Search
Skip to Search Results-
1997
Tikhonchuk, V. T., Voronkov, I., Frycz, P., Samson, J. C., Rankin, Robert
The nonlinear dynamics of a shear flow and its subsequent evolution in the equatorial plane of the inner plasma sheet is studied. A linear analysis of the ideal MHD equations reveals a hybrid vortex instability which appears because of the coupling of Kelvin-Helmholtz (KH) and Rayleigh-Taylor...
-
1994
Samson, J. C., Rankin, Robert, Wei, C. Q., Frycz, P.
A three-dimensional compressible resistive magnetohydrodynamic simulation code, with inclusion of the fully generalized Ohm's law, has been developed to study the nonlinear evolution of field line resonances in Earth's magnetosphere. A simple Cartesian box model of an inhomogeneous plasma with...
-
1994
Tikhonchuk, V. T., Frycz, P., Samson, J. C., Rankin, Robert
We present theory and numerical simulations of strong nonlinear effects in standing shear Alfven waves (SAWs) in the Earth's magnetosphere, which is modeled as a finite size box with straight magnetic lines and (partially) reflecting boundaries. In a low beta plasma it is shown that the...
-
1999
Tikhonchuk, V. T., Voronkov, I., Samson, J. C., Rankin, Robert
The three-dimensional, nonlinear evolution of a shear how (or Kelvin-Helmholtz (KH)) instability driven by a large-amplitude shear Alfven wave (SAW) in the Earth's magnetosphere is studied by using numerical solutions to the complete set of ideal magnetohydrodynamic equations. An initial setup is...