisting of environments and algorithms meant for research in search and reinforce-

ment learning in games. Most of OpenSpiel’s environments and algorithms are offered

in Python and C++ and some algorithms even have separate TensorFlow and Py-

torch/Libtorch implementations. Go-Exploit and certain elements of KataGo were

coded on top of OpenSpiel’s C++/Libtorch version of AlphaZero in order to take

advantage of C++’s faster execution. Experiments were run using OpenSpiel’s ac-

companying versions of Connect Four and Go. All Connect Four experiments were run

on Compute Canada’s Cedar cluster using one compute node consisting of 32 cores (2

x Intel Silver 4216 Cascade Lake @ 2.1GHz), 187G of memory, and 4 NVIDIA V100

GPUs. All 9x9 Go experiments were run on Compute Canada’s Beluga cluster using

one compute node consisting of 40 cores (2 x Intel Gold 6148 Skylake @ 2.4 GHz),

186G of memory, and 4 NVIDIA V100 GPUs.

5.2 Sample Efficiency

Sample efficiency can be measured in many different ways. For example, it can be

measured by the number of training samples required to attain a target performance

level. Alternatively, sample efficiency can be measured by the average performance

level achieved over a computational budget. Sample efficiency can also be measured by

the performance level achieved in the final learning step. However, this metric suffers

from two major drawbacks. First, this metric poorly differentiates between algorithms

that converge to similar asymptotic performance levels. Logically, a greater sample

efficiency is achieved by the algorithm that converges to this asymptotic performance

level more quickly. Second, this metric is sensitive to the selected training horizon.

The strength of AlphaZero’s learned policies generally increases with training time,
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however, it does not do so monotonically. The oscillations in AlphaZero’s performance

level from learning step to learning step can lead to the selection/preference of an

overall inferior hyperparameter value or algorithm.

Given these considerations, I measured an algorithm’s sample efficiency by calcu-

lating its average performance level over a computational budget. In my experiments,

training runs lasted 600 learning steps in Connect Four and 900 learning steps in 9x9

Go. These training horizons were arbitrarily chosen but established a fixed computa-

tional budget for each training run. One way of representing the average performance

level over a computational budget is with the “area under the curve” (AUC) in a per-

formance level vs. learning step graph. Depending on the training horizon, this metric

favours different learning characteristics. If the training horizon is relatively short,

the AUC favours algorithms that are able to quickly achieve good performance lev-

els. If the training horizon is relatively long, the AUC favours algorithms that achieve

and sustain the greatest performance levels. The AUC is able to differentiate between

algorithms achieving similar asymptotic performance levels because it takes into ac-

count how quickly these algorithms attain this performance level. Furthermore, the

AUC is less sensitive to the training horizon because it factors in an algorithm’s per-

formance level over the entire computational budget rather than at an arbitrarily

chosen final learning step.

In my experiments, an algorithm’s performance level was measured by its win rate

against a fixed reference opponent. In each training run, 50 evaluator threads played

evaluation matches against the fixed reference opponent, MCTS-Solver [55], over

the course of training. MCTS-Solver is a variant of MCTS that proves the game-

theoretical value of states in the search tree, allowing it to concentrate its search

iterations on unproven parts of the search tree. Evaluation matches were played

against different difficulty levels of MCTS-Solver with 1x, 10x, 100x, and 1000x as

many search iterations as AlphaZero, Go-Exploit, and KataGo. An equal number of

evaluation matches were played as player 1 and player 2. Wins, draws, and losses
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were scored 1, 0.5, and 0, respectively. After each learning step, the win rate against

each difficulty level of MCTS-Solver was computed by averaging the evaluation match

results over the previous 50 learning steps.

When hyperparameter sweeps were conducted, 10 independent training runs were

executed for each hyperparameter setting. Upon their completion, their win rates

against each difficulty level of MCTS-Solver were averaged at each learning step. The

average win rates were summed over all learning steps to compute the AUC over the

computational budget. Ultimately, the AUC achieved against MCTS-Solver 10x was

used to select hyperparameter values.

To compare the sample efficiencies of AlphaZero, Go-Exploit, and KataGo, an

additional 30 validation runs were conducted using the best hyperparameter settings.

The average win rates against MCTS-Solver 1x, 10x, 100x, and 1000x were computed

to see how the algorithms performed against different fixed reference opponents.

5.3 Go-Exploit vs. AlphaZero

To compare the sample efficiencies of the four variants of Go-Exploit relative to

AlphaZero, I first performed hyperparameter sweeps to identify the best performing

values for each algorithm in both Connect Four and 9x9 Go. The hyperparameters

that were held fixed do not directly affect the distribution of states encountered and

trained upon, and thus, are not pertinent to my main investigation. These include

hyperparameters affecting the architecture of fθ, the number of threads, and batch

sizes. The full list of fixed hyperparameters can be found in Table C.1.

The hyperparameters swept over were the learning rate lr of fθ, the regularization

constant c of the loss function, the Dirichlet distribution parameter α, the constant

ϵ affecting the magnitude of the Dirichlet noise, the exploration constant cpucb in

search, the number of action sampling moves k, the probability λ of beginning self-

play trajectories from s0, the archive size |A|, and the action sampling temperature τ .

Since there were so many hyperparameters to sweep over, a grid search was infeasible.
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(a) MCTS-Solver 10x (b) MCTS-Solver 1000x

Figure 5.1: AlphaZero and Go-Exploit’s win rates against MCTS-Solver 10x and
1000x in Connect Four. The win rates were averaged over the 30 validation runs and
the shaded regions represent 95% confidence intervals.

.

Instead, I swept over one hyperparameter at a time. In each sweep, the hyperparam-

eters were swept in the order listed above (lr first and τ last). Prior to being swept

over, the hyperparameters were set to the bolded values in Tables C.2 and C.4 for

Connect Four and 9x9 Go, respectively. 10 independent runs were executed for each

hyperparameter value with randomly chosen seeds. Once a hyperparameter was swept

over, it was set to the best performing value for the remainder of the sweep. The

hyperparameter values swept over and the best performing hyperparameter values

appear in Tables C.2, C.3, C.4, and C.5.

Once the best performing hyperparameter values were identified, an additional 30

validation runs were executed for each algorithm. The average win rates against each

difficulty level of MCTS-Solver were used to produce the learning curves appearing in

Figures 5.1 and 5.2 with shaded 95% confidence intervals. In Figures 5.1a and 5.1b, we

observe that in Connect Four, the four variants of Go-Exploit achieve greater AUCs

than AlphaZero against MCTS-Solver. Early on in training, AlphaZero and the four

variants of Go-Exploit exhibit similar learning speeds, but as training progresses,

AlphaZero’s learning curve levels out to a lower asymptotic win rate than the four

variants of Go-Exploit. It should be noted that during the hyperparameter sweeps, I
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(a) MCTS-Solver 10x (b) MCTS-Solver 1000x

Figure 5.2: AlphaZero and Go-Exploit’s win rates against MCTS-Solver 10x and
1000x in 9x9 Go. The win rates were averaged over the 30 validation runs and the
shaded regions represent 95% confidence intervals.

.

observed that AlphaZero could match Go-Exploit’s asymptotic win rate with different

hyperparameter values but at the cost of a lower AUC (i.e. AlphaZero attains this

asymptotic win rate too slowly). These results suggest that Go-Exploit is able to learn

more efficiently than AlphaZero in Connect Four. Figures 5.1a and 5.1b also illustrate

that Go-Exploit achieves even greater AUCs in Connect Four when including search

states in its archive rather than visited states. Furthermore, greater sample efficiency

is realized when Go-Exploit utilizes a Circular Archive that focuses training on the

states observed under the most recent policies.

In Figures 5.2a and 5.2b, we observe that the four variants of Go-Exploit achieve

much greater AUCs than AlphaZero in 9x9 Go. Go-Exploit exhibits its superior learn-

ing efficiency early on in training with much steeper learning curves than AlphaZero.

Ultimately, AlphaZero and the four variants of Go-Exploit reach similar asymptotic

win rates. Figure 5.2a suggests that Go-Exploit may learn marginally faster with

visited states rather than search states in the archive. Furthermore, Go-Exploit Vis-

ited States obtains a slightly greater AUC with a Circular Archive rather than an

Expanding Archive.

Comparing the plots in Figures 5.1 and 5.2 also reveals that Go-Exploit’s gain in
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Algorithm Connect Four 9x9 Go

Checkpoint Checkpoint

1 2 300 600 300 900

GEVE AlphaZero 0.538 0.643 0.790 0.641

GEVC AlphaZero 0.483 0.593 0.795 0.655

GESR AlphaZero 0.513 0.603 0.790 0.670

GESC AlphaZero 0.582 0.632 0.753 0.652

GESC GEVE 0.565 0.515 0.471 0.506

GESC GEVC 0.601 0.530 0.400 0.469

GESC GESR 0.605 0.519 0.536 0.532

GESR GEVE 0.505 0.493 0.516 0.502

GESR GEVC 0.496 0.502 0.436 0.488

GEVC GEVE 0.483 0.495 0.509 0.488

Table 5.1: Algorithm 1’s win rates in head-to-head matches

sample efficiency is much greater in 9x9 Go than in Connect Four. This suggests that

Go-Exploit’s gains in sample efficiency may be even greater in larger games. This

may be due to the fact that when the search space increases in size, AlphaZero wastes

even more samples to reach and train upon new states deeper in the game tree.

To further measure Go-Exploit’s learning efficiency relative to AlphaZero, I con-

ducted head-to-head matches between AlphaZero and each variant of Go-Exploit.

In Connect Four, head-to-head matches were played using the saved neural network

checkpoints from learning steps 300 and 600 in the validation runs. In 9x9 Go,

head-to-head matches were played using the saved neural network checkpoints from

learning steps 300 and 900 in the validation runs. Each algorithm’s 30 neural network

checkpoints played the other algorithms’ 30 neural network checkpoints in one game

as player 1 and in another game as player 2. The results of the Connect Four and 9x9

Go tournaments appear in Table 5.1. The listed win rates are from the perspective
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of Algorithm 1.

The results of the Connect Four and 9x9 Go tournaments reaffirm what was ob-

served in Figures 5.1 and 5.2. In the Connect Four tournament, GESC outperformed

AlphaZero and the other variants of Go-Exploit at checkpoint 300, reflecting its su-

perior win rate at learning step 300 in Figures 5.1a and 5.1b. At checkpoint 600,

each variant of Go-Exploit outperformed AlphaZero but none of the variants stood

out against each other. This mirrors the fact that the four variants of Go-Exploit

achieved similar asymptotic win rates that were higher than AlphaZero’s in Figures

5.1a and 5.1b. In the 9x9 Go tournament, each variant of Go-Exploit dominated

AlphaZero at checkpoints 300 and 900, although Go-Exploit won by a greater margin

at checkpoint 300. This is consistent with Go-Exploit’s superior win rate against

MCTS-Solver in Figures 5.2a and 5.2b. At checkpoint 300, GEVC outperformed

both variants of Go-Exploit Search States and marginally beat GEVE, reflecting its

superior win rate early on in training in Figure 5.2a.

5.4 Go-Exploit vs. KataGo

KataGo [15] is an open-source reimplementation of AlphaZero that introduces mul-

tiple modifications to the original AlphaZero algorithm that improve its sample effi-

ciency. In this section, I compare Go-Exploit to the search control procedures intro-

duced in KataGo. Then, I argue that the remainder of the modifications introduced

in KataGo are compatible with Go-Exploit and can be combined with it to achieve

even greater learning efficiency.

5.4.1 KataGo’s Search Control Strategy

In the original KataGo paper and its subsequent release notes, key modifications

to AlphaZero are highlighted. An additional change introduced in KataGo, which

is not emphasized, is a search control strategy. KataGo’s search control procedure

involves self-play trajectory initialization and position branching. At the beginning
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of each self-play trajectory, KataGo samples a random number r from an exponential

distribution with µ = 0.04× board width× board length. KataGo then samples the

first ⌊r⌋ actions of the game from the policies p output by fθ to determine the start

state of the self-play trajectory. In 2.5% of visited positions, KataGo branches the

self-play trajectory to try a different action from the one that was originally selected.

Afterward, KataGo performs a search from the new branched position and uses the

returned policy π as a training target for the policy head and the root node’s action

value as a learning target for the value head. A random quarter of these branches are

recursively continued. KataGo also branches from an early position in 5% of self-play

trajectories. To select the branched action, KataGo samples 3 to 10 moves uniformly

at random, evaluates their resulting board positions with fθ, and then selects the

action with the greatest value estimate. The remainder of the branched trajectory is

played out normally.

To compare the effectiveness of Go-Exploit’s search control procedure to KataGo’s,

I tried running OpenSpiel’s AlphaZero implementation with KataGo’s search control

procedure in Connect Four. I first tried running AlphaZero with KataGo’s trajectory

initialization (AKTI), then with KataGo’s branching scheme (AKB), and then with

both together (AKTIB). A new hyperparameter sweep was conducted to determine

the hyperparameter values that achieve the best AUCs for each algorithm. Afterward,

an additional 30 validation runs were performed. The learning curves for AlphaZero,

AlphaZero with KataGo’s search control procedures, and GESC appear in Figure

5.3a. This figure illustrates that KataGo’s search control strategy achieves a greater

AUC than standard AlphaZero, however, it is inferior to the AUC of GESC.

5.4.2 Go-Exploit’s Compatibility With KataGo

Excluding KataGo’s trajectory initialization, KataGo’s other modifications are com-

patible with Go-Exploit. KataGo’s key modifications alter AlphaZero’s neural net-

work architecture, loss function, feature representation, and search, which are orthog-
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(a) KataGo’s search control strategy (b) Go-Exploit + KataGo’s modifications

Figure 5.3: (a) Comparing the learning speeds of AKTI, AKB, and AKTIB to stan-
dard AlphaZero and GESC. (b) Comparing the learning speeds of GESCKB, GESCK-
PCR, GESCKFP, and GESC3K to standard AlphaZero and GESC. Both plots show
the win rates against MCTS-Solver 10x in Connect Four. The shaded regions repre-
sent 95% confidence intervals.

onal to Go-Exploit. In order to provide evidence that KataGo’s other modifications

are complementary with Go-Exploit, I incorporated three of KataGo’s modifications

into GESC to see if they could help it achieve greater learning efficiency. The first

modification I incorporated into GESC was KataGo’s branching scheme. While Go-

Exploit’s trajectory initialization resembles branching, it is not equivalent to KataGo’s

branching procedure. The second KataGo modification I implemented was “Playout

Cap Randomization”. Playout Cap Randomization randomly varies between per-

forming “fast searches” with fewer search iterations and “full searches” with a much

greater number of search iterations. Only states where “full searches” are performed

are used for training, which increases the number of independent value targets avail-

able for training. In my experiments, “fast searches” were conducted 75% of the time

and performed 20 search iterations whereas “full searches” performed 100 search it-

erations. The third KataGo modification I implemented was “Forced Playouts and

Policy Target Pruning”. During search, KataGo forces visits to root actions that

have already been traversed in order to possibly overcome small initial action value

estimates. While the forced playouts help identify promising root actions, they also
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inflate the visit counts to poor actions, hindering policy improvement. To overcome

this, KataGo performs “Policy Target Pruning”, which subtracts search visits from

root actions that would not have otherwise been taken with normal PUCT action

selection.

To test the compatibility of Branching (GESCKB), Playout Cap Randomization

(GESCKPCR), and Forced Playouts + Policy Target Pruning (GESCKFP) with Go-

Exploit, I ran GESC with each modification individually. Then, I ran GESC with all

three modifications (GESC3K) to see if an even greater sample efficiency could be

achieved. For each variant, I ran the standard hyperparameter sweep and additional

30 validation runs. Their respective learning curves appear in Figure 5.3b. This fig-

ure illustrates that GESC maintains a similar AUC when combined with branching.

On the other hand, GESC achieves an even greater AUC with Playout Cap Random-

ization and Forced Playouts + Policy Target Pruning. Furthermore, GESC achieves

an even greater AUC when combined with all three of these modifications. While

not definitive, this supports my argument that KataGo’s modifications to AlphaZero,

other than its search control procedure, are complementary with Go-Exploit.

5.5 Understanding Go-Exploit

To understand why Go-Exploit learns more efficiently than standard AlphaZero, I

collected statistics on the distribution of states visited during self-play and observed

during search in the validation runs. In the following subsections, I appeal to these

collected statistics and the guiding principles to try to establish why Go-Exploit

outperforms AlphaZero in both Connect Four and 9x9 Go.

5.5.1 Greater Exploration of the State Space

I have argued that one of AlphaZero’s limitations is that it does not effectively explore

states deeper in the game tree. Since AlphaZero always begins its self-play trajecto-

ries from s0, it often transitions into a terminal state before reaching and exploring
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Figure 5.4: The aggregate number of unique states visited during self-play games, as
a function of game tree depth, over 600 learning steps in Connect Four.

states deeper in the game tree. In addition, AlphaZero only samples actions over the

first k moves of a self-play game, further limiting exploration deeper in the game tree.

These suspicions are confirmed when comparing AlphaZero’s distribution of unique

visited states to Go-Exploit’s. Figures 5.4 and 5.5 depict each algorithm’s distribution

of unique nonterminal states visited by game tree depth in Connect Four and 9x9 Go,

respectively. Computing the area under a curve yields the total number of unique

nonterminal states visited by a given algorithm. In these plots, we observe that each

variant of Go-Exploit visits a greater total number of unique nonterminal states than

AlphaZero. Go-Exploit particularly visits a much greater number of unique nonter-

minal states deeper in the game tree than AlphaZero. At earlier game tree depths, we

can see that AlphaZero visits more unique states than Go-Exploit in both Connect

Four and 9x9 Go. This is expected since AlphaZero begins each self-play trajectory

from the initial state of the game whereas Go-Exploit begins its self-play trajectories

from states throughout the game tree. In Figure 5.4, the slope of the AlphaZero

line abruptly decreases at depth 10, which is the number of action sampling moves

AlphaZero employs in Connect Four. This confirms the suspicion that only sampling
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Figure 5.5: The aggregate number of unique states visited during self-play games, as
a function of game tree depth, over 900 learning steps in 9x9 Go.

actions over the first k moves of a self-play match hinders AlphaZero’s exploration.

After game tree depth 18 in Connect Four, the number of unique nonterminal states

visited by AlphaZero steadily decreases. This is due to the fact that in Connect

Four, AlphaZero often transitions into a terminal state before reaching and exploring

states deeper in the game tree. On the other hand, in Figure 5.5, we can see that

the number of unique nonterminal states visited by AlphaZero remains fairly level

over most game tree depths, reflecting the fact that there are fewer terminal states

throughout 9x9 Go’s game tree. Even though AlphaZero has more success exploring

deeper in 9x9 Go’s game tree than in Connect Four’s, Go-Exploit outperforms Alp-

haZero by a greater margin in the larger game of 9x9 Go. These plots demonstrate

that Go-Exploit is able to more effectively visit and train upon states throughout the

state space than AlphaZero (guiding principle (a)) since it begins its self-play trajec-

tories from states throughout the game tree and then subsequently takes exploratory

actions from these varied starting points.

Among the variants of Go-Exploit, Go-Exploit Search States visits a greater total

number of unique states than Go-Exploit Visited States. In fact, in Connect Four,
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Connect Four 9x9 Go

Algorithm Visited Search Visited Search

AlphaZero 0.196 0.161 0.293 0.244

GEVE 0.161 0.136 0.227 0.179

GEVC 0.164 0.116 0.223 0.166

GESR 0.170 0.127 0.214 0.165

GESC 0.151 0.108 0.241 0.172

Table 5.2: Value losses over visited states and search states at checkpoint 600 in
Connect Four, checkpoint 900 in 9x9 Go

Go-Exploit Search States visits a greater number of unique states than Go-Exploit

Visited States over all game tree depths. This may partly explain why Go-Exploit

Search States exhibits a greater sample efficiency than Go-Exploit Visited States in

Connect Four. On the other hand, in 9x9 Go, Go-Exploit Search States visits a greater

number of unique states at earlier game tree depths whereas Go-Exploit Visited States

visits a greater number of unique states deeper in the game tree. Furthermore, the

percentage difference in visited unique states between Go-Exploit Search States and

Go-Exploit Visited States is greater in Connect Four than 9x9 Go. This may partly

explain why the differences in sample efficiency between the variants of Go-Exploit

are much smaller in 9x9 Go than in Connect Four.

To understand how the differences between AlphaZero and Go-Exploit’s state visit

distributions impact policy iteration, I compared their value losses over visited states

and search states. To establish a fair comparison, I generated 500 self-play matches

beginning from the initial state of the game using the final neural network checkpoints

from the validation runs. For each visited state, I computed the squared error between

the state’s value estimate vi and the outcome of the game zi. For each state observed

during search, a trajectory was played to completion without Dirichlet noise and

action sampling so that the value loss could also be computed over search states.
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Table 5.2 shows each algorithm’s average value loss over visited states and search

states at checkpoint 600 in Connect Four and checkpoint 900 in 9x9 Go. We observe

that each variant of Go-Exploit has a smaller value loss over visited states and search

states than AlphaZero.1 The fact that Go-Exploit has a smaller value loss over

visited states in trajectories beginning from s0 is particularly striking considering

that AlphaZero only trains on trajectories beginning from s0 and Go-Exploit does

not. Go-Exploit’s superior value loss over visited states and search states illustrates

that its value function can better predict match outcomes under its current policy

and at a greater set of states than AlphaZero. I believe this can be attributed, in part,

to Go-Exploit’s more effective exploration of the game tree than AlphaZero. The fact

that Go-Exploit trains a more accurate and more generalizable value function might

be what enables its search to be a more effective policy improvement operator.

5.5.2 More Independent Value Targets

Another potential reason why Go-Exploit has a smaller value loss over visited states

and search states than AlphaZero can be due to the fact that it produces and trains

upon more independent value targets than AlphaZero. In AlphaZero, a new policy

target is produced for each visited state whereas only a single independent value target

is produced for each self-play trajectory (the outcome of the game). In addition to

their scarcity, the value targets trained upon are noisy. The self-play match outcomes

are affected by action sampling and Dirichlet noise, and therefore, may not reflect

the true values of the visited states. Since Go-Exploit begins its self-play trajectories

from states throughout the game tree, its self-play trajectories are shorter, on average,

than AlphaZero’s. In fact, in Connect Four, AlphaZero completes an average of

147.01 trajectories per learning step whereas each variant of Go-Exploit completes

over 323 trajectories per learning step, on average. Similarly, in 9x9 Go, AlphaZero

completes an average of 74.83 trajectories per learning step whereas each variant

1It may be surprising that smaller value losses were achieved over search states, however, this is
due to there being no added stochasticity in these trajectories.
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of Go-Exploit completes over 147 trajectories per learning step, on average. Since

Go-Exploit completes more self-play trajectories per learning step than AlphaZero,

its experience replay buffer contains more independent value targets, on average,

than AlphaZero’s. Consistently training on a greater number of independent value

targets than AlphaZero (guiding principle (d)) may enable Go-Exploit to train a more

accurate value function, enabling search to be a more effective policy improvement

operator.

Producing shorter self-play trajectories also helps stabilize and speed up Go-Exploit’s

learning process. Both AlphaZero and Go-Exploit optimize their policy-value net-

work’s parameters using stochastic gradient descent (SGD). SGD assumes that the

data used to estimate its gradients is independent and identically distributed (i.i.d)

[48]. In AlphaZero and Go-Exploit, the data produced within a given self-play tra-

jectory is highly correlated. Simultaneously training upon all the states from a given

trajectory would violate the i.i.d assumption and could slow or destabilize the policy-

value network’s training. AlphaZero and Go-Exploit alleviate this problem by using

experience replay. Under experience replay, experienced transitions from the most

recent episodes are stored within a circular memory. Training batches are uniformly

sampled from this memory, significantly reducing the dependence between samples

within a training batch. Go-Exploit further reduces the dependence between training

samples stored in the experience replay buffer. Since Go-Exploit’s self-play trajec-

tories are shorter, on average, than AlphaZero’s, fewer correlated training samples

are added to the experience replay buffer per self-play trajectory. The fact that Go-

Exploit produces and trains upon data that is more i.i.d than AlphaZero may help

stabilize and speed up its training.

5.5.3 Training Under More Exploitative Policies

In Figures 5.4 and 5.5, we observed that Go-Exploit is able to more effectively ex-

plore the game tree than AlphaZero since it begins its self-play trajectories from

60



states throughout the game tree. Since there is exploration inherent in the sam-

pling of a start state from the archive, I hypothesized that Go-Exploit would require

less stochasticity in its action selection than AlphaZero (guiding principle (c)). My

hypothesis was mostly confirmed in Connect Four but the results were less clear

in 9x9 Go. In the hyperparameter sweeps performed in Connect Four, AlphaZero

achieved its best AUC against MCTS-Solver 10x with (cpucb = 1.0, τ = 1.0, k =

10, α = 1.0, ϵ = 0.25). GEVE, GEVC, GESR, and GESC achieved their best

AUCs with (cpucb = 1.0, τ = 1.0, k = 5, α = 1.0, ϵ = 0.25), (cpucb = 1.0, τ =

1.0, k = 10, α = 1.0, ϵ = 0.1), (cpucb = 1.0, τ = 1.0, k = 2, α = 1.0, ϵ = 0.25),

and (cpucb = 1.0, τ = 1.0, k = 10, α = 1.0, ϵ = 0.25), respectively. GEVE was tuned

more exploitatively than AlphaZero because it used fewer action sampling moves

and had the remaining hyperparameters set identically to AlphaZero’s. GEVC was

tuned more exploitatively than AlphaZero because its Dirichlet noise magnitude ϵ was

smaller than AlphaZero’s and the remaining hyperparameters were set identically to

AlphaZero’s. GESR was tuned more exploitatively than AlphaZero because it used

fewer action sampling moves and had the remaining hyperparameters set identically

to AlphaZero’s. GESC, on the other hand, performed best when all of its hyper-

parameters were set identically to AlphaZero’s. Thus, three of the four variants of

Go-Exploit were tuned more exploitatively than AlphaZero in Connect Four. This

suggests that Go-Exploit relies less upon stochastic action selection than AlphaZero

to sufficiently explore the state space. This enables Go-Exploit to produce and train

under policies that are inherently more exploitative, accelerating policy iteration.

In 9x9 Go, AlphaZero achieved its best AUC with (cpucb = 1.0, τ = 1.0, k = 2, α =

0.03, ϵ = 0.1). GEVE, GEVC, GESR, and GESC achieved their best AUCs with

(cpucb = 2.0, τ = 1.0, k = 1, α = 0.03, ϵ = 0.1), (cpucb = 2.0, τ = 1.0, k = 1, α =

0.03, ϵ = 0.1), (cpucb = 1.0, τ = 1.0, k = 2, α = 0.03, ϵ = 0.1), and (cpucb = 2.0, τ =

1.0, k = 1, α = 0.03, ϵ = 0.1), respectively. Each algorithm’s Dirichlet noise was

parameterized identically and each algorithm used the same temperature τ . Three of

61



the four variants of Go-Exploit used fewer action sampling moves than AlphaZero,

however, AlphaZero used a smaller cpucb value than these algorithms. It’s difficult

to assess whether AlphaZero was more exploitative with its smaller cpucb value or

whether three of the four variants of Go-Exploit were more exploitative with fewer

action sampling moves.

62



Chapter 6

Conclusions, Recommendations, &
Future Work

In this thesis, I have identified limitations in AlphaZero’s training procedure and

introduced a novel search control algorithm, called Go-Exploit, that helps mitigate

them. AlphaZero inadequately explores a game tree because it begins each of its self-

play matches from the initial state of a game and often transitions into a terminal

state before reaching and exploring states deeper in the game tree. This issue is

exacerbated by the fact that AlphaZero only samples actions for the first k moves

of a self-play match. In addition, AlphaZero’s policy iteration is hindered by its

exploration mechanisms. The Dirichlet noise interferes with the search’s ability to

produce improved policies and the action sampling causes exploratory actions to be

selected during self-play. These two factors cause AlphaZero’s neural network to train

upon weaker, exploratory policies πt, and on self-play match outcomes z produced

under these weaker policies. AlphaZero’s value training also suffers from the lack

of independent value targets. AlphaZero only produces a single value target z per

self-play match whereas a unique policy target πt is produced at each visited state.

The scarcity of the independent value targets and their noisiness from the exploration

mechanisms hamper AlphaZero’s ability to train an accurate value function.

To address these limitations, I developed Go-Exploit, a new search control strategy

for AlphaZero. Instead of beginning each self-play match from the initial state of a
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game s0, Go-Exploit samples the start state of a self-play trajectory from an archive

of “states of interest”. Afterward, Go-Exploit produces the remainder of the self-play

trajectory identically to AlphaZero. In this thesis, I experimented with two definitions

of “states of interest”. Go-Exploit Visited States considers all states visited during

self-play as states of interest in order to improve action selection from the states

visited under the current policy. Go-Exploit Search States considers search states

appearing in trajectories beginning from s0 as states of interest in order to improve

the value estimates of the states that influence the policies πt returned by search. In

this thesis, I also experimented with three archive configurations. The Expanding

Archive stores all encountered states of interest and is only viable when there are no

memory constraints. The Reservoir Archive is a fixed-size archive that approximates

the distribution of states in the Expanding Archive. The Circular Archive is a fixed-

size archive that only stores the most recently observed states of interest, focusing

training on the states encountered under the most recent policies.

To evaluate the different variants of Go-Exploit relative to AlphaZero, experiments

were conducted in Connect Four and 9x9 Go. Ultimately, in both Connect Four and

9x9 Go, all variants of Go-Exploit achieved greater AUCs than AlphaZero in evalu-

ation matches played against MCTS-Solver over the course of training. In Connect

Four, Go-Exploit exhibited its greatest learning efficiency with a Circular Archive

consisting of search states. In 9x9 Go, the performances of the four variants of Go-

Exploit were more even but Go-Exploit performed marginally better with a Circular

Archive consisting of visited states. These results were reaffirmed in head-to-head

matches played between the variants of Go-Exploit and AlphaZero.

In this thesis, I also compared Go-Exploit to KataGo, a reimplementation of Al-

phaZero that improves AlphaZero’s sample efficiency. Go-Exploit’s search control

procedure resulted in faster learning than KataGo’s search control mechanisms of

trajectory initialization and position branching in Connect Four. On the other hand,

Go-Exploit’s sample efficiency improved when combined with some of KataGo’s other

64



innovations, illustrating their compatibility.

Finally, I performed experiments to understand why Go-Exploit exhibits a greater

sample efficiency than AlphaZero. The results of these experiments reveal that Go-

Exploit does indeed mitigate the limitations identified in AlphaZero’s training proce-

dure. First, Go-Exploit improves upon AlphaZero’s ability to explore states deeper in

game trees. By sampling the start state of its self-play trajectories from its archive,

Go-Exploit begins its self-play trajectories from states throughout the game tree and

then utilizes AlphaZero’s exploration mechanisms to explore new states. This was ev-

idenced by Go-Exploit visiting more unique states over a majority of game tree depths

compared to AlphaZero. Second, Go-Exploit trains upon more independent value tar-

gets than AlphaZero. Since Go-Exploit begins its self-play trajectories from states

throughout the game tree, its self-play trajectories are much shorter, on average, than

AlphaZero’s. This allows Go-Exploit to produce and train upon more independent

value targets, improving its value training. Finally, Go-Exploit often trains under

more exploitative policies than AlphaZero, accelerating policy iteration. Since ex-

ploration is incorporated into Go-Exploit’s trajectory initialization, Go-Exploit relies

less upon stochastic action selection for exploration than AlphaZero. This was ob-

served in the Connect Four hyperparameter sweep where three of the four variants

of Go-Exploit tuned k or ϵ more exploitatively than AlphaZero. However, in 9x9 Go,

the values of competing hyperparameters made it more difficult to conclude whether

Go-Exploit was tuned more exploitatively than AlphaZero.

In this thesis, I have investigated two definitions of “states of interest” and three

archive structures but have only sampled from the archive uniformly at random.

Future work could investigate new ways of defining “states of interest”, new archive

structures, and additional schemes for weighting and/or sampling states in the archive.

Additional avenues for future work could include investigating how Go-Exploit per-

forms with a more theoretically sound policy improvement operator [56], with a

learned model [53], and in non-deterministic or imperfect information games [57].
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[20] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in European
Conference on Machine Learning, Springer, 2006, pp. 282–293.

[21] W. R. Thompson, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25, no. 3-4,
pp. 285–294, 1933.

[22] R. R. Bush and F. Mosteller, “A stochastic model with applications to learning,”
The Annals of Mathematical Statistics, pp. 559–585, 1953.

[23] H. Robbins, “Some aspects of the sequential design of experiments,” Bulletin
of the American Mathematical Society, vol. 58, no. 5, pp. 527–535, 1952.
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Appendix A: History

Over the first few decades of AI research, heuristic search was the most popular ap-

proach used in game playing programs. Working as a codebreaker during World War

II, Alan Turing devoted his free time to thinking about how to create an intelligent

chess program [4]. Turing’s ideas were heavily inspired by his codebreaking. As a

codebreaker, Turing’s job was to decipher the daily knob settings of the Germans’

Enigma machine which was used to encrypt messages. To efficiently search through

the permutations of the knob settings, Turing built a mechanical machine called ‘the

bombe’. Turing quickly realized that performing an exhaustive search would take

way too long so he implemented a mechanical version of heuristic search. Funnily

enough, the heuristics used made assumptions about human behaviour (particularly

human laziness) and sufficiently limited the search so that it was tractable within a

day.

In working on the bombe, Turing realized that machine intelligence could be

achieved via a guided search. This inspired Turing to use heuristic search in his

original chess playing programs. Turing recognized that under optimal play, players

always act to maximize their gains and to minimize their losses from potential moves

their opponent could make. This intuition was originally formalized in John von

Neumann’s Minimax Theorem in 1928 [17]. In 1948, Turing ultimately concretized

his thoughts into his first chess playing program, Turochamp, with his collaborator

David Champernowne [4]. To determine which move to make, Turochamp evaluated

each possible state that was two moves ahead, extending the search deeper for states

that met certain conditions. Leaf nodes in the search tree were evaluated using a
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handcrafted evaluation function that computed the ratio of white’s piece values to

black’s piece values. The Minimax principle was then applied to back up state values

up the search tree and to ultimately decide which move to make. Variations of this

Minimax search algorithm were also used in Claude Shannon’s chess program [2] and

Arthur Samuel’s checkers player [3].

In 1958, Newell, Shaw, and Simon [5] augmented Minimax search with Alpha-

Beta pruning. Alpha-Beta pruning eliminates a given state’s unexplored subtrees

once it has been proven that an alternative move is more promising. Despite the

improved search efficiency, their NSS chess program still played at a very weak level.

Decades later, programs using these same ideas became very powerful when paired

with computers that were significantly faster and had much larger memory. For

example, in 1989, the University of Alberta’s Jonathan Schaeffer created a program

called CHINOOK [6] that defeated the world checkers champion using a database of

opening moves, Alpha-Beta search, and an endgame database. In 1997, Deep Blue

[7] defeated the world chess champion, Gary Kasparov, using Alpha-Beta search.

Heuristic search with a handcrafted evaluation function was seminal to the suc-

cesses in checkers and chess but further progress was limited by computational power

and by the quality of the handcrafted evaluation function. More informed action

selections are made when the breadth and depth of search increases, however, this is

only possible if a greater search time is allocated or if a machine with faster processing

speed is used. The quality of the action selection also depends upon the value esti-

mates that are being assigned to states by the handcrafted evaluation function. AI

researchers often teamed up with expert human players to design complex evaluation

functions for a given game [7]. The quality of these handcrafted evaluation functions

was limited by human knowledge and by the ability to represent the human knowledge

in functional form. To overcome these two obstacles, new ideas were needed.

New progress was made when learning was incorporated into the heuristic search

algorithms that had previously shown success. Arthur Samuel was the first to experi-
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ment with learning in his checkers player [3]. Like its predecessors, Samuel’s checkers

player performed a Minimax search to select its moves. The program’s evaluation

function was a linear polynomial consisting of a subset of parameters from a pool

of features believed to be relevant to checkers. Samuel’s checkers player would learn

from matches in two ways. The first method, called “rote-learning”, consisted of

saving the backed-up Minimax values of played states in memory. When these states

appeared as leaf nodes in future searches, they were assigned their saved Minimax

values, effectively deepening the search. The second form of learning was “learning

by generalization” and was used to update the coefficients of the evaluation func-

tion. This form of learning helped inspire temporal-difference learning [9] because it

sought to make the values of states consistent with the values of the likeliest successor

states. To achieve this, Samuel used the Minimax value of the current game state as

a learning target for the value function estimate of the state two moves prior.

Gerald Tesauro extended Samuel’s ideas in his backgammon program TD-Gammon

[8]. Unlike its predecessors, TD-Gammon made use of a neural network rather than a

handcrafted linear evaluation function. The neural network took a board position as

input and it output the estimated outcome of the game from the given board position.

The neural network was trained using TD(λ), a reinforcement learning algorithm. At

each time step, TD-Gammon would compute the difference between the outputs of

the neural network at time t and time t+1. This temporal difference error was then

multiplied by an eligibility trace vector to help determine the change in weights for

the neural network. Once a self-play game was complete, the neural network’s weights

were updated using the difference between the actual outcome of the self-play game

and the final neural network output, allowing the neural network’s value estimates

to be based on the true value of terminal states. To select moves within self-play

games, TD-Gammon used its neural network to evaluate all possible board positions

from a given dice roll and selected the action with the highest estimated value. TD-

Gammon’s success illustrated the feasibility and the potency of reinforcement learning
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when paired with a nonlinear value function like a neural network.

Despite the successes in checkers, chess, and backgammon, progress was still limited

in the much larger game of Go. Checkers has 1020 unique legal states, an average

branching factor of 2.8, and an average game length of 70 [58]. Chess has 1044 unique

legal states, an average branching factor of 35, and an average game length of 70

[2]. On the standard 19 × 19 board, Go has 10170 unique legal states, an average

branching factor of 250, and an average game length of 150 [59]. Scientists tried

applying the approaches that were successful in checkers, chess, and backgammon

to Go but the significant jump in complexity limited their success. The increased

branching factor forced the search algorithms to look fewer moves ahead because there

were more unique states to investigate per ply. Furthermore, scientists struggled to

devise handcrafted evaluation functions that accurately assessed the relative values

of states.

Significant progress in computer Go was made with the development of Monte

Carlo Tree Search. In 1993, Bernd Brugmann [60] released a Go program, called

Gobble, that simulated numerous random games from the current board position and

then selected the move with the best average outcome. Rémi Coulom [19] combined

Brugmann’s Monte Carlo position evaluation with tree search to develop the first

version of what is now known as Monte Carlo Tree Search. In the same year, Kocsis

and Szepesvari [20] extended Monte Carlo Tree Search with their bandit inspired

algorithm called UCT (UCB Applied to Trees). UCT iteratively builds out a search

tree via simulated games much like Coulom’s algorithm, however, moves are selected

using an action selection rule inspired by the UCB1 algorithm [29]. This action

selection rule balances the exploration of infrequently visited actions with uncertain

value estimates and the exploitation of actions with large value estimates so that it

can refine their value estimates and confidently return the optimal action. For the

next few years, computer Go programs using MCTS/UCT dominated international

competitions [61].
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The emergence of deep convolutional neural networks (DCNNs) enabled game play-

ing programs to harness more powerful and more generalizable evaluation functions.

In 2012, Krizhevsky et al. [62] published work on a DCNN that significantly outper-

formed traditional computer vision algorithms in the ImageNet image classification

competition. This inspired computer Go researchers to investigate whether DCNNs

could be used to represent Go knowledge. Researchers had previously attempted

to use CNNs as an evaluation function in computer Go programs but these neural

networks were limited to a single hidden layer. In 2014, two research groups con-

currently tried to use DCNNs to learn to represent human Go knowledge. Storkey

and Clark [63] and Maddison et al. [64] independently trained deep convolutional

neural networks on databases of human expert moves so that it could learn to predict

the move a human expert would make when given a board position. This approach

yielded a test accuracy of 55%, which was a new benchmark at the time. Maddison et

al. then detailed preliminary attempts at integrating their DCNN into MCTS, which

ultimately inspired AlphaGo and AlphaZero.

In 2016, DeepMind published a paper on their Go playing program AlphaGo [65].

The paper revealed that AlphaGo had defeated Fan Hui, the European Go champion,

five games to zero – the first time a Go program had ever defeated a professional Go

player. Later that year, a slightly modified version of AlphaGo defeated Lee Sedol,

the world Go champion, four games to one. To determine the action it plays, AlphaGo

performs a Monte Carlo Tree Search that is guided by a policy network and a value

network. AlphaGo’s policy network outputs a discrete probability distribution over

the actions that can be taken from an input state and is initially trained upon a

dataset of human expert moves. AlphaGo’s value network is randomly initialized

and predicts the outcome of the game from the input state under its current policy.

During search, the policy network’s action probabilities are used to assign priors to

actions in order to bias the search to promising actions. The value estimates used

during search are weighted averages of value estimates output by the value network
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and rollouts from leaf nodes in the search tree. As self-play games complete, the

outcomes of the games are used to update the weights of both neural networks to

place greater probabilities on actions that lead to wins and to improve the value

estimates under the improving policy.

While AlphaGo achieved incredible success, it still needed to train upon human

expert moves to surpass human level play. The next step was to develop a program

that could achieve superhuman play by exclusively learning from games played against

itself. This feat was achieved in 2017 and 2018 with DeepMind’s AlphaGo Zero

[10] and AlphaZero [11] algorithms. Both AlphaGo Zero and AlphaZero achieve

superhuman play in Go knowing only the rules of the game and beginning from

random play. Their search is guided by a single policy-value network that outputs a

policy from its policy head and a value estimate from its value head. Action values

in the search solely depend upon the value estimates output by the policy-value

network (no rollouts). The distribution of search visits are converted into a policy π

that is used to select an action during self-play and also serves as a training target

for the policy head. The outcomes of self-play games are used as training targets

for the value head. The action selection rule used during search concentrates search

visits on actions with large value estimates, ensuring that the policy-value network is

trained upon improving policies π and on self-play game outcomes produced under

the improved policy. This process, called policy iteration, enables AlphaGo Zero and

AlphaZero to learn progressively better policies over time and to ultimately achieve

superhuman play.
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Appendix B: Pseudocode

Algorithm 2 Go-Exploit

Parameters: total steps, num training actors, num archive actors, Atype, |A|,
use search states, |B|, bstep, bbatch, λ, iters, α, ϵ, cpucb, τ , k, lr,
c

1: Initialize trajectory queue Q
2: Initialize policy-value network fθ
3: A = initialize archive(Atype, |A|, s0)
4: for i ∈ 1, ..., num training actors do
5: training actor(A, λ, iters, α, ϵ, cpucb, τ, k,Q)
6: end for
7: for i ∈ 1, ..., num archive actors do
8: archive actor(A,Atype, use search states, iters, α, ϵ, cpucb, τ, k)
9: end for
10: learner(total steps, |B|, bstep, bbatch, Q,A,Atype, use search states, lr, c)
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Algorithm 3 training actor

Parameters: A, λ, iters, α, ϵ, cpucb, τ , k, Q

1: while True do
2: trajectory = []
3: t = 0
4: st = initialize game()
5: r = rand num(0, 1)
6: if r > λ then
7: st = A.sample()
8: end if
9: while st is not terminal do
10: πt = search(iters, α, ϵ, cpucb, τ)
11: if t < k then
12: at ∼ πt
13: else
14: at = argmaxa πt[a]
15: end if
16: trajectory.add(st, πt)
17: st = take action(st, at)
18: t = t+ 1
19: end while
20: z = st.outcome()
21: trajectory.set outcome(z)
22: Q.push(trajectory)
23: end while
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Algorithm 4 archive actor

Parameters: A, Atype, use search states, iters, α, ϵ, cpucb, τ ,
k

1: while True do
2: Atemp = []
3: t = 0
4: st = initialize game()
5: while st is not terminal do
6: πt, search states = search(iters, α, ϵ, cpucb, τ)
7: if t < k then
8: at ∼ πt
9: else
10: at = argmaxa πt[a]
11: end if
12: Atemp.add(search states)
13: st = take action(st, at)
14: t = t+ 1
15: end while
16: if use search states then
17: A.update(A,Atemp, Atype)
18: end if
19: end while
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Algorithm 5 learner

Parameters: total steps, |B|, bstep, bbatch, Q, A, Atype, use search states, lr,
c

1: B = initialize buffer(|B|)
2: for step ∈ 1, ..., total steps do
3: Atemp = []
4: step states = 0
5: while step states < bstep do
6: trajectory = Q.pop()
7: for (st,πt, z) ∈ trajectory do
8: B.add(st,πt, z)
9: step states = step states + 1
10: Atemp.add(st)
11: end for
12: end while
13: btrain = B.sample(bbatch)
14: fθ.update(btrain, lr, c)
15: if NOT use search states then
16: A.update(A,Atemp, Atype)
17: end if
18: end for
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Algorithm 6 Archive update()

Parameters: A, Atemp, Atype

1: for s ∈ Atemp do
2: if Atype == “Expanding” then
3: A.push(s)
4: else if Atype == “Circular” then
5: if A.size() < |A| then
6: A.push(s)
7: else
8: A.pop()
9: A.push(s)
10: end if
11: else if Atype == “Reservoir” then
12: if A.size() < |A| then
13: A.push(s)
14: else
15: i ∼ rand int(0, n− 1)
16: if i < |A| then
17: A[i] = s
18: end if
19: end if
20: n = n+ 1
21: end if
22: end for
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Appendix C: Hyperparameter
Sweeps

Connect Four 9x9 Go

Training actors 700 700

Archive actors 50 50

fθ’s depth 10 residual blocks 10 residual blocks

fθ’s width 256 filters 256 filters

|B| 217 217

bstep 212 212

bbatch 8 mini-batches of 29 8 mini-batches of 29

Search iterations 100 400

Learning steps 600 900

Table C.1: Fixed hyperparameter values
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AlphaZero GEVE GEVC GESR GESC

lr ← [10−2, 10−3, 10−4]→

c ← [10−4,10−5, 10−6]→

α ← [0.03,1.0, 5.0]→

ϵ ← [0.05, 0.1,0.25, 0.5]→

cpucb ← [0.5,1.0, 2.0, 4.0]→

k [5,10, 20, 30] [2, 5,10, 20] [5,10, 20] [1, 2, 5,10, 20] [5,10, 20]

λ N/A ← [0, 0.01,0.1, 0.25]→

|A| N/A N/A ← [105,106, 2×106]→

τ ← [0.5, 0.75,1.0, 2.0]→

Table C.2: Hyperparameters swept over in Connect Four. The hyperparameters were
swept over in descending order in the table (lr first and τ last). When a set of
hyperparameter values is bounded with arrows (← [. . . ] →), it indicates that this
set of hyperparameter values was swept over by each algorithm in the column. The
values that are bolded were the values that hyperparameters were set to prior to being
swept over.

AlphaZero GEVE GEVC GESR GESC

lr 10−3 10−3 10−3 10−3 10−3

c 10−5 10−5 10−5 10−5 10−5

α 1.0 1.0 1.0 1.0 1.0

ϵ 0.25 0.25 0.1 0.25 0.25

cpucb 1.0 1.0 1.0 1.0 1.0

k 10 5 10 2 10

λ N/A 0.1 0.1 0.0 0.01

|A| N/A N/A 106 106 105

τ 1.0 1.0 1.0 1.0 1.0

Table C.3: Best hyperparameter values in Connect Four
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AlphaZero GEVE GEVC GESR GESC

lr ← [10−2, 10−3, 10−4]→

c ← [10−4,10−5, 10−6]→

α ← [0.03, 1.0, 5.0]→

ϵ ← [0.05,0.1, 0.25, 0.5]→

cpucb ← [0.5, 1.0,2.0, 4.0]→

k ← [1, 2,5, 10]→

λ N/A ← [0.01,0.1, 0.25]→

|A| N/A N/A [105,106, 2×106] ← [105,106, 2×106, 5×106]→

τ ← [0.5, 0.75,1.0, 2.0]→

Table C.4: Hyperparameters swept over in 9x9 Go. The hyperparameters were swept
over in descending order in the table (lr first and τ last). When a set of hyper-
parameter values is bounded with arrows (← [. . . ] →), it indicates that this set of
hyperparameter values was swept over by each algorithm in the column. The values
that are bolded were the values that hyperparameters were set to prior to being swept
over.

AlphaZero GEVE GEVC GESR GESC

lr 10−3 10−3 10−3 10−3 10−3

c 10−5 10−5 10−5 10−5 10−5

α 0.03 0.03 0.03 0.03 0.03

ϵ 0.1 0.1 0.1 0.1 0.1

cpucb 1.0 2.0 2.0 1.0 2.0

k 2 1 1 2 1

λ N/A 0.1 0.1 0.1 0.1

|A| N/A N/A 106 2× 106 2× 106

τ 1.0 1.0 1.0 1.0 1.0

Table C.5: Best hyperparameter values in 9x9 Go
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Appendix D: Additional Plots

(a) MCTS-Solver 1x (b) MCTS-Solver 100x

Figure D.1: AlphaZero and Go-Exploit’s win rates against MCTS-Solver 1x and 100x
in Connect Four. The win rates were averaged over the 30 validation runs and the
shaded regions represent 95% confidence intervals.

.
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(a) MCTS-Solver 1x (b) MCTS-Solver 100x

Figure D.2: AlphaZero and Go-Exploit’s win rates against MCTS-Solver 1x and 100x
in 9x9 Go. The win rates were averaged over the 30 validation runs and the shaded
regions represent 95% confidence intervals.
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