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Abstract. A three-dimensional compressible resistive magnetohydrodynamic simulation 
code, with inclusion of the fully generalized Ohm's law, has been developed to study the 
nonlinear evolution of field line resonances in Earth's magnetosphere. A simple Cartesian 
box model of an inhomogeneous plasma with straight geomagnetic field lines is used, and 
the Alfvtn velocity increases monotonically from the magnetopause boundary layer toward 
Earth. A monochromatic fast mode compressional oblique wave is applied from the direction 
of the magnetopause boundary layer, pumping energy into the magnetosphere. The fast mode 
wave, while propagating toward Earth, is partially reflected at the turning point (located at 
radial distances between 8 and 10 Rr in the equatorial plane) and then couples to shear 
Alfv•n waves, leading to the formation of large-amplitude field line resonances near Earth. 
The field line resonances are observed to narrow to several electron inertia lengths within 
several wave periods of the driver wave, and electron inertial effects become important at 
this stage. Final profiles near the resonance are very similar to Airy functions, indicating that 
electron inertial effects become important before possible nonlinear effects. The electron 
inertial effects lead to oscillating parallel electric field which might be potential accelerators 
for electrons in some types of auroral arcs. 

1. Introduction 

Fluctuations, particulm'ly solar wind pressure pulses, are 
important external sources of ultralow frequency magne- 
tohydrodynamic (MHD) waves in the terrestrial magne- 
tosphere [Southwood and Hughes, 1983; Yumoto, 1988; 
Allan and Poulter, 1992; Lee and Wei, 1993]. Some 
observations of monochromatic ultralow frequency waves 
[e.g., Cummings et al., 1969; Samson, 1972] have been 
interpreted as standing shear Alfvtn waves or field line 
resonances (FLRs). A number of theories have been devel- 
oped to explain the coupling of compressional energy to the 
shear Alfv•n waves and the formation of monochromatic 

compressional modes in magnetospheric cavities [C hen 
and Hasegawa, 1974a, b; Southwood, 1974; Hasegawa 
and Chen, 1976; Allan et al., 1986; Kivelson and South- 
wood, 1985; Zhu and Kivelson, 1988; Lee and L•isak, 
1989, 1991; Hartold and Samson, 1992]. 

Field line resonances might play a direct role in con- 
trolling the formation of some auroral arcs [Samson et 
al., 1991; Walker et al., 1992; Xu et al., 1993]. If 
the resonance is narrow enough, kinetic Alfv•n waves 
[Hasegawa, 1976; Goertz, 1984] or inertial Alfv•n waves 
[Lysak, 1990; $eyler, 1990] can give rise to electric field 
components parallel to the ambient magnetic field. These 
parallel electric field components may accelerate electrons 
and lead to the spatial modulation of small-scale auroral 
arcs. Walker et al. [1992] analysed data from the Goose 
Bay HF radar and found that at the ionosphere the FLR 
width can be less than 40 kin, which is actually the lower 
limit of the radar resolution, and that smaller scale stmc- 

Copyfight 1994 by the American Geophysical Union. 

Paper number 94JA00582. 
0148-0227/94/94JA-00582505.00 

tures are also possible. Satellite observations of FLRs have 
revealed that theft widths at the equatorial plane can be 
as small as 0.2 R• (R•: = 6400 km, the Earth's radius) 
[Hughes et al., 1978; Singer et al., 1982], which could 
map to ~ 30 km in the auroral ionosphere. Analytical and 
computational models [Walker et al., 1982; Rankin et 
al., 1993b] show that the FLRs have spatial scales in the 
fields which are substantially smaller than the resonance 
width. The 180 ø radial phase shift through the resonance 
leads to spatial scales or shears i,' •he azimuthal magnetic 
field that are about one fifth the width of the resonance 

[Rankin et al., 1993b]. 
Electron inertial effects on FLRs have been investigated 

previously by using other approaches. Inhester [1987] 
obtained computational solutions of the linear MHD equa- 
tions and found that either kinetic Alfv•n waves or inertial 

Alfv4n waves may lead to modification of the FLR struc- 
ture. In computational studies of small-scale discrete 
auroral arcs, Seyler [1990] used an incompressible model 
with inclusion of the dispersive effect of electron inertia 
and concluded that electron inertia can significantly affect 
the formation of small-scale auroral arcs. 

Recenfiy, Rankin et al. [1993b] carried out a three- 
dimensional compressible MHD simulation to study the 
evolution of standing wave FLR in the nightside magneto- 
sphere. They found that the resonant mode conversion of 
energy from compressional waves to shear Alfvtn waves 
may lead to FLR widths small enough to allow kinetic or 
electron inertial effects. 

In the present work, the recent study of the nonlinear 
evolution of FLRs [Rankin et al., 1993b] has been ex- 
tended to include finite electron inertial effects. To study 
the electron inertial effect together with the FLR, we have 
developed a model for the three-dimensional nonlinear 
evolution of FLRs in Earth's magnetosphere by including 
the dispersive effect of electron inertia in the generalized 
Ohm's law. Though nonlinear effects do not dominate our 
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simulation, it is very important that the computational code 
be able to handle possible nonlinear effects. For exam- 
ple, nonlinear harmonic generation in the standing Alfvtn 
wave can lead to a number of possible effects including 
ponderomotive forces [Allan, 1992] and cascading of wave 
energy to higher harmonics. Generation of these harmon- 
ics would severely influence the development of inertial 
Alfvdn waves. In our model, a simple box geometry of 
an inhomogeneous plasma with straight geomagnetic field 
lines is used, and the Alfvdn velocity increases monoton- 
ically from the magnetopause toward Earth. A fast mode 
compressional oblique wave is applied from the direction 
of the magnetopause boundary layer, pumping energy into 
the magnetosphere. The fast mode incident wave, while 
propagating toward Earth, is partially reflected at the turn- 
ing point and, with appropriate choices of the wave vector, 
the coupling of fast mode waves to shear Alfvtn waves 
leads to the formation of large-amplitude ELRs nearer the 
Earth. We find that the dispersive effect of electron inertia 
becomes important in the resonance structures when the 
resonance narrows to several electron inertia lengths. Final 
profiles near the resonance are very similar to the Airy 
function solutions which are typical of mode conversion. 

In section 2 we describe the simulation model and the 

governing equations, including a generalized Ohm's law 
with electron inertia. We also consider the linearized equa- 
tions and the form of the FLRs in the linear regime as well 
as the dispersion relation derived from the MHD equations 
with the generalized Ohm's law. The simulation results 
for cases both with and without electron inertial effects 

are presented in section 3, together with their comparisons. 
Our results show that for the configuration we are consid- 
ering, electron inertial effects play the major role in the 
evolution of the FLRs, with little, if any, influence from 
nonlinear effects such as harmonic generation. Section 4 
contains a discussion of our simulation results and their 

possible implications in interpreting observations as well 
as a summary of the simulation results. 

2. Simulation Model and Governing Equations 

In this section we present the simulation model for our 
study of electron inertial effects including the governing 
equations, the simulation domain, the numerical scheme, 
and the boundary conditions. In addition, in order to 
clarify our interpretation of the simulation results, we also 
present the linear theory of FLRs and derive the linear 
dispersion relationship for the MHD equations with the 
electron inertial term. 

As solar wind disturbances, such as pressure pulses, 
reach the magnetopause, the solar wind energy can be 
transported into the magnetosphere in the form of fast 
compressional waves. These waves propagate deep into the 
magnetosphere and possibly form cavity modes between 
the surface of the turning point and the magnetopause 
[Allan et al., 1986; Kivelson and Southwood, 1986; Zhu 
and Kivelson, 1988]. These compressional cavity modes 
form at discrete frequencies and are the source of the 
monochromatic compressional drivers for the FLRs [ ½hen 
and Hasegawa, 1974a, b; Southwood, 1974]. The fast 
mode wave is only partially reflected at the turning point, 
and some portion of the wave energy evanescently decays 
Earthward of the turning point. When the frequency of the 
fast mode wave matches the frequency of the local shear 

Alfvtn wave (resonant point), mode coupling can occur, 
and the energy is converted irreversibly from the fast mode 
to the shear Alfvtn mode, leading to the resonant excitation 
of FLRs. 

In order to simplify our computational scheme, we 
do not include a full cavity mode scenario but use a 
monochromatic fast mode driver, propagating inward from 
the magnetopause. Our simulation includes both the mining 
point and the resonance, but to save on computing time, 
the simulation box has a boundary just outside the turning 
point. 

Note that two scale lengths are involved in the above 
description, namely, the large scale length of the whole 
magnetosphere and the small scale length of the electron 
inertia. The scale size of the whole magnetosphere is of 
the order of 10 Be, while typical electron inertia lengths 
are only several kilometers for typical plasma densities in 
the magnetosphere. Therefore a model which is valid on 
both the scale size of the whole magnetosphere and the 
scale size of the electron inertia length is required for the 
study of the dispersive effects of electron inertia on the 
nonlinear development of driven FLRs. Computationally, 
it is very difficult to have spatial resolution on the electron 
inertia scale while also studying global magnetospheric 
phenomena. In addition, because of the complexity of 
the magnetospheric system, we neglect the curvature of 
the geomagnetic field so that the convergence of the mag- 
netic field and the decreased thickness of the FLRs near 

the ionosphere (where electron inertial effects are likely 
to be important) are not part of our model. In order to 
accommodate the very different scale sizes, we have cho- 
sen a compromise configuration for our simulation. We 
consider a relatively small "box" model with most of 
the essential ingredients including a nonuniform magne- 
tospheric plasma, reflecting ionospheres, and the surfaces 
of the turning points and the resonances for the fast mode 
monochromatic driver. 

To include electron inertia in the global magnetospheric 
system, the governing equations to be used consist of the 
full set of resistive MHD equations with inclusion of the 
electron inertial term in the Ohm's law. 

0•p = _ V. (pv) (1) Ot 

Ov 

p•- = -pv. Vv - VP + J x B (2) 
0B 

= -v x E (a) ot 

X7 x B = P0J (4) 

me 0J 
E + v x B = + .J (5) ne 20t 

OP 

Ot = -v. X7P - 7PX7 ß v + (7 - 1)r/J2 (t5) 

where p is the plasma density, v is the flow velocity, P is 
the total plasma pressure, J is the total current, B is the 
magnetic field, E is the electric field,/to is the permeability 
in vacuum, me is the electron mass, e is the electron charge, 
r/is the magnetic resistivity, and 7 is the ratio of specific 
heats (7 = 5 / 3). 
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Equation (5) is an Ohm's law which includes the electron 
inertial term beyond the so-called resistive MHD case. The 
last term on the right-hand side is the magnetic resistivity 
term, which gives magnetic diffusion effects. The electron 
pressure (or high temperature) term is ignored because in 
this paper we have chosen to model the effects of driving 
FLRs in a low/• (/• << me/mi) plasma, such as might 
be seen at 1.5 or 2 BE altitude. On the other hand, in 
the magnetosphere the pressure term probably becomes 
important near the equatorial plane where the plasma will 
have finite/3. Other terms, such as the ion inertial (or Hall) 
term and the nonlinear electron inertial terms have also 

been ignored. 
The above set of equations is in a dimensional form. 

In the numerical simulation, these equations can be put 
into a dimensionless form by using appropriate normaliza- 
tions. In the present study the length is normalized by a 
characteristic length a, the number density by the plasma 
number density at the left boundary of the simulation box 
No, the plasma density by miNo, the magnetic field by the 
magnetic field at the left boundary B0, the velocity by the 
Alfv6n velocity at the left boundary VAO, and the time by 
the characteristic Alfv6n transit time tA • a/VAo. The nor- 
malization of the thermodynamic quantities is chosen such 
that P0 = B0 2/2#0 = poVA2o/2. The magnetic Reynolds 
number is defined as Rm = #oVAoa/rl. With the above 
normalizations and some straightforward mathematical op- 
erations, (1) - (6) can be expressed in dimensionless form 
as 

or 

ot v x (v x - v x = o (7) 

ot 

1 

+V.(pvv)+•Ve+n x(Vxn)=0 (s) 

Op 
O•' + V. (pv)= 0 (9) 

OP 

Ot + X7. (7Pv) -(7-1)[v. X7P + 2(X7 x B)•/Rm] = 0 
(10) 

where 

r -- B + V x (A•V x B) (11) 

and )•e = (me/#one :t) 1/2/a is the normalized collisionless 
skin depth due to electron inertia (or the electron inertia 
length). If we set the electron inertia length to zero, (7) 
- (10), together with (11), will be the same as the simple 
resistive MHD equations. 

Equations (7) - (10) are a set of eight equations in eight 
unknowns r, pv, p, and P. Only (9) is in a conservation 
form. Equation (8) could be converted to a conservation 
form by adding an extra term B(V. B) = 0. However, 
this conversion would add a pseudoforce to the equation 
and affect the accuracy of velocity calculations because 
V. B is not necessarily zero on a finite difference mesh 
[e.g., Finan and Killeen, 1981]. The advantage of using 
a nonconservation form for (10) is that the pressure is the 
main variable, which is especially useful when processes 
in low • plasmas are simulated. Equation (7) is in a 

pseudovector conservation form even with inclusion of 
electron inertia. 

Before going to the detailed numerical studies, we 
present some linear theoretical analyses based on (1) - 
(6) to serve as a basis for the discussion of the numer- 
ical study. First, we derive the equation for perturbed 
components in order to find the turning points and the 
resonances in our model of a nonuniform magnetoplasma. 
Since we are mainly concerned about the approximate 
positions of the turning points and the resonances rather 
than details of the resonance structure, for simplicity we 
temporarily neglect the electron inertial effect. Assuming 
that the ambient magnetic field is along the z direction 
and the plasma density, pressure, and magnetic field vary 
only along the z direction (radially toward Earth), we can 
proceed to linearize (1) - (6). If we define the displace- 
ment vector • by v• = O•/Ot, where v• is the perturbed 
velocity and take the displacement vector to have the form 
•(x, t) = •(x) exp [i(k•y + kzz - wt)], it can be shown 
that, by inserting the displacement vector into (1) - (6), 
the x component of the displacement can be expressed as 
[e.g., Roberts, 1984] 

+ VA)A ] + po( - = 0 (12) 

where 

- - A__ (oa • • • 
2 2 2 2 2 

= KI,C, VA 
,.2 2 K • = k v + kz 

2 2 

c• = c2 • + VA • 
where cs is the sound speed, w f is the fast mode frequency, 
and ws is the slow mode frequency. 

It can be seen from the expression for A in (13) that 
expression (12) has two singularities, namely, oa = oaf 
and oa = ws. These two singularities give the turning 
points. In addition, expression A also has two resonances, 
6•2 2 2 602 .2 2 = kz VA and = kz cr, where the compressional 
wave couples its energy into the shear wave and the slow 
mode "cusp" resonance. In a cold plasma, CT = cs = 0 
and oas = 0, only one turning point and one resonance exist. 
The turning point is located at on: = (k• + kz•) VA• (Xt ), and 
the resonance is located at on2 = kz•VA • (x,.), where xt and 
xr represent the positions of the turning point and the 
resonance, respectively. 

The linear dispersion relationship for the MHD equations 
with electron inertia can also be obtained by assuming the 
perturbation has the form f• (x, t) = f exp [i(k_Lx + kzz - 
oat)], where k kñ$c + kz• and k • • • = = kñ + k z. We find 
two branches of the dispersion relation by inserting f• into 
(1) - (6). One branch is for the compressional mode 

2 2 

2 VA 2 oa2 k 2 2 CsVA oa4-k2(cs+ l+k,A• ) + kzl+k, Ae2 =0 (14) 
and the other branch is for the shear Alfv6n mode (inertial 
Alfv6n waves) 

2 2 

60'= kzVa (15) 
1 + k2A• 
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It can be seen that the compressional mode and the shear 
Alfvtn mode are decoupled in the case of a uniform back- 
ground even with the inclusion of electron inertia. In 
addition, there are dispersive effects for both the compres- 
sional mode and the shear Alfvtn mode, because different 
wavenumber (kñ) components propagate at different ve- 
locities. Strong dispersion of the shear Alfvtn mode occurs 
when kñ increases significantly due to the narrowing of 
the resonance, as can be seen from (15). As to be shown in 
detail in the next section, the resonance narrows with time 
until it saturates due to loss mechanisms, such as electron 
inertia and the ionospheric Joule heating. On the other 
hand, the compressional mode does not show any very nar- 
row structures, and the denominator in (14) is very close to 
unity. Therefore the dispersive effect on the compressional 
mode due to electron inertia is negligible. If electron inertia 
is ignored (,Xe = 0), the usual dispersion relationship for 
both the compressional mode and the shear Alfvtn mode 
are recovered and there is no dispersive effect for the shear 
Alfvtn mode. 

In the present study, a simple rectangular box model 
of the three-dimensional magnetosphere is used. The x 
direction points radially toward Earth. The left boundary at 
x = 0 is the driver boundary, and the fight boundary at x = 
Lx is a boundary on the Earthward side of the resonance. 
The z direction points along the geomagnetic field lines. 
The bottom boundary at z = 0 is the ionosphere, and the top 
boundary at z = Lz is the equatorial plane. The y direction 
is along the azimuthal (• x •:) direction. For simplicity 
we have assumed in the present study that the background 
magnetospheric plasma is cold (/• < me/mi) and the 
background magnetic field is constant. Therefore only 
nonuniformity in the plasma density is considered here. The 
result for the hot plasma with a nonuniform magnetic field 
will be presented in a separate paper. The plasma density 
decreases along the x direction and, consequently, the 
Alfvtn velocity increases from the magnetopause toward 
Earth, as shown in Figure 1. In addition, the electron 
inertia length increases from the magnetopause toward 
Earth because it is also inversely proportional to the plasma 
density. 

Generally speaking, to maintain the compressional mode 
and have a continuous excitation of the FLR, a constant 
monochromatic driver is required at the magnetopause. As 
discussed above, only discrete frequencies are sustained in 
a realistic magnetospheric cavity and each of these frequen- 
cies has a different resonant position. Therefore we assume 
for simplicity that the fast mode driver is a monochromatic 
compressional wave at the left boundary x = 0, which is 
inside the magnetosphere, greatly simplifying the driver 
boundary conditions at x = 0. Since electron inertia has 
little effect on the compressional mode, the dispersion rela- 
tionship (14), which is required at x = 0, can be simplified 
by setting ,•e = 0. The frequency of the fast mode driver is 
the positive root of (14), which is 

l k:(cs q- q- V/1- 4ckz/k (16a) 

where k 2 k• + k• + k• and c• 2 : : = = CsVA/(C s + V,•), as 
defined previously. For a cold plasma cs = 0 and c•, = 0, 
(16a) reduces to 
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Figure 1. Initial profiles of (a) the plasma density and (b) 
the Alfvtn velocity along the radial direction from the driver 
at the left boundary (x = 0) toward the Earthward boundary 
(x = Lx). 

It can be seen that the frequency of the fast mode driver 
is determined by the physical parameters at the driver 
boundary (z = 0) and the wavenumber of the driver. For a 
given frequency of the driver, the physical components of 
the incident wave can be obtained by linearizing (7) - (10), 
under the assumption that the driver amplitude is relatively 
small compared with the zero-order fields. 

In addition to the imposed fast mode driver which 
supplies energy into the simulation box from outside of 
the boundary, it is desirable that waves reflected from the 
turning point should be allowed to leave the system. To 
accomplish this, outgoing boundary conditions are applied 
at z = 0 for the reflected wave components. Therefore 
the boundary conditions at z = 0 consist of two parts: 
the imposed driver and the outgoing wave conditions. 
After some straightforward mathematical derivations, the 
boundary conditions at z = 0 can be expressed as 

Of Of Ofi (17) Ot V•x x = 2 0t 

where f(x, y, z, t) is any one of the field variables corre- 
sponding to the waves, v• is the perturbed x component 
velocity, and fi is the imposed fast mode driver at x = 0. 
For the details of the mathematical derivations which lead 

to (17) as well as the expressions of fi, we refer readers to 
Rankin et at. [1993b]. 

The ionospheric boundary conditions can be constructed 
in the same fashion. If the ionospheric conductivity is 
finite, partial reflection of waves at the ionosphere occurs 
and some wave energy is lost through Joule heating at 
the ionosphere. To handle this reflection, the boundary 
conditions for the wave field components at z = 0 are 
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(1 - R) Of _ (1 + R)vz Of 3? (18) 

where R is the reflection coefficient at the ionosphere. 
Taking into account the electron inertial term in the mag- 
netosphere gives 

This machine is a small scale vector/parallel machine con- 
figured with four proprietary vector units, with an optimum 
performance of 128 million floating point operations per 
second when all processing elements are being utilized. We 
are in the process of implementing this code on a Myrias 
SPS-3 computer, which has 44 processors. 

E:,/by = +/toVA[1 q- k21/•2e] 1/2 -- -'l-.• 1 (19) 3. Simulation Results 

In the usual way, considering an ionospheric slab with a 
height-integrated conductivity Z7p, we have for the iono- 
sphere 

Ex/by = .•;1 (20) 
Considering the incident and reflected waves gives 

./• = '•A- .•p (21) 

In this section we present the simulation results for two 
different cases. In case A we show the results without 

electron inertial effects, while in case B, electron inertial 
effects are considered. 

As pointed out earlier, the compressional wave suffers 
partial reflection at the turning point, and part of the 
compressional wave energy is coupled to the shear Alfv6n 
wave at the resonance. This coupling process may be 
described by a coupling coefficient, which is defined as 

where 2A with electron inertia is given by (19). For 
a typical case with •wp = 5 mho and VA = 3 x 10 4 
km/s, then •A (IIO inertia) _• 0.03 mho and R _• -0.99. 
Including inertia leads to decrease of L'A, and therefore 
the reflectivity would be even higher. Bearing in mind 
that for such values of R (IR I ) 0.99), the inertial effect 
on the reflection condition is negligible. We have chosen 
the reflection coefficient to be compatible with the above 
estimates and have not included the inertia correction since 

it is extremely small with the high reflectivity. 
Boundary conditions at other surfaces are as follows. At 

the Earthward boundary x = Lx, a reflecting boundary 
condition is used. Symmetry conditions are applied at 
z = L z which is the equatorial plane. It can be shown that 
the plasma density p, the plasma pressure p, the parallel 
component of the magnetic field b z, and the perpendicular 
components of the velocity vx and vy are symmetric with 
respect to z = Lz, while the perpendicular components of 
the magnetic field b• and by and the parallel component of 
the velocity V z are antisymmetric with respect to z = L z. 
Periodic boundary conditions are used in the y direction. 

Because of the different spatial scales and the large vari- 
ation of the Alfv6n velocity in the system, the restriction of 
the Courant-Friedrichs-Lewy condition [e.g., Briley and 
McDonald, 1977] for the time step makes it very difficult 
to use an explicit numerical scheme to solve (7) - (10). 
Consequently, we have developed an implicit numerical 
code, which uses the Douglas-Gunn algorithm [Douglas 
and Gunn, 1964] for alternating direction implicit tempo- 
ral advancement, with an overall second-order accuracy in 
both space and time. The use of the alternating-direction 
implicit time steps allows the use of a time step that is 
many times larger than the time step in any explicit code 
[Briley and McDonald, 1977; Finan and Killeen, 1981]. 
In the three-dimensional case, the algorithm proceeds by 
advancing the system of equations along one spatial di- 
rection at a time, which involves the iterative solution of 
nonlinear block tridiagonal systems of algebraic equations. 
A major attraction of the Douglas-Gunn algorithm is that 
the intermediate solutions •/,* (along the x direction) and 
•b** (along the y direction) are consistent approximations 
to the final solution •/,n+• (along the z direction). We have 
implemented the alternating direction implicit algorithm 
on a four-processor Stardent 3040 computer on which it 
achieves near-ideal scaling from one to four processors. 

q 
(: • kliV A dVff •/dx) •/a 

It has been shown that, for a monochromatic wave, the 
coupling efficiency maximizes at q _• 0.5 [Kivelson and 
Southwood, 1986; Inhester, 1987]. In the simulation 
we choose wavenumbers ky and k: for the given Alfv6n 
velocity profile to satisfy q ~ 0.15 near the resonance. 

With consideration of the different spatial scales in the 
system, we have chosen L• _• 3200 km, Ly _• 6400 
km, and L: •_ 1500 km for the simulation box. The 
uniform background magnetic field is 5 nT. The back- 
ground plasma density decreases from the magnetopause 
side toward Earth, as shown in Figure l a. The plasma 
number density at the left boundary (x = 0) is No = 10 s 
m -s. The above choice of the magnetic field and the 
plasma density gives an Alfv6n velocity of VAO • 345 
knYs at the left boundary. In our box the turning point is 
at xt • 0.42 L• and the resonance without electron inertia 
is at x,_• 0.49 L•. In the vicinity of the resonance, the 
plasma number density is about 0.2 No, and the Alfv6n 
velocity is about 750 knYs or 2.2 VAO, as shown in Fig- 
ure 1. The electron inertia length along the x direction 
(not shown) has the same profile as the Alfv6n velocity 
because they have exactly the same dependence on the 
plasma density in the case of a constant magnetic field. 
The electron inertia length is about 39 km at the position 
of the resonance. Note that from Figure 1 a the plasma den- 
sity is uniform near both the left and the fight boundaries 
(x = 0 and x = Lx), such a choice of profile is mainly 
for the implementation of boundary conditions. In addi- 
tion, we choose a very large magnetic Reynolds number 
(Rm = 20,000) to ensure numerical stability with little 
diffusion. 

The normalized magnitude of the driver is two percent, 
which is the applied vy at the left boundary x = 0. Other 
wave components can be obtained from the linearized set 
of equations. For example, the maximum driver for the 
azimuthal magnetic field by is about one percent, four 
percent for v•, and two percent for b•. The amplitude 
of the driver increases from zero to its maximum value 

linearly with time over a duration shorter than the Alfv6n 
transit time in the box in order to allow a smooth initial 

setup. 
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Figure 2a shows a surface plot of the azimuthal magnetic 
field component by in the a:-y plane at location z = Lz/2 
and at time t • 3.0 Tp in case A, in which electron inertial 
effects have been neglected. The time unit Tp is the wave 
period of the driver imposed at the left boundary z = 0. 
Note that by is predominantly due to the shear mode, and 
b v will come only from the shear mode in cases where the 
compressional mode and the shear mode are decoupled. 
The amplitude of the driver at the left boundary (z = 0) is 
one percent, as can be seen from Figure 2a. Initially, there 
is no shear mode inside the system, and by is zero except 
at the left boundary where the driver is imposed. As time 
goes on, the standing wave structure of the compressional 
mode between the turning point and the magnetopause is 
gradually formed, and its amplitude increases with time 
due to the constant driver. At the same time, some portion 
of the compressional wave energy is coupled into the shear 
mode, which grows secularly. As shown in Figure 2a, the 
resonance structure is obvious at z '• 0.49 Lx by the time 
t ,• 3.0 Tp. The periodic •/dependence of the driver at the 
left boundary (x = 0) and at the resonance is also evident 
in this figure. 

Note that b• is antisymmetric about the equatorial plane 
and symmetric about the ionosphere, yielding a maximum 
field-aligned current at the ionosphere. Therefore b• has 
a node at the equatorial plane and an antinode at the 
ionosphere in such a case. The cuts at other locations along 
the z direction (not shown here) show profiles similar to 
that in Figure 2a, except that the amplitude increases from 
a minimum at the equator to a maximum at the ionosphere. 
Therefore the excited FLR is the fundamental mode. In 

addition, it is found that the v• component has the same 
spatial profile as the b• component along the z and •/ 
directions, consistent with properties of the shear Alfvtn 
wave. However, v• has an antinode at the equator and a 
node at the ionosphere, consistent with the fundamental 
mode structure. The amplitude of v• decreases from its 
maximum at the equator to its minimum at the ionosphere. 

Now we examine electron inertial effects. Figure 2b 
shows a surface plot of by in the x-g plane at location 
z = Lz/2 and at time t • 3.0 T• in case B, in which the 
electron inertial term has been included. It can be seen that 

Figures 2a and 2b are nearly identical. Therefore there is no 
significant electron inertial effect at this stage in the time 
evolution. The reason is that, although the FLR has formed 
due to mode coupling, the resonance width is still too large 
to be affected by electron inertia. All of the properties 
discussed for Figure 2a are also true here. 

In an ideal magnetoplasma, coupling of the monochro- 
matic, compressional driver leads to a shear Alfvtn reso- 
nance which grows in amplitude and narrows with time due 
to phase mixing [Poedts and Kerner, 1992]. Saturation is 
reached when dissipation effects are included. Figures 3a 
and 3b show surface plots of b• in the z-g plane at loca- 
tion z = L•/2 and at time t • 7.5 T• in cases A and B, 
respectively. Comparing Figures 2 and 3, we can see that 
the amplitude of the FLR keeps increasing with time and, 
at the same time, the .resonance narrows. At t • 7.5 Tp, 
the FLR has narrowed enough to be affected by electron 
inertia, as can be seen from Figure 3b. One noteworthy 
difference between Figures 3a and 3b is the additional set 
of peaks on the Earthward side of the resonance in Fig- 
ure 3b. In addition, the main resonance peak has shifted 
Earthward in Figure 3b for the case with electron inertia, 
and the resonance width has also been broadened. These 

features can be seen more clearly from one-dimensional 
cuts along the z direction, which are shown below. The 
small variations which evolve on the driver side of the 

resonance in Figures 3a and 3b do not show in all of the 
simulation cases, and we plan further studies to determine 
the source of these variations. 

Figure 4 shows one-dimensional cuts of the azimuthal 
magnetic field component b• along the x direction at time 
t = 2.0 Tp and at location •/= 0.096 L• and z = 0. The 
dashed curve is a cut from case A, and the solid curve 
is a cut from case B. At this time the resonance width is 
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Figure 2. Azimuthal components of the perturbed magnetic field b• at an early stage (t "• 3.0 Tp, 
where Tp is the period of the driver) of the nonlinear evolution of FLRs. Shown here are surface plots at 
z = Lz/2, namely, halfway between the ionosphere and the equatorial plane. (a) Case A, (b) case B. The 
a: direction is along the radial direction and points from the magnetopause toward Earth. The •/direction 
is the azimuthal direction. 
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Figure 3. Similar to Figure 2 but at a later time t • 7.5 T r. 

W,. • 250 km, which is defined as the distance between 
the half maxima. The ratio of the resonance width to the 

electron inertia length (Ae • 39 km at the resonance) is 
W,./A• •_ {;.4. As can be seen from Figure 4, although the 
resonance structure has formed at this stage, the resonance 
width is too large to allow discernible electron inertial 
effects. 

Figure 5 shows the cuts at a later time t •_ 4.0 T r and at 
another location y •_ 0.064 Ly and z = 0. As can be seen 
from the dashed curve (no electron inertia), the amplitude 
of by has increased with time, and the resonance width 
has become narrower than in Figure 4. The resonance 
width here is Wr •- 110 km, which gives Wr • 2.8 
However, the solid curve for the case with electron inertia is 
now substantially different from the case without electron 
inertia, indicating that electron inertial effects become 
important at this stage in the evolution of the FLR. We have 
run a large number of simulations with varied parameters 
and found that on average the dispersive effect of electron 
inertia become important when IV,. < 6 

Further inspection of Figure 5 shows a number of the 
effects due to electron inertia, including the broadening 
of the resonance, an Earthward shift of the resonance 
peak, and the formation of an oscillating wavetrain on the 
Earthward side of the resonance (see also Figure 6). In fact, 

t=2.0 Tp 
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Figure 4. One-dimensional cuts of y components of the 

ma•gnetic field by at the ionosphere at t •_ 2.0Tp along g _ 0.096 Ly, where by reaches its maximum. The solid 
curve is for case B and the dashed curve is for case A. 

the profiles with electron inertia in Figures 5 and 6 are very 
similar in shape to the Airy function solutions expected 
when mode conversion to inertial Alfvdn waves occurs in 

the linear regime. 
The Earthward movement of the resonance peak can be 

understood by looking at the resonant condition with the 
electron inertia, 

2 2 

where w is the driver frequency. When ,• is nonzero, the 
denominator in (23) increases, and for matching to occur, 
VA must increase and the resonant position x,. must move 
Earthward. 

Figure 6a shows a one-dimensional cut of by in case A 
along the x direction at time t ", 8.0 Tv and at location 
y • 0.78/_,y, z = 0, where by reaches its maximum. 
Figure 6b shows a one-dimensional cut of by in case B 
along the x direction at time t ',, 8.0 Tv and at location 
y = 0 and z = 0, where by reaches its maximum. Because 
of the large dispersive effect of electron inertia near the 
resonance, the locations along the y direction where by 
reaches a maximum have different positions in cases A and 

t=4.0 Tp 
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Figure 5. One-dimensional cuts of y components of the 

ma•gnetic field by at the ionosphere at t __ 4.0T r along y _ 0.064 Ly, where by reaches its maximum. The solid 
curve is for case B and the dashed curve is for case A. 
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Figure 6. One-dimensional cuts of y components of the 
magnetic field b• at the ionosphere at t _• 8.0 T v. (a) A cut 
at y _• 0.78 Ly for case A and (b) a cut at y = 0 for case B. 

B. Therefore it is not appropriate to show Figures 6a and 
6b together in one plot as we have done in Figures 4 and 
5. A convenient way to represent these data is by using 
a Fourier transform along the y and z directions and then 
to compare the averaged amplitude at each x location (see 
Figure 7). 

In Figure 6a the resonance has narrowed further at this 
time, and its amplitude has saturated due to the damping 
effect of the finite ionospheric conductivity. No further 
growth occurs after this time. The resonance width is 
Wr _• 70 km, which gives Wr _• 1.8,•e. For the case 
with electron inertial effects as shown in Figure 6b, it can 
be seen that the resonance peak has shifted even farther 
Earthward and is located at x ,,o 0.55 L=, versus 0.50 L= 
in Figure 5. 

The analysis of the three-dimensional plasma dynamics 
can be greatly simplified if we take advantage of the 
symmetries of the simulation box and use the Fourier 
transforms in the y and z directions. For each point in the 
x direction, a two-dimensional Fourier transformation is 
performed 

f(x)://f(x, y, z)exp[i(kyy + kzz)] dy dz (24) 

where ky and k z are wavenumbers associated with the 
driver and are the wavenumbers for the fundamental mode 

in the system (k•/ -- 2a'/L•/ and kz : a'/2Lz). 
Figures 7a, 7b, 7c, and 7d show the evolution of the 

Fourier amplitude (equation (24)) of the by component of 
the fundamental mode as a function of the x coordinate at 

times t _• 2.0T r, t _• 4.0T r, t _• 6.0T r, and t _• 8.0T r, 
respectively. As before, the solid curves are for case B 
and the dashed curves are for case A. At time t _• 2.0 T r 
as shown in Figure 7a, the resonance is well formed and 
the peak is located at x _• 0.49 L•. The resonance width 
is large and electron inertial effects are negligible. As 
time goes on, the resonance width narrows and when the 
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Figure 7. Time evolution of Fourier amplitude (Fourier 
transformation for all y and z) of the by component for the 
fundamental wave mode at (a) t •_ 2.0 T v, (b) t _• 4.0 Tp, 
(c) t _• 6.0 T v, and (d) t •_ 8.0 T v, respectively. The solid 
curves are for case B and the dashed curves are for case A. 

condition W,. < 6,•e is satisfied (Figure 7b), electron iner- 
tial effects modify the resonance structure. The resonance 
matching condition leads to an Earthward shift of the reso- 
nance for the case with electron inertia, and the dispersive 
effect leads to a lower peak amplitude, broadening of 
the resonance, and the propagation of energy Earthward 
from the resonance. When the resonance narrows further, 
the dispersive effect becomes stronger, as can be seen 
from Figure 7c. Eventually, the system reaches saturation 
(Figure 7d). 

In addition to the shear Alfvtn mode studied above, the 
compressional mode can be studied by examining other 
components of the wave field. Figures 8a, 8b, 8c, and 8d 
show Fourier components ofb•, b•, v•, and p, respectively, 
for the fundamental wave mode at time t "0 6.0 T v along 
the x direction. The solid curves are for case B and 
the dashed curves are for case A. Note that the uniform 

background values of the plasma density and the magnetic 
field have been subtracted while performing the Fourier 
transformation to get Figures 8b and 8d. These plots show 
that electron inertia has little effect on the fast mode either 
at the turning point (x ,'0 0.42 L•,) or at the resonance 
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Figure 8. Fourier amplitude of (a) b•, (b) bz, (½) v•, and 
(d) p for the fundamental wave mode at time t ".' 6.0 Tp. 
The solid curves are for case B and the dashed curves are for 
case A. 

(except for small differences in the plasma density p). 
Therefore it can be concluded that the electron inertial 

effect, if any, would mainly affect the resonance structure, 
namely, the shear Alfv6n mode. In addition, it can be seen 
from Figures 8a and 8c that bt and vt have little variations 
across the turning point and rapidly decrease to zero beyond 
the resonance. These two components are a mixture of the 
shear mode and the compressional mode. The other two 
components, b z and p as shown in Figures 8b and 8d, 
diminish beyond the turning point and they are mainly due 
to the fast mode. The sharp decrease of the amplitude 
here is an indication that the fast mode energy has been 
absorbed by the resonance due to mode conversion. 

We have also looked for manifestations of nonlinear 
effects in the FLRs and find that for both cases A and B 

there are density fluctuations near the equator. The density 
grows with time but has superposed oscillations at the driver 
frequency coo and at 2 coo. The 2 coo fluctuations indicate 
that nonlinear ponderomotive forces [Allan, 1992] are 
playing a role in the evolution of the FLR. Nevertheless, in 
this simulation, mode conversion to inertial Alfv6n waves 
seems to play the dominant role in saturating the growth 

of the FLR. We are planning further studies to look at 
the competing effects of mode conversion and nonlinear 
harmonic generation in the saturation of FLRs. 

A number of studies have suggested that inertial or 
kinetic effects in FLRs might lead to electron heating and 
acceleration and the formation of auroral arcs [Hasegawa, 
1976; Samson et al., 1991; Xu et al., 1993]. To illustrate 
this possibility with the present simulation results, we have 
estimated the field-aligned current from the z component 
of V x B and the parallel component of the electric field. 
Figure 9 shows a one-dimensional cut of the field-aligned 
current density J• (the solid curve) at the ionosphere at 
t _ 8.0 Tp along y _ 0.25 L•, for case B, together with the 
by component of the magnetic field at the same position 
(the dashed curve) for comparison. Positive J• indicates 
upward field-aligned current from the ionosphere toward 
the equatorial plane. Only the positive field-aligned current 
regions would be expected to lead to the acceleration of 
electrons and the formation of auroral arcs. The maximum 

field-aligned current density in this case is ,-, 0.018 pA/m 2. 
Our model does not include the convergence of dipolar 
magnetic field, and, consequenfiy, this number is only a 
rough lower bound for the currents that might be expected 
in the magnetosphere. The major contribution to the field- 
aligned current comes from the variation of the azimuthal 
magnetic field in the radial direction. 

Figure 10a shows a contour plot of the parallel electric 
field in the x-z plane near y = L•, at t • 7.5 Tp for case 
B with the inclusion of electron inertia. Solid lines are for 

positive fields and dashed lines are for negative fields. The 
contour interval is about 0.002 mV/m. Note that the spatial 
interval along the x direction is nonuniform, and the portion 
near the resonance is greafiy enlarged in order to show 
more clearly the contour pattern. Figure 10a shows that the 
maximum value of the parallel electric field is located near 
the ionosphere at the resonance peak, and its maximum 
value is about 0.021 mV/m, while its minimum value is 
about -0.013 mV/m. In addition, the dispersive effects 
of electron inertia add considerable spatial structures. This 
structure might be associated with the thinner discrete arcs 
(kilometers in thickness) which are embedded in the larger 
scale (tens of kilometers) in inverted V structures. The 
solid curve in Figure 10b shows a one-dimensional cut 

Case B t = 8.0 Tp 
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Figure 9. A one-dimensional cut of the field-aligned 
current density J• (solid curve) and the • component of 
the magnetic field b•, (dashed curve) at the ionosphere at 
t __. 8.0Tp along • __ 0.25 L• in Case B. Positive J• 
indicates upward field-aligned currents. 
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•'igure 10. (a) Contour plot of the parallel electric field 
in the x-z plane near y = œu at t _• 7.5 T r in case B. The 
solid lines are for positive values and the dashed lines are 
for negatives values. The contour interval is about 0.002 
mV/m. Note that the spatial interval along the z direction 
is nonuniform. (b) One-dimensional cuts of the parallel 
electric field Ez near the ionosphere (solid curve) and the 
field-aligned potential drop 4z at the ionosphere (dashed 
curve). 

nonlinear regime, harmonic generation (including nonlin- 
ear ponderomotive forces) and other nonlinear effects such 
as the Kelvin-Helmholtz instability in the equatorial plane 
[Samson et al., 1992; Rankin et al., 1993a] can dissipate 
the energy in the resonance. The variety of possibilities is 
clearly large, and a code used for studying the evolution of 
FLRs must be able to accommodate the possible nonlinear 
effects. In our simulation, mode conversion dominates 
the dissipation in the FLR, though nonlinear effects are 
apparent. 

Our simulation results indicate that mode conversion to 

inertial Alfvtn waves becomes important when the width 
of the resonance is of the order of 6 Ac. Measurements of 
FLRs in the ionosphere [ Walker et al., 1992] and estimates 
of the widths of FLRs based on the typical ionospheric 
conductivities (without electron inertia [Rangin el al., 
1993b]) indicate that the widths in the auroral ionosphere 
might be less than 20 - 30 km (~ 0.1 Rr in the equatorial 
plane). These widths map to several electron inertia lengths 
at 1.5 to 2 R• above the auroral ionosphere, indicating 
that inertial effects might play a role in some FLRs in 
Earth's magnetosphere. The results from our simulation 
are compatible with this possibility. Furthermore, our 
simulation results show that the resonance narrows enough 
to allow inertial effects within approximately five wave 
cycles. The wave-trains of many FLRs are much longer 
than this[Walker el al., 1992]. 

The net field-aligned potentials in our simulation are 
compatible with those estimated by Borovsky [1993] for 
electron inertial effects. Borovsky showed that the arc 
should have a width of approximately 2 •rAc and 

42 2 

of the parallel electric field Ez at z _• 0.14Lz where Ez 
reaches its maximum. The Ez profile is similar to the 
field-aligned current profile in Figure 9. The dashed curve 
in Figure 10b shows the field-aligned potential drop (the 
integrated Ez in the z direction) at the ionosphere. The 
maximum field-aligned potential drop is about 15 V at the 
resonant position. 

While a parallel potential drop 6•ll of 15 V seems very 
small, we note that in our simulations the radial potential 
drop from the center of the resonance to the first zero of the 
electric field in the equatorial plane 6•bñ is of the order of 
30 V. Consequently, 6•11/6•ñ • 0.5. Observed equatorial 
velocity fields of FLRs in the magnetosphere are of the 
order of 200 km/s at 8 m l0 Rr, and the resonance might 
have a half width of ~ 0.1 Rr, giving an observed 6•ñ 
of about 8 keV. On the basis of the ratio 6•11/6•ñ in our 
simulation, we find that an order of magnitude estimated 
from 6•ll in the magnetosphere is about 4 keV. These 
energies are typical of those found in discrete auroral arcs. 

4. Discussion and Conclusions 

FLRs in Earth's magnetosphere can be saturated due to 
a number of physical mechanisms. In the linear regime, 
dissipation of energy by Joule heating in the ionosphere and 
mode conversion to kinetic or inertial Alfvtn waves stabi- 

lize the resonance at finite widths and amplitudes. In the 

In our simulations we have shown that when electron 

inertia is important, the width of the resonance is of 
the order of 6 A, (~ 2 ;rA,) or equivalently kñA, = 1 
(A = 2 ;rA,), giving 6•pll/•ñ •_ 0.15 according to (25). 
Such an estimation is very close to our measured value. 

Even though more sophisticated simulations with dipolar 
configurations and realistic plasma densities and pressures 
are needed, our results show that the relatively simple and 
eloquent mechanism of mode conversion might lead to the 
formation of some auroral arcs. The only requirements of 
the model are a nonuniform magnetoplasma and a source 
of monochromatic compressional waves. Potential sources 
of these monochromatic waves are cavity modes [Kivelson 
and Southwood, 1986] and waveguide modes [Samson et 
aL, 1992]. The coupling of the compressional to shear 
Alfvtn waves forms FLRs on magnetic shells. These 
FLRs narrow with time, and if ionospheric conductivity 
is high enough, electron inertial effects become important, 
with mode conversion to inertial Alfv6n waves. The 

width of the resonance is determined by electron inertia, 
giving 6(/)11 __. 0.56(/)ñ. Observed FLRs have 6(/)ñ __. 
several keV, allowing field-aligned potential drops (and 
accelerated electrons) of a number of keV. If we assume 
that •c at 1.5 - 2 ]2• determines the effective width of the 
resonance, the latitudinal width in the ionosphere would be 
about 10 - 20 km. 

Much remains to be done in numerical computational 
studies of the evolution of FLRs. More realistic (dipolaf) 
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geometries are needed as we consider finite/• effects. The 
competition among ionospheric dissipation, mode conver- 
sion, and nonlinear effects must be taken into account. 
We have been able to show that in some cases mode 
conversion is the dominant mechanism for saturation and 

stabilization of the FLRs. In the nonlinear regime we must 
consider harmonic generation and nonlinear instabilities 
such as localized tearing modes and equatorial Kelvin- 
Helmholtz instabilities. We are presently testing models 
which show strong harmonic generation and ponderomo- 
tive forces when electron inertial effects are not important. 

The simulation results presented in this paper indicate 
that there are large azimuthal components of the magnetic 
field near the ionosphere and in the velocity near the 
equatorial plane associated with inertial Alfv•n waves. 
The large azimuthal magnetic field leads to a large field- 
aligned current, which might excite localized tearing mode 
instabilities and hence lead to the formation and structuring 
of some auroral arcs. The localized tearing mode should 
evolve in the nonlinear regime when electron inertia and 
the large field-aligned currents in the resonance near the 
ionosphere are taken into account (measured currents may 
be greater than 5 #A/m•). Here the scenario is very similar 
to the auroral are model considered by $e•ller [1990]. 

The nonlinear Kelvin-Helmholtz instability evolves in 
the equatorial plane because of the large velocity shears in 
this region of the FLR. Rankin et al. [1993a] have shown 
that this instability occurs in models which are initialized 
with the fields of an FLR. We are now looking for these 
instabilities in driven FLRs like the one in this study. 

By using a boxlike model of the magnetosphere, we 
have neglected the convergence of the geomagnetic field. 
As a consequence, all of the physical quantifies which 
involve a mapping between the magnetosphere and the 
ionosphere cannot be quantitatively compared with obser- 
vations. Therefore the values for the field-aligned current, 
the parallel electric field, and the field-aligned potential 
drop obtained in the previous section are only qualitative. 
Nevertheless, the present model provides a global picture 
of FLRs when electron inertial effects are included. It 
leads to a better understanding of mode conversion from 
compressional waves to shear Alfv6n waves and the energy 
transfer from the driver into the system and consequently 
conversion into field-aligned oscillations. It shows clearly 
the dispersive effect of electron inertia. It gives profiles 
of the parallel electric field and the field-aligned potential 
drop, which would not be present if electron inertia is 
neglected. 

The principal results of this paper may be summarized 
as follows: 

The coupling of fast mode compressional waves to shear 
Alfv6n waves leads to the formation of large-amplitude 
FLRs near Earth where the frequency of the fast mode 
driver wave matches the local Alfv6n wave frequency. The 
FLR may reach saturation within several wave periods. 

The dispersive effect of electron inertia becomes im- 
portant to the resonance structures when the resonance 
narrows to about six electron inertia lengths (W,. _< • Ae). 
The electron inertial effect is more significant when the 
FLR width narrows further. 

Dispersive effects of electron inertia lead to several new 
effects. These include the broadening of the resonance, an 
Earthward shift of the resonance peak, and the formation of 
a spatially oscillating wavetrain on the Earthward side of 

the resonance. The final profiles of the resonance are very 
similar in shape to the Airy function solutions for linear 
mode conversion problems. 

Inclusion of electron inertia has little effect on the com- 

pressional mode because electron inertia does not signifi- 
canfly modify the wavenumber in the region where the fast 
mode wave is dominant. 

A number of linear and nonlinear mechanisms may 
lead to saturation of FLRs. The linear mechanisms are 

dissipation of energy by Joule heating in the ionosphere and 
mode conversion to kinetic or inertial Alfv6n waves, while 
harmonic generation (including nonlinear ponderomotive 
forces) and the Kelvin-Helmholtz instability are possible 
nonlinear mechanisms. 

Parallel electric fields associated with inertial Alfv6n 
waves with inclusion of electron inertia lead to the existence 

of field-aligned potential drops between the equatorial 
plane and the ionosphere. These potential drops may lead 
to the acceleration of electrons in the auroral region and 
the formation of some types of auroral arcs. 
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